
 1

Playing Tic-Tac-Toe Using Genetic Neural Network with Double Transfer functions

1S.H. Ling, and 2H.K. Lam
1Faculty of Engineering and Information Engineering, University of Technology

Sydney, NSW, Australia
2Division of Engineering, The King’s College London, Strand, London, WC2R 2LS,

United Kingdom

Abstract: Computational intelligence is a good tool for game development. In this
paper, an algorithm of playing game tic-tac-toe with computational intelligence is
developed. This algorithm is learned by a Neural Network with Double Transfer
functions (NNDTF), which is trained by genetic algorithm (GA). In the NNDTF, the
neuron has two transfer functions and exhibits a node-to-node relationship in the
hidden layer that enhances the learning ability of the network. A Tic-Tac-Toe game is
used to show the NNDTF provide a better performance than traditional neural
network.

I. Introduction
 Games such as Backgammon, Chess, Checkers, Go, Othello and Tic-tac-toe
are widely used platforms for studying the learning ability of and developing learning
algorithms for machines. By playing games, the machine intelligence can be
revealed. Some techniques of artificial intelligence, such as the brute-force methods
and knowledge-based methods [1], have been reported. Brute-force methods, e.g.
retrograde analysis [2] and enhanced transposition-table methods, solve the game
problems by constructing databases for the games. For instance, the database is
formed by a terminal position [2]. The best move is then determined by working
backward on the constructed database. For knowledge-based methods, the best move
is determined by searching a game tree. For games such as Checkers, the tree
spanning is very large. Tree searching will be time consuming even for a few plies.
Hence, an efficient searching algorithm is an important issue. Some searching
algorithms, which are classified as knowledge-based methods, are threat-space search
and λ-search, proof-number search [3], depth-first proof-number search and pattern
search.
 It can be seen that the above game-solving methods depend mainly on the
database construction and searching. The problems are solved by forming a possible
set of solutions based on the endgame condition, or searching for the set of solutions
based on the current game condition. The machine cannot learn to play the games by
itself. Unlike an evolutionary approach in [1], neural network (NN) was employed to
evolve and to learn for playing Tic-tac-toe without the need of a database.
Evolutionary programming was used to design the NN and link weights. A similar
idea has been applied in a Checkers game [6-9]. Other games such as Backgammon
[4], Othello [10] and Checkers [11] applying NNs or computational intelligence
techniques can also be found.
 In this paper, a neural network with double transfer functions (NNDTF) is
proposed to learn the rules of Tic-tac-toe. Each possible move is evaluated by a
proposed algorithm with a score. By maximizing the total scores (evaluated values),
the rules of Tic-tac-toe can be extracted by the NNDTF. Different from the traditional
feed-forward multiple-perception NN, proposed transfer functions and a node-to-node
relationship are introduced to the proposed NN. The modified transfer functions are
allowed to change the shapes during operation. Hence, the working domain is larger

 2

than that of the traditional one. By introducing the node-to-node relationship between
hidden nodes, information can be exchanged between hidden layers. As a result, the
learning ability is enhanced. A genetic algorithm (GA) [12] is investigated to train the
NNDTF. The trained NNDTF will then be employed to play Tic-tac-toe with a
human player as an example.
 This paper is organized as follows. An algorithm to evaluate each move on
playing the Tic-tac-toe will be proposed in section II. NNDTF will be presented in
section III. Genetic Algorithm will be presented in section IV. Training of the
NNDTF using GA to learn the rules of Tic-tac-toe will be presented in section V. An
example on playing Tic-tac-toe with a human player will be given in section VI. A
conclusion will be drawn in section VII.

II. Algorithm for Playing Tic-tac-toe
 The game Tic-tac-toe, also known as naughts and crosses, is a two-player
game. Each player will place a marker, “X” for the first player and “O” for the
second player, in turn in a three-by-three grid area. The first player takes the first
move. The goal is to place three markers in a line of any direction on the grid area.
 An algorithm is proposed in this section to evaluate the move on each grid.
An “X” and an “O” on a grid are denoted by 1 and –1 respectively. An empty grid is
denoted by 0.5. The following procedure is used to evaluate each possible move.

