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ABSTRACT

A
century ago, neuroscientists first noticed reflexively driven rhythmic be-

haviour in decerebrate cats. These observations led to the discovery of reflex

and feedforward locomotion activity driven only by peripheral sensory feed-

back, namely the locomotor central pattern generator (CPG). Since then, even with

limited descending brain input, we have seen extensive evidence of the spinal cord’s

capacity for use-dependence motor learning. Indeed, the spinal cord, without supraspinal

descending input, can generate complex coordinated motor tasks with the appropriate

neural environment and training. More and more evidence supports the idea of the

spinal cord participating in preparation, execution, and adaptation events to express a

responsive and coordinated sensorimotor system.

The following question was asked: “What is the appropriate neural environment in the

spinal cord for use-dependent motor learning?”. An extensive data set from an experiment

performed on spinally transected rats in an enriched cage environment was analysed.

The study looked at different combinations of pharmacological and electrical stimulation

therapies after 6 weeks of training. Firstly, hindlimb step-like activity was logged during

6-hour recording intervals with a rule-based algorithm using only sparse electromyogram

(EMG) ankle flexor and extensor activity. The algorithm results performed better at false

positive rejection compared to existing methods in the literature.

The classification algorithm was improved by implementing multi-label deep learn-

ing network methodologies and trained on pre-processed continuous wavelet transform
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(CWT) inputs. Complete deep learning classification analysis included implementing

state-of-the-art vision transformers and domain invariant adversarial learning with

depthwise separable convolutional neural networks. Results suggested greater spa-

tiotemporal representations in vision transformers compared to depthwise separable

convolutional neural networks.

Deep learning results were improved by incorporating curriculum learning with

domain adaptation across subjects. Results were compared against self-supervised con-

trastive learning after pretraining from task-relevant EMG open-source datasets. Pre-

training feature extraction layers before linearly training the classification layer with

temporally aware domain adversarial strategy successfully bridged long- and short-term

information across subjects.

From these captured step-like events, analysis of the EMG and motor-evoked poten-

tial (MEP) activity infer how the neurological state of the spinal cord affects spontaneous

step-like events without any sensory input from treadmill activity. Combining quipazine

(serotonin agonist), strychnine (glycine antagonist), and electrical stimulation most

effectively elevated the locomotor neural networks towards a functional state, promoting

a more significant number of ‘self-training’ events. MEPs, captured during detected

hindlimb locomotion, contained spiking activity in middle and late responses strongly

correlated to the functional state of the spinal cord.

A biologically constrained spiking neural network (SNN) model was developed to

explain the mechanisms of sensory and neuromodulation integration in the flexor reflex

circuit. The effects of body-weight-supported (BWS) locomotion, serotonin agonists, and

electrical stimulation were investigated in a simulated inhibition-dominant SCI neural

environment. Modulating the neural environment to reach a balanced excitation and

inhibition state enabled the propagation of phasic flexion activation. The model explains

the mechanistic basis of BWS for locomotion recovery.
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Finally, future works are suggested, such as collecting pathological locomotion data

from human subjects and incorporating extensor reflex circuity in the SNN. The proposed

design allows interrogation of the origins and reasons for the emergence of polysynaptic

late responses in MEPs during locomotor recovery.
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INTRODUCTION

S
pinal cord injury (SCI) can severly diminish somatic and autonomic nervous

system capabilities. Symptoms vary depending on the location and severity of

the lesion. Severe damage can lead to loss of voluntary sensorimotor control

from the waist (paraplegia) or neck (tetraplegia) down. Adjustment to this new lifestyle

is jarring and difficult, often involving the management of secondary effects such as

pressure ulcers, bone fractures, depression, and pain syndromes (Sezer et al., 2015; Nas

et al., 2015). SCI cases commonly present in young men, leading to a lifetime of reduced

quality of life and economic burden (Ding et al., 2005).

The economic burden on these populations and their communities is incredibly costly,

reaching lifetime medical expenses in the millions (Berkowitz et al., 1998; Collie et al.,

2010). If treatment could improve muscle function in just 10% of people with SCI, it could

offer $3.5 billion in cost savings for the Australian economy (Australia, 2020). Aiming

to achieve voluntary activation of the spinal locomotor central pattern generator (CPG)

is a potential recovery pathway towards walking activity (Rossignol and Frigon, 2011).

Though the methods to achieve such a goal are under ongoing investigation (Minassian
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CHAPTER 1. INTRODUCTION

et al., 2017).

Locomotor centres of the spinal cord establish a disproportionately inhibitory environ-

ment upon losing supraspinal (from the brain) descending input (Edgerton et al., 2008).

Spinal cord stimulation via electrodes coupled to the skin, or epidurally, and pharma-

cological treatment offer some potential for recovering sensorimotor control (Harkema

et al., 2011; Gad et al., 2018; Rabchevsky et al., 2011; Courtine et al., 2009).

The heterogenous nature of each person’s injury requires granular balancing of the

appropriate neuromodulation to elicit a safe and efficacious response (James et al.,

2018). Robust and task-specific neurological measurement emerges as a method to better

understand the causal effects of therapies and rehabilitation outcomes.

1.1 Research Problems

This thesis highlights two gaps in the field of neuromodulation for locomotion recovery.

There is no immediate method for monitoring neural activity while undergoing treatment.

Mechanistic explanations of neuromodulatory therapies lack the ability to describe

subject-specific responses and adaptations while undergoing neuromodulation.

Two fundamental neurological principles can be leveraged to improve the field of

neuromodulation. Firstly, the expression of sensorimotor activity is task-dependent

(Hodgson et al., 1994; Fong et al., 2005; Taccola et al., 2018; Dietz and Fouad, 2014).

This property intrinsically links the requirement for measurement and detection of

task-specific activity. Secondly, the motoneuron (MN) is the final common pathway of

sensorimotor circuitry (Brownstone and Bui, 2010). Thus, MN activity can be interpreted

as the convolutional output of sensorimotor neural states (Edgerton and Gad, 2022).

The detailed works in this dissertation aim to exploit the measurement of invasive

electromyogram (EMG) recordings during pathological gait by first developing reliable

and subject-invariant classification algorithms for monitoring stepping and standing
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1.2. THESIS ORGANISATION

rodent activity. By analysing extracted windows of activity, we determine the effects of

various synergies between pharmacological and electrical stimulation therapies. Evi-

dence suggests that the re-balancing of spinal neural circuitry by modulating excitation

and inhibition at a sub-threshold level facilitates the functional state of locomotor net-

works.

1.2 Thesis Organisation

This thesis presents an in-depth literature review to develop an appreciation and un-

derstanding of the complexity of neuromodulation and the available measurement tools.

The materials section describes the specific data set and labelling process to facilitate the

development of the relevant work. Most of the work delves into extracting unilateral step

and bilateral standing events in stochastic, multi-domain biosignals. Firstly, a new adap-

tive thresholding and rule-based algorithm is presented and compared against previously

studied machine learning methodologies. The detection methods undergo improvements

through innovative applications of deep learning methodologies, including vision trans-

formers and transfer learning. Lastly, the thesis analyses the extracted events from

the data set and proposes potential mechanisms and biomarkers for monitoring neural

recovery after SCI.

• Chapter 2 reviews the historical and current perspectives of key concepts behind

neurological recovery and neuromodulation. The structure and physiology of the

spinal cord and CPG are briefly introduced. Furthermore, we delve into the mecha-

nisms of neuroplasticity and examine its role in sensorimotor recovery following

SCI. Finally, neuromodulation technology and methods to measure the effects of

therapies are discussed.

• Chapter 3 summarises the main data set used for this thesis, describing the
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CHAPTER 1. INTRODUCTION

instruments, surgical procedures, and recording methods. The method of manual

labelling and the resulting distribution are also included.

• Chapter 4 introduces an adaptive threshold and rule-based algorithm to detect

pathological unilateral stepping and bilateral standing events. The chapter com-

pares the new algorithm with machine learning approaches. Previously reported

and newly suggested methods failed to reliably predict pathological gait and stand-

ing events. The proposed rule-based algorithm was most successful in rejecting

false positives.

• Chapter 5 aims to improve upon the results of Chapter 4 in two ways. Firstly, the

requirement for handcrafted feature extraction across domains should be reduced

through domain adaptation. Secondly, the first investigations will be performed

on the effect of vision transformers in extracting long-distance representations of

spatiotemporal-dependent locomotor activity.

– Vision transformers encode spatiotemporal information towards locomotor

relevant latent representations.

– Domain adversarial neural networks failed to converge upon relevant locomo-

tion and standing activity features across therapy domains.

• Chapter 6 presents curriculum learning from locomotor phase to whole gait as a

new and efficacious method to classify pathological gait patterns. The new method

was applied to inter-subject domain adaptation techniques. The conjunction of

curriculum learning with domain adaptation bridged the inter-subject domain gap

more successfully than self-supervised contrastive learning techniques.

• Chapter 7 analyses the extracted event data during pathological gait under mul-

timodal therapies. Including serotonergic agonists appears critical to enabling

4
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locomotor activity initiated only through sensory afferent activity. Combining sero-

tonergic agonists, glycinergic inhibitors, and electrical stimulation tunes the neural

environment towards a more excitable state. Finally, late responses (LRs) in motor

evoked potentials (MEPs) suggest a correlation with local spinal circuitry and

response to neuromodulation therapies.

• Chapter 8 details the design of a biologically constrained spiking neural network

(SNN) of the flexor reflex circuit. The excitatory and inhibitory effects of neuromod-

ulation with phasic proprioceptive afferents are investigated. Simulating an SCI

and body-weight-supported locomotion environment provides results that elucidate

the impact of balancing excitation and inhibition for successful locomotor recovery.

• Chapter 9 discusses potential future work to scale detection methods towards

human studies using wearable electrode-embedded EMG sensors. An in-depth

model of the locomotor CPG is designed with biologically constrained architecture.

Future directions of further SNN modelling to provide a mechanistic explanation

of the emergence of LRs in MEPs are discussed.

• Chapter 10 summarises the main contributions of this thesis and its implications

for neurological recovery monitoring.
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2
HISTORICAL AND CURRENT PERSPECTIVES OF SPINAL

CORD LOCOMOTION RECOVERY

T
his chapter aims to summarise the anatomical and physiological aspects of the

spinal cord and highlight the impact of spinal cord injury in a health-conscious

and socioeconomic context. Core concepts in neuroplasticity, neurological recov-

ery, and stereotyped responses in the spinal cord are explored, offering readers insights

into current perspectives of sensorimotor networks. A broad review of the electrophysi-

ological and genetic investigations to unravel the neuronal substrate of locomotion is

included, as well as how this information leads to the development of targetted neuro-

modulatory therapies to recover sensorimotor function after SCI. The effects of these

therapies will be covered across both animal and human studies. Finally, methods to

map neurological changes to behavioural recovery using assessment and wearable tools

are discussed.
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CHAPTER 2. HISTORICAL AND CURRENT PERSPECTIVES OF SPINAL CORD
LOCOMOTION RECOVERY

2.1 The Spinal Cord

The text below summarises the core spinal anatomy and physiology necessary for a

healthy human sensorimotor spinal cord. These structures and functions will reappear

throughout the thesis and only core information will be included.

2.1.1 Anatomy

The spinal cord is responsible for communication between the brain and the body. Pulses

of electrochemical signals, carrying sensory and motor information, constantly travel up

and down the spinal cord (Catala and Kubis, 2013; Nógrádi and Vrbová, 2013). Despite

protection by the bony vertebrae column, traumatic damage could lead to impaired

neurological communication. To this extent, the severity and location of a SCI play a

major role in the remaining motor and sensory function (Catala and Kubis, 2013).

The spinal cord contains 8 cervical, 12 thoracic, 5 lumbar, 5 sacral, and coccygeal

spinal segments in the adult human and 33 vertebrae, 7 cervical, 12 thoracic, 5 lumbar,

5 sacral, and 4 coccygeal, see fig. 2.2. The bony structures of the vertebral column protect

the spinal cord, while intervertebral discs allow smooth motion along the vertebral

column. The spinal cord is covered by three fibrous membranes, the outermost dura

mater, arachnoid, and innermost pia mater. See fig. 2.1 for a visual representation

of the spinal cord gross anatomy. The cervical (C3-T1) and lumbar (L1-S2) vertebral

enlargements contain a large population of neurons that innervate the arms and legs,

respectively. The spinal cord is topographically organised, where motor and sensory

neurons are mapped based on the distance from the trunk and function. Sensory nerve

roots at certain spinal levels innervate specific body regions, known as a dermatome, see

fig. 2.2. Similarly, motor nerve roots innervate specific regions known as a myotome.

The spinal cord is composed of an H-shaped grey matter cross-section, surrounded by

white matter (see figs. 2.1 and 2.3). The white matter consists of the densely myelinated

8



2.1. THE SPINAL CORD

Figure 2.1: A cross-sectional view of the spinal cord, outlining protective features such
as the vertebral body, vertebral disk, meninges and the major features such as the
dorsal and ventral roots, and grey and white matter. Image ©Wikimedia user debivort

.

white matter of the spinal cord, providing efficient sensory and motor information

communication across multiple segments and towards the cortex. Grey matter consists

of motor and sensory neurons, interneurons, and neuropils (glial cells and unmyelinated

axons). The grey matter cross-section structure is organised into left and right dorsal

and ventral horns. The dorsal horns contain most of the interneurons of the spinal cord,

while ventral horns contain predominantly MN cell bodies.

Afferent signals arrive at the dorsal roots before synapsing to the spinal interneurons,

where complex sensory processing functions occur. Efferent muscle contractive control

synapse from ventral horn neuron pools. Running axially along the spinal cord is the

central canal, filled with cerebrospinal fluid (CSF). The ventral and dorsal roots coalesce

into two bundles and enter the dorsal root ganglion (DRG) in the intervertebral foramen,

9
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CHAPTER 2. HISTORICAL AND CURRENT PERSPECTIVES OF SPINAL CORD
LOCOMOTION RECOVERY

Figure 2.2: An approximate schematic of the sensory innervation mapped on the hu-
man body. Images ©Janet Fong, 2009 http://www.aic.cuhk.edu.hk/web8/Hi%20res/

dermatome.jpg

where they exit and form the spinal nerve trunk. These break off into plexuses and

eventually form the peripheral nerves (Nógrádi and Vrbová, 2013; Thau et al., 2021).

The grey matter in the spinal cord is organised by sections, called spinal laminae (of

Rexed) see fig. 2.3. These sections are partitioned into 10 layers, designated by Roman

numerals (I-X). At a high level, laminae I, II, and V receive noxious stimuli input;

III and IV receive light-touch and position-related inputs; and laminae VI respond to

mechanical signals from the joints and skin. Laminae VII exists in thoracic and upper

lumbar segments from which preganglionic sympathetic fibres project and give rise to

the cells of Clarke’s column (posterior spinocerebellar tract). Laminae VIII and IX are

somatotopically arranged and contain α– and γ–MNs and interneurons (INs). Lamina

X surrounds the central canal and contains axons that cross to the opposite side of the

10
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2.1. THE SPINAL CORD

Figure 2.3: Organisation of the grey matter in the spinal cord by Rexed Laminae.
Images ©User: Polarlys, 2006

spinal cord (Sabharwal, 2013; Ganapathy et al., 2021). Refer to tables 2.1 and 2.2 for

a summary of anatomical organsiation and projection of myelinated spinal tracts and

table 2.3 for correlated laminae position and functional mapping. The dorsal column

sensory tracts are modality organised with mechano- and propriosensory specific axon

diameters (Niu et al., 2013). These organised structures are preserved across multiple

mammalian species including rat, feline, canine, monkey, and human (Al-Chalabi et al.,

2021).

The white matter holds densely myelinated tracts and rapidly delivers sensorimotor

information to and from other spinal segments, cortical structures, and peripheral nerves.

Ascending tracts include the spinothalamic, spinocerebellar, and dorsal column-medial

lemniscal tracts (Al-Chalabi et al., 2021; Harrow-Mortelliti et al., 2021). Descending

tracts include the corticospinal, vestibulospinal, tectospinal, and reticulospinal tracts

(Sengul and Watson, 2012a; Harrow-Mortelliti et al., 2021; Sabharwal, 2013).
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Table 2.1: A high-level summary of the various descending myelinated tracts longitudi-
nally running through the spinal cord (Nógrádi and Vrbová, 2013; Sengul and Watson,
2012a,b).

Name Information Originates Termination

Corticospinal tract Contralateral vol-
untary movement

Motor cortex Ventral horn

Rubrospinal tract Motor function Red nucleus of the
midbrain

Laminae V – VII,
mainly cervical
and lumbosacral
enlargements

Tectospinal tract Coordinating head
and eye movements

Midbrain Laminae V – VIII

Vestibulospinal
tract

Coordinating head
and eye movements
and maintain up-
right and balanced
posture

Lateral and medial
vestibular nuclei

Laminae VII – VIII
of the ventral horn
and terminate at α-
and γ-motoneurons
of laminae IX

Reticulospinal tract Modulate prepara-
tory, sensory infor-
mation and spinal
reflexes

Brainstem reticular
formation

Laminae I, V, and
VI – IX.
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2.1. THE SPINAL CORD

Table 2.2: A high-level summary of the various ascending myelinated tracts longitudi-
nally running through the spinal cord (Nógrádi and Vrbová, 2013; Sengul and Watson,
2012a,b).

Name Information Originates Termination

Dorsal Column Me-
dial Leminiscal (Fas-
ciculus Gacilis and
Faciculus Cuneatus)

Dorsal and ventral
columns carry-
ing mechano- and
propriosensory infor-
mation

Nucleus dorsalis
of Clarke column;
laminae V and VII
of the lumbosacral
spinal cord.

Cerebellum

Spinothalamic tracts Crude touch, pres-
sure, pain, and tem-
perature information

Laminae I, V, VII,
and VIII

Thalamus

Spinocerebellar tract Pain, touch, and tem-
perature. Propriocep-
tive information

Laminae IV, V, and
VII

Cerebellum

13
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Table 2.3: A high-level summary of the laminae correlated functions in the spinal cord (Sabharwal, 2013; Ganapathy et al.,
2021; Nógrádi and Vrbová, 2013; Sengul and Watson, 2012a,b).

Lamina Function Synapse

I – II Axons carrying noxious and temperature signals
synapse here.

Cross the midline via the anterior white commissure
and ascend via the lateral spinothalamic tract.

III – IV Processes vibration and pressure touch sensation. Car-
ries proprioceptive impulses

Synapses to spinothalamic tract and carries proprio-
ceptive impulses to the cerebral cortex via the dorsal
medial lemniscus pathway.

V A high number of dendritic interconnections receive
sensory afferents from cutaneous, muscle, mechanical,
and visceral nociceptors. Best suited for sensory inte-
gration

Many of the Rexed lamina V cells project to the brain
stem and the thalamus via the contralateral and ipsi-
lateral spinothalamic tract. Descending corticospinal
and rubrospinal fibres synapse upon its cells.

VI Propriospinal neurons or interneurons that target ven-
tral horn MNs

Receiving sensory afferent input, rubrospinal fibres,
tectospinal fibres, and other heterogenous INs.

VII Premotor interneurons projecting to MNs. Involved in
excitation and inhibition of different muscles

Receiving sensory afferent input, rubrospinal fibres,
vestibulospinal fibres, tectospinal fibres, and other het-
erogenous INs.

VIII Propriospinal interneurons play a role in coordination.
Long pathways connect cervical and lumbar enlarge-
ments.

Receiving sensory afferent input, vestibulospinal fibres,
and other heterogenous INs.

IX α- and small γ-MNs, β-MNs and the remainder are INs Receiving sensory afferent input, corticospinal tract,
vestibulospinal fibres, and other heterogenous INs.

X Receive somatic and visceral afferents with Aδ and
C-fibres, plays a role in nociception and visceroception

Receiving sensory afferent input, and other heteroge-
nous INs.
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Propriospinal fibres in the white matter connect multiple segments of spinal cords

(Sengul and Watson, 2012b; Jankowska et al., 1974). These axons connect ventral

and dorsal horns, cervical and lumbar enlargements, and provide bilateral projections

between the left and right sides of the spinal cord (Taccola et al., 2018). These are

numerically dominant structures in the spinal cord and have heterogenous morphology.

For a thorough review of the propriospinal system, see (Taccola et al., 2018; Laliberte

et al., 2019; Flynn et al., 2011). For up-to-date morphology on spinal cord neurons and

their pathways, see (Arle et al., 2019).

Spinal motoneurons are organised in columns across the rostrocaudal axis described

as the median (MMC), lateral (LMC), hypaxial (HMC) motor columns, and the pregan-

glionic column (PGC) (Stifani, 2014). Other spinal columns include the spinal accessory

column (SAC) and the phrenic motor column (PMC). Of interest to sensorimotor recovery

and the organisation of MNs in peripheral limb activity are the MMC and LMC. MMC

MNs are located in the ventromedial region of the spinal cord and are mainly involved in

the maintenance of body posture. LMC MNs are located ventrolaterally and connect to

muscles of the appendages, limited to C5–T1 and L1–L5 vertebral levels (Stifani, 2014).

LMC MNs have medial-lateral populations topographically mapped such that medial

MNs target the ventral portion of a limb and lateral MNs target dorsal limb muscles

(Kania et al., 2000; Tosney et al., 1995). Moreover, LMC MNs have dorsal-ventral organ-

isation and distally innervated muscles located more dorsally than proximal muscles

(Bikoff et al., 2016). Similar topographical mapping has been observed in premotor neu-

rons within the spinal cord where premotor INs segragate according to flexor-extensor

(Tripodi et al., 2011) and distal-proximal (Goetz et al., 2015) muscle groups, see fig. 2.4.
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Figure 2.4: Organisation of the spinal cord and major propriospinal circuits, reused with
permission from (Flynn et al., 2011). A and B shows the cross-section of the spinal cord
and the laminae distribution and the relationship between lateral-medial and axial-distal
innervation respectively. C and D illustrates the short (SPN) and long propriospinal
neurons (LPNs) respectively, their projection patterns, and termination sites. E SPN
axons are contained deeper in the spinal cord and are present across all funiculi of grey
matter. LPN axons are superficial and predominantly present in lateral ventral and
funiculi. SPN pathways spread across shorter distances in the vertebrae while LPNs
communicate across cervical and lumbar enlargements.

The above summary details distinct spatial premotor and MN topographical mappings

within the spinal cord. MN pools innervate specific muscles and receive preferential
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information from descending and sensory inputs. Knowledge of the intended and affected

neuronal populations assist with developing fine-tuned and specific neuromodulation

therapies (Capogrosso et al., 2013).

2.1.2 Physiology

The action potential (AP) is the core underpinning neural mechanism of how CNS

functions and different neural systems communicate. Neuron APs propagate in an

all-or-nothing response along nervous tissue and facilitate neuronal communication

via electrical and chemical transmission (Mortimer and Bhadra, 2018). A single soma

maintains a baseline resting potential until it receives inputs via dendrites (Grider et al.,

2024). Input potentials may be initiated by presynaptic neurons, external perturbations

of sensory neurons, or spontaneously in pacemaker potentials. The latter case may lead

to complex bursting patterns at differing frequencies (Nógrádi and Vrbová, 2013). Upon

reaching threshold, an AP fires away from the cell body, down the axon hillock (see

fig. 2.5 for illustration).

Table 2.4: Dorsal and ventral organisation or sensorimotor neurons in the spinal cord.

Position Name Fibre Type Information

Dorsal Muscle Spindle Group Ia; Aα Stretch Velocity

Dorsal Muscle Spindle Group II; Aβ Stretch

Dorsal Golgi Tendon Group Ib; Aα Tension Changes

Ventral α-motoneuron Aα Extrafusal motor
unit recruitment

Ventral γ-motoneuron Aγ Intrafusal motor
unit recruitment

Current educational standards explain voluntary motion as efferent signals travelling

from the primary motor cortex down the spinal cord to synapse at MN pools. MN cell

bodies are located in the ventral horn of the spinal cord and synapse at the neuromuscular
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Figure 2.5: An illustration of a typical neuron. The cell body, or soma, receives information
from other neurons. The dendrites conduct this information towards the soma. Action
potentials fire away from the soma, down the axon, before reaching the presynaptic
terminal. ‘Neuron’ by Casey Henley is licensed under a Creative Commons Attribution
Non-Commercial Share-Alike (CC-BY-NC-SA) 4.0 International License. Image https:

//openbooks.lib.msu.edu/app/uploads/sites/6/2020/11/Neuron.jpg.

junction to several motor units. The spinal cord is precisely organised, separated by

motor or sensory function in the ventral and dorsal regions respectively (see fig. 2.6).

Information regarding key fibres and their function is summarised in table 2.4.

As the muscle contracts, afferent proprioceptive information is constantly relayed to

the dorsal root ganglion (DRG). The DRG integrates sensory information and fires APs to

IN structures which diverge to both the cortex and reflexive neural networks. The most

fundamental is the reciprocal inhibition reflex (see fig. 2.7). Ia inhibitory INs receive

Ia muscle spindle afferent input and produce a disynaptic inhibition on antagonist

muscles (Hochman, 2007). The number of synapses involved in a reflexive motor process

determines the magnitude and kinematic speed of the reflex. With greater recruitment

comes greater dynamics. Stretch reflexes such as the knee jerk are categorised under

a monosynaptic reflex whilst more complex motion with many synapses are described

as polysynaptic. Historically, these reflexive activities were thought to be automatic,

local responses in the spinal cord. However, as we will delve into later, modern research
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Figure 2.6: A graphical representation of voluntary movement and feedback of sensory
information while testing the temperature of the water. Mechanosensory and ther-
moreceptive afferent fibres enter the spinal cord dorsally to inform the brain of the
conditions of the external environment. Information regarding heat and pain is pro-
cessed in the cerebral cortex. The voluntary motor efferent signal descends the spinal
cord, exits at the ventral horn, and contracts the target muscle to act. Image ©Wikimedia
user OpenStax https://commons.wikimedia.org/wiki/File:1212_Sensory_Neuron_

Test_Water.jpg

highlights the complex integrative role of spinal cord reflexive circuits in coordinated

sensorimotor function.

Able-bodied human proprioception is consciously and subconsciously sensed with

dependence on the conscious attention of the person (Johnson et al., 2008). To give the

reader an intuitive example, consider raising one’s arm (Cordo and Nashner, 1982). The

arm movement itself is voluntary and consciously perceivable. The force and stretch

can be experienced through the shoulder, together with the tactile sensation and sound

of fabric, the sight of the motion, and perhaps even the cooling of the skin. Now, one

might repeat the motion but also focus on the sensation in the lower back and legs. One

may notice some anticipatory muscle activity there. Interestingly, the same anticipatory
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Figure 2.7: An example of the monosynaptic knee-jerk reflex. The hammer strikes the
patella tendon, invoking a stretch in the intrafusal muscle spindles. The sudden change
in muscle length sends an afferent signal to the DRG where an inhibitory and excitatory
signal is synapsed at an interneuron. To keep the muscle taut, the quadriceps flex
(excite) and the hamstrings relax (inhibit). Image ©Encyclopedia Britannica https:

//www.britannica.com/science/knee-jerk-reflex

activities become absent after exposure to microgravity environments (Layne et al., 2001;

Layne and Spooner, 1990).

2.2 Spinal Cord Injury

Spinal cord injury (SCI) refers to damage to any part of the spinal cord and can be

broken down into either primary or secondary injury mechanisms. Primary injury

refers to the immediate physical injury to the spinal cord resulting from laceration,

contusion, compression, and contraction of the neural tissue (Farooqui, 2010; Oyinbo,

2011). Pathological changes from primary injury mechanisms include severed axons,

direct mechanical cell damage, rapid cell death and ruptured blood vessels (Oyinbo,

2011). Secondary injury is responsible for the expansion of the injury site and limiting
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recovery potential (Dumont et al., 2001). Rehabilitation therapies aim to harness the

regenerative and plastic capabilities of the nervous system and reduce the burden of

injury (Dumont et al., 2001; Ding et al., 2005; Oyinbo, 2011).

2.2.1 Symptoms and Implications

In the event of SCI, damage to nervous tissue can result in several clinical loss of

voluntary control and sensation. Paralysis commonly leads to secondary impairments

such as respiratory, cardiovascular, urinary and bowel complications, spasticity, pain

syndromes, pressure ulcers, osteoporosis, bone fractures, emotional disorders and loss of

independence (Sezer et al., 2015; Nas et al., 2015; Migliorini et al., 2008). Activities of

daily living (ADLs) become especially challenging for those with cervical SCI (Dickson

et al., 2008). Due to these impairments, the effects of SCI have an immense impact on

the person and surrounding community. Feelings of depression, anxiety, clinical-level

stress, or post-traumatic stress disorder are common mental health problems in SCI

populations (Migliorini et al., 2008).

The social, functional, and economic impact of a severe high-level injury at a relatively

young age greatly influence the quality of life of friends, family and the individual

(Trieschmann, 1988). To quantify the burden of disease, a metric known as the ‘disability

weight’ is used (Salomon et al., 2015; van Hedel and Dietz, 2010). Disability weight is

measured on a scale from 0, implicative of full health and 1, equivalent to death. The

Global Burden of Disease 2013 study estimates a spinal cord lesion at the neck level to

be 0.589 (treated) and 0.732 (untreated) (Salomon et al., 2015). Spinal cord injury can

significantly reduce one’s quality of life and introduce a high sense of burden from a

young age.

21



CHAPTER 2. HISTORICAL AND CURRENT PERSPECTIVES OF SPINAL CORD
LOCOMOTION RECOVERY

2.2.2 Statistics

As of 2015, traumatic SCI affects an estimated 23.0 cases per million, ranging from 3.6

to 195 per million, worldwide (Jazayeri et al., 2015; Massetti and Stein, 2018). Most

are young men, aged 16 to 30 years old (Ding et al., 2005). Commonly presented cases

include incomplete tetraplegia (41%), incomplete paraplegia (19%), complete paraplegia

(18%) and complete tetraplegia (12%) (Massetti and Stein, 2018). SCI management

requires significant healthcare resources and takes a substantial emotional and financial

burden on patients, families, and the community (Diop et al., 2021; Anderson, 2004).

The treatment and lifetime medical costs can range from $1.47 million to $3 million

CAD per person (Public Health Agency of Canada, 2013). In the US, the total annual

economic burden of SCI is close to $18.5 billion USD (Berkowitz et al., 1998). A report

commissioned by Spinal Cure Australia and Insurance and Care NSW (icare) details the

financial burden to the goverment, individuals and their families, and losses in broader

economic productivity with healthcare costs estimated at $3.7 billion AUD per annum

(Australia, 2020) matching similar estimates from past research (Collie et al., 2010).

2.2.3 Severity

The severity of SCI follows the grading as per the International Standards for Neu-

rological and Functional Classification of Spinal Cord Injury (ISCSCI-92), endorsed

by the American Spinal Injury Association (ASIA) (Maynard et al., 1997). The paper

recommends a series of motor and sensory scores, the ASIA Impairment Scale, clinical

syndromes, and the Functional Independence Measure as an approach for assessing the

impact of SCI on the individual’s daily life activities and functions. The ASIA Impairment

Scale (AIS) categorises complete injury as the absence of sensory and motor function and

is defined as per table 2.5

There are SCI clinicians who view clinically complete SCI cases to be ‘absolutely’

22



2.2. SPINAL CORD INJURY

Table 2.5: ASIA Impairment Scale (AIS) in brief (Maynard et al., 1997)

AIS Description

A Complete; no sensory or motor function preserved in sacral segments S4-S5

B Incomplete; sensory but not motor function is preserved below the neurological
level and includes the sacral segments S4-S5.

C Incomplete; motor function is preserved below the neurological level, and more
than half of key muscles below the neurological level have a muscle grade less
than 3.

D Incomplete; motor function is preserved below the neurological level, and at
least half of key muscles below the neurological level have a muscle grade
greater than or equal to 3.

E Normal; sensory and motor function is normal

complete (Dimitrijevic and Kakulas, 2020; Maynard et al., 1997). Despite this, research

has consistently shown remaining sensorimotor function, even in chronic complete SCI

patients, below the spinal lesion (Heald et al., 2017; Harkema et al., 2011; Gerasimenko

et al., 2015a; Gad et al., 2018; Gerasimenko et al., 2015c).

From the above information, one could conclude that SCI significantly impacts the

quality of life for many young adults and their communities. Thus, developing safe and

efficacious therapies not only improves the quality of life of those affected but reduces

the economic burden of healthcare systems.

2.2.4 Current Methods for Recovery

All SCI patients undergo a spontaneous recovery stage usually within the first 3 months

after the lesion with a small amount of recovery occurring up to even 18 months or longer

(Fawcett et al., 2007; Weidner et al., 2001; Steeves et al., 2011). This stage of recovery

is also facilitated by modern-day surgical procedures, pharmacological treatments and

physical therapy, reviewed in (Cadotte and Fehlings, 2011; Onifer et al., 2011; Kirshblum

et al., 2007). Recovery gains may be attributed to neurological mechanisms between
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axons spared from injury and intrinsic spinal cord circuits that relay information past

lesion sites (Courtine et al., 2008).

Traditionally, rehabilitation focuses on functional restoration by maximising residual

motor skills through therapeutic exercise or overcoming losses with compensation or

assistive devices (Asín Prieto et al., 2016). Present-day neurorehabilitation paradigms

emphasise functional neuro-recovery by taking advantage of remaining neural connec-

tions, plasticity, and repair mechanisms (Curt et al., 2008; Musselman et al., 2018;

Cadotte et al., 2012). Regaining control and independence in the daily lives of patients

with SCI is considered the primary goal for rehabilitation (Nas et al., 2015). To enable the

patient to achieve their goals, short, and long-term functional milestones are developed

by considering the severity and location of injury as well as the patient’s desires (Nas

et al., 2015; Kirshblum et al., 2007).

Physical and occupational therapy dosage is positively associated with the motor

functional change in a sigmoidal fashion, such that improvements exponentially in-

creased before reaching an asymptotic limit (Truchon et al., 2017). Efficiently increasing

the therapy intensity and resource utilisation could reduce patient costs if the optimal

strategy is applied to the patient (Truchon et al., 2017). While the extent of spontaneous

recovery is significantly greater in incomplete lesion populations than in complete, pa-

tients that have tetraplegia demonstrate more recovery gain than those with paraplegia

(Spiess et al., 2009; Kirshblum et al., 2004; Marino et al., 1999). These improvements are

generally seen immediately below the lesion with a low probability of bringing functional

benefits (Fawcett et al., 2007). This thesis focuses on the functional recovery of motor

activity in SCI patients and its neuroscientific basis.
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2.3 Neuroplasticity

Neuroplasticity is the adaptive or maladaptive changes within neuronal circuits that

reflect the nervous system’s reorganisation (Dietz and Fouad, 2014). Physiologically,

neuroplasticity can be described as changes in synaptic formations and synaptic strength

arising from intracellular property dynamics (Luft et al., 2016; Lüscher and Malenka,

2012). Spike time-dependent plasticity (STDP) has been demonstrated as the synaptic

learning rule across multiple species, from insects to humans (Caporale and Dan, 2008).

STDP describes the mechanism of presynaptic neuron firing, timing, and firing rate

relative to the timing of action potential in the postsynaptic neuron (Froemke and Dan,

2002). In short, STDP is the Hebbian learning rule often summarised as the long-term

potentiation and depression of synaptic strength according to the order and temporal

interval between pre- and postsynaptic spikes (Hebb, 2005).

In the case of SCI, spontaneous recovery of sensorimotor functions has been attributed

to factors such as the resolution of neuropraxia and re-myelination of spared axons (Dietz

and Fouad, 2014; Heckman and Enoka, 2012). However, the following criteria must be

met for non-maladaptive connections to be made. Firstly, cells must be alive or replaced

(neural or tissue transplantation). The neural environment must be permissive for axonal

growth. Correct signalling to select the desired target must be provided, and axonal

re-myelination must be allowed (Asín Prieto et al., 2016).

The behavioural adaptations from neurorehabilitation recovery can be attributed to

the abovementioned points. These adaptations to a post-lesion environment can occur

within the spinal cord (Ding et al., 2005; Courtine et al., 2008). For example, spinal

adaptation due to postural asymmetry of the hindlegs from cerebellar hemispheric lesion

persisted after spinal transection (Di Giorgio, 1929). Similarly, extensive behavioural

modification training created long-lasting changes in the H-reflex expression, which

continued even after spinal transection (Wolpaw and Tennissen, 2001; Wolpaw and Carp,
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1990).

In an isolated spinal cord, sensory afferents dominate the inflow of neural encoded

information (Edgerton and Roy, 2009a). Repetitive task-specific training aims to leverage

the sensory afferents and has been shown to improve synaptic efficacy and the expression

of the trained behaviour (de Leon et al., 2001; Rossignol et al., 2006). After severe SCI

in rats, providing appropriate afferent input to spinal circuits directs sprouting above

and below the lesion, resulting in improved functional outputs (Goldshmit et al., 2008).

Conversely, sprouting without direction from task-specific training leads to neurological

dysfunction (Beauparlant et al., 2013). Successes in task-specific functional recovery

have been replicated in cats (Rossignol et al., 2002) and non-human primate models

(Courtine et al., 2007a; Capogrosso et al., 2016).

Studies incorporating functional magnetic resonance imaging (fMRI) have reported

dynamic reorganization of the CNS following SCI (Oni-Orisan et al., 2016; Cadotte et al.,

2012). Specifically, incomplete SCI subjects report an increased number of inter-spinal

connections and an increase in the average number of active voxels in dermatomes

of normal sensation in chronic SCI patients relative to healthy controls. Additionally,

patients that reported full recovery from incomplete SCI maintained the increased degree

of inter-spinal connections (Cadotte et al., 2012).

In humans, intense and repetitive training after SCI has been shown to promote

cortical plasticity (Lynskey et al., 2008). Active exercise (i.e., overground locomotion,

manual-assisted and robot-assisted partial weight training, repetitive upper limb train-

ing) requires patients to perform assisted or unassisted active movement (Hubli and Di-

etz, 2013). Voluntarily initiating motor activity reinforces functionally relevant synapses

across cortical efferents, spinal neurons, and sensory afferents (Cote et al., 2017).

Of course, the limitation of this paradigm is that active voluntary exercise can only

be performed by patients with some level of pre-existing motor function. Intentional
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movement attempts reward subjects with greater rehabilitative gains over passive

exercise (Gill et al., 2020b; Capogrosso et al., 2016; Wagner et al., 2018; Bonizzato

et al., 2018). Thus, voluntary activation of sub-lesion neural circuits can be difficult for

severely injured patients without the appropriate neural environment. Neuromodulation

paradigms, such as Electrical Stimulation (ES), aim to enhance functional mobility by

recruiting the body’s existing neural pathways, allowing patients to practice activities

that were not previously accessible (Lynskey et al., 2008; Edgerton et al., 2001a, 2004).

Developing new efficacious therapies to enable inaccessible neural circuitry is a worth-

while pursuit. Moreover, a high-intensity programme is pivotal to providing robust motor

function improvement (Wolbrecht et al., 2008; Marchal-Crespo and Reinkensmeyer, 2009;

Reinkensmeyer et al., 2012, 2016; Lotze and Cohen, 2006). Therefore, reliably mapping

neurological states to functional outputs offers an equally important opportunity.

2.4 Sensory Integration in Spinal Sensorimotor

Circuits

Spinal reflexes have historically been considered involuntary components restricted to in-

variable, stereotyped, and unmodifiable sensorimotor responses (Arber, 2012; Jankowska,

2013a). Edgerton and his team have proposed an alternative perspective on locomotor

CPG: Sensory-informed feedforward coordination of motor pools is the primary mecha-

nism for spinal locomotion (Edgerton et al., 2001a, 2004; Roy et al., 2012; Gerasimenko

et al., 2017, 2016b). This feedforward capability has been observed throughout multiple

motor tasks across species and is hypothesised to be attributable to both development

and experience (Edgerton et al., 2001b; Bernstein, 1966). When investigating the neuro-

anatomical implications of Bernstein’s motor laws, successful and smooth motor activity

required spatially separated biological neuromotor groups to act in a predetermined
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relationship (Whiting and Bernshtein, 1984). That is to say, in a feedforward, preparatory

manner. The themes of feedforward spinal sensorimotor mechanisms will be further

explored.

2.4.1 Central Pattern Generator

The common perception of the CNS considers the brain the primary control system

of nearly all neurological functions (Thau et al., 2021). A solely cortical approach to

motor control overlooks the time required for movement planning and execution and the

adaptations computed from sensory feedback (Andrew, 2016; Whiting and Bernshtein,

1984; Strominger et al., 2012).

With many neuronal connections, processing time and cumulative errors can sig-

nificantly hinder convergence towards an optimal movement pattern. This case was

emphasised by the degrees of freedom problem. With the presence of biomechanical

(Bernstein, 1966) and neurological (Hennig et al., 2018; Pham et al., 2020) redundancies,

a continuous barrage of sensory inputs, and ever-changing working environments, motor

control derived purely from cortical processing would simply be too slow for smooth,

robust, and responsive movement (Andrew, 2016). When researching functional sensori-

motor activity after traumatic injury to the spinal cord, it is natural to question how the

brain and spinal cord bidirectionally interact with the PNS. The discussion surrounding

biological sensorimotor control systems remains contentious, with many iterations and

new hypotheses discussed across a multidisciplinary lens (Kandel et al., 2000; Merel

et al., 2019; Gerasimenko et al., 2017; Latash et al., 2010; Dhawale et al., 2017; Wolpert

et al., 1995; Shenoy et al., 2013; Escobar-Juárez et al., 2016; Orban De Xivry and Ethier,

2008).

So far, we discussed reflexes as a mechanism for reducing cortical computational

load by accounting for movement smoothening, rapid stereotyped protective responses,
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and resistance against perturbation (Sherrington, 1906, 1910). However, a more elegant

proposal for solving sensorimotor neural resourcing may be the motor primitive model.

Motor primitives off-load cortical sensorimotor processing tasks to smaller modular units

that locally regulate and structure neural activity (Bizzi et al., 1991; Giszter and Hart,

2013; Giszter, 2015; Hart and Giszter, 2010; Flash and Hochner, 2005; Grau, 2014;

Edgerton et al., 2004; Mussa-Ivaldi and Bizzi, 2000).

Motor primitive hypotheses are early in development and are accepted as a possi-

ble explanation for primitive, rhythmic motor behaviours such as walking, swimming,

and standing. However, a model based solely on reflexes or synergies contradicts the

Bernsteinean perspective of movement indeterminacy (Whiting and Bernshtein, 1984).

Complex and practised movements such as playing a musical instrument, dancing, or

ballistic motions cannot be completely predicted in a synergy-only hypothesis. Perhaps

stereotyped, feedforward movements can only be performed in an experience-specific

context, where ensembles of afferent and endogenous activity integrate to converge on

the neural map that becomes a movement. The structure and mechanisms of the CPG

are important considerations when researching the clinical impact of neuromodulation

on SCI.

Pearson (1993) identifies three potential core roles of afferent feedback in the lo-

comotor CPG. (1) The reinforcement of CPG activity, particularly during load-bearing

activity. (2) Timing of motor output with particular regard to displacement and force. (3)

Facilitation of phase transition. Spinal animals undergoing step-training on a treadmill

showcase the ability of the lumbosacral spinal cord to combine multisensory inputs,

adapt, and output locomotion (Roy et al., 2012). Coordinated and adaptable locomotion

indicates the significant role of Golgi tendon organs, cutaneous, and muscle spindle

afferent input (Van De Crommert et al., 1998; Rossignol et al., 2006; Rossignol and

Frigon, 2011).
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Figure 2.8: Illustration of the existing idea behind the locomotor CPG in the lumbar
spinal segment (L3-L4). The CPG produces the alternating activity between flexors
(F) and extensors (E), coordinating in a bilateral fashion. Some interneurons transmit
directly to MNs while receiving afferent and efferent activity. Several neurotransmitters
have been found to transmit in the CPG including, norepinephrine (NE), serotonin (5-HT),
glutamate (GLU), GABA, or acetylcholine (ACh). Sensory afferents project bidirectionally
along the rostrocaudal axis. With permissions from Rossignol and Frigon (2011).
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Sensory inputs from skin mechanoreceptors of the foot are involved in foot positioning

(Bouyer and Rossignol, 2003; Barbeau and Rossignol, 1987; Belanger et al., 1996),

locomotor expression (Abraham et al., 1985; Duysens, 1977; Forssberg et al., 1980a,

1975; Labella et al., 1992), and corrections (Bouyer and Rossignol, 2003; Duysens, 1977;

Dietz, 2002; Forssberg, 1979; Park et al., 2019; Choi et al., 2016). Cutaneous inputs also

have gain-modulating properties during the postural correction in locomotion (Bolton

and Misiaszek, 2009; Mouchnino and Blouin, 2013) and have some involvement in the

reinforcement of extensor activity (Duysens and Pearson, 1976; Guertin et al., 1995).

Muscle stretch (Group II) and stretch-velocity (Group Ia) proprioceptive afferent

information, particularly in muscles of the hip joint, are important for locomotor initi-

ation and phase adjustments (Sherrington, 1910; Kriellaars et al., 1994; Grillner and

Rossignol, 1978; Andersson et al., 1978; Andersson and Grillner, 1981; Dietz, 2002).

Dense quadriceps and sartorius group II afferents assist with step frequency, locomotion

entrainment, and phase-transition sensitivity (Edgley and Jankowska, 1987; Andersson

and Grillner, 1981; Pearson, 2008; Akazawa et al., 1982). A significant phasic reflex

modulation in muscle stretch pathways maintains limb stability and force production

(Zehr and Stein, 1999; Brooke et al., 1997).

Force input (Group Ib) is an essential sensory signal to locomotor pattern and standing

(Zehr and Stein, 1999; Conway et al., 1987; Duysens and Pearson, 1980; Dietz, 2002).

More specifically, sensing extensor force load has been proposed as a crucial input for

locomotion entrainment (Duysens and Pearson, 1980; Pearson et al., 1992) and resetting

the locomotion cycle (Conway et al., 1987; Gossard et al., 1994). A higher number of active

INs and MNs were detected after load-bearing step training, suggesting load activity as

a strong promoter of locomotor circuitry recruitment (Duru et al., 2015; Courtine et al.,

2009).

