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Abstract

Robots are anticipated to be useful in diverse environments and applications. This trend shown by

the substantial investment, media coverage, and research in fields such as defence, home robots,

space operations, logistics, and agriculture. Despite ongoing advancements, we still have yet to

see the widespread use of robotics in practical settings. Robotics excel at addressing specific, well-

defined problems that can lead to considerable economic gains, such as working at ports, driving

on mapped roads, and working in warehouses with infrastructure installed. Yet, the broader inte-

gration of robotics into the remaining practical large-scale problems is hampered by their inherent

complexities. These often involve teams of multiple robots, have long durations, have large spatial

scales, include uncertainty, consist of long sequences of tasks, can involve humans, and have ill-

defined objectives. This additional complexity requires a more considered approach to producing

practical solutions that can be applied to solve these applications.

Existing approaches to multi-robot planning under uncertainty are limited primarily due to their

inadequate handling of the unpredictable nature of these problems, which impacts both their prac-

ticality and scalability. Conventional methods, such as exact constraint-based or naive sampling-

based methods, often inflate the perceived complexity of these problems, rendering them seem-

ingly intractable. On the other hand, more sophisticated statistical methods, such as stochastic

optimisation or partially observable Markov decision process methods, aim to overcome these

limitations; however, they often require computation that renders them feasible for only the small-

est problems. Such methods can be applied through extensive offline computation, but this is
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unsuitable as problems increase in complexity and are impractical for real-time field operations.

The root of these issues lies in a lack of fundamental understanding of how to tackle different

types of uncertainty. This thesis hypothesizes that a more granular understanding of uncertainties

is crucial to developing methods that are both effective in practice and capable of scaling to the

demands of complex real-world robotic applications.

In response, this thesis introduces effective strategies for real-world multi-robot and automation

planning challenges by conceptualising them as probabilistic scheduling problems. This perspec-

tive allows a deeper understanding of the effects of uncertainty and the impact of problem scale,

growth and the interaction between variables. Our main idea is that approaching these problems

with this lens allows the development of principled planning algorithms to address the challenges

of the practical scheduling of multi-robot and automation applications. This is due to identifying

where specifically the uncertainty occurs in the problem and which dimensions/components are

the most significant. With this understanding, it becomes possible to use predictive methods and

decompositions to produce practical and feasible solutions.

To present this approach, we model and produce solutions for four concrete, real-world scenarios.

Each problem demonstrates uncertainty within different aspects of standard scheduling challenges.

The first is scientific information gathering with a heterogeneous team of agents exploring a Europa

surface analogue considering objective uncertainty caused by a noisy map prior. The second is

planning a sequence of operations for a team of autonomous diving floats and surface vessels

to jointly map the seabed floor, with ocean currents causing uncertain constraints. The third is

scheduling teams of logistics workers (agents) in an order-picking warehouse servicing dynamic,

uncertain real-time orders throughout the day. The fourth is producing week-long schedules for

using green hydrogen produced by uncertain wind forecasts, which requires considering uncertain

resource allocations.

This exploration across this broad collection of examples leads to the beginning of a new theory of

robotics scheduling that delineates four fundamental components of stochasticity: objectives, con-

straints, tasks, and resources. We introduce novel techniques to manage these stochastic elements

that draw from our practical applications. We show through algorithmic analysis, simulation, and

hardware trials that our methods that account for the number of agents and stochastic elements

of the problem outperform methods that do not include these considerations. By solving these
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specific problems, we can open up new fields of application and research that promise consider-

able positive economic and social impacts. The analytical framework and solutions we propose

will serve as a valuable resource for developing pragmatic multi-robot planning and autonomous

scheduling solutions in the future.
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Chapter 1

Introduction

Robotics is a rapidly advancing field of research, and its impacts can be seen in a broad cross-

section of modern society[1]. Emerging robotic systems have a wide variety of applications, with

some of the most impactful applications being seen in the fields of environmental sustainability,

agriculture, health, education, manufacturing, logistics, and autonomous transportation. Environ-

mental sustainability can be improved through more sophisticated monitoring systems [2], which

will allow us to understand and protect our environment and preserve our sites of cultural signifi-

cance [3, 4]. Robotic agriculture systems such as those by [5, 6] can increase sustainable food pro-

duction and reduce pesticide usage through spraying, weeding and planting automation. Another

important field where robotics has an impact is health. Many robotic health applications range

from robotic seals caring for an aging population [7] to allowing remote communities access to

medical expertise [8]. Robotics can even benefit education; [9] taught high school students indige-

nous knowledge using low-cost robots, and [10] investigated the impact of using robots to engage

socio-economically disadvantaged youths. Finally, some of the most visible impacts on our daily

lives will stem from further advancements in manufacturing, logistics and autonomous transporta-

tion. In manufacturing, improvements can be seen in areas such as assembly line automation [11],

quality control [12], and optimised dynamic production [13]. In logistics, innovations such as

warehouse automation [14], last-mile delivery [15], and delivery drones [16] will make a notable

difference. Lastly, autonomous transportation, including self-driving cars [17] and trucks[18], will

reshape how industry and society operates [19].

1
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Figure 1.1: Examples of robots operating in the real world doing work. These robots are out
in the field harvesting [22], exploring ocean floors [23], transporting cargo [24], taking aerial
observations, mining and autonomously driving.

While robotic systems continue to advance and improve, however, there are physical limits that

determine how much a single robot can achieve in a given time. For longer and/or larger scale

problems, teams of robots will be needed to solve them. This necessitates using multiple robots,

and this sub-field is known as multi-robotics[20, 21]. This field of robotics focuses on the addi-

tional complexities of considering how multiple robots can collaborate and communicate to solve

typically larger or more complex tasks. Traditional solutions to single-robot problems generally

cannot solve difficult problems requiring multi-robot systems (without modification) due to not

having been designed with these additional concerns that do not exist in the single-robot problem

domain.

Some examples of large-scale problems that are not feasible for single robots but multi-robots

can solve are: thousands of Kiva robots [25] operating in Amazon warehouses, mapping ocean

sea beds [26], rapidly spraying weeds on broad acre farms [27](as demonstrated in our previous

work), teams of automated straddle carriers [28] operating at ports around the world, and fleets of

self-driving cars from Waymo [29]. To enable the robots to solve these tasks, they must be capable

of sensing their environment, performing a set of useful actions, and using this information to plan

what actions to take to complete an objective. In this work, we assume that others have solved the
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sensing and acting parts of robotics and focus on planning and decision-making; in particular, we

are interested in planning problems for multi-robot systems.

Planning problems are ones where a problem definition, a list of valid actions or choices, and a

particular goal are given; the system needs to find a sequence of choices that achieves this goal

or maximises some measure of utility. This class of problems appear in all areas of society and

is not specific to science or robotics. Selecting an ideal location to build a hospital [30], finding a

route between cities for delivery [31], and selecting which items can fit in which box [32] are all

examples of planning problems. The algorithms used to solve them are general and can appear in

robotics. For a single robot or a team of robots to achieve anything useful, they need to have a way

of planning their actions that lets them achieve their goal and perform practical work. Without

planning, robots are simple machines that follow a fixed routine of actions. Robotics versions of

the problems mentioned above are choosing where to take measurements to cover an area [33],

path planning a route between places to perform tasks [34], and bin packing for autonomous

delivery [25]. There are many planning problems in robotics. Specifically, we are interested in co-

ordination problems. These problems require teams of robots to jointly try and solve an objective

in a coordinated fashion, i.e. their actions, when considered together, result in solving the prob-

lem. Traditionally, these problems need to be well-defined and specified for a particular instance.

However, useful real-world multi-robot problems tend to be long in duration, large in spatial scale,

have long sequences of tasks, can involve humans and have ill-defined objectives. Additionally,

they can work alongside humans or interact with the information given by humans, which tends

to be imprecise and sporadic, and goals can change. These conditions lead to optimising for the

current specific tasks and the cost to execute an arbitrary sequence of future tasks despite all the

uncertainty.

Similar difficulties can be seen in the recent trends in the related field of automation; there is a

modern push to upgrade legacy systems to Industry 4.0 and 5.0 [13, 35]. The core concepts of 4.0

are the integration of cyber-physical systems (robots) and being data-driven. Industry 5.0 aims to

improve industry beyond just being automated to now consider their impact on the wider society

with the goal of making things more sustainable, resilient and human-centric. These goals of mak-

ing resilient systems where humans work alongside robots mean that the logistics, manufacturing,

and construction industries need to become more flexible, robust, on-demand, and preemptive.

Achieving these desired properties necessitates giving up on the previous level of control and
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predictability that most industry used to have. These human-driven, less controlled, uncertain,

large-scale problems with multiple robotic (or human) agents align very closely with the types of

problems being addressed in modern multi-robotics research. This overlap motivates examining if

there can be any cross-pollination of ideas between the two fields. A typical problem that needs to

be solved for industry is the question of resource allocation.

This optimisation of resource allocation is a heavily studied field of operational and automation

research called scheduling problems. Scheduling problems are a class of optimisation problems

that involve allocating resources to tasks over time to maximise some objective while subject to

constraints. These problems arise in various contexts, including manufacturing [36], transporta-

tion [37], healthcare [38], and project management [39, 40]. Practical, real-world scheduling prob-

lems also have multiple agents and similar conditions to practical multi-robot problems, such as

the multiple sources of uncertainty. These sources of uncertainty can be things such as not know-

ing the future demand for a product, uncertain amounts of time a human can take to complete a

task, or accounting for downtime to maintenance [41].

A key insight of our work is that some multi-robot planning problems, particularly task allocation

problems, can be modelled as scheduling problems with various sources of uncertainty. These

problems have the same underlying structure of assigning resources to tasks over time, sometimes

with sources of uncertainty. However, compared to multi-robotic problems, scheduling problems

tend to have a clear structure, and they often do not have the same physical considerations that

robotic systems operating in a physical environment have. These changes limit the direct applica-

bility of most existing scheduling methods without redesigning for the new operating environment.

Despite this, we believe there is still value gained by modelling multi-robot problems as a schedul-

ing problem; through the modelling process, the source of uncertainty and the dimensionality of

the problem becomes more apparent. This modelling lens allows the identification of where in

the structure of the problem the uncertainty occurs and identifies what additional information is

required to make the problem feasible to solve. Additionally, there is potential to leverage existing

methods and research from both fields to solve problems.

Specifically, this thesis aims to develop principled and practical planning algorithms capable of

addressing the challenges of multi-robot planning with varying sources of uncertainty utilising

the lens of stochastic scheduling. Then, we use multi-robot algorithms to develop methods that
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leverage this insight to solve the complex problem. The algorithms we developed help build under-

standing around this class of problems and are practically applicable to their motivating problems.

This work is not exhaustive but acts as an initial study into this process of approaching and view-

ing a class of multi-robotic problems as scheduling with uncertainty problems and the potential

benefits to the field.

In this chapter, we motivate introduce the concepts that are used throughout the rest of the the-

sis. We define what scheduling problems are and outline some existing ways they are formulated.

Then, we extend this definition to include stochastic elements and highlight some example prob-

lems that have this structure. Next, we discuss the class of multi-robot planning problems that

this work is addressing. Subsequently, we outline the intersection between these two schools of

thought and present some models for real-world problems to which this methodology has applied.

Finally, we provide an outline of the main contributions of this thesis.

1.1 Scheduling problems

Scheduling problems are seen across many different domains. The crux of scheduling problems

is allocating resources over time in order to complete tasks according to some goal, subject to

some constraints. Many scheduling problems exist as part of our society, such as employee shift

scheduling, train timetabling, project scheduling, aircraft maintenance scheduling, and even com-

puter operating systems with a scheduler.

A toy demonstrative example of the process of scheduling is a bakery with a single baker who

needs to select the order in which they produce their goods. In this example, the bakery can make

three types of pastry: cookies, muffins, and brownies. Each pastry has a different amount of

preparation time and requires a different amount of time to bake. The bakery has a single oven, so

only a single pastry can be baked at a time, but preparation can happen while the oven is cooking.

The objective is to find a schedule of preparation and baking operations that minimises the amount

of time to bake one of each pastry. Once an item is prepared, it can be left in a waiting area until it

is loaded into the oven, which takes no time. In this problem, cookies take 10 minutes to prepare

and 30 minutes to bake. Muffins take 10 minutes to prepare but 30 minutes to bake. Finally,

brownies take 20 minutes to prepare and 5 minutes to bake.
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Figure 1.2: Three example schedules with increasing optimality for the simple bakery scheduling
problem. The goal is to prepare and bake one of each good in the shortest overall time.

Some possible orderings of the actions the baker can take are shown in Figure 1.2 It can be seen

that preparing pastries while the oven is working can reduce the overall time. For this problem, the

optimal schedule is to start with preparing muffins (0-10 minutes), put muffins in the oven, start

preparing cookies and brownies (both can be done before the muffins finish baking), and finally

bake the brownies then the cookies. The total time is 10+30+30+5 for a total time of 75 minutes.

This toy example can be seen as an example of a typical job-shop scheduling problem where there

are two machines, an oven and a baker, and each job (the types of pastries) needs to pass through an

operation with the baker (the preparation) and then the oven to be completed. Real-world versions

can have much more complicated process chains and requirements, but this example still stands as

indicative of the sort of thinking that goes into solving this class of problems. It also demonstrates

the combinatorial nature of scheduling problems. In the simple two-machine three-job bakery

problem, the number of possible orders of operations the baker can do is the same as looking at

how many arrangements of size six can be made from a set of six items (each pastry has two
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operations). More formally, these arrangements are known as permutations and would be written

as nPr where n is the number of things to arrange, and r is the amount in each arrangement, which is

computed using nPr = n!/(n-r)!. From this, it can be shown that 720 possible sequences of actions

can happen, but not all of them make sense, such as baking cookies before they are prepared. If

you restrict the sequences to only allow valid operations, the number is smaller, but even though

this toy example is small, it is important to notice that it is combinatorial with the number of jobs,

machines, and operations. For illustrative purposes, imagine you had a bakery with 30 different

items(not unreasonable if you think about different types of pastries, fillings, and types of doughs)

and wanted to schedule 15 of them to be baked, the number of possible combinations for the

baking order (30P15) is larger than the number of grains of sand on earth. Scheduling problems

suffer from combinatorial explosion, making enumerative methods quickly infeasible. Hence,

this is why real-world solutions are smarter about how they perform the optimisation by using

heuristics or constraint-based methods; it is possible to find solutions (possibly even optimal ones)

for these combinatorial problems without considering every scenario. To first be able to approach

the problem and understand how to solve it, you need to be able to define the problem formulation.

1.1.1 Key components of scheduling problems

There are many forms of scheduling problems, but typically, they are defined by the tasks or jobs,

the objective function they are optimising against, restrictions or constraints, and the properties of

the resources or machines over which the allocation is happening.

In the literature, there is a standard three-field notation used for scheduling problems, α|β|γ with

the three fields containing words that describe the properties of the scheduling problem [42, 43].

The α field describes the machine environment with examples such as single machines, parallel

machines, if jobs must be processed on machines in a certain order, and so on. The β field describes

the job constraints and rules. Some forms of typical job constraints are allowing preemption,

precedence constraints, if there is setup time, or if a job is blocking. Lastly, the γ field is the

objective that is being optimised against; for most scheduling problems, this is the makespan of the

jobs, but other commonly seen examples are maximum lateness, total weighted completion time

and total weighted tardiness. The notation used throughout the literature is not always consistent
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but tends to approximate or extend this concept of defining an environment/jobs, constraints, and

the function that is being optimised.

For this work, we build upon this idea of representation. However, for systems that involve physi-

cal systems moving around and cooperating, the standard notation can be insufficient for modelling

certain interactions. Such as the cost of moving components from A to B using a robot because

this cost is dependent on where the robot is at time T or the constraint that an agent cannot leave

a certain zone or travel at unsafe speeds. These sorts of constraints are difficult to model in the

existing notation but are easier to capture when using this modification and are closer to a typical

robotics planning formulation, which helps to align the fields. Hence, we split the α (machine

environment) and β (job properties) into three categories: tasks, constraints, and resources.

Using this modified formulation, the main components of a scheduling problem can be divided

into four properties:

1. Tasks: A scheduling problem involves tasks that must be completed within a certain time frame.

Each task can have a duration, a start time, and a deadline. The set of tasks may be divided into

subsets based on various criteria such as precedence relationships, resource requirements, and task

dependencies.

2. Resources: A scheduling problem typically involves a set of resources that are required to com-

plete the tasks. These resources may include machines, workers, vehicles, or any other resource

that is necessary to perform the tasks. Each resource may have different capacities and availability

times and may be subject to constraints such as minimum and maximum usage times.

3. Objectives: The goal of a scheduling problem is to optimize one or more objectives, such as

minimizing the total completion time, maximizing the number of tasks completed, minimizing the

use of resources, or minimizing the number of late tasks. The choice of objective(s) depends on

the specific application and the decision-maker’s preferences.

4. Constraints: A scheduling problem may have various constraints limiting which solutions are

feasible. These constraints may include precedence constraints (e.g., a task can only start after

another task is completed), resource constraints (e.g., a machine can only be used by one task at

a time), time windows (e.g., a task must be completed within a specific time frame), and other

operational constraints (e.g., setup times, downtime, maximum travel speed, etc.).

Solving scheduling problems typically involves developing mathematical models that capture
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these components and using algorithms to find optimal or near-optimal solutions. This process

can be challenging due to the combinatorial nature of scheduling problems, the constraints and

objectives’ complexity, and the problem instances’ size. Despite this, significant progress has

been made in solving scheduling problems in various applications due to advances in optimisa-

tion algorithms and computing power. However, the combinatorial nature of scheduling means

scheduling problems are difficult to solve optimally, even for fully observable and known sys-

tems. Unfortunately, many real-world problems involve large-temporal–scale, high-dimensional

systems and include aspects of uncertainty in various ways. The following are examples of where

uncertainty can be involved with each of the properties of a scheduling problem.

Examples of stochastic tasks:

Task durations [44]: The time required to complete tasks can be uncertain and vary depending

on factors such as robot performance, environmental conditions, or task complexity. This can be

modelled as a probability distribution.

Task arrival times [45, 46]: New tasks can arrive at random intervals, which can be modelled

using a Poisson process or other arrival process models.

Task dependencies [47]: Uncertain task dependencies can arise due to unforeseen interactions be-

tween tasks or unpredictable changes in the environment. These dependencies can be represented

as probabilistic graphs.

Examples of stochastic resources:

Robot availability [48]: The availability of robots can be uncertain due to failures, maintenance,

or other factors. This can be modelled as a random variable or using reliability models.

Uncertain resource capacities [49]: The capabilities of resources, such as energy, processing

power, or storage, can be uncertain and vary over time. This can be represented using stochastic

processes or dynamic resource models.

Examples of stochastic objectives:

Minimizing expected makespan [50]: The objective could be to minimize the expected total time

required to complete all tasks, considering the uncertainty in task durations and arrival times.