1) Place an “X” on an empty grid.
2) Corresponding to step 1, sum up all the grid values for each line in any

direction, e.g., for a grid in the corner, we have three evaluated values
because there are three lines to win or lose.

3) Remove the “X” placed in step 1 and place an “X” on another empty grid.
Evaluate this grid using the algorithm in step 2. Repeat this process till all
empty grids are evaluated.

4) After evaluation, each grid will have been assigned at least 2 evaluated
values for all possible lines, e.g. the center grid will have 4 evaluated
values, corner grids will have 3 evaluated values and other grids will have
2 evaluated values. There are totally 6 possible evaluated values: 3
(1+1+1), 2.5 (1+1+0.5), 2 (1+0.5+0.5), 1 (–1+1+1), 0.5 (–1+1+0.5) and –1
(–1–1+1). The most important evaluated value of a grid is 3, which indicts
a winning of the game (3 “X”s in a line) if you put an “X” on that grid.
The priority of taking that move is the highest. The second important
evaluated value of a grid is –1 (2 “O”s and 1 “X” in a line), which indicts
that the opponent should be prevented from winning the game. The
priority of taking that move is the second highest. Using this rationale, the
list of priority in a descending order is: 3, –1, 2.5, 2, 1, 0.5. Based on these
assigned evaluated values, a score will be assigned to each possible move.
First, each evaluated value is assigned a score: 3 → γ6 = 77, –1 → γ5 = 66,
2.5 → γ4 = 55, 2 → γ3 = 44, 1 → γ2 = 33 and 0.5 → γ1 = 22. The chosen
scores have the following properties,

γ6 > 4γ5 (1)
γ5 > 4γ4 (2)
γ4 > 4γ3 (3)
γ3 > 4γ2 (4)
γ2 > 4γ1 (5)

 3

 The sum of the scores of a grid is the final score. The final scores will
be used to determine the priorities of the possible move. A higher final
score of a grid indicates a higher priority of that move. The reasons for
choosing the scores in this way with the properties of (1) to (5) are as
follows. As the evaluated value of 3 indicates a winning of the game (3
“X”s in a line), the score of γ6 must be the highest. There are at most four
evaluated values for a grid. Hence, γ6 must be greater than 4 times the
second largest evaluated values, i.e. 4γ5. Consequently, the priority of a
grid having an evaluated score with a higher priority will not be affected
by other lower evaluated scores. For instance, consider a grid having
evaluated values of 3 and 0.5, and another grid having evaluated values of
−1, 2.5, 2 and 0.5. The final score of the former grid (77 + 22) is bigger
than and latter grid (77 + 22 and 66 + 55 + 44 + 22). Thus, the “X” should
be place at the grid having an evaluated value of 3 to win the game.

 Take the game as shown in Fig. 1 as an example, we have 3 “X”s and 3 “O”s.
The next move will be to place an “X”. After assigning an empty grid to be 0.5, an
“X” to be 1, an “O” to be –1, Fig. 1(b) is obtained. Following Step 1 to Step 3, we
obtain the evaluated values as shown in Fig. 1(c). Based on Step 4, Fig. 1(d) shows
the final scores for the empty grids. As the highest score is 873324, the most
appropriate move is to put an “X” on the bottom right corner. This move not only
lines up 3 “X”s to win a game, but also prevents the opponent to line up 3 “O”s. The
second appropriate move, indicted by the final score of 52906, can gain a chance to
win by lining up 2 “X”s, and prevent the opponent to win.