Golgi tendon organs discharge maximally during stance and are positively corre-
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lated to force output (Prochazka et al., 1989; Donelan and Pearson, 2004; Pearson and

Collins, 1993). Concurrently, the extensor Ia and Ib afferent signals shape the amplitude,

duration, and timing of ipsilateral extensor activity (Guertin et al., 1995). The locomo-

tor spinal network uses sense-driven ipsilateral activation to maintain a high level of

integration and adaptability (Forssberg et al., 1980b; Martinez et al., 2012).

The CPG’s precise architecture and evolutionary function remain contentious (Rancic

and Gosgnach, 2021; Grillner, 2021). However, the isolated spinal cord clearly contains

complex circuitry that integrates incoming sensory information to produce stereotyped

motor output.

2.4.2 The Smart Spinal Cord

Research across species has documented the spinal cord’s capacity to integrate complex

sensory inputs and produce adaptable, coordinated motor responses (Stuart and Hult-

born, 2008; Hodgson et al., 1994; Edgerton et al., 1997b, 2001b, 2004, 2008; Edgerton

and Roy, 2009a; Gerasimenko et al., 2016a, 2017; Wolpaw and Tennissen, 2001). Sensory

integration and spinal IN pathways shape task-specific synaptic reorganisation during

locomotor training (Kobayakawa et al., 2019). Thus, sensory integration in spinal path-

ways has a reinforcement role during locomotor recovery. While it is intuitive to consider

trans-lesional axonal regrowth responsible for locomotion recovery in the spinal cord,

results from retrograde labelling show no regeneration (Tillakaratne et al., 2010).

Other explanations for locomotor recovery through treadmill training after SCI

have also been proposed. Such explanations include improved muscle strength, spon-

taneous recovery, and non-specific increased excitability (Rossignol and Frigon, 2011;

Van De Crommert et al., 1998; Harnie et al., 2019). However, these effects improve

functional output, spinal learning and adaptable sensory-driven spinal neural circuitry

drive recovery.
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2.4.2.1 Proprioceptive and Cutaneous Afferent Inputs

The spinal cord, receiving suitable excitation and step-training, can explore and rein-

force specific efficacious sensory afferent integration pathways (Ichiyama et al., 2008a).

Locomotor training with neuromodulation therapy enables spinal circuits to use sensory

information to flexibly compute new motor and postural activity solutions without corti-

cal input (Gerasimenko et al., 2017). Sensory information is sufficient to guide speed,

direction adaptation and strength of load-bearing connections (Ichiyama et al., 2005;

Minassian et al., 2013; Musienko et al., 2013). Moreover, variability during task-specific

training can complement synchronous activation of spinal circuits via sensory affer-

ent inputs (Shah et al., 2012; Rossignol and Drew, 1986; Shah et al., 2012; Ichiyama

et al., 2008a; Edgerton et al., 2001a). Not providing sufficient variability can reduce

coordination and range of motion (Edgerton and Roy, 2009b).

However, a lack of variation during training can disrupt the stereotyped progression

of activation in locomotor CPGs (Ziegler et al., 2010). Even introducing environmental

and mechanical perturbations after complete SCI, the spinal cord adapts to ensure

smooth and uninterrupted locomotion (de Leon et al., 2002; Edgerton et al., 2001a;

Timoszyk et al., 2002; Zhong et al., 2012; Chopin and Buerger, 1976).

Work in the upper limb has suggested that traditional, intrinsic spinal expression

of CPG does not appear necessary for sub-threshold electrical stimulation to facilitate

learning (Gad et al., 2018; Kumru et al., 2021). It is hypothesised that the spinal cord can

compute errors from the planned output, adapt local circuitry through plastic changes,

and restore coordinated motor function (Gerasimenko et al., 2017). The spinal circuitry

achieves this by accommodating intrinsic variability and guiding adaptive mechanisms

towards specialised pathways (Edgerton and Roy, 2009b; Courtine et al., 2009; Ichiyama

et al., 2008a; Edgerton et al., 2008).

Edgerton and Roy (2012) argues that the CNS takes a ‘snapshot’ of cutaneous and
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proprioceptive sensory information, then ‘decides’ what neurons to excite and inhibit as

appropriate. Similar to that of an image being captured by the eye rather than processed

by a singular pixel. In a more granular lens, the recent review (Edgerton and Gad, 2022)

suggests sensory ensembles as input to select phase-specific combinations of interneurons

to activate the next set of MNs to continue the stepping cycle. These state-dependent

sensorimotor pathways have also been discussed in cortical dynamic representations as

well (Shenoy et al., 2013; Hayashi et al., 2020).

Across species, including humans, body weight loading modulates motor pool ac-

tivity (De Guzman et al., 1991; Edgerton et al., 1991; Wolpaw and Tennissen, 2001;

Conway et al., 1987; de Leon et al., 1999). It is not the unique properties of CPG net-

works that generate rhythmicity and coordinated motor output but the dynamics of

sensory ensembles. Like animal models, humans express a sensory-driven phasic re-

sponse through the step-cycle, especially in the extensors (Courtine et al., 2009; Conway

et al., 1987; Grillner and Dubuc, 1988; Forssberg et al., 1980a). Moreover, load-bearing

and gravity-related sensory information reduces excitability or increases inhibition of

spinal locomotor circuits (Gerasimenko et al., 2015b). These phasic modulations are

hypothesised to be driven by presynaptic inhibition circuitry, gating further extensor

activity whilst initiating flexor activation (Fink et al., 2014; Willis, 2006; Eccles et al.,

1962).

Inhibitory neurons have a dominant effect in the lumbosacral spinal cord, hindering

the propagation of sensory input towards locomotion entrainment after SCI (Edgerton

et al., 2008). These inhibitory neurons may become dominant after reduced descending

activity. Strong excitatory neurons require strong inhibitory inputs, while only small

excitation is required for inhibitory neurons (Lee et al., 2019). It seems natural to address

the inhibitory imbalance after injury. Notably, neuromodulation’s role in presynaptic

inhibition has yet to be thoroughly investigated (Lalonde and Bui, 2021).
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Interestingly, γ-MNs undergo more extensive synaptic plasticity than α-MNs after

spinal transection (Al’joboori et al., 2020). Indicating that γ-MN pathways significantly

influence spinal learning and locomotor expression. The gating of sensory inflow has a

considerable effect on integrating sensory information and generating smooth, controlled

movements.

Flexible sensory-driven adaptations to continue stereotyped behaviour are thought

to be shared across the CNS (Makino et al., 2016). Dynamical system representation,

the representation of a system by first-order differential equations (Shenoy et al., 2013),

and population reduction, pruning vast neural populations for a task, (Courtine et al.,

2009; Ichiyama et al., 2008a) maybe a common feature in learning-driven changes in

population encoding, reducing overlaps in space and time representation (Makino et al.,

2016). After SCI, the delivery of timely sensory input to locomotor circuits becomes much

more important. However, some descending information often bypasses the lesion and

has some effect on spinal circuit modulation (Gill et al., 2020b).

2.4.2.2 Descending Command and Sensory Integration in the Spinal Cord

Spinal INs express pre-movement delay activity in the intact spinal cord, resembling

supraspinal neuronal activity (Prut and Fetz, 1999). Thus, supraspinal commands may

work to prepare motor actions, including the modulation of afferent information from

the periphery to spinal and supraspinal levels (Cordo and Nashner, 1982). Alternatively,

movement preparation may be embedded into the sensorimotor processes, co-occurring

over distributed neural regions (Edgerton and Roy, 2012). This section briefly discusses

the key research in uncovering the integration of descending volitional and ascending

sensory activity.

Overlapping descending commands and sensory input synergise to elicit motor re-

sponses greater than the sum of either input (Gerasimenko et al., 2016a; Militskova

et al., 2020; Mahrous et al., 2019). By increasing the excitability of the lumbar spinal
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cord, simply imagining or observing locomotion activity can initiate rhythmic muscle

activation in healthy humans (Gerasimenko et al., 2018). These effects are so strong

that intentional participation with body-weight support can activate lower extremity

muscles in chronic complete SCI human subjects receiving ES (Gill et al., 2020b). To

promote stronger connections between cortical and spinal neurons, timed Transcranial

Magnetic Stimulation (TMS) and PNS pulses enhance bidirectional neural activity after

SCI, improving hand and lower limb function (Bunday and Perez, 2012; Bunday et al.,

2018; Urbin et al., 2017; Jo and Perez, 2020). The paired TMS and PNS protocol promotes

passive Hebbian-like activity by targeting weakened corticospinal connections after SCI

(Benavides et al., 2020; Jo and Perez, 2019; Christiansen and Perez, 2018; Federico and

Perez, 2017; Baker and Perez, 2017).

The role of sensory feedback heightens after SCI, most likely from loss of supraspinal

structures (Rossignol and Frigon, 2011). Jiang et al. (2016) found competitive interactions

between proprioceptive and corticospinal axons that participate in the organisation of

mature corticospinal axons and spinal motor circuits. By eliminating descending cortical

input, the spinal circuit increases corticospinal contacts. Conversely, eliminating primary

afferent fibre input results in a greater number of afferent contacts with spinal neurons.

Competitive interactions do not mean one source becomes more important than the

other; neurons utilise whatever reliable inputs they receive.

Ascending and descending information synergistically modulate the spinal circuits at

a cellular level. Further work is required to track these changes before, during, and after

movement execution. In summary, findings across animal and human studies support

the hypothesis of the electrically activated neural pathways elevating the excitability of

spinal circuitry to enable activation by supraspinal and sensory inputs.
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2.4.3 Activity Dependent Recovery

Afferent information can robustly reorganise functional connections among spinal sen-

sorimotor networks and refine them to specific acute and chronic pathways (Edgerton

and Roy, 2009a). Researching approaches aimed at maximising function after SCI and

uncovering the mechanisms of activity-dependent plasticity within the spinal cord is

a logical starting point for understanding the acquisition and maintenance of skilled

behaviour (Wolpaw and Tennissen, 2001; Edgerton et al., 2001a, 2008, 1997a; Edgerton

and Roy, 2009b).

The chronic transected spinal cord can generate full weight-bearing hindlimb stepping

or standing by exposing the spinal circuits to the appropriate sensory information

(de Leon et al., 1999; Dietz and Muller, 2004). However, cats trained to stand had

poor locomotor capability and vice versa (De Leon et al., 1998a,b). Adaptations include

modifications in the glycinergic pathways that provide inhibition. (Edgerton et al., 2001a).

Inhibitory circuits, mediated mainly through glycine and GABA, modulated to recover

locomotion (Caron et al., 2020; Koch et al., 2017). Moreover, these circuits are present

even if the animal has not been trained to step. The ability of spinal circuitry to interpret

sensory input for locomotor entrainment is partly mediated by glycinergic inhibition

(de Leon et al., 2001). Neuromodulation techniques have been shown to excite muscle

groups and induce locomotion (Wenger et al., 2016). It may seem desirable to artificially

control muscles to express some activity; however, neuromodulation therapies must

work harmoniously with sensory inputs (Edgerton et al., 2008; Formento et al., 2018) to

recover and train remaining pathways. Notably, returning polysynaptic sensory-driven

pathways to motorneurons appear to coincide with the return of locomotor function in

spinal rats (Lavrov et al., 2008a; Rattay et al., 2000; Murg et al., 2000).

Poor stepping performance was correlated with spinal rats that did not exhibit polysy-

naptic activation from rostral lumbosacral networks (Gerasimenko et al., 2019). Addi-
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tionally, electrically stimulated bilateral hindlimb locomotor activity required at least

5% body weight support during treadmill stepping, suggesting exogenous stimulation

alone was insufficient to induce hindlimb locomotion (Ichiyama et al., 2005). However, by

combining electrical stimulation with incoming sensory inputs in concert, chronically

spinal rats may sufficiently integrate sensory information and output functional motor

expression of coordinated locomotion.

Animal models with affected proprioceptive afferents appear incapable of the sensory-

driven adaptation (Takeoka et al., 2014; Takeoka and Arber, 2019; Akay et al., 2014).

Receiving appropriate sensory feedback appears critical to locomotor recovery. Combining

ensemble sensory information and intrinsic activity allows the spinal cord to readily

adjust parameters such as speed and step direction (Musienko et al., 2013), weight

loading (Gerasimenko et al., 2019), novel perturbations (Ziegler et al., 2010), and force

fields (Timoszyk et al., 2002). Thus, the spinal cord can solve problems for locomotion in

real time based on continual incoming peripheral information.

2.5 Neuromodulation of the Injured Spinal Cord

Several extensive reviews have been written on the effect of neuromodulation and

sensorimotor recovery following SCI (Calvert et al., 2019; Megia Garcia et al., 2020;

Hofer and Schwab, 2019; Zheng et al., 2020; Edgerton and Roy, 2012; van den Brand

et al., 2015; Christiansen and Perez, 2018; Cote et al., 2017; Minassian et al., 2017;

Courtine and Sofroniew, 2019; Gerasimenko et al., 2008; Roy et al., 2012; Taccola et al.,

2018; Young, 2015; Pizzolato et al., 2021). Each of these papers discusses key factors of

neuromodulation in sensorimotor recovery. This section briefly summarises strategies

and relationships between neuromodulation and sensorimotor recovery.

It has long been established that neuromodulatory intervention can improve func-

tional recovery in SCI animal and human models (van den Brand et al., 2015; Roy et al.,
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2012; Hofer and Schwab, 2019; Gerasimenko et al., 2008; Taccola et al., 2018). However,

there is a disconnect between the research and the clinical domain. While research

suggests neuromodulation, in addition to activity-dependent therapy, outperforms tradi-

tional rehabilitation protocols, many scientists discuss the need for further validation

and clinical trials testing the efficacy and safety of neuromodulatory techniques (Calvert

et al., 2019; Megia Garcia et al., 2020; Zheng et al., 2020; Cote et al., 2017; Hofer and

Schwab, 2019). More specifically, there is a need for clinical studies focusing on clinical

impact, efficacy of electrical stimulation protocols. These studies, paired with animal

studies and neurological biomarker exploration, will be critical in further understanding

functional activity recovery after SCI (Seanez and Capogrosso, 2021).

The mechanisms of action and tools to track neuromodulation therapy progress are

still in contention. Electrical stimulation has been shown to enhance neuroregeneration,

regulate neural networks, and build muscle strength and voluntary movement after SCI

(Calvert et al., 2019; Megia Garcia et al., 2020; Zheng et al., 2020). Clinical adoption of

neuromodulation requires in-depth understanding of the synergy between CPG, sensory

inputs, activity-dependent plasticity, and modulation techniques (Taccola et al., 2018;

Minassian et al., 2017, 2016; Minassian and Hofstoetter, 2016).

The transition towards clinical adoption will require a robust method to measure the

causal effects of neuromodulation towards sensorimotor recovery. Researching the effect

of neuromodulation and developing new tools to measure the interactions between ther-

apy and spinal cord circuity will be critical to developing safe and efficacious therapies.

Several scientists encourage the extension of modern engineering and the neuroscientific

findings of sensorimotor control in the spinal cord to develop new therapies (Pizzolato

et al., 2021; Zheng et al., 2020; Edgerton and Roy, 2012; Courtine and Sofroniew, 2019).

Sensorimotor recovery aims to leverage neuromodulation to promote a desired func-

tion. Adjusting the neural environment to a functional state has enabled voluntary
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activation of sub-lesional networks (Gill et al., 2020b; Sayenko et al., 2019). Histori-

cally, this has been accomplished through electrical or pharmacological interventions

(Courtine and Sofroniew, 2019). This section discusses the history and advancements of

neuromodulation towards the recovery of locomotion post-spinal injury.

2.5.1 Electrical Stimulation

Initial work using Electrical Stimulation (ES) on decerebrate cats (Brown, 1911; Grillner

and Zangger, 1975; Grillner and Rossignol, 1978; Iwahara et al., 1992) kickstarted

the investigation of the spinal locomotor CPG. Initial CPG studies induced a ‘fictive’

locomotion pattern by stimulating the lumbosacral spinal cord above the motor threshold

at a specific frequency. Fictive locomotion could only be achieved by accurately positioning

electrodes and selecting appropriate stimulation configurations (Minassian et al., 2007;

de Leon et al., 1999). Uncertainty regarding locomotor CPG activation via electrical

stimulation continues to persist (Calvert et al., 2019; Minassian et al., 2017).

An obvious step is to question if similar effects can be elicited in humans. ES was

initially applied to the epidural space of the spinal cord to inhibit ascending nociceptive

signals travelling along the large dorsal column fibres (Mekhail et al., 2018; Buffart et al.,

2009). By adapting pain stimulation protocols to a different frequency and delivered

charge, ES reduced spasticity in SCI subjects (Dimitrijevic et al., 1986; Pinter et al.,

2000). Further tuning stimulation parameters initiated stereotyped rhythmic or tonic

activity in paraplegic humans (Dimitrijevic et al., 1998). Human research studies began

to pivot towards recovering voluntary locomotor activity after SCI. By combining activity-

dependent rehabilitation and epidural stimulation, adults with chronic motor complete

SCI recovered assisted standing, voluntary leg movements, and locomotor-like activation

(Harkema et al., 2011; Angeli et al., 2014). With these new techniques available, research

efforts into other sensorimotor activities proliferated; see table 2.6 and table 2.7. SCI
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Table 2.6: A summary of ES parameters and applicable protocols along the spinal cord
and relevant frequencies.

Reference Function Location Frequency

Minassian et al. (2004)
Jilge et al. (2004)
Dimitrijevic et al. (1998)

Tonic extension T10 – L1 5 – 15Hz

Minassian et al. (2004)
Dimitrijevic et al. (1998) Rhythmic movement T10 – L1 25 – 60Hz

Greiner et al. (2021) Reach and pull C5 – T1 10, 20, 50, 100Hz

Benavides et al. (2020) Upper limb function C5 – C6 30Hz and 5kHz car-
rier

Gad et al. (2018) Grip strength C3 – C7 30Hz

Lu et al. (2016) Grip control C5 – T1 5, 10, 20, 30Hz

McPherson et al. (2015) Reaching C6 – C8 <100Hz

Kreydin et al. (2020)
Herrity et al. (2018) Overactive bladder

T11 – L1
L1 – S1 30Hz

Gill et al. (2020a) Trunk stability T11 – L1 20 – 25Hz

Rath et al. (2018) Trunk stability T11 – L1 30Hz@T11, 15Hz@L1,
10kHz carrier

DiMarco et al. (2014) Coughing T9 – T11 50Hz

human subjects can leverage the benefits of ES towards stepping and standing activity

(Harkema et al., 2011; Angeli et al., 2014). Some subjects recover enough control to stand

overground while bearing body weight (Rejc et al., 2015; Gad et al., 2017) or execute

voluntary activation without ES facilitation (Rejc et al., 2017a).

Task-specific functional recovery requires unique stimulation protocols for each

activity (table 2.6). For example, even in the same stimulation region, the same standing

frequency does not appear to facilitate recovery for stepping (Minassian et al., 2004). The
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vast stimulation options and the requirement for patient-specific optimisation present

an interesting issue. The modulatory effect of spinal cord stimulation is significantly

affected by the minor changes in stimulation parameters and electrode location (Angeli

et al., 2014; Gad et al., 2013a; Alam et al., 2015; Wagner et al., 2018). A daunting task of

subject-specific fine-tuning emerges when provided with the multidimensional challenge

of stimulating the nervous system of activity-dependent recovery (Gad et al., 2013a;

Desautels et al., 2015; Sui et al., 2017). Furthering engineering advancements will reduce

the fatigue and burden on the clinician and subject.

Stimulation timing must also be considered when applying an electric field to the

epidural space of the spinal cord for effective motor recovery. Some results suggest

spatiotemporally triggered stimulation significantly improved motor recovery compared

to a continual stimulation waveform (Hsieh and Giszter, 2011). Similarly, continual

assistance via robotic manipulation yielded poorer recovery when compared to assist-as-

needed protocols (Mounis et al., 2017; Ziegler et al., 2010). Notably, timing the delivery

of epidural stimuli according to the onset of locomotion signalling in the brain restored

weight-bearing locomotion, outperforming continuous stimulation (Capogrosso et al.,

2016).

2.5.1.1 Proposed Mechanisms

While these observations are important to decipher the role of ES of the spinal cord in

motor function recovery, the exact mechanisms are still in question. Taccola et al. (2018)

proposed a hypothesis where ES does not induce movement via dorsal root activation

but enables movement. Enabled movement can be understood as bringing the locomotor

networks to a more excitable state such that appropriate sensory inputs can initiate

coordinated movement. It is important to recognise that sensory information significantly

influences neural plasticity after SCI (Edgerton et al., 2008). Numerous studies provide

evidence of proprioceptive information’s significant influence on circuit reorganisation
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during recovery (Takeoka and Arber, 2019; Takeoka et al., 2014; Takeoka, 2020; Edgerton

et al., 2008). Interrupting these signals may fail to recover locomotive function (Formento

et al., 2018).

Electrophysiological work suggests that spinal cord electrical stimulation excites

sensory afferent dorsal roots and their axonal branches (Murg et al., 2000; Jilge et al.,

2004; Courtine et al., 2009; Hofstoetter et al., 2018). Furthermore, computational studies

show large diameter, low threshold dorsal root fibres were more readily excited than

ventral roots (Rattay et al., 2000; Minassian et al., 2004). Human studies suggest ES

increases the baseline level of excitability in CPG locomotor neurons of the spinal cord,

thus reducing the threshold for small descending or afferent signals to activate CPG

mechanics (Angeli et al., 2014; Danner et al., 2015). Similar to hypotheses suggested in

(Edgerton et al., 1997a; de Leon et al., 1999; Tillakaratne et al., 2002). Other research

suggests interleaved stimulation targets, though it is unclear what percentage of the

observed modulation is attributable to neural structures outside dorsal roots (Cheng

et al., 2019; Lavrov et al., 2008b; Taccola et al., 2018). The predominant view in literature

maintains that the electrical activation of locomotor circuits is achieved via dorsal root

pathways.

The synergistic effects between neuromodulation and incoming sensory ensembles

are key to understanding the mechanisms of neurorehabilitation (Formento et al., 2018;

Gad et al., 2013c). Increasing the net excitability of the locomotor network allows weak

endogenous stimuli (e.g. afferents) to generate rhythmic patterns (Gad et al., 2013c;

Etlin et al., 2010). Formento et al. (2018) designed a lower threshold stimulation strategy

that employed lower amplitude but higher frequency parameters. Upon stimulation,

the electrical field only recruited a limited number of proprioceptive afferents and al-

lowed a summation of excitatory postsynaptic potentials (EPSPs) in motoneurons, thus

increasing overall excitation. However, all nonrecruited afferents were still able to de-
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liver sensory information. This allows the computation of necessary proprioceptive and

mechanosensory information in central neural networks and greater spatial selectivity

and modulation of stimulation bursts without increasing the amplitude. It would appear

beneficial for sub-threshold electrical neurostimulation for more natural sensory integra-

tion. Interestingly, a recent paper analysing computational models of neural tissue shows

that endogenous fields (of internal origin) can significantly affect neural oscillation by

applying only weak electric fields (Cakan and Obermayer, 2020).

Despite the gaps in understanding, researchers have been able to leverage these

proposed sites of activation to develop stimulation protocols for humans with SCI,

resulting in the recovery of voluntary sensorimotor control (Wagner et al., 2018; Alam

et al., 2020; Gad et al., 2018; Gill et al., 2018; Gad et al., 2017). There have been many

advancements in the clinical application of ES. However, the gaps in understanding the

mechanisms of action, especially understanding how endogenous and exogenous signals

coordinate in concert to produce elevated functional states, remain unsolved.

2.5.2 Pharmacology

Many studies modulate the activity of neurotransmitter receptor activity for neurore-

habilitation of SCI via pharmacological agents in the rat (Fong et al., 2005; Gad et al.,

2013c, 2015; Duru et al., 2015), cat (reviewed in (Rossignol et al., 2001)), monkey (Cour-

tine et al., 2005, 2007b, 2008, 2009; Capogrosso et al., 2016; Barra et al., 2018), and

human subjects (Fung et al., 1990; Radhakrishna et al., 2017; Rabchevsky et al., 2011)

(reviewed in (Domingo et al., 2012) and section 4 of (Barbeau et al., 1999)). Numerous

neurotransmitter pathways have been identified to influence spinal locomotor pattern

generators differently. These include GABA, glycine, glutamate, serotonin, dopamine,

and noradrenaline (Minassian et al., 2017; Barbeau et al., 1999; Barbeau and Rossig-

nol, 1991). Pharmacologically modulating these pathways has been proposed to enable
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weight-bearing stepping post-SCI for a broader range of task-specific training (de Leon

et al., 2001; Pizzolato et al., 2021). The section below focuses on pharmacological neuro-

modulation mechanisms and specific targets to facilitate neurological recovery in SCI.

One important takeaway is the recognition of multiple neurotransmitter pathways af-

fecting the behaviour of locomotion expression across multiple species (Barbeau et al.,

1999; Minassian et al., 2017; Taccola et al., 2018).

2.5.2.1 GABA and Glycine

Reducing the dominant inhibition in locomotor networks after chronic SCI facilitates

spinal learning (de Leon et al., 1999; Lalonde and Bui, 2021). Stepping ability in cats

unresponsive to step-training or only received stand-training was significantly improved

by reducing glycinergic activity (de Leon et al., 1999; Edgerton et al., 2004). Results

suggest glycinergic pathways as a dominant inhibitor of locomotion activity (fig. 2.9).

Reducing the likelihood of glycine activation enabled the activation of locomotion-relevant

circuitry.

Improvement of stepping may occur by blocking abnormally high levels of inhibition

resulting from complete SCI. Tillakaratne et al. (2002) presented further evidence of

the role of inhibition in stepping where the GABA synthetic enzyme, GAD67, in the

spinal cord was higher in non-trained spinal cats than in step-trained spinal cats. These

were observed within as little as one week of training. Cellular mapping of GAD67

also suggests that the spinal cord of both stand and non-step-trained spinal cats have

selectively higher inhibitory potential than that of step-trained spinal cats. Similarly,

the stepping ability of poorly stepping spinal cats can be dramatically improved by

the administration of bicuculline, a GABAA receptor antagonist. Reduced inhibition in

GABAergic systems may facilitate locomotor spinal learning. GABA-mediated actions

in the spinal cord include pre-synaptic inhibition of primary afferent fibres and post-

synaptic inhibition of interneurons, sensory neurons, and motoneurons (Alvarez et al.,
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1996).

Figure 2.9: Effect of step training on expressed GABAergic interneurons of spinal cats
(Tillakaratne et al., 2002). Step-trained spinal cats saw a reduction in GABAergic activity
compared to non-trained and control groups. Reduced inhibition was correlated with
stepping performance. Copyright 2002 Society for Neuroscience.

2.5.2.2 Serotonin

Serotonergic pathways originate from the brain stem, commonly projecting to lamina II

and motoneurons in the ventral horn. Serotonin project from brainstem and midbrain

inputs (Feraboli-Lohnherr et al., 1999, 1997) and descend via two parallel pathways

(Hornung, 2003). The dorsolateral path terminates in the dorsal horn, while ventromedial

tracks terminate in both the intermediate and ventral horn (Hornung, 2003). Serotonin

innervated neurons appear critical to the propagation of the locomotor CPG (Jacobs and

Fornal, 1993; Kathe et al., 2022).

Brainstem-derived 5-HT2 receptors maintain motoneuron excitability by regulating

persistent calcium currents (Hultborn et al., 2003; Jacobs et al., 2002; Perrier, 2005;

Hounsgaard et al., 1988). Analysis of these 5-HT2 receptors post spinal hemisection

revealed transformations in receptor activity to facilitate persistent inward currents

without significant 5-HT binding, thus allowing motoneurons to generate sustained
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muscle contractions and recovery motor functions like locomotion (Murray et al., 2010).

Combining robotic assistance with quipazine, a serotonin agonist, resulted in significant

recovery with longer and stronger stance phases (Fong et al., 2005; Antri et al., 2003).

Introducing 5-HT inverse agonists impaired locomotion, suggesting recovery of 5-HT

activity is crucial for spontaneous recovery of hindlimb motor function after partial SCI.

Activating serotonin receptors in the locomotor neural circuits induce rhythmic

activity in paralysed hindlimbs of transected rats (Landry et al., 2006; Fouad et al.,

2010). During treadmill locomotion, increased serotonergic activity evoked greater step

coordination and EMG burst amplitude (Feraboli-Lohnherr et al., 1999; Kim et al., 2001;

Gackière and Vinay, 2014). Notably, Fong et al. (2005) discovered that sub-threshold

dosage facilitates stepping rather than directly activating stepping networks.

During voluntary locomotion function testing in adult rats, administering serotonin

antagonists left animals in a paralysis-like state (Cabaj et al., 2017). If 5-HT7 receptors

are blocked, flexor and extensor INs receive disrupted afferent feedback, potentially

attributing to paralysed state (Gerasimenko et al., 2009). Similar results studying locomo-

tor patterns and cutaneous reflex in flexor groups have been reported, specifically greater

weight support and increased step length with increased cutaneous reflex excitability

(Barbeau and Rossignol, 1990; Gackière and Vinay, 2014). These results suggest that

serotonergic drugs mediate increased excitability of spinal neurons and are different

from noradrenergic agonists (i.e. clonidine), indicating a subclass of neuronal influence

in locomotor function and reflex activity (Gackière and Vinay, 2014).

Serotonin effects in the injured spinal cord are widespread and have been targeted as

a method for recovery of locomotion (Ghosh and Pearse, 2014; Cabaj et al., 2017; Courtine

et al., 2009; Husch et al., 2012). Given the presence of tonic descending serotonin input

and its pivotal role in shaping the locomotor circuitry, returning serotonergic input to

spinal circuits may be an intuitive way to restore the locomotion in the injured spinal
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cord (Schmidt and Jordan, 2000; Jean-Francois et al., 2013; Gackière and Vinay, 2014;

Capelli et al., 2017).

Figure 2.10: Active neurons identified with c-FOS shortly after continuous stepping with
synergistic serotonin agonists and ES on rodents (Courtine et al., 2009). Nontrained
rodents after injury had a greater number of FOS-positive cells than trained and unin-
jured groups.

Combinatorial interventions induce unique functional states correlated with distinct

locomotion patterns and monosynaptic excitability in spinal rats, see fig. 2.10, (Han et al.,

2008; Courtine et al., 2005; Gerasimenko et al., 2007). Moreover, introducing ES and

N-methyl-D-aspartate (NMDA) (Van Den Brand et al., 2012) and selective inhibitory

presynaptic blockers (Taccola et al., 2020) in conjunction with treadmill training achieved

intraspinal plasticity, bypassing lesions and restoring locomotor function after paralysis.

Synergistic electropharmacological interventions may enable specific modulation of

specific spinal neural circuit components that differentially affect locomotor expression.

However, subject-specific responses and longitudinal adaptations evoked from these

interventions remain elusive.
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With rich literature on animal models, it was natural to transfer towards human

models and apply similar methodologies to test efficacy and safety. SCI human subjects

can leverage the benefits of ES towards stepping and standing activity (Harkema et al.,

2011; Angeli et al., 2014). Some subjects recover enough control to stand overground

while bearing body weight (Rejc et al., 2015). Other subjects present voluntary activation

improvements without ES facilitation (Rejc et al., 2017a). However, similar to non-human

animal models (Hodgson et al., 1994), human spinal cord neural circuits are task-specific

in their recovery after SCI (Rejc et al., 2017b). Focusing on a singular task does not

effectively transfer functional capabilities to another task (De Leon et al., 1998b; Rejc

et al., 2017b; De Leon et al., 1998a; Edgerton et al., 1997a; Gerasimenko et al., 2015a). A

summary of human studies for different functions is provided in table 2.7. Studies were

screened for (1) human subjects with SCI, (2) ES or pharmacological neuromodulation,

and (3) methods to include a targetted sensorimotor function and assessment of response.

It is still unclear how to ascertain the optimal dosage to reduce side effects while

maximising sensorimotor recovery gains (Radhakrishna et al., 2017).

In summary, neuromodulatory inputs to the injured spinal cord have been shown to

work in concert and facilitate greater recovery than independent therapies alone. There

is a knowledge gap in the extent to which these synergistic effects work, the physiological

processes behind these therapies, and their role in neural plasticity. Careful considera-

tion must be given before assuming heightened excitation and increased likelihood of

neuroplasticity leads to positive change (Maier et al., 2009).

Although current methods have improved the quality of life for SCI patients, the

mechanisms, reliable monitoring, and prediction of subject suitability still need to be

determined. Comparing short- and long-term clinical outcomes remains challenging

(Rahman et al., 2022). To close this gap, I suggest developing relevant and specific tools

to monitor the ongoing effects of neuromodulation.
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Table 2.7: A summary of neuromodulation studies performed on human subjects. Studies were filtered by human subject and
different applications of neuromodulation therapies for subjects with SCI.

Reference Function AIS Neurotherapy

Harkema et al. (2011) Stepping and standing A ES
Angeli et al. (2014) Voluntary movement A and B ES
Rejc et al. (2017a) Voluntary movement B ES
Rejc et al. (2015) Standing A and B ES
Rejc et al. (2017b) Standing A and B ES
Gerasimenko et al. (2015a) Stepping B ES
Angeli et al. (2018) Stepping A, B, and C ES
Gill et al. (2018) Stepping A ES
Wagner et al. (2018) Stepping C and D ES
Gad et al. (2017) Stepping A Buspirone + ES
Gill et al. (2020b) Stepping A ES
Sayenko et al. (2019) Standing A, B, and C ES
Lorach et al. (2023) Stepping B ES
Freyvert et al. (2018) Hand function B Buspirone + ES
Gad et al. (2018) Hand function B and C ES
Lu et al. (2016) Hand function B ES
Inanici et al. (2018) Hand and arm function B and C ES
Inanici et al. (2021) Hand and arm function B, C, and D ES
Kreydin et al. (2020) Bladder sensorimotor function A and C ES
Gad et al. (2020) Respiratory function A ES
Darrow et al. (2019) Autonomic function A and B ES
Rath et al. (2018) Trunk stability A and C ES
DiMarco et al. (2014) Coughing – ES
Fung et al. (1990) Stepping Incomplete injury Clonidine (α-adrenergic ago-

nist)
Wainberg et al. (1990) Spasticity and stepping – Cyproheptadine (serotonin an-

tagonist)
Dietz et al. (1995) Stepping Incomplete and complete Baclofen (GABA agonist)
Radhakrishna et al. (2017) Stepping A and B Buspirone/levodopa/carbidopa
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2.6 Activity Monitoring

Patient monitoring has provided an integral method for informing clinicians on the

effect of prescribed intervention towards recovery progress. Knowing the neurological

state and behavioural outputs equips clinicians with information to develop efficacious

and efficient recovery protocols. Clinicians could provide greater patient care if given

access to patient activity performance outside the controlled clinical environment. In

uninjured populations, the spatiotemporal locomotor characteristics of individual walking

are expressed more variably when comparing out-of-clinic and in-clinic environments

(Prajapati et al., 2011; Toda et al., 2020; Albert et al., 2017).

Wearable and ambient sensing technology has been considered the most intuitive and

effective strategy to perform these measurements (Burns and Adeli, 2017; Nizam Uddin,

2012; Pantelopoulos and Bourbakis, 2010; Patel et al., 2012; Pathak et al., 2021). While

patient monitoring is critical to understanding the therapy effects, gathering sufficient

patient data and developing robust classification techniques remains a challenge (Burns

and Adeli, 2017; Schmid et al., 2021; Jayaraman et al., 2018; Schneider et al., 2018).

Secondly, more attention needs to be given to mapping the neurological state to the

behavioural output during recovery (De Fazio et al., 2023).

The scientific enquiry into how these neural adaptations occur over a chronic timescale

has been challenging due to population variability and difficulty in accessing and gather-

ing relevant datasets (Johnson and Picard, 2020). In spinal cord injury recovery, classify-

ing behavioural activity and identifying a reliable and generalisable biomarker using

wearable technology for recovery and neuromodulation therapy response remains elusive.

The following section presents the state of functional assessment, activity classification,

and biomarker investigations regarding locomotion recovery after SCI.
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2.6.1 Assessment Tools

SCI subjects admitted to rehabilitation are often assigned some metric (or several

metrics) to assess how different protocols affect recovery. These are typically adapted

according to the goals the subject wishes to achieve. For example, hand-and-arm func-

tional assessment may use the Box and Block Test (Kontson et al., 2017), and bladder

and bowel function may be assessed by the Qualiveen and Short-From Qualiveen (Tate

et al., 2020). A more holistic assessment may incorporate the Spinal Cord Independence

Measure or the equivalent, Functional Independence Measure (Harvey, 2016).

For locomotor function, a standard 10-meter walk test or Walking Index for Spinal

Cord Injury may be used to gain insight into subject progress (van Hedel and Dietz, 2010).

While these assessments offer high-level functional information regarding the patient’s

response to rehabilitation, little can be extrapolated about the patient’s neurological

response and state. Lower-level information can build a better picture for physicians

to develop case-specific protocols to maximise recovery outcomes. From a scientific per-

spective, these assessments offer little information if one wishes to map neural states to

functional outcomes. Currently, the ‘best’ tool to measure gait control is unknown (Buck-

ley et al., 2019). Several tests, subject-specific biomarkers, and uncontrolled continuous

measurement will likely be key tools to diagnose and monitor neurological conditions

and behaviour outputs.

Secondly, the in-person, practical assessments are predominantly performed within

the clinic, limiting the clinician to information gained within that specific time frame

and conditions. Due to the nature of paralysis, moving around and physically reaching a

clinic is much more demanding. Limiting the subject’s exposure to unnecessary burdens

may give the patient a more positive experience during their rehabilitation process (Syed

et al., 2013). Access to healthcare infrastructure is even more demanding for regional

and remote patients. In Australia, remote healthcare services have a significantly lower
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population threshold for care than in densely populated areas.

Additionally, these remote communities are disproportionately admitted to hospitals,

compared to their more densely populated city counterparts (Thomas et al., 2015; Aus-

tralian Institute of Health and Welfare, 2022). The onset of the COVID-19 pandemic has

highlighted the necessity and benefits of telemonitoring in conjunction with at-home

healthcare services (Australia, 2021). Commercially, the western market has seen huge

interest in wearable devices with the wearable technology industry reaching a USD 99.5

billion evaluation in 2022 (GlobalData, 2023).

Separate from telehealth’s economic and reduced burden benefit, much more infor-

mation can be gained out-of-clinic monitoring that may not be captured while in front

of a practitioner. How the patient performs at home, at work, or during transfers may

offer critical insights missed because the patient forgot or does not consider an event

important. Knowing the performance of tasks outside the clinic creates opportunities for

rapid feedback, personalised therapy, and reduction in overall healthcare cost (Burns

and Adeli, 2017; Nizam Uddin, 2012; Pantelopoulos and Bourbakis, 2010; Patel et al.,

2012; Wang et al., 2017, 2014; Andersson et al., 1978).

While evidence supports the use and continual improvement of wearable technology,

several limitations must be considered when attempting to deploy these systems in

practice.

2.6.2 Challenges in Activity Recognition

Wearables to monitor movement and disease-related information are heterogeneous,

non-standardised, and lack evidence for reliability, responsiveness, and sensitivity to

longitudinal changes (Johansson et al., 2018; Celik et al., 2021). These are further

exacerbated by inconsistencies across experiment protocols, classification techniques,

and analysis methodologies (Celik et al., 2021; Balbinot et al., 2021). For these reasons,
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it is challenging to establish conclusive interpretations of the evidence.

Inter-subject variability is a challenge commonly faced by researchers and engineers

developing classification models for activity recognition (Barshan and Yurtman, 2016).

As expected, performance has often degraded when introduced to heterogenous subject

populations, multi-day recordings, and variable activities (Balbinot et al., 2021; Zhou

et al., 2020; Côté-Allard et al., 2019; Albuquerque et al., 2020). Care should be taken

when extrapolating utility from studies with limited sample pooling and homogenous

activities across shorter time scales.

One method to account for population variability and improve confidence in study

results is to gather an immense amount of data. Access to these vast datasets would

also assist in the development of more generalisable machine learning models (Mitchell

et al., 2021). However, this has famously been the Achilles Heel of medical research and

one of the reasons why the advancements in machine learning appear to lag behind the

other domains such as language modelling and computer vision (Fawaz et al., 2018; Is-

mail Fawaz et al., 2019; Miotto et al., 2018). Currently, no single open-source SCI activity

dataset is available for scientists and engineers to use as a platform for development

and benchmarking.

Many gait detection algorithms succeed in healthy populace evaluation, but it would

be naïve to suggest that healthy population gait findings translate to an injured pop-

ulation (Den Otter et al., 2007; Jayaraman et al., 2018; Terashi et al., 2020). Though

comparable accuracy has been previously reported using IMUs placed on the foot and

shank, data was only collected in a laboratory environment without any neuromodula-

tion (Jasiewicz et al., 2006; Werner et al., 2021). It is uncertain if the same accuracy

could be attained if subjects were given a set of separate tasks to perform or receiving

rehabilitation therapies over a longer recording period. Additionally, kinematic activity

prediction with IMU sensing cannot inherently record neurological change directly. Ar-
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guments for kinematic sensing alone may include reducing the number of sensors and

improving usability, compliance, and battery performance (Celik et al., 2021; Johansson

et al., 2018). While these are tenable arguments, accepting these conditions comes at

the expense of fine-tuning neuromodulatory stimulus in short time scales that require

timely precision for efficacious neurological recovery (Moraud et al., 2016; Formento

et al., 2018; Lorach et al., 2023; Rowald et al., 2022). Loss of these functions would be

considered undesirable, especially considering the strong activity-dependent adaptations,

as discussed in section 2.4 and section 2.3.

With these challenges outlined, there is an obvious need for more openly available

datasets across healthy and neurologically impaired populations. Until these datasets be-

come more available and the culture of openly sharing ethical and relevant experimental

data becomes more prevalent, alternative techniques must be developed to advance the

field of robust activity classification techniques. This thesis will aim to develop new meth-

ods to classify locomotor events in neurologically injured populations. While intuitive to

monitor the return of the activity of interest, I do not believe such high-level information

is sufficient as an indicator for novel neuromodulation rehabilitation progress.

2.6.3 Biomarkers for Neuromodulation Therapy

Several questions naturally arise with the success of volitional sensorimotor recovery

via neuromodulation therapy in chronic SCI human subjects. These encompass topics

such as safety and efficacy, subject response prediction, dose-response relationships, and

persistence of therapy effects (Lorach et al., 2023; Rowald et al., 2022). Currently, no

gold standard exists for quantifying ambulatory function (van Hedel and Dietz, 2010;

Nguyen et al., 2021). Kinematic coordination, timing, strength, range-of-motion, and

balance measures have been traditionally used to monitor change over time (Jayaraman

et al., 2018; Harbeau et al., 2002; Mignardot et al., 2017; Hubli and Dietz, 2013). These
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measures have informed researchers on the impacts of rehabilitation protocols towards

positively adaptive plastic changes in the neural environment (Reinkensmeyer et al.,

2016; Ying et al., 2005).

Observing kinematic changes provides information on how different neuromodulation

therapies correlate with the movement expression; it can be tempting to simply suggest

these are sufficient measurement methods (Colombo et al., 2008; Nizam Uddin, 2012;

Garro et al., 2021). Changes to the applied neuromodulation protocol would occur only

after several kinematic events. Current state-of-the-art epidural spinal cord stimulation

devices adapt applied therapy at millisecond time scales, so monitoring and modulating

the sensorimotor system to the same degree would seem natural (Brooker et al., 2021;

Wenger et al., 2016). Thus, at small time scales, kinematic measurements will have

limited utility.

Electrophysiological measurements offer direct measurements of the CNS at millisecond-

level resolution. Common EMG properties include amplitude peaks, onset/offset timing,

number of recruited motor units, synergies, co-contraction index, power spectral density,

sample entropy, and zero-crossings (Balbinot et al., 2021; Levy et al., 1987; Jo and Perez,

2020). Some have monitored the changes in electroencephalography (EEG) specific fre-

quency bands of the central area and parietal lobe (Simis et al., 2021). Temporal and

frequency features such as those listed above are simple to compute and understand. A

subject that previously had no volitional control of supra-lesional networks receiving

neuromodulation therapies would likely measure changes across these feature spaces

(Wolpaw and Tennissen, 2001).

Intuitively, electrophysiological signals provide close coupling to neurological adap-

tation that occurs due to activity-dependent plasticity and neuromodulation therapy.

The electrochemical coupling method between the neurological system and sensitive

recording equipment makes it difficult to use in a chronic out-of-lab setting (Krucoff
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et al., 2016; Xiong et al., 2021). Additionally, high-level temporal and frequency data,

such as those extracted from amplitude analysis and power spectral bands, can only

provide limited information on the adaptations occurring at the network level. If ef-

fective neuromodulation therapies require micrometre fidelity at millisecond precision,

an in-depth understanding of the interactions between the spinal neural network and

neuromodulatory device is warranted (Squair et al., 2021).

The groundwork for such biomarkers has been laid by scientists studying the inter-

actions of neuromodulation with ensembles of sensory afferent signals (Gerasimenko

et al., 2006; Lavrov et al., 2006; Gad et al., 2015; Formento et al., 2018). Motor-evoked

potentials (MEPs) from the CNS shed light on integrating sensory and neuromodu-

latory information (Atkinson et al., 2020; Musienko et al., 2007; Calvert et al., 2021;

Gerasimenko et al., 2018; Urbin et al., 2017).

Pharmacological and electrical modulation of the injured spinal cord have uncovered

new techniques to evoke locomotion activity (Gerasimenko et al., 2016a). However, the

most appropriate method to elicit these responses is convoluted and requires tuning

towards each subject (Desautels et al., 2015). The methods to measure the response

to each neuromodulation therapy are coarse and antiquated (Johansson et al., 2018;

Celik et al., 2021). Additionally, our understanding of the mechanisms of action remains

incomplete (Zhang et al., 2021). New techniques to classify pathological expressions of

movement are required to improve these areas. These new methods could offer insights

into predicting therapy responses promptly, further optimising recovery. Secondly, com-

putational techniques offer a flexible and novel method for uncovering the mechanistic

effects of neuromodulation (Capogrosso et al., 2013; Edlund, 2019; Rybak et al., 2006).