Maximizing expected throughput [51]: The goal could be to maximize the expected number of

tasks completed within a given time window, considering the stochastic nature of task arrival

times and duration.
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Balancing expected workload [52]: The objective could be to balance the anticipated workload

among robots, considering the uncertainty in task requirements and the robots’ capabilities.

Examples of stochastic constraints:

Deadline uncertainty [53]: Task deadlines can be uncertain and vary due to changing requirements

or other factors. This can be represented using probabilistic constraints or fuzzy deadlines.

Resource allocation uncertainty [54]: The allocation of resources to tasks can be uncertain due to

variations in resource capacities, robot availability, or other factors. This can be modelled using

stochastic resource allocation models or chance-constrained optimization approaches.

This additional complexity of scale, dimensionality and uncertainty limits the effectiveness of

many of the more traditional mathematical constraint-based methods. The addition of uncertainty

especially requires a more considered approach to how these problems need to be handled, which

is one of the key concepts behind the methodology of the works in this thesis. The types of

real-world problems we are interested in addressing can have stochastic elements in a variety of

different areas.

1.2 Multi-robot planning problems

Multi-robot planning covers a diverse range of research areas. Within this broad field, this work

focuses primarily on addressing the complexities of multi-robot task allocation (MRTA), an im-

portant component of enabling multiple robots to solve tasks.

MRTA is a well-studied area of research with several possible taxonomies. To provide context

for our work, we use the taxonomy proposed by Gerkey [55], which categorizes MRTA problems

along three axes: robots, tasks, and assignments. Robots can be single-task robots (ST) or multi-

task robots (MT), which determines if the robots can complete one task at a time or multiple tasks

simultaneously. Similarly, tasks can be single-robot tasks (SR) or multi-robot tasks (MR), depend-

ing on whether a single robot can complete a task or if some tasks require collaboration between

robots. Finally, the assignment can be instantaneous (IA), where all tasks are known upfront and

must be assigned, or time-extended (TA), where tasks arrive over time and must be handled dynam-

ically. This taxonomy allows us to describe problems concisely using robot-task-assignment tuples

(e.g. ST-MR-TA, MT-SR-IA). This is useful because they are a domain-independent description
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of a problem, simplifying comparison and improving applicability across various multi-robot sce-

narios.

In this work, we have primarily studied the ST-SR-IA/TA class of MRTA problems. This means

that each task can be completed by a single robot (SR), each robot completes a single task at a

time (ST), and tasks are either fully known a priori (IA) or arrive throughout the operation (TA).

A demonstrative toy example of an ST-SR-IA MRTA problem is a smart warehouse with three

robots: R1, R2, and R3. Three packages, each in a different location, must be picked up and

moved to a delivery location. Each robot can carry one package at a time and can collect and

transport it to the delivery location. However, they travel at different speeds R1 travels at 2m/s, R2

travels at 5m/s, and R3 travels at 1m/s. The goal is to transport all packages as quickly as possible.

To minimise the total working time, the location of each robot, the position of each package, and

travel speed must all be considered. From a multi-robotics perspective, an illustrative diagram of

this problem can be seen on the left side of Figure 1.3 with the right showing one possible schedule

that delivers all the packages.

This problem demonstrates the similarities and differences between a scheduling problem and an

MRTA problem. On the surface, MRTA allocates resources to tasks over time, but it usually has

the added complexities of things moving and operating in a physical environment. Examples of

properties considered in multi-robotics but typically overlooked in the scheduling methods are

communication costs, motion planning, sensing models, communication architecture (centralised

or decentralised), and so on. Robotics tends to consider more of the system complexity for the

agents rather than assuming moving points on a plane. There are scheduling formulations that also

include some of these physical considerations and plan for multiple agents so the fields are not

entirely disjoint, but there is limited work that considers properties that are important in real-world

field multi-robotics.

1.2.1 Desired properties of multi-robot stochastic schedulers

There are multiple schools of thought and methods for solving MRTA problems, which we will

briefly discuss here: The first school is exact methods that try to find an optimal solution (if one

exists) for a problem. One of the most common methods is solving constraint-based formulations
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Figure 1.3: Illustrative figure showing how MRTA and scheduling share a structure.

such as Mixed Integer Linear Programs(MILPS) [56, 57]. Constraint-based methods can capture

many complex constraints and, depending on the solver, can be relaxed to find partial solutions

quickly. Their main drawbacks are that it can be difficult to model complex relationships between

variables, that some problems do not scale well in these forms, and that they typically work best

for problems that can be fully known and described. Another popular exact method is the class

of traditional assignment methods, such as the Hungarian method [58]. Similar to mathematical

constraints, they require full information, modelling multiple decisions quickly becomes infeasible

to solve, and they are difficult to decentralise. An alternative to solving everything upfront is to

handle things as they arrive. Handling things online can be achieved through iterative assignment

methods like distributed sequential greedy [59] or auction-based methods [60, 61]. Sequential

greedy-based allocations work by using a simple heuristic to measure the value of the task and

allocating them in a maximum first manner. These simple algorithms can work well if the problem

has the matroid property and the reward function is submodular [62], but many tasks are not; thus,

they have an unbounded downside. An alternative to greedily allocating tasks is to let the agents

bid on each task and perform an auction to match the task to the agent. However, it can be difficult

to model an appropriate bid for complex problems, and they are myopic as they focus only on

locally optimal solutions. Finally, there has been a recent trend in applying deep learning-based

methods to planning problems [63, 64] where the goal is to take a large amount of data and learn

a function that can rapidly generate plans. However, deep learning methods are sensitive to the

deviations between their training and real-world scenarios.

The scheduling problems explored in this work involve complex, dynamic environments with var-

ious sources of uncertainty, which are hard to model and fully represent in training data. This can
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limit the effectiveness of deep learning methods, potentially leading to failure or underperformance

in novel situations. Techniques such as domain randomization [65], adversarial training [66],

transfer learning [67], anomaly detection [68] and active learning [69] can help the model adapt to

domain shifts and improve its applicability to these environments [70]. However, while they have

been useful in improving the robustness of robot control models or trajectory planning, they have

seen limited application in the multi-agent planning domain so far. In addition to this complexity,

deep learning methods often struggle with sparse rewards, with long decision horizons, scalability

and coordination, which are properties that characterise multi-agent planning problems and pose

known challenges [71].

Therefore, deep learning can be useful for specific parts of these problems, such as behaviour pre-

diction [72] or estimating costs[73]. However, its use as a complete end-to-end planner algorithm

requires further research and development. Although highly successful hybrid approaches have

combined deep learning with a broader planning framework [74], deep learning alone is often not

yet sufficiently mature to function as a standalone solution due to these challenges.

Similar to planning, there are many different schools of thought about how to handle uncertainty in

the problem that is being solved, which typically break down into two camps: exact or sampling-

based, with two sub-camps in each with the goal of optimising for stochastic performance or

making things robust. If the uncertainty of the problem can be mathematically defined, exact

methods [75] optimise using the exact bounds of the probability. These come with the downside

that they require distributions that create the stochastic data to be fully known and modellable.

This is not always possible for certain real-world problems, so instead of explicitly modelling

the distributions, sampling-based methods sample the environment, simulation or data [76, 77].

Like all sampling-based methods, the quality of your solution depends heavily on the number of

samples and the method used to do the sampling. Both of these methods can be used to optimise

for some stochastic measure of quality, such as maximising the expected reward or to try and make

the solutions robust where every possible scenario is feasible by assuming a maximum bound and

ensuring solutions are on the correct side [78].

In this thesis, we are focusing on large-scale multi-agent problems, which means any methods

used must deal with these large-scale sequential decision-making problems. The inherent com-

plexity of these problems, having a combinatorial nature and being NP-Hard, makes methods that
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enumerate unviable due to the computation. Similarly, the chosen methods will need to scale well

with the number of tasks, size of the area and number of agents. Additionally, naively handling

uncertainty can make methods to produce low-quality solutions or become computationally in-

tractable. We aim to harness predictive methods and intelligent selections of heuristics to make

the problems more feasible while trying to limit the loss of optimality these design decisions

can cause. In essence, we propose that ideal algorithms for this domain of multi-robot stochas-

tic scheduler should be model-free, scalable, capable of online recomputation, non-Markovian,

predictive, non-myopic, and can handle uncertainty. Not all problems require these capabilities

in equal measure, but they are typically nice properties for the algorithm to have that can help

them handle the complexities of these problems. Real-world multi-robot scheduling challenges

are NP-hard, hard-to-define, noisy, combinatorial, expansive, and have interdependencies between

multiple components of the problem.

1.2.2 Modelling multi-robot plans as scheduling problems

By looking at multi-robot problems as scheduling problems, we can leverage the benefits of both

disciplines’ thought processes, algorithms and frameworks.

There are multi-robot problems that initially do not look like scheduling tasks. Still, they can

be viewed as allocating resources to tasks over time given some constraints in service of some

objective (maximise reward, minimise risk, etc.). This viewpoint allows the practitioner to con-

sider where the problem’s complexity lies and what steps and trade-offs can be taken to make the

problem feasible.

There are many ways to model and solve problems. We argue that this scheduling lens lets you

identify where the complexity and uncertainty are in your problem instance. Then afterwards,

with the difficult components identified, you can use whatever algorithm you choose to use to

solve them as long as it considers the constraints and uncertainty identified during the modelling.

A similar example that is well-known in the multi-robotics community is modelling problems

as a Partially Observable Markov Decision Process (POMDP). Subsequently, the goal is to find a

decision-making policy that optimises the reward function, which is defined as part of this process.

However, solving this process exactly is often computationally intractable, so for practical reasons,
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people will use an approximate method such as a sampling-based method or heuristic solver. De-

spite the infeasibility of the original model, the act of modelling and defining the problem in its full

complexity lets you understand the constraints and trade-offs needed to make solutions practical

and applicable.

1.3 Scope

As described above, the problems we are interested in solving in this thesis cover several research

areas. The scope of research areas covered and the intended problem settings will be described in

this section.

1.3.1 Multi robot task allocation

General-purpose multi-robot systems should be capable of operating in the real world and must

deal with the complexities of doing so. Adding more robots allows the team to complete more

work than is feasible with a single robot. Multi-robot planning is a broad area of research. In this

thesis, we are focused on the Multi Robot Task Allocation subset of problems. MRTA problems

ask, ‘Which robot should we allocate to complete which task’ while trying to complete an overall

goal modelled via a reward function.

Many variations of MRTA problems can vary by formulations, such as task dependence, where

some tasks cannot be completed until others are done [79]. The tasks that need allocation in prob-

lems presented are independent and do not have these types of constraints. Additionally, For this

work, we focus on problems where the actions are discrete, such as observing this point or collect-

ing this item. Still, other formulations handle continuous tasks such as information gathering [80].

There are many real-world problems that can be modelled as discrete decision problems or can

be discretised. Despite the resolution lost due to discretisation, our methods are still applicable to

suitably solve problems since most of the problems we are interested in are nearly impossible to

solve optimally. The scale of these problems and the additional complexity of uncertainty necessi-

tate making trade-offs, such as discretisation, to find feasible, practical solutions. Another problem

often interleaved with task allocation is the motion planning aspect of completing tasks, known as

Task and motion planning (TAMP). TAMP requires the planning over the logical constraints and
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the physical constraints jointly. The methods presented in this work (besides Chapter 6) consider

physical systems operating in the real world to integrate the physical constraints of moving agents

around an environment and the costs of these motions while achieving goals. Finally, we are fo-

cused on the ST-SR-IA/TA class of MRTA problems. We do not consider problems where a robot

can be completing multiple tasks at once or tasks that require multiple robots to complete (such as

joint lifting).

Even in this restricted problem format, the types of problems we are interested in are combinatorial

and NP-hard. This limitation means that finding optimal solutions for real-world–scaled problems,

such as those where you would actually require a team of robots to solve, becomes complicated.

Additionally, since we are focused on real-world problems, many come with the added difficulty

of uncertainty in various components of the problem. The methods to address uncertainty in the

allocation problem require different approaches depending on where and how the uncertainty is in-

cluded. Furthermore, MRTA problems are still multi-robot planning problems, so they are subject

to the typical complexities of multi-robot planners. The key challenges that need to be addressed

are the scale of the joint space, communication, and choice of coordination method. One of the

main challenges is that in multi-robot problems, the search space grows exponentially with the

number of robots. Subsequently, a large portion of the literature is focused on overcoming this

hurdle by reducing the computational complexity while still being able to coordinate the team.

Similarly, the required amount of communication needs to be considered as the number of agents

grows. Finally, the method of coordination needs to be considered; planners can either be cen-

tralised or decentralised, and each method has its benefits and drawbacks. For robustness, having

a central point of failure is not desired since if one robot fails, the system can continue to operate,

and it allows intermittent communication failure not to bring down the whole team.

In this thesis, we want to find methods that can deal with ST-SR-IA/TA MRTA problems that

include uncertainty in various components of the allocation problem. Our methods should pre-

emptively account for the future rather than purely react. Furthermore, our method should be

scalable to account for real-world–scaled problems with many agents, over large areas, and many

tasks.
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1.3.2 Scheduling

Since our focus is on a subset of task allocation problems, the methods we present may not be

suitable for all scheduling problems. For example, some scheduling problems require multiple-

step processes or have task dependencies. These problems are outside the scope of the methods

we present currently.

This thesis focuses on solving these allocation problems by modelling the problems as scheduling

problems to identify sources of uncertainty and understand the scope and scale. Then, subse-

quently, this understanding will be used to determine what information can be used to make these

problems more feasible.

Additionally, we are focused on larger-scale problems with many agents and tasks. There are

existing methods, such as approximate methods like lagrangian relaxation or constraint generation,

to find optimal solutions. However, the uncertainty and constraints caused by mobile agents, and

the uncertainty limit the applicability of these methods. The intent of this thesis is to work in these

classes of scenarios, so the methods we produce need to be suitable.

1.3.3 Planning with uncertainty in various problem components

Real-world multi-robot systems require a nuanced understanding of the type and sources of un-

certainty that can be encountered. Traditionally, there are two main categories of uncertainty

– epistemic uncertainty, arising from incomplete knowledge of the system or environment, and

aleatoric uncertainty, caused by inherent randomness or variability in a system. Epistemic uncer-

tainty can often be reduced through improved sensing, modelling, and learning, while aleatoric

uncertainty requires robust or adaptive approaches that can handle inherent variability. Given the

complexities of real-world operations, understanding the source and type of uncertainty can help

develop capable, efficient, and resilient methods.

In addition to the general forms of uncertainty, the systems we create should be able to deal with

different forms of uncertainty from various sources in different parts of the planning problem.

The various forms of uncertainty can stem from uncertainty about what tasks the system will

need to complete, uncertain environments, stochastic constraints, uncertainty in what resources

are available to complete the tasks with, and many other variations.
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Systems that can deal with uncertainty in a general sense are desirable, but they are practically

infeasible at this point in time to create. The addition of uncertainty into multi-robot planning

problems presents several challenges on top of the typical multi-robot challenges mentioned ear-

lier. Most of the work includes state uncertainty or environmental uncertainty, such as in mapping

problems. we are interested in looking at how uncertainty in the different components of the

MRTA problem changes the methods required to solve them.

Uncertainty is difficult to plan with because instead of having a point of information, you have a

distribution of information to consider when selecting actions. The properties of this distribution

and the goal of the overall system greatly affect the decision-making process required to select

that action. In some problems, it is sufficient to optimise for a summary statistic such as expected

value and in others, you are trying to reduce the impact of the worst-performing percentile (risk) of

the distribution of outcomes. Additionally, most previous work assumes the unknown parameters

of the problems they are solving are drawn from well-behaved distributions and values follow a

normal distribution or similar. These models allow mathematical formulations and nice proofs that

bound the optimality or prove the effectiveness of their methods. However, the real world is often

not well-behaved, so we focus on model-free methods that leverage the data available to build

arbitrary distributions. Using these distributions and understanding of the problem’s properties,

we create forecasts that are used in our methods to deal with the stochastic nature of the problems.

In this thesis, we aim to develop methods capable of exploiting the available information and the

underlying structure of the problems to solve large-scale multi-robot planning problems. Further-

more, the methods should account for the complexities of real physical mobile robots operating

in complex environments. We focus on maintaining the effectiveness of our solutions while the

problem scales in complexity and does not rely on problems following well-formed distributions.
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Figure 1.4: Projects addressed in this thesis using our probabilistic multi-robot scheduling frame-
work. (Top Left) Decentralised planetary exploration with map uncertainty, Chapter 3. (Top Right)
Multi-agent ocean coverage, Chapter 4. (Bottom Left) Weekly operation for wind-powered hydro-
gen, Chapter 6. (Bottom Right) Distributed multi-agent warehouse order picking, Chapter 5.

1.3.4 Problem settings

This thesis is concerned with solving real-world practical multi-robot planning challenges in var-

ious domains. Through solving this collection of problems, we establish a new theory of robotics

scheduling that addresses four fundamental components of how stochasticity manifests. The four

components of our probabilistic scheduling framework are stochastic objectives, constraints, tasks,

and resources. As part of this research, we model and produce solutions for four practical, real-

world problems. Each problem has uncertainty in different components of a typical scheduling

problem and needs to be considered differently.
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This thesis contributes to a suite of planning algorithms for multi-robot task allocation with our

four core types of uncertainty in various scenarios. We emphasise scalable, practical solutions

that would be feasible to deploy for real-world-sized problem instances. We consider scheduling

with uncertainty in practical robotics and automation applications. This section introduces these

problems, which will be explored deeper in the following chapters.

1.3.4.1 Stochastic objectives: intuition-guided multi-robot orienteering (Chapter 3)

This problem deals with stochastic objective scheduling. The objective function determines the

utility of a set of actions and defines the planner’s goal. In stochastic objectives problems, the tasks

are fully known, the constraints do not change, and there are no stochastic consumable resources

that need to be considered. The uncertainty lies in the fact that the reward that is received for

executing actions is unknown until after the actions have been executed. In these problems, there

can be many valid solutions, albeit with an uncertain utility. However, the goal is still to find

high-quality plans, so the stochastic value of actions needs to be carefully considered.

We explore the first component of our probabilistic scheduling framework, stochastic objective

scheduling, by solving the discoverable edge cost orienteering problem. This problem is a variant

of the typical orienteering problem where an agent wants to move around an environment and

gather as much reward as possible given a limited budget. In this variation, the cost of traversing

around the environment may change from the initial cost, and the agent needs to still try and

optimise the expected reward amount. We demonstrate this problem in a planetary exploration

context. The problem being addressed is developing a persistently autonomous robotic system for

in-situ surface exploration of Europa, a moon of Jupiter. The aim is to enable the robotic system to

make decisions and execute tasks independently while minimizing the potential of mission failure

due to constraints such as limited communication windows and latency that make teleoperation-

based robot control difficult or infeasible.

