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Abstract

Thymic stromal lymphopoietin (TSLP) is an epithelial-derived pleiotropic cytokine that regulates T-helper 2 (Th2) immune
responses in the lung and plays a major role in severe uncontrolled asthma. Emerging evidence suggests a role for endoplasmic
reticulum (ER) stress in the pathogenesis of asthma. In this study, we determined if ER stress and the unfolded protein response
(UPR) signaling are involved in TSLP induction in the airway epithelium. For this, we treated human bronchial epithelial basal
cells and differentiated primary bronchial epithelial cells with ER stress inducers and the TSLP mRNA and protein expression
was determined. A series of siRNA gene knockdown experiments were conducted to determine the ER stress-induced TSLP sig-
naling pathways. cDNA collected from asthmatic bronchial biopsies was used to determine the gene correlation between ER
stress and TSLP. Our results show that ER stress signaling induces TSLP mRNA expression via the PERK-C/EBP homologous pro-
tein (CHOP) signaling pathway. AP-1 transcription factor is important in regulating this ER stress-induced TSLP mRNA induction,
though ER stress alone cannot induce TSLP protein production. However, ER stress significantly enhances TLR3-induced TSLP
protein secretion in the airway epithelium. TSLP and ER stress (PERK) mRNA expression positively correlates in bronchial biop-
sies from participants with asthma, particularly in neutrophilic asthma. In conclusion, these results suggest that ER stress primes
TSLP that is then enhanced further upon TLR3 activation, which may induce severe asthma exacerbations. Targeting ER stress
using pharmacological interventions may provide novel therapeutics for severe uncontrolled asthma.

NEW & NOTEWORTHY TSLP is an epithelial-derived cytokine and a key regulator in the pathogenesis of severe uncontrolled
asthma. We demonstrate a novel mechanism by which endoplasmic reticulum stress signaling upregulates airway epithelial TSLP
mRNA expression via the PERK-CHOP signaling pathway and enhances TLR3-mediated TSLP protein secretion.

ER stress; severe neutrophilic asthma; TSLP; unfolded protein response

INTRODUCTION (Th2) cells (3-5). It also regulates DC-mediated CD4* T-cell

homeostasis by expanding autologous CD4 " T-cell popula-

Thymic stromal lymphopoietin (TSLP) is an innate IL-7-like
cytokine that is predominantly expressed in the epithelium of
the lung, gut, and skin (1), though it is also expressed by mast
cells, airway smooth muscle cells, fibroblasts, dendritic cells,
trophoblasts, and neoplastic cells (2). TSLP strongly activates
antigen-presenting dendritic cells (DCs) and promotes the dif-
ferentiation of naive human CD4 ™ T cells to T-helper type-2
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tions (6). Moreover, TSLP suppresses the activity of regulatory
T cells (Tregs) in the lungs. It directly and selectively reduces
IL-10 production by Treg in both healthy and asthmatic
patients but more potently in asthmatics (7). It also suppresses
antigen-specific Tregs (8) suggesting a role for TSLP in sup-
pressing allergen tolerance in the airways. In this context, it is
increasingly thought to play an important role in promoting

L))

Check for
Updates

http://www.ajplung.org

Downloaded frd SRS Rt STl B g aIRIa0 M GRG'T049.181.135.126) on January 1, 2025.


https://orcid.org/0000-0002-4947-5918
https://orcid.org/0000-0002-6640-0846
https://orcid.org/0000-0002-4741-3035
https://orcid.org/0000-0001-5676-6126
mailto:Prabuddha.pathinayake@newcastle.edu.au
mailto:Peter.Wark@newcastle.edu.au
https://crossmark.crossref.org/dialog/?doi=10.1152/ajplung.00378.2023&domain=pdf&date_stamp=2024-3-12
http://creativecommons.org/licenses/by/4.0/deed.en_US
http://www.ajplung.org
https://doi.org/10.1152/ajplung.00378.2023

Q) ER STRESS AUGMENTS EPITHELIAL TSLP

airway inflammation in asthma. Increased expression of TSLP
has been found in bronchial mucosa and bronchoalveolar la-
vage fluid (BALF) of severe asthma patients (9). The TSLP con-
centration in BALF of those patients was correlated with poor
lung function and the dose of corticosteroids used, suggesting
that this cytokine is a potential biomarker of severe uncon-
trolled asthma (10).

