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The time series prediction of avian influenza epidemics is a complex issue, because avian influenza has latent seasonality 
which is difficult to identify. Although researchers have applied a neural network (NN) model and the Box-Jenkins model 
for the seasonal epidemic series research area, the results are limited. In this study, we develop a new prediction seasonal 
auto-regressive-based support vector regression (SAR-SVR) model which combines the seasonal auto-regressive (SAR) 
model with a support vector regression (SVR) model to address this prediction problem to overcome existing limitations. 
Fast Fourier transformation is also merged into this method to identify the latent seasonality inside the time series. The 
experiments demonstrate that the developed SAR-SVR method out-performs SVR, Box-Jenkins models and two layer feed 
forward NN model both in accuracy and stability in the avian influenza epidemic disease time series prediction. 
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1.   Introduction 

Avian influenza epidemic has been, and is still damaging living creatures throughout the world. The most 
notorious H5N1 highly pathogenic avian influenza (HPAI) virus is the main causative agent of avian 
influenza, which has caused billions animal deaths by either infection or culling1, 2. By the end of 2009, a 
total of 397 people had been confirmed as infected by the H5N1 virus and of them, 249 died 
(http://www.who.int/csr/disease/avian_influenza/country/cases_table_2009_01_19/en/index.html). These 
facts emphasize the need for monitoring and predicting the H5N1 infectious trend.  

The most prominent achievement for analyzing epidemic disease transmission is the susceptible-
infectious-recovered (SIR) model3. The SIR model and its extensions, e.g. the susceptible-exposed-
infectious-recovered (SEIR) model, can simulate the transmission dynamics between different sub-groups 
in a population3-7. These models work well in many epidemic situations, but they encounter difficulties in 
mimicking the practical transmission mechanism8, especially in the avian influenza domain. One reason is 
that poultry are often raised on separate farms with no free contact. Another reason is that, if some poultry 
on a farm are verified as infected by the virus, all poultry on the farm will be culled. Therefore, SIR type 
models cannot be directly applied to predict the transmission trend of the H5N1 virus.   

The other type of model, epidemic time series prediction, has also been introduced into this field to 
compensate for the gaps encountered by the SIR model. Auto-regressive moving average (ARMA) or auto-
regressive integrated moving average (ARIMA) models9-11 (also known as Box-Jenkins models12), amongst 
others, are the most classic and the most widely applied practical models in time series analysis. The Box-
Jenkins model is a parametric model with a cutting edge calculation speed which is considered the 
benchmark model in time series prediction13, 14, normally comprising three or four steps to identify an 
appropriate ARIMA process, estimate the model parameters and prediction. The Box-Jenkins model has 
also adapted to forecasting seasonal time series12, known as the SARMA/SARIMA model, which is 
suitable for epidemic diseases where the time series often follows cyclic behaviour patterns. However, the 
Box-Jenkins model is based on specific linear or error normality distribution assumptions, while in the real 
world, such as in an epidemic time series, linearity and stationary assumption conditions are seldom 
fulfilled. There is also a huge obstacle in applying this model because the textbook model selection 
methodology is complex and does not work well15, 16. In these circumstances, the neural network (NN) and 
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support vector regression (SVR) models have been widely used to alleviate the limitations of the parametric 
Box-Jenkins model. 

The neural network model17-20 is a widely used non-parametric model with the advantage that it can 
predict and classify the data without relying too much on assumptions. Researchers have found that the NN 
model outperforms ARMA/ARIMA in time series prediction accuracy21-23, and it has been effectively 
employed in epidemic disease time series analysis17, 18. The NN model also has limitations of over-fitness 
and instability24.  

The support vector regression model is a new type of non-parametric model which outperforms the NN 
model in time series prediction23. Though NN and SVR models are both machine learning models24 and 
both can achieve better performance over the classic method when predicting the non-linear time series23, 24, 
research demonstrates 23 that SVR significantly outperforms NN in non-stationary time series with no 
obvious trends or seasonality. Moreover,  research has shown that SVR with an RBF kernel function can 
forecast seasonality with no trends25. Compared with the NN model, SVR has two further advantages in 
overcoming over-fitting and local optimization problems24, because the structural risk minimization 
principle in a support vector machine is superior to the empirical risk minimization adopted in NN26. 
Therefore, SVR  models have been largely applied in financial time series prediction27, 28, electricity load 
prediction29, biology protein prediction30, climate31, and other commercial areas26, 32. However, little 
research has been applied in the avian influenza time series forecasting area until now. 

Nonetheless, SVR still encounters seasonality difficulties, because an SVR model performs better when 
the time series has performed the seasonal adjustment32. From a structural time series principle, a time 
series can be taken as the sum of trend, seasonal and irregular components33, and it seems reasonable to 
eliminate the seasonal components before the prediction. Epidemic time series are complex seasonal and 
non-linear time series34, 35; especially the weekly data for animal avian influenza breakout event counts we 
obtained. However, applying SVR directly on this series without de-seasoning will degrade the model 
performances. 

In this paper, we present a seasonal auto-regressive model based support vector regression (SAR-SVR) 
method to address this issue. The method combines the seasonal auto-regressive model with SVR together 
and, in addition, is merged with the latent seasonality identification method. Instead of eliminating the 
seasonal components, we apply SAR analysis and fast Fourier transformation (FFT) to identify and make 
full use of the seasonal component in the forecasting. We first applied SVR as the main prediction method 
in the avian influenza weekly counts time series, and we also compared it with NN and Box-Jenkins 
models to measure the SVR advantages.  

The structure of this paper is: Section 2 introduces the Box-Jenkins and SVR models as preliminaries of 
the study. Section 3 discusses the characteristics of complex seasonality of epidemic trend time series data 
and presents the proposed SAR-SVR prediction method.  Section 4 illustrates the SAR-SVR method with 
avian influenza weekly counts time series data, and Section 5 compares the results with the SVR method, 
Box-Jenkins model and NN methods to demonstrate the advantages of the method. Section 6 discusses the 
effectiveness of the SAR-SVR method and Section 7 summarizes major insights and outlines future 
research. 

2.   Box-Jenkins and SVR time series prediction models (Preliminary) 

Box-Jenkins and SVR models have been successfully applied to address time series prediction issues. The 
Box-Jenkins model is a traditional parametric model while the SVR model is a new non-parametric model. 

2.1.   Box-Jenkins model 

The Box-Jenkins model12 can be applied to both stationary and non-stationary time series. The ARMA 
model predicts stationary series and the ARIMA model can be applied to a non-stationary model which has 
an increasing or decreasing trend over time. Also, some time series have obvious seasonal properties, in 
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which circumstances we apply the SARMA/SARIMA model. SQDPqdpSARIMA ),,)(,,( model is 
described as follows 
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s
Qqt

Dsds
Pp BBxBBBB εθφ )()()1()1)(()( Θ=−−Φ   (1) 

where 
p

pp BBB φφφ −−−= ...1)( 1 , q
qq BBB θθθ −−−= ...1)( 1  

Ps
P

ss
P BBB Φ−−Φ−=Φ ...1)( 1 , Qs

Q
ss

Q BBB Θ−−Θ−=Θ ...1)( 1  
B is the backshift operator, 1−= tt xBx , tε is white noise of normal distribution ),0( δN , and 

pφφ ,...,1 , pΦΦ ,...,1 , pθθ ,...,1 , pΘΘ ,...,1  are all constant parameters.  
 