To solve this problem, the approach being proposed is the development of a multi-agent decentral-

ized Monte Carlo Tree Search planner that enables persistent autonomy. This planning algorithm

leverages the capabilities of both the Earth-based ground station and the mobile robot. It enables

the mobile robot to formulate its own plan based on its higher definition map of the local envi-

ronment and is guided by the ground station’s most recent long-term plan. The effectiveness of
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this planning strategy has been demonstrated through the simulation of a planetary exploration

problem where the mobile agent has limited computing, and the environmental understanding is

initially noisy. This method represents a new paradigm for how to approach multi-agent planning

problems.

1.3.4.2 Stochastic constraints: Multi-Vessel-Multi-Float (MVMF) scheduler (Chapter 4)

This problem deals with the second component of our framework, stochastic constraints. Con-

straints define the rules of the environment and determine if a set of decisions is valid. Stochas-

tic constraints occur in scenarios where the rules of a system change and are driven by external

stochastic processes. The tasks that need to be completed are fully known, the objective function is

deterministic, and there are no stochastic consumable resources that need to be considered. How-

ever, due to the constraints, changing a schedule may be valid in one instance of the constraints,

but under a different configuration, the same schedule may be invalid. This invalidation of previ-

ously feasible plans is more restrictive than the stochastic objective case, as the uncertainty causes

failure (which returns no reward) rather than suboptimality.

As a way to explore the idea of stochastic constraints, this chapter introduces this class of prob-

lems in an oceanographic information-gathering scenario. The problem being addressed is the

development of a planner for a low-cost multi-agent benthic imaging system used for scientific

data gathering of ocean floors, specifically in reef systems. The system uses minimally actuated

imaging floats that are deployed in areas of interest to gather data, which are then retrieved by

manned or autonomous surface vessels. In this problem, we need to find a joint schedule for a

team of vessels operating in the ocean that covers all points of interest using a novel Multi-Vessel

Multi-Float system.

The main constraints in this problem include the physical limitations of the system, such as the

number and capabilities of the imaging floats and surface vessels. Additionally, there are envi-

ronmental constraints, such as uncertain current conditions and physical constraints of the ocean

floor. The approach being taken to solve this problem is the development of a planner that can op-

timize float deployments and surface vessel deployment sequences while accounting for uncertain

current conditions and physical system constraints. The current version of the planner can solve
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the deployment planning problem under the assumption that the changes in the ocean currents are

slow enough that they can be considered quasi-static.

1.3.4.3 Stochastic tasks: dynamic warehouse order-picking (Chapter 5)

This problem investigates problems with stochastic tasks. Tasks are the pieces of work that the

agents complete by performing actions that are subsequently rewarded by the objective function.

Stochastic tasks are defined by the uncertainty in the formulation of the task. This task uncertainty

can take multiple forms, such as not knowing ‘which’ tasks need to be done, ‘when’ the task will

be completed, or ‘how’ to complete the task due to it having stochastic costs.

The problem being addressed is optimising the order-picking process in a multi-agent warehouse.

Order picking is the process of an agent (robot or person) traversing around the warehouse to

collect items from their storage location and then return them to a depot for fulfilment. Orders are

not known beforehand and arrive throughout the day of operation, so the planning algorithm must

account for this dynamic aspect. This dynamic aspect means the tasks that need to be scheduled

are stochastic, and any method used needs to deal with the uncertain demands of the future.

Finding optimal algorithmic solutions for the warehouse order-picking problem is infeasible for

all but the smallest of scenarios because component subproblems such as routing, batching, and

allocation are NP-hard [81]. Additionally, future-specific orders are impossible to predict, so

solutions should be capable of accounting for future orders and dealing with the dynamically

arriving orders in a timely manner.

We want to find a method to deal with future orders’ uncertainty without simply reacting to orders

naively. Our method should preemptively account for the future. Furthermore, our method should

be scalable to account for large warehouses with many dynamic orders, many agents and many

item locations.
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1.3.4.4 Stochastic resources: risk constrained scheduling with stochastic forecasts

(Chapter 6)

Through solving this problem, we address scheduling problems that have stochastic resources.

In a subset of scheduling problems, resources are required to complete tasks and are consumed

during the work. The resources are considered stochastic when a stochastic process replenishes

them, thus making it uncertain if enough resources will be available when completing a task in

the future. The process of obtaining more resources can be uncertain for various reasons, such as

unclear production amounts or arrival times.

The problem being solved is the development of a method that can schedule jobs that consume a

resource that is produced by a stochastic process. Creating this schedule requires the consideration

of when and how much the resource will be available, which depends on the process that generates

the resource, which may be difficult or impossible to model. We are interested in optimising

the number of completed jobs while minimising the risk that a schedule is invalid due to having

insufficient resources.

We demonstrate this problem type in a practical scenario of scheduling green hydrogen consump-

tion operations for the German aerospace center (DLR). DLR wants to schedule robust weekly

operations for green Hydrogen that is produced by wind power through electrolysis. For opera-

tional reasons, these schedules must be committed to a week in advance and have a known risk of

failure.

However, the stochastic resource budget and risk bounds require a method to quantify the risk

of a schedule conditioned on the expectation of wind in the coming week. Wind forecasting is

a complex temporal problem, so practical solutions must account for the uncertainty rather than

working with a summary statistic such as expected valid or bottom quantile. To demonstrate its

limitations, consider two schedules that are valid at the end of the week when considering the final

capacity. However, when examining every point in time along the schedule, these schedules may

be infeasible due to consuming more resources than were available. Scheduling problems are non-

Markovian and a time series; hence, the entire history needs to be examined to validate a schedule

properly.
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1.4 Thesis contributions

The fundamental contribution of this thesis is to view certain multi-robot planning problems as

probabilistic scheduling problems with four sources of stochasticity: objectives, tasks, constraints,

and resources. This thesis contributes a suite of planning algorithms for several problem domains

with various forms of uncertainty. The problem domains addressed in this work are dynamic

warehouse order picking, exploring an unknown world with a noisy map, heterogeneous team

operation in an ocean environment, and scheduling uncertain resource production based on wind

forecasts. We emphasise that the methods and ideas presented here have been tested in these

problem domains, but this thesis does not target these specific applications.

The detailed contributions of this work are:

1. The development of a new Multi-robot scheduling with uncertainty framework. The

novelty is that this is a new way of dealing with real-world and decision-making problems.

The theoretical impact should lead to more research by people building upon the ideas pre-

sented. The broader impact is it should facilitate more field applications of robotics with a

societal and economic impact.

2. A novel intuition-guided multi-robot orienteering algorithm to solve the discoverable

edge cost orienteering problem for a heterogenous team of virtual and physical agents

performing information gathering on an unknown world with a noisy map prior which re-

sults in a stochastic objective. Our method leverages the extensive computation available

off-site on a ground station to create a virtual biasing function that acts like an intuition for

the ground agent to follow without constraining its decision-making ability based on local

sensor information. This method is shown to outperform the ground robot planning on its

own and blinding following a plan created by the ground station that does not consider this

local information.

3. A novel hierarchical scheduling framework for a new multi-vessel multi-float system.

The presented framework is capable of handling the operational constraints of scheduling the

operations between multiple surface vessels picking up and deploying multiple information-

gathering floats in an uncertain oceanic environment with stochastic constraints. Our
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framework has been shown to outperform more generic planners and utilise multiple agents

more efficiently.

4. A novel distributed partitioning based multi-agent warehouse order picking method

that can handle large warehouses with many stochastic tasks arriving at unknown points of

time in the future and containing uncertain requests that are created according to a stochastic

process. Our algorithm builds a measure of expected work by sampling from an arbitrary

empirical distribution of historical data. This measure of work is then used to iteratively

balance partitions, which has been shown to optimise the expected throughput of orders in

heavy loading regimes. Our method is capable of handling scenarios where the orders are

entirely dynamic and scales well for large-scale warehouses with orders and many agents.

5. A novel forecast perturbation based risk constrained scheduling method that can find

risk bounded solutions for scheduling problems with stochastic resource levels. This method

utilises the expected precision of forecasts to perturb the forecast into a distribution of the

expected futures. This approach allows the scheduling of medium-term operations that con-

sume a stochastic resource and is produced by an arbitrarily complex stochastic process.

6. Each method has analytical results that show the suitability, scalability and usefulness of

each of our developed methods for their designated problems. Despite the computational

complexity of the addressed problems, we show that our methods can produce high-quality

solutions that are practical and suitable for real-world applications.

7. For each method, we presented empirical results from extensive simulation trials. These

simulation results validate the theoretical claims and demonstrate the applicability of our

algorithms to their designed use cases.

8. We performed Hardware field trials of the MVMF system to validate the effectiveness of

the MVMF system and the algorithms we present in this work. Our system was found to

be practical under the constraints we designed it for. Additionally, the field trials offered

valuable insight into future algorithmic improvements that will further increase the system’s

robustness when operating in oceanic environments.

Parts of the work presented in this thesis have appeared in our previous publications. Specifically,

Chapter 4 builds upon our previous work in [82], while the field trial and discussion in Section 4.5
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is based on our presentation at the ’Advanced Marine Robotics’ workshop [83]. Chapter 4 is

based upon and extends on our work in [26]. Finally, Chapter 6 is built upon ideas in our work for

a future publication (preprint available [84]). Giovanni D’urso is the primary contributing author

in all of these publications.

1.5 Thesis structure

The structure of the rest of the thesis is as follows:

• Chapter 2 surveys the related work in the areas of optimisation, stochastic optimisation,

dynamic vehicle routing, and uncertain cooperative decision-making.

• Chapter 3 focuses on defining problems with stochastic objectives. We investigate this class

of problem by solving the Discoverable Edge Cost Orienteering Problem (DECOP), which

is a multi-robot scheduling problem with a stochastic objective. We provide our method for

solving the problem by modelling it as a new problem called intuition-guided multi-robot

orienteering and then solving it using our sampling-based algorithm. Then, we present an

example of this problem and our solution in the context of an autonomous exoplanetary

exploration scenario.

• Chapter 4 defines the problem of scheduling with stochastic constraints. This type of

uncertainty is demonstrated through the problem of a heterogeneous team of information-

gathering vessels operating in the ocean. This multi-vessel multi-float is a novel solution and

an application of a problem with stochastic constraints caused by ocean currents. We present

a hierarchical scheduling framework to solve the problem. Next, we validate our algorithm

empirically through simulation. Subsequently, we test our simulation results through a field

trial on real hardware. Finally, we wrap up with a second smaller field trial examining a

future direction of work.

• Chapter 5 presents the dynamic warehouse order-picking problem as an example of a

stochastic task scheduling problem. In this chapter, we first define the warehouse picking

problem using a Poisson process that describes the arrivals of tasks and the goal to opti-

mise the steady state throughput of the system. Next, we define a partitioning-based method
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and service policy that optimises future orders by balancing expected work across agents.

Finally, we demonstrate our solution’s effectiveness through simulation.

• Chapter 6 defines the risk-bounded stochastic resource scheduling problem, which involves

scheduling jobs that consume a resource produced by an uncertain process. To address this

problem, we create a sampling-based forecast perturbation method based on the expectation

of forecast’s PPV. These forecasts are then used to create a schedule with a bounded risk. We

apply this method to a real-world case study of scheduling operations for a green hydrogen

research facility that is powered by wind power. We evaluate the performance of our method

through simulation and compare it against other baseline methods. Overall, our method

outperformed the baselines and reduced scheduling failures to near zero with limited loss of

utility.

• Chapter 7 concludes this thesis and outlines potential avenues for future work.
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Related Work

Robots and other similar autonomously controlled physical systems can be difficult to model and

represent because they are equipped with the ability to observe (sense) their environment, albeit

in a noisy, limited way, compute (think) which action to take based on their understanding of

their current state, and finally execute (act) the selected action. The actions taken can change

what it is possible to observe through the interaction between the robot and its environment while

simultaneously changing what future actions can be taken. This consideration of these systems’

sensing, actuation, computation and physical limitations introduces a wide variety of planning

problems that consider these interactions in different ways. For demonstration, we briefly discuss

two important planning problems that arise from this interaction task and motion planning and

active sensing, but this is not an exhaustive list. For example, consider the problem of a robot that

needs to visit all rooms in a house; the system is equipped with a map of its environment and a

model of how low-level motor inputs move the robot around its environment. The solution to this

problem is a form of task and motion planning where the plan must jointly consider how the robot’s

motions move around the environment and the sequence it should do the tasks to achieve the goal.

Similarly, consider a related problem where the robot must find an unknown object’s location while

completing the above task. This additional consideration turns it into a form of active sensing

because it must now consider how the selected actions can influence the information/sensing data

the robot can obtain.

29
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The methods presented in this work tend to operate on the higher level of the decision-making

spectrum rather than the low-level control or actuation side. The planning problems examined

here are closer to classical planning or combinatorial optimisation problems. The modelling of

the problems and the solution development are motivated and constrained by the physical sys-

tems that these models represent while considering how they interact with the higher levels of

autonomy. In particular, we are interested in solving multi-robot planning problems due to their

additional capabilities and benefits compared to singular robots, as explained in Chapter 1. Our

focus is this intersection between practical multi-robot applications and complex high-level plan-

ning problems that consider the limitations and uncertainty of operating in the real world. In this

work, we claim an overlap between the scheduling with uncertainty and the types of multi-robot

task allocation problems seen in the real world. This thesis borrows and extends ideas from the

fields of multi-robot planning, scheduling algorithms, and combinatorial optimisation problems.

The new methods we developed in this thesis help extend the capabilities of these bodies of work.

This chapter reviews the existing literature and helps to contextualise the methods presented in this

thesis and the importance of their contributions.

We look at existing multi-robot planning algorithms in Section 2.1. We first examine deterministic

problems and then extend this to problems with uncertainty involved. In Section 2.2, we examine

the use of scheduling algorithms to solve fully known problem instances and then outline existing

approaches to deal with problems with stochastic elements. Section 2.3 examines generic com-

binatorial optimisation algorithms and their use in various planning domains that are relevant to

the work presented in this thesis. Finally, Chapter 2.5 summarises the results of our review and

identifies gaps in the literature that our presented methods address while also contextualising our

contributions to the broader research community.

2.1 Multi-robot planning algorithms

In this section, we review algorithms for multi-robot planning. Multi-robot systems tend to be ap-

plied to real-world problems, which often are long duration, large in spatial scale, long sequences

of tasks, can involve humans and have ill-defined objectives. Firstly, we discuss how plans for
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multi-robot systems can be produced for the simpler case when there is no uncertainty. Sub-

sequently, we relax this assumption and review methods for planners that account for forms of

uncertainty in the problem or in the execution of a decision-making policy.

2.1.1 Deterministic multi-robot planning

Multi-robot planning is a well-studied field with varying approaches for dealing with the breadth

of possible scenarios and system configurations. The key considerations for multi-robot planners

that are operating in known controlled environments are the challenges of coordinating the actions

of a team of robots, dealing with the potentially exponential growth of the combined action and

state spaces of the team, and the typical constraints of robots (or physical agents) that accom-

pany operating in the real-world such as communication, computation limitations, and occupying

physical space.

Exact methods

Exact methods try to find an exact optimal solution for a problem if one exists. Common methods

for this approach are constraint-based formulations such as Mixed Integer Linear Programs (MILP)

or assignment methods. These methods can produce high-quality solutions in small-scale prob-

lems, certain classes of constraint formulation or with sufficient computation time. However, they

tend to have limited applicability for the large-scale real-world problems we focus on in this work

due to the problem size, uncertainty or the online nature.

One common class of multi-robot planning problems is multi-robot coverage [85], where a team

of robots is required to jointly take observations of measurements over an area. This problem

can be made more complex by considering temporal components of the coverage, such as in the

persistent surveillance problem. Mathew et al. [86] deal with the problem of maintaining persistent

surveillance while addressing the problem of recharging Unmanned Aerial Vehicles (UAV) with

an Unmanned Ground Vehicle (UGV). Using a MILP, they find an allocation of discrete time

charging windows and paths that minimise travel costs. While finding an exact solution, it was

shown not to scale well to real-world-sized problems and is outperformed by their approximate

methods. Similarly, Kaplan et al. [87] used a MILP model for the aerial refilling problem involving
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multiple vehicles and a single refuelling vehicle. While computationally expensive for problems

with more than 12 jobs, this method illustrated the practical utility of framing multi-robot problems

as schedules. The computational expense was addressed by using a Simulated Annealing (SA)

approach. However, this comes with its own set of limitations, such as not considering queueing,

and SA does not produce any metrics on solution quality and can be trapped in local minima.

Some multi-robot task allocation problems can be optimally solved in polynomial time. Assign-

ment algorithms such as the Hungarian algorithm [58] can solve the case where all the tasks are

known, and each robot needs to be allocated to a single task. This matching-based type of task

assignment was extended by Nam et al. [88] to deal with task assignment problems with resource

contention using assignment algorithms. This work is able to find the globally optimal alloca-

tions. It allows the matching methods to solve problems with contensions. These methods have

the limitation that all tasks need to be known at the start of the planning or a priori. Additionally,

assignment algorithms are not suitable for problems where a sequence of decisions that rely on

each other need to be made as they only optimise for the current set of tasks.

Heuristic methods

If the problem is too complex or large to solve exactly, concessions must be made to make it

feasible within a reasonable amount of computation time. A common approach is to use heuristics

to approximate the expected reward for a set of decisions or to simplify the decision-making by

using a heuristic to select a decision that will ‘tend’ to do well under some assumptions about the

problem.

Monte Carlo Tree Search (MCTS) is a heuristic search algorithm used for decision-making in

complex domains. It operates by iteratively building a search tree, where each node represents

a state, and by sampling possible actions and outcomes, it approximates the expected reward for

each decision. This sampling is designed to balance the exploration of new actions and the ex-

ploitation of actions with known high rewards. This balancing is done using a modified version

of the Upper Confidence Bound (UCB) method for Trees called Upper Confidence Trees (UCT).

A survey of recent research on applications of MCTS by Świechowski et al. [89] highlights the

growing trend of combining MCTS with other techniques, such as machine learning models to

address the complexities of real-world problems. Additionally, it demonstrates the importance of
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including domain knowledge to improve computation speed or result quality [90, 91] and methods

that can adapt their use of MCTS online [92]. Some of the main areas of improvement are inte-

grating human in the loop feedback [93], alternatives to UCT for use as sampling methods [94],

and integrating machine learning into the process [95].

For multi-robot problems, MCTS can simulate the decisions for each agent and then evaluate the

outcome to find an optimal joint action for the team. By considering the agents jointly, the interac-

tions between agents can be considered, but the scale of the joint space is combinatorial according

to team size, so this centralised approach is only suitable for small teams. Monte Carlo Tree

Search has been extensively adapted for multi-robot systems with a focus on multiple different

components of the method or application to problems. Liu et al. [96] enhanced MCTS’s scala-

bility through parallelization; there needs to be careful consideration of the running simulations

not to break statistical assumptions and maintain the balance between exploration and exploita-

tion. Beard et al. [97] tailored MCTS for adversarial settings by integrating game theory into

the algorithm, opting to use Nash equilibrium computations over traditional min-max strategies.