Various stimulants such as TLR ligands, Nod2 ligands, vi-
ral, bacterial and fungal infections, allergens, helminths,
environmental pollutants such as diesel exhaust, and ciga-
rette smoke can stimulate TSLP secretion in the lungs (2). In
DCs, TSLP secretion induced by Candida albicans and B-glu-
cans is enhanced by signals emanating from the endoplas-
mic reticulum (ER) stress response, specifically the unfolded
protein response (UPR) sensors, inositol-requiring trans-
membrane kinase/endonuclease (IRE)-1, and protein kinase
R-like ER kinase (PERK). However, ER stress alone was not
sufficient to induce TSLP (11). The UPR is an adaptive
response when cells undergo ER stress due to physiological
demand or aberrations in protein folding in the ER (12). The
UPR activates a complex signaling cascade that involves the
activation of various transcription factors. C/EBP homolo-
gous protein (CHOP) is a multifunctional transcription factor
that activates the UPR and induces apoptosis and
inflammatory responses in cells (13). CHOP is involved
in IL-1B production in macrophages (14) and IL-23 in DCs
(15) and also plays an important role as a gene transcrip-
tion enhancer or inhibitor. It can form a heterodimer with
C/EBP family transcription factors and activate the
expression of certain activator protein (AP)-1-targeted
genes (16). It can also inhibit certain genes by dimerizing
with C/EBP and liver-enriched transcriptional activator
protein (LAP) (17).

Here, we demonstrate a novel mechanism of TSLP mRNA
induction in the airway epithelium via ER stress/UPR-
induced CHOP signaling. We show that ER stress also enhan-
ces TSLP protein secretion induced by TLR3 agonists such as
polyinosinic:polycytidylic acid (poly I:C) in the airway epi-
thelium. Furthermore, we provide evidence for an associa-
tion between ER stress and TSLP expression in clinical
bronchial biopsies from severe asthma patients, in particular
those with neutrophilic inflammation. These data define a
novel mechanism underpinning increased TSLP expression
in the asthmatic epithelium in severe asthma and during vi-
rus-induced acute asthma.

MATERIALS AND METHODS

Cell Culture

BEGM media.

To prepare BEGM complete media, bronchial epithelial
cell (BEC) growth medium (BEGM; Lonza) supplemented
with bovine pituitary extract (BPE), insulin, gentamicin
sulfate (GA-1000), retinoic acid, transferrin, tri-iodothyro-
nine (T3), epinephrine, rhEGF, hydrocortisone, penicillin/
streptomycin (2%), and amphotericin B (fungizone, 1%).
To prepare BEGM minimal media, penicillin/streptomycin
(2%), amphotericin B (fungizone, 1%), insulin-transferrin-
sodium (ITS, 1%; Sigma), and linoleic acid-albumin from
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bovine serum albumin (0.5%; Sigma) were added into
bronchial epithelial basal medium (BEBM).

Air-liquid interface media.

Air-liquid interface (ALI) initial media comprised 50% BEBM-
50% DMEM containing hydrocortisone, bovine insulin, epi-
nephrine, transferrin (all 0.1%), bovine pituitary extract (0.4%)
(all from Lonza) and ethanolamine (final concentration 80 uM),
MgCl, (final concentration 0.3 mM), MgSO, (final concentra-
tion 0.4 mM), bovine serum albumin (final concentration 0.5
mg/mL), amphotericin B (final concentration 250 pg/mL), all-
trans retinoic acid (30 ng/mL), and penicillin/streptomycin
(2%) with rhEGF (10 ng/mL). For ALI final media, recombinant
human epidermal growth factor (thEGF) concentration was
changed to 0.5 ng/mL.

BCi-NS1.1cell line.