Application of the Box-Jenkins model contains four steps: 
• Model identification: Examine the data to identify the most suitable Box-Jenkins model by the 

estimation of the auto-correlation function (ACF) and the partial auto-correlation function (PACF). 
• Parameters estimation: Apply methods, such as maximum likelihood, to estimate the model parameters 

of the training data-set.  
• Model validation: Verify the adequacy by performing the residual analysis of the prediction error on 

the testing data-set.  
• Prediction: Finally, apply the suitable model to do the prediction. 

2.2.   Support vector regression models 

Support vector regression has been widely applied in time series predictions27, 28. Here we provide the main 
proposal of least square SVR (LS-SVR), ε-SVR and ν-SVR. LS-SVR is a very robust method when the 
noise is Gaussian; it is also very fast because it relies on fewer tuning parameters36. ε-SVR37 is the classic 
SVR method and ν-SVR38 is a variation. Both ε-SVR and ν-SVR have more parameters than LS-SVR and 
can provide more accurate results when ε and ν tune to suitable values.  

2.2.1.   LS-SVR model 

The least-square version SVR (LS-SVR) is the SVR method for non-linear function regression to solve the 
optimization problem in primal weight space. Suppose that { ),(),...,,( 11 ll yy xx } , that n

i R∈x is an input 
and 1Ryi ∈  is a target output, and LS-SVR is a programming of : 
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where hnn RR →⋅ :)(φ  a function which maps the input space into a higher dimensional feature space, 
weight vector hnR∈w , error variables b, Rei ∈ . After applying Lagrange multipliers and solving the 
optimal problem, the solution is: 

 







=






















+ yαIΩ1

1 0
1

0 b

Cv

T
v

 (4) 

where ];...;[ 1 lyy=y , ]1;...;1[=v1 , ];...;[ 1 lαα=α  , I is identity matrix and )()( j
T

iij xxΩ φφ=  for 
lji ,...,1, = . If we choose a kernel function ),( ⋅⋅K ,  
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then the result of the LS_SVR model for function estimation becomes: 
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If we choose Gaussian RBF kernel: 
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then the result of the LS-SVR regression is affected by the choice of ),( σc .  

2.2.2.    ε-SVR model and ν-SVR model 

There are also ε -Support Vector Regression ( SVR−ε ) and ν -Support Vector Regression ( SVR−ν ). 
These two SVR models have different optimal methods to LS-SVR. Suppose that { ),(),...,,( 11 ll yy xx }, 
that n

i R∈x is an input and 1Ryi ∈  is a target output as previous LS-SVR, the standard form of SVR−ε  
is: 
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This programming problem can be solved by its dual problem as: 
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where ),( jiij KQ xx= . Finally, the approximate function is: 
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SVR−ν  use a parameter ν  to control the number of support vectors. The problem is: 

  ∑
=

+++
l

i
ii

T

bw l
C

1

*

,,,,
))(1(

2
1min

*
ξξνε

εξξ
ww   (13) 

 s. t. 

 
li
li
li

by
yb

ii

ii
T

i

iii
T

,...,1
,...,1
,...,1

0,
,)(
,)(

*

*

=
=
=

≥
+≤−
+≤−+

ξξ
ξεφ
ξεφ

xw
xw

-  (14) 

Where 0≥ε  and the dual problem is: 
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where ]1;...;1[=1 . The decision function is the same as (12) of SVR−ε . 

3.   Seasonal auto-regressive model based support vector regression method  

The Box-Jenkins method has the advantage of handling seasonality inside the data and SVR has the ability 
to deal with non-linear time series. We combine the two models to forge a new model which improves 
prediction performance. 
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3.1.   SAR-SVR method necessity and characteristics avian influenza time series 

The first step of predicting the avian influenza time series is identifying a suitable model, because 
“Essentially, all models are wrong, but some are useful”39. Though there is an increasing use of state-of-
the-art models, the final result can only be improved by applying a suitable model which narrowly depicts 
the characteristics of the series. Normally a time series is composed of a trend, seasonality and random 
error, but in avian influenza time series, there is no obvious trend and no obvious seasonality. In other 
words, the behaviour of a real data series such as avian influenza data is difficult to identify. However, in 
time series analysis of epidemic event data, seasonal dynamics analysis40 is one of the most important 
issues to be discussed. It is reasonable that epidemic event time series should have seasonality because of 
the biological characteristics of the virus. Some researchers have found that the outbreaks of H5N1 occur in 
approximate yearly cycles41, 42. But in practice, this seasonality changed subtlety. The outbreak wave in 
2006 in Vietnam appeared in November, but should have occurred in January in 2005. One reason for cycle 
variations is that the virus is biologically strong and can adapt and survive in different environments43, and 
the breakouts can be identified in different times in a year. In order to depict the inside dynamic of this 
phenomenon, we develop a SAR-SVR method do address this issue and we will discuss it in detail in the 
following section. 

3.2.   SAR-SVR method description 

We present a new SAR-SVR method in which we combine the SARMA model with the SVR model to 
analyze FFT results. The process has four steps: latent seasonality time lag identification, establishment of 
input vector set, parameter optimization, and final prediction. 

Step 1: Identify the latent cycles and auto-correlation in the time series 

The objective of this step is to identify a time lag set S with the significant auto-correlation values and 
seasonal cycles. From the analysis in Section 3.1, the auto-correlation strength will answer for the 
prediction qualities. Also, seasonality of the time series is another different description of the auto-
correlation. Therefore, we use the auto-correlation function (ACF) and fast Fourier transformation (FFT) to 
identify auto-correlation and the periodic behaviors in the time series. Normally, the epidemic breakouts 
have seasonal cycles, some of which are obvious, and some are not. For avian influenza breakouts it is hard 
to identify these cycles.  

Step 1.1: Identify the time series cycle by FFT 
The time lag set S1 can be obtained from time lags of FFT peak points of training data. If a time series 

has regular cycles, then the FFT result will show a group of high sharp peak values. Otherwise, the FFT 
results will show irregular values without very sharp peaks. In this situation, we can still identify the 
normal peak values from the series. A peak point is a point at time period t which has value fft(t), t>0  and 
it has larger value than the adjacent point as |fft(t)-fft(t-ε)|>e and |fft(t)-fft(t+ε)|>e, where e>0. If a time lag 
value is t, a real value, and 1+<< mtm  then we define 11, Smm ∈+ , where m is an integer. In the real 
application, we can select the e values as the system minimum positive value but we limit the significant 
peak values according to the mean value )( fftmean and the standard error ES of the FFT series, for 
example θ>)(tfft , where 0>θ  and niiSfftmean E ,...,0},)({ =±∈θ .    