This approach allows the modelling of a smart adversarial opponent. However, finding Nash equi-

libria is not feasible for all scenarios. The influence of simulation policy selection on MCTS’s

efficacy was explored by James et al. [98], highlighting the role of domain knowledge represen-

tation. If sampling is large enough compared to the search space size, there is little benefit over

uniform random. Still, if the space is too large to cover an informed sampling policy, even when

misaligned, is beneficial. Zerbel et al. [99] presented a rudimentary multi-agent MCTS variant

through centralizing computations and sequentially computing the decisions for each agent. This

solves much of the complexity of the joint space but limits its applicability for larger search spaces

and those with inter-agent interactions. Daneshvaramoli et al. [100] introduced a ‘communication-

less’ multi-robot MCTS algorithm. This method requires all agents to operate in a synchronous

manner and have perfect state information of each other and all goals, which makes it too restric-

tive to apply to complex problems. Another approach to decentralised multi-robot planning is to

plan using macro actions rather than discrete actions. Kurzer et al. [101] proposed DeCoH-MCTS;

their decentralized cooperative hierarchical planner plans using macro actions, which reduces the

problem complexity and has faster convergence. The plan is found using simultaneous games

and distributed reinforcement learning. The results are promising for short-term plans with small

teams, but it suffers on longer horizon plans due to random sampling.
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Greedy strategies employ an often simple heuristic to make locally optimal choices quickly. At

each step, the algorithm selects the decision that maximises the current reward or the greediest

choice. This process continues until a termination criterion is met, such as the budget is exhausted

or all agents have an action to execute. This method can be applied to teams of robots by sequen-

tially selecting an action for an agent that maximises the immediate reward [59]. These simple

algorithms can work well if the problem has the matroid property and the reward function is sub-

modular [62, 102]. Submodularity is a property of set functions where the marginal gain of adding

an element to a smaller set is greater than or equal to the gain of adding that same element to a

larger set. More simply, it means there are diminishing returns; adding an item to the set later

has the same or less value than adding it now, so changing the ordering of the decisions does not

increase the value. If the problem is submodular, a greedy algorithm works well because the deci-

sions made at each timestep are near optimal. However, if this property is not true, as it is not for

many tasks, they have an unbounded downside. This downside is caused by the optimisation only

considering the current state and immediate reward without considering the future.

Applications

Cooperative multi-robot problems can be seen in the Flying Sidekick Traveling Salesman Prob-

lem (FSTSP) [103] in this work, they formulated a parcel delivery problem for a van-drone pair.

It emphasizes the utility of specific problem formulations for leveraging problem-specific optimi-

sations that can be found in some coordination problems. An important domain of work where

multi-robots can be useful is marine robotics. Recent work involves coordination between Au-

tonomous Underwater Vehicles (AUVs) and Autonomous Surface Vessels (ASVs) [104]. This

work used a combination of goal allocations and temporal planning to distribute planning across

the AUVs while dynamically allocating refuel points for the AUVs to meet the ASV for servicing.

While it is able to deal with the temporal aspects of marine robotics, the utility function is lim-

ited and cannot handle more complex models. multi-agent spatial load balancing in non-convex

environments was introduced in [105, 106]. These works offer insights into allocating spatial re-

gions to different robots, providing potential inspiration for similar scheduling-based multi-robot

planning tasks.
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Generally, the theme of most multi-robot methods is the balancing act between trying to find an

optimal solution to a problem and the realities that force trade-offs. Optimal methods have been

shown to work well for some classes of problems or for small instances, but as the scale grows,

heuristic or sampling-based methods are more prevalent. These methods come with the downside

of sub-optimality, although the downside can be reduced through careful design of the heuristics

used or by leveraging problem-specific knowledge.

2.1.2 Multi-robot planning with uncertainty

In this section, we address the work that is more aligned with our work’s direction and provide a

review of the more general multi-robot planning algorithms that include uncertainty. There are few

methods that solve these planning problems exactly as they are NP-Hard, with very large search

spaces, and this limits the usefulness of exact methods for all but the smallest problem instances.

Partially observable Markov decision process

Multi-robot planning under uncertainty is a complex problem with widespread practical implica-

tions. Uncertainties can stem from partial environmental information or uncertain tasks that need

solving. Typically, these uncertainties in the objective function can be modelled as a Partially

Observable Markov Decision Process (POMDP) or a decentralized POMDP (Dec-POMDP) for

problems solved in a decentralized fashion [107, 108]. A partially observable Markov decision

process is an extension of the classic Markov Decision Process (MDP) that is used for decision-

making in stochastic environments. The extension to the MDP allows POMDPs to deal with

environments where the state is not fully observable. A POMDP is characterised by a tuple of

states, actions, transition probabilities, observation probabilities, rewards, and a discount factor.

The goal is to find a policy (mapping of states to actions) that maximises the expected reward over

time despite the uncertainty in the state information. The state uncertainty is modelled as a belief,

which is a probability distribution across the states. Using this belief, the agent’s possible states

can be computed, and the potential observations and rewards for a given action can be computed.

POMDPs are highly expressive and can handle complex problems, although this complexity comes

with the cost of computational intractability, which limits their applicability for problems of prac-

tical size, which has inspired the development of various approximate methods. The paper by
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Kochenderfer [109] discusses the optimization of a shared objective function using DEC-POMDP

in multi-agent planning, noting that exact solutions for DEC-POMDPs are NEXP-complete, thus

motivating the use of approximate, epsilon-optimality solutions. Furthermore, DEC-POMDPs

with communication constraints have also been examined [110], highlighting the trade-off be-

tween computation, communication, and performance in multi-robot planning.

2.1.2.1 Modified Monte Carlo tree search

Monte Carlo Tree Search has emerged as a popular algorithm for handling uncertainty, leading

to its application in decentralized multi-robot planning scenarios. The work by Best et al. [111]

proposes a decentralised extension of MCTS, which solves single robot solutions conditioned on

a joint-action space belief. Another variant is introduced by Smith et al. [112], which enhances

Dec-MCTS with distributed non-myopic task selection for heterogeneous robotic teams. Li et

al. [113] proposed an extension to Dec-MCTS that simulates each agent’s tree and introduces fac-

tored belief to deal with uncertainty. Despite their promise, these methods are not without their

drawbacks; they require all robots to communicate with all others, limiting scalability. Addi-

tionally, introducing problem-specific heuristics that leverage underlying structures can improve

the generic methods for some scenarios. Another drawback is that dealing with multi-objective

functions is not straightforward. The Pareto MCTS introduced by Chen et al. [114] is a multi-

objective variation that has shown effective environmental adaptation. However, it is limited by

the computational complexity of the Gaussian process used for map belief updating, restricting

scalability. Bayesian methods have also been employed to mitigate the computational burden of

uncertainty in multi-robot planning. Arora et al. [115] proposed using a Gaussian process (GP)

with encoded domain knowledge, which grows linearly with the planning horizon instead of the

number of samples.

2.1.2.2 Bayesian methods

Bayesian-based approaches offer a framework for handling multi-robot planning by allowing

robots to explicitly represent and update their beliefs about the environment, their actions and

the states of other robots. Robots continuously refine their beliefs based on observations through

Bayesian inference, enabling decision-making that accounts for partially observable environments
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and beliefs of others [116]. These techniques are particularly valuable for adaptive systems where

agents must optimise their behaviours based on limited or noisy observations or in dynamic or

noisy environments.

Popular Bayesian techniques are include Kalman filters[117] (adapted for multi-agent systems in

[118]), and particle filters[119], which allow agents to estimate their pose and track positions of

other agents or objects in the environment. Similarly, Bayesian optimisation can be used to ex-

plore the environment efficiently and is especially effective for problems with expensive objective

functions or unknown environmental models[120].

Bayesian uncertainty quantification (UQ) is a principled method to assess the reliability of an

optimisation process by quantifying the confidence in the surrogate model predictions; this helps

the system to understand what it is certain about and avoid risky decisions in areas it is less certain

about [121].

In the context of multi-robot planning, decentralised Bayesian planning [122] allows agents to

coordinate actions based on the state of their own beliefs rather than requiring full joint knowledge.

Similarly, work by Benevento et al. [123] developed an adaptive multi-agent system that learned a

surrogate function that represents an underlying unknown spatial density function for distributed

sensing. Bayesian learning has been applied to multi-robot patrolling and distributed sensing

problems [124] in a way that allows agents to adapt to the failure of robots.

However, despite their strengths, Bayesian methods are limited by their computational complexity,

primarily caused by the cost of updating the posterior distribution for large teams and the size of the

state space. Gaussian processes, commonly used in Bayesian optimisation, struggle to handle high

dimensional spaces due to cubic cost scaling [125]. Although ongoing research aims to address

the cost of Bayesian updates and create approximations [126], this remains a limiting factor that

can limit their broader application to the class of problems focused on by this thesis.



38 Chapter 2. Related Work

2.1.2.3 Other methods

Apart from the aforementioned methods, numerous other heuristic and learning-based approaches

exist to address the complexities of multi-robot planning under uncertainty. The Multi-agent in-

formed policy construction (MIPC) proposed by Ma et al. [127] trained policies offline for increas-

ing team sizes and difficulty levels, showing effectiveness in sparse cooperative reward spaces.

However, its applicability is limited by the scale of the environment and number of robots. Dy-

namic tasks and dynamic maps have been addressed using coalition formation for heterogeneous

robots with dynamic tasks [128] and autonomous exploration using frontier point selection on a

dynamic Voronoi map [129]. These methods represent promising directions for research, offer-

ing solutions to specific problems of task assignment and exploration in dynamic environments.

A probabilistic approach that combines Gibbs sampling with simulated annealing has also been

proposed for multi-robot coordination [130]. However, due to the slow nature of probabilistic ap-

proaches, it requires a switch to simulated annealing to escape from local minima, presenting a

potential risk of oscillation between modes.

There are a variety of approaches for tackling the complexity of multi-robot plans while con-

sidering uncertainty, such as POMDPs, DEC-MCTS, bayesian approaches or specific heuristics.

However, similar to deterministic methods, communication, computation, or optimality are still

limitations.

2.2 Scheduling algorithms

As introduced in Chapter 1, scheduling problems are a class of optimisation problems where re-

sources are allocated over time. The work in this thesis is related to the concepts of scheduling

and, in particular, stochastic scheduling. Fundamentals of scheduling can be found in books by

Pinedo [131] with surveys of various forms of scheduling problems by Allahverdi [132, 133].

These surveys address deterministic scheduling problems with setup times and those with no-wait

constraints. The MRTA is similar to scheduling problems with a sequence-dependent setup cost

because the cost for agents moving around to complete tasks is a function of their state, which

depends on the last task they have completed. Similarly, some of these problems can be modelled

as no-wait because we are interested in optimising for throughput or minimising makespan.
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2.2.1 Deterministic scheduling

There are many variants of classic scheduling problems variants [134]. However, these formu-

lations can be NP-Hard and thus hard to solve optimally [135] for many real-world problems.

Multi-agent scheduling is similar to the classical scheduling problem of group interval schedul-

ing [136]. This problem requires scheduling a set of k many independent tasks with possibly

differing execution times. This problem has exponential complexity, so it has the same scalability

problems. One of the important applications of multi-agent deterministic scheduling is the domain

of warehouse operations and, in particular, order picking. In order-picking problems, the goal is

to allocate orders to agents to collect and return to a depot. This problem is combinatorial (in the

number of agents and orders) and has been handled through batching-based methods by batching

orders into one tour to reduce the mean travel time. Batches can be found with Ant colony opti-

misation (ACO) and a waiting heuristic [137], but it does not account for the dynamic aspect of

some warehouse problems and only works for fully known deterministic problems.

2.2.2 Stochastic scheduling

Stochastic scheduling is an approach for handling inherent uncertainties that are present in a mul-

titude of real-world problems. The uncertainty can come from various places such as dynamically

arriving tasks, job running length uncertainty, failure of machines and so on.

Extending the deterministic order-batching problem to account for the online arriving nature of

jobs has been studied in various works, including [138]. In this work, they handle the dynamic

aspect through replanning by updating existing plans with new orders. A method to solve the

generic scheduling problem with stochastic tasks was developed in [139] and [140] introduced

further work that allows scheduling stochastic tasks with stochastic lengths. However, due to

the problem’s complexity, the scalability of such methods has not been demonstrated. To han-

dle problems where the resources being used during the scheduling are the stochastic element,

the resource-constrained scheduling with partially renewable resource problem was introduced in

Bottcher et al. [141]. A survey of variants of the resource-constrained project scheduling prob-

lem was presented in [142]. The work by [143] extends the resource-constrained scheduling by
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adding general temporal constraints to the production and consumption of the resource itself. Their

method relies on the application of a branch-and-bound algorithm.

Stochastic scheduling problems are seen in the area of renewable energy operation planning; im-

provements in this field are important to reduce C02 emissions. The major issues are inherent inter-

mittency, variability, and complexity of modelling solar emissions, cloud cover, wind forecasting

or the other natural processes used to generate green energy. In [144], the uncertainty related

to the amount and timing of renewable energy was dealt with using single-machine scheduling.

Bi-objective and Pareto optimal solutions were used to address this uncertainty effectively. Sim-

ilarly, the problem of day-ahead scheduling of wind and solar microgrids was handled through a

MILP [145]. The solution involved minimizing expected operational costs and power losses by

generating a set of solar and wind scenarios for the day ahead. However, these methods have lim-

ited scalability due to the complexity of their optimisation and thus are limited to short planning

horizons.

There has been an attempt to address the complexity by using seasonal ARIMA (SARIMA) to

model demand [146] and include a conditional value at risk model. While this work captures the

seasonality of wind and incorporates risk into the decision-making, the quality of the ARIMA

forecasts is limited, especially for longer horizons, due to wind speed being a non-linear, non-

stationary process [147]. The differences between a variety of existing stochastic optimisation

methods applied to the power scheduling problem were studied in [78]. They settled on solving

the problem using a two-state approach where the first problem finds a robust solution (worst-case)

and then is further optimised in the second stage. Their approach does not consider the temporal

aspects of scheduling and uses a simple uncertainty model. Ji et al. [148] deals with the allocation

of power to uncertain load demands while considering uncertain wind power. The optimization

process involved two phases: day-ahead planning and intra-day adjustment. They validate their

system on case study data. Another approach to handling the uncertainty is to learn an approxima-

tor function using deep learning, such as in work by Wang [149], where they used a reinforcement

learning-based method to learn an approximation function for their scheduler for mobile energy

networks. The results are interesting; however, the scalability of their method is unclear. Fur-

thermore, learning-based solutions tend to perform poorly on problems with sparse rewards and

many hard constraints, such as those in the resource-constrained scheduling problem. The con-

cept of learning an approximator function that can then be used as a heuristic for scheduling in



Chapter 2. Related Work 41

an alpha-go style could be a promising future direction of work for these problems. Adding in

more sources of power and storage turns the problem into a multi-objective problem. This prob-

lem variant is seen in day-ahead planning for a Virtual Power Plant (VPP) [150]. The solution

involved selecting from different technologies, such as solar, wind, fuel cells, and Combined Heat

and Power (CHP), and employing Multi-Objective Black Widow Optimization to produce a sched-

ule. Reactive, short-term scheduling as a solution to solar and wind variability has been attempted

in [151]. In this work, they estimate the wind and solar over the next hour every 15 minutes us-

ing a Weibull PDF, then optimise over that interval. This approach is myopic and unsuitable for

problems where the system cannot change its plan frequently. An approach that is similar to reac-

tive is recourse or branching-based methods. In [152], they generate multiple schedules in stages

based on branching times. You can find the closest scenario to reality when executing online in

the scenario tree. Using these models to plan, data-driven approaches to generate synthetic data

forecasts have been attempted. A two-stage planning approach of a single day with subsequent

days is tackled in the works by Sperstad [153] and similar works by Wu [154] they use a Markov

chain to approximate the distribution from which the data was drawn from. This synthetic function

models the distributions for wind and solar, allowing the scheduler to account for their variance in

production. Similarly, in work by Liu [155], they use quantile transforms and random Gaussian

samples to create an ensemble of synthetic forecasts. All of these methods then use these synthetic

distributions as part of a MILP with chance-based constraints. These methods are useful because

they do not require estimating wind exactly and fit distributions from the supplied data. The idea

of approximating the data and generating synthetic data that represents the potential variance is

practical for problems with limited forecast data. The main drawbacks are these methods have

only been shown to work for day-head operations, and it is unclear if these modelling methods can

accurately capture the complex distribution of wind or solar for longer time scales.

The CPU task scheduling domain is another popular domain with many stochastic scheduling

problems. In the CPU scheduling problem, estimating the upcoming tasks or their running lengths

is impossible, so the work tends to be on optimising different metrics such as turn-around time,

waiting time, or response time. Early scheduling work by [156] looked at dynamic distributed

systems with hard real-time constraints where each node is responsible for its own scheduling.

The tasks were shared using a bidding routine accounting for periodic tasks and communication

constraints using a surplus resource heuristic. If a task is allocated and cannot be scheduled, it gets
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put up for bidding again, which can lead to potential missed deadlines. Regehr et al. [157] focused

on CPU scheduling and introduced the concept of task clusters and task barriers. Later work by

Biswas et al. [158] introduced a Bayesian optimization-based novel approach for multi-objective

task scheduling in real-time heterogeneous multiprocessor systems.

2.2.2.1 Queuing theory

Online scheduling is a class of scheduling where the jobs or tasks arrive during operation, and it

is impossible to know about upcoming future tasks. One method for dealing with the uncertainty

of the future is to produce a queueing model of the problem and then use this to analyse the

problem. Using standard Kendall notation [159] a queue is defined by the triplet (A|S|c), where

its A denotes the arrival process, S denotes the service time distribution, and the number of

servers is denoted by c. This notation has been extended to be (A|S|c|K|N |D) [160] to include

queue capacity K, job arrival population N and the job service discipline D. From this queueing

formulation, assuming the model is accurate to the real system, it is possible to analyse the arrival

rate of jobs and the service rate. Knowing these rates helps compute the required amount of

resources to service the expected jobs, estimate how long a job will be kept waiting, and use

resources in the system.

Previous works have explored the application of queueing theory to MRTA problems, including

coordinating robots by estimating demands [161], vehicle routing problems [46, 162] and integrat-

ing queueing and game theory [163].

2.3 Combinatorial optimisation

Combinatorial optimisation problems are a class of problems where the objective is to find the

‘best’ solution according to some function from a finite set of possible solutions, subject to con-

straints. This best solution is described by a reward function, which can represent maximising

profit, minimising cost, minimising distance covered or other such decision criteria. The combi-

natorial aspect of the problem comes from the vast number of possible combinations of decisions

that make up each solution. Typically, the problems grow exponentially with the input size and

are NP-Hard, which means larger problems are impossible to solve exactly, given our current
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understanding of computation. Classic examples of these classes of problems are the Travelling

Salesman Problem (TSP), Knapsack, and vertex cover. Rather than directly solving these prob-

lems, there is a large body of literature on finding heuristics or approximation methods that are

as near to optimal as possible in the shortest amount of time. Many robotics problems can be

represented as these abstract problems of ‘visit all vertices on a graph then return to the start’ or

‘maximise the reward of packing items into a bag of finite size’, which are the TSP and knapsack

problems, respectively. By solving these problems at scale quickly, the solutions can be used as

part of the robot’s planning process and typically as part of a larger system that solves a practical,

real-world problem, such as delivering packages or monitoring an ocean.