Expanding biologically constrained models to investigate trains of sensory input in con-

junction with neuromodulatory stimulus can offer novel insights into the inner workings

of the locomotor CPG.
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MATERIALS

A
large portion of this thesis was based on the data collected by Dr. Parag Gad,

Dr. Mrinal Neil Rath, Dr. Hui Zhong, and Prof. V Reggie Edgerton from the

University of California, Los Angeles who were kind enough to share their

data with me while I was a Visiting Graduate Researcher at Prof. Edgerton’s lab. I

go on to use their immense EMG and video data set for analysis. The data consists

for 4 spinally transected female rats who underwent spinal cord electrode and EMG

electrode implantation. The rats received bipedal locomotion and standing training

on a rat body weight supporting treadmill device. During training and cage-roaming

conditions, rats received combinations of sub-threshold epidural electrical stimulation,

Quipazine (serotonin agonist), and Strychnine (glycinergic antagonist). The remainder

of this chapter details the methodology performed to gather electrophysiological and

Infra-Red (IR) video data to monitor the locomotion and standing activity of spinally

transected rats in a free-roaming cage environment.
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3.1 Animal Preparation and Care

Data were obtained from 4 adult female Sprague Dawley rats (270 – 300 g body weight).

Pre- and post-surgical animal care procedures are described in Roy et al. (1992). The rats

were housed individually in cages with food and water provided ad libitum. All survival

surgical procedures were conducted under aspetic conditions and with the rats deeply

anesthetised with isoflurane gas (1.5 – 2%) administered via facemask. All procedures

described hence forth are in accordance with the national Institute of Health Guide

for the Care and Use of Laboratory Animals and approved by the Animal Research

Committee at UCLA.

3.2 Head Connector and Intramuscular EMG

Electrode Implantation

A small incision was made at the midline of the skull. The muscles and fascia were

retracted laterally, small grooves were made in the skull with a scalpel, and the skull

was dried thoroughly. Two amphenol head connectors with Teflon-coated stainless steel

wires (AS 632, Cooner Wire, Chatsworth, CA) were securely attached to the skull with

screws and dental cement as described previously (Ichiyama et al., 2008a). The tibialis

anterior (TA, ankle flexor) and soleus (Sol, ankle extensor) muscles were implanted

bilaterally with intramuscular EMG recording electrodes (Roy et al., 1992). Skin and

fascial incisions were made to expose the belly of each muscle. Two wires extending

from the skull-mounted connector were routed subcutaneously to each muscle. The wires

were inserted into the muscle belly with a 23-gauge needle, and a small notch (0.5-1.0

mm) was removed from the insulation of each wire to expose the conductor and form the

recording electrodes. The wires were secured within the belly of each muscle via a suture

on the wire at its entrance into and exit from the muscle belly. The proper placement of
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the electrodes was verified during the surgery by stimulation through the head connector

and postmortem via dissection.

3.3 Spinal Cord Transection and Electrode

Implantation Procedures and Post-Surgical

Animal Care

A partial laminectomy was performed to expose the T8 – T9 spinal cord, and then a

complete spinal cord transection to include the dura, was performed with microscissors.

Two surgeons verified the completeness of the transection by lifting the cut ends of the

spinal cord with fine forceps and passing a glass probe through the lesion site. Gel foam

was inserted into the gap created by the transection as a coagulant and to separate the

cut ends of the spinal cord. For epidural electrode implantation, partial laminectomies

were performed to expose the spinal cord levels L2 and S1. Two Teflon-coated stainless

steel wires from the head connector were passed under the spinous processes and above

the dura mater of the remaining vertebrae between the partial laminectomy sites. After

a small portion (∼1-mm notch) of the Teflon coating was removed and the conductor

was exposed on the surface facing the spinal cord, the electrodes were sutured to the

dura mater at the midline of the spinal cord above and below the electrode sites with

8.0 Ethilon suture (Ethicon, New Brunswick, NJ). Two common ground (indifferent

EMG and ES) wires (∼1 cm of the Teflon removed distally) were inserted subcutaneously

in the mid-back region on the right side (EMG) and midline (ES) close to the tail. All

wires (for both EMG and ES) were coiled in the back region to provide stress relief. All

incision areas were irrigated liberally with warm, sterile saline. All surgical sites were

closed in layers with 5.0 Vicryl (Ethicon) for all muscle and connective tissue layers

and for the skin incisions in the hind-limbs and 5.0 Ethilon for the back skin incision.
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Buprenex (0.01-0.05mg/kg sc every 8 to 12 hrs) was used to provide analgesia. Analgesics

were initiated before completion of the surgery and continued for a minimum of 2 days.

The rats were allowed to recover fully from anesthesia in an incubator. The rats were

housed individually in cages that had ample CareFresh bedding, and the bladders of

the spinal rats were expressed manually three times daily for the first 2 weeks after

surgery and two times daily thereafter. The hind-limbs of the spinal rats were moved

passively through a full range of motion once per day to maintain joint mobility. All of

these procedures have been described in detail previously (Courtine et al., 2009).

3.4 Training Procedures

All rats were trained for bipedal stepping and standing on a motor driven rodent body

weight supporting treadmill for 5 days/week, 20 min/day for 6 weeks starting at 12

days post-injury (dpi), including the days of testing (de Leon et al., 2002). Temporal

training specifications were selected on the basis of near normal step cycle trajectory

recovery during partial weight bearing stepping after SCI in rats when compared to

control groups (Heng and de Leon, 2009). Spinally transected rats reach a plateau

of recovery after 6–7 weeks of step training (Courtine et al., 2009; Gad et al., 2013c).

Bipolar ES between L2 and S1 (current flowing from L2 to S1) at frequency of 40 Hz,

pulse width 0.2 ms was used in combination with quipazine (0.3 mg/kg; (Ichiyama et al.,

2008b; Courtine et al., 2009)) and strychnine (0.5 mg/kg; (de Leon et al., 1999; Gad et al.,

2013c)) injected intraperitoneally 10 min before each training/testing session. ES was

only delivered during the 20min/day training periods as described previously (Ichiyama

et al., 2005). Chronic step training was used to train and reinforce locomotor neural

networks that generate spontaneous cage activity (Gad et al., 2013a). At the early stages

of training, ES intensity was set at threshold or at super-threshold to invoke locomotive

activity (Gerasimenko et al., 2008). As training continued, the stimulation intensity
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was gradually reduced, dependent upon the stepping performance of each rat until the

stimulation intensity was just below threshold.

3.5 Stimulation and Testing Procedures

The threshold for eliciting muscle twitch and corresponding time linked EMG response in

the soleus was identified and set to 1.8 to 2 V (Ichiyama et al., 2005). The sub-threshold

level was set to 20% below the motor threshold during the recording of spontaneous cage

activity, between 1.4 and 1.6 V. ES was delivered only during the training and testing

periods. Each rat prior to testing was injected intraperitoneally with the same volume

described during training (see section 3.4). Quipazine has shown immediate restoration

of locomotion activity during robotic treadmill training (Fong et al., 2005). Quipazine

dosages used in the present study effectively enable full weight-bearing treadmill lo-

comotion in spinally transected rats with enhanced stepping ability in synergy with

ES (Courtine et al., 2009). Quipazine enabled locomotor movement occurrence reaches

a plateau after a dosage of 0.3 mg/kg (Ichiyama et al., 2008b). Similarly, strychnine

was administered using the same dosages in the training procedures at doses known

to facilitate stepping after spinal transection during weight-bearing locomotion 30 min

after administration (Hart, 1971; de Leon et al., 1999). Rats were injected 10min prior

to beginning of spontaneous cage activity testing, with the prescribed neuromodulating

pharmacology. The spontaneous activity of the spinal rats were determined in their home

cage. Spinal rats that had previously been trained to step on a treadmill in presence of

strychnine (Strych) and quipazine (Quip) were tested under 5 different conditions i.e., no

ES (Pre), ES, ES+Quip (qES), ES+Strych (sES) and ES+Quip+Strych (sqES). The head

connector was coupled to a set of amplifiers and a stimulator.

The swivel arrangement was attached to allow the rats to roam freely in the cage.

There was food distributed throughout the cage floor to encourage movement and ex-
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ploration. IR video data were recorded using a camcorder for select conditions. EMG

data were amplified and recorded using custom LabView-based data acquisition software

with a sampling frequency of 10kHz. Data were recorded continuously for 6 hrs between

8pm and 2am, i.e. the active period of time for rats. One out of the 20 experiments (n=4

rats, 5 experiments/rat) were conducted every night and were randomized with at least

one day’s gap between two successive recordings for a rat and all 20 experiments were

completed within 3 weeks. Note that the first 20 minutes EMG recordings for rat 1 in

the sqES and all recording channels for rats 2 and 4 for the ES only case were corrupted

and unable to be used.

3.6 Labelling

With a lack of footswitch, marker labelling, or ground reaction force (GRF) data, a

manual labelling process of the EMG data was performed with cross-validation of IR

video footage. A custom software was developed to highlight the periods of identified

locomotion and standing events selectively. The specified data sections were later saved

into a file for downstream processing. A time-consuming process of manually collecting

data sets across animals, times, and therapies while cross-validating with manually

scrubbed IR footage was performed. Refer to fig. 3.1 for a reference of the custom software

graphical user interface.

To assist with the operator’s decision for successful locomotor activity, a Gaussian

Mixture Model (GMM) was trained across the selected times for labelling. Signals of

the left and right TA or SOL were concatenated contralaterally for the same muscle

group and used to train a GMM for each muscle group. Data for each muscle group

was normalised and processed to generate the envelope. Digital signal processing steps

are detailed in section 4.2.1. Taking the envelope, the signal was downsampled from

10kHz to 1kHz, and the first differential was calculated. The non-differentiated and
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Figure 3.1: An example of the custom labelling developed to assist with manually
detecting and segmenting locomotor and standing events while scrubbing synchronised
IR video feeds. Signal plots with lower opacity were considered inactive by a trained 2
cluster GMM. In red is the TA activity, and in blue is the SOL activity. The top subplot
displays right side data, and the bottom displays left side data.

differentiated data was used to train the GMM to approximate a binary estimation of

active or non-active muscle. Note that this process was not used to generate the online

proposed locomotion detection algorithm but to inform the operator of the likelihood of

active or non-active recordings.

The manual labelling process created 125 min of labelled EMG stand and locomotion

data, split into 5 min sections across different animal subjects, periods, and therapies

(sqES, qES, sES, ES, and Pre).

3.6.1 Data Set Distribution

The labelled data set displays an incredible imbalance between positive and negative

labels across stepping and standing events fig. 3.2. The right steps and left steps are
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Figure 3.2: Bar plot of the distribution of datapoints which are registered a positive and
negative labels for the respective activity.

relatively similar (nright = 810676 and nle f t = 91492), while stand events are more

than double left or right stepping label counts (nstand = 2511446). Calculating the same

information from the extracted feature data from the complete data set revealed similar

distributions (nle f t,win = 1765, nright,win= 1562, nstand,win = 3062).

3.7 Relevant Equations

(3.1) Macro F1= 1
N

N∑
i=1

F1i

(3.2) Weighted F1=
N∑

i=1
wi ×F1iwi = No. of samples in class i

Total no. of samples
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3.7. RELEVANT EQUATIONS

(3.3) F1 score= 2 ·precision ·recall
precision+recall

(3.4) Precision= True Positives
True Positives+False Positives

(3.5) Recall= True Positives
True Positives+False Negatives

softmax=σ(xi)= exi∑K
j=1 ex j

f or i = 1,2, . . . ,K(3.6)

Relu(x)=max(0, x)(3.7)

Sigmoid(x)= 1
1+ e−x(3.8)

GeLu(x)= xP(X ≤ x), P(X )∼ N(0,1)(3.9)

Cross Entropy=−(y log(p)+ (1− y) log(1− p))(3.10)

Multiclass Cross Entropy=−
M∑

c=1
yo,c log(po,c)(3.11)

L2 norm=λ
n∑
1

w2
i(3.12)
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4
NOVEL CLASSIFICATION ALGORITHM OF STEP AND

STAND EVENTS DURING SPINAL NEUROMODULATION

N
eural circuitry reorganises upon introducing neuromodulatory therapy and

task-specific locomotor training. Monitoring the neural effects of the rehabil-

itation protocols and neuromodulation therapies seems intuitive to ensure

safety and efficacy towards subjects. This opportunity needs to be addressed in the exist-

ing literature. Standard methods for identifying locomotor activity use kinematic sensing.

Available neurological sensing has only been performed in closed, controlled laboratory

environments, such as on a treadmill or across flat ground. As far as I am aware, no

efforts have been made to pursue out-of-lab neural monitoring activity while subjects

with neuro-pathological gait undergo therapy. I aim to investigate the efficacy of existing

methodologies in locomotion classification on pathological gait rats undergoing multi-

modal spinal neuromodulation. I hypothesise that non-linear methods are sufficient to

detect locomotion events in pathological gait under different therapy domains. I suggest

a spatiotemporal rule-based algorithm and compare multiple machine-learning methods

for time-series classification of unilateral stepping and standing events in manually
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labelled 4-channel EMG data. Results from the experiment show poor classification

performance in all tested algorithms. The novel rule-based algorithm outperformed

existing methods in rejecting false positives. Relevant identified features for each label

and reasons for poor performance are discussed.

4.1 Background

Several variables have been suggested as significant markers within the scope of SCI

sensorimotor rehabilitation. These can be broken down into kinematic and electrophys-

iological monitoring (Burns and Adeli, 2017). In this section, I will refine the scope of

previous works to locomotion rehabilitation and related tasks only.

Several strategies have been used to measure spatiotemporal gait metrics algorithmi-

cally. Analysis of kinematic information is an intuitive lens through which clinicians and

engineers can peer. Recording activity via small, energy-efficient, and reliable inertial

motion units (IMUs) appears as an obvious pathway to monitor the recovery of senso-

rimotor function. A common method is to isolate the plane of analysis to a single side,

reducing the complexity of the problem (Greene et al., 2010; Jasiewicz et al., 2006; Storm

et al., 2016; Catalfamo et al., 2010). Machine learning models using IMU sensors have

accurate classification performance during in lab environments but reduce by nearly

40% when used out of the lab (Albert et al., 2017). Adding multiple sensors offers extra

information to improve machine learning accuracies (Salarian et al., 2004; Chen et al.,

2015).

While these methods provide adequate classification accuracies both in and out of the

lab setting, they are naïve to the underlying neurological changes occurring due to the

effects of therapy. An argument can be made that kinematic measurements effectively

express the neurological state. However, the time course to see behavioural change is

long with little sensitivity to subject response (Donati et al., 2016; Angeli et al., 2018). It
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would be beneficial to predict the subject response to therapy rather than invest months

of rehabilitation effort before learning what adaptations were introduced. Access to

nervous system activity would be more informative than only kinematic activity.

Morbidoni et al. (2019) offers the first look at identifying gait phases with surface

EMG (sEMG) data. Data was prepared with a signal envelope and sliding window process

before passing left and right concatenated data into multilayer perceptron with Rectified

Linear Unit (ReLu) activation functions. Similar methodologies were applied using

sEMG data using statistical, temporal, and frequency features for treadmill walking

(Nazmi et al., 2019) and compressed muscle synergy matrices for overground walking

(Park et al., 2023). While the results show promise in burst detection, they do not present

a solution for pathological locomotion detection or out-of-lab environments. That said,

recent effort has been made to detect gait phase events in cerebral-palsy hemiplegic

children (Morbidoni et al., 2021).

Kyeong et al. (2019) performed a gait experiment for human-robot interaction us-

ing sensor fusion methods with sEMG, ground reaction force, load-cell, and rotary

encoders. Statistical, frequency-time domain and spatial features were extracted to train

a Bayesian linear discriminant analysis (BLDA) model. As expected, the highest locomo-

tion classification accuracy results were acquired with sensor fusion across all sensors.

EMG alone with all 5 ipsilateral sEMG electrodes scored ∼80%. Reducing the number

of channels to only the tibialis anterior (TA) and gastrocnemius (GM) only resulted in

∼67% accuracy.

Huang et al. (2009) aimed to develop an EMG pattern recognition algorithm to assist

in the control of active artificial legs by classifying gait phases. The post-heel-strike

and toe-off and pre-heel-strike and toe-off phases of gait were incorporated to develop a

more reliable classification system. The authors extracted statistical, frequency-domain

features to train an ANN and LDA classifier for each desired phase. Singular phase
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detection outperformed whole stride classification with either classifier.

A simple if this then that (ITTT) algorithm using high energy spectrograms from

multi-channel EMG successfully detected multiclass walking by tuning hyperparameters

for participant-specific profiles (Joshi et al., 2015). Interestingly, in contrast to Kyeong

et al. (2019), TA and GM activity had the strongest discriminating power to classify

locomotor modes.

So far, the most prominent method has been preprocessing segmented data and

extracting multiple features across statistical, temporal, and frequency domains before

applying a non-linear models. Assessing this pipeline with SCI pathological gait has yet

to be performed.

As far as I know, there is no any existing literature regarding the classification of

locomotor activity in SCI EMG data over a chronic period while free-romaing. In this

study, I aim to bridge this gap and develop a simple digital signal processing pipeline

followed by the rule-based algorithm for readily scalable online classification of locomotor

activity in spinal transected rats undergoing multimodal therapies. This chapter aims to

investigate how existing digital signal processing techniques will perform to generalise

locomotor activity across treatments and chronic recordings. I hypothesise non-linear

techniques will best classify multi-label stepping and standing activity.

4.2 Methods

4.2.1 Digital Signal Processing

The raw EMG signal, across all channels, was filtered with a third-order Butterworth

bandpass filter with cut-off frequencies of 30 – 1000 Hz. This attenuates DC offset and

higher frequency noise. An envelope was extracted by feeding the filtered signal into a

Teiger Keiser Energy Operator (TKEO) known to improve burst detection in EMG signals
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Table 4.1: Summary of presented algorithms and sensors used to estimate locomotion
activity

Author Assessment Envi-
ronment

Sensor Algorithm

Greene et al. (2010) Lab setting IMU Sliding threshold
and peak detection

Jasiewicz et al.
(2006)

Lab setting IMU Peak detection

Storm et al. (2016) Indoor and outdoor IMU Peak detection

Catalfamo et al.
(2010)

Indoor and outdoor IMU Zero-crossing, ITTT

Salarian et al.
(2004)

Lab setting IMU Peak detection

Albert et al. (2017) Lab and home set-
ting

IMU SVM, NB, LR,
KNN, RF

Chen et al. (2015) Lab setting IMU, Pressure LDA, QDA, LR

Huang et al. (2009) Lab setting EMG LDA, ANN

Morbidoni et al.
(2019)

Lab setting EMG ANN

Nazmi et al. (2019) Treadmill EMG ANN
Kyeong et al. (2019) Lab setting EMG, GRF, Load-

Cell, Encoder
BLDA

Park et al. (2023) Treadmill EMG RF, KNN, SVM,
ANN

Inertial Motion Unit (IMU); If-This-Then-That (ITTT); Support Vector Machine (SVM); Naïve
Bayes (NB); Logistic Regression (LR); K-Nearest-Neighbours (KNN); Random Forest (RF); Linear
Discriminant Analysis (LDA); Quadratic Discriminant Analysis (QDA); ANN (Artificial Neural
Network); Bayesian Linear Discriminant Analysis (BLDA); Ground Reaction Force (GRF)
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Figure 4.1: The TKEO step pushes the envelope activity closer to zero with lower delay
than the lowpass filter

(Solnik et al., 2010). The TKEO output was smoothened using a first-order Butterworth

lowpass filter with a cut-off frequency of 50Hz fig. 4.1.

The data was broken up into 10-sec bins to determine the activity threshold across

each channel. An adaptive threshold sampling method determined the rest period

throughout each 10-sec bin. Envelope data were first averaged into 10ms windows,

and a minimum window was selected as the first region of interest. A sliding window

procedure, combined with non-linear dual-thresholding, was implemented to determine

the entire rest period within the 10-sec bin.

The end of rest was set if the first differential magnitude of 0.1mV/s or a logarithmic

threshold of 300 log(mV ) was reached. It was found that during the slower, more gradual

ramping of EMG activity, first-order differential values were not sufficiently sensitive.

To account for this slow ramping, a logarithmic threshold was considered. This enables

the software to have a whole period of low ‘rest-activity’ established if either threshold is

reached in either direction.

The mean and standard deviation of the detected rest intervals were used to set the
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adaptive thresholding. A scalar constant was multiplied by the standard deviation and

summed with the mean value for each channel. The constant, K, was set dependent on

the target muscle, where TA was 6, and SOL was 3.

(4.1) threshold =µrest +Kσrest

Finally, a time criterion was implemented for each channel to consider valid bursting

activity. If the TA activity above the threshold was < 0.1s, and SOL activity above the

threshold was < 0.3s, then it was not considered for further processing. These values

were set based on previous literature studying the recovery of swing and stance phase

during treadmill locomotion using the same neuromodulation therapies (Gad et al., 2015).

For an example of the thresholding techniques, see fig. 4.3.

4.2.2 Rule-Based Algorithm

A relative difference signal between a min-max normalised TA and SOL was calculated

from the extracted envelope fig. 4.3. The relative difference signal was used as a repre-

sentation of coordination between flexion and extension of the ankle. It was assumed

that if the signal was positive and within an identified burst, the joint had greater flexion

force. Conversely, if the same were to be said for the negative magnitudes of the signal, a

greater extension force was acting on the joint. A peak during the positive signal region

indicates a switch between a flexion phase and an extension phase. Thus, if the peak was

followed by registered bursting extensor activity and the relative difference signal was

negative, then this was considered a successful transition from flexion to extension.

A peak detection process was performed to indicate the flexion phase and the begin-

ning of a step cycle. The flexion phase can be rapid and seen as a sharp change in the

relative difference signal. A minimum peak detection threshold was set to 0.01 to ensure
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that only adequate activity was considered. Secondly, switching must be temporally

constrained. Otherwise, any extension activity occurring too slowly after the swing phase

may be registered as a positive event. A step was only recorded if a negative signal

followed a positive peak while the SOL was active within a temporal threshold of 0.5s.

Finally, a minimum period of 0.2s was set between local maxima to ensure that only the

last local maxima within the TA burst were selected. Standing events were defined as

the paired SOL bursting activity reaching a time threshold 0.6s (Gad et al., 2015). See

fig. 4.2 for a complete reference to the algorithm. We will name this proposed rule-based

algorithm Thresholding Offline Kinematic and EMG Data Analysis (TOKEDA).

4.2.3 Machine Learning

To increase the potential for successful window classification, a larger sliding window

length of 0.14s was used with 20% overlap to generate the feature set used to train

the machine learning models (Huang et al., 2009; Park et al., 2023). Several frequency,

statistical, and signal-relevant features were extracted from each window for each chan-

nel. These include peak-to-peak values, max and min values, skew, kurtosis, integrated

EMG, mean, standard deviation, root mean square, max frequency, spectral density, and

spectral entropy, see table 4.2.

Features were input to LDA, LR, and SVM models to classify EMG locomotion activity.

This study will also include KNN and XGBoost models for comparison. Linear models

were trained using the One-Vs-All strategy. Their hyperparameters were tuned using 3

K-Fold cross validation. See table 4.3 for full details. XGBoost models were trained using

an NVIDIA Quadro RTX 6000 Passive graphics card to reduce computation time. The

remaining classification models and signal processing pipelines were completed on Intel

Xeon Gold 6238R 2.2GHz 28-core CPU with 38.5MB L3 Cache.
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Figure 4.2: Illustration of the algorithm process and rules before classifying a sequence
of EMG data as a step.
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Table 4.2: Statistical, time, and frequency domain features extracted from a window size
of 0.14s and overlap of 20%. These features formed an input vector for machine learning
input.

Feature Equation

Mean x̄ = 1
N

∑N
i=1 xi

Standard Deviation SD =
√

1
N

∑N
i=1(xi − x̄)2

Kurtosis K =
1
N

∑N
i=1(xi−x̄)4

SD4

Skewness S =
1
N

∑N
i=1(xi−x̄)3

SD3

Root Mean Square RMS =
√

1
N

∑N
i=1 x2

i

Peak-to-Peak Value PPV =max(x)−min(x)

Relative Difference RelDi f f = envelopeFlex − envelopeExt

Max Frequency fmax = indexmax· fsample
N

Spectral Density S(ω)= limT→∞
E[|X (ω)|2]

T

Spectral Entropy H =−∑N
i=1 Pi log2(Pi)

4.2.4 Statistics

The classification accuracy will be reported concerning each classified window. F1 scores,

precision, and recall will be used to compare the multiclass performance for left and

right steps and standing events. F1 scores are commonly used to evaluate classification

accuracy by combining precision and recall scores. Macro F1 scores can be interpreted as

the averaged F1-score for each label, without considering the proportion of the label in

the data set, see section 3.7.

The labelled data sets were split into partitions of 0.6/0.2/0.2 for train, validation,

and test sets, respectively. To find the representative accuracy of the tested algorithms,
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Table 4.3: Summary of machine learning models used in this study and their respective
hyperparameters, tuners, and scorers.

Model Parameters Tuner Scorer

KNN
power = 1, 2
leaf_size = 10, 30, 100, 300
weights=uniform, distance

GridSearchCV F1-Score

LDA

tolerance=0.0001, 0.0003
C=0.1, 0.3, 1.0
class weights=None, balanced
max_iter=300, 1000, 3000

GridSearchCV F1-Score

LR

tolerance=0.0001, 0.0003
C=0.1, 0.3, 1.0
class_weights=None, balanced
max_iter=300, 1000, 3000

GridSearchCV F1-Score

SVM

tolerance=0.0001, 0.0003
C=1, 10
class_weights=None, balanced
max_iter=300, 1000, 3000

GridSearchCV F1-Score

XGBoost

max_trials=20
max_depth=3, 5, 6, 10, 15, 20
learning_rate=0.01, 0.1, 0.2, 0.3
n_estimators=100, 500, 1000
colsample_bytree=0.1, 0.4, 1.0
colsample_bylevel=0.1, 0.4, 1.0
subsample = 0.5, 0.6, 0.7, 0.8, 0.9

RandomizedSearchCV F1-Score

a series of set time-windowed labels were found by performing the sliding window

procedure through the test data label set. The sliding window contained a 3-sec window

size and no overlap. All windows that did not contain any information were rejected.

This is to determine the accuracy within a time window, focusing on assessing the

performance of our classifier during specific temporal segments of interest. The reported

results used the same test set, shared between machine learning and digital signal

processing approaches.
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Figure 4.3: A) Representative band-pass filtering of TA and Sol. The boxed area shows a
close-up example of the thresholding and the normalized difference plot used to char-
acterise step-like activity. Regions of the signal below threshold (blue), above threshold
(red) and rest (black) were recorded. B) TKEO signal conditioned, rectified and smoothed
EMG signal from the TA and Sol muscle of a spinal rat during spontaneous cage activity.
A representative example of a singular hind-limb step within the first hr of recording
spontaneous activity. C) The relative difference between the normalized values of the TA
and Sol from B). The grey line y-axis = zero. The blue line is a trace of the relative differ-
ence plot and in red is the periods of active extension, identified through thresholding.
Green triangles represent points of local maxima during active flexion. These features
were used to detect spontaneous hind-limb step-like activity.

4.3 Results

Without analysing the time windowed accuracy and submitting the proposed rule-based

algorithm to the entire data set, TOKEDA yielded success in rejecting negative examples,

outperforming the machine learning models in precision. However, struggled to identify

the true positives. The macro evaluations are summarised in table 4.4.

The machine learning models differentiated in their ability to discriminate between

positive and negative examples. LDA, KNN, and XGB models reached relatively equiva-

lent precision and recall scores. XGB model yielded the highest F1-score overall with the

greatest precision and recall among the aforementioned balanced models. Although LR

and SVM models reported the second and third highest F1-score, care must be taken if
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Table 4.4: Macro metrics for complete and time-windowed evaluation of machine learning
models compared with TOKEDA pipeline using the entire test data set.

Precision Recall F1-score
Model Complete Windowed Complete Windowed Complete Windowed

KNN 0.48 0.52 0.46 0.25 0.46 0.33
LDA 0.53 0.33 0.43 0.19 0.47 0.23
SVM 0.40 0.39 0.61 0.28 0.48 0.32
XGB 0.55 0.51 0.48 0.25 0.51 0.34
LR 0.38 0.40 0.70 0.33 0.49 0.36
TOKEDA 0.59 0.42 0.10 0.06 0.17 0.10

Table 4.5: Left step label evaluation of machine learning models compared with TOKEDA
pipeline in both complete and time-windowed test datasets.

Precision Recall F1-score
Model Complete Windowed Complete Windowed Complete Windowed

KNN 0.41 0.43 0.36 0.22 0.38 0.29
LDA 0.49 0.14 0.34 0.11 0.40 0.12
SVM 0.37 0.27 0.55 0.22 0.44 0.24
XGB 0.49 0.44 0.34 0.18 0.40 0.25
LR 0.33 0.29 0.70 0.25 0.45 0.27
TOKEDA 0.40 0.36 0.09 0.06 0.15 0.10

one were to base the evaluation solely on the macro F1-score. While LR and SVM models

performed better than the other models in recalling the positive windows, they failed to

reject negative examples.

Closer inspection of the results in tables 4.5 to 4.7 provide a more granular view.

TOKEDA reports the greatest result while classifying the right steps compared to the

other labels. TOKEDA precision results for right steps yield 0.74, nearly double the

different models for right stepping. However, it suffers in recall evaluations, leading to a

poor F1 score. TOKEDA precision for left step and standing labels did not outperform

the machine learning techniques.

Time-windowed data were extracted to test only relevant 3-sec windows on the

respective methodologies. These sectioned results are seen in table 4.4. Model evaluations

from time windowed sections are significantly different; see fig. 4.4.
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Table 4.6: Right step label evaluation of machine learning models compared with
TOKEDA pipeline in both complete and time-windowed test datasets.

Precision Recall F1-score
Model Complete Windowed Complete Windowed Complete Windowed

KNN 0.43 0.42 0.31 0.21 0.36 0.28
LDA 0.40 0.15 0.35 0.18 0.38 0.16
SVM 0.33 0.24 0.42 0.19 0.37 0.21
XGB 0.45 0.42 0.32 0.22 0.37 0.29
LR 0.30 0.27 0.53 0.30 0.39 0.28
TOKEDA 0.74 0.20 0.15 0.05 0.26 0.07

Table 4.7: Stand label evaluation of machine learning models compared with TOKEDA
pipeline in both complete and time-windowed test datasets.

Precision Recall F1-score
Model Complete Windowed Complete Windowed Complete Windowed

KNN 0.60 0.72 0.71 0.31 0.65 0.43
LDA 0.69 0.72 0.60 0.27 0.64 0.39
SVM 0.50 0.65 0.85 0.43 0.63 0.51
XGB 0.72 0.66 0.77 0.35 0.75 0.46
LR 0.51 0.64 0.86 0.43 0.64 0.52
TOKEDA 0.62 0.72 0.06 0.07 0.10 0.12

Figure 4.4: A bar plot representation of the time-windowed data set
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Table 4.8: Irrelevant features, as determined from the Benjamini-Hochberg procedure
for left stepping, right stepping, and standing labels

Label Feature p-value

Left Step

fmaxCH1 0.05
meanCH2 0.20
skewCH3 0.26
meanCH1 0.43
meanCH3 0.46
meanCH0 0.57
fmaxCH3 0.76
fmaxCH0 0.90
fmaxCH2 0.93

Right Step

meanCH1 0.27
fmaxCH3 0.27
fmaxCH2 0.43
skewCH1 0.58
meanCH3 0.78
fmaxCH0 0.83
meanCH2 0.88

Stand

skewCH2 0.17
fmaxCH1 0.24
fmaxCH3 0.25
fmaxCH0 0.27
meanCH0 0.32
fmaxCH2 0.44
meanCH1 0.68
meanCH3 0.73
meanCH2 0.86

KNN, SVM, XGB, and LR retained similar precision values (rangemax = 0.04). How-

ever, recall metrics dropped for each of these models. LDA and TOKEDA suffered a

reduction in both precision and recall when challenged with time-windowed evaluation,

resulting in a 0.24 and 0.07 drop in F1 score, respectively. Closer inspection of tables 4.5

to 4.7 indicates success in standing classification has the dominant contributor to F1

scores.

TOKEDA struggles with the top performers in total or time-windowed data sets,

83



CHAPTER 4. NOVEL CLASSIFICATION ALGORITHM OF STEP AND STAND
EVENTS DURING SPINAL NEUROMODULATION

Figure 4.5: A spider and bar graph to illustrate the differences between the performance
of select models. The left shows the spider plot of different labels and their precision and
recall. The right displays the F1-scores for different labels and models.

which have a strong bias towards the right step and stand false-positive rejections. The

top performers in either test case category show a greater spread in their labelling

compared to TOKEDA. However, within the model, the spread is significantly smaller

and skewed towards stand label false negative rejection figs. 4.5 and 4.6.

4.4 Discussion

Presented are the results of standard machine learning techniques compared with a novel

online adaptive rule-based digital signal processing pipeline to classify chronic, cage-

roaming rodent locomotor activity. This chapter describes the methodology of classifying a

labelled time series data set in stochastic, multi-domain, and free-roaming environments

for spinally transected rats. I developed a digital signal processing rule-based algorithm,
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Figure 4.6: Spider and bar graph of select models to highlight the performance differences
for time-windowed data sets.

TOKEDA, to classify multi-label data without needing to re-run the algorithm multiple

times as a One-Vs-All strategy. A set of features to feed into machine learning models

were designed to compress and represent locomotion activity in hindlimb EMG signals.

Several linear and non-linear machine learning algorithms were tuned and trained with

the One-Vs-All strategy to perform multi-label classification of stepping and standing

events. The non-linear classifier, XGBoost, was the best performing machine learning

model.

This is the first study on animal locomotor and standing classification using EMG

data in a chronic, cage-roaming setting. Although previous studies have presented other

strategies for detecting rat activity within a caged setting. These include the use of

vibration/tilt sensing (Ganea et al., 2007), IR beams (Clarke et al., 1985), IR and non-IR

video tracking (Aragao Rda et al., 2011; Gad et al., 2013b; York et al., 2013), capacitive

flooring (Pernold et al., 2019), optical touch sensors (Mendes et al., 2015), RFID (Redfern
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et al., 2017), and radar technology (Martin and Unwin, 1980; Rose et al., 1985; Young

et al., 1996; Genewsky et al., 2017).

Detecting spontaneous self-recovering movement after paralysis outside a controlled

clinical environment has rarely been explored quantitatively. This may be due to the

limitation of securely attaching sensors or markers at specific locations. The antennas

attached to a rat have tracked gross body movements through a maze of tubes (Starkey

et al., 2014). It was shown that self-motivated training within an ‘enriched environment’

led to superior performance in skilled movement compared to restricted task-specific

training. This ‘RatTrack’ system allows for testing self-initiated and task-specific train-

ing and dose responses. While the mentioned efforts can be extended in the direction of

automation, each of these methods cannot directly measure the neuromotor parameters.

TOKEDA relies solely on chronically implanted EMG electrodes for sensing to assess in

vivo responses to different combinations of electrical and pharmacological neuromodu-

latory interventions. Access to neuromuscular activity synchronised with stimulation

pulses directly linked to behaviours provides a direct and realistic measurement of reor-

ganising neural networks throughout a chronic period as the nervous system becomes

more functional (Courtine et al., 2008).

It is technically becoming more feasible to chronically record EMG from many muscles

to detect how the reorganisation of neuronal networks that control locomotion can be

focused on the patterns of coordination of flexion/extension, abduction/adduction and

non-repetitive tasks such as grip and pinch manoeuvres as well as repetitive tasks

such as cycling etc. Moreover, the ability to measure the state of the locomotive neural

circuitry to determine the direct relationship between the treatment provided and the

underlying neuronal mechanics serves as detailed insight as the subject undergoes

training, providing the opportunity to adjust treatments to maintain an enabling effect,

maximising activity-dependent recovery.
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Figure 4.7: TOKEDA example of a false negative event. This occurred due to the way
the relative difference signal encodes deactivation of the flexor muscle. The flexor and
extensor magnitude for coordinated transition was not met due to the adaptive threshold.

The ability to record chronically for 6-hrs in a natural setting highlights the functional

and electrophysiological changes over time and could lead to a valuable biomarker of

recovery post paralysis. Spinal circuits controlling stepping and standing (locomotion

and posture) can be improved after SCI by practising those tasks, i.e., by increasing the

activation of those circuits (Ahissar and Hochstein, 1997; Bayona et al., 2005). Developing

methods to improve the classification accuracy and analyse the stepping data towards

investigating the possibility of a bio-marker for recovery is a logical step forward.

TOKEDA successfully rejected false positives for right stepping and standing but

failed to do the same for left step events. The algorithm also accepted false negatives and

thus missed several true positive points in the data set fig. 4.7. A strong skew towards

stand detection was uncovered when testing the time-windowed data set. Results suggest

that current machine learning and digital signal processing methodologies must be more

robust and accurate to feasibly capture locomotor events in complex, open environments

expressing pathological gait.
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Previous effort to determine classification error between non-disabled and trans-

femoral amputee participants showed dissimilar EMG patterns between groups (Huang

et al., 2009). Results from the investigation suggested sufficient neural information for

accurate classification across various locomotion modes in both subject pools. Although

the amputee’s EMG patterns were not similar to able-bodied subjects, their algorithm

results could adapt to each individual. The adaptive threshold developed in this work

successfully registered active and non-active muscle groups spatiotemporally manner

figs. 4.1 and 4.3. Future endeavours aiming to classify locomotion in pathological gait

may succeed more if a similar ‘divide-and-conquer’ approach is taken.

The machine learning models resulted in greater evaluation metrics, especially in

XGBoost and Logistic Regression models table 4.4. The results from these models suggest

a bias towards standing event labelling. This is expected due to the skew towards stand

data. While the One-Vs-All strategy reduces the impacts of skewed labelling, the sheer

volume of standing events may provide a more probable successful classification than

step data. Another interpretation can be made, where the standing data was more linear

compared to stepping data. Mapping these representations has yet to be done before, and

it is unclear if this information can be extracted from only 4 channel antagonist muscle

groups.

To ascertain the features machine learning models used to detect relevant features, a

Principle Component Analysis (PCA) and Benjamini-Hochberg method was implemented

fig. 4.8 and table 4.8. From this data, the most variance was encoded in the frequency

domain, specifically in the max frequency of the window. These effects were less sig-

nificant in channels 1 and 3, corresponding to the soleus activity in the right and left

hindlimb respectively. The relevance tables between the left and right stepping indicate

that almost all features were significant concerning the labels (p < 0.000001).

Values shown by the tables table 4.8 only detail the irrelevant features. From this,
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most maximal frequency features and mean values do not contribute to the label out-

puts, and yet max frequency in each window explains most of the variance after linear

compression fig. 4.8. This is an unexpected finding, as one would expect the greater

frequency activity to indicate more motoneuronal firing, thus correlating with stepping

and standing activity. On the polar end, the most relevant features for stepping were

peak-to-peak, standard deviation, and root-mean-square features.

Standing relevant features ranked magnitude related information, such as integrated

EMG and root-mean-square, near the top. However, the p-value differences between

these most relevant features were negligible. The results in Gad et al. (2015) may explain

the frequency irrelevance. After combinatory pharmacology and electrical stimulation

were introduced, frequencies during stepping became more balanced and attenuated at

lower frequencies.

Figure 4.8: Percentage of explained variance in 2 component PCA, using features de-
scribed in table 4.2

Time-series classification with imbalanced data sets has been a consistent challenge

in biosignal analysis (Zhao et al., 2018; Kumar et al., 2022). This difficulty stems from

the nature of biological signal tracking and the diversity of available data. Several issues
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arise when adopting machine learning techniques that fit biological data. One major

challenge is developing valid and reliable biomarkers that are suitable for the target

population (Kempsell et al., 2016; Richens et al., 2020; McDermott et al., 2013). Although

developing these biomarkers is valuable, the process is often time-consuming and costly

(de Graaf et al., 2018). Additionally, much of of the data is either difficult to access or

completely opaque (Kempsell et al., 2016; Fahr et al., 2019).

Biological systems are rarely static, and in the case of pathological nervous systems,

this is particularly the case. This may be due to environmental, pathological, or endoge-

nous variables that are difficult to capture section 4.1. An element of human cognition

is almost always required when interpreting time-series data (Längkvist et al., 2014).

This variable is often lost or compressed when working with machine learning method-

ologies. All previous attempts outlined above, using machine learning, have approached

the problem in this fashion. For this reason, the TOKEDA methodology was conceived

with built-in spatiotemporal dependencies. However, the method yielded poor results

compared to XGBoost and logistic regression.

How salient features contributed to step and standing classification was investigated

with SHapley Additive exPlanations (SHAP) (Lundberg and Lee, 2017). SHAP values

use game theory to assign credit for a model’s prediction to each feature and can help

explain the output of machine learning models. Logistic regression heavily relied on

higher Sol IEMG values for left and right step classification (see fig. 4.9). During left

step events, the classifier mistakenly prioritised the contralateral Sol IEMG variable

and negatively weighted left TA IEMG feature values. Mistaken channel attribution

may also mean that many left-step events coincided with right steps and provide an

explanation for the slightly poorer classifier performance in left vs right stepping. The

left TA activity, ranked second by SHAP values, provided information similar to that

of the right Sol IEMG. High SD and RMS values in right Sol negatively influenced the
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prediction output, in line with expected outcomes. Intuitively, RMS and SD of the left

and right SOL channels return high SHAP values with high magnitude for standing

classification.

Figure 4.9: Top-10 SHAP feature analysis with beeswarm (left) and heatmap (right)
plots for logistic regression. Temporal and frequency activity in the left and right side
contributed to the classification of step activity. Mainly temporal amplitude features
contributed to the classification of standing activity. Heatmap activations indicate the
contribution of each feature to the logistic regression model output ( f (x)). Note channels
0 – 4 indicate TA and Sol electrodes from right to left.

XGBoost SHAP values for ranked features exhibited a smaller spread than the

91



CHAPTER 4. NOVEL CLASSIFICATION ALGORITHM OF STEP AND STAND
EVENTS DURING SPINAL NEUROMODULATION

Figure 4.10: Top-10 SHAP feature analysis with beeswarm (left) and heatmap (right)
plots of XGBoost. Temporal activity contributed to the classification of left step activity
whilst a mixture of temporal, statistical, and frequency features contribute to left step
activity. Temporal and statistical features contributed to the classification of standing
activity. Heatmap activations indicate the contribution of each feature to the logistic
regression model output ( f (x)).

Logistic Regression feature explanations (see fig. 4.10). The left step classification devel-

oped positive SHAP values for IEMG, RMS and max features in the left channel data

with greater contribution from the Sol channel. Min right Sol features were inversely

attributed such that lower min values returned positive SHAP values. The inverse
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Table 4.9: EMG burst classification comparisons between gaussian mixture model and
online adaptive thresholding for right TA (RTA), right Sol (RSOL), left TA (LTA), left Sol
(LSOL).

RTA RSOL LTA LSOL

F1-Score 0.13 0.41 0.16 0.44
Precision 0.36 0.53 0.33 0.66
Recall 0.08 0.33 0.11 0.33

relationship between SHAP values and minimum left Sol values was also correctly asso-

ciated. The right step XGBoost classification positively associated IEMG, peak-to-peak,

RMS, and max information from right channel data. However, PSD TA and IEMG Sol

right channel information was mistakenly utilised for left step classification. Similar

to logistic regression SHAP analysis, right step classification may have outperformed

left step classification due to the model correctly learning relationships for right step

activity. Intuitively, stand classification contributes positively to SHAP value from the

left and right Sol IEMG features. Sol channel kurtosis negatively contributes to stand

classification, reducing the probability of positive labelling. SHAP values increased with

lower kurtosis; this could be interpreted as smaller deviations or outliers in the windowed

data led to a higher likelihood of stand events.

Finally, to investigate the reason for small recall in the rule-based TOKEDA al-

gorithm, the adaptive thresholding digital signal process was compared against the

Gaussian mixture model for burst classification, refer to table 4.9. While the Sol burst

activity in both left and right achieved strong false positive rejection, many real positives

in the TA channel were missed. The TOKEDA process requires the initial detection of a

TA burst. The strict threshold criteria of TA bursts stop the digital signal process from

the beginning and may explain the poor recall performance in the TOKEDA algorithm.

However, TOKEDA achieved a competitive precision score by prioritising false-positive

rejections.

93



CHAPTER 4. NOVEL CLASSIFICATION ALGORITHM OF STEP AND STAND
EVENTS DURING SPINAL NEUROMODULATION

4.5 Conclusion

In this chapter, I approach the problem of time-series classification of locomotion and

standing activity in 4 spinal transected rats receiving multiple forms of neuromodulatory

therapy while roaming in an enriched cage environment. The proposed pipeline rapidly

utilised adaptive online thresholding mechanisms with temporal constraints to capture

spatiotemporal information. It was hypothesised that linear techniques would suffer

poor classification results due to the stochastic nature of EMG activity and behavioural

variations from overground locomotion. The results from this study only partially support

this hypothesis. XGBoost, a non-linear methodology, and logistic regression, a linear

methodology, were revealed as the top-performing classifiers. Future work to improve

the performance of this classification task may incorporate feature selection methods

such as dynamic time warping or state-of-the-art deep learning methodologies.
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5
DEEP LEARNING METHODOLOGIES FOR STOCHASTIC

EMG TIME-SERIES MULTI-LABEL CLASSIFICATION

D
eep learning has seen immense growth in the past decade, and only recently

has the life-science stream sought to exploit the representational power of

deep learning models. While state-of-the-art (SOTA) techniques have shown

tremendous promise in natural language processing and image classification, time-

series biosignal analysis has historically shown a delay in advancements. Scientists and

engineers have developed impressive handcraft feature sets for specific subjects and

domains that offer poor scalability and generalising power. The noisy, high-dimensional

complexity of biomedical datasets is a difficult scope to work within. To advance the

field of biosignal time-series classification, I consider the works of domain adaptation

across therapies and incorporate the Vision Transformer as a secondary tool to develop

long-distance representations in EMG continuous wavelet transformed (CWT) data.