Normal airway epithelium-derived basal cell line BCi-NS1.1
cells (18) were cultured in BEGM complete media and main-
tained in T25 cell culture flasks. For stimulations, cells were
seeded in 24-well cell culture plates (1 x 10° cells/well) and
used at 80% confluent.

AL| cultures.

Primary (p)BECs were obtained from patients with asthma and
control subjects bronchoscopically (19). All subjects gave writ-
ten informed consent, and the study protocol was approved by
the Hunter New England Human Research Ethics Committee
(05/08/10/3.09). pBECs were grown in BEGM complete media
in submerged monolayer culture first and then seeded at
2 x 10° cells in transwells in a 12-well plate (Corning) with ALI-
initial media until confluent (at least 3 days in both apical and
basal compartments). Once confluent, media was changed to
AL final media by changing rhEGF concentration until day 21
after initial seeding.

Patient demographics for pBECs.

Table 1 shows clinical characteristics and inflammatory cell
profiles of healthy controls and participants with asthma who
were recruited for bronchial brushing collection. Features of
participants with asthma were categorized based on clinical
severity following GINA guidelines.

Bronchial biopsy sample collection and analysis.

cDNA from endobronchial biopsies collected for our previous
study that elucidated evidence of ER stress in asthmatic airways
was used for correlation analysis. For patient clinical parame-
ters and sample collection details, see Pathinayake et al. (20).

Cell culture treatments.

ER stress was chemically induced in cell cultures by adding
tunicamycin (2 pg/mL; Merk Millipore) or thapsigargin (1
uM; Merk Millipore) into BEGM minimal media for the indi-
cated time points. A total of 10 ug/mL polyinosinic:polycyti-
dylic acid (poly I:C) was used to induce TSLP induction in
BECs.

Gene knockdown.

Small interfering (si)RNAs were used for gene silencing. XBP1-
silencer siRNA (200 nM, sc-38627; Santa Cruz Biotechnology),
CHOP-stealth RNAi siRNA (100 nM, VHS40605; Life Techno-
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Table 1. Clinical characteristics and inflammatory cell profiles of healthy controls and participants with asthma who

were recruited for bronchial brushing collection

Healthy Severe Asthma
Participants, n 5 5
Age, yr (median, IQR) 64 (63-64) 53 (50-67)
Sex, n (%) Male 1(20%), female 4 (80%) Male 1(20%), female 4 (80%)
Atopy, n (%) 1(20%) 4 (80%)
FEV1 % predicted, median (IQR) 103 (100-107) 57 (45-61)
FEV1/FVC %, median (IQR) 78.8 (78.47-81.38) 49.5 (46.3-60)
ICS dose, pg budesonide dose/day, median (IQR) 0 2,000 (1,600-2,000)
ACQ5, median (IQR) NA 3.5(2.75-4.25)
Neutrophils %, median (IQR) 21.75 (3-25.75) 63.1(44.2-73.8)
Eosinophils %, median (IQR) 0.25 (0-1) 5.5 (1.25-13.25)
Macrophages %, median (IQR) 38.25 (36.5-39.75) 12.75 (9-27.25)

Values are median (IQR). Features of participants with asthma were categorized based on clinical severity following GINA guidelines.
%, percentage; ACQ, asthma control questionnaire; FEV1, forced expiratory volume in 1 s; FVC, forced vital capacity; ICS, inhaled cortico-

steroids; IQR, interquartile range; n, number; yr, years.

logies, Australia), IREla-silencer-select siRNA (10 nM, s200430;
Life Technologies, Australia), ATF6-silencer-select siRNA (10
nM, s223543; Life Technologies, Australia), PERK-silencer-
select siRNA (10 nM, s18102; Life Technologies, Australia), and
CEBPB silencer-select siRNA (10 nM, s2891; Life Technologies,
Australia) with lipofectamine 3000 (ThermoFisher Scientific)
were used to knockdown mRNA expression. At 12 h post trans-
fection, media was replenished and at 24 h post transfection
cells were treated with interventions.

mRNA extraction and qPCR.