III. Neural Network with Double Transfer functions (NNDTF)
 NN was proved to be a universal approximator [13]. A 3-layer feed-forward
NN can approximate any nonlinear continuous function to an arbitrary accuracy. NNs
are widely applied in areas such as prediction, system modeling and control [13].
Owing to its particular structure, a NN is good in learning [2] using some learning
algorithms such as GA [1] and back propagation [2]. In general, the processing of a
traditional feed-forward NN is done in a layer-by-layer manner. In this paper, by
introducing a node-to-node relationship in the hidden layer of the NN, a better
performance can be obtained.
 Fig. 2 shows the proposed neuron. It has two activation transfer functions to
govern the input-output relationships of the neuron: static transfer function (STF) and
dynamic transfer function (DTF). For the STF, the parameters are fixed and its output
depends on the inputs of the neuron. For the DTF, the parameters of the activation
transfer function depend on the outputs of other neurons and its STF. With this
proposed neuron, the connection of the proposed NN is shown in Fig. 3, which is a
three-layer NN. A node-to-node relationship is introduced in the hidden layer.
Comparing with the traditional feed-forward NN [13], it was reported in [14] that the
proposed NN can offer a better performance and need fewer hidden nodes. The
details of the NNDTF are presented as follows.

A. The neuron model

 4

 We consider the STF first. Let ijv be the synaptic connection weight from the
i-th input component ix to the j-th neuron. The output jκ of the j-th neuron’s STF is
defined as,

∑
=

=
inn

i
iji

j
sj vxnet

1
)(κ , =i 1, 2, …, inn , =j 1, 2, …, hn (6)

where inn denotes the number of input and)(⋅j
snet is a static activation transfer

function. The activation transfer function is defined as,

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

−

≤∑−
=∑

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−∑−

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−∑−

=

=

=

otherwise1

 if 1
)(

2

2

1

2

2

1

2

1

2

1

j
s

j
s

inn

i
iji

inj
s

j
s

inn

i
iji

in

mvx

s

n

i
iji

mvx

n

i
iji

j
s

e

mvxe
vxnet

σ

σ

,

=j 1, 2, …, hn (7)

where j
sm and j

sσ are the static mean and static standard deviation for the j-th STF
respectively. The parameters (j

sm and j
sσ) are fixed after the training processing.

Thus, the activation transfer function is static. The output of the STF depends on the
inputs of the neuron only. From (7), the output value is ranged from –1 to 1. The
shape of the proposed activation transfer function is shown in Fig. 4 and Fig. 5. It can
be observed from these 2 figures that 1)(→fnet as ∞→f and 1)(−→fnet as

−∞→f .
 Considering the DTF, the neuron output jz of the j-th neuron is defined as,

),,(j
d

j
dj

j
dj mnetz σκ= , =j 1, 2, …, hn (8)

where)(⋅j
dnet is the DTF defined as follows,

()

()
⎪
⎪
⎩

⎪⎪
⎨

⎧

−

≤−
=

−−

−−

otherwise1

 if1),,(
2

2

2

2

2

2

j
d

j
dj

j
d

j
dj

m

j
dj

m

j
d

j
dj

j
d

e

memnet

σ

κ

σ

κ

κσκ , =j 1, 2, …, hn (9)

where

1,1 ++ ×= jjj
j

d zpm (10)

1,1 −− ×= jjj
j

d zpσ (11)
j

dm and j
dσ are the dynamic mean and dynamic standard deviation for the j-th DTF.