CWT inputs were stacked along the feature dimension, and multiple models were

trained. I hypothesise that mixing depthwise separable convolutional operations in vision

95



CHAPTER 5. DEEP LEARNING METHODOLOGIES FOR STOCHASTIC EMG
TIME-SERIES MULTI-LABEL CLASSIFICATION

transformers will best encode the cross-channel and spatiotemporal information of a

locomotor events. Results suggest depthwise separable convolutions do perform better for

standing activity. However, suffer in representing the cross-channel time requirements of

locomotor activity. Vision transformers encode more robust spatiotemporal information

across channels to classify locomotor activity compared to convolutional networks. I

discuss the reasons for the results and suggest future advancements in biosignal analysis

in a deep learning context.

5.1 Introduction

In 1895, Willem Einthoven invented the electrocardiogram (ECG) as a clinical diagnostic

tool to measure the electrical activity of heart muscles and represent the cardiac cycle in

polarization and depolarisation of the myocardium (Silipo and Marchesi, 1998). Multiple

systems have been developed since, including electroencephalography (EEG), report-

ing brain electrochemical activity via micro-voltage changes from the scalp (Bajaj and

Pachori, 2013). EMG measures the electrical potential generated from motoneuronal

activity, activating the voltage-gated calcium channels in muscular tissue (Karthick

et al., 2016; Kuo and Ehrlich, 2015). Photoplethysmography (PPG) encodes representa-

tions of the volumetric changes of an organ over time via light absorption (Alian and

Shelley, 2014). Electrical, mechanical, thermal, and other biosignals, transduced via an

appropriate sensor selection, enables the estimated measure of physiological data over

time.

These signals all measure the adaptation of some physiological activity over con-

tinuous time, discretised through an analogue-to-digital converter. It is through the

dimension of time that the characteristics and meaning of the signal are captured.

Physiological biosignals are incredibly complex, with individual specific time-dependent

information, dynamically changing depending on the equipment setup, physiological
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state, and environment factors (Idri et al., 2018; Miotto et al., 2018).

Traditionally, signal processing methodologies, feature extraction, and classification

techniques seen in chapter 4 were performed to extrapolate the information of interest.

However, these processes are time-consuming and lack reliability (Längkvist et al., 2014).

Handcrafting feature sets also make it difficult to generalise between data sets and

adapt across different domains (Koelstra et al., 2012; Krishnan and Athavale, 2018).

One method to approach the non-linear and dynamic nature of biosignal analysis is to

harness the processing power of neural networks, capable of non-linear transformations

and extracting features from raw multivariate time-series data (Fawaz et al., 2018).

While computer science has endeavoured to develop neural networks and exploit

representation learning for complex tasks since the 1950s, the life sciences have only

recently seen advancements in deep learning relevancy, see fig. 5.1. Deep learning

offers to encode significant volumes of information, allowing researchers and users to

extrapolate the information they require from an otherwise noisy, high-dimensional, and

complex data set (Deserno and Marx, 2016). Thus, deep learning and the comprehensive

data collected through decades of healthcare industry physicians and public health

infrastructure have opened doors to data mining for extracting hidden knowledge behind

medical tasks (Esfandiari et al., 2014).

Artificial neural networks (ANNs) have their roots embedded in a multidisciplinary

stream. Some consider Aristotle’s attempts to understand the brain in 300 BC as the first

step towards neuroscience and the development of the neural networks of today (Wang

and Raj, 2017). Early works by critical neuroscientists helped form early conceptions of

deep learning. Cajal and Golgi are considered to be the first neuroscientists in history.

Original work by Cajal, using the famous ‘la reazione nera – the black reaction’ developed

by Golgi, gathered the first histological slides of the nerve cell, awarding Golgi and Cajal

with a shared Nobel Prize in 1906 (Yuste, 2015; Ghosh, 2020). Works by the likes of
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Figure 5.1: Deep learning popularity over time, compared to the inclusion of deep
learning techniques in life sciences. Deep learning differentiates from machine learning
in requiring three or more layers. Adapted and updated image from Bacciu et al. (2018).

Donald Hebb, Alan Hodgkin, Andrew Huxley, Warren McCulloch, and Walter Pitts paved

the way towards the development of the first perceptron in 1958 by, at the time, research

psychologist Frank Rosenblatt, who later on became associate professor of neurobiology

and behaviour at Cornell University (Hebb, 2005; McCulloch and Pitts, 1943; Hodgkin

and Huxley, 1952; Rosenblatt, 1958). Since then, multi-layer perceptions, convolutional

neural networks, recurrent neural networks, transformer networks, and new SOTA mod-

els in development have seen incredible coverage in research and commercial contexts

(Alzubaidi et al., 2021).

Deep learning towards diagnostics and monitoring has received significant attention

in the biomedical space (Gérardin et al., 2022; Wosiak et al., 2018). Multiple applications

exploiting the representational power of deep learning have been presented, especially in

diagnostics (Aggarwal et al., 2021; Suzuki, 2017). Medical image classification has seen

an incredible rise in research coverage with many researchers adopting the successes of
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image processing in convolutional neural networks (CNNs) to classify medical imaging

data (Sarvamangala and Kulkarni, 2022). Three techniques have been reported to

classify medical images successfully: training a CNN from scratch, using pre-trained

CNN features, and unsupervised CNN pre-training with supervised fine-tuning (Shin

et al., 2016). The depth of latent representation in immense data volumes gives deep

learning the edge of traditional machine learning approaches. Recently, research effort

has gone towards applying augmentation techniques to upscale and develop robust deep

learning models in small data set contexts, such as personalised models (Iwana and

Uchida, 2021). Yoo et al. (2014) applied feature extraction of MRI data towards multiple

sclerosis lesion segmentation using unsupervised learning, followed by random forest

supervised classification. CNNs have been used widely in cancerous lesion identification,

diagnosis, and segmentation (Ciompi et al., 2015; Suzuki et al., 2004, 2010).

With similar taxonomy to CNNs, time-related classification and prediction using

recurrent neural networks (RNNs) has received a lot of attention (Wang et al., 2021;

Miotto et al., 2018; Ganapathy et al., 2018). Applications have encompassed the use of

deep belief networks (Liu et al., 2014) and autoencoders (Hu et al., 2016; Rajan and

Thiagarajan, 2018) for early Alzheimer’s onset prediction. Long short-term memory

(LSTM) cells using multi-channel fusion have been used to make medical prediction

models in diverse healthcare scenarios such as blood glucose level prediction (Rabby

et al., 2021) and medical event prediction (Liu et al., 2022). Similarly, gated recurrent

units have been applied to predict heart failure (Choi et al., 2017).

While RNNs introduce an element of time into latent space representation, they

struggle to perform on long time series with limited channels and have not been com-

monly utilised for time-series classification tasks (Ismail Fawaz et al., 2019). Capturing

the transformation of the physiological state from one slice of time to another is valuable

when developing protocols, practising prevention, and patient monitoring (Wang et al.,
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2021; Miotto et al., 2018; Ganapathy et al., 2018).

Characterising and classifying SCI subject rehabilitation recovery, activity tracking,

and compliance are critical variables for clinicians to properly regime and develop

protocols for the patient’s success (Bonato, 2010; Cao et al., 2020; Burns and Adeli, 2017;

Brogioli et al., 2017). Moreover, they are necessary to understand the dose-response of

therapeutic interventions and inform of the safety and efficacy of such interventions. The

question then arises: If traditional methodologies to track pathological gait and standing

events struggle to perform, how do deep learning methods compare?

5.2 Background

In this study, I aim to perform discriminative classification on stochastic multi-label EMG

data, detailed in chapters 3 and 4. I compare multiple deep-learning methodologies and

analyse the performance of convolutional and vision transformer models. This section

contains previous deep-learning EMG classification methods in pathological and healthy

locomotion detection.

5.2.1 Deep Learning for EMG Classification

Multilayered ANNs using features extracted from multivariate EMG signals have previ-

ously shown promise for classifying overground locomotion for uninjured populations

(Morbidoni et al., 2019; Huang et al., 2009; Negi et al., 2020). Recently the work has been

extended to intra- and inter-subject gait phase prediction in cerebral palsy hemiplegic

children (Morbidoni et al., 2021). However, improvements to the representational power

of ANNs have been made possible by way of CNNs (Ismail Fawaz et al., 2019).

Multilayered CNN1D approaches have been used to represent IMU kinematic infor-

mation in sliding window segmentation for locomotion classification towards exoskeleton

and robotic prostheses (Lu et al., 2020; Kim et al., 2021). Similar approaches to feature
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extraction were applied in large CNN models, namely AlexNet and VGG16, to sample

sEMG data, transform a window of data into a 2D representation with short-time Fourier

Transform (STFT) or continuous wavelet transforms (CWT) before downsampling the

data (Demir et al., 2019; Krizhevsky et al., 2012; Simonyan and Zisserman, 2015). These

approaches were also studied in upper-limb gesture detection (Duan et al., 2019; Ozdemir

et al., 2022; Huang and Chen, 2019; Savithri et al., 2021; Shanmuganathan et al., 2020;

Nahid et al., 2020; Rahimian et al., 2020; Côté-Allard et al., 2019). Such strategies

aimed to take advantage of pre-trained ImageNet weights for more generalised feature

extaction. This is an interesting approach considering EMG spectrogram information

should look very dissimilar to typical content within the ImageNet database but results

showcase the latent representational power held within deep learning networks (Deng

et al., 2009).

As far as I am aware, there have yet to be deep-learning studies on the classification

of spinal cord injured pathological gait. While my data set does not incorporate human

activity, I develop the first case towards locomotion classification in SCI pathological

gait.

5.2.2 Advancements in Deep Learning

I will discuss several critical advancements in deep learning time-series classification

relevant to the stochastic nature of the data set at hand. These will include transformers,

vision transformers, and domain adaptation.

From several CNN architectures, residual networks have ranked as a top performer

across multivariate time-series datasets (Ismail Fawaz et al., 2019). With this information

in mind, I briefly summarise the development of Residual, Inception, and Xception models

(He et al., 2015; Szegedy et al., 2016; Chollet, 2017). Residual Networks (ResNet) apply

skip connections to avoid degradation of information as more layers are added into a
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Figure 5.2: Illustration of a skip connection of residual CNN, from the original paper (He
et al., 2015). These connections aim to reduce the effects of vanishing gradients.

neural network, also known as the vanishing gradient problem fig. 5.2. This enables

extensive learning towards more generalised latent representations for deep learning

classification.

Inception was suggested to avoid representational bottlenecks and allow high dimen-

sionality without increasing computational expense (Szegedy et al., 2016). The design

introduces using multiple filter sizes, rather than a single size, in a single block, which

were then concatenated and passed to the next layer. Thus, capturing various local infor-

mation. Finally, the Xception model builds upon the foundations of CNN, ResNet, and

Inception by replacing all convolutional layers with depthwise separable convolutional

layers (Chollet, 2017). These layers map cross-channel correlations and perform spatial

convolutions within a singular channel, entirely decoupling the convolutional mapping,

as opposed to other CNN architectures that perform cross-channel correlations simul-

taneously with spatial correlations. This is completed by calculating a 1x1 convolution

after performing channel-wise spatial convolutions.

Despite recurrent design, LSTM has had difficulty with long time-series data and

maintaining relevance in forecast prediction over discriminative tasks (Zouitni et al.,

2023). To summarise, LSTM networks suffer from three main problems: inability to

parallelise due to sequential computation, no explicit long- and short-range dependency

modelling, and linear positional encoding between information. Transformer networks
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were introduced in natural language processing to fill the long-distance representation

difficulties with LSTM (Vaswani et al., 2017). The transformer architecture begins

by positionally encoding the input sequence using the phase properties of different

frequencies in sine and cosine waves. The wavelengths progress from 2π to 10000 ·2π,

creating positional embedding as a linear function of PEpos.

PE(pos,2i) = sin(pos/100002i/dmodel )(5.1)

PE(pos,2i+1) = cos(pos/100002i/dmodel )(5.2)

The encoded inputs are fed into a stack of layers, each containing cells specified

in fig. 5.3. The multi-head self-attention mechanism consists of feeding inputs as val-

ues, keys, and queries, each linearly mapped into a scaled dot-product operation. The

mathematical function is described below in eq. (5.3) where Q, K, and V are the queries,

keys, and values respectively and dk is a scaling factor. Intuitively, the attention scores

compute the similarity between the query and the key applied to the value. One ex-

ample is the search engine context, where the operator inputs a query to be listed a

series of keys. The most relevant of these keys are weighted according to some value. A

multi-head attention mechanism can attend to different subspace representations by

performing this operation multiple times. Implementing positional encoding allows for

positional dependencies across each head. A residual connection is included from the

encoder cell to prevent information degradation, mitigating the effects of the vanishing

gradient problem (He et al., 2015). The decoder output feeds into a linear projection

before applying SoftMax activation.

(5.3) Attention(Q,K ,V )= sof tmax(
QKT√

dk
)V
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Figure 5.3: The Transformer model architecture, as specified in Vaswani et al. (2017). On
the left is the encoder stack, which performs self-attention. On the right is the decoder
stack, which performs attention operation on the output of the encoder stack.

Having briefly covered the architectures and underlying principles of deep CNN

models and Transformer networks, I now discuss the recent research efforts into vision

transformers (Dosovitskiy et al., 2021). This work has since seen many adaptations,

including additional depthwise separable convolutional layers between attention lay-

ers, performing cross-covariance to operations for cross-channel similarity, and self-

supervised semantic segmentation (Wu et al., 2021b; El-Nouby et al., 2021; Caron et al.,

2021). The vision transformer model uses the same attention mechanisms as the original
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Figure 5.4: The Vision Transformer model architecture as described in Dosovitskiy et al.
(2021).

design with slight variations in the implementation. Firstly, the positional embedding

is performed by the ‘patching’ operation, which crops the image into multiple patches

before linear projection to the transformer encoder layer. An embedded ‘class’ token

is concatenated at the beginning of the flattened patch sequence. The key difference

in the vision transformer encoder is the pre-normalisation step that occurs before the

multi-head attention and multilayer perceptron block.

Wu et al. (2021b) combined the ideas from the Xception model to the vision trans-

former to create the convolutional vision transformer (CvT). The model first removes

the need for patch embedding and is replaced with a convolutional layer to form a

convolutional patch projection. The intuition behind this was to encode the details of

each patch from the embedding stage with overlapping spatial footprints, enabling a

deeper representation of complex patterns. The convolutional embedding reoccurs be-

tween transformer layers. A depthwise separable convolutional operation is performed

on the query, key, and value matrices within each transformer block before complet-

ing the attention step. By replacing the linear projection between attention layers, the
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Figure 5.5: Domain adversarial neural network architecture with the goal of ‘confusing’
the feature extractor sufficiently to learn domain invariant representations of the data
set, image from the original paper (Ganin et al., 2016).

authors hypothesised a mapping of local spatial information to higher-order semantic

representation. With similar motivations to Wu et al. (2021b), a second approach to depth-

wise self-attention was introduced as the cross-covariance image transformer (XCiT)

(El-Nouby et al., 2021). XCiT involves computing the self-attention function along the

feature dimension by reversing the matrices K and Q in the scaled dot-product operation.

Furthermore, the authors suggest l2 normalising and learnable temperature scaling, τ,

to limit the magnitude of query and key matrices to enhance stability during training

with a variable number of tokens.

(5.4) XC-Attention(Q,K ,V )= sof tmax(
KTQ

τ
)V

Finally, domain adaptation was initially suggested to generalise feature representa-

tions across various domains (Ganin et al., 2016). The mathematical underpinnings are

described in detail in Levi et al. (2021). The basic principle operates on 3 loss functions to

converge domain adversarial neural networks towards domain invariant representations
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eq. (5.5). Inputs to the classifier consist of the source and target (adversarial) domain

fig. 5.5. These are concatenated before passing into the feature extractor network. The

feature extractor attaches to a label classifier and a domain classifier. The job of the label

classifier is to correctly output the source labels, while the job of the domain classifier is

to output the domain of each sample correctly. Applying a gradient reversal process to

domain classification samples forces the domain loss to increase while trying to converge

onto the source loss eq. (5.5).

Levi et al. (2021) mathematically defined the losses towards domain-invariant ad-

versarial learning (DIAL). I summarise the key components below. Let G f (·;θ f ) as the

feature network output with parameters θ f and G y(·;θ f ) as label classifier, and Gd(·;θd)

as the domain classifier with parameters θd. For a given training set (xi, yi)n
i=1 with ad-

versarial (adv) samples as (xi, yi)n
i=1 the source (src) loss can be defined as the following:

Ly
src =

1
n

n∑
i=1

CE(G y(G f (xi;θ f );θy), yi)

LCE
adv =

1
n

n∑
i=1

CE(G y(G f (x′i;θ f );θy), yi)

Ld
src =

1
n

n∑
i=1

CE(Gd(G f (xi;θ f );θd),di)

Ld
adv =

1
n

n∑
i=1

CE(Gd(G f (x′i;θ f );θd),di),

(5.5) DI ALCE = Ly
adv +λLCE

adv − r(Ld
src +Ld

adv)

Note L represents the loss calculation from cross-entropy (CE), per section 3.7.
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In eq. (5.5), the r parameter is a hyperparameter used to enforce domain-invariant

representation as training progresses, scalably increasing the losses in the domain space.

As far as I know, only Côté-Allard et al. (2021) has utilised domain adversarial training

to perform EMG classification. The authors prescribed different calibration sessions as

domains to train from, reporting more robust classification over multiple days, an area

of significant interest for wearable sensing.

In this study, I aim first to investigate convolutional and vision transformer neural

network classification performance on sparse EMG channel recordings for ipsilateral

locomotion and bilateral standing events in spinally transected rats. Secondly, I report

on the effect of domain adaptation between therapies using domain adversarial neural

network strategy. By structuring EMG windows as CWT transforms and stacking along

the channel dimension, I hypothesise the Xception and CvT models to best perform

by capturing cross-channel latent representations. Moreover, I hypothesise that CvT

outperforms Xception by the robust encoding of local to global semantic information

within a CWT frame.

5.3 Methods

Pre-processing follows similar steps as section 4.2. Bandpass filtering and standard nor-

malisation were repeated with the same values. A CWT with Generalised Morse Wavelet

(GMW) was performed to transform the multichannel signal into a 3D representation

fig. 5.6. The first dimension contained the number of scales, the second-dimension time,

and the third dimension contained each channel. To hasten the processing speed, I used

the package ‘ssqueezepy’, reducing computational processing 10-fold (Muradeli, 2020).

Further optimisations included pre-calculating the scales used to feed into CWT by log-

piecewise scaling and batch multiprocessing filtered multichannel data. Batched window

labelling was calculated by taking the median of each label. Performing CWT increases
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Figure 5.6: Bandpass and standard normalised EMG channel signals were continuous
wavelet transformed with GMW and stacked along the ‘feature’ or ‘channel’ axis.

the data set by a factor equal to the number of scales calculated for the transform. The

number of scales varied according to the window size but averaged close to 250. To reduce

memory constraints, deterministic pre-processing output encoded files of size 200MB

into non-volatile memory. An input buffer decoded the files before batching, shuffling,

and pre-fetching, improving computational speeds and reducing training time. A shuffle

buffer size of 100 batches was filled and reshuffled each iteration to enhance stability

during training.

A hybrid CNN2D-BiLSTM model defined in table 5.1 was developed with stateful
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Figure 5.7: Illustration of different activation functions used in this study. Image from Qi
et al. (2023).

BiLSTM cells, each returning full sequences before being concatenated for dense multi-

layer perceptron (MLP) processing. BiLSTM units were initialised with tanh activation

and recurrent sigmoid activation, meeting requirements for cuDNN implementation,

see fig. 5.7. This study did not modify the CNN-only networks from the original works

(He et al., 2015; Szegedy et al., 2016; Chollet, 2017). Vision transformers will follow the

same naming convention as the original works. The ViT, XCiT, and CvT models will be

used to test against the hypothesis (Dosovitskiy et al., 2021; El-Nouby et al., 2021; Wu

et al., 2021b). Model architectures each are summarised in tables 5.2 to 5.4. For image

representations of the mechanisms behind each model, see figs. 5.4, 5.8 and 5.9. CvT

models were trained with and without the class (CLS) token. Only the results without

the CLS token are outlined below. CNN models were trained with a batch size of 12, and

ViT models were trained with a batch size of 8.

Source and target domains for DIAL were split by inclusion and exclusion of quipazine
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Table 5.1: Hybrid 3-layer CNN2D-BiLSTM model. The notation follows as batch size,
height, width, and variable dimension ‘d’. ‘fc’ stands for fully connected.

Layer Name CNN2D-BiLSTM

conv1 2×2, 32, stride 1

batch normalisation

maxpooling 2d 5×5, stride 1

dropout 0.4

reshape b h w d → b h (w d)

bilstm 32-d, tanh

dropout 0.4

flatten b h (w d) → b (h w d)

dense 32-d fc, relu

dense 3-d fc, sigmoid

in the applied therapies. This was informed by the frequency-dependent change in

neuromuscular expression upon introducing the serotonin agonist to spinally transected

rodents during locomotion training on a weight-supported treadmill (Gad et al., 2015).

The same preprocessing steps to prepare CWT input data were applied to the source

(with quipazine) and target (without quipazine) domains. Brief experimentation with

matching source and target domain labels to develop a representational bridge between

domains found no difference in evaluation results. Thus, both source and target domain

labels were shuffled independently.

The feature-extracting model was selected based on the performance of the tested

CNNs, choosing the model with the lowest loss. Preparing the model for DIAL involved

building the feature extractor and truncating the classifying layer. For ResNet, Inception,

and Xception models, this meant including the top input layer until the last global

average pooling stage but excluding the penultimate fully-connected classifying layer
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Table 5.2: ViT architecture with linear projections and GeLu activation in the final MLP
output layer (Dosovitskiy et al., 2021).

Layer Name ViT

linear projection 1024

embedding dropout 0.1

number of heads 16

layer depth 6

transformer dropout 0.1

mlp output dimension 2048

Table 5.3: XCiT architecture with convolutional patch projections and fourier positional
encoding. GeLu activation was applied in the MLP and convolutional patch projection
layers (El-Nouby et al., 2021).

Layer Name XCiT

convolutional embedding dimension 768

embedding dropout 0.0

number of heads 12

transformer layer depth 12

class attention layer depth 2

transformer dropout 0.0

mlp output dimension 3072

(He et al., 2015; Szegedy et al., 2016; Chollet, 2017). In the case of the custom hybrid

model, the final sigmoid activated fully connected layer would be excluded table 5.1.

The final pooling layer of the feature extractor, before the output layer, was connected

to an MLP label classifier and a gradient-reversed MLP domain classifier with scaling

function ‘r’ fig. 5.5 and eq. (5.5). The label classifier was a 128-d, ReLu-activated MLP,
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Table 5.4: CvT architecture with convolutional overlap embedding (Wu et al., 2021b).
Each attention block maps query, key, and values with depthwise separable convolutions
before attending with scaled dot-product operations. GeLu activations were applied in
MLP output layer.

Layer Name CvT

cvt1

embed: 7×7, 64, stride 4
Q: 3×3, 64, stride 1

K, V: 3×3, 64, stride 2
heads: 1
depth: 1

mlp multiplier: 4

cvt2

embed: 3×3, 192, stride 2
Q: 3×3, 192, stride 1

K, V: 3×3, 192, stride 2
heads: 3
depth: 2

mlp multiplier: 4

cvt3

embed: 3×3, 384, stride 2
Q: 3×3, 384, stride 1

K, V: 3×3, 384, stride 2
heads: 6
depth: 10

mlp multiplier: 4

connected to the final output sigmoid-activated layer with 3 classes. The domain classifier

was a 64-d to 32-d, ReLu activated MLP with a 0.5 dropout layer, see table 5.5. This

now fully describes the domain adversarial neural network (DANN). Class weights for

the adversarial, or target, domain were set to 0. The scaling factor, ‘r’, was kept as 1.

Training the DANN followed the same steps as the other models but with a split source

and target domain data set preparation. All hyperparameters were set per table 5.6.

After training the DANN with source and target domain samples and reaching 20

epochs, the label classifier section of the model was re-compiled without the domain

adversarial, gradient-reversal layers. The feature extractor model layers were ‘frozen’,
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Table 5.5: Summary of the domain adversarial neural network (DANN), built on top of
the feature extractor network. Feature representations from the extractor are global
average pooled before passing into label and domain dense layers.

Layer Name DANN

feature extractor

label dense 1 128-d fc, relu

label dense output 3-d fc, sigmoid

domain dense 1 64-d fc, relu

domain dense 2 32-d fc, relu

dropout 0.5

domain dense output 3-d fc, sigmoid

Table 5.6: List of the hyperparameter specifications used for training and testing of each
deep learning network. The Adam optimiser is defined in Kingma and Ba (2017). All
vision transformers downsampled to the specified size. Only ViT used a 50x50 patch size.
The remaining vision transformer models performed convolutional patch embedding.

Hyperparameter Value

learning rate 1×10−7

loss Multiclass Binary Cross Entropy

optimiser Adam

CNN downsample (scale size/2,window size/2)

ViT downsample (150,1500)

ViT patch size (50,50)

meaning all trainable variables became fixed. Finally, fine-tuned with supervised learning

over the entire source and target data set was completed using the hyperparameter

settings in table 5.6.

Tensorflow v2.12.0 framework was used to train all deep learning models (Wagner and
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Smith, 2008). Training, validation, and testing data were split with 60%/20%/20% ratios.

All deep learning models used the Adam optimiser, with a learning rate of 1×10−7, and a

sigmoid activation dense output unit, see table 5.6 for full hyperparameter specifications.

Deep learning models were trained using NVIDIA Quadro RTX 6000 Passive graphics

cards for minimally 20 epochs. A post-analysis of the training history was completed to

ascertain if the model should undergo further training in iterations of 10 epochs. All code

was written on Python 3.8 (Van Rossum and Drake, 2009).

To determine the effect of window size and window shift, a hybrid CNN2D-BiLSTM

network was trained up to 20 epochs across 0.1 – 0.8ms window sizes and proportional

window shifting between 25 – 100%. The learning rate was set to 1×10−6 and a batch

size of 2. The minimum validation loss sampled from all epochs was used to determine

the effect of window sizing and shifting on classification results.

The below metrics were recorded during the training and validation procedure for

all models. The multiclass binary cross entropy was set as the loss variable to minimise.

Precision, recall, and area-under-curve (AUC) were also recorded. The AUC is the

interpolated area of the true positive rate, eq. (3.5), against the false positive rate.

(5.6) False Positive Rate= False Positive
False Postive+True Negative

To find the representative accuracy of the tested algorithms, a series of set time-

windowed labels were found by performing the sliding window procedure through the test

data label set. The sliding window contained a 3-sec window size and 25% overlap. All

windows that did not have any event activity were rejected. This process determines the

accuracy within a time window, focusing on assessing the performance of our classifier

during specific temporal segments of interest.

All train, validation, test data sets, and analysis methods followed the same structure
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as specified in section 4.2.

5.4 Results

The window size and stride study are displayed in fig. 5.10. The figure suggests no

relationship between the performance of our hybrid CNN2D-BiLSTM model and window

size or shift. A Tukey’s honest significance test confirmed these results and returned no

significance in any pairs (p > 0.1). Fixing the analysis to only a single window size of

0.2s with varying window shift produced lower validation loss with higher percentage

of overlapping samples with no difference for fig. 5.11. Using 50% overlap recorded no

difference in yielding lower validation loss across window sizes. To reduce computational

load a window size of 0.25s and sliding overlap of 75% was used to perform CWT and

deep learning classification.

Evaluation across the entire data set using macro calculated metrics is shown in

table 5.7. Analysing F1 scores, the top-2 models were made of Xception and ResNet50.

ResNet101, DANN, ViT, and CvT placed third in the F1-score evaluation. ViT recorded

the highest precision, followed by Xception, then ResNet50. The CNN2D-BiLSTM hybrid

model reported the highest recall, followed by Xception and ResNet50. The highest-

performing model was the Xception deep learning network from these metrics.

Using Xception as a feature extraction network, the DANN model was trained with

the parameters specified in table 5.5. DANN model results are reported along the bottom

row in table 5.7. No improvement was observed in the recall values, although precision

was reduced by 0.11.

All models reported an improvement in macro evaluation metrics by separating the

test data set into periods of 3-sec windows and rejecting any window without labelled

event activity. Notably, the F1 scores of CNN2D-BiLSTM and Inception model improved

by 0.16 and 0.15, respectively. The third largest gain of 0.1 was seen by ViT and DANN
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Figure 5.10: Sliding window size and shift results from the CNN2D-BiLSTM training ex-
periment. There are no significant differences in validation losses across any parameter.

models; see table 5.8. Xception and ResNet50 consistently ranked high in their full and

time-windowed data sets evaluation scores. ViT and CvT were evaluated equally on F1

scores but differed in precision and recall metrics across full and time-windowed data

sets. The two highest-performing models were the Xception and ResNet50. The Xception

model more accurately detected left stepping and standing activity over ResNet50 see

figs. 5.12 and 5.13.

Between the vision transformer models, ViT and CvT resulted in correctly classifying

stepping and standing events. ViT more reliably detected stepping activity over standing
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Figure 5.11: Sliding window size and shift results from the CNN2D-BiLSTM training
experiment. Window shift analysis was performed with a fixed window size of 2000.
Window size analysis was performed with fixed window shift of 0.5×window size.

activity, while CvT reported the opposite figs. 5.14 and 5.15. More specifically, ViT rejected

false positives in left and right stepping and detected left stepping true positives more

so than CvT. However, CvT had a higher rate of correctly labelling right stepping and

standing true positives.

Comparing ViT with Xception, left step detection scores were near equal, with Xcep-

tion improving over ViT in the recall metric by 0.02. ViT rejected false positives more

accurately during right-step labelling, although the Xception model detected more true
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Table 5.7: Macro evaluation of deep learning models using the entire test data set.

Model Precision Recall F1-score

CNN2D-BiLSTM 0.40 0.84 0.52
ResNet50 0.55 0.81 0.65
ResNet101 0.50 0.72 0.59
ResNet152 0.45 0.70 0.54
Inception 0.43 0.67 0.50
Xception 0.57 0.83 0.66
ViT 0.61 0.65 0.59
CvT 0.51 0.75 0.59
XCiT 0.47 0.40 0.39

Xception-DANN 0.46 0.83 0.56

Table 5.8: Macro evaluation of deep learning models using only time windowed periods
of activity.

Model Precision Recall F1-score

CNN2D-BiLSTM 0.60 0.84 0.68
ResNet50 0.64 0.81 0.71
ResNet101 0.62 0.72 0.66
ResNet152 0.60 0.70 0.63
Inception 0.64 0.67 0.65
Xception 0.67 0.83 0.73
ViT 0.73 0.65 0.65
CvT 0.68 0.75 0.69
XCiT 0.65 0.40 0.46

Xception-DANN 0.59 0.83 0.66

positives. Within these differences, the F1-score reported a higher result for ViT over

Xception in the scope of right-step labelling. In contrast, Xception stand event true

positive detection was near double that of ViT outputs, see figs. 5.16 to 5.18.

Xception-DANN fine-tuned classification results did not improve over the Xception-

only model. Xception-DANN managed to improve left and right step recall but to the

detriment of rejecting false positives for all events and recalling stand events fig. 5.19.
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Table 5.9: Left stepping evaluation of deep learning models using only time windowed
periods of activity.

Model Precision Recall F1-score

CNN2D-BiLSTM 0.47 0.79 0.59
ResNet50 0.54 0.74 0.63
ResNet101 0.54 0.67 0.60
ResNet152 0.53 0.70 0.60
Inception 0.52 0.58 0.55
Xception 0.56 0.81 0.66
ViT 0.58 0.79 0.67
CvT 0.56 0.73 0.63
XCiT 0.54 0.53 0.53

Xception-DANN 0.49 0.88 0.63

Table 5.10: Right stepping evaluation of deep learning models using only time windowed
periods of activity.

Model Precision Recall F1-score

CNN2D-BiLSTM 0.46 0.89 0.60
ResNet50 0.58 0.83 0.69
ResNet101 0.56 0.78 0.65
ResNet152 0.54 0.79 0.64
Inception 0.48 0.66 0.55
Xception 0.55 0.88 0.68
ViT 0.70 0.75 0.73
CvT 0.53 0.85 0.65
XCiT 0.57 0.47 0.51

Xception-DANN 0.41 0.92 0.57

5.5 Discussion

This study investigates the performance of deep learning methods towards pathological

gait classification of spinally transected rats undergoing different neuromodulatory

therapies with sparse EMG channel measurements. I use CWT pre-processing to leverage

the image classification successes found in ResNet, Inception, and Xception architectures.

I compare these results against emerging vision transformer models, including ViT,

XCiT and CvT. Finally, I use DIAL to train a domain-invariant feature extractor before
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Figure 5.12: A spider and bar graph to illustrate the differences between the performance
of convolutional models. The left shows the spider plot of different labels and their
precision and recall. The right displays the F1-scores for different labels and models.

fine-tuning it with an MLP classifier. As far as I know, this is the first time SOTA deep

learning methods have been performed to classify sparse EMG signals of pathological

gait.

All models tested report evaluation metrics greater than those of previous works

towards EMG locomotor classification, tested in chapter 4. This was especially high-

lighted in the time-windowed sampling. Deep learning models improved across the board,

whereas all machine learning and digital signal processing methods with handcrafted

features saw a drop in evaluation metrics. While XGBoost managed to record an F1-

score >0.5 by correctly classifying imbalanced standing events, all tested deep learning

models managed to perform >0.5 in stepping alone during time-windowed analysis ta-

bles 5.9 and 5.10. Similar results were reflected in other pathological lower limb activity

classifications with spectrogram transforms (Issa and Khaled, 2022).
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Figure 5.13: A spider and bar graph depicting CNN classifications for time windowed
periods of activity.

Xception model networks outperform the other CNN and transformer models, thus

rejecting the hypothesis of CvT local to global mapping of depthwise information as the

better alternative. This was due to the Xception model’s ability to encode depthwise

information with local mapping. The arrangement of the input data (embedded EMG

channel information across the third dimension) required the models to extract the

relationship across each channel in a spatiotemporal fashion.

Given that CvT used depthwise separable convolutions to project inputs to attention

operations, one could expect to develop patch-wise local-to-global relationships across

channels for each relevant label better. However, CvT did not produce the same stepping

classification results as ViT, nor did it predict standing activity and Xception. The CvT

model reduced classification accuracy when including the CLS token, resulting in a

macro F1-score of 0.52 and 0.62 for the full and time-windowed data set, respectively.

While fig. 5.10 suggests no discernible relationship between window size and shift
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Figure 5.14: A spider and bar graph to illustrate the differences between the performance
of vision transformer models. All CvT results were reported without using the class token
(CLS).

for CNN models, this may not be true for transformers. Reducing the size of the CvT

network and tuning the patch size may provide the appropriate space for CvT to converge

better (fig. 5.29). To determine if the window size affected vision transformer outputs, a

brief analysis of the effect of window sizing was completed for the ViT model. Repeating

the same method described in section 5.3 for window sizes 0.15, 0.25, 0.35, and 0.45-sec

showed no discernible difference in validation loss fig. 5.26.

The results from this study suggest that depthwise separable convolutions and

feature-based attention operations were insufficient to represent the spatiotemporal

dependencies for each channel across stepping and standing. A local depthwise separa-

ble mapping was more effective in developing the latent representation of locomotion

and standing across EMG channels fig. 5.17. Each EMG channel could be considered a

multi-modal information stream to represent more robust cross-channel activity. Heesoo
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Figure 5.15: A spider and bar graph depicting vision transformer classifications for time
windowed periods of activity.

et al. (2022) incorporated transformers for multi-modal biosignal classification by simul-

taneously completing cross-attention operations over the sensor modality and feature

space. Such a strategy could embed stronger cross-channel representation than CvT or

XCiT approaches.

XCiT performed least favourably out of all the models. The original paper reported

strong depthwise perception for image segmentation, object detection, and image classifi-

cation (El-Nouby et al., 2021). These results may suggest strong feature representation

of relevant information where different heads learn different semantically coherent

representations. It seemed intuitive to consider cross-covariance attention, attending

over channels, to capture inter-channel relationships. XCiT implements patch interaction

with the local patch interaction block, consisting of two depthwise 3x3 convolutional lay-

ers with batch normalisation and GeLu activation in between. This step was completed

after cross-covariance attention, thus creating local maps. The training plots in fig. 5.30
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Figure 5.16: Plotted are the predictions after label smoothening and applying a prediction
threshold of 0.5. The Xception model better represents the standing activity and struggles
to maintain a robust prediction for stepping. ViT manages to perform all operations
relatively well in this example. Note the long time-period for LeftStep labelling. This
was due to the labelling method of extracting the median from large window sizes. The
negative label time-gap between each step was smaller than the window size and label
population.
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Figure 5.17: A spider and bar graph for more granular comparison of Xception and ViT
results.

suggested a substantial degree of overfitting, which may explain most of the difficulty

towards classifying event labels, an effect not seen in the ViT model (fig. 5.28). Reducing

XCiT model size may help with performance, similar to results shown in ResNet50 – 152,

see table 5.8. Thus, EMG CWT representations that fail to capture cross-channel de-

pendencies may require shallower networks to reduce the effects of vanishing gradients.

By applying convolutional patch embeddings of size 16x16, the XCiT may have more

difficulty in mapping semantic representations compared to the 50x50 ViT patch size,

see figs. 5.21 and 5.31.

ViT correctly classified more stepping windows than any other model. This could be

due to the linear patch embedding performed earlier, with no convolutional layers or

overlapping. This method of patch embedding could have led to more robust step-related

spatiotemporal representations of the CWT. To investigate these results, a heatmap of

Xception and ViT layers and attention heads are plotted fig. 5.20. The Xception heatmap

127



CHAPTER 5. DEEP LEARNING METHODOLOGIES FOR STOCHASTIC EMG
TIME-SERIES MULTI-LABEL CLASSIFICATION

Figure 5.18: A spider and bar graph comparing Xception and ViT classifications for time
windowed periods of activity.

showed a distinct activation on the right-hand side section of the CWT image. The RTA

had a quiet period, while RSOL had an active, variable period. The area with high

activations appears to have bimodal peaks, activating for both the oscillatory bursts

between the TA and SOL, but only if there was adequate activity in the SOL, as no

other areas showed activations. The Xception model has a robust discriminative effect

on variability in the soleus. Thus, the Xception model represents the magnitude and

coordination of the EMG signal within feature-stacked CWT.

Comparably, ViT heads each learnt different semantic representations of the 3D input

fig. 5.21. Similar information on the right-hand side of fig. 5.20 can be seen multiple

times in different heads fig. 5.21. ViT models encoded latent semantic representations of

sparse multi-channel EMG CWT data in a spatiotemporal manner, partially confirming

the initial hypothesis. Different maps included different representations for standing and

left stepping. An example of standing between the Xception activation and ViT attention
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Figure 5.19: A spider and bar graph for more granular comparison of Xception and
Xception-DANN results.

heat maps is seen in figs. 5.22 and 5.23. Each attention head displayed different attention

weights when comparing standing and stepping attention maps in figs. 5.21 and 5.23.

Combined with the results in table 5.7, these plots suggest ViT models could better

discriminate between standing and stepping events with attention mechanisms. Further

evidence of feature representations can be seen in fig. 5.25.

The Xception model was selected to be trained as a DIAL feature extractor using the

DANN model, explained in fig. 5.5 and eq. (5.5). To see a label and domain training history

of the domain invariant learning phase between source and target domains, refer to

fig. 5.32. While the domain loss initially starts high, the classifier managed to reduce the

domain loss despite applying a gradient reversal. This implies poor adversarial mapping

between the source and target domains. Similarly, the label classifier had begun to overfit

around the 20-epoch mark. This may have been due to the limited number of manually

labelled data. By splitting the data into groups with and without quipazine, the model

129



CHAPTER 5. DEEP LEARNING METHODOLOGIES FOR STOCHASTIC EMG
TIME-SERIES MULTI-LABEL CLASSIFICATION

Figure 5.20: Grad-CAM heatmap of Xception activation layers for right step activity
(Selvaraju et al., 2019). Note the variations in soleus activity in the bottom right during
a quiet period in the tibialis anterior activity.

could become prone to overfitting issues, even with gradient-reversal layers. Attempting

to repeat the training process with an ‘r’ value of 2 trained the feature extractor to

register periods of low and high activity, but it did not improve. A straightforward

method to overcome this is to initialise with a larger ‘r’ scale and slowly increase it over

time. Another approach may be to split the source and target domain across different

subjects, similar to (Côté-Allard et al., 2021).

Research in time-series data analysis has grown towards augmentation techniques

(Ismail Fawaz et al., 2019). Incorporating augmentation strategies could introduce to
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Figure 5.21: Heatmap of ViT attention heads for right step activity. Note the different
semantic representations encoded in different heads, spread across the maps. The images
have been resized for easier viewing.
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Figure 5.22: Xception activation heatmap of standing event within a window discussed
in section 5.5.

better ‘confuse’ the feature extractor. Developing more robust feature representation and

avoiding early collapse. The feature extractor was concatenated to the classifier head, and

fine-tuning was performed. This reduced the validation loss much more than the history

in the Xception model fig. 5.27. However, the DANN fine-tuned model struggled with

rejecting false positives in all events and recall for standing events figs. 5.19 and 5.36.

Intuitively, the Xception-DANN model became better at predicting true positive stepping

events, likely because of heightened step label sensitivity, evidenced by the decrease in

bilateral step precision. The adversarial training process seemed to have encoded new
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Figure 5.23: ViT attention heatmap of standing event within a window discussed in
section 5.5. The images have been resized for easier viewing.
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Figure 5.24: Xception-DANN activation heatmap of standing event within a window
discussed in section 5.5.

representations in the Xception model that were not seen without DIAL, as verified in

fig. 5.20 and fig. 5.35. Further experimentation with each domain adversarial parameter

and their effects on data augmentation and synthetic data generation are suggested in

Berrar and Dubitzky (2021); Li et al. (2021b); Iwana and Uchida (2021); Li et al. (2022b).

The next set of experiments may include tuning the ‘r’ value increase domain confusion

and introducing augmentation techniques towards more robust feature representation

across domains.

The literature has few studies analysing the efficacy of domain adaptation techniques
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Figure 5.25: t-SNE feature representation of the penultimate layer outputs across each
model.

in EMG classification, and the ones that do only look at hand gesture recognition (Côté-

Allard et al., 2021; Du et al., 2017; Zhang et al., 2023). Applications of domain adaption

for EMG hand gesture recognition primarily dealt with subject-to-subject variability, an

effort to develop subject agnostic deep learning classification models or chronic recording

activity, reducing entropic variability introduced with biosignal acquisition over time

(Zhang et al., 2023; Côté-Allard et al., 2021). In this study, we apply domain adaptation

techniques towards neurotherapy invariant representation of locomotion detection. The

problems in the time dependency of previous frames and underlying physiological states
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Figure 5.26: Brief study on the effect of different window sizes with 75% overlap using
ViT model classification.

were not addressed in previous EMG domain adaptation papers. As far as I know,

this work offers the first look into how these techniques perform in time-dependent,

physiologically varying conditions.

Morbidoni et al. (2019) trained a 5-layer fully connected neural network and also

applied a similar strategy to Huang et al. (2009) but limited their analysis to sEMG

activity in healthy adults while overground walking in a figure-8 shaped path in a

laboratory setting. Morbidoni et al. (2019) state their study as the first to classify stance

and swing phases in a binary fashion. However, this process assumes locomotion is
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Figure 5.27: Training and validation loss for Xception.

Figure 5.28: Training and validation loss for ViT.
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Figure 5.29: Training and validation loss for CvT without class token.

Figure 5.30: Training and validation loss for XCiT.
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Figure 5.31: Attention mapping of the same right step window discussed in section 5.5.
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Figure 5.32: Label and domain loss history for Xception-DANN.

Figure 5.33: Label and domain loss history for Xception-DANN fine tuning. See fig. 5.34
for the loss history with r = 2.
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Figure 5.34: Training and validation loss history for Xception-DANN with domain scaling
factor r = 2.

already in motion. A large pool of stride samples doubles the channel information on

each leg and does not differentiate between rest and active states. In the extension of

the work towards cerebral-palsy hemiplegic children, their results suggest high accuracy

with F1 scores > 0.9 (Morbidoni et al., 2021). In later experiments, researchers applieda

sliding window to post-process the signal and label accordingly. This process was unique

because the label was defined as the last x% of the signal while taking the mean of

overlapping frame labels. This effectively creates a buffer for each window that only

predicts the final x% of the frame in question. This suggests a post-processing labelling
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Figure 5.35: Xception-DANN activation map of a detected right step after fine-tuning.

method allowed the MLP to more reliably predict the stance and swing phase by using

the past information only to predict the most recent sub-window. This transforms the

problem towards something closer to binary forecasting. Applying similar methodologies

may improve the deep learning result reported in this chapter.

Several limitations lie in blocking the deployment of deep learning models for clinical

use. Major ones include the lack of interpretability, and ‘black box’ nature of deep

learning models, and the enormous volumes of labelled data necessary to train robust

models (Berrar and Dubitzky, 2021). A method to combat these limitations is the better

understanding and development of biologically constrained models (Hole and Ahmad,
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Figure 5.36: A spider and bar graph comparing Xception and DANN fine tuned classifica-
tions with different ‘r’ scale values for time windowed periods of activity.

2021; Pulvermüller et al., 2021). These models could contain the neurological structure

required to perform the task at hand, thus filling the gap of interpretability. Fitting

generative models with data can enable clinically relevant representations of subject

data. Some studies have suggested using the encoder from autoencoder models as a

feature extractor for discriminative tasks (Li et al., 2023).