Step 1.2: Identify the significant auto-correlations by ACF 
We then calculate the ACF values of the training data and choose all the significant peak point lags as 

cyclic time lag set S2. There should be many significant ACF values, but we only choose those which are 
significant, as well as a peak value. In this step, we choose e>0 to identify all the peak points and we apply 
the significant interval to exclude the insignificant peak values where the e is set to the system minimum 
positive value. The x axes values, the time lags, of these peaks can then form the set S2.  

In practice, if we have large number of sample, the ACF value series are normal distribution with  0 
mean and variance of approximately N1 (N>50). For 95% confidence level, a confidence interval will be 
given by [ NN /96.1,96.1− ]. An ACF value can be taken as significant if it outside the confidence 
interval. 
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Step 1.3: Union S1 and S2 to obtain the time lag set S 
With step 1.1 and 1.2 we can estimate the interested lag set in different methods and unite them to 

obtain one comprehensive set S. We can limit the element s to a natural time cycle to decrease the size of 
set S, for example, 52 weeks for a whole year cycle. 

Step 2: Apply the SAR model to obtain input vectors for each lag in S 

In the SARMA model, if we only consider the auto-correlation mechanism, we can use the SAR part to 
identify the input vector. A sPpSAR ),( model is: 
 tt

s
Pp xBB εφ =Φ )()(      (17) 

If we telescope and transform the equation, 
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The final *x  can be taken as the input vector for the next step. If we apply the parameter of 12)1,1(SAR then 

*x = ),,( 13121 −−− ttt xxx . This is different from the normal input vector where, if we use 12 as window lags, 
then x =( 12321 ,...,,, −−−− tttt xxxx ).  

Step 2.1: Estimate *p  and *P  value sets with partial auto-correlation function (PACF) 
Maximum p  values can be identified by the number of partial auto-correlation function (PACF) 

significant values, but the parsimonious rules for identifying values do not always work well 16, so we 
apply }]2,max{,0[* pp = as finally p  value set. For P  values we estimate the same way as 

}]2,max{,0[* PP =  for the same reason mentioned in reference 16, where P is identified by PACF. 
Step 2.2:  For each time lag s in S telescope sPpSAR ),(  model to obtain *x  
The final *x can be obtained by the telescoping process outlined in (18) and final format is described in 

(19). *x  can now be only defined by: 
     ),,(* Ppsf=x   (20) 
In identifying *x , if s  and P  both have very large values, then the maximum back lag operator will be 

very large. This will lead to the edge effect and will confuse the final result. So we can limit s  and P to 
prevent from occurring. Normally, we limit s to a nature cycle such as year, month or week, as in the 
following predicting example. 

Step 3: Apply SVR for prediction 

For each s in S we apply SVR for every possible input vector *x  obtained from Step 2. We apply LS-SVR 
but we use the *x  in (19) as the input vector. We apply: 
 Nkeby k

T
k ,...,1,)( =++= *

kxw φ  (21) 
in LS-SVR as constraints. After training, we can use the prediction equation provided, but use the vector in 
(19) as: 
 bKy

N

k
k += ∑
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* ),( xixα  (22) 



7 
 

 
For SVR−ε  or SVR−ν , we make a similar change by applying *x  instead of x in (9), and apply: 
 bKy

l

i
iii ++−= ∑

=1

* ),()( x*
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to do the prediction. 
LS-SVR is more efficient than SVR−ε  or SVR−ν  because LS-SVR has less parameters to be 

estimated, while SVR−ε  or SVR−ν  may achieve a more accurate result despite the slower solving time. 
Usually, the larger the time lags s, the shorter the input vector should be compared with the original input 
window size. 

Step 3.1: For each input vector *x  apply SVR to train and predict. 
Each input instance is obtained through a slide widow with form *x over the time series observations, 

and we apply SVR to do the training and predicting. 
Step 3.2: For each input vector *x  calculate and record the predict results. 
By calculating the RMSE (root mean square deviation) value for the testing data for each input vector, 

record all the parameters and evaluating indicators such as s, p, P and RMSE with optimal results. 
The final evaluation of different models performances is only based on the test data-set. We apply 

RMSE to estimate the results for different prediction models. If we use tY  denote the observation at time 
},...,1{ nt∈ and tF  is the forecast, then RMSE is: 

    
n

FY
FYRMSE

n

i
ii∑

=

−
= 1

2)(
),(      (24) 

Step 4: Find the optimal lag s and the predicting vector for the final prediction 

In this step, we evaluate each input vector and find the optimal result. 
Step 4.1: Estimate result of the entire predicting vector 
For each input vector *x  or, in other words, for each set of Pps ,, a result is obtained. After evaluating 

each result, an optimal input vector is identified. Then the prediction with vector *x  will produce the 
optimal result.  

Step 4.2: Apply the optimal vector and parameters to predict 
After analyzing and evaluating of all the results, we can finally obtain the most suitable parameters for 

the final prediction.  
By the proposed four steps, we can finally have the output of more accurate prediction results because 

the proposed method can identify the characteristics of the time series. This process is illustrated in Figure 
1. 
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Figure 1. The SVR-based method process 

4.   A case study 

The avian influenza weekly series is a time series with complex seasonal dynamics. In this section, we first 
introduce the data source and pre-processing approach. We then illustrate the prediction process by using 
our SAR-SVR method and comparing it with existing methods. 

4.1.   Time series data source of avian influenza  

Data was obtained from reports on the website: “http://www.oie.int/downld/AVIAN%20 
INFLUENZA/A_AI-Asia.htm”. The reports contain the verified H7 and H5 infectious animal events from 
different countries around the world dated from December 2003 until now. The first section of data is from 
data collections from 2005 to end 2009. Because these reports have no uniform format until 2005, only data 
from 2005 is collected by us from this site. In each report file, there are one or more avian influenza animal 
breakout event records from a country. Each record contains the outbreak time, outbreak location, infected 
population, location type, and so on. If the outbreak location is a farm, the number of poultry infected or 
destroyed is reported. If the outbreak occurred in a wild animal population (often wild birds), the number of 
population deaths are reported. Also, data from 2003 to 2005 was obtained from Nature News reporter Dr 
Declan Butler (http://www.nature.com/news/author/Declan+Butler/index.html). The two data-sets are 
combined into one data-set to form a data-set dated from 2003 to 2009. Because the number of animals 
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culled on a farm does not affect other sites, the dead bird numbers or infected numbers on the farm do not 
affect other farms. For processing purposes, we count this farm event as only one event. Therefore, we have 
a series of daily events reported, but there are lots of days with no event reports. Finally, we sum up the 
time series to total 289 weeks but apply only 261 weeks in case of some events which happened but were 
not reported. Figure 2 displays the data count series.   
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Figure 2.  Avian influenza animal event weekly counts data  

4.2.   Data pre-processing method 

Before feeding the data into the model, the weekly event count data has to be pre-processed. First, we 
transform the time series into a matrix according to the input vectors. Each record contains a series of 
previous week data as an input vector, plus one current week's data. The data matrixes are normalized to [-
1, 1] column by column, and then the data is divided into a 75 percent training set and a 25 percent testing 
set. We apply different models to train and test the results. The data is then reversed back to calculate the 
evaluation indictors. Calculation of the model performance indictors is based on the testing data-set. 