1−jz and 1+jz represent the output of the 1−j -th and j+1-th neurons respectively.

jjp ,1+ denotes the weight of the link between the j+1-th node and the j-th node and

jjp ,1− denotes the weight of the link between the 1−j -th node and the j-th node. It
should be noted that if 1=j , jjp ,1− is equal to jnh

p , and if hnj = , jjp ,1+ is equal to

jp ,1 . In this DTF, unlike the STF, the activation transfer function is dynamic as the
parameters of its activation transfer function depend on the outputs of the 1−j -th and
j+1-th neurons. Referring to (1-4), the input-output relationship of the proposed
neuron is as follows,

 5

),),((
1

j
d

j
d

n

i
iji

j
s

j
dj mvxnetnetz

in

σ∑
=

= , =j 1, 2, …, hn (12)

B. Connection of the NNDTF
 As shown in Fig. 3, the NNDTF has three layers with inn nodes in the input
layer, hn nodes in the hidden layer, and outn nodes in the output layer. In the hidden
layer, the neuron model presented in the previous section is employed. The output
value of the hidden node depends on the neighboring nodes and input nodes. In the
output layer, a static activation transfer function is employed. Considering an input-
output pair),(yx , the output of the j-th node of the hidden layer is given by

))((
1

∑
=

=
inn

i
iji

j
s

j
dj vxnetnetz , =j 1, 2, …, hn (13)

The output of the NNDTF is defined as,

∑
=

=
outn

l
jlj

l
ol wznety

1
)(, =l 1, 2, …, outn (14)

)))(((
1 1

jl

n

l

n

i
iji

j
s

j
d

l
o wvxnetnetnet

out in

∑ ∑
= =

= (15)

where jlw denotes the weight of the link between the j-th hidden and the l-th output

nodes;)(⋅l
onet denotes the activation transfer function of the output neuron. The

transfer function of the output node is defined as follows,
()

()
⎪
⎪

⎩

⎪
⎪

⎨

⎧

−

≤−=
−−

−−

otherwise1

 if1)(
2

2

2

2

2

2

l
o

l
ok

l
o

l
ok

mz

l
ok

mz

j
l
o

e

mzeznet

σ

σ
 (17)

where l
om and l

oσ are the mean and the standard deviation of the output node
activation transfer function respectively. The parameters of the NNDTF can be
trained by GA [12].

IV. Genetic Algorithm
 Genetic algorithms (GAs) are powerful searching algorithms. The traditional
GA process [15-17] is shown in Fig. 6. First, a population of chromosomes is created.
Second, the chromosomes are evaluated by a defined fitness function. Third, some of
the chromosomes are selected for performing genetic operations. Forth, genetic
operations of crossover and mutation are performed. The produced offspring replace
their parents in the initial population. This GA process repeats until a user-defined
criterion is reached. In this paper, the traditional GA is modified and new genetic
operators [12] are introduced to improve its performance. The modified GA process
is shown in Fig. 7. Its details will be given as follows.

A. Initial Population
 The initial population is a potential solution set P. The first set of population
is usually generated randomly.

{ }sizepopP _21 , , , ppp L= (18)

 6

[]
varsnoj iiiii pppp

_21
LL=p , i = 1, 2, …, pop_size; j = 1, 2, …, no_vars

 (19)
j

i
j parappara

j maxmin ≤≤ (20)

where pop_size denotes the population size; no_vars denotes the number of variables
to be tuned;

jip , i = 1, 2, …, pop_size; j = 1, 2, …, no_vars, are the parameters to be

tuned; jparamin and jparamax are the minimum and maximum values of the parameter

jip for all i. It can be seen from (18) to (20) that the potential solution set P contains

some candidate solutions ip (chromosomes). The chromosome ip contains some
variables

jip (genes).

B. Evaluation
 Each chromosome in the population will be evaluated by a defined fitness
function. The better chromosomes will return higher values in this process. The
fitness function to evaluate a chromosome in the population can be written as,

)(iffitness p= (21)
The form of the fitness function depends on the application.