A second limitation lies in the difficulty of generalising deep learning models in

unseen domains and contexts (Chaki and Woźniak, 2023). Neurological injury and neu-

rodegenerative disease datasets are often sparse and heterogeneous in disease expres-

sion and data collection methodologies (Young et al., 2018; Endo et al., 2024). Moreover,

transformer architecture outperforms CNNs with heterogenous data, improving gener-

alisability across domains in neurodegenerative datasets (Aguayo et al., 2023). While

transformer architectures have become more popular for their short and long-term pat-

tern detection capabilities, CNNs outperform ViTs for medical imaging classification
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with random weight initialisation (Matsoukas et al., 2021). ViTs reap the benefits of the

transformer architecture only after pre-training or self-supervised techniques. However,

self-supervised pre-training with CNNs has been shown to improve the generalisation

performance across shifted medical dataset domains (Azizi et al., 2021). New deep

learning techniques such as pre-training, few-shot learning, domain adaptation, and

self-supervised training may pave the way towards more robust deep learning models to

address the heterogenous and sparse nature of neurological disease datasets (Ditthapron

et al., 2021; Li et al., 2021a).

5.6 Conclusion

Several approaches have been applied towards the EMG classification of pathological gait.

Many incorporate handcrafted feature generation and a ‘divide-and-conquer’ strategy to

identify locomotion events. In this study, I aimed to exploit the latent representational

power of deep learning models, reducing the need for complex and domain-sensitive

feature generation. I tested several local CNN mapping deep learning models and dis-

covered Xception to best discriminate relevant information in CWT channel stacked

input data. I used this model to perform unsupervised domain-invariant adversarial

learning and supervised fine-tuning. The Xception-DANN struggled to develop invariant

representations between quipazine and non-quipaine therapy domains. Vision transform-

ers performing depthwise attention operations did not successfully map local to global

semantic information of cross-channel data as hypothesised. I show explanatory graphs

and suggest future works to consider performing cross-attention operations over each

EMG channel data rather than multi-head self-attention encoding. Future improvements

may incorporate data augmentation and autoencoder methodologies.
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DOMAIN ADAPTATION

E
xisting time series datasets lack cohesion, labelling, and poor generalisability.

These limitations impose challenges in the development of high-dimensional

time series modelling. Thus, new deep-learning techniques to leverage the

available information have been developed to work around these challenges. This chapter

tests SOTA representation learning techniques such as contrastive learning, domain

adaptation, and curriculum learning. Previous domain adversarial learning across ther-

apy domains resulted in poor classification, here I applied domain adaptation across

subjects. I hypothesise that subject-specific variability provides greater disruption to

the feature extraction layers, thus developing more generalisable representations. I also

tested curriculum learning techniques by segmenting the stepping labels into the swing

and stance phases of gait. These new segmentations were used to train feature-extracting

layers before fine-tuning and linear training on the more complex multi-label tasks of

stepping and standing classification. My results show that incorporating curriculum
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learning into our locomotion dataset yields comparable classification performance with

existing SOTA methods. Curriculum learning gains were extended by incorporating

inter-subject domain adaptation. Applying linear training after pre-training with cur-

riculum learning improved class and subject bias while fine-tuning re-introduced these

biases. Presented are techniques to perform subject-invariant robust classification of

pathological gait from sparse EMG signals.

6.1 Introduction

Wearable technology has promised to provide users with insightful data for health

monitoring, healthcare cost reduction, clinician and patient burden reduction, and

improved patient assessment (Bruce and Andrew, 2011; De Fazio et al., 2023; Johansson

et al., 2018). Wearable systems must be robust, timely, and meet privacy and data security

standards to deliver on these outputs (Rodgers et al., 2019). Algorithm performance and

generalisability have hinged on access to a wide distribution of data for both development

and assessment (Wenig et al., 2022; Liew et al., 2022). However, well-annotated and

high-quality data in life sciences has historically been inaccessible, expensive to record,

and difficult to compile (Lathe, 2023; Nagaraj et al., 2020). Reduced volume of accessible

data, time-series classification and deep learning in the life-sciences field has progressed

slower than other sciences domains (Fawaz et al., 2018). Thus, to achieve improved

benchmark performance and provide more robust classifiers, alternative methodologies

have been suggested, including contrastive learning (Eldele et al., 2021; Yue et al., 2022),

masked auto-encoding (Nie et al., 2023), and transfer learning (Fawaz et al., 2018; Ragab

et al., 2023).

Contrastive learning is a self-supervised learning (SSL) algorithm first introduced in

the computer vision domain (Chen et al., 2020). Intuitively, the same label instance can

be measured with varying environment noise, equipment, and artefact; thus, developing
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a model to recognise the same instance in its many forms is a valid method to provide

more robust representations. By introducing variable augmentations to the sample,

a base encoder extracts representation vectors before a small projection head maps

the representations to the space where contrastive loss is applied. Simply put, the

contrastive loss function calculates the temperature normalised cross-entropy loss of the

cosine similarity between the two vectors u and v, see eq. (6.1) and eq. (6.2). Note (i, j) are

indexes of augmented representations in a mini-batch given a set (k). By assuming the

cluster hypothesis, contrastive learning populates clusters with different augmentations,

leading to greater accuracy and generalisability, see fig. 6.1 for illustrated example

(HaoChen et al., 2022).

I believe only one paper has been published that utilises contrastive learning for

gait prediction (Fu and Guan, 2023). EMG signals provided positive examples of gait

activity to guide EEG signal representation similarity, as per eq. (6.2). This problem

differs from the classification problem in this thesis, which is the sparse EMG channel

gait classification in neurologically impaired rodents receiving different neuromodulation

therapies. The long-time course and electrophysiological dynamics introduced by the

neuromodulation will intrinsically change the measured EMG signal over time. However,

the paper raises interesting options for sensor-fusion techniques towards more robust

sparse electrode wearables.

(6.1) simu,v = u ·v
∥u∥∥v∥

(6.2) L i, j =− log
exp

(
sim

(
zi,z j

)
/τ

)∑2N
k=1 1[k ̸=i] exp(sim(zi,zk) /τ)
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Figure 6.1: Illustration of the intuition behind contrastive learning, taken from Le-Khac
et al. (2020). Representations of the same sample (e.g., cat) populate the cluster space
with different augmentations. Similar samples cluster together while non-matching
samples become separate clusters, embedding the manifold from the bottom up. Licensed
under Creative Commons Attribution 4.0 International License.

Transfer learning aims to transfer knowledge from the source domain towards the tar-

get domain, typically related to the source domain data but inherently different (Zhuang

et al., 2021; Hosna et al., 2022). This method of knowledge transfer addresses several

problems in traditional machine learning: (1) insufficient labelled data, (2) mismatched

source and target distributions, and (3) insufficient computational power (Niu et al.,

2020). See fig. 6.2 for an illustration of the transfer learning process. Common approaches

train a deep neural network model on data from well-annotated and trustworthy datasets

before fine-tuning or linear probing the feature extraction layers (Fawaz et al., 2018; Ye
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and Dai, 2021).

Transfer learning for EMG classification has mainly been explored in hand gesture

recognition with techniques to leverage the impressive volume of large generic image

datasets (Demir et al., 2019; Li et al., 2021c), temporally transferable feature represen-

tation (Côté-Allard et al., 2017, 2021), inter-subject transfer learning (Côté-Allard et al.,

2019), and electrode shift (Ameri et al., 2020). Note that none of these methods apply

any domain adaptation (DA) techniques. Methods applying non-EMG or activity-related

pre-trained models appear unintuitive towards human activity recognition. This ‘black-

box’ behaviour has been the source of users’ hesitancy in adopting deep learning models

in practice (Adler-Milstein et al., 2022).

Figure 6.2: Illustration of the intuition behind transfer learning, taken from Hosna et al.
(2022). (a) Develops several models, each specifically trained on the domain dataset
with limited generalisability. (b) Developing representations from training on the source
dataset before transferring knowledge to train on the target dataset. Licensed under
Creative Commons Attribution 4.0 International License.

Finally, inspired by natural learning mechanisms, curriculum learning (CL) exposes

a model to a sequence of tasks that gradually increase in complexity (Bengio et al.,

2009). This method of training has been adopted across multiple tasks where complexity

could range between increasing signal-to-noise ratio, increasing spatial and temporal

resolution, increased artefact presence, and weakly labelled data (Soviany et al., 2022).

To my knowledge, no work on CL for EMG signal classification has been published.
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A clear question now emerges: Does applying representation transfer learning tech-

niques in combination with curriculum learning strategies improve the classification

performance of multi-domain EMG signal data? I hypothesise that a more robust classi-

fier can be trained by localising weights and biases at a better parameter space.

6.2 Methods

Further manual labelling was performed to extend the dataset to include at least 5

minutes of activity across all rodents. Each rodent was identified by a single letter and

digit, namely A3, A5, A7, and A8. Several transfer learning strategies were incorporated

to assess the effectiveness of curriculum learning in unstable locomotor EMG signals.

These include self-supervised contrastive learning, domain adaptation, and pre-training.

Step labels were split into swing and stance phases for the right and left sides. This was

completed by iterating through each pre-labelled step event and manually choosing the

phase split, see fig. 6.4.

Three CL pipelines were applied, see fig. 6.3. (1) Pretrain a locomotion phase feature

extractor then fine-tune or linear train on step and stand data. (2) Contrastive learning

pretraining from the target dataset and open source datasets before fine-tuning or linear

training on step and stand data. (3) Domain adaptation phase pretraining between

subjects followed by linear training on step and stand data.

Inter-subject domain adaptation methods with phase CL were performed using the

AdaTime benchmark repository (Ragab et al., 2023). The code was adapted to include

a new temporally aware adversarial domain adaptation (TADA) methodology (Yi et al.,

2024) and support multi-label learning. TADA has been shown to adversarially bridge the

domain gap in long- and short-term information and fine granularity for patient outcome

forecasting. This method was incorporated to capture short bursting EMG activations

and longer phasic relationships in locomotion. Loss functions were set according to the
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Figure 6.3: The general framework of the proposed curriculum and transfer learning
approach. Arrows with dotted lines represent linear training with frozen feature extrac-
tion layers while hard line arrows represent fine-tuning. (A) Rodent hindlimb dataset
was input to a self-supervised TS-TCC contrastive learner or a supervised CNN1D to
extract embeddings for phase labels before linear training or fine-tuning for step and
stand labels. (B) Open source datasets were preprocessed and used to train the TS-TCC
contrastive learner. The TS-TCC trained CNN1D was used to linearly train or fine-tune
step and stand labels. (C) Source and target domain refers to different rodents. Source
and target inputs were fed into a CNN1D to extract domain adaptation embeddings for
phase classification. The pretrained CNN1D domain adapted feature extractor was used
to linear train step and stand labels in the target domain.

original paper specifications (Ragab et al., 2023; Yi et al., 2024).
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Figure 6.4: A simple custom software GUI to separate each phase of left and right
stepping. X-axis and y-axis details the sample index and EMG voltage (mV) respectively.
The vertical blue line separates the swing from the stance phase. Ipsilateral tibialis
anterior and soleus muscle activity are represented in the muted bue and orange signal.

6.2.1 Deep Learning Models

Single dimension convolutional neural networks (CNN1D) have ranked as a top per-

former in multivariate time series classification tasks (Ismail Fawaz et al., 2019). A

three-layered CNN1D network was selected as the feature extractor for contrastive

learning, curriculum learning, and all domain adaptation experiments, excluding TADA.

Specification of the CNN1D and LSTM TADA network can be found in table 6.1 and

table 6.2, respectively. Preliminary experimentation to determine the most suitable

penultimate layer was performed with supervised training using a dense fully connected,

LSTM, and multi-head attention layers. While LSTM provided the highest accuracy,

the results were prone to single subject bias and class imbalance effects, see tables A.1

and A.2. All feature extractors were connected to a single fully connected network before

the final output layer.

Time-Series Representation Learning via Temporal and Contextual Contrasting
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(TS-TCC) was selected as the contrastive learning algorithm to develop self-supervised

representations (Eldele et al., 2021). This decision was based on the higher-performing

biosignal classification evaluation metrics compared to ts2vec (Yue et al., 2022). Other

methodologies were also considered, but attempts to replicate the results from the paper

were not successful and highly sensitive to hyperparameter tuning (Zhang et al., 2022),

or not suited for multi-labelling tasks (Liu et al., 2023).

Deep learning models were trained using NVIDIA Quadro RTX 6000 Passive graphics

cards for 40 epochs with a batch size of 128 and learning rate of 3×10−4 with Adam

optimizer (Kingma and Ba, 2017). All models were written using the PyTorch v2.1.1

framework (Paszke et al., 2019).

6.2.2 Open Source Datasets

The TaichiDB, SEMG, and GrabMYO datasets from goldberger2000 were selected based

on the relevance to the task and overall quality of annotation (Goldberger et al., 2000).

TaichiDB consists of longitudinal data of 27 Tai Chi experts and 60 healthy, Tai Chi,

naïve elderly (50 - 70 years) subjects (Wayne et al., 2021, 2013). Data was labelled with

force-sensitive footswitches and EMG electrodes placed on TA and lateral gastrocnemius

muscles. EMG and footswitch data were collected at 1500Hz. Footswitch data detected

heel strike and toe-off events. Subjects were requested to perform single- or dual-task

walking at the preferred speed for 10m and 90s respectively.

The SEMG dataset consists of surface EMG data collected from 5 leg muscles; in this

study, only the lateral gastrocnemius and TA were selected (Di Nardo et al., 2021, 2024).

Footswitch data was used to determine the swing and stance phases. Both EMG and foot

switch samples were collected at a 2kHz rate. 31 young able-bodied subjects between the

ages of 20 and 30 were selected to perform 5-minute ground walking.

The GrabMYO dataset consists of gesture data from 43 healthy participants who
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Layer Name CNN1D

conv1 3×1, 32, stride 2

batch normalisation

ReLu

maxpooling 1d 2×1, stride 1

dropout 0.35

conv2 8×1, 64, stride 1

batch normalisation

ReLu

maxpooling 1d 2×1, stride 1

dropout 0.35

conv3 8×1, 128, stride 1

batch normalisation

ReLu

maxpooling 1d 2×1, stride 1

dropout 0.35

flatten b c t → b (c t)

Table 6.1: 3-layer CNN1D model. The notation follows as batch size ‘b’, channel ‘c’,
timestep ‘t’, ‘d’ stands for variable dimension and ‘fc’ stands for fully connected.

repeatedly performed 17 hand and wrist gestures 7 times, with each trial lasting 5s

(Jiang et al., 2022; Pradhan et al., 2022). Participants were requested to repeat the

same experiment on 3 separate days, presenting an impressive volume of multi-session

hand and wrist gesture data. Data was preprocessed to use pairs of antagonistic forearm

muscle groups based on the location of the 8 x 8 electrode array.
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Layer Name LSTM

lstm 128-d

Table 6.2: 1-layer LSTM model. The notation follows as variable dimension ‘d’, ‘fc’ for
fully connected.

Layer Name CNN1D

conv1 5×1, 64, stride 1

batch normalisation

ReLu

maxpooling 1d 2×1, stride 2

dropout 0.5

conv2 8×1, 128, stride 1

batch normalisation

ReLu

maxpooling 1d 2×1, stride 2

conv3 8×1, 128, stride 1

batch normalisation

ReLu

maxpooling 1d 2×1, stride 1

adaptiveavgpool 1d b c t → b c 1

Table 6.3: 3-layer CNN1D model. The notation follows as batch size ‘b’, channel ‘c’,
timestep ‘t’, ‘d’ stands for variable dimension, and ‘fc’ stands for fully connected.

6.2.3 Signal Procesing

All signal channels were filtered using a 5-th order bandpass filter with cut-off frequencies

between 10 and 500Hz. To capture phasic information, window size was reduced to

75ms and window shift was set to 75% of window size length (Leblond et al., 2003).
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To reduce memory requirements and expedite training speed, all data was linearly

resampled to 2kHz. The same filtering procedures were repeated for TaichiDB open

soure dataset. The remaining open source datasets were already preprocessed using the

same filtering procedure. TaichiDB was upsampled to 2kHz from 1.5kHz and GrabMYO

was downsampled to 2kHz from 2048Hz. SEMG was already sampled at 2kHz.

All datasets were split as 60%/20%/20% training, validation, and test sets. To sta-

tistically measure the performance of each classifier, precision eq. (3.4), recall eq. (3.5),

and F1-Score with weighted averaging eq. (3.2) to capture multi-labelling imbalance. An

ROC curve (receiver operating characteristic curve) was used to graphically illustrate the

performance of classifiers against baseline random prediction (Hoo et al., 2017). Linear

correlations were tested with Pearson Correlation Coefficient.

Predictions were smoothened using the Savitzky-Golay filter with a width of 3-

samples. Thresholds for predictions were made using the sum of the mean and standard

deviation of each label with a tuning gain applied to the standard deviation variable,

dependent on the subject. All outputs for step predictions were set to a maximum and

minimum duration threshold of 0.3 and 1.2s, respectively. All stand predictions were set

to a minimum duration threshold of 0.3s.

Data was assumed to be dependent, and the Shapiro-Wilk test was used to deter-

mine normality (p > 0.05). Normal distributions were tested with the Tukey Honestly

Significant (HSD) test, and non-normal distributions were tested with the Wilcoxon

signed-rank test. Where relevant, results are reported as mean ± standard deviation.

6.3 Results

Supervised training yielded a weighted F1 score of 0.37 ± 0.20 across all subjects with

a heavy bias in the rodent with the most amount of collected labels, A7, see table 6.4.

Notably A3 and A5 reported low weighted F1 scores. These were mainly caused by poor

156



6.3. RESULTS

right step in A5 and standing prediction for both A3 and A5.

Table 6.4: Supervised step and stand training using CNN1D only.

Accuracy Precision Recall F1-Score (weighted)

A3 0.20 0.80 0.11 0.18
A5 0.82 0.12 0.55 0.19
A7 0.80 0.73 0.62 0.64
A8 0.61 0.65 0.37 0.46

Mean 0.61 0.57 0.41 0.37
SD 0.25 0.27 0.20 0.20

6.3.1 Phase Classification

The phase classifiers successfully detected right and left stance and swing phases greater

than baseline. Pretraining the feature extractor using TS-TCC contrastive learning

followed by fine-tuning yielded the greatest F1-score, 0.60, without separating by sub-

ject, see table 6.5. However, after calculating the F1-score per subject, the average

performance drops considerably; see table A.4.

The top-4 grand mean values from domain adaptation experiments were calculated

as 0.43, 0.42, 0.41, and 0.41 from Higher-order Moment Matching (HoMM) (Chen et al.,

2019), Adversarial Spectral Kernal Matching (AdvSKM) (Liu and Xue, 2021), Conditional

Domain Adversarial Networks (CDAN) (Long et al., 2018), and TADA respectively, see

table 6.11. Comparing domain adaptation algorithms to inter-subject transfer learning

for feature extraction, the top domain adaptation strategies, HoMM and TADA, out-

performed the inter-subject self-supervised contrastive learning approach by 0.12 and

0.10, respectively. HoMM and TADA domain adaptation predictions were equivalent to

subject-specific supervised training classifiers in all phases (p > 0.1); see table A.3.
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Table 6.5: Performance of phase classification during pretraining transfer learning stage.
These metrics are for phase labels only.

Accuracy Precision Recall F1-Score (weighted)

CL f ine−tune 0.77 0.63 0.56 0.58
CLl inear 0.74 0.52 0.56 0.53
TS-TCC + CL f ine−tune 0.78 0.63 0.59 0.60
TS-TCC + CLl inear 0.75 0.53 0.57 0.54

Table 6.6: Average phase label classification F1-score (binary) performance for TADA
after 3 runs set at different random seeds.

Right Swing Right Stance Left Swing Left Stance

A3 → A7 0.27 0.29 0.27 0.08
A5 → A7 0.42 0.27 0.25 0.31
A7 → A3 0.61 0.37 0.64 0.39
A7 → A5 0.54 0.46 0.69 0.54
A7 → A8 0.52 0.54 0.44 0.52
A8 → A7 0.52 0.53 0.43 0.54

Mean 0.48 0.41 0.45 0.40
SD 0.11 0.11 0.17 0.17

6.3.2 Step and Stand Classification

Pretraining CNN1D feature extractors on open source datasets yielded a range of

evaluation metrics, differing between each dataset, (table 6.7). Interestingly, the worst

feature extraction model, SSLTaichiDB, f ine−tune, resulted in the top F1-score after fine-

tuning. SSL+CL pretraining using only rodent training data and SLL pretraining using

all open-source data report the same weighted F1-score. While SSLAll,l inear detected

more true positives than SSL+CL pretraining, SSL+CL more successfully rejected false

positives. Fine-tuning after CL reduced subject-specific variability in left step detection

compared to non-CL approaches, seen in figs. 6.5 and 6.6. The subject-specific results

in non-DA methods show large variation, suggesting poor inter-subject classification

performance. No statistically significant outcomes were found between top-performing

SSL, CL, and DA models (p > 0.05).
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Table 6.7: Transfer and curriculum learning classification performance for step and stand
labels. SSL specifies TS-TCC self-supervised contrastive learning using rodent or open
source data. Unless specified by GrabMYO, Taichidb, SEMG, or All, each model was
trained using the training set from the rodent data. ‘All’ represents a feature extractor
pretrained across all open source datasets, excluding the rodent data. The best values
for each metric are in bold.

Accuracy Precision Recall F1-Score (weighted)

SSL f ine−tune 0.77 0.60 0.60 0.60
SSLl inear 0.76 0.57 0.29 0.38
SSLGrabMY O, f ine−tune 0.79 0.68 0.52 0.58
SSLGrabMY O,l inear 0.77 0.68 0.43 0.51
SSLSEMG, f ine−tune 0.76 0.57 0.54 0.55
SSLSEMG,l inear 0.72 0.49 0.40 0.44
SSLTaichiDB, f ine−tune 0.76 0.63 0.62 0.61
SSLTaichiDB,l inear 0.75 0.68 0.17 0.23
SSLAll, f ine−tune 0.79 0.69 0.56 0.60
SSLAll,l inear 0.77 0.73 0.43 0.50
CL f ine−tune 0.77 0.63 0.56 0.58
CLl inear 0.74 0.52 0.56 0.53
SSL + CL f ine−tune 0.78 0.63 0.59 0.60
SSL + CLl inear 0.75 0.53 0.57 0.54

Analysing weighted F1-score only, SSLTaichiDB, f ine−tune ranked the top classifier out

of all the transfer and curriculum learning models. A subject-specific breakdown of the

results shows that only A7 and A8 achieve high performance table 6.8. Moreover, the

TaichiDB pretrained linearly trained model did not effectively map relevant features

between the source and target dataset (table A.10 and fig. 6.6). Fine-tuning on All and

GrabMYO datasets did not classify standing data as well as TaichiDB (fig. 6.5). Although,

linearly trained All and GrabMYO datasets performed better for standing than after

fine-tuning (fig. 6.6.

SSL+CL approaches did not have any access to open-source datasets but report

competitive classification results in stepping and standing. However, still suffer from

the effects of poor inter-subject mapping. Linearly trained SSL and CL models reduce

subject variability but the effects of class and subject bias return when fine-tuning is
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Figure 6.5: Box plot comparison of fine-tuned models and the top performing linearly
trained curriculum training + domain adaptation model, TADA. Subject bias in TADA is
lower than non-domain adaptation models. No significance was detected between models.

performed figs. 6.5 and 6.6.

In contrast, domain adaptation CL performance achieved high classification evalu-

ation across all subjects, with TADA marginally outperforming HoMM, see tables 6.9

and 6.10. Adapting from different source domains (A3, A5, and A8) to the singular subject

(A7) yielded varying evaluation metrics, see tables 6.9 and 6.10. For HoMM, choosing

A3 resulted in a greater F1-score than A5 or A8. In contrast, for TADA, choosing A8

resulted in a better F1-score. Domain adaptation reduces the inter-subject bias previ-
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Figure 6.6: Box plot comparison of linearly trained models and the top performing
curriculum training + domain adaptation model, TADA.

ously observed after fine-tuning in SSL feature extractors; refer to tables 6.8 and A.9

and tables 6.9 and 6.10.

Unlike non-DA pretraining methods that could not detect A5 right stepping, TADA

and HoMM successfully classify A5 right side locomotion activity fig. 6.7. Top-2 domain

adaptation approaches outperformed all models specified in table 6.7 in both step and

stand events. Inter-subject variability was reduced with an area under ROC curve

(AUC) range of 0.25 and 0.18 for HoMM right and left step prediction, compared to

SSLTaichiDB, f ine−tune which resulted in unsuccessful A5 right step classification and
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Table 6.8: Step and stand label results after fine-tuning from a TS-TCC pretrained
feature extractor using TaichiDB open source dataset.

Accuracy Precision Recall F1-Score (weighted)

A3 0.27 0.81 0.17 0.27
A5 0.81 0.03 0.18 0.05
A7 0.79 0.73 0.63 0.64
A8 0.63 0.69 0.47 0.56

Mean 0.63 0.56 0.36 0.38
SD 0.22 0.31 0.20 0.24

Table 6.9: HoMM domain adaptation curriculum learning classification performance for
step and stand labels.

Accuracy Precision Recall F1-Score (weighted)

A3 → A7 0.79 ± 0.00 0.62 ± 0.02 0.62 ± 0.03 0.61 ± 0.01
A5 → A7 0.78 ± 0.05 0.62 ± 0.12 0.57 ± 0.05 0.58 ± 0.08
A7 → A3 0.48 ± 0.03 0.69 ± 0.03 0.62 ± 0.03 0.64 ± 0.03
A7 → A5 0.80 ± 0.01 0.69 ± 0.03 0.63 ± 0.08 0.65 ± 0.06
A7 → A8 0.76 ± 0.01 0.58 ± 0.02 0.56 ± 0.02 0.57 ± 0.00
A8 → A7 0.77 ± 0.00 0.58 ± 0.02 0.56 ± 0.07 0.56 ± 0.04

Table 6.10: TADA domain adaptation curriculum learning classification performance for
step and stand labels.

Accuracy Precision Recall F1-Score (weighted)

A3 → A7 0.77 ± 0.01 0.57 ± 0.03 0.46 ± 0.08 0.49 ± 0.06
A5 → A7 0.79 ± 0.02 0.60 ± 0.04 0.55 ± 0.10 0.56 ± 0.06
A7 → A3 0.41 ± 0.03 0.65 ± 0.02 0.62 ± 0.03 0.63 ± 0.02
A7 → A5 0.82 ± 0.01 0.72 ± 0.04 0.63 ± 0.03 0.66 ± 0.04
A7 → A8 0.79 ± 0.01 0.64 ± 0.03 0.59 ± 0.04 0.61 ± 0.02
A8 → A7 0.80 ± 0.01 0.64 ± 0.02 0.63 ± 0.02 0.63 ± 0.02

0.31 inter-subject AUC range for left step classification. TADA outperformed HoMM,

achieving higher inter-subject AUC values.

TADA more accurately classified A3 (AUC = 0.61) and A5 (AUC = 0.67) right stepping

compared to HoMM A3 (AUC = 0.52) and A5 (AUC = 0.52) results that were marginally

above chance. Left stepping for all subject’s results was better detected in TADA over

HoMM. However, the stand-label HoMM AUC surpassed TADA evaluations in A3 and
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A8 subjects. Rodent A7 classification using domain adaptation presented lower AUC

values compared to SSL models. Conversely, A3, A5, and A8 subject domain adaptation

AUC results were greater than all non-domain adaptation model AUC results.
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Figure 6.7: ROC curve of the each subject and each stepping and standing label for
TADAl inear (left) and HoMMl inear (right). Both TADA and HoMM successfully detected
right steps for A3 and A5 though TADA was more accurate. The best A7 source dataset
for each method was selected based on the F1-score.
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Table 6.11: Average and standard deviation F1-score metric after domain adaptation classification weighted for phase labels
only after 3 runs using different random seeds.

A3 → A7 A5 → A7 A7 → A3 A7 → A5 A7 → A8 A8 → A7

NO ADAPT 0.40 ± 0.01 0.34 ± 0.05 0.43 ± 0.06 0.30 ± 0.10 0.31 ± 0.07 0.37 ± 0.04
Deep Coral 0.35 ± 0.03 0.33 ± 0.03 0.48 ± 0.01 0.45 ± 0.03 0.39 ± 0.01 0.41 ± 0.01
MMDA 0.37 ± 0.03 0.36 ± 0.02 0.47 ± 0.01 0.41 ± 0.10 0.37 ± 0.02 0.42 ± 0.02
DANN 0.33 ± 0.04 0.37 ± 0.01 0.46 ± 0.03 0.48 ± 0.04 0.38 ± 0.03 0.43 ± 0.01
CDAN 0.42 ± 0.02 0.35 ± 0.01 0.41 ± 0.01 0.49 ± 0.01 0.38 ± 0.04 0.43 ± 0.02
DIRT 0.37 ± 0.02 0.28 ± 0.02 0.44 ± 0.04 0.42 ± 0.03 0.29 ± 0.10 0.32 ± 0.04
DSAN 0.32 ± 0.05 0.34 ± 0.02 0.41 ± 0.02 0.42 ± 0.01 0.37 ± 0.00 0.37 ± 0.02
HoMM 0.39 ± 0.02 0.35 ± 0.03 0.49 ± 0.02 0.48 ± 0.02 0.42 ± 0.01 0.43 ± 0.00
CoDATS 0.28 ± 0.04 0.35 ± 0.02 0.44 ± 0.06 0.50 ± 0.02 0.40 ± 0.01 0.39 ± 0.00
AdvSKM 0.39 ± 0.01 0.36 ± 0.04 0.50 ± 0.01 0.48 ± 0.00 0.34 ± 0.06 0.43 ± 0.00
SASA 0.26 ± 0.09 0.21 ± 0.06 0.08 ± 0.11 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
CoTMix 0.09 ± 0.02 0.14 ± 0.01 0.28 ± 0.03 0.17 ± 0.02 0.21 ± 0.03 0.23 ± 0.07
TADA 0.19 ± 0.07 0.30 ± 0.01 0.41 ± 0.01 0.52 ± 0.01 0.52 ± 0.00 0.53 ± 0.01
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6.4 Discussion

Domain adaptation in conjunction with curriculum learning improved subject generalis-

ability, and linear training reduced class bias compared to fine-tuning. High classification

performance was achieved using these techniques, outperforming transfer learning

models pretrained from larger open-source datasets.

Previous attempts to use phasic information for locomotion classification applied

phase-only classifiers to pre-process raw signals and segment them into temporally

relevant sections (Negi et al., 2020; Morbidoni et al., 2019; Huang et al., 2009). Such

ensemble approaches do not take advantage of transfer learning but add additional com-

plexity to the process of locomotion prediction. In the presented application, curriculum

learning was used to transfer knowledge from smaller temporal scales of phase-relevant

information to macro-temporal scales for locomotion classification. To my knowledge, this

was the first demonstration of how CL can be used for activity recognition. Evaluation

metrics from curriculum trainer models were plotted in fig. 6.8 to determine if phase

classification performance was predictive of locomotion classification performance. The

positive and significant relationship between phase and locomotion classification sug-

gests that phase-related information encoding benefits scaling across time scales. This

experiment shows that CL provides a general strategy for global optimization function

through contextual knowledge transfer. Interestingly, these benefits were observable

in small sub-100ms time windows where a reduced window size often inhibits the ef-

fectiveness of machine learning algorithms to extract salient features (Smith et al.,

2011).

Allowing gradients to flow back through feature extraction layers is an intuitive

method for refining a neural network’s biases and weights to optimise classification

performance. However, in this study, fine-tuning reintroduces class and subject-relevant

bias; see tables 6.8 and A.9 and tables 6.9 and 6.10. If contextually relevant informa-
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Figure 6.8: Phase and step F1-score classification metrics for curriculum trained deep
learning models. High quality phase classification linearly correlated with locomotion
prediction (r = 0.82, p < 0.001).

tion is learned by the feature extraction layers, simply freezing the feature extractor

and linearly tuning the final classification layer can reduce the effects of bias. As an

additional advantage, the feature extraction layers provide a dual use for both ends of

the curriculum structure, phase and locomotion activity. However, the feature extractor

must be exposed to the appropriate information to work. Simply applying a brute force

approach by exposing a model to much information is insufficient to develop a strong

classifier; see figs. 6.5 and 6.6.

During transfer learning, no skip connections were used, and only the final layer was

used to extract features. This may reduce the generalisability of the feature extractions

by being more susceptible to vanishing gradients (He et al., 2015). However, a three-

layer CNN1D model is small compared to other CNN1D models (e.g. InceptionTime

(Ismail Fawaz et al., 2020)), reducing the likelihood of vanishing gradients. The transfer
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Figure 6.9: Phase related t-SNE feature representation for domain adaptation between
A7 to A5. After domain adaptation, a spread across all labels can be observed. Notably,
the swing phases for right and left labels are closer together and more closely resemble
A7 clusters.

learning feature extraction layers may have benefitted from using residual blocks to re-

duce vanishing gradient effects and combine higher and lower level features (Neyshabur

et al., 2020).

While data augmentation methods used in self-supervised contrastive learning were

insufficient to reduce inter-subject bias, a successful method emerged in domain adap-

tation. This experiment’s results support the hypothesis that inter-subject variability

could be bridged by adequate disruption to the feature extraction layers. Bridging the

domain gap between subjects can be illustrated by the figs. 6.9 and 6.10.

From the CNN1D domain adaptation methods, the top performing algorithm, HoMM,

incorporated distribution moment matching calculations in multiple orders to minimise
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Figure 6.10: Step related t-SNE feature representation for domain adaptation between
A7 to A5. After domain adaptation, a greater spread across labels can be observed with
right step and stance labels more closely resembling A7 clusters.

the statistical distance between source and target distributions (Chen et al., 2019).

Previous studies using mean-maximum discrepancy (MMD) have shown strong feature

representation kernels for complex univariate multi-label problems (Chu et al., 2023).

In this experiment, reducing the means in the third-order tensor product effectively

reduced the domain gap between subjects. These results suggest that adversarially

introducing randomisation during curriculum learning improves generalisation and

enhances diversity (Neyshabur et al., 2020).

The highest performing strategy, TADA, operates on mapping short to long-term

temporal information at a single sample point granularity (Yi et al., 2024). The loss

function operates by training a domain discriminator with gradient-reversed domain loss

for samples from 1 – N-1, where N is the number of time steps. A second loss function
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classifies the final sample, N, with cross-entropy loss. Perhaps this method of temporal

mapping creates better embeddings for feed-forward locomotion activity compared to

CNN1D methodologies.

6.5 Conclusion

This study shows, for the first time, the effectiveness of curriculum learning in the

scope of movement classification using multivariate EMG signals. To effectively capture

stochastic multivariate biological signal activity, the feature extraction layers must be

exposed to a suitable set of inputs. Curriculum learning with domain adaptation was

able to sufficiently select a better set of parameters than pretraining on large volumes of

datasets. Inter-subject variability can be bridged using inter-subject domain adaptation

techniques.
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ELECTROPHYSIOLOGICAL BIO-MARKER OF THE

FUNCTIONAL STATE OF SPINAL CIRCUITRY

A
mid-thoracic SCI severely impairs activation of the lower limb sensorimotor

spinal networks, leading to paralysis. Various neuromodulatory techniques,

including electrical and pharmacological activation of the spinal networks,

have restored locomotor function after SCI. I hypothesised that combining self-training

in a natural environment with ES, quipazine, and strychnine would result in greater

activity in a cage environment after paralysis than either intervention alone. To assess

this, I evaluated the relationship between the change in recorded activity over time

and motor-evoked potentials (MEPs) in animals receiving treatments. The combina-

tion of ES, quipazine, and strychnine (sqES) generated the most significant level of

recovery, followed by ES + quipazine (qES). In contrast, ES + strychnine (sES) and

ES alone showed the slightest improvement in recorded activity. Further, I observed

an exponential relationship between the late response (LR) component of the MEPs

and spontaneously generated step-like activity. Data demonstrated the feasibility and
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potential importance of quantitatively monitoring mechanistic factors linked to activity

dependence in response to combinatorial interventions compared to individual therapies

after SCI.

7.1 Introduction

The instrumental works of Cajal and Golgi developed our understanding of the CNS

today under the ‘Neuron Doctrine’ hypothesis. At the time of inception, the ‘Neuron

Doctrine’ pushed the idea of discrete neurons acting in concert to output complex patterns

and behaviour, challenging the ‘Reticular Theory’, that being the CNS consisting of

and behaving as a singular continuous network (Burke, 2007). The debate was settled

in favour of the ‘Neuron Doctrine’ after Sir Charles Sherrington presented a set of

lectures summarising his work on reflex and sensorimotor coordination, including the

reciprocal inhibition, in decerebrate cats (Stuart and Hultborn, 2008). Sherrington’s work

showed the impact of sensory integration and how the ‘integrative action’ of external

stimulus can express coordinated rhythmic activity. While evidence of the CPG has

been clearly expressed in quadrupeds and fish, only recently have we begun to see

evidence of synthetic activation of the locomotor CPG and persistence in SCI neural

circuitry in humans (Grillner, 2011; Grillner and El Manira, 2020; Minassian et al.,

2023). Descending supraspinal and ascending afferent sensory information integrate

at spinal locomotor centres, but the interactions of critical supraspinal and sensory

inputs after spinal cord injury still need to be fully understood (Capogrosso et al., 2016;

Tolmacheva et al., 2017). Even today, with the advances in optical, genetic, and electrical

recording techniques, the architecture and precise mechanisms behind the CPG remain

elusive (Burke, 2007).

The locomotor CPG has been hypothesised as a persistent neural substrate across

bony vertebrates, visible through biological evolution. The current research landscape
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conveys uncertainty behind why the CPG exists in the first place. First, one must

appreciate the complex high dimensionality of vertebrate neurological architecture

and the built-in anatomical redundancies towards function movement. Upon doing so,

questions about why similarities between intra-and inter-subject subject neural outputs

and behavioural expression arise (Whiting and Bernshtein, 1984; Latash et al., 2010).

These mysteries have remained unanswered. Recent works have suggested an ‘optimality

principle’ as reasoning for how spinal reflexive circuitry integrate and form locomotion

pattern (Ryu and Kuo, 2021). A summary of the above information is illustrated in

fig. 2.8.

It is intuitive to consider off-loading repetitive operations to local circuitry, reducing

the energy load of higher operating neural centres for other activities (Bizzi et al., 1991;

Giszter and Hart, 2013; Giszter, 2015; Hart and Giszter, 2010; Flash and Hochner,

2005; Grau, 2014; Edgerton et al., 2004; Mussa-Ivaldi and Bizzi, 2000). Moreover, the

sensorimotor networks have been shown to operate on a feedforward paradigm (Wagner

and Smith, 2008; Giboin et al., 2020; Hosseini et al., 2017; Prochazka et al., 2017;

Gerasimenko et al., 2018). In the healthy spinal cord, sensory feedback information

has predominantly understood to play a tone and reflex role (Dzeladini et al., 2014;

Rossignol and Frigon, 2011). However, the significance and modulatory effect of the

sensory information entering spinal locomotor circuitry dominates when no supraspinal

or trans-lesional activity enters (Edgerton and Roy, 2009a; Rossignol and Frigon, 2011).

Modelling work by Ryu and Kuo (2021) showed that motor commands could be

executed in feedforward or feedback-only operands. Although best when incorporated

together, each had its pitfalls. Feedforward, or endogenous time-based rhythm only, were

susceptible to falling due to process noise. Rhythm generation in a noisy environment

can disrupt the desired gait pattern, developing a mismatch. Thus, executing based on

sensory feedback is better under noisy conditions. Although, using feedback only had
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similar problems when introducing noise from sensory inputs.

Now understanding the significance of the exchange between the feedforward neural

substrate and feedback, essential questions regarding the role of sensory integration

arise. How do different sensory inputs integrate into the CPG, and what is the neurologi-

cal environment necessary to drive coordinated sensorimotor expression?

In a healthy animal, descending activity from the brain activates locomotor centres

with tonic input, allowing the local spinal networks to modulate sensory information

and achieve a balanced excitation-inhibition environment to propagate forward stepping

(Capelli et al., 2017). After SCI, the excitatory connection becomes mute, and the loco-

motor networks, although capable of generating the relevant activity, do not have the

adequate environment to drive coordinated motor outputs (Taccola et al., 2018). However,

task-dependent sensory activation alongside neuromodulatory therapies of the spinal

circuitry has shown to reorganise and enable some activity recovery after SCI.

The reorganisation of the transected spinal cord has been thought to be due to the

task-dependent sensory inputs exposed during specific training protocols (Gerasimenko

et al., 2007; Edgerton et al., 1997a). The CPG has specifically seen reinforcement of

activity during load-bearing activity, expressing switched Ib-reflex modes and facilitating

stance and swing phase transition (Pearson, 1993). Thus, load-bearing activity appears

critical to exploiting CPG mechanisms for locomotor recovery. In conjunction, cutaneous

afferent inputs can inhibit flexion generation during the swing phase, facilitating ex-

tensor activity during loading (Jankowska et al., 1967). Given the long phase stance

period, it makes sense for locomotor centres to contain robust neural mechanisms for

maintaining kinematic balance. Additionally, hip flexor proprioceptive activity and con-

tralateral step cycle phases are critical for swing (flexion activity) initiation (Grillner

and Rossignol, 1978; Lam and Pearson, 2001).

Extensive animal model evidence has supported the hypothesis of task-dependent
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sensorimotor recovery in the injured spinal cord (Kobayakawa et al., 2019; Hodgson

et al., 1994; Edgerton and Roy, 2009a). Notable examples describe the effect of standing

vs. stepping activity training in rodents (Hodgson et al., 1994). Spinally transected

cats trained to stand had difficulty generating hindlimb locomotion, and vice versa;

cats trained to step could not maintain standing. Similar results were reported in the

forelimb activities; rats saw improvements in skilled reaching after training but poor

performance during ladder walking (Jin et al., 2021). Investigations with neuromodula-

tion synergies paralleled activity-dependent results (Fong et al., 2005; Cai et al., 2006).

The sensory-dominant neurological environment requires sensory information to benefit

from neuromodulation therapies.

Task-specific recovery shows the adaptive and learning behaviours of the spinal

cord. Spinally transected neonatal rats learned to walk on a treadmill in multiple

directions, including forward, sideward, and backward orientations (Shah et al., 2012).

Spinally transected rats could also adapt to external trip perturbation by increasing flexor

activity (Zhong et al., 2012), which means that before initiating the swing phase, the

spinal neural circuits reprogrammed the swing trajectory to overcome the obstacle and

maintain stability while propagating forward momentum (Ryu and Kuo, 2021). Similarly,

the sensorimotor circuitry requires some variability in the kinematic trajectory to elicit

favourable learning (Ziegler et al., 2010). Current hypotheses behind this mechanism

incorporate some feedforward-feedback mismatch in forward propulsion, thus adapting

relevant circuits to deal with perturbations. The feedforward system adjusted the neural

activity to adjust the kinematic projection of the limb, using information from the sensory

feedback system.

Research conducted on complete spinal transected cats challenged the hypothesis of

task-specific recovery reorganising lumbosacral locomotor centres towards functional

recovery (Harnie et al., 2019). After surgery and recovery, cats were separated into a
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group receiving manual therapy, a group receiving locomotor treadmill training, and a

group that received no treatment. All cats, regardless of receiving interventional therapy,

recovered hindlimb locomotion. Standing activity also spontaneously recovered. The

authors concluded that the return of sufficient excitability within spinal sensorimotor

circuits was more likely the cause of hindlimb locomotor recovery than the rearrange-

ment of neural circuitry trained by ensembles of task-specific sensory inputs. Although

sensory information was necessary to entrain locomotion, recovery was not dependent

on task-specific training (Alluin et al., 2015). The kinematic displacement range was no

different between trained and untrained rats, but the expression of locomotor patterns

in trained rats was significantly more coordinated than in untrained rats. Though requir-

ing a considerable number of repetitions of weight-bearing locomotor training may be

contentious, the neural adaptations occurring in the spinal cord due to sensory afferent

inputs are evident.

Genetic labelling work has unravelled some insights on the necessary neurological

components towards locomotor recovery after SCI. Bui et al. (2016) studied the nature of

dI3 interneurons during locomotion. dI3 INs are excitatory neurons, receiving monosy-

naptic input from low threshold sensory afferents and proprioceptive afferents (Tuan

et al., 2013; Bui et al., 2016). Projections synapse to ipsilateral MNs rostrocaudally via

ventrolateral and dorsal funiculus (Lu et al., 2015; Stepien et al., 2010; Avraham et al.,

2010). Genetic ablation studies showed that dI3 INs were not necessary for locomotion

in healthy rats but for training-induced recovery following spinal transection, (Bui et al.,

2016). Similarly, V2a INs, glutamatergic INs receiving serotonergic projections from the

brainstem, primary afferents, and other INs, have been identified as crucial restorative

IN for locomotion recovery during epidural stimulation therapies in mice (Heng and de

Leon, 2007).

Neuromodulation therapies have brought about new protocols and scientific studies
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about their dose-response, mechanisms of action, and clinical relevance (Guan et al., 2018;

Taccola et al., 2018; Zheng et al., 2020; Cote et al., 2017; Micera et al., 2020; Courtine

and Sofroniew, 2019). Some methods have offered ‘inducing’ the desired kinematically

expressive outcome by surpassing the motor activity threshold either electrically or

pharmacologically. Induced activity evokes activity in the hypothesised targets, dorsal

roots (Bonizzato et al., 2018; Wenger et al., 2016; Capogrosso et al., 2013). However, this

method floods ortho- and antidromic pathways into hyperpolarisation, limiting the ability

of sensory receptive spinal INs to access sensory afferent inputs and bidirectionally

transmit IN activity (Formento et al., 2018).

As discussed, primary afferent proprioceptive and cutaneous in synergistic agonist

muscle groups have significantly benefited mammalian locomotor recovery. Yet, subjects

receiving these forms of therapy appear to achieve incredible success in achieving

sensorimotor recovery. Some methods to circumvent the muting of sensory activity

involved engineering specific stimulation patterns to allow propagation of sensory activity

(Formento et al., 2018; Moraud et al., 2016). Maintaining such granular precision in

stimulation accuracy towards coordinated gait patterns has been impressive.

While the results from neuromodulatory therapies have been promising, I suggest

thoroughly investigating combinatorial approaches and understanding the effects of

each pharmacological agent in conjunction with electrical stimulation and task-specific

physical therapies. Understanding the underlying mechanisms allows full exploitation

of the CPG and natural sensorimotor pathways that lay dormant in SCI neural circuits.