4.3.   Prediction procedures and results 

We now apply the proposed SAR-SVR for the avian influenza data series prediction. 

Step1: Identify the latent cycles and auto-correlation in the time series 

Step 1.1: Identify the time series cycle by FFT 
First, we use FFT results of the data to identify the peak points and to identify the set S1. We apply the 
system minimum positive value as e value, for example, in Matlab the value can be obtained by eps 
function. We then mark each peak and apply two integers adjacent to each peak point’s x axes as S1. Here 
we only use the integer value less than 100 which we can limit to 52 to make a one-year time interval. We 
apply 100 to show an edge effect in this instance. The first time lag set S1 is: 

S1= {2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 17, 18, 21, 22, 38, 63, 64} 
Step 1.2: Identify the significant auto-correlations by ACF 
We apply the x axes time lags of significant peak value of ACF series to obtain set S2: 

S2= {1, 13, 15, 18, 42, 49, 51, 53, 55, 60, 68, 72, 78, 80, 82, 86} 
Step 1.3: Union S1 and S2 to obtain the time lag set S 
We combine S with S1 and S2, to finally find: 
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S= {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 18, 21, 22, 38, 42, 49, 51, 53, 55, 60, 63, 64, 68, 72, 
78, 80, 82, 86} 
The FFT and ACF results are shown in Figure 3. From the time series FFT result we can not identify the 
obvious, very abrupt high peaks. There is a high point around 63 weeks, but not around 52 weeks as we 
expected. In the ACF series we can also obtain the normal peak points. 
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Figure 3 (a) FFT result of time series. (b) Significant result of ACF series 

Step 2: Apply the SAR model to obtain the input vectors for each lag in S 

Step 2.1: Estimate *p  and *P  value set with PACF 
The PACF values are shown in Figure 4. Only the first is significant, so we choose max 1=p . We adjust it 
to max 2=p  to achieve max 2=p  and max 2=P , so that ]2,1,0[∈p , ]2,1,0[∈P   
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Figure 4  (a) The autocorrelation function (ACF) and  (b) partial autocorrelation function (PACF) of data series 

Step 2.2: For each time lag s in S telescope sPpSAR ),(  model to obtain *x  
For each time lag s in set S and p and P values we calculate the input vector. For example if s=4 and if we 
apply 4)1,2(SAR then },,,,{ 65421 −−−−−= ttttt xxxxxx .For s=82, this cycle period is too large for our 269 weeks 
data. For 82)2,2(SAR , the time lag={t-1, t-2, t-82, t-83, t-84, t-164, t-165, t-166}, so we lost 166 data in 
the prediction. For 51)2,1(SAR , the input vector time lag set ={ t-1, t-51, t-52, t-102, t-103} also lost nearly 
half the data. If we do not want to lose a large amount of data, we can choose a time lag of no more than 52 
weeks (one year) and lose no more data than a ratio, for example, one third of the total data. If we limited 
the time lags to, at most, one year, 52 weeks, then S is: 
S= {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 18, 21, 22, 38, 42, 49, 51} 

(b) Weekly Counts of AI event pacf alpha = 0.5 

(a) Weekly Counts of AI event acf alpha = 0.5 
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Step 3: Apply SVR for prediction 

Step 3.1: For each input vector *x  apply SVR to train and predict 
Each input instance is obtained through a slide widow with form *x over the time series observations, and 
by applying the SVR prediction to obtain the prediction result. We make the prediction by LS-SVR, ν-SVR 
and ε-SVR by only an RBF kernel. Because the RBF kernel function outperforms other kernel functions, in 
the following experiments we only show the results with an RBF kernel function. 
Step 3.2: For each input vector *x  calculate and record the predict results 
In each experiment we apply the parallel grid search method for each time lag to find the optimal result. 
The grid search parameters range is on different (γ ( 22σγ = in equation 7), C ):[ 54 2,...2− ][ 90 2,...,2 ] values. 
We apply all the vectors obtained by each time lag s in set S and calculate the RMSE of testing data, so that 
the entire evaluating indicators can be saved. The RMSE results of the three SAR-SVR models are shown 
in Figure 5.  
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Figure 5 The RMSE results of SAR-SVR 

With each SVR model we apply the parallel grid search and apply time lags in S. The minimum RMSE 
results for different SVR regressions are different and can be observed in Figure 5. For ν-SVR and ε-SVR 
we use the LIBSVM Matlab package44, and for the LS-SVR we use our own code. In ε-SVR, the ε is set as 
0.01 according to the method in reference45.   

Step 4: Find the optimal lag s and the predicting vector for the final prediction 

Step 4.1: Estimate result of the entire predicting vector 
We obtain optimal results by both SAR+ν-SVR and SAR+ε-SVR methods and list the top 3 results in Table 
1. The three groups of optimal results are sorted according to the RMSE values. The seasonality parameters 
s, maximum time lag, input windows size are parameters associated with input vector and C and γ are 
parameters associated with the parallel grid search. The training time and predicting time of the models are 
also listed in the table. The total searching time is the time used when searching the optimal parameters of 
(C,γ) throughout the time lag s in S. The input vector can be established from parameters p, P and s. The 
vector length values, the window size, show that we don’t need a very long input vector to obtain better 
results. From the results, we discovered that the optimal result is obtained by the SAR(1,2)51+ε-SVR 
model which will use 103-t102-t52-t51-t1-t ,,,, xxxxx to predict tx . It means that the maximum time lag is 103 in 
this model and input vector size is only 5. We find that both SAR+ε-SVR and SAR+ν-SVR reach their top 
3 optimal performances have seasonal time lag s as 51 week which is almost one year and is consistent to 
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the time series nature. For SAR+LS-SVR the optimal performance time lags are 7, 6 and 8 weeks and the 
SAR+LS-SVR result has the larger RMSE values.  
 