C. Selection
 Two chromosomes in the population will be selected to undergo genetic
operations for reproduction by the method of spinning the roulette wheel [1]. It is
believed that high potential parents will produce better offspring (survival of the best
ones). The chromosome having a higher fitness value should therefore have a higher
chance to be selected. The selection can be done by assigning a probability qi to the
chromosome ip :

∑
=

= sizepop

j
j

i
i

f

fq _

1
)(

)(

p

p , i = 1, 2, …, pop_size (22)

The cumulative probability iq̂ for the chromosome ip is defined as,

∑
=

=
i

j
ji qq

1
ˆ , i = 1, 2, …, pop_size (23)

The selection process starts by randomly generating a nonzero floating-point number,
[]10∈d . Then, the chromosome ip is chosen if ii qdq ˆˆ 1 ≤<− , i = 1, 2, …,

pop_size, and 0ˆ0 =q . It can be observed from this selection process that a
chromosome having a larger)(if p will have a higher chance to be selected.
Consequently, the best chromosomes will get more offspring, the average will stay
and the worst will die off. In the selection process, only two chromosomes will be
selected to undergo the genetic operations.

D. Genetic Operations
 The genetic operations are to generate some new chromosomes (offspring)
from their parents after the selection process. They include the crossover and the
mutation operations.

 7

1. Crossover
 The crossover operation is mainly for exchanging information from the two
parents, chromosomes p1 and p2, obtained in the selection process. The two parents
will produce one offspring. First, four chromosomes will be generated according to
the following mechanisms,

[]
2

211
_

1
2

1
1

1 ppos +
== varsnoc ososos L (24)

[] ()wwososos varsnoc 21max
2

_
2
2

2
1

2 ,max)1(pppos +−== L (25)

[] ()wwososos varsnoc 21min
3

_
3
2

3
1

3 ,min)1(pppos +−== L (26)

[]
2

)()1)((21minmax4
_

4
2

4
1

4 ww
ososos varsnoc

pppp
os

++−+
== L (27)

[]varsnoparaparapara _
max

2
max

1
maxmax L=p (28)

[]varsnoparaparapara _
min

2
min

1
minmin L=p (29)

where []10∈w denotes a weight to be determined by users, ()21 ,max pp denotes a
vector with each element obtained by taking the maximum among the corresponding
element of p1 and p2. For instance, [] []() []332132,321max =− .
Similarly, ()21,min pp gives a vector by taking the minimum value. For instance,

[] []() []121132,321min −=− . Among 1
cos to 4

cos , the one with the largest
fitness value is used as the offspring of the crossover operation. The offspring is
defined as,

[] osi

csnoososos osos =≡ var_21 L (30)

where ios denotes the index i which gives a maximum value of ()i
cf os , i = 1, 2, ,3 ,4.

 If the crossover operation can provide a good offspring, a higher fitness value
can be reached in less iteration. As seen from (24) to (27), the offspring spreads over
the domain: (24) and (27) will move the offspring near centre region of the concerned

domain (as w in (27) approaches 1, 4
cos approaches

2
21 pp +), and (25) and (26) will

move the offspring near the domain boundary (as w in (25) and (26) approaches 1,
2
cos and 3

cos approaches pmax and pmin respectively). The chance of getting a good
offspring is thus enhanced.

2. Mutation
 The offspring (30) will then undergo the mutation operation. The mutation
operation is to change the genes of the chromosomes. Consequently, the features of
the chromosomes inherited from their parents can be changed. Three new offspring
will be generated by the mutation operation:

[] []snosnosnoj nosbnosbnosbososos var_var_2211var_21 ∆∆∆+= LLnos , j =
1, 2, 3 (31)
where bi, i = 1, 2, …, no_vars, can only take the value of 0 or 1; inos∆ , i = 1, 2, …,
no_vars, are randomly generated numbers such that

i
i

j
i

i paranosospara maxmin ≤∆+≤ . The first new offspring (j = 1) is obtained
according to (31) with that only one ib (i being randomly generated within the range)

 8

is allowed to be 1 and all the others are zeros. The second new offspring is obtained
according to (31) with that some randomly chosen bi are set to be 1 and others are
zero. The third new offspring is obtained according to (31) with all ib = 1. These
three new offspring will then be evaluated using the fitness function of (21). A real
number will be generated randomly and compared with a user-defined number