2.3.1 Orienteering

The travelling salesman problem is perhaps one of the most studied combinatorial optimisation

problems. In the TSP, an agent is given a graph representing a path between cities, and the sales-

man needs to visit all cities exactly once and return to the starting point in the shortest total travelled

distance. A paper of particular relevance to this thesis is work done by [164], where they solve

a TSP over a graph with stochastic edge costs using an And Or Tree policy offline using a prior

map from a satellite. This work is similar to the discoverable edge cost problem in Chapter 3. The

main differences are the offline computation vs online reactivity, and in our problem the agent has

a finite budget to spend per horizon.

Having to visit all possible points and then return to the start can be an overly restrictive constraint

for field robotics applications. Some problems have a resource or budget (such as time or energy)

that limits the number of observations or places that can be visited. A budgeted variant of the TSP

called the orienteering problem is a related problem where, given a graph, a budget and the reward

associated with each vertex, the objective is to find a sequence of decisions that maximises the to-

tal score or reward. Orienteering problems are often used in route planning for logistics, tourism,

telecommunications and robotics. Due to its usefulness for practical operations, the orienteering

field has seen continuous advancements from its inception to the current day. The foundational

work by [165] introduced the original heuristics used to approximately solve orienteering prob-

lems, focusing on greedy selection and then heuristic rules to reorder routes to be more optimal.

Subsequent work by [166] improves the solving speed by using a Greedy Randomized Adaptive
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Search Procedure (GRASP) combined with path relinking to fix broken constraints. In [167], they

applied evolutionary algorithms with specific crossover rules based on route regeneration, mak-

ing it more applicable to orienteering. These methods can solve large problems quickly, but they

only work for simple orienteering problems without more complex operational constraints such as

time windows. The additional temporal constraints were addressed in [168], where they introduce

a fast solution to the Time-Dependant Orienteering problem (TD-OP). This method accounts for

variable travel times like those encountered on roads the problem then solves it by modelling it

as a MILP. This new stochastic problem is then solved using Ant Colony Optimisation and valid

time heuristics. This approach is limited to a single agent and requires full graph knowledge and

accurate cost distributions.

The extension of the orienteering problem to the case of multiple tours is known as the Team Ori-

enteering Problem (TOP) [169, 170]. This variation extends the orienteering problem to plan a

route for multiple agents to visit places to gather rewards. A TABU-based algorithm with heuris-

tics was used in [171, 172] to drastically speed up computation. Similarly, using a branch and

price method, [173] developed a method to find exact solutions for TOPs and TOPs with time win-

dows. For large instances, it can take minutes to solve, which limits their applicability to real-time

systems or those with uncertainty. Dealing with uncertainty in orienteering problems has been

examined by several authors. In [174], they extend the basic orienteering problem to have stochas-

tic travel and service times while maximising the expected reward. Later works by [175] use an

adaptive search to solve the problem and then create potential alternative paths. During online

execution, the new information is used to select the best path from the set of expected paths. This

approach is online and adapts to new information but is limited because the route ordering is static

regardless of new online information.

2.3.2 Vehicle routing problem (VRP)

The Travelling Salesman Problem(TSP), when extended to work with multiple agents while retain-

ing its original constraints, changes into the Vehicle Routing Problem (VRP). The VRP involves

determining the optimal route for a fleet of agents to service all demands, which is an NP-Hard

challenge [34]. Despite this complexity, there are numerous heuristics that have been developed

to make solutions more applicable to real-world problems; a good survey is provided in [176].
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Applications that solve VRPs include warehouse order-picking [177], delivering packages with

teams of drones [103], and coordinating heterogeneous teams of robots for ocean monitoring [26].

Traditional VRP solutions are static; they have full information and nothing changes, but many

realistic scenarios require dealing with new tasks on demand, which makes the problem dy-

namic. Dynamic VRPs [178] account for demands that arrive during operation and their potentially

stochastic costs. Usually, demands are distributed by a spatiotemporal process, and the solution

is to find a policy that minimises the average time a demand waits to be serviced or maximises

the system’s throughput. Research into this domain has explored spatially distributed surveillance

policies for UAVs [179], Servicing demands with time-windows [180], and information-gathering

problems [33].

The complexity of the problem grows as a function of team size, and in order to deal with increas-

ing complexity for larger teams, some methods partition the workspace into smaller sub-problems.

The benefit of this approach is that these sub-problems are less complicated to solve than the total

DVRP and potentially can be computed in a distributed manner, which improves scalability. For

instance, [181] proposed a distributing partition for convex regions, later applying this partition-

ing using adaptive queueing to solve the DVRP [46]. Similar work on performing decentralised

Voronoi coverage in non-convex environments is also shown [105, 106].

In this thesis, the Multi-Vessel Multi-Float problem that is studied in Chapter 4 closely resembles

the VRP pick-up and delivery problem variant [182], but a typical VRPPUD problem does not have

to consider ocean dynamics, which cause stochastic pickup locations as well as travel times. Re-

cent work in marine robotics that most closely relates to the MVMF problem involves coordination

between a team of AUVs and ASVs [104] using temporal logic. The approach relies on defining

‘regions’ to heuristically score goal allocations. The MVMF problem necessitates a more con-

sidered approach to modelling utility since the value of the surface vessel’s drop-off and pick-up

actions is based on its prior action history. Optimal planning problems for fleets of marine vehi-

cles [183, 184] as instances of multi-robot systems are known to scale exponentially with decision

variables. For the modelling and planning paths through ocean currents part of the problem, vari-

ous methods have been employed, including modelling the ocean in a time-invariant manner [185],

in a time-varying way [186, 187], considering uncertainty in flow field estimates [188–190], and

for 3D flow fields [191]. Hsieh et al. demonstrated an agent solving an orienteering problem in a
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flow field [192], which was later extended to work with teams of agents [193]. These methods are

not directly applicable because the Multi-Vessel Multi-Float requires different considerations due

to the underactuated float hardware and the pick-up drop mechanics of the problem.

Similarly, the warehouse-order-picking problem studied in Chapter 5 is similar to the vehicle rout-

ing problem (VRP) [177]. It has been shown that batching orders can improve order-picking

performance in tours. Batches for fully known static problems can be found with Ant colony

optimisation (ACO) [194], linear programming with column generation [195] or learning-based

methods [196]. Similarly, dynamic order batching can be handled by and updating existing plans

with new orders [138]. However, this does not scale well because of its computational complexity.

Order-picking has been modelled as a VRP with time windows by [197] and [198] while also con-

sidering delivery vehicle costs. However, their solutions are computationally complex and do not

handle dynamic demands. Splicing in orders to existing allocations has been studied [199], but the

performance degrades the more dynamic the system. Finally, [200] compares the online picking

problem to online job shop scheduling problems, but it breaks down under heavy load cases.

2.4 Uncertainty quantification and sequential decision making frame-

works

One of the key contributions of this thesis is the development of a multi-robot planning with un-

certainty framework, and the conceptualisation of various forms of uncertainty that can be present

in real-world problems. Two related bodies of work are the field of uncertainty quantification UQ

and the unified framework for sequential decision making by Powell B. [201].

Uncertainty quantification identifies and distinguishes between aleatoric and epistemic uncertainty,

aiming to reduce uncertainty in models and simulations [202]. While UQ offers valuable insights

into the impact and behaviour of uncertain systems, UQ often employs computationally expensive

methods that may not be suitable for real-time planning and control of large-scale multi-robot

systems directly. Future work could explore integrating techniques from the field of UQ within

the context of multi-agent planning to enhance the applicability of our multi-robot uncertainty

framework. This would involve ensuring realistic assumptions about available data, computation

limitations, and developing various uncertainty models for complex systems.
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Powell presents a generic framework for understanding and addressing sequential decision-making

problems in a domain-agnostic manner. It identifies four main classes of techniques that are used to

solve these problems, and presents examples and references from a breadth of literature However,

this framework is not specific to the elements of scheduling and multi-agent systems. While the

problems presented in this work can be modelled using this framework, doing so loses some of

the nuance and ability to identify potential structures that can be exploited to make these problems

feasible or improve the performance of more specific methods.

2.5 Summary and current limitations

The existing body of work is broad, and many problems have been attempted to be solved in

a variety of ways. Exact methods work well for problems that are small or if a very particular

problem structure can be found. Typically, heuristic methods are used because the problems that

this thesis is interested in are NP-Hard, combinatorial and uncertain, all of which make finding

feasible solutions difficult. Multi-robot planning and scheduling as a field tend to focus on different

applications, but there is some cross-over in problems and techniques used in each. Throughout

our analysis of the existing research, we found that there did not exist methods in either subfield

that are capable of handling the types of uncertainty in the classes of problems studied throughout

this thesis, with the desired properties that we believe make them more applicable to real-world

scenarios. Properties such as handling large-scale problems, handling complex hard-to-describe

uncertainties, handling large teams of robots, and being fast to compute. Previous work has come

close, but for each of the problems addressed in this work, we briefly discuss the limitations of the

literature and how our methods are different.

The Discoverable Edge Cost Orienteering Problem (DECOP) examined in Chapter 3 is similar

to existing stochastic edge cost Orienteering problems. However, our developed method of mod-

elling the team as a multi-robot system leverages computational resources that the existing works

do not take advantage of, making it superior for solving problems where the ground agent has

limited computational resources. Additionally, by understanding the value of new information,

the problem is broken down into several planning horizons that are combined in a non-myopic

manner, which is lacking in previous works. They either plan a long horizon, ignoring the value of

additional information or commit to short-term decisions with limited consideration for the future.
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The multi-vessel multi-float scheduler in Chapter 4 is a new information-gathering problem that

the existing methods have not fully solved. The problem has several factors that make it difficult to

solve. It is highly combinatorial due to the nature of multi-robot task allocation problems growing

with team size. It is heavily constrained because the ocean currents can cause many schedules to be

infeasible, given the time windows required for pickup. Operating in ocean dynamics introduces

many complications, such as time-varying costs. Finally, the coupling between the drop-off and

pickup points must be carefully considered to find a valid solution. The novelty of the problem

and the intersection of multiple difficult-to-solve problems means that there are not any existing

methods that solve this problem, let alone are able to do it in a scalable manner.

No existing method can solve the warehouse-order-picking problem studied in Chapter 5 in a

highly dynamic scenario with fully unknown tasks in a scalable way. The warehouse-specific

order-picking solutions focus on different sub-problems, perform poorly for scenarios with high

dynamicity or have poor scalability. Similarly, the non-warehouse-focused VRP research does

not consider the effects of routing around shelves, returning to the depot to drop off items and

warehouse environment spatial distributions of items in warehouses. Routing around shelves can

break obstacle-free space assumptions and require non-Euclidean distance metrics. In addition,

depot returns introduce a variable cost based on the partition location relative to the depot and the

agent’s position. Finally, some methods rely on statistical properties about the spatial distributions

of demands that may not be valid in a warehouse environment, which can have very skewed order

composition distributions. Therefore, there is a lack of practical and scalable methods to solve the

warehouse-order-picking problem with highly dynamic orders and high agent utilisation. There

are solutions to DVRP problem variants, such as DVRP with capacity, multi-trip DVRP, DVRP in

non-convex environments, and DVRP with empirically derived distributions. However, no solution

covers all these variations jointly, which is essential to practically solving the warehouse picking

problem. This work addresses the specifics of the multi-agent dynamic warehouse order-picking

problem in a practical, scalable way.

The problem of ‘risk-bounded stochastic resource scheduling problem’ and the application of

‘wind-powered green hydrogen scheduling’ studied in Chapter 6 is similar to renewable energy

planning and stochastic resource problems. In this problem, the tasks are fully known, and a re-

source is consumed and subsequently replenished by a complex stochastic process. The goal is to
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commit to a week ahead schedule that maximises the reward of the allocated tasks while main-

taining an acceptable risk of failure. The stochastic process is complex, so it cannot be modelled

through a simple distribution, and because the goal is a schedule or sequence of allocations rather

than a single-step decision, much of the renewable energy literature is not completely relevant.

The commitment limits the applicability of formulating a decision-making policy as there is no

option for recourse as the schedule cannot change.

Overall, each of the methods presented in each chapter introduces something new to the field of

stochastic scheduling and multi-robot task allocation. The techniques presented here build upon

the ideas of previous research and combine them into new problems with useful novel solutions.

Our methods and new problem formulations will be useful for future researchers to build upon

further and continue to extend this area of research.





Chapter 3

Stochastic Objectives

This chapter deals with stochastic objective scheduling problems. The objective function deter-

mines the utility of a set of actions and defines the planner’s goal. In stochastic objectives prob-

lems, the tasks are fully known, the constraints do not change, and no stochastic consumable

resources need to be considered. The uncertainty lies in the fact that the reward received for ex-

ecuting actions is unknown until after the actions have been executed. In these problems, there

can be many valid solutions, albeit with an uncertain utility. However, the goal is still to find

high-quality plans, so the stochastic value of actions needs to be carefully considered.

We explore the first component of our probabilistic scheduling framework, stochastic objective

scheduling, by solving the discoverable edge cost orienteering problem. This problem is a variant

of the typical orienteering problem where an agent wants to move around an environment and

gather as much reward as possible. In this variation, the cost of traversing around the environment

may change from the initial cost, and the agent still needs to try and optimise the expected reward

amount. We develop a method to solve this problem by modelling it as a decentralised hetero-

geneous multi-agent planning problem. Finally, we empirically evaluate our method through a

simulated off-world exploration scenario with limited communication.

51
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3.1 Overview

In this chapter, we consider the problem of scheduling a set of tasks with a stochastic reward. This

type of problem is a form of stochastic objective because the amount of utility gained by complet-

ing a set of tasks is not known. This type of problem occurs often in practice and has been seen

in a variety of problem instances, such as selecting the amount of stock for a warehouse when

the amount of sales is unknown [203], choosing the amount of each crop to plant to sell next sea-

son [204], or in search and rescue where agents need to explore a mine and find lost miners [205].

In each of these problems, if the rewards for completing tasks were known accurately, the problem

could be optimised directly. However, the probabilistic nature of the reward motivates optimising

the decision-making to optimise over some probabilistic function instead. Typically, in practice, if

a distribution of an action’s value can be estimated, most of the methods that address these types

of problems focus on optimising for the expectation of reward [206, 207] instead of a specific con-

crete value. Another popular approach is to minimise the expected worst percentiles of expected

reward with approaches such as computing the Conditional Value At Risk(CVAR) [208, 209].

In this work, we are interested in the problem scenario of performing an information-gathering

orienteering task over an unknown environment. The specific problem we are trying to solve is

an agent traversing around an environment to visit as many Points of Interest (POIs) as possible

given a limited time or energy budget. These points represent places operators have deemed the

most important to observe. For this problem, we have a prior map of the environment, but the

real environment may have changed, and thus the map is noisy. Potential sources of noise for

the map are cave-ins, the information was faulty, or the map was given by a satellite with limited

mapping resolution. We model this problem as a discoverable edge cost-orienteering problem with

a stochastic objective. In this variation, the cost of traversing around the environment may change

from the initial expected cost, and the agent must still try to optimise the expected reward amount.

The computational power available on mobile agents constrains the types of planning algorithms

that are practical to use in the field. Because of the nature of field operations, mobile agents tend to

have limited computational power due to battery and weight constraints. This computational limit

restricts the complexity (either scale or planning depth) of the planning algorithms that can be

utilised in the field during operations. We posit that mobile robots in these scenarios rarely operate

independently, and far more typically, they are part of a system containing a ground station with
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humans. This ground station can be used to shoulder the computational load by offboarding some

of the computation that would normally be on the mobile robot. Offboard systems are much more

powerful and thus can run more sophisticated methods. However, they lack the local sensing

information available on the mobile platform, so one should not constrain the other. Instead, they

should work in tandem, exercising the capabilities of each.

We develop a method to solve this problem by modelling it as a decentralised heterogeneous

multi-agent planning problem. The team consists of one physical mobile agent and a virtual guid-

ing agent, which acts as an intuition for the mobile agent to bias it towards good solutions faster. In

decentralized heterogeneous multi-agent exploration scenarios, agents of collaborative, decentral-

ized multi-robot systems need to plan cooperatively to perform their tasks efficiently. This requires

effective communication between the agents and the ability to identify states where collaboration is

most beneficial. Traditional decentralized coordination approaches often rely on simple communi-

cation models that facilitate frequent communication, which becomes infeasible in scenarios with

restricted communication capabilities, such as limited bandwidth or communication windows.

Moreover, planning for collaborative tasks is inherently challenging due to the large number of

possible states, actions, and sparse rewards that must be considered. This chapter proposes a

novel approach that addresses these challenges by incorporating a decentralized Monte Carlo

Tree Search (Dec-MCTS) with a modification based on the concept of pheromones taken from

Ant Colony Optimization (ACO). Dec-MCTS can be operated with limited communication while

maintaining good solution quality [210]. Subsequently, we modify the typical Dec-MCTS by bias-

ing the rollout step of the planner for the mobile agent using ACO. The pheromones used to adjust

the biasing for the mobile agent are based on the quality of the solutions found by the virtual

guiding agent. This combination allows agents to communicate less frequently while effectively

collaborating and optimizing their joint performance without the risk of constraining the mobile

robots’ decision-making ability.

We demonstrate the effectiveness of our proposed method in a planetary exploration scenario in-

volving a mobile robot with a limited communication window and bandwidth to an Earth-based

ground station. The ground station and robot team have a noisy prior of the environment given by

a low-resolution satellite image of the operating area. The mobile robot gathers high-quality local

information that better understands the cost of traversal, while the ground station has significantly
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more computational power. Through simulation, we demonstrate that our method outperforms al-

ternative approaches, such as myopic greedy algorithms, traditional Dec-MCTS, and orienteering

solvers.

3.1.1 Chapter outline

The remainder of this chapter is organised as follows. Section 3.2 formally defines the discoverable

edge cost orienteering problem. Section 3.3 defines the Intuition-guided multi-robot orienteering

problem as a variant of the single robot problem formulation. Subsequently, we perform some

analysis that proves why a good solution to the multi-robot intuition version is a good solution to

the original problem formulation. Following this in Section 3.4 we outline our method to solve

the multi-robot intuition problem. Our solution consists of a Dec-MCTS component and the ACO

and pheromone-based sampling modifications. Afterwards, in Section 3.5.1, we demonstrate our

problem formulation and method to solve a planetary exploration problem. We show through

simulation that our method is applicable to this class of problems. Afterwards, in Section 3.6, we

summarise the results from this chapter.