 

Table 1 Top 3 optimal performance of different SAR(p,P)s+SVR methods 

Model descriptions 
SAR(p,P)s+SVR  top# RMSE 

Seasonal 
 s 

Max 
lag 

Window 
size C γ 

Training 
time 

Predicting 
time 

Total 
searching 

time 

LS-
SVR+ 

SAR(1,1)7 1 5.5771 7 8 3 2 32 0.00502 

97.78 SAR(2,1)6 2 5.9199 6 8 5 1 32 0.00508 

SAR(1,1)8 3 6.0117 8 9 3 8 16 0.00484 

ε-SVR+ 
(ε=0.01) 

SAR(1,2)51 1 3.9048 51 103 5 128 0.0625 0.00943 0.00117 

604.86 SAR(2,2)42 2 4.3666 42 86 8 2 0.0625 0.00305 0.00174 

SAR(2,2)49 3 4.9028 49 100 8 1 0.0625 0.00213 0.0014 

ν-SVR+ 
(ν=0.5) 

SAR(1,2)51 1 3.9641 51 103 5 128 0.0625 0.01704 0.00091 
4221.08 SAR(2,2)42 2 4.6418 42 86 8 16 0.0625 0.01704 0.00091 

SAR(2,2)49 3 4.6549 49 100 8 4 0.0625 0.0024 0.00091 

 
Finally, we can select from the above models to predict future event counts. Though SAR+ε-SVR and 

SAR+ν-SVR with time lag 51 have the almost the same optimal results, but SAR+ε-SVR search faster. 
SAR+LS-SVR has the better speed but lower accuracy. If there is not sufficient data, SAR(1,2)51+ν-SVR 
should not be used because it will lose 103 data.  
Step 4.2: Apply the optimal vector and parameters to predict 
Following this process, we use the selected parameters to make the prediction. SAR(1,1)7+LS-SVR, 
SAR(1,2)51+ε-SVR and SAR(1,2)51+ν-SVR have the optimal performances. Because the last two models 
are very similar to each other and we only show the prediction results of SAR(1,2)51+ε-SVR in addition to 
SAR(1,1)7+LS-SVR in Figure 6.   
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Figure 6 SAR-SVR prediction results with different parameters 

5.   Comparison with other models 

We compare the optimal results of the proposed SAR-SVR with the Box-Jenkins model, two layer feed 
forward NN model (input-hidden-output) and SVR model. All the experiments are conducted on cluster 
nodes of UTS, which have 64 bits processor of 3.33GHz and 12G memory space with the operation system 

(a) SAR(1,2)51+ε-SVR prediction result with lag=51, 
input vector (t-1, t-51, t-52, t-102, t-103)  

(b) SAR(1,1)7+LS_SVR prediction result with lag=11,  input 
vector (t-1, t-7, t-8) 
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of Red Hat Enterprise Linux 5 (64bit). The data applied for comparing is the weekly breakout counts time 
series of avian influenza data. The details of each model are discussed as follows: 

(1) Box-Jenkins model. We follow the model estimating processes to estimate the ARMA model 
parameters. In addition to AR(1), AR(2)  and ARMA(1,1), we also apply ARMA(1,2) and ARMA(2,1) 
model to do the prediction. The RMSE value, the parameters of each model are listed in Table 2. We also 
identified SARMA models of different parameters with time lag from 2 to 52 and we only list the top 5 
optimal results in Table 3.  

Table 2 The detailed results of ARMA models  

Model RMSE A(B)y(t) = ε(t)  or  A(B)y(t) = C(B)ε(t) (B is the backshift operator) 

AR(1) 6.0698 A(B) = 1 - 0.7502 B^-1    

AR(2) 5.7524 A(B) = 1 - 0.65 B^-1 - 0.1336 B^-2   

ARMA(1,1) 5.5594 A(B) = 1 - 0.8635 B^-1   C(B) = 1 - 0.277 B^-1      
ARMA(1,2) 5.5742 A(B) = 1 - 0.9333 B^-1                          C(B) = 1 - 0.3469 B^-1 - 0.1779 B^-2   

ARMA(2,1) 5.7143 A(B) = 1 - 1.401 B^-1 + 0.424 B^-2    C(B) = 1 - 0.8071 B^-1          
 
Table 3 The detailed results of top 5 SARMA models 

top# SARMA(p,q)X(P,Q)S RMSE Seasonality A(B)y(t) = C(B)ε(t) 

1 SARMA(1,0)X(1,1)3 5.6671 3 A(B) = 1 - 0.6212 B^-1 - 0.4281 
B^-3 + 0.1291 B^-4 C(B) = 1 - 0.3895 B^-3 

2 SARMA(0,1)X(1,1)2 5.6810 2 A(B) = 1 - 0.8666 B^-2 C(B) = 1 + 0.5994 B^-1 - 
0.4818 B^-2 - 0.2108 B^-3 

3 SARMA(1,0)X(1,1)4 5.8192 4 A(B) = 1 - 0.6334 B^-1 - 0.6537 
B^-4 + 0.3466 B^-5 C(B) = 1 - 0.5012 B^-4 

4 SARMA(1,0)X(1,1)47 5.8418 47 A(B) = 1 - 0.7578 B^-1 - 0.26 
B^-47 + 0.1292 B^-48 C(B) = 1 - 0.2536 B^-47 

5 SARMA(1,0)X(1,1)44 5.9337 44 A(B) = 1 - 0.7588 B^-1 - 0.3935 
B^-44 + 0.244 B^-45 C(B) = 1 - 0.3725 B^-44 

(2) Two layer feed forward NN model. We have tried different input vectors from 1 to 52 and different 
hidden layer size from 1 to 52 with three different output activation functions, three different hidden layer 
activation functions, three different training algorithms and three different learning rates. The neural 
network results are illustrated in Table 4. Each row represents the optimal result of a NN structure which is 
obtained by searching different input window size from 1 to 52 and different number of hidden neurons 
from 1 to 52. The total searching time is the time cost of this searching process. The activation function of 
hidden layer and output layer, the learning rate, input window size, hidden layer size, training and 
predicting time, and total searching time are listed, the average is 5543.49 seconds. We only listed the 
optimal NN structure for each combination of hidden layer activation function, output activation function, 
training method and learning rate. The training epoch is set to 500. The training time and predicting time is 
time spent only for the listed optimal NN structure. The average RMSE of the optimal results is 6.67 and 
the minimum values is 5.687 which comes from the five inputs, five hidden layer units and one output NN 
model which apply sigmoid-linear activation functions. It takes a very long time to finish searching for all 
the combinations. 