Total mRNA was extracted from cells lysed in 350 pL of RLT
buffer using RNeasy mini kit (Qiagen, Germany) following the
manufacturer’s instructions and quantified using a nano-drop
2000 spectrophotometer (ThermoFisher Scientific). A total of
200 ng of mRNA from each sample was used to produce
cDNA using a high-capacity cDNA reverse transcription
kit (Applied Biosystems). Various genes of interest were
quantified by qPCR using TagMan gene expression assays
(ThermoFisher Scientific, Australia) and normalized to the
18S housekeeping gene. Results were calculated using 2724
(where Ct is the threshold cycle) relative to the mean ACt of
the healthy control group as described before (21).
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ELISA.

TSLP protein in cell culture supernatants was measured using
a high-sensitivity (3.3-800 pg/mL) human TSLP ELISA Kit
(ab155444) following the manufacturer’s instructions. Briefly,
standards and samples were added into wells and incubated
(2.5 h) to bind TSLP to the immobilized antibody. Wells were
washed and biotinylated anti-human TSLP antibody was
added. After washing away the unbound biotinylated anti-
body, horseradish peroxidase (HRP)-conjugated streptavidin
was added. Wells were again washed, and TMB substrate solu-
tion was added. Stop solution was added to stop color devel-
opment and intensity was measured (450 nm).

Statistical Analysis

Data were analyzed using GraphPad Prism 9.0.0 soft-
ware. Multiple comparisons between groups were analyzed
with an appropriate test for normally distributed data with
ANOVA, followed by post hoc analysis (Dunnett’s or Dunn’s
test). Two-group comparisons were analyzed with an
unpaired ¢ test. Correlation analyses were performed using
Spearman’s rank test. Statistical significance of P < 0.05
was accepted with a 95% confidence interval.
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Figure 1. ER stress induces TSLP mRNA expression in bronchial epithelial cells. BCi-NS1.1 cells (n = 3) were treated with tunicamycin 2 pg/mL to induce
ER stress and UPR markers, and TSLP gene expression was measured by gPCR. ER stress upregulates TSLP (A), BiP (B), CHOP (C), and XBP1s (D) gene
expression in a time-dependent manner. Differences between the groups were assessed using one-way analysis of variance (ANOVA), with Dunnett’s
multiple comparison test. *P < 0.05. ER, endoplasmic reticulum; gPCR, quantitative PCR; TSLP, thymic stromal lymphopoietin; UPR, unfolded protein
response.
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RESULTS

TSLP Gene Expression Is Upregulated in BECs by
Chemically Induced ER Stress

To examine if ER stress can induce epithelial TSLP expres-
sion, BCi-NS1.1 cells were treated with tunicamycin and the
mRNA expression of TSLP and key ER stress/UPR markers
(BiP, XBP1s, CHOP) were measured time-dependently by
gPCR (Fig. 1). Tunicamycin significantly upregulated mRNA
expression of TSLP by 6 h post treatment that continued to
be elevated until 24 h and at 36 h the mRNA fold change
declined (Fig. 1A). It also increased each of the key ER stress
and the UPR-related markers as early as 6 h post treatment.
mRNA of BiP and CHOP mRNA were constantly expressed
until 36 h (Fig. 1, B and C). mRNA expression of XBPls
peaked at 6 h and gradually decreased by 24 h (Fig. 1D).

PERK Signaling in the UPR Is Important for ER Stress-
Induced Epithelial TSLP mRNA Expression

To define which signaling arm of the UPR is important for
ER stress-induced TSLP induction, we selectively knocked
down the three main branches of the UPR—IREla, PERK,
and ATF6—using specific siRNAs. After 36 h of siRNA trans-
fection, cells were challenged with tunicamycin for 12 h and
harvested for qPCR. All siRNAs significantly knocked down
their targets (Fig. 2, A-C). Notably, only PERK knockdown
affected tunicamycin-induced TSLP mRNA induction (Fig. 2D)
suggesting that ER stress-induced TSLP mRNA expression is
regulated through PERK signaling.