[]10∈ap . If the real number is smaller than pa, the one with the largest fitness
value lf among the three new offspring will replace the chromosome with the
smallest fitness sf in the population (even when sl ff < .) If the real number is larger
than pa, the first offspring will replace the chromosome with the smallest fitness value

sf in the population if sl ff > ; the second and the third offspring will do the same.
pa is effectively the probability of accepting a bad offspring in order to reduce the
chance of converging to a local optimum. Hence, the possibility of reaching the
global optimum is kept.
 We have three offspring generated in the mutation process. From (31), the
first mutation (j = 1) is in fact a uniform mutation. The second mutation allows some
randomly selected genes to change simultaneously. The third mutation changes all
genes simultaneously. The second and the third mutations allow multiple genes to be
changed. Hence, the domain to be searched is larger as compared with a domain
characterized by changing a single gene. As three offspring are produced in each
generation, the genes will have a larger space for improving the fitness value when the
fitness value is small. When the fitness values are large and nearly steady, changing
the value of a single gene (the first mutation) may be enough as some genes may have
reached the optimal values.
 After the operation of selection, crossover, and mutation, a new population is
generated. This new population will repeat the same process. Such an iterative
process can be terminated when the result reaches a defined condition, e.g. a defined
number of iterations have been reached.

V. Training of the NNDTF
 In this section, the GA will be employed to train the parameters of the NNDTF
to play Tic-tac-toe based on the gaming algorithm in Section II. The NNDTF with 9
inputs and 1 output is employed. The grids are numbered from 1 to 9 from right to
left and from top to bottom. An “X” on the grid is denoted by 1, an “O” is denoted by
–1, and an empty grid is denoted by 0.5. The grid pattern represented by numerical
values will be used as the input of the NNDTF. The output of the NNDTF (y(t) which
a floating point number ranged from 1 to 9) represents the position of the marker that
should be placed on. In order to have a legal move (place a marker on an empty grid),
the marker is placed on an empty grid that has its grid number closest to the output of
the network.
 To perform the training, we have to determine the parameters to be trained and
the fitness function describing the problem’s objective. The parameters of the
modified network to be turned is][,1,1

l
o

l
ojljjjj

j
s

j
sij mwppmv σσ −+ for

all i, j, l, which will be chosen as the chromosome for the GA. 100 different training
patterns (obtained based on the proposed gaming algorithm stated in Section II) are
used to feed into the NNDTF for training. The fitness functions is designed as
follows,

 9

∑

∑

=

== 100

1
max

100

1

))((

))(),((

i

i
m

tS

ttyS
fitness

x

x
 (32)

where y(t) denotes the output of the NNDTF with the t-th training pattern x(t) as the
input,))(),((ttySm x denotes the final score for grid y(t) and the t-th training pattern
x(t) based on the gaming algorithm.))((max tS x denotes the maximum final score
value among all the empty grids for the t-th training pattern x(t). The GA is to
maximize the fitness value (ranged from 0 to 1) so as to force the output of the
NNDTF to the grid number having the largest final score to ensure the best move.

VI. Example
 In this session, a 9-input-1-output NNDTF will be used for training. The
number of hidden nodes is chosen to be 8. 100 training patterns are used for training
with 50000 iterations. The population size, probability of acceptance, and w are
chosen to be 10, 0.5 and 0.1 respectively. After training, the fitness value obtained is
0.9605. The upper and lower bounds of each parameter are 1 and –1 respectively.
The initial values of the parameters are generated randomly.
 For comparison purpose, a traditional 3-layer feed-forward NN [18] trained by
GA with arithmetic crossover and non-uniform mutation [18] is also applied under the
same conditions to learn the gaming algorithm in Section II. The probabilities of
crossover and mutation are selected to be 0.8 and 0.1 respectively. The shape
parameter of the traditional GA for non-uniform mutation [18] is selected to be 5.
These parameters are selected by trial and error for best performance. After training
for 50000 iterations, the fitness value obtained is 0.9456.
 To test the performance of our proposed method, our trained NN plays tic-tac-
toe with the trained traditional NN for 50 games is used for comparison. The first 25
grid patterns, which are generated randomly with 2 “O”s and 2 “X”s, are the same as
the next 25 grid patterns. For the first 25 games, the proposed approach moves first.
For the second 25 games, the traditional approach moves first. The results are
tabulated in Table I. It can be seen that the proposed approach performs better. The
number of win is 18 by using NNDTF while the number of win is 13 only by using
tradition NN.