Table 4 The detailed optimal results of NN models 
Hidden 
layer 
activation 
function 

Output 
activation 
function Training method 

Learning 
rate 

Time 
window 
size 

Hidden 
neurons RMSE 

Training 
Time 

Predicting 
time 

Total 
searching 
time 

Tan-
Sigmoid Sigmoid 

BFGS quasi-
Newton 0.1 3 11 7.24 3.631 0.00541 14079.245 

Tan-
Sigmoid Sigmoid 

BFGS quasi-
Newton 0.01 6 5 7.1509 2.1974 0.00543 14061.048 

Tan-
Sigmoid Sigmoid 

BFGS quasi-
Newton 0.001 5 10 7.2303 4.2682 0.00545 14378.538 

Tan-
Sigmoid Sigmoid 

Resilient 
backpropagation 0.1 2 18 6.4769 1.4153 0.00537 1245.8677 

Tan- Sigmoid Resilient 0.01 6 6 6.9445 1.3518 0.00544 1248.5256 
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Sigmoid backpropagation 

Tan-
Sigmoid Sigmoid 

Resilient 
backpropagation 0.001 6 15 6.351 1.4112 0.00533 1240.777 

Tan-
Sigmoid Sigmoid 

Levenberg-
Marquardt 
backpropagation 0.1 2 11 7.1493 2.2678 0.00529 1585.7188 

Tan-
Sigmoid Sigmoid 

Levenberg-
Marquardt 
backpropagation 0.01 6 3 6.7623 1.9511 0.00512 1669.63 

Tan-
Sigmoid Sigmoid 

Levenberg-
Marquardt 
backpropagation 0.001 2 18 7.3941 2.5068 0.00544 1567.3736 

Sigmoid Sigmoid 
BFGS quasi-
Newton 0.1 5 8 6.8759 3.9227 0.00546 13213.198 

Sigmoid Sigmoid 
BFGS quasi-
Newton 0.01 3 26 7.1054 7.5783 0.00578 13575.352 

Sigmoid Sigmoid 
BFGS quasi-
Newton 0.001 3 21 6.9909 5.8639 0.00547 13270.377 

Sigmoid Sigmoid 
Resilient 
backpropagation 0.1 2 8 6.7324 1.326 0.00529 1245.9023 

Sigmoid Sigmoid 
Resilient 
backpropagation 0.01 2 14 6.8431 1.3738 0.0053 1245.7101 

Sigmoid Sigmoid 
Resilient 
backpropagation 0.001 3 3 6.4067 1.2631 0.00518 1244.4933 

Sigmoid Sigmoid 

Levenberg-
Marquardt 
backpropagation 0.1 2 11 7.108 2.2432 0.00527 1506.5944 

Sigmoid Sigmoid 

Levenberg-
Marquardt 
backpropagation 0.01 5 7 6.8171 2.185 0.00547 1542.4265 

Sigmoid Sigmoid 

Levenberg-
Marquardt 
backpropagation 0.001 2 12 7.0543 2.2414 0.00541 1503.0771 

Tan-
Sigmoid linear 

BFGS quasi-
Newton 0.1 5 5 6.0294 2.7992 0.00538 13311.874 

Tan-
Sigmoid linear 

BFGS quasi-
Newton 0.01 5 5 6.5736 2.8925 0.00525 13434.59 

Tan-
Sigmoid linear 

BFGS quasi-
Newton 0.001 5 3 6.6768 2.4771 0.00523 13312.791 

Tan-
Sigmoid linear 

Resilient 
backpropagation 0.1 5 3 6.036 1.2439 0.00512 1222.5135 

Tan-
Sigmoid linear 

Resilient 
backpropagation 0.01 5 24 6.5985 1.4073 0.00522 1220.0749 

Tan-
Sigmoid linear 

Resilient 
backpropagation 0.001 3 15 5.9606 1.3763 0.00532 1226.7326 

Tan-
Sigmoid linear 

Levenberg-
Marquardt 
backpropagation 0.1 2 14 6.3478 2.3747 0.00546 1958.7774 

Tan-
Sigmoid linear 

Levenberg-
Marquardt 
backpropagation 0.01 2 22 6.1772 2.5817 0.00536 1956.88 

Tan-
Sigmoid linear 

Levenberg-
Marquardt 
backpropagation 0.001 2 20 6.317 2.6392 0.00541 1905.957 

Sigmoid linear 
BFGS quasi-
Newton 0.1 5 11 6.3952 4.4533 0.00531 13720.693 

Sigmoid linear 
BFGS quasi-
Newton 0.01 2 5 6.3248 2.7734 0.00534 13755.963 

Sigmoid linear 
BFGS quasi-
Newton 0.001 5 8 6.2138 3.5443 0.00528 13848.919 

Sigmoid linear 
Resilient 
backpropagation 0.1 4 22 6.4651 1.3917 0.0052 1227.8344 

Sigmoid linear 
Resilient 
backpropagation 0.01 6 4 6.8795 1.2872 0.00525 1241.6193 

Sigmoid linear 
Resilient 
backpropagation 0.001 5 5 5.687 1.2697 0.00513 1231.0638 

Sigmoid linear 
Levenberg-
Marquardt 0.1 2 21 7.3152 2.6137 0.00532 1862.0502 
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backpropagation 

Sigmoid linear 

Levenberg-
Marquardt 
backpropagation 0.01 2 21 6.532 2.6501 0.00543 1881.2463 

Sigmoid linear 

Levenberg-
Marquardt 
backpropagation 0.001 2 9 6.9728 2.1032 0.00525 1822.3828 

(3) SVR models. The SVR model we applied are LS-SVR, ε-SVR and ν-SVR. We also traversed the 
experiments from 1 to 52 time lags for each method and we only list the top 10 results in Tables 5-7. The 
kernel function is RBF. For each time lag we do the parallel grid search to find the best C and γ parameters. 
The total searching time from 1 to 52 time lag is listed on the right side of each table, which includes the 
parallel grid search of C and γ parameters for each time lag. The training time and predicting time is only 
for the listed optimal model. We observe that the time consuming for SVR is quite less than the 2 layer NN 
model and that is one reason we rather choose SVR instead of NN model to combine with SAR model. In 
each table, we only list the top 10 results of each model. 

Table 5 The LS_SVR top 10  results 

Top 10 Lag s RMSE C γ Training 
time 

predicting 
time  

1 14 6.3781 1 8 0.00319 0.00182 Total 
searching 
time:  

27.18 
seconds 

2 5 6.4245 32 0.0625 0.00262 0.00127 

3 9 6.48 4 4 0.00315 0.00165 

4 8 6.596 1 8 0.00316 0.00171 

5 11 6.599 1 8 0.00321 0.00179 

6 7 6.6102 1 8 0.0031 0.0017 

7 6 6.6213 16 0.0625 0.00277 0.00116 

8 10 6.6262 4 4 0.00305 0.00165 

9 13 6.6817 1 8 0.00313 0.00175 

10 12 6.8838 2 4 0.00302 0.00167 

 
Table 6 The ε-SVR (ε=0.01) top 10 results 

Top 10 Lag s RMSE C γ Training 
time 

predicting 
time 

 

1 9 5.2174 8 2 0.014 0.00366 Total 
searching 
time:  

110.43 
seconds 

2 1 5.2419 16 32 0.011 0.00252 

3 2 5.2536 128 8 0.0688 0.00281 

4 6 5.2657 256 0.0313 0.0204 0.00314 

5 4 5.2716 512 0.0313 0.0249 0.00294 

6 10 5.2815 256 0.0078 0.018 0.00343 

7 7 5.2849 512 0.0078 0.0195 0.00315 

8 3 5.3408 512 0.0078 0.0085 0.00276 

9 8 5.3439 128 0.0313 0.0188 0.0034 

10 5 5.3563 512 0.0313 0.0305 0.00299 

Table 7 The ν _SVR(ν=0.5) top 10 results 
Top 10 Lag s RMSE C γ Training 

time 
predicting 

time 
 

1 6 5.2411 512 0.00781 0.0208 0.00212 Total 
searching 
time:  

555.59 
seconds 

2 7 5.2416 512 0.00781 0.025 0.00219 

3 2 5.2676 64 8 0.0882 0.00219 

4 9 5.2853 8 2 0.0658 0.00385 

5 3 5.3074 512 0.00781 0.0141 0.00184 

6 12 5.3309 256 0.00781 0.0197 0.00272 
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7 5 5.334 512 0.00781 0.0214 0.002 

8 13 5.338 512 0.00781 0.0348 0.00295 

9 8 5.3383 512 0.00781 0.0263 0.00228 

10 4 5.3562 64 0.5 0.0509 0.00217 

 
(4) SARSVR models. Finally, the top 10 results of SAR-SVR methods have been listed in Tables 8-10. 