ER Stress-Induced CHOP Expression Is Crucial for
Epithelial TSLP mRNA Induction in ER Stress

Since XBP1s and CHOP are important transcription factors
in UPR signaling, and as we have observed that ER stress-
induced TSLP gene induction is mainly regulated through
the PERK arm of the UPR, we examined if these transcription
factors are involved in TSLP expression in airway epithelial
cells. To demonstrate, we knocked down XBP1s and CHOP
expression with siRNA and the expression of TSLP with or
without tunicamycin challenge was measured by qPCR.
XBP1s knockdown (Fig. 3A) did not have any significant
effect (Fig. 3B). Knockdown of CHOP (Fig. 3C) significantly
reduced tunicamycin-induced TSLP mRNA expression (Fig.
3D). Collectively, these results show that the PERK-CHOP
signaling axis is crucial for ER stress-induced epithelial TSLP
gene induction.

CHOP Is a Transcription Enhancer for AP-1to Induce
TSLP Expression in the Airway Epithelium

Since our data show that CHOP is crucial for ER stress-
induced TSLP mRNA expression in BECs, we assessed if
CHOP can act as a transcription factor for TSLP induction.
We first screened the complete nucleotide sequence of TSLP
for matches for the consensus recognition sequence for
CHOP. However, we did not find any matching consensus
sequence suggesting that CHOP cannot directly act as a tran-
scription factor for TSLP (Fig. 4A). CHOP cannot form homo-
dimers but forms stable heterodimers with C/EBP family
proteins and is known to act as a transcription factor (22).
CHOP also forms a heterodimer with CCAAT enhancer
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Figure 2. ER stress-induced TSLP mRNA expression is mainly regulated
through the PERK signaling pathway. The mRNA expression of IREla,
ATF6, and PERK in BCi-NS 1.1 cells was knocked down using target-spe-
cific silencer-select siRNA (n = 3). At 36 h post knockdown, cells were
challenged with tunicamycin for 12 h and mRNA expression of IRElx (A),
ATF6 (B), and PERK (C) was measured by qPCR. D: mRNA expression of
TSLP was measured by gPCR in IRE1a, ATF6, and PERK knockdown cells
following tunicamycin challenge. Differences between the groups were
assessed using one-way analysis of variance (ANOVA), with Dunnett’s
multiple comparison test. *P < 0.05. ER, endoplasmic reticulum; qPCR,
quantitative PCR; TSLP, thymic stromal lymphopoietin.

binding protein p (CEBPB) and components of the AP-1 pro-
tein. Thus, we assessed the consensus recognition sites for
CEBPB and found them in the TSLP nucleotide sequence.
AP-1 is a known regulator of TSLP transcription (23), can
form a heterodimer with CHOP, and activates the promoters
of selected genes such as somatostatin, JunD, and collage-
nase (16). Using specific sSiRNA knockdown of the CEBPB
gene and an AP-1-specific inhibitor T-5224, we determined
their role in ER stress-induced TSLP gene transcription (Fig.
4B). AP-1 inhibition significantly reduced tunicamycin-
induced TSLP mRNA expression, comparable to the effect of
CHOP siRNA knockdown. Knockdown of CEBPB did not
affect tunicamycin-induced TSLP mRNA expression. These
results show that the CHOP-AP-1 complex, but not CEBPB, is
crucial for ER stress-induced TSLP gene transcription.

ER Stress Alone Does Not Induce TSLP Protein in BECs
but Synergically Enhances Its Production by Poly I:C

Our mRNA expression data showed significant induction
of TSLP expression with chemical-induced ER stress in
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Figure 3. CHOP expression is crucial for the induction of TSLP mRNA expression in ER stress. The mRNA expression of XBP1and CHOP was knocked
down using target-specific silencer-select siRNA (n = 3). At 36 h post knockdown, cells were challenged with tunicamycin for 12 h and mRNA expression
of XBP1 (A), CHOP (C), and TSLP (B and D) was measured by gPCR. Differences between the groups were assessed using Student’s t test. *P < 0.05.

ER, endoplasmic reticulum; TSLP, thymic stromal lymphopoietin.