7.2 Background

Numerous studies of different animal models of spinal cord injury have demonstrated

that modulating the physiological states of spinal networks, pharmacologically and

electrically and in combination with motor training enables improved motor performance
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(Edgerton et al., 2004; Ichiyama et al., 2005; Gerasimenko et al., 2008; Lavrov et al.,

2008b; Courtine et al., 2009).

Several works have investigated the locomotor capacity of the spinal cord across

animals and humans (Edgerton et al., 1976, 1991; Harkema et al., 2011). Taccola et al.

(2018) put forward a hypothesis where ES does not ‘induce’ movement via dorsal root

activation but rather ‘enables’ movement by elevating relevant spinal networks towards a

more excitable state. By doing so, appropriate sensory commands can initiate coordinated

movement via the feedforward-feedback mechanisms discussed above (Angeli et al., 2014;

Danner et al., 2015; Rath et al., 2018; Gill et al., 2020b).

Quipazine, a serotonin agonist, has been regularly proven to significantly improve

stepping performance in spinally transected animals and humans (Gad et al., 2015;

Courtine et al., 2009; Radhakrishna et al., 2017). Reasons for this may be due to the

innate connectivity of the CNS. Serotonergic pathways from the brainstem descend

into lumbosacral networks to apply some tonic signal and signal locomotor activity

(Jacobs and Fornal, 1993; Cabaj et al., 2017). Serotonin receptor subtypes contribute

towards locomotor rhythm generation and assist in recovering locomotor activity (Kim

et al., 2001; Landry et al., 2006). Moreover, these receptors differentiate from other

subtypes in their ability to activate locomotor relevant pathways (Barbeau and Rossignol,

1990). Serotonin agonists have been shown to increase flexor and extensor amplitude,

facilitating weight support and step length with increased sensitivity to cutaneous

reflex excitation (Gackière and Vinay, 2014). These effects have been recorded in a sub-

threshold manner, without triggering fictive locomotion in animal preparations (Barbeau

and Rossignol, 1987).

Strychnine, a glycinergic antagonist, has improved the stepping ability of poor step-

performing cats (Edgerton et al., 2004; de Leon et al., 1999; De Leon et al., 1998b). Glycine

receptors represent some of the densest populations in the deep dorsal horn (Gradwell
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et al., 2023). The critical reciprocal inhibitory pathways express dense populations of

glycinergic activity, implying coordination reliance on the appropriate timing of inhibitory

activity (Zhang et al., 2014; Lu et al., 2015). Over expression of glycinergic activity may

lead to an overly inhibited network, reducing the likelihood of locomotor initiation and

progression. Strychnine restores the ability to step after some step training period in

spinal transected cats, but the same was not achieved after administration to stand-

trained cats (de Leon et al., 1999). These results imply selective glycinergic gating or

adaptations according to the task trained.

Several studies have investigated the synergistic effects of neuromodulation Edgerton

et al. (2008). These ideas were first explored in Gerasimenko et al. (2007), quipazine and

ES were combined and shown to differentially modulate flexor and extensor networks,

facilitating locomotion activity in spinally transected rats. These therapies have a sum-

ming effect on their efficacy, and individually they could not positively impact locomotion

(Ichiyama et al., 2008b; Courtine et al., 2009).

Studies performed on humans with serotonin agonists and ES showed mixed results

where some populations had no difference (Freyvert et al., 2018) whilst others had

synergistic (Gad et al., 2017) or differential (Lavrov et al., 2008b, 2006) effects. Moreover,

these studies found polysynaptic activity in motor-evoked potentials (MEPs) correlated

with improved locomotor performance. These polysynaptic drives could indirectly provide

compensatory excitation to local spinal networks and endogenously rebalance excitation-

inhibition (Musienko et al., 2013; Gad et al., 2015).

In this study, I aim to answer the following questions. Do spinally transected rats

in an enriched cage environment express differences to synergistic neuromodulatory

therapies? Secondly, do late-response MEPs correlate with the spinal functional state

during identified events? I hypothesise that multiple neuromodulatory modalities can

transform non-functional spinal networks into more excitable physiological states to
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enable ‘self-training’ in freely moving spinally transected rats. Additionally, MEPs could

present a functional biomarker towards the mentioned physiological states (Gad et al.,

2015; Lavrov et al., 2008b).

7.3 Methods

A select number of therapies were considered for analysis. Included were the baseline

data without any therapy (Pre), electrical stimulation (ES), strychnine and ES (sES),

quipazine and ES (qES), and the combination of strychnine, quipazine, and ES (sqES).

The Rule-Based algorithm described in chapter 4 was used to classify the data set

specified from chapter 3. The better rejection of false positive stepping data and rapid

result turn-around was deemed more appropriate when considering time-cost.

Individual bursting activity within each step was sorted into the swing phase of the

stance phase accordingly. Signal statistics and features for each unilateral step identified

were calculated to gain insight into the effect of each therapy. IEMG of each burst and

phase of gait was calculated per table 4.2. The stance period was considered the active

time of bursting soleus activity during stepping.

Within each identified step, MEPs were extracted from the bandpass-filtered EMG

data for each channel. Using a recording of the stimulation pulses, the end of each 40Hz

stimulation pulse was used to separate the EMG signal into 25ms MEPs. The early

response (ER), middle response (MR) and late response (LR) time windows were defined

as 1–4ms, 4–7ms and 7–25ms, respectively fig. 7.1. A second-order differential threshold

was used to detect the peaks and troughs of the MEP signal successfully. Each MEP was

upsampled to find the local maxima and local minima. The minimum separation of 0.6ms

and minimum prominence of 0.2 were used to filter through a second-order differential

threshold of 1.5×106 such that only peaks and troughs that met the threshold criteria

were accepted fig. 7.1. This was used to calculate the total number of peaks in each MEP.
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Figure 7.1: The left column details a singularly identified step using the TOKEDA
method as summarised in chapter 4. This plot illustrates motor evoked potentials (MEPs)
over time for the Tibialis Anterior (TA) and Soleus (Sol) respectively. The bottom left
illustrates a representative MEP from the TA recording shown in the example step.
Colour scaling reflects amplitude in mV. Note the windows marking the early, middle
and late responses and peaks (*) and troughs (o). On the right side is a breakdown of the
volume of data involved within the experiments and the process of data structure and
analysis.
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All data reported as means ± standard error (SE). Statistically significant differences

were determined using a one-way ANOVA with the Tukey-Kramer posthoc test, and

correlation coefficients were calculated using Pearson’s linear coefficient. All statistical

difference was set at p < 0.05. All results reporting step-like activity were normalised to

no intervention (Pre) measurements.

7.4 Results

7.4.1 Electropharmacological treatmenets modulate functional

state of spinal circuitry

All interventional conditions increased the number of spontaneous step-like activities

compared to baseline (Pre) fig. 7.2. Quipazine or strychnine significantly increased

recorded step-like activity in all animals tested. A significant level of variability was

observed amongst rats, especially in the qES and sqES experiments. However, the sqES

treatment generated the highest number of steps recorded compared to Pre and ES (p <

0.05).

Since a single bolus dose of a pharmacological treatment was administered at the

start of the experiment, a time-depended phenomenon in the number of steps detected

was observed. The greatest counts of activity were seen in the first 120 min fig. 7.3. These

observations were specific to the rapid registration of step-like activity for sqES and qES

treatments figs. 7.3 and 7.4. This time-dependent phenomenon was not observed in Pre

or ES cases. The stepping activity occurred stochastically throughout the 6 hrs figs. 7.3

and 7.4. Spontaneous step-like activity during the first 120 min occurred with longer,

more consistent step lengths and increased muscle activity during sqES and qES. During

continuous stepping activity, an average stance period of ∼2 sec was observed fig. 7.3.

Both the step activity and stance period across the population had lower variability
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Figure 7.2: Mean % change in step-like events for each rat over the 6-hr period for each
treatment (*). The light gray line is set at 100%, normalised to pre-treatment for each
rat. Results for sqES were significantly different compared to Pre and ES (p < 0.05).

during sqES compared to other conditions tested. A smaller variance was present in the

sqES stance period compared to qES within the first 2 hrs. In addition, during the entire

6-hr period, overall left-right symmetry was maintained suggesting a bipedal response

fig. 7.3.

Including multiple pharmacological agents in the presence of ES they resulted in a

more consistent and greater IEMG response fig. 7.4. While sES reduced the variability

across both extensor and flexor muscles in the hindlimbs, the inclusion of quipazine

significantly increased IEMG magnitude compared to Pre (p < 0.05) figs. 7.4 and 7.5.

For the ES and Pre treatments, the IEMG of TA differed in shape compared to Sol with
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Figure 7.3: An example of the step-like activity across interventions plotted as number
of steps per minute and mean stance periods for the left (black) and right (red) hindlimb
for rat #3. For other subjects see figs. A.11 to A.13.

wider error bands while the sES, qES and sqES relatively coordinated activity in the TA

and Sol muscles with narrower error bands were observed fig. 7.4. Differences between

TA and Sol may be explained by the higher occurrence of co-contractions and organised

coordinated activity during the pharmacological interventions. The steep gradient was

only observed during the first 2 hrs of sqES and qES and became more linear during

hours 2 to 6, possibly indicating the effective half-life of the drug.

A significant correlation was observed between the overall muscle activity (IEMG)

and the steps registered across both right hind-limb muscles (fig. 7.5, p < 0.05). The

Sol channel for sqES and qES significantly differed from Pre (p < 0.05). There was

an increasing mean and standard error trend in IEMG in both TA and Sol as more

184



7.4. RESULTS

Figure 7.4: All cumulative sum plots are normalised per animal from 0 to 1. On the left is
the cumulative sum of IEMG in the left and right TA and Sol. The third column from the
left is the cumulative sum plot of step-like events occurring over time for each treatment
and each rat. The final column shows the averaged cumulative sum plot, shaded is the
standard error.

interventions were introduced on top of ES. Both sqES and qES have an exponential

relationship between IEMG and step-like activity, whilst sES, ES and Pre reflect a linear

correlation, see fig. 7.5. sqES intervention had the largest standard error across the x and

y axes of fig. 7.5 whereas sES and Pre have a minimally discernible spread amongst the

sampled population. Increased baseline tone in Sol during rest correlates (R = 0.6943, p <

0.05) with the increased step-like activity across all conditions and rats and is consistent

with the overall summed IEMG across the 6-hrs (fig. 7.5). The inclusion of pharmacology

and ES increases the ln(Sol) threshold. Only qES and sqES have a drastic change in

detected step-like events.

Given the logarithmic response in the basal tone in Sol represented fig. 7.5, there

appears to be a breakaway condition. A Pearson’s linear correlation coefficient reveals
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a significant positive correlation in all interventions for both hind-limbs (p < 0.05 in

all cases). While the sES, ES and Pre interventions are linearly correlated, the qES

and sqES have an exponential relationship between the natural log of the Total IEMG /

10-min and the step-like events / 10-min. Note that sqES, qES and ES have a distinct

y-axis error bound while the x-axis error bound is less notable. This is especially notable

in the RSol graph fig. 7.5.

7.4.2 Evoked reponses correlate with spontaneous step-like

activity

MEPs were analysed across the soleus during spontaneous step-like activity as these

signals more accurately reflect the state of the neural networks associated with the

trained task. The detected peaks in the middle and late responses (MRs and LRs) of

the soleus during spontaneous step-like activity in their home cages were exponentially

correlated (fig. 7.6). Due to the sub-threshold nature of spinal stimulation, the evoked

responses appeared non-time linked to the stimulation pulses compared to suprathresh-

old stimulation on a treadmill (Gad et al., 2013c). Each treatment had linear regression

applied to both the LRs and MRs. ES and sES display a negative gradient associative

with decreasing change in step-like activity compared with Pre, whilst qES and sqES

have a steep positive slope. Combining all data points was fitted to an exponential equa-

tion where the LRs and MRs have a similar relationship with step-like activity. The MR

trend has a lower first-order coefficient when compared to the LR. As anticipated, the

sqES and qES evoked the highest number of LRs and MRs, corresponding to a greater

number of detected spontaneous step-like activities.
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Figure 7.5: Top left shows the average sum of IEMG across all the animals in each
treatment in the TA and Sol channels for both sides and the 95% confidence interval. Top
right figure depicts the relationship of the calculated EMG amplitude threshold required
to determine burst activity of the neural networks in the Sol and the change in step-like
activity normalised to pre intervention for all rat subjects in both hindlimbs. Bottom left
and right plots Ln(Total IEMG / 10min) against step-like events / 10min across 6 hrs for
sqES, qES, sES, ES and Pre in the right hind-limb. In the corresponding shaded area is
the standard error for the x and y axis represented in an ellipse.
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Figure 7.6: Left shows the change in number of late and on the right, middle peaks
responses (normalised to pre values) for each rat, treatment, left and right hind-limb
of the Sol MEPs. Circled in red are two outliers identified as rat number 3 during the
sqES treatment. Additionally, linear regressions for each of the respective treatments in
their corresponding color are plotted. An exponential curve (dashed line) encompasses
all treatments.

7.5 Discussion

In this study, I have demonstrated the effects of different neuromodulation therapies in

synergy across 4 spinally transected rats by monitoring step-like activity in chronic EMG

recordings. Results from the study suggest serotonergic activity is a key contributor

towards elevating levels of excitability in the isolated spinal cord and balancing. For the

first time, I demonstrated the time-dependent expression of enabled behaviour in rats

receiving synergistic neuromodulatory therapies. Analysis of electrophysiological activity

during registered time windows of step-like events indicated activity in the soleus to

be critical towards self-training. Finally, I provide evidence of polysynaptic activity in

spinal MEPs as a biomarker of the functional state of the isolated spinal cord.
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Access to neuromuscular activity synchronised with stimulation pulses directly

linked to behaviours provides a direct and realistic measurement of reorganising neural

networks throughout a chronic period as the nervous system becomes more functional

(Edgerton et al., 2008). As the MEPs and associated behaviour are directly linked from

an ‘input-output’ relationship, I hypothesise that a biomarker for the reorganisation may

be discernible from the presented data. This notion has been reflected in past research

papers (Lavrov et al., 2006, 2008b; Gad et al., 2015; Alam et al., 2017). Unfortunately,

without using kinematic recordings, information such as locomotion speed, step quality,

step length and other metrics remain rare, given the availability of the appropriate

technologies.

Long-term recordings of electrophysiological data in laboratory animals and humans

before and after treatment for a dysfunction have been performed previously (Alaimo

et al., 1984). The existing hypothesis regarding the possibility of electrophysiological

biomarkers is the emergence of MRs and LRs in MEPs during activity-driven training

(Lavrov et al., 2006, 2008b; Gad et al., 2015). Underlying neurological mechanisms are

involved in time-related modulation in MEPs during treadmill activities. Re-emergence

in LR and reduced MR changes in flexor extensor motor pool modulation reflect the

neural network’s plasticity (Gad et al., 2015; Lavrov et al., 2006). In the present study,

we explore the characteristics of the same signals during spontaneous in vivo step-

like activity within an enriched caged environment. Paralleled between these findings,

fig. 7.6 presents an exponentially increasing trend between the emergence of LRs and

the functional response to hind-limb step training. In contrast to past research, no

distinct differences were detected between LRs and MRs fig. 7.6 (Gad et al., 2015).

These differences may be due to the small sample size or difference in an experimental

environment. The difference in locomotive setting (treadmill vs. free-roaming) may

introduce disruptions to the reorganisation of neural networks due to the loss of highly
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organised and predictable sensory input patterns typically generated with step training

on a treadmill (Taccola et al., 2018; Edgerton and Roy, 2009a).

Additionally, note that the highlighted outliers in fig. 7.6 were not included in the

regression calculations. These data points suggest that high activity levels can occur

at below-average low MEP peak counts. These outliers were measured from the same

rat within the same experiment. During video data analysis, an unusual frequency of

induced air-stepping was observed. The fact that some number of these counted step-like

events were not enabled but instead induced by ES may result in minimal polysynaptic

pathways being activated during air-stepping, i.e. when the proprioceptive and tactile

afferents typically associated in over-ground, weight-bearing hind-limb locomotion were

not present Grillner and Zangger (1979).

The exponential trend visible in fig. 7.6 alongside the data in fig. 7.5, present the

possibility of a ‘breakaway’ point where the minimum level of neuronal activity and

polysynaptic mechanisms are required for significant functional improvement. Only

when quipazine was introduced was a significant improvement in spontaneous step-

like activity observed. Given the extensive research provided with training under the

influence of strychnine, one would expect that strychnine experiments would provide

equal benefit when compared with quipazine (de Leon et al., 1999; Gad et al., 2015,

2013c).

Polysynaptic MEP activity may be a valuable biomarker for predicting therapy ef-

ficacy after SCI. The recovery of stochastic late-response activity coincides with the

return of weight-bearing locomotion (Lavrov et al., 2006; Gad et al., 2015). Stochastic

late-responses, not synchronised with ES pulse onset, indicate involvement of complex

polysynaptic networks. In the transected spinal cord, these can only be excited from

exogenous afferent stimuli of long lasting recurrent activations in pre-motor networks

(Taccola et al., 2018). The prolongued late-responses may be explained by the longer
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stance period, supplying additional afferent inputs from weight-bearing activity (Edger-

ton et al., 2008; Hubli and Dietz, 2013). Interestingly, the reemergence of late-response

activity in sensorimotor recovery has also been observed in upper-limb MEP experiments

in humans, indicating a task indepedent, common adaptation strategy across spinal

sensorimotor pools (Inanici et al., 2018).

Albeit a small sample size, these data extend the hypothesis of the existence of

electrophysiological biomarkers and warrant the extension of further investigation into

longer-term longitudinal studies and the involvement of more robust algorithms and

in vivo sensing technologies. These observations, alongside the previously discussed

representation of plastic mechanisms in MEPs, agree with our initial hypothesis of

multiple neuromodulatory modalities transforming non-functional spinal networks to a

more excitable state to enable ‘self-training’.

Presented here is a novel result of identifying step-like activity while recording

electrophysiological biomarkers of stepping in chronic, cage-roaming environments. The

present data provide an example of a ‘proof of concept’ approach to examine the level

of activity dependence present when testing an intervention’s efficacy. It is technically

becoming more feasible to chronically record EMG from many muscles to detect how

the reorganisation of neuronal networks that control locomotion can be focused on the

patterns of coordination of flexion/extension, abduction/adduction and non-repetitive

tasks such as grip and pinch manoeuvres as well as repetitive tasks such as cycling etc.

Moreover, the ability to measure the state of the locomotive neural circuitry to determine

the direct relationship between the treatment provided and the underlying neuronal

mechanics serves as detailed insight as the subject undergoes training, providing the

opportunity to adjust treatments to maintain an enabling effect, maximising activity-

dependent recovery (Curt et al., 1998; Petersen et al., 2012).

Precise mechanisms behind these observations are currently unknown. Some expla-
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nation can come from modelling the circuitry within the lumbosacral locomotor networks.

Pre-motor glutamatergic dI3 INs, receiving proprioceptive afferent inputs, projecting in

bilateral rostrocaudal directions via ventrolateral and dorsal funiculus, easily accessible

by ES activity (Lu et al., 2015; Stepien et al., 2010; Avraham et al., 2010; Parker et al.,

2020; Capogrosso et al., 2016). V2a neurons have been elucidated as key recovery INs

during neuromodulatory recovery paradigms (Kathe et al., 2022). Precisely, greater

extension activity seen in this study can be paralleled to the longer and stronger stance

phases of serotonin-facilitated stepping during treadmill locomotion (Fong et al., 2005;

Antri et al., 2003). At least for spinal transected adult rats, LRs could be considered

partly due to the involvement of serotonergic neurons. Moreover, GABAergic INs in

direct contact with CSF along the central canal of the spinal cord in the mouse project to

what authors assume as axial pre-motor V2a INs (Nakamura et al., 2023).

Disrupting the excitation-inhibition balance led to aberrant neural states (Musienko

et al., 2015). Maintaining a balance of excitation and inhibition, especially during load-

bearing activity, while regulating inputs from multisensory sources appears critical

to recovery and locomotion expression (Gad et al., 2015). These complex inhibitory

pathways are readily positioned to adapt to incoming sensory information. Perhaps, ES

and quipazine assist in returning the balance of excitation and inhibition, though the

mechanisms are uncertain.

Further work may consider the following. The first steps may include replicating these

results in a larger sample size. Secondly, a longitudinal study analysing the relationship

between LRs, MRs, and functional kinematic expression of locomotor activity in larger

complex mammals, such as non-human primates or humans. Finally, an investigation

into the origins of these potential polysynaptic pathways through genetic labelling

experiments or computational modelling.
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7.6 Conclusion

I successfully demonstrated algorithms to detect specific functional hind-limb sponta-

neous locomotion using minimal biosignals while monitoring biomarkers representing

a polysynaptic neurophysiological system input-output response of the spinal circuitry

that controls locomotive activity. In addition, I discuss the correlation between these

biomarkers and the functional responses to spinally evoked potentials.
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8
BALANCING EXCITATION AND INHIBITION IN THE

LOCOMOTOR SPINAL CIRCUITS

P
re-synaptic inhibition after SCI has been hypothesised to disproportionately

affect flexion reflex loops in locomotor spinal circuitry. Reducing GABAergic

inhibition activity increased the excitation of flexion circuits, restoring mus-

cle activation, and stepping ability. Conversely, nociceptive sensitisation and spasticity

can emerge from insufficient GABAergic inhibition. To investigate the effects of neu-

romodulation and proprioceptive sensory afferents in the spinal cord, a biologically

constrained spiking neural network (SNN) was developed. The network describes the

flexor motoneuron reflex loop with inputs from ipsilateral Ia- and II-fibres and tonically

firing interneurons. The model was tuned to a baseline level of locomotive activity before

simulating an inhibitory-dominant and body-weight supported (BWS) SCI state. ES

and serotonergic agonists were simulated by the excitation of dorsal fibres and reduced

conductance in excitatory neurons. ES was applied across all afferent fibres without

phase- or muscle-specific protocols. Results suggest serotonin effectively increased MN
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excitability while ES tuned the excitation towards stable sensory-driven flexor activation.

8.1 Introduction

Flexor activity is critical for step progression during locomotion, acting as shock absorbers

before foot strike (Akazawa et al., 1982), adapting step-height to continue locomotion

progression (Zhong et al., 2012), and resetting locomotion (Schomburg et al., 1998). Con-

versely, having too much flexion activity can result in spastic muscle expression, leading

to poor balance and coordination (Schmit et al., 2000; Little et al., 1989). Maintaining an

excitation-inhibition balance of excitability emerges as an intuitive solution to enabling

robust locomotor expression.

SCI interrupts normal bidirectional signalling, leading to dysfunctional neural cir-

cuitry (Beauparlant et al., 2013). Lack of descending activity keeps MNs at a predom-

inantly inhibited state (Ghosh and Pearse, 2014) while inhibitory populations in the

dorsal and intermediate zone become over-reactive (Edgerton et al., 2004). A large

percentage of the SCI population experience spastic muscle activity, likely due to an

uninhibited activation of GABA receptors (Bellardita et al., 2017; Dimitrijevic et al.,

1986; Pinter et al., 2000; Cowley and Schmidt, 1995; McKay et al., 2011). Nevertheless,

even with an overly excited or inhibited environment and detached from brain inputs,

the locomotor spinal circuit can continue to express coordinated motor function given

sufficient excitation and contextually relevant sensory information (Edgerton et al., 2006;

Capelli et al., 2017; Taccola et al., 2018).

Proprioception is a critical sensory input to entrain and recover locomotion after

SCI (Takeoka et al., 2014; Takeoka and Arber, 2019; Akay et al., 2014). Proprioceptive

afferent innervation is widespread and diverse, projecting to MNs (Lavrov et al., 2006;

Flynn et al., 2011; Cote et al., 2018), GABAergic (Tillakaratne et al., 2014; Liu et al.,

2021), and serotonergic (Nakamura et al., 2023; Zagoraiou et al., 2009; Lu et al., 2015;
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Nascimento et al., 2020) INs in the dorsal and intermediate zone of the spinal cord.

Long and short axons spread across multiple segments and organised spatially and by

modality (Niu et al., 2013; Cote et al., 2018; Brownstone et al., 2015; Laliberte et al.,

2019). Proprioceptive interneurons (PINs) are mainly excitatory, with most inhibitory

populations projecting ipsilaterally (Flynn et al., 2017). Due to their complex and inte-

gratory nature, PINs have been suggested to be a possible neural detour around spinal

lesions, recovering voluntary sensorimotor control after SCI (Eisdorfer et al., 2020; Filli

et al., 2014; Taccola et al., 2018; Gerasimenko et al., 2009; Laliberte et al., 2019). For

further reading on the anatomy of propriospinal afferents, see appendix A.3.

There remains uncertainty on how neuromodulatory inputs regulate sensorimotor

control via propriospinal connections (Edgerton and Harkema, 2011). After losing ex-

citable input, it is natural to seek methods to return that excitation to sub-lesional

networks. Most ES techniques have sought to excite and entrain locomotion by activating

dorsal roots in the epidural space (Capogrosso et al., 2013; Moraud et al., 2016; Formento

et al., 2018; Angeli et al., 2014; Danner et al., 2015). However, ES, in a very similar

anatomical space, using similar stimulation protocols, can equally evoke inhibition and

restore an overly excited network (Caylor et al., 2019; Dimitrijevic et al., 1986; Pinter

et al., 2000). A more in-depth and nuanced view of ES therapy is required to fully appre-

ciate the complexity of modulating the neural environments. A key question remains:

How do neuromodulation therapies integrate with sensory information?

This study analyses a biologically constrained flexor MN spiking neural network

receiving heterogeneous excitatory and inhibitory synapses, including GABAergic presy-

naptic inhibition. A combination of ES and serotonin agonist neuromodulators are

simulated in an SCI and SCI with a body-weight support (BWS) locomotion setting.

The hypothesis is this: Spinal cord locomotor circuits require balanced excitation and

inhibition to coordinate flexor activity.
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8.2 Methods

A biologically constrained SNN was developed to investigate the effect of neuromodu-

lation on sensory-driven spinal locomotor circuits. Simulations were run on an Intel

Xeon Gold 6238R 2.2GHz Processor. The software was developed in Python 3.10.0 using

the Brian2 neural simulator module (v2.6.0) (Stimberg et al., 2019; Van Rossum and

Drake, 2009). The simulation time step was set to 5µs and run for 8-step cycles using

Euler approximations for ordinary differential equation solving. A total of 8 steps were

simulated, and gait stance and swing phases were split at 65% of the gait cycle (Leblond

et al., 2003). This study simulated three different neurological environments, including

a baseline, SCI, and SCI with a BWS state. Each neurological state was modulated with

inputs from ES and serotonergic agonists (Quip).

The simulated data was considered dependent and tested using the Shapiro-Wilk

method, where p > 0.05 was considered a normal distribution. Normal distributions

were tested for significance using Tukey Honestly Significant Difference (HSD), and non-

normal distributions were tested using the Wilcoxon signed-rank test. The significance

between distributions was set to a p-value of 0.05. Population firing rates were averaged

with a 75 ms Gaussian window. Experiment code can be found at appendix A.4.

8.2.1 Afferent Signal Inputs

Ia and II TA and gastrocnemius medialis (GM) muscle afferent signals were calculated

by using musculoskeletal and muscle spindle models during locomotion, previously

described in Formento et al. (2018). To emulate BWS afferent signals, both TA and

GM Ia and II data were offset by a scalar amount using values from Kristiansen et al.

(2019). The new BWS equations were set to eqs. (8.1) and (8.2) where KT A =−0.676 and

KGM =−0.221, reducing the EMG effect by 32.4% and 77.9% respectively. The equations

refer to x as stretch, v as stretch velocity, and EMGenv as the normalised EMG envelope
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(Prochazka, 1999). Afferent signals were set as timed array poisson distributed inputs

with a sampling frequency of 200 Hz and connected to leaky integrate and fire (LIF)

axon models, see eq. (8.3). Parameters were set according to Capogrosso et al. (2013) and

tuned to replicate the input firing rate, see table 8.1. Tuning was validated with Pearson

correlation coefficient and mean absolute error, refer to table A.15.

(8.1) Ia firing rate= 50+2 · x+4.3 · sign(v) · |v|0.6 +K ·50 ·EMGenv

(8.2) II firing rate= 80+13.5 · x+K ·20 ·EMGenv

(8.3)
dv
dt

= E l −v
τ

Table 8.1: Axon parameters for LIF model.

Parameter Value

N 60
τ 30 ms

τre f ractory 1.6 ms
El −80 mV
Vth −60 mV

Vrest −70 mV

8.2.2 Spiking Neural Network

The SNN models the ankle flexor’s mono- and di-synaptic stretch and stretch velocity

afferent reflexes. Proprioceptive afferents innervated the TA MN, GABA, IaIN, and V2a

neurons (Cowley et al., 2010; Baek et al., 2017). IaINs receiving Ia and II afferent inputs
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of the flexor and extensor muscles were reciprocally inhibited (Adolfo et al., 2011). GABA

INs applied presynaptic inhibition to excitatory inputs of the TA MN (Mazzone et al.,

2021; Khristy et al., 2009). V2a INs received flexor II afferent inputs and applied tonic

excitation to TA MNs (Li et al., 2022a). TA MNs received monosynaptic excitation from

flexor Ia afferents (Tuan et al., 2013; Bui et al., 2016). Refer to fig. 8.1 for an illustration

of the entire network.

Figure 8.1: The flexor network with GM extensor and TA flexor proprioceptive Ia and II
inputs. Arrow ends indicate excitation, circle ends indicate inhibition, and dotted line
with circle ends indicate presynaptic inhibition connections.

Ia inhibitory interneurons (IaINs) were modelled as conductance-based LIF neurons

receiving excitation from Ia and II afferent fibres and inhibition from opposing IaINs,

see eq. (8.4). Isyn is the cumulative synaptic current from excitatory and inhibitory

components. IaIN parameters in table 8.2 were set to match experimental results (Bui

et al., 2003; Formento et al., 2018).
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(8.4)
dv
dt

= gL(EL −v)+ Isyn

Cm

Table 8.2: Ia inhibitory IN parameters.

Parameter Value

N 196
Cm 31.13 pF
EL −70 mV
Vth −50 mV

Vrest −65 mV
gL 5 nS

GABA presynaptic inhibitory INs and V2a INs were modelled as conductance-based

adaptive exponential (AdEx) LIFs (Naud et al., 2008). GABA parameters (Fink et al.,

2014; MacDonald, 2006) and V2a parameters (Dougherty and Kiehn, 2010; Dougherty

et al., 2013; Zhong et al., 2010) were set as per experimental results. AdEx equation was

defined per eq. (8.5). GABA and V2a IN parameters were set per table 8.3 and table 8.4.

V2a IN gL was reduced by 15% to emulate serotonin agonist response (Husch et al.,

2014).

(8.5)
dv
dt

=
gL(EL −v)+ gL(∆v exp v−vth

∆v
)+ Isyn −w

Cm

(8.6)
dw
dt

= a(v−EL)−w
τw

TA flexor MNs were modelled as AdEx LIFs receiving excitation from TA Ia fibres,

V2a INs, inhibition from GM originating IaINs and presynaptic inhibition from GABA
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Table 8.3: GABA IN parameters.

Parameter Value

N 196
Cm 100 pF
EL −70 mV
Vth −50 mV

Vrest −62.3 mV
gL 1.2 nS
∆v 2 mV
a 2 nS
τw 20 ms

Table 8.4: V2a IN parameters.

Parameter Value

N 196
Cm 45 pF
EL −53 mV
Vth −42 mV

Vrest −47 mV
gL 1.2 nS
∆v 0.5 mV
a 2 nS
τw 55 ms

Table 8.5: TA MN parameters.

Parameter Value

N 169
Cm 162 pF
EL −70 mV
Vth −50 mV

Vrest −65 mV
gL 27 nS
∆v 0.05 mV

INs (Formento et al., 2018; Tillakaratne et al., 2014; Li et al., 2022a). The AdEx equation

for TA MNs was the same as eq. (8.5) but set the parameter, w, to 0. Parameters in

table 8.5 were set to best estimate experimental results (Özyurt et al., 2022; Caillet

et al., 2022; Bui et al., 2003). To simulate serotonin agonist response, MN gL was reduced
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by 40% during SCI experiments and 15% during BWS experiments (Formento et al.,

2018; Husch et al., 2014; Booth et al., 1997). See figs. 8.2 and 8.3 for MN responses with

varying stimulation pulse widths.

Figure 8.2: Simulated AdEx LIF TA MN single spike response after receiving a 20 ms
stimulation pulse at 670 pA.

8.2.3 Synapses

Alpha and exponential conductance synapses were used to describe inhibitory and

excitatory synapses, respectively, see table 8.6 and figs. 8.4 and 8.5. The reversal potential

of excitatory synapses was set to 0 mV, while inhibitory synapses were set to the target

neuron reverse potential. II-fibre synapse weights were scaled by a factor of 0.33 to

simulate the effect of smaller axon size (Formento et al., 2018). Synaptic connections,

with the exclusion of GABA, were determined by probabilities specified in table 8.7.

GABA connections were predetermined by index rules dependent on the experiment

condition; see fig. 8.6. GABA connections were tuned to match previous baseline responses
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Figure 8.3: Simulated AdEx LIF TA MN tonic burst response after receiving a 200 ms
stimulation pulse at 670 pA.

(Formento et al., 2018; Moraud et al., 2016). SCI condition GABA connections were

increased by 150% as seen in flexor MNs after SCI transection (Khristy et al., 2009).

Table 8.6: Alpha and exponential synapse and GABA spillover parameters. Alpha
synapses were used for inhibitory connections while exponential synapses were used for
excitatory connections.

Parameter Value

τexc 0.25 ms
τinh,rise 2 ms
τinh,decay 4.5 ms

τp 20 ms

Presynaptic inhibition was a multiplicative gain, scaling synaptic weights of each

excitatory connection to the TA MN population (Fink et al., 2014; Hochman et al.,

2010; Lalonde and Bui, 2021; Rudomin, 1990). GABA spillover was modelled as a linear

decrease in release factor, p, see eq. (8.7). β determined the strength of the inhibition,

τp determined the decay rate, and C was considered a unitless value for local GABA
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Figure 8.4: Excitatory exponential synapse with different synaptic condunctance values
for the simulated flexor motoneuron.

Table 8.7: Synapse connection probabilities and synaptic conductance by source and
target neurons. Excitatory (exc.) and inhibitory (inh.) synaptic conductance apply to
target neurons.

Source Target Probability Exc. Conductance Inh. Conductance

Axon IaIN 0.3 3 nS –
Axon GABA 0.3 12 nS –
Axon V2a 0.6 1 nS –

IaINT A/GM IaINT A/GM 0.1 – 1 nS
Axon, V2a, IaIN MN 0.3 12 nS 5 nS

concentration (Naumann and Sprekeler, 2020).

(8.7) τp
dp
dt

=−p+ (1−β ·CGABA)
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Figure 8.5: Inhibitory alpha synapse with different synaptic condunctance values for the
simulated flexor motoneuron.

8.3 Results

Statistical analysis on flexor activity after outlier removal (SCI, SCIqES) during each

phase presented a normal distribution in the swing and stance phases (p > 0.05). Swing

phase flexor activity significantly differed between all simulated conditions with the

exclusion of baseline – BWSES, BWSES – BWSQuip, and BWSQuip – BWSqES pairs.

Stance phase flexor activity was significantly different in all simulated conditions except

baseline – BWSES, baseline – BWSQuip, baseline – SCIQuip, and BWSQuip – BWSqES

pairs. See fig. 8.7 for TA MN activity distributions in both swing and stance phases.

Box-and-whisker plots for GABA INs and V2a INs can be found in figs. A.15 and A.16.

Simulated TA MN expression during baseline step cycles was unaffected by stimula-

tion amplitudes but minorly affected by frequencies, refer to figs. 8.8 and 8.9. Though,

GABA and V2a INs firing rates were scaled according to stimulation frequency. Note

20 Hz and 40 Hz at 10 mV stimulation intensities resulted in the same firing patterns.
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Figure 8.6: Comparison of synaptic connection between GABA and TA MN neurons with
and without SCI (Khristy et al., 2009). The red points indicate extra synaptic connections
between GABA and TA MN populations. All other synapse variables were kept the same.

During baseline stepping, most variation occurred within the swing stages and

transition between the swing and stance phases of the gait cycle, see fig. 8.10. The

TA MN population firing rates between baseline and SCI conditions were significantly

different. Deterministically scaling the GABAergic connectivity to flexor MNs by 1.5

reduced mean firing rates by 16 Hz and increased mean standard deviation by a factor of

4.

Simulating SCI settings by increasing GABAergic connections resulted in greater

frequency of presynaptic inhibition activity (fig. 8.7). GABA IN firing rates were increased

while receiving ES inputs. V2a IN firing rates were equal between baseline and SCI

since it did not receive GABA IN synapses. Simulating serotonergic agonist activity by

reducing the membrane conductance of V2a INs and MNs increased firing rates in MNs,

bringing MN firing rates closer towards the baseline. This effect was abolished when
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Figure 8.7: Box-and-whisker plots of 8-steps during baseline and simulated conditions.
All stance flexor activity was significantly different with the exception of Baseline –
SCIQuip, Baseline – BWSES, and BWSQuip – BWSqES. All swing flexor activity was
significantly different with the exception of Baseline – BWSES, BWSES – BWSQuip, and
BWSQuip – BWSqES.

combined with ES, see figs. 8.7 and 8.11. Applying qES increased V2a IN and GABA

IN activation, reducing the MN excitation to below SCI. In combination with the SCI

condition, ES resulted in the same MN firing rate expression as qES.

BWS locomotion with SCI increased overall flexor activity to averages greater than

the baseline condition. This was further amplified with the introduction of Quip. Applying

ES without Quip smoothened the output of MN activity, returning MN activations to

baseline. Combining Quip and ES further increased peak activity during the swing phase

and reduced activations during stance phases, see figs. 8.7 and 8.12.

The reduction in flexor afferents from BWS reduced the Quip-modulated V2a IN

activity towards SCI levels; these effects were reversed with ES modulation. GABA
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Figure 8.8: Stimulation frequency sweep applied at 20, 40, 60, 80, and 100 Hz at 10 mV
amplitude using poisson inputs to flexor and extensor axons.

IN activity was reduced due to BWS simulated stance EMG reduction. Introducing ES

returned GABA IN activity closer to the baseline. GABA activity was equivalent when

comparing BWSES and BWSqES since no modulation was applied from serotonin, refer

to figs. 8.7 and 8.12.

8.4 Discussion

A biologically constrained SNN model of the flexor reflex circuit was designed to investi-

gate the integration mechanisms between sensory and neuromodulation inputs to the

spinal cord. Analysis of the stance and swing phases of 8 steps during simulated SCI

activity reveal serotonergic agonists as a method to excite V2a INs and TA MNs after

SCI. Applying unspecific ES to proprioceptive afferent axons amplified the effects of

reciprocal inhibition, further accentuating excitatory peaks and inhibitory valleys. More-
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Figure 8.9: Stimulation intensity sweep applied at 10, 20, 30, 40, and 50 mV and 40 Hz
frequency using poisson inputs to flexor and extensor axons.

over, simulating BWS locomotion decreased presynaptic inhibition, which reestablished

TA MN firing rates. Applying ES during BWS locomotion resulted in a smoother MN

activation profile, returning swing and stance firing rates to the baseline level.

Historically, ES has been applied for chronic pain management and spasticity reduc-

tion (Stewart et al., 1991; Edgerton and Roy, 2010; Caylor et al., 2019). The activation

pathways of spinal cord stimulation for pain management are understood to be via

large-diameter dorsal column and root fibres that carry propriosensory, mechanosensory,

and nociceptive information (Guan et al., 2018). GABA INs activate and depress afferent

nociceptive signals by antidromic activation of the dorsal column at frequencies, electrode

positions, and stimulation amplitudes similar to that of ES for sensorimotor recovery

(Meuwissen et al., 2020; Wenger et al., 2016). Similarly, ES applied for spasticity reduces

the excitatory inputs to MNs through the proprioceptive inhibitory pathways (Alashram

et al., 2023; Mahrous et al., 2024). Yet, literature in SCI motor recovery places an intense
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Figure 8.10: Average and standard deviation plots of 8-steps during baseline and simu-
lated SCI conditions. The vertical grey line separates the stance (left of the grey line)
and the swing (right of the grey line) phases, estimated at 65% of the gait cycle (Leblond
et al., 2003).

focus on excitation (Alluin et al., 2015; Lorach et al., 2023; Minassian and Hofstoetter,

2016).

Given the heightened inhibitory state of the injured spinal cord, it seems intuitive

to return excitation to depressed neurons. However, results from this study suggest

activating the spinal cord with the same proposed mechanisms as pain and spasticity

modulation equally activate inhibitory pathways, strengthening an already maladapted

inhibition dominant circuit (Edgerton et al., 2001a; Khristy et al., 2009). A more refined

and nuanced approach needs to be considered in order to return the required balance

of excitation and inhibition to allow phasic activity to propagate. Results in this study

suggest that appropriate sensory information must be provided to drive flexor network
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Figure 8.11: MN, V2a IN, and GABA IN spiking activity during an example step. The
effect of SCI and SCI while receiving serotonergic agonists, (Quip), and the combination
of Quip and ES (qES) were compared. The top row illustrates the population firing rates
and the bottom row shows the individual neuron spiking activity during the gait cycle.

plastic adaptation towards a less inhibited and more task-specific tuned state. Tonically

depressing or exciting, the spinal circuits do not provide the necessary sensory informa-

tion to provide that plastic tuning (Fong et al., 2005; Cai et al., 2006). This explains the

requirement of propriosensory information for locomotor recovery after SCI (Takeoka

et al., 2014; Takeoka and Arber, 2019; Akay et al., 2014).

The normal sensory processing occurring within the injured spinal cord becomes more

stochastic and lacks the necessary bias required to perform the task (Gad et al., 2015).

As a result, pre-motor polysynaptic connections play a more active role in the expression

of muscle tone and activity (Sakurai et al., 2016). By establishing an appropriate balance

in excitation and inhibition, repetitive sensory information can reinforce appropriate

synaptic adaptations towards a more functional spinal state (Rossignol et al., 2006;

Edgerton et al., 2008; Ichiyama et al., 2008b). Results in this study show, for the first
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Figure 8.12: MN, V2a IN, and GABA IN spiking activity during an example step during
simulated BWS locomotion. The effect of BWs while receiving serotonergic agonists
(Quip) and the combination of Quip and ES (qES) were compared. The top row illustrates
the population firing rates and the bottom row shows the individual neuron spiking
activity during the gait cycle. Descreased firing rates from extensor afferents increased
excitation in V2a INs and MNs by reducing the effect of inhibition.

time, the synaptic mechanisms at which this can be accomplished and provide an

understanding of why BWS treadmill training works (Hicks and Ginis, 2008; Nam et al.,

2017; Feldman et al., 2021).

The greater deviation in normalised firing rate indicates greater variation in neuronal

populations after SCI (figs. 8.10 and 8.13). This may be due to the lack of necessary

excitation required to inhibit and excite in phase with the incoming sensory signals

(Gad et al., 2015). Thus, increasing the excitability of MNs and premotor excitatory

neurons and reducing the effect of stance phase inhibition by BWS can assist with

reducing inhibitory effects on flexors (de Leon et al., 2002; Cantoria et al., 2011; Pizzolato

et al., 2021; Cabaj et al., 2017). After reaching a suitably excitable state where phasic

step information can propagate in a timely manner, sub-threshold ES could provide the
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Figure 8.13: SCI simulation of a single motoneuron receiving presynaptic inhibition by
local concentration of GABA transmitters during a single step. Note the reduced number
of spike events due to GABA inhibition.

necessary smoothening process to synergistically reinforce relevant pathways without too

much inhibition or excitation (Formento et al., 2018; Gerasimenko et al., 2007; Ichiyama

et al., 2008b).

Computational studies such as this are limited in their ability to generalise due to

the estimates and tuning that are required to generate the model itself. The simulated

flexor reflex loop’s SNN architecture is simplistic compared to the complex bidirectional

information exchange between the contralateral sides (Danner et al., 2019; Rybak et al.,

2015). Though the cells were modelled from experimental data, there are errors and

missing variables within experiments that have a carry-on effect on computational

models. This study utilised LIF and AdEx equations to reduce computational burden and

improve simulation runtime speeds. Though previous efforts have incorporated the same

approach (Moraud et al., 2016; Formento et al., 2018), mathematical approximations
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of firing patterns limit the generalisability (Feng, 2001; Merzon et al., 2019). However,

even with simple estimations, a computational model could provide new hypotheses to

the inner workings of neurological systems and unlock novel recovery protocols (Wenger

et al., 2016; Edlund, 2019).

Future studies could include the investigation of previous electrophysiological results

that uncovered correlations between the appearance of long-latency polysynaptic poten-

tials and recovery of locomotion in spinal rats (Lavrov et al., 2008a; Gerasimenko et al.,

2007, 2006; Lavrov et al., 2008b, 2006; Gad et al., 2013c). Re-emergence of uninterrupted

late-response polysynaptic potentials may be the expression of increased excitability in

local spinal networks, re-balancing the inhibitory dominant pre-motor circuity (Gad et al.,

2015; Sakurai et al., 2016). Functional recovery may be mediated by increased magnitude

in polysynaptic activity, compensating for the loss in direct excitation (Edgerton et al.,

2008). Finally, extending the computational model to include neuroplastic dynamics

could uncover the relationship between neuromodulation and neuroplastic adaptations

(Brzosko et al., 2019; Naumann and Sprekeler, 2020). Investigating these effects within

an extended biologically constrained computational model would be worthwhile.

8.5 Conclusion

The development of a biologically constrained SNN has provided insights into the mech-

anistic basis of sensory and neuromodulatory integration after SCI. Simulations suggest

that BWS locomotion in conjunction with ES returns phasic flexor coordination in an

inhibition-dominant environment. Without BWS, serotonergic agonists increased exci-

tation to enable sensory-driven flexor rhythmic activation. The spinal cord requires a

balance of excitation and inhibition to enable the correct phasic modulation of sensori-

motor pathways. The work described in this chapter provides a potential explanation for

why BWS locomotor training works with neuromodulation.
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FUTURE DIRECTIONS

T
his thesis has described methods for pathological gait monitoring during lon-

gitudinal studies of neuromodulation effects in SCI populations. The developed

rule-based algorithms and machine learning models with curated features,

per standard in the literature, from chapter 4 could not reliably capture event labels.