The part of top 3 results of different SAR+SVR methods have been listed in Table 1. We can observe that 
SAR+ε-SVR and SAR+ν-SVR have the similar better performances than SAR+LS_SVR, but SAR+ν-SVR 
has very long total searching time of 4221.08. This searching time is long but still less than the average of 
NN average searching time of 5543.49. If we take 4221.08 second, we can find the best performance model 
of SAR+ν-SVR but each total searching time of NN is just the time to find only one combination of NN 
structure among 36 combinations listed in Table 4. Each parameter in Tables 8-10 table has the same 
meaning as in Table 1. 

Table 8 The top 10 results of SAR+LS-SVR  

 LS-SVR+ 
(ν=0.5) 

RMSE 
Seasonal 

Lag s 
Max 
lag 

Windo
w size 

C γ 
Training 

time 

Predictin
g 

time 

Total 
search

ing 
time 

1 SAR(1,1)7 5.5771 7 8 3 2 32 0.0032 0.00178 

97.78 
secon

ds 

2 SAR(2,1)6 5.9199 6 8 5 1 32 0.00328 0.00182 
3 SAR(1,1)8 6.0117 8 9 3 8 16 0.00317 0.0017 
4 SAR(1,2)4 6.107 4 9 5 4 8 0.00313 0.00163 
5 SAR(1,2)2 6.4245 2 5 5 32 0.0625 0.00263 0.00125 
6 SAR(2,1)3 6.4245 3 5 5 32 0.0625 0.00267 0.00125 
7 SAR(2,1)5 6.4716 5 7 5 1 16 0.00316 0.00174 
8 SAR(2,1)9 6.7476 9 11 5 8 8 0.00307 0.00159 
9 SAR(2,1)10 6.9793 10 12 5 512 0.0625 0.00262 0.0011 
10 SAR(2,1)12 7.0299 12 14 5 512 0.0625 0.00261 0.00109 

 
Table 9 The top 10 results of SAR+ε-SVR  

 ε-SVR+ 
(ν=0.5) 

RMSE 
Seasonal 

Lag s 
Max 
lag 

Windo
w size 

C γ 
Training 

time 
Predicting 

time 

Total 
search

ing 
time 

1 SAR(1,2)51 3.9048 51 103 5 128 0.0625 0.0094 0.001165 

604.86 
secon

ds 

2 SAR(2,2)42 4.3666 42 86 8 2 0.0625 0.003 0.001741 
3 SAR(2,2)49 4.9028 49 100 8 1 0.0625 0.0021 0.0014 
4 SAR(2,1)11 4.9307 11 13 5 1 8 0.006 0.002911 
5 SAR(2,1)12 4.9763 12 14 5 2 8 0.0068 0.002835 
6 SAR(1,2)15 5.1124 15 31 5 2 16 0.0077 0.002769 
7 SAR(2,1)10 5.1518 10 12 5 4 4 0.009 0.002878 
8 SAR(1,1)3 5.1777 3 4 3 8 4 0.0101 0.002956 
9 SAR(2,1)7 5.1994 7 9 5 4 8 0.0104 0.003143 
10 SAR(1,2)4 5.2351 4 9 5 128 0.125 0.0246 0.002851 

 
Table 10 The top 10 results of  SAR+ν-SVR  

 ν-SVR+ 
(ν=0.5) 

RMSE 
Seasonal 

Lag s 
Max 
lag 

Windo
w size 

C γ 
Training 

time 
Predicting 

time 
Total 

search
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ing 
time 

1 SAR(1,2)51 3.9641 51 103 5 128 0.0625 0.01704 0.0009 

4221.0
8 

secon
ds 

2 SAR(2,2)42 4.6418 42 86 8 16 0.125 0.00803 0.0012 

3 SAR(2,2)49 4.6549 49 100 8 4 0.0625 0.00314 0.001 

4 SAR(2,1)11 4.9923 11 13 5 1 8 0.00872 0.0027 

5 SAR(2,1)12 5.0651 12 14 5 64 2 0.1265 0.0029 

6 SAR(1,1)7 5.1351 7 8 3 32 8 0.06132 0.0025 

7 SAR(2,1)10 5.1901 10 12 5 4 4 0.02274 0.0028 

8 SAR(1,2)15 5.2486 15 31 5 1 16 0.01007 0.0026 
9 SAR(2,0)2 5.2676 2 2 2 64 8 0.08641 0.0021 
10 SAR(2,0)3 5.2676 3 2 2 64 8 0.08616 0.0021 

 
(5) Model results comparison. It is obvious that the combined method SAR-SVR is superior to the SVR 

and NN models, and other classic Box-Jenkins models in accuracy. In order to compare with the different 
results of the prediction models, we decide to select the most similar window size. We select the best 
performances of 5 inputs, 5 hidden neurons with sigmoid activation functions and one output node with 
linear function as the comparing model. We also select ν-SVR model with input vector size of 5. There are 
no time lag as 5 in SAR-SVR top 10 results, so we just apply the time lag 7 as the comparison model, the 
SAR(1,1)7+ν-SVR(0.5) model which just apply 8,7,1 −−− ttt xxx  as inputs. Because the prediction series have 
different length, we set the lost data as zeros. The comparison of the most optimal prediction results from 
each model groups are illustrated in Figure 7. The models are ARMA(1,1) model, NN(5-5sigmoid-1linear), 
ν-SVR(window size 5) and SAR(1,1)7+ν-SVR .  
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Figure 7 Comparing the prediction results of the optimal models 
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We also compare the RMSEs, training time and predicting time of optimal model results from 1 to 52 time 
lags in Figure 8. In Figure 8 (a), we listed the RMSE results of 1 to 52 time lags of every model in which 
the NN model are the model combination comprise the best performance NN with input-sigmoid-linear 
activation function. We can observe the NN model have small RMSEs with small time lag but it increases 
sharply when the time lag reach about 14. RMSEs of SVR models also increase with the time lag but 
slower than NN models. The RMSEs of SARMA models fluctuate with the time lags and reach a sharp 
peak at about 28, but the RMSE has a decrease trend. It is reasonable that RMSEs of the SAR-SVR will 
decrease with the time lag and achieve the optimal performances. In Figure 8(b) 8(c), the training time and 
the predicting time of each model is the training time and predicting time of a specific model without the 
time of searching the optimal parameters. The training time of NN doesn’t include searching from different 
hidden neurons while the training time of SVR and SARSVR doesn’t include the grid parameters searching 
time. The predicting and training time are just obtained from the optimal model to each time lag. From 
Figure 7, we can find out that NN model has larger training time and predicting time than SVR and 
SARSVR models. The training time of SARMA model is the time of estimating the model parameters to 
each time lag. 
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Figure 8 Comparing the performances different models 