3.2 Problem formulation

Problems with stochastic objectives occur in various problem formulations and environments. For

this work, we are interested in the problem of a robot performing an orienteering task in an un-

known environment. More specifically, we want the robot to visit as many places of interest as

possible with a limited time or energy budget. Similarly, the robot has a noisy map of its op-

erating environment that may differ from what will be observed during operation. The question

we are addressing is in what order we should visit the observation points and what paths the robot

should take in order to maximise the expected number of observations. In this variation, the cost of

traversing around the environment may change from the initial expected cost, and the agent must

still try to optimise the expected reward amount. To model this problem, we introduce the Dis-

coverable Edge Cost Orienteering Problem (DECOP), which extends the traditional Orienteering

Problem by incorporating discoverable edge costs, similar to the Stochastic Shortest Path Problem

with Recourse. The noisy prior map gives the original cost, and the physical local environment
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gives the real cost incurred to visit the point. In the rest of this section, we formally define the

problem, briefly discuss methods of solving this problem, and in the following section, we define

a new problem whose solution is the solution to the DECOP problem addressed here.

3.2.1 Robot team and environment

Let M be the initial a priori noisy map of the environment M ∈ R2 with a list of obstacles O with

an unknown ground truth map M∗ that can be observed locally during operation. We are given

a discrete set of points-of-interest (POIs) vi ∈ V ⊂ M with an associated non-negative reward

valueQi ∈ R, where subscript i is used to index a specific point of interest. Given the environment

map M and POIS V we construct a connected, undirected graph G = (V,E). Where the vertices

are the points we need to observe, and the edges are the collision-free shortest paths between

them. The sub-route between two adjacent positions eij = (vi, vj), (vi, vj) ∈ V is assumed to

be the collision-free shortest path, which can be easily found using path planning algorithms such

as probabilistic roadmap (PRM) [211]. This route is found using the current state of the robots

map M . These route costs make up the edge costmap c(i,j) ∈ C for each edge e(i,j) ∈ E where

subscripts (i, j) is used to represent the edge between vertices vi and vj . Similarly, there exists an

unknown map of the true costs to traverse the edges C∗ that is created from the ground truth map

M∗

Using a robot R with an energy budget limit of B that is in the same units that the edge costs. The

objective is to find a sequence of ordered edges that make up a path P = (e(0,1), e(1,2), . . . , e(i,p))

through the graph that maximises the total collected reward while not exceeding the energy con-

straint B. If the robot tries to execute a path, it will stop moving when its budget is exceeded, so

the number of visited points may be fewer than planned. Additionally, the robot is taking local

observations of its environment during its movement and updates its local cost map C according

to its sensor model O.

The robot plans using the costs given by the noisy map; however, the actual cost of an action is

given from the ground truth map. For evaluation, we introduce a function that outputs if a planned

edge is reachable given the ground truth. The reachable function R(e(j,i),P0≤j<i|C, B) takes

the edge that is being queried, the subpath up to that edge and the costmap being used to evaluate

reachability and returns a 0 or 1 if it is possible to reach given the budget. The function is computed
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using

R(e(j,i),P0≤j<i|C, B) =


1 if ((

∑j−1
k=0 c(k,k+1)) + c(j,i)) ≤ B

0 if ((
∑j−1

k=0 c(k,k+1)) + c(j,i)) > B.

(3.1)

Using this reachability function, it is possible to compute the reward that a path would yield if the

robot followed the path up until it ran out of budget and the rest was no longer reachable. The

reachable reward can be calculated as

Q(P|C, B) =

p−1∑
i=0

(R(e(i,i+1),P0≤i<i+1|C, B) ∗Q(i+1))), (3.2)

where Q(i+1) is the reward for visiting vertex i + 1. If the cost map given to this function is the

currently estimated cost map C, then it will return the reward for the estimated reachable portion

of the path given the budget. Similarly, if the cost map passed in is the ground truth cost map,

it will return the portion of the reward that was feasible to reach if the system had perfect global

information.

If it was possible to estimate a distribution of costs for each edge in the costmap C∗, then we could

assign a probability of each edge being reachable and subsequently compute an expected reward

for the entire path

E (Q(P|C, B)). (3.3)

This expectation represents how much reward we expect to gather, given how noisy we expect the

difference between the prior map and the ground truth map to be.

3.2.2 Problem statement

A robot R aims to maximize the total reward collected by visiting a subset of the vertices, subject

to the energy budget constraints B. Once the robot traverses an edge, it incurs the true traversal

cost. The robot can visit a vertex only once, and the reward is collected only on the visitation

of a vertex. If the planned sequence of actions includes choices that cannot be reached, only the

feasible section of the sequence receives a reward.
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Problem 3.1 (Discoverable Edge Cost Orienteering Problem (DECOP)). Given a connected, undi-

rected graph G = (V,E), a set of rewards Qi ∈ Q for each vertex vi ∈ V. Given initial edge

costs c(i,j) ∈ C for each edge e(i,j) ∈ E. Similarly, the unknown ground truth cost is estimated

using C with the real cost C∗ being observed during the execution. Using a robot R with an

energy budget limit of B that is in the same units that the edge costs. The objective is to find a

sequence of ordered edges that make up a path P∗ = (e(0,1), e(1,2), . . . , e(i,p)) through the graph

that maximises the expected total collected reward while not exceeding the energy constraint B.

P∗ = argmax
P

E(Q(P|C∗, B))

subject to
p−1∑
k=0

c(k,k+1) ≤ B
(3.4)

3.2.3 Stochastic objective

We note that the constraints are based on the system’s current understanding of the costmap C,

while the rewards are given by how much of the selected path can be traversed according to ground

truth costmap C∗. During execution, the robot stops moving when it runs out of budget. This

means that paths can become feasible, albeit with a lower-than-planned reward, by ignoring the

non-reachable section. The change in reward from a path is based on the discrepancy between the

current and the real-world costs. Hence, the reward is really an expectation of how much of the

planned path is going to be reachable according to the mismatch between the costmaps.

In order to maximise the expected reward, there needs to be a form of prediction either: about the

potential states of the environment(since our objective is based on the unknown environment cost)

or the reward of the future actions we can take conditioned on what we currently know.

In this problem, we have a prior model of the environment, and the robot takes observations during

execution that update this model. This prior and updates can be used in two ways to approach

this problem; we can either leverage prior information to model the environment to predict the

distributions of edge costs, which then a probabilistically optimal path is selected, or replan the

remaining path when new information becomes available. Leveraging prior information can be

beneficial if possible, but we assume it is too hard to estimate an accurate distribution of edge
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costs for this work due to the complexity of the physical environment. To model these costs, we

would need to model the probabilistic distributions of possible physical environments where the

initial noisy map data could have been observed. Instead, we start with the noisy sampled map and

focus on a replanning-based approach to update the selected paths. However, replanning comes

with the additional complexity of selecting a planning horizon and the frequency of when to replan.

Naively replanning every time new information is received can be detrimental because the solution

becomes myopic and focuses only on optimising local rewards with limited consideration for

future prospects, while infrequent replanning loses the benefit of the newly obtained information.

Similarly, a short planning horizon maximises local reward, but a long planning horizon has a

much larger search space and is harder to compute optimally.

If the understanding of the environment is constantly changing or the expectation varies substan-

tially from reality, then there is limited benefit to using the prior information at all, and the plan-

ner/scheduler should only use the newly observed information. However, in this work, we assume

that the low-resolution map that gives the cost priors is similar enough to the real cost (with some

added noise) that planning a long horizon is still beneficial.

3.3 Intuition-guided multi-robot orienteering

As mentioned in the previous section, we wish to use a replanning-based approach that is capable

of exploiting new information gained through the execution of a plan in a principled manner. We

want to avoid the myopia of too frequent replanning and still maintain a suitable depth planning

horizon. Planning with a long horizon for large-scale problems requires decent computational

power. A primary challenge in mobile robot planning is the computational and energy constraints

for mobile agents. These limitations restrict the complexity and depth of planning algorithms that

can be deployed to real-time and real-world field operations. However, these mobile robots rarely

operate in isolation. More often than not, they function as part of a system that contains a ground

station manned by human operators to monitor the robot. This system presents an opportunity to

treat the system as a multi-agent system. In this system, the ground station will typically have

significantly more computational power and can be used to offboard some of the heavier com-

putational load. While the ground station can run more intricate and deeper planning algorithms

than the mobile robot, they do not have access to the local real-time sensing data that the mobile
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robot possesses. Hence, the ideal approach is not to let one system control the other but instead to

leverage their complementary strengths. This allows the mobile robot to replan and adapt to the

new information while not succumbing to myopia.

In the rest of this section, we first define the Intuition-Guided Multi-robot Orienteering prob-

lem (IGMOP), then present some analysis which shows that good solutions to this problem are

also good solutions to the DECOP problem.

3.3.1 Virtual agents

The ground station is typically overlooked as a source of computation for decentralised systems

because, unlike in centralised systems, it is not the central coordinator. For solutions where the

ground station is the central communicator and in the loop constantly, any communication prob-

lem can interrupt the mobile robots’ operation, which is an undesirable behaviour for most field

operations. Instead, we propose a method that allows decentralised systems to leverage the addi-

tional offboard computational power while maintaining the decentralisation property. We develop

a method to solve the DECOP problem by modelling it as a decentralised heterogeneous multi-

agent planning problem and using periodical replanning. In this framework, the team consists of

one physical mobile agent and virtual guiding agents produced by the ground station. These virtual

agents act as an intuition that rapidly guides the mobile agent’s planner towards good solutions.

To incorporate the intuition from the virtual agent, we reframe the DECOP as a collaborative

orienteering problem between the mobile robot and the virtual agent called the intuition-guided

multi-robot orienteering problem. This problem is similar to DECOP, with the main change being

that the reward function incorporates bonus utility for mobile agents following the path suggested

by the ground station. Solving this reward is equivalent to finding a joint path between the real

and virtual agents. Each agent can utilise their benefits by modelling the problem in this way

rather than optimising purely for the ground station or mobile robots’ best solution. The ground

station can plan with a longer horizon, and the mobile robot can plan more locally to use its lim-

ited computing in order to best benefit from its local information while being biased towards these

longer-term states given by the ground station’s suggestions.

Formally, we define this problem as follows. The ground station simulates a set of A many virtual

agents A with the same starting location and a larger budget than physical agent Ba > B. This
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larger budget allows the virtual agents to plan longer horizon plans than what would be feasible for

the physical agent. These virtual agents each plan a solution to DECOP using the same information

available to the physical robot, and we denote these virtual agent solutions as P ′. Now we define

a function that returns the bonus utility (intuition) of the physical agent following edges that are in

the suggested paths P ′. The intuition function is calculated as follows,

I(P,P′|C∗, B,A)) =

( ∑
P ′∈P′

Q(P ⊆ P ′|C, B)

)
/A. (3.5)

The virtual agent paths P ′ are planned using a larger budget, but since only the subset between

the physical agent’s path and the suggested paths is considered, the total cost cannot exceed B.

Additionally, since the function is divided by the number of virtual agents A the function returns

the proportion of overlapping between the physical and suggestion paths. The strength of the

intuition on the overall behaviour of the physical agent can be controlled using a scaling factor α.

This parameter needs to be selected so the intuition cost does not dominate the expected reward

of the ground station’s path and adjusts the system behaviour between favouring either of the two

components.

Problem 3.2 (Intuition-Guided Multi-robot Orienteering Problem (IGMOP)). Given a connected,

undirected graph G = (V,E), a set of rewardsQi ∈ Q for each vertex vi ∈ V. Given initial edge

costs c(i,j) ∈ C for each edge e(i,j) ∈ E. Similarly, the unknown ground truth cost is estimated

using C with the real cost C∗ being observed during the execution. Guiding paths P ′ (that are

solutions to Problem.3.4) provided by the virtual robots are used to compute an additional reward

using the intuition reward function I Using a robot R with an energy budget limit of B that is in

the same units that the edge costs. Using a team of guiding virtual agents with an energy budget

limit of Ba > B and an influence weighting parameter α. The objective is to find an optimal

sequence of ordered edges that make up a path P∗ = (e(0,1), e(1,2), . . . , e(i,p)) that maximises sum

of the expected total collected reward the weighted intuition utility while not exceeding the energy

constraint B.
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P∗ =argmax
P

E(Q(P|C∗, B)) + αI(P,P′|C∗, B,A))

subject to
p−1∑
k=0

c(k,k+1) ≤ B
(3.6)

3.3.2 Intuition effectiveness analysis

When analysing the effectiveness of the IGMOP as a solution to DECOP, the first obvious question

that needs to be asked and answered is, ‘Does a good solution to this problem actually yield a good

solution to the original problem’? To prove that the solution to the Intuition-Guided Multi-robot

Orienteering Problem (IGMOP) is a solution to the Discoverable Edge Cost Orienteering Problem

(DECOP), we need to demonstrate that by solving IGMOP, we effectively maximize the objective

function of Problem 3.4 as defined in the DECOP.

The main difference between the objective functions in the DECOP 3.4 and IGMOP 3.6 is the

addition of a term in Problem 3.6 that accounts for the value of following paths suggested by the

ground station, represented by I, and a scaling factor α. Now, let us consider the case when the

mobile robots follow the intuition the ground station provided. This would mean that they are

taking advantage of the intuition provided by the virtual agents. Since the ground station has a

virtually infinite computation budget, the virtual agent paths are more likely to be close to optimal,

ensuring that the agents maximise the reward with their budget. The benefit of this plan is based

on the understanding of the environment at the time the plans were produced. In scenarios where

the mobile robot’s plans deviate from the paths suggested by the virtual agents, the marginal value

of these new actions should be larger than the benefit of following the intuition. As a result, even

when the robots do not strictly follow the intuition, the overall objective function in Problem 3.6

would still be reasonably optimized.

One key aspect to emphasize is that the error introduced by following the virtual agent’s intuition

is bounded. This is important because if the ground station and physical robot have a mismatch

in information, this will cause the intuition from the virtual agents to be of minimal value to the

ground station. The mobile robots maintain their agency and can ignore any suggested paths that

are detrimental to their performance. Consider the case where the virtual agents suggest paths
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that are completely disjoint from the paths planned by the physical robot; the value of the intuition

function I would be 0. However, if the physical robot chooses to take paths that share actions, there

must be some value for that action and some benefit that is encoded through the intuition function.

If the actions were of low value, they would not be in the suggestions from the virtual agents

as they are also trying to maximise the same reward function. Due to the limited computation

capacity of the robots, the intuition provided by the ground station helps deal with myopia and

tends to be more beneficial than detrimental for a certain class of problems.

3.4 Intuition-guided hybrid planner algorithm

In this section, we define our method to solve the DECOP by solving the IGMOP using a de-

centralised multi-robot planning algorithm. We solve the IGMOP using a decentralized Monte

Carlo Tree Search using a team consisting of a physical robot and virtual guiding agents. We

introduce a modification for the typical Dec-MCTS for the physical robot that biases the rollout

using the virtual agent’s suggestions to speed up the convergence between the two. This biasing

is computed using the idea of pheromones from ant colony optimisation. This combination allows

agents to communicate less frequently while effectively collaborating and optimizing their joint

performance without the risk of constraining the mobile robots’ decision-making ability.

3.4.1 Decentralised Monte Carlo tree search

The basic MCTS algorithm is a non-myopic sampling-based biased search algorithm that is suit-

able for large state space problems with non-trivial objective functions. The algorithm starts from

an initial condition and then iteratively grows the search tree by selecting the next state to explore

from a set of actions to take from the selected state. From the selected state, a sequence of actions

is randomly sampled using a heuristic (e.g., biased random sampling) until the termination condi-

tion has been met (e.g., length of sequence); this process is called a rollout. The score from the

rollout is then used to update the tree’s expectations, and the process continues.

In more detail, MCTS occurs in four steps that occur in an iterative manner until a termination

state occurs. The four steps are:



Chapter 3. Stochastic Objectives 63

• Selection: Starting from the root node (current position of the robot), use UCT to select a

sequence of child nodes until a leaf node is reached.

• Expansion: If executing this action does not exceed the robot budget B, the leaf node se-

lected by the selection step is expanded by picking a valid sequential action.

• Simulation: Given the history of the selection and newly expanded node a rollout is com-

puted. The rollout typically consists of selecting a random sequence of actions until the

budget B is exhausted and the search terminates.

• Backpropagation: Using the rollout results and selection the reward for the entire path is

computed. This score is then backpropagated up the tree, and the summary statistics for

each node on the path are updated.

The decentralised extension to MCTS, namely decentralised MCTS (Dec-MCTS) [111], is a mod-

ification to the MCTS algorithm that allows multiple agents to coordinate to solve a joint objective

function for the whole team. Each agent finds its own solution by growing their own MCTS tree

while considering the set of potential actions by other agents. The algorithm allows for finding an

asymptotically optimal joint set of solutions for the whole team. This process occurs by agents

asynchronously planning and cycling between the three phases:

1. The agent performs a tree search over its own action space while considering the actions of

other agents.

2. Compress the search tree into a probability distribution qn. These distributions are a com-

pressed version of their tree that is the top k many paths the agents would take and their

associated probabilities.

3. Broadcast the probability distributions to other robots.

When new messages are received from other agents, this information is included for future rounds

of the tree search. This process continues until the computational time limit is reached. For node

selection, Dec-MCTS uses a modified version of UCT called discounted UCT (D-UCT), which

accounts for including information from other agents’ plans that are non-stationary. As the agents
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plan, the distribution of actions they intend to take will change, and this modified UCT favours the

newer information.

The main difference between the original Dec-MCTS algorithm and ours is the addition of pheromones

that are computed using the probability distributions. These pheromones are then used to bias the

rollout of the agents.

3.4.2 Pheromone based sampling

In this problem, we are trying to get the mobile robot to follow the paths suggested by the virtual

agent. Randomly sampling decisions and hoping they overlap is an inefficient use of the limited

computational power available. We improve the collaboration between the team of agents by using

the idea of pheromones from ant colony optimisation. These pheromones can be used to bias the

mobile robots to select paths that the virtual agents have found to be high quality.

Ant colony optimisation is a swarm intelligence biomimetic algorithm where the algorithm is

designed to mimic the behaviour of social natural agents, in this case, the coordinated foraging of a

colony of ants. ACO has been used as a metaheuristic applied to many combinatorial optimisation

problems. It is able to find good quality solutions to these classes of complex problems through

the repeated application of a few simple generic rules. A singular ant cannot effectively find food

or communicate complex ideas, but collectively, through a shared signalling method, they can bias

their overall behaviour towards solving a problem. As an ant travels, they leave a constant amount

of pheromone. When a new ant reaches the decision point, it uses the amount of pheromone on the

paths to make their decision. They can choose to follow this path or select a new path. If the same

path is selected, multiple ants overlay their pheromone, and it becomes stronger, which biases

future ants to follow the same path. Additionally, pheromones decay over time, so pheromones on

less desirable paths will decay if they are not repeatedly selected during the search process. The

selection process is biased towards pheromones but is not restricted by it, which allows the colony

to do exploration. If a new action turns out to be beneficial, subsequent ants will choose the new

options, which will lead to exploiting the new information.