Deep learning models from chapters 5 and 6 successfully classified windows of locomo-

tor and standing activity with state-of-the-art methods without requiring significant

post-processing. Using the abovementioned methods, chapter 7 analysed the effect of

different combinatorial neuromodulation therapies on spinally transected rats during

chronic recording sessions in cage-roaming environments. The MEPs extracted from

each locomotion event suggest LRs as a potential biomarker to indicate the functional

state of the local spinal circuitry. Mechanisms for this have yet to be investigated. Thus,

the below section performs an in-depth review of the biological architecture of locomotor

CPG known thus far to extend the SNN model design from chapter 8 for hypothesis

generation.
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9.1 Human Studies

Wearable technologies have become less intrusive and easily accessible to daily use

(Zhao et al., 2021; Lymberis, 2003). This thesis has focused on why this data is essential

when monitoring and adjusting the effects of neuromodulation therapies and protocols.

By enabling out-of-lab recordings of event-related activity, new options for treatments

are presented. Such include understanding dose-response and flexibly changing the

complex parameter list of stimulation waveforms and location (Edgerton and Harkema,

2011). The first step to deploying such an intertwined environment is aggregating EMG

lower-limb data with wearable sensors in an out-of-lab context. There already exists

plenty of activity recordings on the treadmill and within-lab.

If the above steps are successful, one may decide to expand the model to include

pathological gait and non-pathological gait domains, developing a domain-invariant rep-

resentation of locomotor activity across populations. Sensor-fusion techniques may also

be appropriate to reliable classification, including previously studied IMU incorporation

in table 4.1. Data augmentation strategies offer methods to improve robustness and

invariance in time-series classification. Further investigations of these transfer learning

and augmentation techniques enable the measurement of neural recovery in the final

common pathway of the MN in neuropathological gait subjects.

Another opportunity is to address the engineering problem of regular tuning of stim-

ulation parameters. For example, participant-specific spatiotemporal tuning of electrode

position and stimulation parameters to reach an optimised stimulation protocol (Angeli

et al., 2014; Wagner et al., 2018). To combat such issues, an active machine learning

algorithm utilising a structured Gaussian process optimised stimulation parameters

in four spinal rats with multi-electrode implant arrays (Desautels et al., 2015). Unpub-

lished data from Kachuee et al. (2018) used machine learning models to predict the grip

force of a patient with chronic SCI based on different epidural stimulation parameters.
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These studies illustrate the high complexity of electrical neuromodulation in catering

to subject, spatiotemporal, and parametric-specific stimulation protocols for optimised

rehabilitative outcomes.

The electrode configuration and stimulation parameters significantly affect the CNS.

Even within the same stimulation site, changing the applied frequency can recruit spinal

sensorimotor pathways relevant to a different task. Interleaved stimulation even affects

multiple spinal premotor circuit recruitment (Cheng et al., 2019; Wenger et al., 2016).

Electrical neuromodulation strategies to facilitate motor recovery are still in their infancy.

Its effects on the CNS concerning the requirements for patient specificity still need to be

fully understood. A large body of research has been conducted on how the spinal cord

integrates sensory information after introducing an electric field (Edgerton et al., 2001a,

2004, 2008; Edgerton and Roy, 2009a).

Applying ongoing monitoring of MEP activity could off-load the frequency of recali-

bration, reducing the cost and complexity of ES-related therapy options. In advanced

modelling, it may be possible to consider the predicted adjustment of stimulation para-

meters for more optimised usage based on forecasting.

9.2 SNN Modelling

There have been many advancements in the clinical application of electrical stimulation.

However, the gaps in understanding the mechanisms of action, especially how endoge-

nous and exogenous signals coordinate to produce polysynaptic responses in MEPs

remain unsolved. The observations in chapter 7 complement previous literature (Lavrov

et al., 2006, 2008b; Gad et al., 2015). Some have considered LRs an endogenous compen-

satory excitation to local spinal networks to rebalance excitation-inhibition (Musienko

et al., 2013; Gad et al., 2015). Genetic labelling works have also suggested dI3 and V2a

INs as key contributors to locomotor recovery, though they are not previously required
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during healthy locomotion (Bui et al., 2016; Kathe et al., 2022). While scientists have

speculated the reasoning behind the above observations, further investigation is required

to describe why or how empirically.

Electrically stimulated polysynaptic activity evoked more complex behaviour in spinal

circuits but the threshold to reach polysynaptic activity was not constant (Vargas Luna

et al., 2021). The work suggests a level of modulation in central excitability, facilitating

the activation of polysynaptic activity. A recently submitted thesis also investigates

the mechanics behind facilitation during sub-threshold stimulation (Edlund, 2019).

This study documents an in-depth biophysical computational methodology to show the

activation of dorsal interneurons and the idea of the ‘facilitation window’. Perhaps

this explains why we see neuromodulatory facilitation via low-intensity stimulation

in sensory-driven training protocols. Polysynaptic activity expression may reflect the

central state of excitability in local spinal cord neural networks. Electrical stimulation

recruiting superficial dorsal interneurons, dorsal column, and dorsal root pathways could

facilitate endogenous afferent activity towards sensorimotor recovery.

Depolarisation of dorsal root fibres may lead to activation of more extensive interneu-

ron connections (Bannatyne et al., 2009; Cote et al., 2018; Vargas Luna et al., 2021).

Further evidence for this hypothesis was suggested in experiments using simple repeti-

tive neurostimulation to sufficiently activate locomotor CPGs (Grillner and El Manira,

2020). Computational modelling has shown that the electrical energy injected into the

epidural space is likely recruiting large diameter dorsal root fibres rather than interneu-

ron spinal networks (Mahrous et al., 2019; Capogrosso et al., 2013). These models were

developed mainly by assuming that other spinal neurons and axons are not activated via

epidural stimulation. A recent paper (Greiner et al., 2021) uses computational methods

to investigate the effect of electrode positioning and cervical motoneuron recruitment in

monkeys. Neuronal activation was achieved in the dorsal column, spinocerebellar tract,
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corticospinal tract, and primary afferent fibres. Current evidence is too rudimentary to

confidently accept dorsal root activation via ES as the direct pathway for sensorimotor

recovery after SCI.

The original reasoning postulated MEPs were deemed suitable estimates to define ac-

tivation sites via electrical stimulation (Rattay et al., 2000; Murg et al., 2000). While the

excitation of posterior roots activates α – MNs via reflex pathways, how do researchers

know if the dorsal column is unaffected? Rattay et al. (2000) ignores its effect in the

dorsal column because sufficient α – MN activation is > 10V, outside of the stimulation

amplitude range of interest. This assumption discounts the possibility of interneuron

activation via short or long propriospinal and mechanosensory dorsal column struc-

tures. Spinal cord stimulation was originally used for neuromodulating chronic pain via

activation of dorsal column axons (Guan et al., 2018; Parker et al., 2020; Jensen and

Brownstone, 2019; Prager, 2010). The role of electrically activated axons in the dorsal

column and root and neurons of the dorsal horn in sensorimotor recovery is not obvi-

ous. How these structures and neuromodulatory interventions couple together warrant

further investigation.

Identifying key contributors in electrically modulated complex spinal interneuron

circuitry (Niu et al., 2013; Cote et al., 2018; Wu et al., 2021a; Hagglund et al., 2013;

Jankowska, 2013b) and unravelling why these networks are necessary for spinal sensori-

motor recovery (Gill et al., 2020b; Eisdorfer et al., 2020; Takeoka, 2020; Takeoka and

Arber, 2019; Laliberte et al., 2019; Taccola et al., 2018; Flynn et al., 2011; Etlin et al.,

2010; Gerasimenko et al., 2009; Edgerton et al., 2008) is a worthy research pursuit.

Spinal cord electrical stimulation has shown differential effects in supra-spinal and

sub-cortical networks (Benavides et al., 2020; Knikou et al., 2015; Gerasimenko et al.,

2018). (Mahrous et al., 2019) investigated how sensory feedback may synergise with

descending neural firing. They had recorded short-term facilitation in descending inputs
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but short-term depression in sensory inputs. The concurrent activation of descending

and sensory inputs produced supra-linear facilitation in ventral root compound action

potentials but a sub-linear summation in intracellular EPSPs. This study gives insight

into the spinal cord’s integrative actions but does not answer how ES affects these

networks.

Facilitatory effects of epidural and transcutaneous dorsal ES were investigated in

(Guiho et al., 2021). Similar results to (Mahrous et al., 2019) were reported in vivo

in neurologically intact monkeys while delivering timed primary motor cortex and

epidural or transcutaneous dorsal ES. It was noted that facilitatory interactions likely

occurred at the spinal level as similar activity was observed when only stimulating the

pyramidal tract, an area unaffected by cortical excitability modulation. Additionally,

authors report longer facilitation windows in transcutaneous than in epidural ES. It may

be possible that transcutaneous ES recruit additional spinal networks, providing support

for activity-dependent plasticity (Benavides et al., 2020). Guiho et al. (2021) results

suggest an increased net excitatory synaptic influence on motoneurons via Ia afferent

pathways and slower presynaptic inhibition of subsequent afferent input via primary

afferent depolarisation (see fig. 9.1). The paper needs to investigate the interactions

between sensory afferents, ES, and descending input.

To further our understanding of the net effects and interplay of ES with voluntary

descending input, recent studies were performed to investigate the modulation of spinal

circuitry in healthy and SCI humans (Steele et al., 2021; Calvert et al., 2021). Steele

et al. (2021) explored the multi-segmental convergence of descending drive to spinal

motor pools in healthy subjects using a double-trigger stimulus protocol during both

preparatory and execution stages. Authors reported increased excitability in primary

agonists and antagonists before movement and evidence of ongoing descending drive

decreasing presynaptic inhibition of Ia fibres acting on spinal MNs. There was greater
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Figure 9.1: Hypothesised pathway of epidural electrical stimulation via axon depolari-
sation of primary afferent fibres, entering through the dorsal roots, exciting MNs and
pre-motor INs (Capogrosso et al., 2013). Licensed under Creative Commons Attribution-
Noncommercial-Share Alike 3.0 Unported License (CC-BY-NC-SA).

complexity expressed during voluntary isometric contraction. The authors observed task-

specific facilitation in agonists and antagonists. Knee extension and ankle dorsiflexion

saw expected facilitation in agonists and inhibition in antagonists. Whereas knee flexion

and ankle plantarflexion saw both agonists and antagonists facilitated. Furthermore, the

contralateral muscle recordings facilitated most muscles during isometric knee flexion,

plantarflexion, and dorsiflexion. While isometric knee extension resulted in inhibition in

responses of all recorded contralateral muscles. These task-specific differences reflect

feedforward mechanisms between cortical and spinal networks. The switching between

preparatory and execution states may be critical to delivering spinal stimulation for

sensorimotor recovery.

Calvert et al. (2021) investigates the effect of voluntary control and low-frequency

spinal cord stimulation at the motor threshold, using transcutaneous and epidural, in

SCI individuals under relaxed and MVC flexion of lower extremities. Spinally evoked

motor potentials were used to unravel the descending information through a lesion in
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concert with spinal cord stimulation. When instructed to contract lower limb muscles

voluntarily, spinally evoked motor potentials saw inhibited activity. Furthermore, joint-

specific contractions saw inhibition in all recorded muscles bilaterally. This is in direct

contact with the previously discussed paper from (Steele et al., 2021). This cohort of SCI

participants may have increased inhibitory responses due to neural reorganisation post-

injury. However, other studies on SCI participants using TMS-paired transcutaneous

spinal stimulation saw bilateral facilitation (Knikou et al., 2015; Roy et al., 2014).

Perhaps at higher rates of stimulation, a dominant excitatory effect takes place. If the

participants were in a more active position with greater afferent input, perhaps a greater

facilitatory effect could be generated. The reasons why the study saw inhibition instead

of facilitation remain unanswered.

The mechanistic basis of electrically neuromodulated sensorimotor networks is in

question. Eisdorfer et al. (2020) discusses the mechanisms of epidural electrical stimu-

lation in SCI participants, highlighting its utility in enhancing motor activation. The

author acknowledges the gap in knowledge surrounding electrical neuromodulatory

mechanisms driving improvements in sensorimotor function. The review suggests epidu-

ral stimulation promotes recovery via changes in local lumbar circuitry, specifically

through propriospinal interneurons. Recent work from Courtine’s lab shines a light on

the role of V2a interneurons in locomotor recovery after SCI (Kathe et al., 2022). Their

paper reveals activity-dependent V2a interneurons responsible for transforming infor-

mation projecting from brainstem locomotor regions and large diameter afferents into

executive commands innervating ventral neurons. However, descending input transforms

after injury cannot be the sole mechanism behind recovery. Bui et al. (2016) showed dI3

interneurons as critical neurons for motor recovery only after spinal transection.
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Figure 9.2: Detailed biologically constrained SNN model, designed based on electrophysi-
ological and genetic labelling studies from appendix A.3.

9.2.1 Model Design

With the architecture now laid out, an SNN design is proposed in fig. 9.2. Using the event

labels from chapter 7, an SNN model may be trained to uncover the sensory activity and

generate the EMG and MEPs discovered in chapter 7. The roles, inputs, and projections

of these neurons are reviewed in appendix A.3.

This work builds upon the model from chapter 8 but adds the extensor portion of the

ipsilateral reflex circuit (Capogrosso et al., 2013; Formento et al., 2018; Moraud et al.,

2016; Wenger et al., 2016; Edlund, 2019).
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T
his dissertation aimed to address two main gaps in the literature. The first

gap was the need for robust methods towards monitoring neurological, task-

dependent activity in an out-of-lab setting. The second was the need for mecha-

nistic explanations of synergistic neuromodulatory therapies involving electrical stim-

ulation and pharmacological treatment. Several machine learning and deep learning

techniques were utilised to classify locomotor and standing-related activity in spinally

transected rodents receiving multimodal therapy over a 6-hr period. Identified unilateral

stepping-like events were analysed over 5 different therapies. The late and middle re-

sponses produced from motor-evoked potentials during identified events appear to reflect

the functional state of the spinal cord while undergoing therapy. Finally, a biologically

constrained SNN was developed to investigate the effects of sensory integration with

neuromodulation for flexor activity. Balancing the excitation and inhibition levels pro-

duced robust stepping activations by the flexor network. Future works include scaling

the developed deep learning models towards humans with pathological gait in out-of-lab

settings. A biologically constrained spiking neural network generative model was de-
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signed and suggested as a possible means of explaining where the late responses appear

and the effect of electrical stimulation on specific neural cell types.

Chapter 4 sets out to perform a comparative study on the existing methodologies

towards lower-limb activity classification, including unilateral stepping and bilateral

standing events. Many approaches today break down the problem into smaller phases

to classify. The data set available does not have this luxury. A digital signal processing

pipeline and rule-based algorithm were designed to identify activity instances in rodent

hindlimb pathological stepping and standing. The development of the adaptive burst

thresholding technique allowed flexible burst detection in dynamic neurological environ-

ments. The first stage creates a signal envelope and breaks down windowed data into

sub-windows before identifying the index with the lowest magnitude. A threshold on the

first-order differential was applied to determine the periods of activity and inactivity.

The in-active segments were concatenated and used as the ‘resting’ period for that activ-

ity window. The adaptive filter allowed robust false positive rejection in the following

processes. However, the rule-based method did not successfully classify relevant labels

and returned poor evaluation metrics. Other machine learning options performed better,

though they returned an F1 score < 0.5. Existing methodologies towards lower-limb

activity recognition did not extract events during pathological gait in spinally transected

rodents receiving multimodal neuromodulatory therapy.

Chapter 5 aimed to investigate the state-of-the-art deep learning models towards

latent representations of the locomotor and standing events in the same data set. The

hypothesis was two-fold. Firstly, convolution vision transformers can develop spatiotem-

poral relationships in CWT signals via depthwise separable projections and attention

operations. Secondly, unsupervised domain-invariant adversarial learning and fine-

tuning can aid with classification across therapies. The experiment included several

deep convolutional neural networks and vision transformers. Results from this study
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suggest that ViT was able to capture the locomotor-specific semantic information behind

locomotor CWT. However, despite the disproportionate imbalance between standing and

stepping labels, it struggled with standing events. The Xception model captured standing

events best out of all the tested methods. Finally, the DIAL strategy did not successfully

develop robust representations between therapies. Results from this experiment far

outperformed existing approaches.

Chapter 6 applied curriculum learning, transferring knowledge from locomotion

phase classification to whole step cycle and standing classification. This study was the

first time curriculum learning was applied in activity detection using physiological

signals. This new method was then improved by using domain adaptation techniques to

bridge inter-subject domains. Combining curriculum learning with domain adaptation

outperformed transfer learning after self-supervised contrastive learning and supervised

one-dimensional convolutional neural network models.

Chapter 7 performed an in-depth analysis of the effect of 5 different neuromodulatory

therapies over 6 hours in spinally transected rats. The extracted stepping-like events

were summed and compared between therapies. Additionally, MEPs from event-labelled

sections of time were extracted. This study provided the first chronic study of multimodal

neuromodulation therapies. Results suggest the inclusion of serotonin as a pivotal

contributor to enabling sensory-driven locomotion activity in the isolated rat spinal

cord. The excitability in the soleus was directly linked to the number of steps completed

throughout the recording. Finally, a potential electrophysiological biomarker of the

functional state of the isolated spinal cord was identified in the late and middle responses

of the MEPs during sensory-driven activity. Implications of these results include the

monitoring of activity and excitability during rehabilitation in SCI subjects.

Chapter 8 investigated the effects of stance-specific presynaptic inhibition on flexor

networks. A biologically constrained SNN model was developed and fed proprioceptive
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afferent signals from ankle flexors and extensors. Simulating a SCI environment un-

covered a significant reduction in motoneuron excitation and increased variability in

motoneuron activation. The reduced excitation was reversed with simulated body-weight

support and serotonergic agonists. The application of ES smoothened the expression of

flexor activity.

Future directions suggest scaling the developed deep learning models towards human

subjects suffering from pathological gait during overground out-of-lab locomotion with

sparse EMG channels. Furthermore, extending the biologically constrained spiking neu-

ral network with extensor circuits may uncover the origins of the assumed polysynaptic

activity in the MEP late-response window.

230



A
P

P
E

N
D

I
X

A
APPENDIX

A.1 Supplementary Tables

Table A.1: Evaluation of penultimate layers during supervised step and stand training.

Accuracy Precision Recall F1-Score (weighted)

Dense 0.78 0.59 0.58 0.58
LSTM 0.78 0.59 0.62 0.60
ATTN 0.77 0.58 0.46 0.50

Table A.2: Evaluation of a LSTM penultimate layer during supervised step and stand
training per subject.

Accuracy Precision Recall F1-Score (weighted)

A3 0.18 0.31 0.09 0.14
A5 0.72 0.01 0.16 0.03
A7 0.81 0.72 0.60 0.63
A8 0.64 0.66 0.39 0.49

Mean 0.59 0.42 0.31 0.32
SD 0.24 0.28 0.20 0.25
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Table A.3: Evaluation of a Target Only classification of phases using CNN1D.

Right Swing Right Stance Left Swing Left Stance

A3 → A7 0.41 0.46 0.24 0.38
A5 → A7 0.41 0.46 0.24 0.38
A7 → A3 0.56 0.44 0.62 0.52
A7 → A5 0.56 0.45 0.69 0.52
A7 → A8 0.47 0.44 0.33 0.38
A8 → A7 0.41 0.46 0.24 0.38

Mean 0.47 0.45 0.39 0.42
SD 0.07 0.01 0.19 0.07

Table A.4: TS-TCC self-supervised training followed by phase label fine-tuning classifica-
tion performance per subject. Detailed are

Accuracy Precision Recall F1-Score (weighted)

A3 0.44 0.35 0.23 0.25
A5 0.83 0.10 0.77 0.17
A7 0.81 0.31 0.72 0.42
A8 0.61 0.35 0.39 0.36

Mean 0.67 0.27 0.53 0.30
SD 0.16 0.10 0.23 0.10

Table A.5: Average phase label classification F1-score (binary) performance for HoMM
after 3 runs set at different random seeds.

Right Swing Right Stance Left Swing Left Stance

A3 → A7 0.45 0.38 0.29 0.42
A5 → A7 0.52 0.28 0.40 0.37
A7 → A3 0.53 0.45 0.69 0.49
A7 → A5 0.44 0.43 0.71 0.49
A7 → A8 0.47 0.48 0.37 0.38
A8 → A7 0.50 0.49 0.29 0.41

Mean 0.49 0.42 0.46 0.43
SD 0.03 0.07 0.18 0.05
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Table A.6: Evaluation of a rodent step classification after TS-TCC pretraining on SEMG
open source dataset and linear training on hindlimb rodent data.

Accuracy Precision Recall F1-Score (weighted)

A3 0.25 0.71 0.12 0.21
A5 0.91 0.13 0.49 0.21
A7 0.81 0.66 0.67 0.65
A8 0.67 0.74 0.50 0.59

Mean 0.66 0.56 0.44 0.41
SD 0.25 0.25 0.20 0.21

Table A.7: Evaluation of a rodent step classification after TS-TCC pretraining on SEMG
open source dataset and fine-tuning on hindlimb rodent data.

Accuracy Precision Recall F1-Score (weighted)

A3 0.18 0.32 0.10 0.15
A5 0.78 0.02 0.14 0.03
A7 0.81 0.72 0.60 0.63
A8 0.66 0.74 0.44 0.55

Mean 0.61 0.45 0.32 0.34
SD 0.25 0.30 0.21 0.26

Table A.8: Step and stand label results after linear training from a TS-TCC + curriculum
pretrained feature extractor.

Accuracy Precision Recall F1-Score (weighted)

A3 0.22 0.74 0.12 0.19
A5 0.84 0.02 0.14 0.04
A7 0.80 0.65 0.67 0.65
A8 0.63 0.63 0.46 0.52

Mean 0.62 0.51 0.35 0.35
SD 0.25 0.29 0.23 0.25
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Table A.9: Step and stand label results after fine-tuning from a TS-TCC + curriculum
pretrained feature extractor.

Accuracy Precision Recall F1-Score (weighted)

A3 0.21 0.82 0.11 0.17
A5 0.81 0.08 0.53 0.14
A7 0.79 0.72 0.61 0.63
A8 0.65 0.70 0.39 0.50

Mean 0.62 0.58 0.41 0.36
SD 0.24 0.29 0.19 0.21

Table A.10: Step and stand label results after linear training from a TS-TCC pretrained
feature extractor using TaichiDB open source dataset.

Accuracy Precision Recall F1-Score (weighted)

A3 0.18 0.33 0.03 0.06
A5 0.96 0.30 0.22 0.25
A7 0.76 0.15 0.07 0.09
A8 0.56 0.14 0.03 0.04

Mean 0.61 0.23 0.08 0.11
SD 0.29 0.09 0.08 0.08

Table A.11: Step and stand label results after fine-tuning from a TS-TCC pretrained
feature extractor using GrabMYO open source dataset.

Accuracy Precision Recall F1-Score (weighted)

A3 0.19 0.29 0.09 0.13
A5 0.81 0.02 0.16 0.03
A7 0.80 0.73 0.56 0.61
A8 0.65 0.70 0.41 0.51

Mean 0.61 0.44 0.30 0.32
SD 0.25 0.30 0.19 0.24
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Table A.12: Step and stand label results after linear training from a TS-TCC pretrained
feature extractor using GrabMYO open source dataset.

Accuracy Precision Recall F1-Score (weighted)

A3 0.22 0.70 0.16 0.25
A5 0.83 0.03 0.20 0.05
A7 0.81 0.71 0.60 0.64
A8 0.63 0.78 0.37 0.49

Mean 0.62 0.56 0.33 0.36
SD 0.24 0.30 0.17 0.23

Table A.13: Step and stand label results after fine-tuning from a TS-TCC pretrained
feature extractor using all pre-processed open source datasets.

Accuracy Precision Recall F1-Score (weighted)

A3 0.20 0.33 0.11 0.16
A5 0.80 0.03 0.24 0.05
A7 0.81 0.73 0.56 0.61
A8 0.63 0.68 0.42 0.51

Mean 0.61 0.44 0.33 0.33
SD 0.25 0.29 0.17 0.24

Table A.14: Step and stand label results after linear training from a TS-TCC pretrained
feature extractor using all pre-processed open source datasets.

Accuracy Precision Recall F1-Score (weighted)

A3 0.28 0.78 0.18 0.30
A5 0.81 0.05 0.20 0.06
A7 0.83 0.75 0.61 0.66
A8 0.64 0.72 0.41 0.52

Mean 0.64 0.58 0.35 0.38
SD 0.22 0.30 0.18 0.23
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Table A.15: TA and GM afferent axon tuning performance measured by Pearson correla-
tion coefficient (CC) and mean absolute error (MAE). All correlations were significant (p
< 0.05).

Afferent CC MAE (Hz)

TA Ia 0.99 1.97
TA II 1.00 1.57
GM Ia 1.00 2.25
GM II 1.00 1.86

A.2 Supplementary Figures

Figure A.1: Training and validation loss history of CNN2D-BiLSTM hybrid model.
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Figure A.2: Training and validation loss history of ResNet50 model.
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Figure A.3: Training and validation loss history of ResNet101 model.
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Figure A.4: Training and validation loss history of ResNet152 model.
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Figure A.5: Training and validation loss history of Inception model.
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Figure A.6: ROC curve of the each subject and each stepping and standing label for
SSLSEMG,l inear. No right steps were successfully detected for A5.
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Figure A.7: ROC curve of the each subject and each stepping and standing label for
SSLTaichiDB, f ine−tune. No right steps were successfully detected for A5.
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Figure A.8: ROC curve of the each subject and each stepping and standing label for
SSLSEMG, f ine−tune. No right steps were successfully detected for A5.
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Figure A.9: ROC curve of the each subject and each stepping and standing label for
SSL+CL f ine−tune. No right steps were successfully detected for A5.
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Figure A.10: ROC curve of the each subject and each stepping and standing label for
CL f ine−tune. No right steps were successfully detected for A5.
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Figure A.11: Example plot of number of detected step-like activity over the course of 6-hr
recording across different therapies for rat number 1.
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Figure A.12: Example plot of number of detected step-like activity over the course of 6-hr
recording across different therapies for rat number 2.
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Figure A.13: Example plot of number of detected step-like activity over the course of 6-hr
recording across different therapies for rat number 4.
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Figure A.14: Simulated AdEx LIF V2a IN tonic spiking response after receiving a 200 ms
stimulation pulse at 30 pA.
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Figure A.15: Box-and-whisker plots of GABA IN spiking activity for 8-steps during
baseline and simulated conditions. Shapiro-Wilk test returned a normal distribution for
swing phase only. All stance flexor activity was significantly different after Wilcoxon
signed-rank test with the exclusion of BWSES – BWSqES. Swing flexor activity was
significantly different after Tukey HSD test with the exclusion of Baseline – BWSES,
Baseline – BWSqES, and BWSES – BWSqES.
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Figure A.16: Box-and-whisker plots of V2a IN spiking activity for 8-steps during baseline
and simulated conditions. Shapiro-Wilk test returned a normal distribution for both
phases. All stance flexor activity was significantly different after Tukey HSD test with the
exclusion of Baseline – SCIQuip, Baseline – BWSQuip, SCIQuip – BWSQuip, and BWSES
– BWSqES. Swing flexor activity was only significantly different between Baseline –
BWSES, Baseline – BWSqES, SCIQuip – BWSqES, BWSES – BWSQuip, and BWSQuip –
BWSqES after Tukey HSD test.

A.3 Spinal Circuit Architecture

A.3.1 Commissural INs

Commissural INs (CINs) are spinal synapses that cross the midline of the spinal cord to

the contralateral side with long or short segmental range. CINs are located in laminae IV

– VIII, and X within the cervical and lumbar spinal cord segments (Jankowska et al., 2009;

Soteropoulos, 2018; Bannatyne et al., 2003). These connections are thought to contribute

to left-right coordination during locomotion via glutamatergic and glycinergic/GABAergic
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inputs (Quinlan and Kiehn, 2007). CINs are observed in crossed reflex actions from

group I, II and cutaneous afferents, projecting onto MNs (Edgley and Jankowska, 1987;

Jankowska et al., 2009). Crossed inhibitory responses are likely to be spinally mediated

in humans and shine some light on potential CPG networks in the human spinal cord

(Stubbs et al., 2011a,b).

A.3.2 Propriospinal INs

Propriospinal INs (PINs) originate and terminate within the spinal cord through intra-

segmental connections across multiple spinal segments (Cowley et al., 2010). Short PINs

extend 1 – 6 spinal segments in most laminae, except IX (see fig. 2.4) (Flynn et al.,

2011). These short networks involve upper- and lower-limb commands during movement,

conveying descending information to MN pools. Cell bodies of short PINs are densely

populated in lamina VII, the intermediate zone. Axons of short PINs surround deep

layers of the white matter, bordering the grey matter and the dorsal column (Flynn

et al., 2011; Niu et al., 2013; Baek et al., 2017). Short PINs medially located often project

contralaterally, and laterally located PINs often project ipsilaterally (Flynn et al., 2011).

Most long PINs are located in lamina VIII and medial lamina VII. Still, they also exist

in lamina I, IV – VI, and X. Axons of long PINs project bilaterally and rostrocaudal

towards the superficial white matter tracts of the spinal cord, more ventrolaterally

(Flynn et al., 2011). Long PINs terminate in laminae V – VIII and sparsely in IX (Flynn

et al., 2011). Some of these long PINs synapse between cervical and lumbar enlargements

are hypothesised to contribute to forelimb-hindlimb interlimb coordination and trunk

stabilisation (Brockett et al., 2013; Eisdorfer et al., 2020; Etlin et al., 2010; Flynn et al.,

2017; Ni et al., 2014; Niu et al., 2013; Laliberte et al., 2019; Pocratsky et al., 2020). Long

PINs are mainly excitatory, but most inhibitory populations project ipsilaterally (Flynn

et al., 2017). PINs receive both supraspinal and sensory inputs and project to other INs,
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MNs, and cortical structures (Cote et al., 2018; Brownstone et al., 2015; Laliberte et al.,

2019; Niu et al., 2013). Due to their complex and integratory nature, PINs have been

suggested to be a possible neural detour around spinal lesions, recovering voluntary

sensorimotor control after SCI (Eisdorfer et al., 2020; Filli et al., 2014; Taccola et al.,

2018; Gerasimenko et al., 2009; Laliberte et al., 2019).

A.3.3 Presynaptic Inhibition

Classically, presynaptic inhibition has been thought to contribute to movement smoothen-

ing by filtering noisy sensory feedback from the periphery (Eccles et al., 1962; Willis,

2006; Fink et al., 2014). This mechanism, caused by primary afferent depolarization,

involves GABAA receptor release at Ia-MN synapses. During activation of GABAA re-

ceptors, an outward movement of Cl– ions leads to depolarization (Rudomin, 1990).

Presynaptic inhibition exhibits strong graded inhibitive control over spike amplitude

and has an ‘all-or-nothing’ effect at the release site (Segev, 1990).

GABAergic synapses have inputs from brainstem reticular formation, expressing

inhibitory connections with GABA INs synapsing directly to Ia fibres, see fig. A.17. Group

Ib fibres are depolarized by other group Ib afferents and reticulospinal, rubrospinal,

corticospinal, and vestibulospinal fibres (Rudomin, 1990). Studies have also shown

GABAB receptors producing presynaptic inhibition behaviour between interneurons

and Ia afferent fibres in the mammalian spinal cord (Rudomin, 1990). GABAA actions

appear to be short lasting and more suited to block conduction at branch points. However,

GABAB receptors could be involved in long-term modulation of synaptic efficacy in

afferent fibres (Rudomin, 1990).

Observations of presynaptic inhibition have also been noted in Ib, II, cutaneous

mechanoreceptors, and nociceptor afferents (Goulding et al., 2014). In the article (Jankowska

et al., 1981), stimulation of group I flexor fibres produced primary afferent depolarization
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in group Ia fibres of both flexors and extensors via pathways of at least 2 interneurons.

Driven by proprioceptive input, these neural circuits are highly selective and are not

distributed equally, affecting specific MN pools differentially. The existence of neural

asymmetries allows for selective control of converging Ia and Ib afferents. Examples of

presynaptic inhibition differentially controlling sensory integration during locomotion

have been documented in the following papers (Rossignol et al., 2006; Courtine et al.,

2007b; Lamy et al., 2010; Gerasimenko et al., 2016a,b) and reviewed in (Rudomin and

Schmidt, 1999; Rudomin, 2009; Knikou, 2008).

Motor outputs of an isolated lumbosacral rodent spinal cord modulate according

to the phase of the step cycle (Gad et al., 2015, 2013c; Shah et al., 2013). In these

studies, exogenous neuromodulatory inputs were tonic. Thus, these modulations were

hypothesised to be an effect of sensory-dependent mechanisms. See (Stein, 1995; Dy

et al., 2010; Hultborn et al., 1987) for descriptions of how potential presynaptic inhibition

pathways control the onset of movement and aid selective muscle activation.

Mazzone published a recent article discussing the GABAergic mechanisms as ther-

apeutic targets in damaged spinal cord networks (Mazzone et al., 2021). The authors

hypothesise an imbalance of GABA activity in the early stages of spinal cord injury

gate sensory inputs, disabling afferent sensory network activity. These ideas were par-

alleled in a review by Bui and Lalonde (Lalonde and Bui, 2021). In contrast, deficits in

GABAergic mechanisms contribute to spasticity. The presynaptic inhibition networks

inhibiting sensory inflow may be downregulated from supraspinal centres. Notably, an-

odal trans-spinal direct current stimulation plus bumetanide (antagonist of NKCC1, or

NA+ –K+ –2Cl– cotransporter 1, expression, important for synaptic actions of GABA

and glycine), downregulated NKCC1 after spinal contusion (Mekhail et al., 2018). This

attenuated spasticity and reduced abnormal locomotor muscle tone in rodent models.

Further evidence behind the excitation/inhibition homeostasis for an improved, coordi-
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nated locomotor function was recently published in (Gong et al., 2021), highlighting the

therapeutic potential of GABA neurons after SCI. In the zebrafish, GABAergic spinal

neurons, in contact with CSF, directly project onto glutamatergic premotor interneu-

rons (V0v). Activation of these GABAergic neurons at rest induced delayed slow fictive

locomotion. Selective activation of the rostral neurons during ongoing activity disrupted

rostrocaudal propagation and inhibited ongoing slow locomotion (Fidelin et al., 2015).

Evidence to suggest GABAergic neurons in contact with CSF are conserved in bony

vertebrate species was presented in (Djenoune et al., 2014).

Investigation towards the excitation/inhibition balance on sensory integration in the

spinal cord is an area for further research. The reasons behind these observations and the

mechanisms of action have yet to be fully understood. However, we can see collectively

that these results provide evidence of local locomotor spinal circuitry capability in

automatically integrating proprioceptive and mechanosensory information, with minimal

input required from cortical centres. Indeed, presynaptic pathways play a significant

role in coordinating locomotor and other rhythmic motor patterns.

A.3.4 Group Ia INs

Group Ia INs (IaIN) are located in lamina V, VI, dorsal VII, dorsal or dorsomedial to the

associate motor nuclei (Jankowska, 1992). Group Ia afferents, carrying proprioceptive

stretch velocity information, excite IaINs (Cote et al., 2018), mediating short-latency

inhibition (glycinergic) on antagonist MNs and contralateral IaINs. IaINs may act

as premotor multimodal integration neurons, receiving inputs from peripheral and

supraspinal structures (fig. A.18). These INs affect MNs up to one or two segments away,

projecting over several millimetres in white matter tracts surrounding the ventral horn.

Axons then re-enter grey matter and inhibit the antagonist’s muscles.

Excitation of IaINs is directly received from ipsilateral vestibulospinal and pro-
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Figure A.17: Simplified illustration of GABAergic synapses and wiring in the spinal
cord (Mazzone et al., 2021). A represents typical GABAergic synapse in pre (left) and
post (right) synaptic inhibition, respectively. B is a simplified wiring diagram of basic
GABAergic circuits in presynaptic inhibition of afferent input. NS, nociceptive-specific
projection neuron; MN, motoneuron. Licensed under a Creative Commons Attribution
4.0 International License.

priospinal tracts. Indirect excitation occurs via ipsi- and contralateral flexor reflex affer-

ents (FRAs), ipsilateral cutaneous afferents, and ipsilateral rubrospinal, corticospinal

and contralateral vestibulospinal tracts. IaINs are inhibited by contralateral IaINs
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and Renshaw Cells (RCs) of the homonymous MN pool. IaINs are also subject to flexor

Ia afferent presynaptic inhibition. IaINs project monosynaptically to both MNs and

contralateral IaINs (Jankowska, 2013a). Axons of IaINs may project over one or two

segments away, entering deep white matter tracts before making synaptic contact with

the antagonist MN (Jankowska, 2013a; Flynn et al., 2011).

As last-order glycinergic inhibitory INs, IaINs assist in ipsilateral coordination by

reducing co-contraction. This is expressed by an amplitude-phase dependence with max

amplitude for soleus during the extension phase and decreased reflex gain during the

flexion phase (Stein and Capaday, 1988). (Adolfo et al., 2011) identifies Ia inhibitory

INs as the primary contributor to reciprocal inhibition from muscle proprioceptors and

antagonist motor neurons. Differentiating expressions of stretch amplitude modula-

tion are attributed to α – MN excitability modulation produced by CPG via pre-motor

networks. IaIN excitation can contribute to resetting locomotor rhythm during fictive

locomotion, postulating a role in excitatory inputs to the CPG (Guertin et al., 1995).

Recent genetic tracing work has shown that IaINs are one of the last spinal interneuron

types to diversify during adulthood (Wu et al., 2021a). Compared to the control group,

iaINs undergo site-specific differentiation during mouse free-running wheel exercise.

These networks are suspected to contribute significantly towards spinal plastic change

during task-specific training.

A.3.5 Renshaw Cells

Renshaw Cells (RCs) are locally recurrent inhibitory premotor INs, primarily found

in lamina VII and occasionally lamina IX. RCs are predominantly glycinergic with

a small GABAergic population (see fig. A.18) (Alvarez and Fyffe, 2007). The reflex

response ranges from 1 – 1.2ms, suggesting direct inhibition, not mediated by dorsal root

activation (Hultborn et al., 1971a). RCs receive excitatory inputs from any number of
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Figure A.18: Spinal network diagram of group Ia interneuron pathways, adapted from
figure 30.5 (Jankowska, 2013a).

MNs and inhibitory inputs from other RCs. The inhibitory effects of RCs project onto

neighbouring IaINs, coupled MNs, and MNs located one or two spinal segments away

(Hultborn et al., 1971b). These inhibitory networks slow down rapidly firing contractions,

synchronise MN discharge and prevent persistent inward currents (Hultborn et al.,

2003). RC activation appears more prominent in stereotyped activity but absent when

skilled motor activity is required (Cote et al., 2018). RC networks, alongside Group Ia

activity, have been hypothesised to participate in reciprocal inhibition and locomotion

CPG rhythm frequency.

A.3.6 Group Ib INs

Group Ib INs (IbINs) are located in laminae VI and dorsal VII of the spinal cord, charac-

terised by the convergence of multimodal inputs from more than just Ib afferents (see
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fig. A.19). Golgi tendon organ inputs, relaying active and passive muscle tension, travel

through dorsal roots, synapsing to IbINs. Other inputs include corticospinal, rubrospinal,

and reticulospinal tracts, propriospinal neurons via dorsomedial column, Ia/II spindle af-

ferents, and cutaneous afferents (Jankowska and McCrea, 1983; Jankowska and Edgley,

2010). IbIN terminals are subject to presynaptic inhibition, which gates the autogenic

inhibition exerted on coupled, homonymous MNs. IbINs project to ventral and dorsal

spinocerebellar tract cells, α- and γ-MNs, and other IbINs. Historically, IbINs were

thought to be solely responsible for autogenic gating. Studies have provided evidence

for a more widespread function. The complex converging multimodal pathways suggest

some role in information integration during muscle contraction and control of both onset

and continuous contraction forces. This is expressed in the task-dependent ‘switching’

of inhibitory and excitatory effects in IbINs. Note that asymmetrical activation from

extensor muscles predominantly activates IbINs. Excitation of IbINs can inhibit homony-

mous MNs or excitation of other MNs, mainly flexors. Group I extensor afferents can

reverse from inhibitory to excitatory via excitatory pathways during locomotion (Guertin

et al., 1995; Rossignol et al., 2006). These pathways contribute to coordinated movement

and locomotion and participate in other segmental and descending inputs. IbINs appear

critical for activating the isolated lumbosacral locomotor CPG (Markin et al., 2010;

Conway et al., 1987; Rossignol et al., 2006; Van De Crommert et al., 1998).

A.3.7 Group II INs

Group II INs are varied in morphology, input sources, output projections, and function.

These INs are in intermediate/ventral laminae VI – VIII and in dorsal laminae IV –

V, receiving secondary muscle spindle afferents detailing muscle stretch (see fig. A.19).

More ventral INs typically have larger somata and dendritic trees than those more dorsal.

Dorsal INs receive group II afferent input and are co-excited by cutaneous afferents
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Figure A.19: A diagram of group Ib and II afferent interneuron circuits, adapted from
figure 30.9 (Jankowska, 2013a).

(Edgley and Jankowska, 1987). INs across the L3 – 5 segments are not evenly distributed,

with group II flexor afferents providing EPSPs to L3 – 5 INs and other muscles providing

input to more caudal segments (Edgley and Jankowska, 1987; Lundberg et al., 1987).

Dorsal INs with group II input are more likely part of polysynaptic pathways that

target ascending cells, including the dorsal column, dorsolateral fasciculus (Bannatyne,

2006), and dorsal-spinocerebellar tract (Jankowska and Puczynska, 2008), or other

INs in mixed excitatory and inhibitory pathways (Bannatyne, 2006; Bras et al., 1989).

Intermediate excitatory INs are commonly last-order INs that synapse directly onto

MNs after activation by muscle afferents or dorsal horn INs (Edgley and Jankowska,

1987). Group II INs in the intermediate zone also receive inputs from Ia, Ib, and II
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sensory afferents (Edgley and Jankowska, 1987; Behrends et al., 1983). Group II INs

exert di-synaptic excitatory and inhibitory actions on MNs (Cavallari et al., 1987), and

tri- or polysynaptic actions of MNs via neurons located in the dorsal horn (Edgley

and Jankowska, 1987; Jankowska, 1992). Excitatory group II INs, mainly in lamina IV

(dorsal), projected predominantly to ipsilateral Group II INs also receive a low population

of cutaneous and joint afferents with group activity subject to inhibition via IbINs and

presynaptic inhibition. These pathways are responsible for coordinating contractions of

stretch muscles but, given their widespread architecture, are likely involved in various

reflex circuits.

A.3.8 Genetic Labelling

Genetic labelling has significantly increased the granularity of connectivity and func-

tional studies in spinal cord neurons. By selectively stimulating or ablating populations

of neurons, the architecture and evolutionary substrate of stereotyped movements begin

to unravel. Advances in genetic labelling of developmental neurons across species have

enabled scientists to establish cardinal spinal interneuron classes and observe their

migration connectivity, and define their roles in sensorimotor networks (Goulding, 2009;

Zholudeva et al., 2021; Kiehn, 2016; Lai et al., 2016; Lu et al., 2015; Grossmann et al.,

2010). Below is a summary of key genetically identified spinal interneurons hypothesised

to contribute towards spinal CPG networks.

Ventral interneurons, V0D and V0V , have been identified in the VII – VIII laminae

(Moran-Rivard et al., 2001; Pierani et al., 2001). These neurons receive excitatory gluta-

matergic input from V2a and primary afferents (Crone et al., 2009; Zhong et al., 2010;

Pierani et al., 2001; Griener et al., 2015). V0D and V0V interneurons differentiate in

their released neurotransmitter and projection targets. V0D inhibits mainly contralateral

flexor MNs via GABAergic transmission, projecting 1 – 3 descending segments (Pierani
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et al., 2001; Lanuza et al., 2004; Danner et al., 2016; Lu et al., 2015; Talpalar et al., 2013;

Shimizu-Okabe et al., 2022). These neurons appear to have a role in low-speed left/right

alternation (Talpalar et al., 2013). Conversely, glutamatergic V0V interneurons project

to contralateral inhibitory populations that predominantly synapse to flexor MNs, across

1 – 3 descending segments (Pierani et al., 2001; Lanuza et al., 2004; Talpalar et al., 2013;

Lu et al., 2015). V0V interneurons are suggested to be involved in high-speed left/right

alternation (Talpalar et al., 2013).

V0C interneurons are in the same laminae as V0D and V0V . However, they receive

glutamate input from descending projections and serotonergic input from the brainstem

(Zagoraiou et al., 2009). Presynaptic inhibition from oligosynaptic synaptic sensory

inputs also projects onto V0C interneurons (Zagoraiou et al., 2009). These neurons

excite ipsilateral MNs, across 1 – 3 descending segments and appear to modulate MNs

in a task-specific manner (Zagoraiou et al., 2009; Lu et al., 2015; Nascimento et al.,

2020). More specifically, activation of V0C neurons resulted in higher recruitment muscle

activity, enabling spinal motor output to be matched variably to behaviour-specific

demands (Nascimento et al., 2020). V0C neurons project to extensor MNs. The role of

V0G (glutamate transmitters) in locomotion remains elusive (Zagoraiou et al., 2009;

Nascimento et al., 2020).

V1 and V2b neurons reside in laminae VII and receive inputs from primary afferents

(Saueressig et al., 1999; Alvarez et al., 2005; Sapir, 2004; Zhang et al., 2014; Stam

et al., 2012; Lundfald et al., 2007; Sapir, 2004). V1 and V2b neurons, characterised as

Renshaw Cells (RCs) and Ia inhibitory interneurons (IaINs), were mainly glycinergic,

and a third were GABAergic (Zhang et al., 2014; Lu et al., 2015). V1 neurons project to

descending ipsilateral flexor MNs while V2b neurons project rostrocaudally to ipsilateral

extensor MNs (Zhang et al., 2014; Stam et al., 2012; Lundfald et al., 2007; Lu et al., 2015).