The summary parameters of all optimal methods are listed in Table 11, which is picked up from Tables 
2-10.  The listed results show that SAR+ε-SVR method can better depict the nature of the complex time 
series of avian influenza outbreak count series with the least RMSE and less time cost. The searching time 
of SAR(1,2)51+ν-SVR takes more than 4221 seconds, the longest, while  the searching of SAR(1,2)51+ε-
SVR(ε=0.01) only takes 604.86 second. SAR+ε-SVR is the best choice to perform the prediction tasks, 
which can have high accuracy and high speed. SVR models have the relative less RMSEs with very high 
searching speed. The classical ARMA doesn’t have very high accuracy, but it only need estimate the 
parameters and easy to apply. NN model has the lower accuracy and it takes great time and experiences of 
selecting the optimal network structure and the optimal parameters. Though the optimal NN has the 
minimum RMSE of 5.687 but the average of NN is 6.67. The optimal NN was obtained by spending much 

(b)  Comparing training time of different models 

(c)  Comparing predicting time of different models 
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time to exclude the unsuitable NN model structure. It means that the searching time for the optimal NN (5-
5sigmoid-1linear) takes 1231.06 seconds provided we know at the beginning to apply sigmoid function in 
hidden neurons and linear function in output node. Otherwise we must do many other experiments to find 
out the optimal activation function and training method combinations. Actually, it takes a very long time to 
exclude other activation functions and training method combinations but still we cannot traverse all NN 
structures and parameters. LS-SVR has the worst accuracy but the highest speed. Finally we can conclude 
that SAR+ε-SVR is better choice in avian influenza counts series prediction. 

Table 11 The summary of optimal results of different prediction methods 

 
Model descriptions Min RMSE 

Time 
lag window size 

Training 
time 

Predicting 
time 

Total 
searching 

time 

ARMA ARMA(1,1) 5.5594 n/a n/a n/a n/a n/a 

SARMA SARMA(1,0)X(1,1)3 5.6671 n/a n/a n/a n/a 382.24 

NN 
model 

NN(5-5-1) 5.687 5 5 1.2697 0.00513 1231.06 

SVR 
models 

LS-SVR 6.3781 14 14 0.00319 0.00182 27.18 

ε-SVR(ε=0.01) 5.2174 9 9 0.014 0.00366 110.43 

ν-SVR(ν=0.5) 5.2411 6 6 0.0208 0.00212 555.59 

SAR-
SVR 

Method 

SAR(1,1)7+LS-SVR 5.5771 7 3 0.0032 0.00178 97.78 

SAR(1,2)51+ν-SVR(ν=0.5) 3.9641 51 5 0.01704 0.0009 4221.08 

SAR(1,2)51+ε-SVR(ε=0.01) 3.9048 51 5 0.0094 0.001165 604.86 

6.   Analysis and discussions 

We will conduct further analysis on the SAR-SVR methods. Comparing our SAR-SVR with the SVR 
model, we obtained results with different time lags from 2 to 52 (Figure 9). If we apply the SVR method, 
we found that RMSE increases with the window size increasing. With the proposed SAR-SVR method, the 
RMSE values will not always increase, but will be limited to certain values and may even decrease. It is 
obvious the proposed SAR-SVR is significantly better then the SVR method for the avian influenza data 
series. However, the question arises as to why our method limits the RMSE. We observed the results of the 
proposed SAR-SVR method and found that the RMSE level of values have input vectors defined by the 
model as SAR(2,0)s; therefore the time lag s is useless and the input vector is only },{ 21 −− tt xx  so the 
prediction results will always be the same. 
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Figure 9. Comparing the proposed SAR-SVR models with SVR models 

If we compare the results of SAR-SVR between with time lag in S and with time lags of all values from 
2 to 52 in Figure 10, the red solid line indicates the results of the proposed SAR-SVR with time lags in S 
and the green dashed line indicates the results of SVR methods. We found that applying the proposed SAR-
SVR almost reaches all the lowest point, which means that the lag set S is good enough for the prediction to 
reach the optimal results.  
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Figure 10 Comparing SAR-SVR with all time lags and SAR-SVR with selected time lags in set S. 

7.   Conclusions and further study 
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In this paper, we proposed a new SAR-SVR prediction method by combining the SAR and SVR models on 
the basis of FFT and ACF analysis. SVR will obtain better time series prediction if there are no seasonal 
behaviours. Instead of eliminating the seasonal dynamics in the series, we applied FFT and ACF values to 
identify the seasonality and auto-correlations to create the input vector to the SVR by the SAR model. The 
experiments show that the proposed SAR-SVR significantly outperforms both two layer feed forward NN 
and other classic methods. 

The proposed SAR-SVR method is more efficient and more effective for the prediction of avian 
influenza count time series than other methods. Compared to SVR, the SAR-SVR method applies a suitable 
input vector to reach the better result instead of applying all the previous data series as input. If the time lag 
s is large, the advantage of the proposed SAR-SVR would be more observable by an even shorter input 
vector. Compared with 2 layer feed forward NN the proposed SAR-SVR has benefits in both accuracy and 
stability. The accuracy is noticeable, and moreover, the proposed SAR-SVR produces stable results with 
same parameters, whereas NN parameters always change after each training process. 

The SVR-based method has been introduced for the first time into the avian influenza domain. 
Compared to other SVR models and classic models, ν-SVR and ε-SVR achieves the optimal performance, 
while LS-SVR is faster than the other two methods but with lowest accuracy. Most significantly, we 
applied SVR in the avian influenza time series for the first time and gained better performance than with 
the other models.  

The proposed method facilitates the prediction issue of time series with complex seasonality, which is 
common in many practical situations. The advantage of the method is that the seasonality, or the auto-
correlations inside the time series, can be identified. Above all, the method can adapt to other epidemic 
time series with little adjustment and it can be adopted in areas other than epidemic diseases time series 
such as financial time series, stock price time series, and electricity time series.   

Future research and study of this method will aim to find an easy way to tune the parameters of the 
model to find optimal results quickly. This study did not produce optimized methods to tune the SVR 
prediction model, but it does demonstrate the advantages of the proposed method. For real prediction, we 
need to discover a quicker method to support the parameters tuning process.  
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