BECs. We next examined if this translated into protein. To
do this, we measured secreted TSLP protein in cell culture
supernatants of BCi-NS1.1 cells challenged with tunicamycin
or thapsigargin. Intriguingly, we did not find any detectable
levels of TSLP in the culture supernatants (Fig. 54). As ER
stress activates signaling pathways that inhibit protein
export and secretion, we measured TSLP protein in cell
lysate by ELISA to determine if TSLP protein is translated
but then trapped inside the cells. However, we could not
detect any TSLP protein in the whole cell lysate even using a
high-sensitivity ELISA kit. To assess if ER stress-induced
TSLP mRNA induction can enhance the TSLP protein secre-
tion by other known TSLP stimulants in the airway epithe-
lium, we treated BCi-NS1.1 cells with poly I:C alone or
together with tunicamycin or thapsigargin for 48 h and the
secreted TSLP protein level was measured by ELISA. After 48
h of challenge, poly I:C together with tunicamycin or thapsi-
gargin resulted in the production of significantly higher lev-
els of TSLP protein compared with poly I:C alone (Fig. 5B).
To determine if knockdown of UPR signaling arms affects
poly IC + tunicamycin-induced TSLP protein production,

the gene expression of PERK, IREla, and ATF6 in BCi-NS 1.1
cells was knocked down using siRNA. Cells were then treated
with poly IC along with tunicamycin and after 48 h secreted
TSLP was measured by ELISA (Fig. 5C). Our data show that
knockdown of PERK gene slightly reduced poly IC + tunica-
mycin-induced TSLP protein but not statistically significant.

ER Stress Induces TSLP mRNA Expression in
Differentiated pBECs and Clinically Correlates with
Severe Neutrophilic Asthma

Single-cell-transcriptomic data from lung atlas data sug-
gest that airway epithelial basal cells are the predominant
source of TSLP production (24). This determined our choice
of BCi-NS 1.1 minimally immortalized bronchial epithelial
basal cell line, grown in submerged culture to reflect this ba-
sal cell phenotype. To validate our findings, we treated
PBEC-ALI cultures from asthma patients and control sub-
jects with ER stress inducers (patients’ demographic details
are displayed in Table 1). Similar to our basal cell line data,
PBECs from both control subjects (Fig. 6A) and patients with
severe asthma (Fig. 6B) (n = 5) had a significant increase in

Figure 4. CHOP-AP1 complex is crucial
for ER stress-induced TSLP gene
induction in the airway epithelium. A:
consensus recognition sequences for
CHOP (ATTGCATCAT) and CEBPB (T[TG]
NNGNAA[TG]) were screened within the
complete nucleotide sequence of TSLP.
B: mRNA expression of CEBPB was
knocked down using siRNA, and AP-1
expression was inhibited using T-5224
(n = 3). Cells were then treated with tuni-
camycin and the mRNA expression of
TSLP was measured by gPCR. Differences
between the groups were assessed using
one-way analysis of variance (ANOVA),
with Dunnett’s multiple comparison test.
*P < 0.05. ER, endoplasmic reticulum;
gqPCR, quantitative PCR; TSLP, thymic stro-
mal lymphopoietin.
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Figure 5. ER stress alone does not induce but synergically increases the production of TSLP protein via TLR3 signaling. A: BCi-NS1.1 cells were chal-
lenged with various ER stress inducers and poly:IC as a positive control (n = 6). After 48 h post challenge, TSLP protein levels in cell supernatants and
lysates were measured by ELISA. B: BCi-NS1.1 cells were challenged with various ER stress inducers with or without poly:IC (n = 9) and after 48 h the
TSLP protein level in the supernatant was measured by ELISA. C: to determine the effect of UPR signaling arms on poly IC-induced TSLP protein expres-
sion, IRE1a, ATF6, and PERK genes were knocked down using target-specific silencer-select siRNA in BCi-NS1.1 cells (n = 5) and treated with poly IC to-
gether with tunicamycin. After 48 h, secreted TSLP was measured by ELISA. Differences between the groups were assessed using one-way analysis of
variance (ANOVA), with Dunnett’s multiple comparison test. *P < 0.05. ER, endoplasmic reticulum; TSLP, thymic stromal lymphopoietin.
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assess if increased ER stress is associated with increased
expression of TSLP in clinical samples, a correlation analysis
was performed measuring the mRNA expression of PERK