VII. Conclusion
 A neural network with double transfer functions and trained with genetic
algorithm has been proposed. An algorithm of playing Tic-tac-toe has bee presented.
A new transfer function of the neuron is proposed. The proposed neural; network is
trained by genetic algorithm to learn the algorithm of playing Tic-tac-toe. As a
comparison, the trained NN has played against a traditional NN trained by traditional
GA. The result shows that the proposed approach performs better.

References:
[1] H.J.V.D. Herik, J.W.H.M. Uiterwijk and J.V. Rijswijck, “Games Solved: Now

and in the Future,” Artificial intelligence, vol. 134, pp. 277-311, 2002.
[2] H.J.V.D. Herik, I.S. Herschberg, “The Construction of an Omniscient Endgame

Data Base,” ICCA J., vol. 8, no. 2, pp. 66-87, 1985.

 10

[3] L.V. Allis, M.V.D. Meulen and.V.D. Herik, “Proof-Number Search,” Artificial
Intelligence, vol. 66, no.1, pp. 91-124, 1994.

[4] G. Tesauro, “Programming Backgammon Using Self-Teaching Neural Nets,”
Artificial intelligence, vol. 134, pp. 181-199, 2002.

[5] D.B. Fogel, “Using Evolutionary Progamming to Create Neural Networks that
are capable of Playing Tic-Tac-Toe,” in Proc. 1995 IEEE Int. Conf. Neural
Networks, San Francisco, CA, 1993, pp. 875-880.

[6] D.B. Fogel and K. Chellapilla, “Verifying Anaconda’s Expert Rating by
Competing against Chinook: Experiments in Co-evolving a neural Checkers
Player,” Neurcomputing, vol. 42, pp. 69-86, 2002.

[7] K. Chellapilla and D.B. Fogel, “Evolving Neural networks to Play Checkers
Without Relying on Expert Knowledge,” IEEE Trans. Neural Networks, vol. 10,
no. 6, pp. 1382-1391, 1999.

[8] K. Chellapilla and D.B. Fogel, “Evolving an Expert Checkers Playing Program
Without Using Human Expertise,” IEEE Trans. Evolutionary Computation, vol.
5, no. 4, pp. 422-428, 2001.

[9] K. Chellapilla and D.B. Fogel, “Evolution, Neural Networks, Games, and
Intelligence,” Proceedings of The IEEE, vol. 87, no. 9, pp. 1471-1496, 1999.

[10] S.Y. Chong, M.K. Tan, J.D. White, “Observing the evolution of neural
networks learning to play the game of Othello,” IEEE Trans. Evolutionary
Computation, vol. 9, no. 3, pp. 422-428, 2005.

 [11] D.E. Beal and M.C. Smith, “Random Evolutions in Chess,” ICCA J., vol. 17, no.
1, pp. 3-9, 1994.

[12] F.H.F. Leung, H.K. Lam, S.H. Ling, and P.K.S. Tam, “Tuning of the structure
and parameters of neural network using an improved genetic algorithm,” IEEE
Trans. Neural Networks, vol.14, no. 1, pp.79–88, Jan. 2003.

[13] M. Brown and C. Harris, Neuralfuzzy adaptive modeling and control. Prentice
Hall, 1994.