This concept of ants laying down their pheromones and then biasing the decision-making of future

ants is fundamental to our method. In our algorithm, Each candidate path for the virtual agent from
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the ground station can be considered a virtual ant laying down pheromone trails. The pheromones

produced by this virtual swarm are transmitted to the mobile robot, where during its Dec-MCTS

search, the pheromones of high-quality solutions will act as an intuition and guide its search. The

plans from the ground station are used to modify the sampling likelihood of each feature, and the

more times the feature appears in the compressed ground station tree, the stronger the pheromone.

This means that during rollouts, the robot will sample features that the ground station has deemed

to be important more often and hence speed up convergence to the ground station’s plan while

maintaining the robot’s ability to explore locally.

Pheromone calculation

A reminder that P and P′ are the paths selected by the physical agent and virtual agents, respec-

tively, and eij is the edge between vertex vi and vj . To construct the pheromones and update

their weights, we use the following process. The initialisation happens when the system first starts

planning then, whenever the Dec-MCTS update step happens, the pheromones are updated using

the new set of information sent between agents.

To initialise the system we create a pheromone weight τij for every edge and set its value as 0,

τij = 0∀eij ∈ E. Upon receiving the set of probability distributions qn and paths P ′, we update

the pheromone weights. We first compute the change in pheromone value ∆τPij for each guidance

path P ∈ P′. The path pheromone contribution can be calculated using:

∆τPij =


qPn · Q(P|C, B) if path P contains eij

0 if path k does not contain eij.
(3.7)

qPn is the normalised probability of path P being selected out of the set of candidate paths P′. This

process allows the weighting of the pheromones by the quality of the suggested paths as modelled

through the compression process in Dec-MCTS. The evaporation step is controlled by evaporation

parameter ρ ∈ (0−1) and controls how much of the previous updates worth of pheromones remain

after each step. The pheromone updates and evaporation are then combined together into a global

update step, which is calculated as

τij = (1− ρ)τij +
∑
P∈P

∆τpij . (3.8)
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This process results in the new pheromone weights that the planner will use until new information

arrives at a future time.

Rollout biasing

Given rewards for each action and the pheromones, we want to find a sequence of actions that visit

as many POIs as possible. Finding an optimal solution for the DECOP problem is hard due to its

combinatorial nature, requiring planning over all possible combinations. Since we are solving the

IGMOP, which in turn solves DECOP, we have access to the suggestions from the virtual agents

encoded as pheromones τij . Using this additional information, we bias the rollout function of

the physical agent to speed up convergence towards high-quality solutions. Similarly, since we

are optimising coverage, we also want to encourage the selection of actions that have a higher

reward-to-cost ratio. The rollout biasing that controls the likelihood that a new action (a selection

of moving from one POI vertex to another along the shortest known path) will be selected is

computed using:

p(eij /∈ P|P,P′) =
Qj

cij
+ λ · τij + ϵ. (3.9)

Where λ is a parameter that controls the strength of the pheromone biasing, and ϵ is a small positive

non-zero value that ensures that all possible actions have a non-zero probability of being selected,

which is necessary to maintain asymptotic optimality.

3.4.3 Analysis

Finding the joint solution between the virtual agents and the mobile robot would be easier for a

centralised planner who directly plans in the joint space. However, The size of the joint space and

the operating conditions make these centralised methods infeasible. Dec-MCTS allows the plan-

ning of the agents in a distributed manner without needing to consider the joint space. However,

Sampling-based algorithms like MCTS inherently bias their search towards the state of the action

sequence, making it challenging to discover optimal sequences that involve suboptimal choices,

especially in large, sparse multi-robot collaborative problems such as these. In these scenarios,

decentralised random sampling of the search space for each agent will require extensive time to

find these joint solutions. This is especially true for problems where the mobile agent may have



Chapter 3. Stochastic Objectives 67

Figure 3.1: An illustrative example of the pheromones after a round of Dec-MCTS planning. (Left)
The highest-scoring virtual agent plan computed by the ground station is shown in orange. There
are multiple virtual agent plans P′, but they are omitted for clarity. The current plan for the mobile
robot is shown in blue. (Right) The pheromones τij are computed from the virtual agent plans.
The intensity of the edge and vertex colouring shows the pheromone intensity. Darker edges and
vertices have been visited more times by virtual agents. Pink circles are worth one reward point,
and cyan circles are worth three points of reward.

to take what it thinks is a suboptimal decision but is highly regarded by the ground station. How-

ever, because we know that the high-reward solutions are those where the mobile robot follows the

virtual agents by integrating the concept of pheromones from Ant Colony Optimization into the

rollout process, the modified approach guides the sampling towards faster convergence in these

collaborative problems. Similarly, while the addition of intuition pheromones can provide valu-

able guidance, their application needs to be used intelligently. It is important that the rollout does

not strictly adhere to them; care needs to be taken that all possible actions remain selectable in

order for the agent to maintain its autonomy. Additionally, this is an important property for the

MCTS algorithm, which can only achieve asymptotic optimality if the entire action space can be

sampled. If they have been applied correctly and to the appropriate problem, they can use this off-

board computation that was not available before. Thus allowing the decentralised solving of this

multi-agent planning problem with limited computation while still maintaining the decentralised

property and low communication requirements of the Dec-MCTS algorithm.

The performance of the IGMOP algorithm is influenced by the selection of its parameters for the

specific problem instances. Three parameters of importance are briefly discussed here: the number

of agents A, the intuition weighting factor α and the budget of the agents Ba. Firstly, the number
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of virtual agents A can vary based on the system’s needs. If an exact optimal solver exists for a

problem, then all virtual agents will share the same solution, and additional agents will provide

limited additional benefits. However, for larger, more complex problems, some methods, such as

sampling-based approaches, can create a diverse set of solutions. While some of these solutions

may dominate in optimality according to the ground station’s current understanding of the problem

states, this diversity of solutions allows additional agents to give a diversity of guidance that can

be useful if the updated state information causes deviation from the suggested optimal path of a

single virtual agent. Similarly, the virtual agents’ budget Ba determines the balance between the

computation available at the ground station and the ability to potentially overcome the physical

agent’s planning myopia. An excessively large budget may compromise the quality of the solutions

generated by virtual agents for complex problems with large state spaces. Conversely, setting

the budget too close to B restricts the usefulness of the virtual agent’s guidance and does not

leverage the additional computation available. Lastly, the intuition weighting parameter α governs

how strongly the mobile physical agent adheres to the guidance of the intuition provided by the

virtual agents. It can be interpreted as a measure of trust between the ground station and the

physical robot, which reflects how closely the estimated costmap C∗ matches the real costmap

C. In scenarios where the costs are perfectly known, then the value of additional new information

gathered by the mobile robot is diminished, and it should follow the prescribed paths. However,

in the presence of uncertainty, a degree of flexibility allows the system to adapt to environmental

observations, with the level of adaptation controlled through the value of α.

The structure encoded by the pheromones can be seen visually in Figure 3.1 where the left is the

plans for the agents and the right is the pheromones produced by the team of virtual agents. The

cyan circles are worth three times as much reward as the pink circles, and it can be seen that the

darker edges or stronger pheromone signals tend to cluster around the areas that have some useful

local structure. The bottom right section, middle and top left sections have a strong clustering

of rewards, so the pheromones around those areas are heavily deposited. On the contrary, the

other areas of the environment have less dense clusters, so the pheromones in those areas are

weaker. The connective edges between these areas also have fewer pheromones deposited due to

the searching process. There are many possible options that can result in visiting these areas of

exploitable structure. This is in contrast to a traditional ACO where the repeated visiting lays down
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pheromones over the same path repeatedly; by combining the pheromones with the structured

biased tree search, the depositing of pheromones follows a different distribution.

3.5 Autonomous exoplanetary exploration

In this section, we evaluate the performance of our intuition-guided hybrid planner algorithm in

an autonomous exoplanetary exploration problem. This exploration problem is an example of a

Discoverable Edge Cost Orienteering Problem (DECOP). An example instance of the problem and

a solution are shown in Figure 3.2. First, we explain the motivation for this problem and define

the parameters of our simulation. Subsequently, we perform multiple simulations to empirically

demonstrate the ability of our method to solve this problem. These results are used to compare our

method against a similar method that addresses the problem directly without adding the guiding

virtual agents.

Figure 3.2: Starting state and a potential ending state for a planetary orienteering problem with a
map revealing. The black-to-white gradient (the darkest areas are hardest to traverse) encodes the
cost to traverse. This figure demonstrates the change of local information gained during operation
compared to the initial noisy prior map.

3.5.1 Simulation setup

The simulation is motivated by the problem of a rover exploring a planetary terrain with limited

surface-level information, such as mapping and sampling the surface of Europa or Enceladus.
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Mapping and sampling these surfaces are of high scientific interest due to the potential to contain

extraterrestrial life or provide additional information about the formation of our planet [212].

However, these types of problems are difficult for a multitude of reasons; in this work, we focus on

the main constraints of limited available map information, limited communication availability, and

weight constraints. Map information is limited and noisy due to the availability of orbital satellite

imagery that is sufficiently detailed for surface-level operation. Limited communication restricts

the effectiveness of teleoperation or centralised algorithms, so proposed systems either need to

wait for communications or operate decentralised. Lastly, space mission weight constraints limit

the amount of computational power available by restricting the physical mass of computing com-

ponents and the required energy to operate the processing. Since our scenario is not motivated by

any specific instance of the planetary exploration problem, we generate a synthetic demonstrative

scenario to investigate the applicability and performance of our proposed method in a problem

scenario similar to the conditions we focus on in this work.

For this problem, agents need to traverse a graph representation of the environment G = (V,E)

with a limited budget B and visit as many POIs as possible Q. The costs of traversing edges are

given by a noisy map, which is converted into a costmap C that contains the costs for traversing

the edges in E. As a robot traverses the environment, it samples its local area and updates the

costmap C to reflect the ground truth costmap C∗.

To simulate this environment, we create a synthetic low-resolution noisy satellite map from a

higher-resolution image. Our simulated map began with a false colour high-resolution map of

Mars orbital data [213], which was then modified with the process shown in Figure 3.3. The

original image was converted into a costmap by converting it to greyscale and then thresholding

it; the resulting grey levels of the new image became the costmap. This cost map was used to

compute the ground truth costs C∗. This ground truth map was then down-sampled and Gaussian

blurred to create the low-resolution noisy orbital map. This noisy map is the initial understanding

of the environment the system uses to plan, and using local observations, this map is updated.

Experiments were performed with one simulated physical robot and a ground station that planned

for ten virtual agents. The α intuition weighting parameter was set to 1, which balances the re-

ward between following the guidance and the robot following its own plan. The rollout weighting
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Figure 3.3: The process of creating the synthetic planetary cost map. (Left) Original false colour
Mars orbital map. (Middle) Map after being greyscaled and thresholded to convert it to a cost map.
This map is used as the ground truth for the planner. (Right) Map after being down-sampled and
Gaussian blurred to create a synthetic low-resolution orbital map that is used as the prior for the
planner.

parameter λ is set to 0.5 to balance the probability’s distance and pheromone guidance compo-

nents. The MCTS was run for 250 iterations for the physical robot and for 10000 iterations for the

ground station to model their difference in computational power. Each random problem instance

contained 50 Points of interest V with rewards of either 1 or 3 points of utility Q. A PRM was

built using 1000 vertices with the cost of moving between points cij computed using the current

map state. Upon receiving new information, the costmap state was updated for the agent. Each

problem instance is a 5-day long mission with communication between the ground station and

mobile robot happening once at the start of each day. The once a day communications are similar

to the communication restrictions imposed on a proposed mission concept for a Europa lander

mission [214]. The ground station planning horizon was the entire length of the mission, while

the mobile robot focused on the day ahead. Subsequently, the mobile robot has a B = 1 while the

virtual agents planned using a budget for the length of the remaining mission B′ = (5 − d) ∗ B,

B = 1, where d be the days remaining in the mission. If the physical agents ran out of budget

while executing their plan, the agent was stopped where its budget ran out, and the next day’s plan

continued from this point.

We compare against two algorithms that help demonstrate our methods’ benefit. First, we compare

against the physical robot using its limited computing to plan its daily operations without the

influence of the ground station; we label this approach as Solo. Next, we compare against planning

a path for the robot from the ground station without considering the robot’s decision-making and
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executing it blindly. This plan is computed over the whole mission’s length without consideration

for the new information that will be gained. This second approach is labelled as the Long horizon.

Figure 3.4: Five-day long orienteering mission for one physical and one virtual guiding agent. The
(top row) shows the mobile robot planning one day at a time without influence from the ground
station. The (bottom row) shows our joint method, where the virtual agents influence the mobile
robots’ choices. It can be seen from these illustrative examples that our method is capable of
leveraging intuition to make less myopic decisions despite both methods having the same level of
computation for the mobile robot. Pink circles are one worth one point of reward, cyan circles are
worth three points, and black circles are already visited. The blue line is the physical agent, and
the orange is the virtual guiding agent(plans with five days of budget)

3.5.2 Results

The collated results for 100 random problem instances (Figure 3.5) were generated using our

simulation parameters. These results show that our method is able to achieve a higher number

of visited points than either of the two comparison methods. This demonstrates that combining

sequential local planning with guidance from the long-horizon plans was beneficial. Our method

improved the number of visited points by 10% over the long horizon plan and by an average of

30% over the myopic solo sequential greedy planner.
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Figure 3.5: Collated results for 100 random problem instances comparing the number of gathered
rewards over a 5-day long mission. It can be seen from these results that the robot acting on its
own in the ‘Solo’ strategy has a high variance, while the less informed ‘long horizon’ strategy is
similarly limited by its lack of new information. Our joint method that uses the long horizon plans
to inform the local decision-making has better performance characteristics.

The ‘Solo strategy’ method does not have the influence of intuition, and thus, its variance is much

higher due to the planner only focusing on optimising its short horizon. This effect is shown in

Figure 3.4 the top row demonstrates that when using our method, the behaviour of the ground

robot was guided towards taking a less optimal choice for a time, which resulted in an overall

better result for the mission. The second row shows the myopia of the locally greedy method and

that it is not able to see far enough into the future (due to its limited computation) to be able to

reach the area of higher rewards.

Similarly, the ‘long horizon’ results show that our method can perform better than if a more de-

tailed plan were forced onto the ground robot without considering the benefits of local information.

The local robot is better able to react to the new map information and better estimate the costs of

traversal, which leads to being able to find better local paths.
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3.6 Summary

We have presented a solution to the Discoverable Edge Cost Orienteering problem (DECOP),

which is a type of problem with a stochastic objective. To solve this problem, we perform re-

planning using information gathered online, and to overcome the myopia of replanning, we want

to carefully leverage the additional computation of a ground station to inform the mobile robots’

decisions. The mobile robots’ decisions are influenced by the pheromones that represent virtual

agents controlled by the ground station. These pheromones act as an intuition that biases the mo-

bile robots’ search towards good solutions that have been planned over a longer horizon. This

method is based on a modified Dec-MCTS algorithm that finds solutions for the team of mobile

robot and virtual agents. Finally, we demonstrated our method’s effectiveness in a planetary ex-

ploration where the mobile agent has limited computing and the environmental understanding is

initially noisy. Through simulation, we show that our method performs better than solving the

DECOP problem with the limited computing of the mobile robot or the extensive computing but

limited information available to the ground station.

This chapter investigated stochastic objectives through the process of solving DECOP. In this prob-

lem, the uncertainty in the objective function was caused by the limited budget and the noisy map

of the environment. Given the unknown cost of traversing the environment and the limited budget,

it is unclear how much of the planned sequence of observations is possible. Subsequently, the

reward for a plan is stochastic. This problem could be avoided with perfect map information or

perfect map prediction. However, it is impossible to create a perfect prediction of the real-world

map, so instead, the uncertainty in the objective is reduced by incorporating new information as

it becomes available. Through replanning, we adapted the plans to include the local informa-

tion gathered by the mobile agent during the operation. Although replanning can be myopic, the

collaboration of the external computation helped to overcome this limitation.

In the next chapter, we investigate scheduling problems where stochastic changes in the environ-

ment or system modify the constraints. Due to the stochastic constraints, valid plans can become

invalid when the constraints change. This is in contrast to stochastic objective problems, where

the uncertainty results in less reward for a given plan. In stochastic constraint problems, the tasks

are fully known, and the reward for taking actions is fully known, but a plan can become invalid
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due to the constraint changes. The key idea is to try and find a way to make plans feasible despite

the changing requirements.





Chapter 4

Stochastic Constraints

This chapter covers the second component of our probabilistic scheduling framework scheduling

operations for systems with stochastic constraints. Constraints define the rules of the environment

and determine if a set of decisions is valid. Stochastic constraints occur in scenarios where the

rules of a system change and are driven by external stochastic processes. The tasks that need to be

completed are fully known, the objective function is deterministic, and no stochastic consumable

resources need to be considered. However, due to the constraints, changing a schedule may be

valid in one instance of the constraints, but under a different configuration, the same schedule may

be invalid. This invalidation of previously feasible plans is more restrictive than the stochastic ob-

jective case, as the uncertainty causes failure (which returns no reward) rather than suboptimality.

This chapter introduces this class of problems in an oceanographic information-gathering scenario

to explore the idea of stochastic constraints. In this problem, we need to find a joint schedule

for a team of vessels operating in the ocean that covers all points of interest using a novel Multi-

Vessel Multi-Float (MVMF). This problem is a type of stochastic constraint scheduling problem.

In this variation, the team needs to minimise the makespan of visiting all the points of interest. To

observe the points, the vessels deploy underactuated floats carried by the ocean currents, which

need to be collected during a window in the future when they surface. The chaotic nature of

ocean currents makes the timing windows of valid schedules stochastic. We develop a hierarchical

solution to this problem by decomposing it into two smaller problems. The solution to the first

gives the smallest valid set of needed deployments, and then the pickup and dropoff sequence of

77
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operations is computed for the team. This method was tested through simulation, demonstrating

its suitability to the problem. Subsequently, it was tested with real hardware in the field to validate

the system and observe its limitations during practical field operations. Finally, we briefly mention

the preliminary results for an extended field trial with replanning added to our algorithm to account

for a limitation observed in the original field trials.

4.1 Overview

The focus of this chapter is dealing with problems where the constraints that define the system

are stochastic. This difficult-to-address formulation occurs in practice when the changes in the

environment or system cause the solution to become invalid rather than reduce the utility. We

demonstrate this class of problem in an oceanographic information-gathering scenario. Due to the

realities of operating robots in the ocean, the currents can cause planned operations to become too

risky and thus invalid.