and TSLP in bronchial biopsies from patients with severe
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(patient’s demographic details are displayed in Table 2).
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Figure 6. ER stress induces TSLP in primary bronchial epi-
thelial cells (pBECs) and correlates with TSLP expression in
severe neutrophilic asthma. pBECs-ALI cultures from control
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, and TSLP mRNA induction

was measured by qPCR. The association between PERK
and TSLP and mRNA expression in endobronchial biopsy
samples from patients with neutrophilic (n = 8; C) and eosino-
philic asthma (n = 10; D) was assessed by Spearman’s corre-
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Table 2. Clinical characteristics and inflammatory cell profiles of healthy controls and severe asthma patients in

whom endobronchial biopsies were collected

Neutrophilic Asthma Eosinophilic Asthma

Subjects, n

Age, yr, mean (SD)
Males/females, n

Atopy, %

FEV1 % predicted, median (SD)
FEV1/FVC%, median (SD)

ICS dose, as pg budesonide dose/day, median (IQR)
ACQ average, median (IQR)
Neutrophils %, median (IQR)
Eosinophils %, median (IQR)
Macrophages %, median (IQR)

8 10
61.9 (10.94) 56.6 (9.58)
4/4 4/6
70 70
66.5 (18.79) 74.5 (17.5)
62 (6.2) 67 (7.33)
1,000 (1,000-1,000) 900 (700-1,000)
2.3(1.765-2.65) 2.3(1.55-2.815)
88.51(85.25-91.88) 24.27 (15.06-26)
1.05 (0.56-1.62) 29.57 (14.4-42.5)
8.9 (5.87-12.06) 31.5 (21.3-39.31)

Values are median (IQR). Features of severe asthma participants were further categorized based on inflammatory phenotypes. %, per-
centage; ACQ, asthma control questionnaire; FEV1, forced expiratory volume in 1 s; FVC, forced vital capacity; ICS, inhaled corticoste-

roids; IQR, interquartile range; n, number; yr, years.

significantly correlate in severe neutrophilic asthma (Fig.
6C) but did not reach significance in those with severe eosin-
ophilic asthma (Fig. 6D).

DISCUSSION

TSLP is an epithelial-derived cytokine that initiates potent
inflammatory responses implicated in the pathogenesis of
severe asthma (25, 26). Recent findings in clinical trials with
anti-TSLP monoclonal antibody (tezepelumab) in uncon-
trolled severe asthma patients showed a significant reduc-
tion in asthma exacerbations and improved symptoms, an
effect that was not confined to participants with eosinophilic
airway inflammation (27). This suggests that there is a domi-
nant role for TSLP in corticosteroid-refractory severe
asthma. Other clinical benefits were associated with reduced
levels of a broad spectrum of Th2 cytokines, and baseline
biomarkers (e.g., blood eosinophils, IgE, FeNO) were
observed across a range of severe asthma phenotypes
(28). This suggests that anti-TSLP elicits broad inhibi-
tory effects on pathways that are key to inflammation
in asthma rather than on narrower inhibition of individ-
ual downstream factors. The airway epithelium in asthma is
highly modified, fragile, and activated (26). Chronic inflam-
mation, persistent cellular stress, and the fragile nature of the
asthmatic epithelium result in constant damage and repair
that lead to high metabolic turnover (29-31). These factors
activate the UPR and some pathways of the integrated stress
response. We and others previously showed that ER stress
and the UPR are associated with severe corticosteroid-resist-
ant neutrophilic and eosinophilic asthma (12, 32-34). We
have also shown robust evidence of altered ER stress and the
UPR signaling in an array of clinical samples of asthma and
its correlation with disease severity and inflammatory pheno-
types (20). Importantly, we found that these ER stress and
the UPR markers are more confined to metabolically active
cells with greater turnover such as the airway epithelium in
asthmatic lung biopsies (20).