[14] S.H. Ling, F.H.F. Leung, H.K. Lam, Y.S. Lee, and P.K.S. Tam, “A novel GA-
based neural network for short-term load forecasting,” IEEE Trans. Industrial
Electronics, vol. 50, no. 4, pp.793–799, Aug. 2003.

[15] J.H. Holland, Adaptation in natural and artificial systems, Ann Arbor, MI:
University of Michigan Press, 1975.

[16] D.T. Pham and D. Karaboga, Intelligent optimization techniques, genetic
algorithms, tabu search, simulated annealing and neural networks. Springer,
2000.

[17] Z. Michalewicz, Genetic Algorithm + Data Structures = Evolution Programs,
(2n ed.). Springer-Verlag, 1994.

[18] S. Haykin, Neural networks: A comprehensive foundation, (2n ed.). Upper
Saddle River, N.J.: Prentice Hall, 1999.

 11

0.5 0.5 1

11-1

-1 -1 0.5

-1, 2.5,
 2.5 2.5,152906 3152

873324 3, -1,
2.5

(a) (b)

(d) (c)
Fig. 1. Evaluation process.

jth neuron

)(⋅j
snet∑

)(⋅j
dnet

1x

2x

innx jκ

jj
p

,1+

jj
p

,1−

1−jz

1+jz

jv1

jv2

jnin
v

jz

STF

DTF

Fig. 2. Model of the proposed neuron.

1x

2x

innx

1κ

2κ

hnκ

1y
21p

12p

2hnp hnp2

1hnp

hnp1

11v

12v
hnv1

hinnnv
2innv

1innv

11w

21w

1hnw

1z

2z

hnz

outnw1

outny

outnw2

outhnnw

hnp1
1hnp

Fig. 3. Connection of the NNDTF.

 12

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

ne
t

f

m=-0.4
m=-0.2

m=0

m=0.2

m=0.4

Fig. 4. Sample transfer functions of the proposed neuron (σ =0.2).

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

f

ne
t

σ = 0.1

σ = 0.4

σ = 0.2

σ = 0.3

Fig. 5. Sample transfer functions of the proposed neuron (m=0).

Fig. 6. Procedure of simple GA.

Procedure of the simple GA
begin
 τ→0 // τ: iteration generation
initialize P(τ) //P(τ): population for iteration t
 evaluate f(P(τ)) // f(P(τ)):fitness function
while (not termination condition) do
 begin
 τ→τ+1
 select 2 parents p1 and p2 from P(τ-1)
 perform genetic operations (crossover and mutation)
 reproduce a new P(τ)
 evaluate f(P(τ))
 end
end
end

 13

Fig. 7. Procedure of the modified GA.

 Proposed NN

Wins: Draws: Loses
Proposed approach moves first 18: 3: 4

Traditional approach moves first 13: 4: 8
Table I: Results of the proposed NN playing Tic-tac-toe against with the traditional

NN for 50 games.

Procedure of the improved GA
begin
 τ→0 // τ: iteration

initialize P(τ) //P(τ): population for iteration t
 evaluate f(P(τ)) // f(P(τ)):fitness function
while (not termination condition) do
 begin
 τ→τ+1
 select 2 parents p1 and p2 from P(τ-1)
 perform crossover operation according to equations (7) to (13)
 perform mutation operation according to equation (14) to three

offspring nos1, nos2 and nos3
 // reproduce a new P(τ)
 if random number < pa // pa: probability of acceptance

The one among nos1, nos2 and nos3 with the largest fitness
value replaces the chromosome with the smallest fitness
value in the population

else
if f(nos1) > smallest fitness value in the P(τ-1)

nos1 replaces the chromosome with the smallest fitness
value

end
if f(nos2) > smallest fitness value in the updated P(τ-1)

nos2 replaces the chromosome with the smallest fitness
value

end
if f(nos3) > smallest fitness value in the updated P(τ-1)

nos3 replaces the chromosome with the smallest fitness
value

end
end