Research suggests that the flexor-extensor system is organised around V1 and V2b cell
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types. This architecture could be evidence of evolutionary substrates from swimming to

movable bilateral appendages in overground vertebrates. Indeed, perhaps the locomotor

CPG is a neuronal substrate of evolution (Edgerton et al., 2001b). In support, Stam

et al. (2012) revealed RCs from V1 progenitors, demonstrating genetically hardwired

programming, see appendix A.3.3.

V2a neurons reside in laminae VII and receive serotonergic, glutamatergic inputs

from the brainstem and sensory inputs from dI5 INs and mechanosensory feedback

(Zhong et al., 2010; Dougherty and Kiehn, 2010; Bourane et al., 2015; Al-Mosawie et al.,

2007; Li et al., 2022a). These glutamatergic neurons project rostrocaudally across more

than 2 segments to ipsilateral V0s and MNs (Crone et al., 2009; Lanuza et al., 2004;

Dougherty and Kiehn, 2010; Lundfald et al., 2007; Stepien et al., 2010; Lu et al., 2015).

V2a INs comprise ∼30% of glutamatergic INs in the ventral horn and are involved

in left/right coordination (Crone et al., 2008). Subclasses of these neurons activate at

different locomotor speeds (Zhong et al., 2010; Ausborn et al., 2012). A recent study

examined critical spinal interneurons involved in electrically stimulated locomotor

recovery after SCI (Kathe et al., 2022). Although not necessary for walking in healthy

subjects, ablating V2a neurons prevented spontaneous walking recovery. These results

are not necessarily surprising upon appreciating the inputs for V2a activation. Moreover,

V2a neurons project to many excitatory elements in the local circuitry. Turning off the

activity after SCI significantly hindered locomotor recovery. Refer to fig. A.20 for visual

representation.

V3D INs are found in laminae IV – V and VI – VII and receive inputs from primary,

cutaneous, and group II afferents (Borowska et al., 2013; Jankowska, 2008; Jankowska

and Edgley, 2010). These INs are excitatory and project bilaterally in rostral and caudal

directions across more than 2 segments (Blacklaws et al., 2015; Danner et al., 2019;

Borowska et al., 2013; Lu et al., 2015). Contralateral targets include extensor MNs and
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Figure A.20: V2a IN organisation in spinal motor networks to provide excitatory drive
to proximal (P), distal (D), extensor (E), and flexor (F) muscles. V2a INs synapse to V0
CINs (Red), in turn provide inhibitory input to MNs. V1 INs (Purple) provide inhibitory
drive to V2a INs. V2a INs receive hindbrain inputs, including reticulospinal neurons
and serotonergic inputs. Taken from figure 3 (Li et al., 2022a) under Creative Commons
Attribution-NonCommercial-ShareAlike 4.0 License.

IaINs/RCs (V1, V2b) (Blacklaws et al., 2015; Danner et al., 2019). These neurons are

hypothesised to integrate sensory information, adjust left/right alternation, and actively

only during running but not swimming (Borowska et al., 2013). Thus, V3D have some

role in integrating or acting upon load bearing.

V3V INs are present in laminae VII/VIII and X and receive recurrent inputs from

ipsilateral MNs (Borowska et al., 2013; Jankowska, 2001, 2008; Jankowska and Edgley,

2010). They also receive input from descending fibres and some group II afferents. V3V

INs are glutamatergic and project ipsilaterally to MNs, contralaterally to extensor MNs,

as well as other V3 INs (Zhang et al., 2008; Borowska et al., 2013; Danner et al., 2019;

Chopek et al., 2018). These neurons project in rostral and caudal directions across
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more than 2 segments (Lu et al., 2015). As indicated by their projection, they function

as premotor excitatory commissural neurons and are hypothesised to be involved in

left/right coordination, speed transition, and extensor burst duration (Borowska et al.,

2013; Danner et al., 2017, 2019; Zhang et al., 2008; Danner et al., 2019). Conversely,

to V3D INs, V3V neurons are active during swimming and running activity (Borowska

et al., 2013).

dI3 are excitatory glutamatergic neurons residing in laminae V – VII, which receive

monosynaptic input from low threshold sensory afferents from Aβ fibres, ‘rhythmic

locomotor circuit’, and proprioceptive afferents (Tuan et al., 2013; Bui et al., 2016). dI3

INs project towards ipsilateral MNs in both rostral and caudal directions along the

ventrolateral and dorsal funiculus (Lu et al., 2015; Stepien et al., 2010; Avraham et al.,

2010). At the dorsal funiculus, the axons projecting from dI3 INs elongate at the dorsal

root along the axons of the dorsal root ganglion neurons. The axons at the ventrolateral

funiculus elongate towards the axons of MNs. Most dI3 INs are inhibited during the

flexor phase in locomotion, perhaps suggesting an efference copy transmission to dI3 INs

(Bui et al., 2016).

Interestingly, by genetically eliminating dI3 glutamate neurotransmission, Bui et al.

(2016) showed that dI3 INs are not necessary for locomotion in healthy rats but are

necessary during training-induced recovery following spinal transection. This stereo-

typed behaviour may be evidence in support of the evolutionarily derived neuronal

substrate for locomotor patterns in the spinal cord. Recent research investigated the role

of dI3 in palmar grasp reflex and uncovered the development of presynaptic inhibitory

circuits attaching to dI3 INs during maturation, indicating the changes in sensorimotor

integration from postnatal experiences (Laliberte et al., 2022).

dI4/dILA INs are GABAergic inhibitory neurons in laminae V – VI and I – IV,

receiving proprioceptive afferents and low threshold mechanoreceptive sensory inputs
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(Goulding et al., 2014; Fink et al., 2014; Betley et al., 2009; Goulding et al., 2014). These

neurons project ipsilaterally towards proprioceptive sensory afferent terminals and

ipsilateral MNs within less than 2 segments (Gross et al., 2002; Tripodi et al., 2011;

Lu et al., 2015). Their inhibitory influence is suggested to reduce flexor muscle activity

during the swing phase and promote smooth movement (Gross et al., 2002; Müller et al.,

2002; Pillai et al., 2007; Koch et al., 2017; Betley et al., 2009; Fink et al., 2014).

dI5/dILB INs are glutamatergic excitatory neurons in laminae I – III and VII receiv-

ing low threshold mechanoreceptive afferents from Aβ, Aδ, and C fibres (Szabo et al.,

2015; Bourane et al., 2015; Rabe et al., 2009). dI5 neurons project towards contralateral

MNs, V0Cs, and V2 INs. They have also been reported to project towards ipsilateral

neurons of the post-synaptic dorsal column in laminae III and IV in less than 2 segments

(Gross et al., 2002; Müller et al., 2002; Bourane et al., 2015; Lu et al., 2015). The role of

dI5 INs in locomotion is unknown. However, they have been suggested to be involved in

transmitting pain, itch, and light touch (Lai et al., 2016).

dI6 INs are GABAergic and glycinergic inhibitory neurons residing in laminae VII –

VIII (Griener et al., 2017; Dyck et al., 2012; Andersson et al., 2012; Goetz et al., 2015).

Their inputs are currently unknown but are functionally active during locomotion. dI6

INs project in both rostral and caudal directions and towards contralateral and ipsilateral

MNs, but are mainly commissural projections (Andersson et al., 2012; Goetz et al., 2015;

Perry et al., 2019; Haque et al., 2018; Lu et al., 2015). Silencing dI6 activity has provided

evidence of their involvement in left/right coordination and was shown to be rhythmically

active during locomotion (Haque et al., 2018; Andersson et al., 2012; Goetz et al., 2015).

table A.16 summarises the connectivity and functions of the identified progenitor

spinal cord INs. For a review of the identified spinal progenitor and cellular development

of the spinal cord locomotor circuitry, including their neurotransmitters, projections,

inputs, and functional roles see Lu et al. (2015).
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Table A.16: Summary of genetically identified cardinal interneurons of the spinal cord.

IN Lamina Inputs Projections Function

V0D VII – VIII V2a and primary afferents Contralateral MNs. Projects

across 1 – 3 descending seg-

ments

Inhibition of contralateral

MNs

V0V VII – VIII V2a and primary afferents Contralateral inhibitory pop-

ulations synapsing mainly

flexor MNs. Projects across

1 – 3 descending segments.

Excitation of contralateral

inhibitory INs. High speed

left/right alternation.

V0C VII – VIII Glutamatergic input from de-

scending projections and sur-

rounding glutamatergic INs.

GABA input via oligosynap-

tic sensory afferents. Sero-

tonin from brainstem output.

Ipsilateral MNs. Projecs

across 1 – 3 descending

segments.

Excitation of ipsilateral in-

hibitory MNs. Modulation of

MNs in task-specific manner.

V1 VII – IX Primary afferents Ipsilateral flexor MNs.

Projects across 1 – 3 seg-

ments.

Flexor inhibition

Continue on the next page
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Table A.16: Summary of genetically identified cardinal interneurons of the spinal cord. (cont)

IN Lamina Inputs Projections Function

V2a VII Serotonergic brainstem out-

put, dI5, and mechanosen-

sory afferents

Ipsilateral V0Cs and MNs.

Projects rostro-caudally

acros > 2 segments.

Excitatory. Involved in left-

/right alternation, subclasses

of V2a activates at different

locomotor speeds. Involved

in locomotor recovery after

SCI.

V2b VII Primary afferents Ipsilateral extensor MNs.

Projects rostro-caudally

across > 2 segments.

Extensor inhibition

V3D IV – V and VI – VII Primary, cutaneous, and

group II afferents

Projects bilaterally (mainly

contralateral) and rostro-

caudally > 2 segments. In-

nervates contralateral IaIN-

s/RCs.

Excitatory. Integrates sen-

sory inromation and indi-

rectly adjusts left/right alter-

nation. Active only during

running.

Continue on the next page
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Table A.16: Summary of genetically identified cardinal interneurons of the spinal cord. (cont)

IN Lamina Inputs Projections Function

V3V VII, VIII and X Ipsilateral MNs recurrently,

descending fibres, some

group II afferents

Projects contralaterally and

rostro-caudally > 2 segments.

Innervates contralateral

extensor MNs. Ventromedial

V3V INs synapse to other

V3 INs. Ventrolateral V3V s

synapse with ipsilateral

MNs.

Excitatory, premotor com-

missural neurons. Involved

in left/right alternation and

speed transition. Involved in

extensor burst duration mod-

ulation and active during

both swimming and running.

dI3 V – VII Monosynaptic low threshold

sensory afferents from Aβ fi-

bres

Ipsilateral ascending and de-

scending MNs. Entering via

ventrolateral and dorsal fu-

niculus

Excitatory. Majority inhib-

ited during flexion phase.

Necessary for locomotion re-

covery.

dI4/dILA V – VI / I – IV Proprioceptive afferents and

low threshold sensory affer-

ents

Ipsilateral MNs and proprio-

ceptive sensory afferent ter-

minals. Projects < 2 seg-

ments

Presynaptically inhibits

flexor activity during swing.

Muscle smoothening

dI4/dILA V – VI / I – IV Proprioceptive afferents and

low threshold sensory affer-

ents

Ipsilateral MNs and proprio-

ceptive sensory afferent ter-

minals. Projects < 2 seg-

ments

Presynaptically inhibits

flexor activity during swing.

Muscle smoothening

Continue on the next page
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Table A.16: Summary of genetically identified cardinal interneurons of the spinal cord. (cont)

IN Lamina Inputs Projections Function

dI5/dILB I – III and VII low threshold sensory affer-

ents

Contralateral MNs, V0C,

and V2. Ipsilateral neu-

rons of post synaptic dor-

sal column (laminae III/IV).

Projects < 2 segments

Excitatory, glutamatergic

dI6 VII – VIII Unknown Bilateral MNs (mainly com-

missural). Projects rostro-

caudally.

Inhibitory (GABA/glycine).

Involved in gait coordination,

rhythmically active during

locomotion.270
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Notably, V1s (IaINs) are positioned more medial dorsally and RCs more medial ven-

trally relative to target MNs (Bikoff et al., 2016). Similar spatial organisation appears in

premotor INs (Tripodi et al., 2011). Flexor premotor INs were more lateral to extensor

premotor INs, projecting mainly ipsilaterally. Evidence suggests spinal cord interneuron

organisation to be biased towards their respective projection. For example, presynaptic

inhibitors are more likely to be positioned near interneurons receiving primary afferent

input and contralaterally projecting INs are more medial than non-contralateral project-

ing INs. Coupled with this, mechanosensory and propriosensory rostrocaudal projection

depicts the somatotopically and modality-based organisation of the direct dorsal column

(Niu et al., 2013). The spinal cord neuron morphology expresses bias towards efficient

and functionally relevant architecture. The neuronal organisation will inform clinicians

and engineers of the best methods to target the desired circuit.

A.4 Flexor Spiking Neural Network Code
from os import makedirs

from os.path import join

import matplotlib.pyplot as plt

import numpy as np

from argparse import ArgumentParser

from brian2 import *

from brian2cuda import *

from biophysical_parameters import *

from utils import *

import time

'''

------

ARGS

------

'''
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parser = ArgumentParser()

parser.add_argument('--run_id', type=int, default=0,

help='Unique number for run identification')

parser.add_argument('--stim_w', type=float, default=0,

help='Stim in mV for poisson input to axons')

parser.add_argument('--stim_freq', type=float, default=0,

help='Stim frequency for poisson input to axons')

parser.add_argument('--is_bws', type=int, default=0,

choices=[0, 1],

help='Offset variable for GM Ia and II afferent firing '\

'rates. Either 0 or 0.6. 0 being no offset and 0.6 being '\

'reduced EMG activity by 60%. (x - offset*K*EMGnorm)')

parser.add_argument('--use_quip', type=int, default=0,

choices=[0, 1],

help='Use quipazine or not')

parser.add_argument('--is_sci', type=int, default=0,

choices=[0, 1],

help='Activate SCI GABA settings')

parser.add_argument('--is_spastic', type=int, default=0,

choices=[0, 1],

help='Activate Spasticity GABA settings')

parser.add_argument('--debug', action='store_true',

help='save or not save run or make directories')

args = parser.parse_args()

t0 = time.time()

run_id = str(args.run_id).zfill(3)

is_sci = args.is_sci

is_spastic = args.is_spastic

debug = args.debug

# GM Ia Settings

is_bws = args.is_bws

# Quipazine Settings

use_quip = args.use_quip

"""

===============

SYSTEM PARAMS

===============

"""

plt.close('all')

plt.rcParams.update({'axes.titlesize': 14,
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'axes.labelsize': 12})

results_dir = '/data/rqchia/snn_results/experiment_log'

makedirs(results_dir, exist_ok=True)

output_dir = '/scratch/rqchia/brian2/output'

makedirs(output_dir, exist_ok=True)

set_device('cpp_standalone', directory=output_dir)

# output_dir = '/scratch/rqchia/brian2cuda/output'

# makedirs(output_dir, exist_ok=True)

# set_device('cuda_standalone', directory=output_dir)

defaultclock.dt = 0.005*ms

devices.device.seed(42)

np.random.seed(42)

"""

=======================

Experiment Parameters

=======================

"""

duration = 1.12*second # gait cycle duration

n_cycles = 10

if debug:

duration *= 2

gauss_width = 1*ms

else:

duration *= 8

gauss_width = 75*ms

# PSI settings

if is_sci == 1:

# Khristy W et al 2009

psi_beta = 0.4

# gaba inhibition populations

ax_gaba_c = 0.45

gaba_mn_k = 6

elif is_spastic == 1:

raise NotImplementedError

psi_beta = 0.4

# gaba inhibition populations

ax_gaba_c = 0.45

gaba_mn_k = 3

else:
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psi_beta = 0.4

# gaba inhibition populations

ax_gaba_c = 0.3

gaba_mn_k = 4

# multiplier to a normalised EMG component

if is_bws == 1:

# extensors Kristiansen M et al 2019, 3.6km/h

gm_offset = -0.676

ta_offset = -0.221

else:

gm_offset = 0

ta_offset = 0

kappa = 5 # target rate

p_init = np.clip(1 - psi_beta*kappa, 0, 1)

gaba_w_gain = 1

gaba_mn_n = gaba_params['N']/((2*gaba_mn_k)-1)

# gain for gaba conductance (how much is released per spike)

gaba_g_gain = gaba_w_gain/gaba_mn_n

# Synaptic probabilities

p_ax_in = 0.3 # axon to interneurons

p_ax_adex = p_ax_in*2 # axon to adex

p_iaIN = 0.1 # recurrent iaIN

p_in_mn = 0.3 # mn inputs

'''

------------

STIM INPUT

------------

'''

stim_w = args.stim_w*mV # 5.0

stim_freqs = [0, 20, 40, 60, 80, 100]

stim_freq = args.stim_freq

poisson_stim = PoissonGroup(axon_params['N'], stim_freq*Hz)

I_ex = 0*pA

'''

---------

CONFIGS

---------

'''
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cfg_dict = {

'duration' : duration/second,

'is_sci' : is_sci,

'is_bws' : is_bws,

'use_quip' : use_quip,

'beta' : psi_beta,

'kappa' : kappa,

'gaba_mn_n' : gaba_mn_n,

'ax_gaba_c' : ax_gaba_c,

'gaba_w_gain' : gaba_w_gain,

'stim_w' : args.stim_w,

'stim_freq' : stim_freq,

'gauss_width' : gauss_width/ms,

'p_ax_in' : p_ax_in,

'p_ax_adex' : p_ax_adex,

'p_iaIN' : p_iaIN,

'p_in_mn' : p_in_mn,

}

"""

===============

NeuronGroups

===============

"""

"""

------------

AXON GROUP

------------

"""

# synapse delay of 2ms

ax_N = axon_params['N']

ax_Vth = axon_params['Vth']

ax_Vr = axon_params['V_reset']

ax_tau_ref = axon_params['tau_ref']

ax_area = np.pi*(ia_diameter_mu/2)**2

ax_v_mu = (ax_Vr + ax_Vth)/2

ax_v_sd = 10*mV

axon_init_v = ax_v_sd*np.random.randn(ax_N) + ax_v_mu

ax_eqn = '''

dv/dt = (El - v)/tau + i_stim/(Cm*ax_area) \

: volt (unless refractory)

i_stim = I_ex*ax_stim : amp
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ax_stim : 1

'''

ta_ia_axon = NeuronGroup(ax_N, ax_eqn, threshold='v>=ax_Vth',

reset='v=ax_Vr', method='euler',

refractory=ax_tau_ref,

namespace=axon_params)

ta_ia_axon.v = axon_init_v

gm_ia_axon = NeuronGroup(ax_N, ax_eqn, threshold='v>=ax_Vth',

reset='v=ax_Vr', method='euler',

refractory=ax_tau_ref,

namespace=axon_params)

gm_ia_axon.v = axon_init_v

ta_ii_axon = NeuronGroup(ax_N, ax_eqn, threshold='v>=ax_Vth',

reset='v=ax_Vr', method='euler',

refractory=ax_tau_ref, namespace=axon_params)

ta_ii_axon.v = axon_init_v

gm_ii_axon = NeuronGroup(ax_N, ax_eqn, threshold='v>=ax_Vth',

reset='v=ax_Vr', method='euler',

refractory=ax_tau_ref,

namespace=axon_params)

gm_ii_axon.v = axon_init_v

"""

-----------

v2a GROUP

-----------

"""

## adex

# taken from Touboul_Brette_2008

adex_N = v2a_params['N']

# NOTE : change this for quip

if use_quip:

adex_g_l = v2a_params['g_l_quip']

else:

adex_g_l = v2a_params['g_l']

adex_v_mu = (v2a_params['v_t'] + v2a_params['v_r_mu'])/2

adex_v_sd = 10*mV

adex_init_v = adex_v_sd*np.random.randn(adex_N) + adex_v_mu

adex_eqn = """
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dv/dt = (gL*(e_l - v) + gL*d_t*exp((v-v_t)/d_t) \

+ i_stim - w)/c_m + g_syn_e*(0*mV-v)/c_m : volt

dw/dt = (a*(v - e_l) - w)/tau_w : amp

dg_syn_e/dt = -g_syn_e/exc_alpha_tau : siemens

i_stim : amp

gL : siemens (shared, constant)

"""

adex = NeuronGroup(

adex_N,

model=adex_eqn,

threshold="v>0*mV",

reset="v=v_r_mu; w+=b",

method="euler",

namespace=v2a_params,

)

adex.v = adex_init_v

adex.w = 0

adex.gL = adex_g_l

"""

------------

IaIN GROUP

------------

"""

iaIN_N = iaIN_params['N']

iaIN_Vth = iaIN_params['Vth']

iaIN_Vr = iaIN_params['Vr']

iaIN_tau_ref = iaIN_params['tau_ref']

iaIN_v_mu = (iaIN_Vr + iaIN_Vth)/2

iaIN_v_sd = 5*mV

iaIN_init_v = iaIN_v_sd*np.random.randn(iaIN_N) + iaIN_v_mu

iaIN_eqn = '''

dv/dt = gL*(El - v)/Cm + (I_syn_e + I_syn_i)/Cm : volt

I_syn_e = g_syn_e * (0*mV - v) : amp

dg_syn_e/dt = -g_syn_e/exc_alpha_tau : siemens

I_syn_i = g_syn_i * (El - v) : amp

dg_syn_i/dt = (s_i - g_syn_i)/inh_alpha_tau2 : siemens

ds_i/dt = -s_i/inh_alpha_tau1 : siemens

'''

gm_iaIN = NeuronGroup(iaIN_N, iaIN_eqn, threshold='v>=iaIN_Vth',
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reset='v=iaIN_Vr', refractory=iaIN_tau_ref,

method='euler', namespace=iaIN_params)

gm_iaIN.v = iaIN_init_v

ta_iaIN = NeuronGroup(iaIN_N, iaIN_eqn, threshold='v>=iaIN_Vth',

reset='v=iaIN_Vr', refractory=iaIN_tau_ref,

method='euler', namespace=iaIN_params)

ta_iaIN.v = iaIN_init_v

"""

------------

GABA GROUP

------------

"""

gaba_N = gaba_params['N']

gaba_Vth = gaba_params['v_t']

gaba_Vr = gaba_params['v_r']

gaba_tau_ref = gaba_params['tau_ref']

gaba_gIE = gaba_params['gIE']

gaba_v_mu = (gaba_Vr + gaba_Vth)/2

gaba_v_sd = 10*mV

gaba_init_v = gaba_v_sd*np.random.randn(gaba_N) + gaba_v_mu

gaba_eqn = """

dv/dt = (g_l*(e_l - v) + g_l*d_t*exp((v-v_t)/d_t) + i_stim - w)/c_m \

+ g_syn_e*(0*mV-v)/c_m: volt

dw/dt = (a*(v - e_l) - w)/tau_w : amp

dg_syn_e/dt = -g_syn_e/exc_alpha_tau : siemens

i_stim : amp

"""

gaba = NeuronGroup(

gaba_params['N'],

model=gaba_eqn,

threshold="v>0*mV",

reset="v=gaba_Vr; w+=b",

method="euler",

namespace=gaba_params,

)

gaba.w = 0

gaba.v = gaba_init_v

"""
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----------

MN GROUP

----------

"""

# Model as Leaky IntFire but also have alpha shape synapse for ipsp

mn_Vth = mn_params['Vth']

mn_Vr = mn_params['Vr']

mn_tau_ref = mn_params['tau_ref']

if use_quip and is_bws:

mn_gL = mn_params['gL_quip_lo']

elif use_quip and not is_bws:

mn_gL = mn_params['gL_quip_hi']

else:

mn_gL = mn_params['gL']

print("using mn_gL: ", mn_gL)

mn_v_mu = (mn_Vr + mn_Vth)/2

mn_v_sd = 2*mV

mn_init_v = mn_v_sd*np.random.randn(N_mn) + mn_v_mu

# disable if PSI off

etap = 1

if psi_beta == 0:

etap = 0

# taup = 200*ms

taup = 20*ms # approx from Fink et al 2015

taui = 10*ms

tau_gaba = mn_params['tau_GABA']

# exponential leaky int and fire

mn_conductance_exp_eqn = '''

I = mn_gL*(El - v + I_noise*R ) + mn_gL*deltaV*exp((v - mn_Vth)/deltaV) : amp

# dv/dt = (I + I_syn_GABA + I_syn_i) / Cm + g_syn_e*(-v)/Cm : volt

dv/dt = (I + I_syn_i) / Cm + g_syn_e*(-v)/Cm : volt

dg_syn_e/dt = -g_syn_e/exc_alpha_tau : siemens

I_syn_GABA = g_syn_GABA * (El-10*mV - v) : amp

dg_syn_GABA/dt = (s_GABA - g_syn_GABA) / tau_GABA : siemens

ds_GABA/dt = -s_GABA/taui : siemens

dp/dt = (-p + clip(1-beta*(s_GABA/nS), 0, 1))*etap/taup : 1
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I_syn_i = g_syn_i * (El-10*mV - v) : amp

dg_syn_i/dt = (s_i - g_syn_i)/inh_alpha_tau2 : siemens

ds_i/dt = -s_i/inh_alpha_tau1 : siemens

I_noise : amp

beta : 1 (shared, constant)

'''

mn = NeuronGroup(N_mn, mn_conductance_exp_eqn, threshold='v>0*mV',

refractory='v>0*mV',

reset='v=mn_Vr', method='euler', namespace=mn_params)

mn.v = mn_init_v

mn.p = p_init

mn.beta = psi_beta

mn.run_regularly("I_noise = 0*nA", dt=1/fs)

# mn.run_regularly("I_noise = 1*randn()*nA", dt=1/fs)

"""

==========

Afferent

==========

"""

ta_ia_data = get_afferent_signal('ta', 'ia') + ta_offset*50

ta_ia_data = np.clip(ta_ia_data, a_min=0, a_max=None)

ta_ia_signal = TimedArray(ta_ia_data*Hz, dt=1/fs)

ta_ii_data = get_afferent_signal('ta', 'ii') + ta_offset*20

ta_ii_data = np.clip(ta_ii_data, a_min=0, a_max=None)

ta_ii_signal = TimedArray(ta_ii_data*Hz, dt=1/fs)

gm_ia_data = get_afferent_signal('gm', 'ia') + gm_offset*50

gm_ia_data = np.clip(gm_ia_data, a_min=0, a_max=None)

gm_ia_signal = TimedArray(gm_ia_data*Hz, dt=1/fs)

gm_ii_data = get_afferent_signal('gm', 'ii') + gm_offset*20

gm_ii_data = np.clip(gm_ii_data, a_min=0, a_max=None)

gm_ii_signal = TimedArray(gm_ii_data*Hz, dt=1/fs)

# PoissonGroup

ta_ia_input = PoissonGroup(ax_N, rates='ta_ia_signal(t)')

gm_ia_input = PoissonGroup(ax_N, rates='gm_ia_signal(t)')
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ta_ii_input = PoissonGroup(ax_N, rates='ta_ii_signal(t)')

gm_ii_input = PoissonGroup(ax_N, rates='gm_ii_signal(t)')

"""

==========

Synapses

==========

"""

syn_ax_w = axon_params['w']

'''

--------------------

Afferents to Axons

--------------------

'''

syn_ta_ia_ax = Synapses(ta_ia_input, ta_ia_axon, on_pre='v_post+=syn_ax_w')

syn_ta_ia_ax.connect(condition='abs(i-j)<2')

syn_gm_ia_ax = Synapses(gm_ia_input, gm_ia_axon, on_pre='v_post+=syn_ax_w')

syn_gm_ia_ax.connect(condition='abs(i-j)<2')

syn_ta_ii_ax = Synapses(ta_ii_input, ta_ii_axon, on_pre='v_post+=syn_ax_w')

syn_ta_ii_ax.connect(condition='abs(i-j)<2', p=0.9)

syn_gm_ii_ax = Synapses(gm_ii_input, gm_ii_axon, on_pre='v_post+=syn_ax_w')

syn_gm_ii_ax.connect(condition='abs(i-j)<2', p=0.9)

'''

--------------

Axons to INs

--------------

'''

adex_g_e = v2a_params['g_e']

iaIN_g_e = iaIN_params['g_e']

# ta ia and ii

syn_ta_ax_ii = Synapses(ta_ii_axon, adex, on_pre='g_syn_e+=adex_g_e',

delay=2*ms)

syn_ta_ax_ii.connect(p=p_ax_adex)

syn_ta_ii_ia = Synapses(ta_ii_axon, ta_iaIN, on_pre='g_syn_e+=iaIN_g_e/3',

delay=2*ms)

syn_ta_ii_ia.connect(p=p_ax_in)

syn_ta_ax_ia = Synapses(ta_ia_axon, ta_iaIN, on_pre='g_syn_e+=iaIN_g_e',
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delay=2*ms)

syn_ta_ax_ia.connect(p=p_ax_in)

# gm ia and ii

syn_gm_ax_ia = Synapses(gm_ia_axon, gm_iaIN, on_pre='g_syn_e+=iaIN_g_e',

delay=2*ms)

syn_gm_ax_ia.connect(p=p_ax_in)

syn_gm_ii_ia = Synapses(gm_ii_axon, gm_iaIN, on_pre='g_syn_e+=iaIN_g_e/3',

delay=2*ms)

syn_gm_ii_ia.connect(p=p_ax_in)

gaba_g_e = gaba_params['g_e']

syn_gm_ax_gaba = Synapses(gm_ia_axon, gaba, on_pre='g_syn_e+=gaba_g_e',

delay=2*ms)

syn_gm_ax_gaba.connect(p=ax_gaba_c)

'''

--------------

INs to INs

--------------

'''

iaIN_g_i = iaIN_params['g_i']

syn_taIaIN_gmIaIN = Synapses(ta_iaIN, gm_iaIN, on_pre='g_syn_i+=iaIN_g_i')

syn_taIaIN_gmIaIN.connect(p=p_iaIN)

syn_gmIaIN_taIaIN = Synapses(gm_iaIN, ta_iaIN, on_pre='g_syn_i+=iaIN_g_i')

syn_gmIaIN_taIaIN.connect(p=p_iaIN)

'''

------------

INs to MN

------------

'''

mn_g_e = mn_params['g_e']

mn_g_i = mn_params['g_i']

mn_syn_range = 10

syn_ta_ia_mn = Synapses(ta_ia_axon, mn,

on_pre='g_syn_e += p*mn_g_e',

delay=2*ms)

syn_ta_ia_mn.connect(p=p_in_mn)

syn_ta_ii_mn = Synapses(adex, mn, on_pre='g_syn_e += p*mn_g_e')

syn_ta_ii_mn.connect(p=p_in_mn) # 0.4

282



A.4. FLEXOR SPIKING NEURAL NETWORK CODE

syn_gm_ia_mn = Synapses(gm_iaIN, mn, on_pre='g_syn_i+=mn_g_i')

syn_gm_ia_mn.connect(p=p_in_mn) # 0.8

syn_gm_gaba_mn = Synapses(gaba, mn,

on_pre='s_GABA+=mn_g_i*gaba_g_gain')

syn_gm_gaba_mn.connect(condition='abs(i-j)<gaba_mn_k', skip_if_invalid=True)

'''

--------------

STIM CONNECT

--------------

'''

syn_stim_ta_ia_ax = Synapses(poisson_stim, ta_ia_axon, on_pre='v+=stim_w')

syn_stim_ta_ii_ax = Synapses(poisson_stim, ta_ii_axon, on_pre='v+=stim_w*0.8')

syn_stim_gm_ia_ax = Synapses(poisson_stim, gm_ia_axon, on_pre='v+=stim_w')

syn_stim_gm_ii_ax = Synapses(poisson_stim, gm_ii_axon, on_pre='v+=stim_w*0.8')

syn_stim_ta_ia_ax.connect(j='i')

syn_stim_ta_ii_ax.connect(j='i')

syn_stim_gm_ia_ax.connect(j='i')

syn_stim_gm_ii_ax.connect(j='i')

"""

==========

Monitors

==========

"""

ax_monitor_vars = ['v']

in_monitor_vars = ['v', 'g_syn_e']

iaIN_monitor_vars = ['v', 'g_syn_e', 'g_syn_i']

mn_monitor_vars = ['v', 'g_syn_e', 'g_syn_i', 's_GABA', 'p']

monitor_units_dict = {

'v' : 'mV',

'g_syn_e' : 'nS',

'g_syn_i' : 'nS',

's_GABA' : 'nS',

'p' : 'a.u',

}

M_ta_ia_ax = StateMonitor(ta_ia_axon, ax_monitor_vars, record=[0])

P_ta_ia_in = PopulationRateMonitor(ta_ia_input)

P_ta_ia_ax = PopulationRateMonitor(ta_ia_axon)

M_gm_ia_ax = StateMonitor(gm_ia_axon, ax_monitor_vars, record=[0])
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P_gm_ia_in = PopulationRateMonitor(gm_ia_input)

P_gm_ia_ax = PopulationRateMonitor(gm_ia_axon)

M_ta_ii_ax = StateMonitor(ta_ii_axon, ax_monitor_vars, record=[0])

P_ta_ii_in = PopulationRateMonitor(ta_ii_input)

P_ta_ii_ax = PopulationRateMonitor(ta_ii_axon)

M_gm_ii_ax = StateMonitor(gm_ii_axon, ax_monitor_vars, record=[0])

P_gm_ii_in = PopulationRateMonitor(gm_ii_input)

P_gm_ii_ax = PopulationRateMonitor(gm_ii_axon)

M_ta_adex = StateMonitor(adex, in_monitor_vars, record=[0])

S_ta_adex = SpikeMonitor(adex, record=True)

P_ta_adex = PopulationRateMonitor(adex)

M_gm_iaIN = StateMonitor(gm_iaIN, iaIN_monitor_vars, record=[0])

S_gm_iaIN = SpikeMonitor(gm_iaIN, record=True)

P_gm_iaIN = PopulationRateMonitor(gm_iaIN)

M_ta_iaIN = StateMonitor(ta_iaIN, iaIN_monitor_vars, record=[0])

S_ta_iaIN = SpikeMonitor(ta_iaIN, record=True)

P_ta_iaIN = PopulationRateMonitor(ta_iaIN)

M_gm_gaba = StateMonitor(gaba, in_monitor_vars, record=[0])

S_gaba = SpikeMonitor(gaba, record=True)

P_gm_gaba = PopulationRateMonitor(gaba)

M_mn = StateMonitor(mn, mn_monitor_vars, record=[0])

S_mn = SpikeMonitor(mn, record=True)

P_mn = PopulationRateMonitor(mn)

run(duration)

"""

==========

Outputs

==========

"""

run_dir = join(results_dir, run_id)

if not debug:

makedirs(run_dir, exist_ok=True)

units_fname = join(results_dir, 'units.pkl')

cfg_fname = join(run_dir, 'configs.json')

m_mn_fname = join(run_dir, 'state_mn.pkl')
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s_mn_fname = join(run_dir, 'spike_mn.pkl')

p_mn_fname = join(run_dir, 'prate_mn.pkl')

m_ta_ia_axon_fname = join(run_dir, 'state_ta_ia_axon.pkl')

p_ta_ia_axon_fname = join(run_dir, 'prate_ta_ia_axon.pkl')

m_gm_ia_axon_fname = join(run_dir, 'state_gm_ia_axon.pkl')

p_gm_ia_axon_fname = join(run_dir, 'prate_gm_ia_axon.pkl')

m_ta_ii_axon_fname = join(run_dir, 'state_ta_ii_axon.pkl')

p_ta_ii_axon_fname = join(run_dir, 'prate_ta_ii_axon.pkl')

m_gm_ii_axon_fname = join(run_dir, 'state_gm_ii_axon.pkl')

p_gm_ii_axon_fname = join(run_dir, 'prate_gm_ii_axon.pkl')

m_taIaIN_fname = join(run_dir, 'state_taIaIN.pkl')

s_taIaIN_fname = join(run_dir, 'spike_taIaIN.pkl')

p_taIaIN_fname = join(run_dir, 'prate_taIaIN.pkl')

m_gmIaIN_fname = join(run_dir, 'state_gmIaIN.pkl')

s_gmIaIN_fname = join(run_dir, 'spike_gmIaIN.pkl')

p_gmIaIN_fname = join(run_dir, 'prate_gmIaIN.pkl')

m_gaba_fname = join(run_dir, 'state_gaba.pkl')

s_gaba_fname = join(run_dir, 'spike_gaba.pkl')

p_gaba_fname = join(run_dir, 'prate_gaba.pkl')

m_adex_fname = join(run_dir, 'state_adex.pkl')

s_adex_fname = join(run_dir, 'spike_adex.pkl')

p_adex_fname = join(run_dir, 'prate_adex.pkl')

m_adex_fname = join(run_dir, 'state_adex.pkl')

s_adex_fname = join(run_dir, 'spike_adex.pkl')

p_adex_fname = join(run_dir, 'prate_adex.pkl')

'''

-------

Plot

-------

'''

figsize = (14, 12)

def plot_afferent_to_axon():

fig, axs = plt.subplots(4, 3, figsize=figsize)
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axs[0,0].plot(P_ta_ia_in.t/ms, P_ta_ia_in.smooth_rate(window='gaussian',

width=gauss_width))

axs[0,0].set_title("ta ia poisson input (Hz)")

axs[0,1].plot(M_ta_ia_ax.t/ms, M_ta_ia_ax.v[0]/mV)

axs[0,1].set_title("ta ia axon0 (mV)")

axs[0,2].plot(P_ta_ia_ax.t/ms, P_ta_ia_ax.smooth_rate(window='gaussian',

width=gauss_width))

axs[0,2].set_title("ta ia axon (Hz)")

axs[1,0].plot(P_gm_ia_in.t/ms, P_gm_ia_in.smooth_rate(window='gaussian',

width=gauss_width))

axs[1,0].set_title("gm poisson input (Hz)")

axs[1,1].plot(M_gm_ia_ax.t/ms, M_gm_ia_ax.v[0]/mV)

axs[1,1].set_title("gm ia axon0 (mV)")

axs[1,2].plot(P_gm_ia_ax.t/ms, P_gm_ia_ax.smooth_rate(window='gaussian',

width=gauss_width))

axs[1,2].set_title("gm ia axon (Hz)")

axs[2,0].plot(P_gm_ii_in.t/ms, P_gm_ii_in.smooth_rate(window='gaussian',

width=gauss_width))

axs[2,0].set_title("gm poisson input (Hz)")

axs[2,1].plot(M_gm_ii_ax.t/ms, M_gm_ii_ax.v[0]/mV)

axs[2,1].set_title("gm ii axon0 (mV)")

axs[2,2].plot(P_gm_ii_ax.t/ms, P_gm_ii_ax.smooth_rate(window='gaussian',

width=gauss_width))

axs[2,2].set_title("gm ii axon (Hz)")

axs[3,0].plot(P_ta_ii_in.t/ms, P_ta_ii_in.smooth_rate(window='gaussian',

width=gauss_width))

axs[3,0].set_title("ta ii poisson input (Hz)")

axs[3,1].plot(M_ta_ii_ax.t/ms, M_ta_ii_ax.v[0]/mV)

axs[3,1].set_title("ta ii axon (mV)")

axs[3,2].plot(P_ta_ii_ax.t/ms, P_ta_ii_ax.smooth_rate(window='gaussian',

width=gauss_width))

axs[3,2].set_title("ta ii axon (Hz)")

if not debug:

fig.savefig(join(run_dir, f"{run_id}_axon.png"))
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def plot_axon_to_in():

fig, axs = plt.subplots(4, 3, figsize=figsize)

axs[0,0].plot(P_ta_ia_ax.t/ms, P_ta_ia_ax.smooth_rate(window='gaussian',

width=gauss_width))

axs[0,0].set_title("ta axon poisson input (Hz)")

ta_adex_vs = np.clip(M_ta_adex[0].v / mV, a_min=None, a_max=0)

axs[0,1].plot(M_ta_adex.t/ms, ta_adex_vs)

axs[0,1].set_title("ta adex_0 (mV)")

axs[0,2].plot(P_ta_adex.t/ms, P_ta_adex.smooth_rate(window='gaussian',

width=gauss_width))

axs[0,2].set_title("ta adex (Hz)")

axs[1,0].plot(P_ta_ia_ax.t/ms, P_ta_ia_ax.smooth_rate(window='gaussian',

width=gauss_width))

axs[1,0].set_title("ta ia axon (Hz)")

axs[1,1].plot(M_ta_iaIN.t/ms, M_ta_iaIN.v[0]/mV)

axs[1,1].set_title("ta iaIN_0 (mV)")

axs[1,2].plot(P_ta_iaIN.t/ms, P_ta_iaIN.smooth_rate(window='gaussian',

width=gauss_width))

axs[1,2].set_title("ta iaIN (Hz)")

axs[2,0].plot(P_gm_ia_ax.t/ms, P_gm_ia_ax.smooth_rate(window='gaussian',

width=gauss_width))

axs[2,0].set_title("gm ia axon (Hz)")

axs[2,1].plot(M_gm_iaIN.t/ms, M_gm_iaIN.v[0]/mV)

axs[2,1].set_title("gm iaIN_0 (mV)")

axs[2,2].plot(P_gm_iaIN.t/ms, P_gm_iaIN.smooth_rate(window='gaussian',

width=gauss_width))

axs[2,2].set_title("gm iaIN (Hz)")

axs[3,0].plot(P_gm_ia_ax.t/ms, P_gm_ia_ax.smooth_rate(window='gaussian',

width=gauss_width))

axs[3,0].set_title("gm ia axon (Hz)")

axs[3,1].plot(M_gm_gaba.t/ms, M_gm_gaba.v[0]/mV)

axs[3,1].set_title("gm gaba_0 (mV)")

axs[3,2].plot(P_gm_gaba.t/ms, P_gm_gaba.smooth_rate(window='gaussian',

width=gauss_width))
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axs[3,2].set_title("gm gaba (Hz)")

if not debug:

fig.savefig(join(run_dir, f"{run_id}_IN.png"))

def plot_inputs_to_mn():

fig = plt.figure(figsize=figsize)

plt.subplot(321)

plt.plot(M_mn.t/ms, M_mn.v[0]/mV)

plt.title('mn_0 (mV)')

plt.subplot(322)

mn_freq = P_mn.smooth_rate(window='gaussian', width=gauss_width)

plt.plot(P_mn.t/ms, mn_freq)

mask = mn_freq > 5*Hz

mask0 = mask[1:] ^ mask[:-1]

mask0 = np.insert(mask0, 0, 0)

idxs = np.arange(len(mask0))[mask0]

start_idxs = idxs[::2]

end_idxs = idxs[1::2]

# dt = 5*1e-5

dt = 1*1e-3

f = 1/dt

tmp = []

for start, end in zip(start_idxs, end_idxs):

if end - start < 0.01*f: continue

if len(tmp) == 0:

tmp = np.ravel(mn_freq[start:end])

else:

tmp = np.concatenate((tmp, np.ravel(mn_freq[start:end])), axis=0)

print("{0} +- {1}".format(mn_freq[start:end].mean(),

mn_freq[start:end].std())

)

print(np.mean(tmp))

plt.title('mn pop. rate (Hz)')

plt.subplot(323)

plt.plot(S_mn.t/ms, S_mn.i, '.k')

plt.title('Spikes')

plt.subplot(324)

plt.plot(M_mn.t/ms, M_mn.g_syn_e[0]/mV)

plt.title('EPSP conductance mn_0 (nS)')

plt.subplot(325)

plt.plot(M_mn.t/ms, M_mn.g_syn_i[0]/mV)

plt.title('IPSP conductance mn_0 (nS)')

288



A.4. FLEXOR SPIKING NEURAL NETWORK CODE

ax = plt.subplot(3,4,11)

plt.plot(M_mn.t/ms, M_mn.s_GABA[0]/nS)

plt.title("s_GABA (nS) and p scale")

plt.subplot(3,4,12)

plt.plot(M_mn.t/ms, M_mn.p[0])

plt.title("p scale (a.u.)")

if not debug:

fig.savefig(join(run_dir, f"{run_id}_MN.png"))

plot_afferent_to_axon()

plot_axon_to_in()

plot_inputs_to_mn()

if debug:

plt.show()

'''

-------

WRITE

-------

'''

if not debug:

save_dict(monitor_units_dict, units_fname)

save_json(cfg_dict, cfg_fname)

def write_monitor_data(statemon, state_fname, keys,

spikemon, spike_fname,

popmon, pop_fname):

if statemon is not None:

save_monitor_to_pickle(statemon, state_fname, keys=keys)

if spikemon is not None:

save_dict(spikemon.all_values(), spike_fname)

if popmon is not None:

save_dict(

{'rate': popmon.smooth_rate(window='gaussian',width=gauss_width)},

pop_fname

)

write_monitor_data(M_mn, m_mn_fname, mn_monitor_vars,

S_mn, s_mn_fname,

P_mn, p_mn_fname)

write_monitor_data(M_ta_ia_ax, m_ta_ia_axon_fname, ax_monitor_vars,

None, None,
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P_ta_ia_ax, p_ta_ia_axon_fname)

write_monitor_data(M_ta_ii_ax, m_ta_ii_axon_fname, ax_monitor_vars,

None, None,

P_ta_ii_ax, p_ta_ii_axon_fname)

write_monitor_data(M_gm_ia_ax, m_gm_ia_axon_fname, ax_monitor_vars,

None, None,

P_gm_ia_ax, p_gm_ia_axon_fname)

write_monitor_data(M_gm_ii_ax, m_gm_ii_axon_fname, ax_monitor_vars,

None, None,

P_gm_ii_ax, p_gm_ii_axon_fname)

write_monitor_data(M_ta_iaIN, m_taIaIN_fname, iaIN_monitor_vars,

S_ta_iaIN, s_taIaIN_fname,

P_ta_iaIN, p_taIaIN_fname)

write_monitor_data(M_gm_iaIN, m_gmIaIN_fname, iaIN_monitor_vars,

S_gm_iaIN, s_gmIaIN_fname,

P_gm_ia_in, p_gmIaIN_fname)

write_monitor_data(M_ta_adex, m_adex_fname, in_monitor_vars,

S_ta_adex, s_adex_fname,

P_ta_adex, p_adex_fname)

write_monitor_data(M_gm_gaba, m_gaba_fname, in_monitor_vars,

S_gaba, s_gaba_fname,

P_gm_gaba, p_gaba_fname)

print("wall time: ", time.time()-t0)
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