Our findings in the current study demonstrate that ER
stress-induced activated UPR signaling contributes to TSLP
mRNA induction in BECs and enhances the TSLP secretion
induced by TLR3 agonists. This could be a novel mecha-
nism that explains upregulated TSLP secretion in the asth-
matic airways and consequent asthma exacerbations. The
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underlying ER stress in the asthmatic airway epithelium
may then enhance TSLP secretion induced by respiratory
viruses and allergens that trigger TLR3 signaling. Indeed, it
has been shown that rhinovirus infection in the asthmatic
airways exaggerates TSLP secretion compared with normal
airways (3).

In this study, interestingly, we found that ER stress alone
significantly induces TSLP gene expression but not protein
release. Protein translation repression mechanisms induced
by ER stress via elF2a phosphorylation may suppress the
translation of TSLP mRNA induced by ER stress. However,
this process was not affected or was overcome when ER
stress occurred along with TLR3 activation. Under ER stress
conditions, extensive remodeling in translatomes occurs and
translation of nearly 50% of mRNA is affected; however, cer-
tain mRNAs are resistant to this translational repression
(35). Some transcription factors including subunits of AP-1
(Jun and Fos) increase under ER stress (35). Whether PERK-
CHOP-induced TSLP mRNA undergoes this elF2a-initiated
translational repression is unknown. Potentially, TLR3-
induced TSLP mRNA is resistant to this process and
enhanced via transcription factor upregulation during ER
stress. Furthermore, ER stress has been shown to induce NF-
kB activity and enhance TLR signaling (36, 37). Further stud-
ies to elucidate the mechanisms underpinning ER stress up-
regulation of TLR3-induced TSLP would be required.

ER stress also enhances C. albicans- and B-glucan-induced
TSLP secretion in DCs. One study demonstrated that fungus-
induced TSLP requires an integration of signals from dectin-
1, the IL-1 receptor, and ER stress signaling pathway particu-
larly IRE1-a and PERK though not CHOP (11). In contrast, our
study shows that the PERK-CHOP signaling pathway is im-
portant in ER stress-induced TSLP gene induction in airway
epithelial cells, though it requires priming signals such as
TLR3 activation to produce and release TSLP protein. In con-
sistent with this, knockdown of PERK signaling arm margin-
ally reduced the poly IC + tunicamycin-induced TSLP
protein secretion (Fig. 5C) but was not statistically signifi-
cant. This could be due to the CHOP gene expression, which
is the main factor involved in ERS-induced TSLP, and could
still be activated via multiple ERS arms although mainly
regulated through PERK signaling (38). Moreover, TLR3-
induced TSLP production in airway epithelial cells is also
shown to be induced in an IRF3-NF-kB-dependent manner
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and synergically enhanced by Th2 cytokines such as IL-4
and IL-13 explaining higher TSLP secretion in asthmatic air-
ways (39). Whether ERS enhances IRF3-NF-«xB and contrib-
utes to enhance the TLR3-induced TSLP protein is unknown
and needs future investigation.

We previously showed evidence of increased ER stress
and UPR markers in the airways of asthmatic patients, par-
ticularly in severe eosinophilic and neutrophilic asthma
(20). We found these upregulated markers in BALF, sputum,
and endobronchial biopsies taken from severe asthma
patients. In this study, we show that induced ER stress, via
the PERK signaling pathway, correlates with increased TSLP
gene expression in endobronchial biopsy samples of patients
with severe neutrophilic asthma, where we mostly find
severe refractory disease (40). Upregulated and persistent
ER stress in neutrophilic asthma airways may prime TSLP
that is then enhanced further upon TLR3 activation such as
by respiratory virus infections and contributes to severe
exacerbations, leading to further neutrophilic airway inflam-
mation and a state that is relatively refractory to corticoste-
roid treatment (41). Treatments that suppress ER stress in
the airways such as pharmacological chaperones may pro-
vide novel therapeutic avenues to reduce TSLP release,
making them a relatively low-cost potential treatment for
severe asthma or potentially in the setting of acute asthma
exacerbations triggered by virus infections, in uncontrolled
asthma.
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