In this chapter, we formalise the notion of coordination between actuated vessels and low-cost,

energy-efficient floats. The Multi-vessel Multi-Float (MVMF) problem is finding valid drop-off

and pick-up locations so deployed floats can visit given points of interest at known locations. Its

central challenge is finding a sequence of trajectories over a continuous oceanic flow field that

allows the floats to observe the points of interest. MVMF can be viewed as a type of pickup and

delivery problem vehicle routing problem (VRPPDP), known as NP-hard [182]. Additionally, to

preserve the safety of the platforms, a tardiness constraint, i.e how long the float is allowed to be

left unattended at the surface, must be enforced. This constraint means that valid sequences of

operations are a function of the ocean currents. Oceanic currents are highly chaotic and complex

to model, so the constraints are effectively stochastic.

Autonomous underwater vehicles (AUVs) play a critical role in many marine science applications

such as underwater habitat mapping [215–217], environmental monitoring [218–221], geological

surveying [222–224], and plume source detection [225–227]. An exciting opportunity to increase

the accessibility and availability of marine autonomous systems arises from the idea of replacing

high-cost, fully featured AUVs with a team of under-actuated robotic floats [228–230] as shown

in Figure 4.1, which can control their depth but otherwise drift according to the surrounding ocean
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Figure 4.1: Ocean float taking images of underwater features in a field trial for Schmidt Ocean
Institute (Clovelly, NSW, Sydney).

current. Multiple floats can work in collaboration with a small group of surface vessels, which

deploy the floats at locations such that they drift into a given region of interest to collect data.

Then, the floats await pick-up by the surface vessel to be serviced and redeployed. In general,

each surface vessel can support the operation of multiple floats. This approach moves most of the

complex instrumentation and decision-making to the surface, where it can be readily supervised by

humans while reducing the cost of the equipment at risk underwater and offering some redundancy

to loss by operating multiple underwater assets.

To solve the MVMF problem, we present a hierarchical approach that provides a practical solu-

tion. Our approach first uses the Monte Carlo tree search (MCTS) algorithm to find a set of float

trajectories that maximise the number of point of interest (POI) collectively observed. Then, we

again use Decentralised Monte Carlo Tree Search [111] (Dec-MCTS) based algorithm to find each

surface vessel’s drop-off and pick-up schedule. We assume that the floats are spatially dispersed,

so the chance of collision is low and can be ignored. Further, given that these floats are designed
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to be small and relatively inexpensive, they do not carry much energy, so we assume that mission

time is sufficiently brief to consider the oceanic flow field as time-invariant for the duration of the

mission. The technical novelty of our approach is to introduce necessary computational specialisa-

tions to the general Dec-MCTS framework for sampling, rollouts, and action generation. The size

of the state space is a function of the number of points of interest, floats, vessels, and candidate

trajectories and is too large for the naive application of existing algorithms.

We formally define the MVMF problem and present the details of our hierarchical algorithm, along

with an analysis of its optimally, correctness and completeness properties. To evaluate the algo-

rithm’s performance, we report simulation experiment results showing that our solution is compu-

tationally efficient for practical problem sizes, is flexible enough to admit mission constraints, and

produces solutions with acceptable solution quality. These results pave the way towards conduct-

ing initial experiments with this novel and promising class of marine robot systems.

Following the verification of the simulations, our hierarchical planner was tested in the field on a

MVMF system. These field trials were useful to validate the system. The insights gained from the

field trial were helpful in understanding the directions that our method needs to be improved in to

improve its results during field operations. The main insights gained were around the suitability

of assuming the ocean is temporally invariant over short time horizons; this motivates replanning

to adapt to changing conditions. Additionally, it motivated the further analysis of 3D flow field

estimation due to the differences between 2D and 3D incompressibility of water assumptions need

to be carefully considered.

Lastly, a simple replanning extension was added to the operation of our MVMF algorithm, and

preliminary further field trials were performed to see if the insights gained from the first set of

experiments were sufficient.

4.1.1 Chapter outline

The remainder of this chapter is organised as follows. Section 4.2 defines the Multi-Vessel Multi-

float problem and compares it to a traditional scheduling problem and typical VRP formulations,

showing why this new form is necessary. Section 4.3 describes our hierarchical-based algorithm

for solving the MVMF problem in a scalable way. Section 4.4 validates our system in simulation
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Section 4.5 describes the hardware field trial that we performed in Jervis Bay with a MVMF

system. It also outlines some of the lessons we learned from these trials. In Section 4.6 we

describe the online replanning extension and the preliminary field trial that included replanning.

Finally, Section 4.7 summarises the chapter.

4.2 Problem formulation

In this section, we present the problem formulation for the MVMF scheduling problem for a team

of information-gathering vessels operating in the ocean. In this problem, the goal is to visit all the

Points of Interest (POIs) while subject to temporal constraints caused by chaotic ocean flow fields.

We first model the problem as a generic vehicle routing problem with time windows and show that

this formulation is insufficient to capture the specific complexity of this problem and is too hard to

solve. We then formally define a specific scheduling problem form for the MVMF problem that is

more feasible to solve.

4.2.1 Robots and envrionment

Let fc : R2 → R2 be a time-invariant fully-known oceanic flow field in A 2D environment. We

have a discrete set of points-of-interest (POIs) Q ⊂ R2 in the environment. The POIs are static

and fully known in advance. We are interested in maximising the number of POIs visited using

two types of ocean vehicles: surface vessel α ∈ A and float β ∈ B.

In the environment, we have a set of surface vessels A and floats B. We assume that surface

vessel α ∈ A is fast enough to ignore flow vectors, such that it moves from one position to another

in a straight line with ground speed vα, such that

α̇ = vα ·

cos θα
sin θα

 , (4.1)

where θα is travel direction. On the other hand, a float β ∈ B has no actuation so that its dynamic

is solely influenced by flow field fc, such that

β̇ = fc(β). (4.2)
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For further details on the system dynamics and flow field environment, see Appendix A.

Surface vessel Ai ∈ A has a number of floats assigned such that Bi = {β ∈ B} is a set of

floats assigned to vessel αi where no float is assigned to multiple surface vessels at the same time

(i.e., Bi
⋂
Bj ≡ ∅ for all Ai, Aj ∈ A and i ̸= j). A set of deploy actions for surface vessel αi

is denoted as Ai ∈ {Di,k, Pi,k} where Di,k and Pi,k denotes drop-off and pick up for assigned

float βk ∈ Bi. We slightly abuse notation for Di,k and Pi,k to include the position where the

action is taken.

4.2.2 Generic vehicle routing with time windows form

Modelling the MVMF problem as a classic machine shop scheduling problem is difficult due to

the interdependence of the costs of servicing tasks being a function of the previously serviced

task. As the vessels move around the environment, the cost to visit points depends on where

they are. The problem would need to capture the sequence-dependent job starting costs and the

variable time windows introduced by the pickups. Alternatively, the problem could be modelled

as a vehicle routing problem. The Vehicle Routing Problem with Time Windows (VRPTW) is a

suitable variant. If we consider the surface vessels as vehicles, they are moving to service jobs

(drop-offs) that cause an associated pickup location with a time window to occur. This new pickup

job must be completed during the time window, or the schedule is invalid. Modelling this as a VRP

is difficult due to VRPs changing starting location constraints, and the problem is still NP-Hard to

solve. Thus, we find it more useful to address instead where the problem complexity is coming

from and formulate a new specific problem for this class of problem.

Even though the set of tasks is fully known, one of the main difficulties comes from the fact that

the service time of the subsequent pickup task is unknown because the float can resurface (func-

tionally) anywhere due to the chaos of the flow field. To solve this problem, we would need to

know the flow field perfectly and its evolution over time. With this knowledge, it would be pos-

sible to disambiguate the pickup locations and thus resolve the time windows for the pickup jobs,

which allows for avoiding the stochastic constraints. To do this, we assume that the timescale for

changing the flow field is large enough that when considered over a short horizon (approximately

hour), it can be assumed to be quasi-static. If we observe the flow field at the current point in time

and then lock it in place for a short window, we can use this to compute a schedule. This is a form
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of a single step-ahead prediction conditioned on the current state of the flow field. That is, we

assume the short-term future state is the same as the now.

4.2.3 MVMF scheduling form

We define schedule ϕϕϕi as a sequence of deploy actions Ai for surface vessel αi. For example,

ϕϕϕi = Di,1Di,2Pi,2Pi,1 implies that float 1 and 2 are dropped off in sequence at their designated

positions and float 2 is picked up before float 1. If the next deploy action is to pick up a float, then

the surface vessel moves to pickup position Pi,k and waits until the float arrives. Time waiting

for float k is denoted as wait time τi,k. A schedule is said to be valid iff every wait time τi,k in

the schedule is equal to or greater than zero; otherwise, the vessel is tardy, and the pickup has

failed (and possibly leading to the float being lost). Also, the pick-up action Pi,k cannot be done

before Di,k. The corresponding controls (i.e., travel directions) for surface vessels can be easily

derived from (Equation 4.1). The set of POIs visited by schedule ϕϕϕ is denoted as Q(ϕϕϕ).

We are interested in a problem where we find a joint schedule ΦΦΦ = {ϕϕϕα}α∈A for a team of

vessels A so that all unique POIs are visited by a set of floats B in minimal makespan time. Let

T (Φ) denote the makespan incurred by the joint schedule. We formally define the problem as

follows.

Problem 4.1 (Multi-Vessel Multi-Float Scheduler). Given a time-invariant oceanic flow field fc,

set of surface vessels A and floats B, find a joint schedule ΦΦΦ∗ that it visits all POIs with minimal

makespan time:

ΦΦΦ∗ = argmin
ΦΦΦ

T (ΦΦΦ)

s.t. |
⋃
α∈A

Q(ϕϕϕα)| = Q

and Q(ϕϕϕαi) ∩Q(ϕϕϕαj ) = ∅, ∀αi, αj ∈ A.

(4.3)

4.3 Hierarchical schedule framework

In this section, we present the hierarchical framework that solves the surface vessel schedule that

maximises coverage of POIs with minimal makespan. We first reduce the size of the search space
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by sampling a set of drop-off/pick-up actions over the 2D time-invariant flow field fc with a dis-

crete set of POIs Q. Subsequently, we use the subset of sampled actions and a Dec-MCTS-based

algorithm to find the decentralised single vessel schedules that together comprise the joint sched-

ule. This joint schedule minimises the overall mission makespan for the set of surface vessels A

and floats B. Finally, we present a brief analysis on the validity, scalability, and optimality of our

method to solve the desired problem.

Even though the stochastic constraints have been dealt with in the problem formulation, the search

space that needs to be explored to find a valid schedule is still massive. The search space also grows

exponentially with the number of floats and surface vessels. As such, we address the problem using

a hierarchical method by splitting the main problem into two sub-problems and then solving them

sequentially:

1. Given a time-invariant oceanic flow field fc, set of POIs Q, set of sampled drop-off ac-

tions D and its corresponding set of pick-up actions P , find a set of drop-off actions Ds ⊆

D and its corresponding pick-up actions Ps ⊆ P that observes all unique POIs in Q.

2. Given a set of surface vessels A and floats B, and the sets Ds and Ps found in the previous

sub-problem, find the joint schedule ΦΦΦ over all Ds and Ps that minimises the makespan of

the overall mission.

We make the following assumptions throughout the method. First, we assume that the floats and

surface vessels are spatially dispersed during operations, and therefore ignore collisions between

vessels and floats. Local planners can also be used to avoid collision cases. We also assume that,

while the float operates in a 3D oceanic environment, the problem is projected as a 2D problem by

taking the depth-averaged flow field. This assumption is common in existing work [231–233].

We solve the two sub-problems using methods that are based on Monte Carlo tree search (MCTS) [234].

The MCTS algorithm is a sampling-based biased search algorithm that is suitable for large state

space problems with non-trivial objective functions, such as in the MFMV problem. MCTS begins

from an initial condition and then iteratively grows the search tree by selecting the next state to

explore from a set of actions to take from the selected state. From the selected state, a sequence of

actions is randomly sampled using a heuristic (e.g., biased random sampling) until the termination
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condition has been met (e.g., length of sequence); this process is called a rollout. The score from

the rollout is then used to update the tree’s expectations, and the process continues.

The decentralised extension to MCTS, namely decentralised MCTS [111], is a modification to the

MCTS algorithm that allows multiple agents to coordinate to solve a joint objective function for

the whole team. Each agent finds its own solution by growing the MCTS tree while considering

the set of potential actions by other agents. The algorithm allows for finding an asymptotically

optimal joint set of solutions for the whole team.

In the proposed hierarchical method, the first sub-problem of selecting the set of pick-up and drop-

off actions from a large number of samples is done using MCTS. For the second sub-problem, the

subset of actions is then scheduled and allocated to the surface vessels using Dec-MCTS, where

each surface vessel independently computes its local plan, which leads to the joint optimal solution.

4.3.1 Float trajectory selection

The selection of possible drop-off/pick-up actions is done in two steps: sample candidate drop-

off actions, then select a subset of actions that observe all the features in the smallest number of

actions. The sampling step samples N number of drop-off locations d ∈ D across the oceanic

environment fc populated with POIs Q. For each drop-off location, the corresponding pick-up

location p ∈ P is derived from (Equation 4.2) over some time-bound ∆t, and function Q(d,∆t)

determines the subset of POIs observed q ⊆ Q from this pair of deploy actions.

The selection step uses an MCTS algorithm to choose a subset from the sampled drop-off actions

Ds ⊆ D and the corresponding pick-up actions Ps ⊆ P that observe all POI in the minimal num-

ber of actions. To speed up the convergence rate in the rollout process, we use a greedy sampling

heuristic that selects trajectories that cover unobserved POIs more often than other trajectories.

For this, when we select a dropoff action, we select its corresponding pickup action Let D′
S be the

currently selected subset of actions during the rollout. The likelihood of selecting action ds during

the rollout can be computed using:

P (ds|D′
s) = |Q(d′s) ∪Q(D′

s)|+ ϵ (4.4)

where we omit the ∆t from the Q function for clarity.
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Figure 4.2: From the large set of sampled trajectories (shown in grey) generated from the oceanic
environment (shown in blue quiver), a minimal covering subset has been selected (shown in green)
that visits all POIs (shown as a red marker).

The utility of a drop-off location d over time-bound ∆t is defined by the number of observed

POIs over the total number of POI |Q|. The reward function for the MCTS is the total utility of

the set of drop-off actions minus a penalty for the number of drop-off actions taken. This drives

the algorithm towards observing POIs that are not yet observed while using the fewest number of

possible drop-off actions. An example is shown in Figure 4.2.

4.3.2 Surface vessel scheduler

In this section, we address the second sub-problem of our hierarchical approach. We present a

surface vessel scheduler that produces schedules of drop-off and pick-up actions for the surface
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vessels and their floats.

Given the set of deploy actions that observes all POIs, the set of surface vessels and floats, we wish

to find the joint scheduleΦΦΦ of float drop-off and pick-up actions that minimises the makespan of the

mission. Finding optimal solutions for a coordinated team of vessels is difficult because it requires

planning over all possible combinations of the vessels’ actions, which is known as planning in

the joint space. Decentralising allows each vessel to plan its schedule in the much smaller single-

vessel search space, hence faster search for good solutions. We compute surface vessel schedules

that comprise the joint schedule using a Dec-MCTS-based algorithm. To help with convergence,

we bias the rollout function based on the proportional distance to each action from the current

position of the vessel in its schedule. Additionally, the rollout is biased, but not restricted, to select

actions that are not yet selected by other vessels to encourage the team to select actions the team

has not yet done. Formally, given a partial single vessel schedule ϕϕϕ′ and the set of actions that

are not in this schedule A(′). Let a(′) be a single action a(′) ∈ A(′), let g′ be the position of the

vessel during ϕϕϕ′ which is equivalent to the position where the last action will be taken. Let other

actions that are allocated to the other vessels be Ao which can be estimated from the Dec-MCTS

messages. Let µ be a binary variable that represents if an action is taken by another agent in the

joint schedule, µ = 1 if a(′) ∈ Ao else µ = 0. The rollout biasing is computed using:

p(a(′)|ϕϕϕ′) = L2(g
′, a(′))λd + µλb + ϵ. (4.5)

Where L2 is the L2 norm and λd controls the weighting for selecting actions that are nearest to g′

while λb influences the vessel taking new actions that are not in the joint schedule behaviour.

The utility function for the scheduler rewards the allocation of actions and penalises makespan for

the overall mission. The utility function also sets a hard constraint regarding the vessel pick-up

tardiness of the joint schedule W(ΦΦΦ). This enforces that τi,k > 0 for all vessels in the schedule

ΦΦΦ. Given the number of actions taken from the subsets |Ds| + |Ps|, a makespan time weighting

parameter λM , and makespan of the schedule ∆M . The utility function with respect to the number

of actions taken S and the total makespan is defined as:


0 if W(ΦΦΦ) > 0

S
|Ds|+|Ps| + 1− 2λM∆M otherwise

. (4.6)
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For a joint schedule, if one vessel is tardy, it invalidates the entire joint schedule. Naively allowing

any vessel to consider any drop-off action can result in a significant number of schedules that

contain pick-up actions that exceed the tardiness bound. While the planner can technically find

valid schedules by generating random sequences of pickups and drop-offs, the search would be

inherently slow as it also naively considers many invalid actions. Even though all drop-off actions

may be valid, they may not be feasible with respect to the overall schedule because that drop-off

action may delay the vessel from picking up the float from its previous drop-off action, resulting in

tardiness. To speed up convergence, we introduce a modification to the MCTS action generation

that allows vessels to only plan schedules that contain drop off actions that are feasible without

invalidating the tardiness bound.

4.3.3 Action generation

If all floats for the vessel are already deployed and not yet picked-up inϕϕϕ′ no more drop-off actions

can be added, otherwise to add a new surface vessel drop-off action d(′) ∈ Ds ∩ ϕϕϕ′ we use the

following to check if it is feasible. Let P(′) be the set of to be completed pickup actions based on

the matching the drop off actions D′ ∈ ϕϕϕ′ and p(′) ∈ P(′) is the pickup action in the pickup action

set. Let T (ϕϕϕ′, p(′)) be a function that returns the time remaining before p(′) becomes tardy based

on the partial schedule. Find the tightest bounding time:

TB = argmin
p(′)∈P(′)

(T (ϕϕϕ′, p(′))). (4.7)

With this bound the validity of adding d(′) to the schedule can be checked using:

L2(g
′, d(′) + L2(d

(′), p
(′)
TB)

va
< TB. (4.8)

Where p(′)TB is the pickup with the tightest bound. These equations ensure that drop actions will be

added to the partial schedule and will not invalidate the tardiness bound. Additionally, it decreases

the number of candidate actions the planner needs to consider when producing schedules which

speeds up convergence and allows our algorithm to produce quality solutions faster.
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(a) Hierarchical schedule results for 2 vessel 2
floats

(b) Sequential greedy result for 2 vessel 2 float

Figure 4.3: (a) shows the sequence of drop off and pick up actions for a two vessels carrying two
floats using Dec-MCTS. (b) shows the sequence of drop off and pick up actions for two vessels
carrying two floats using sequential greedy. Sequential greedy can only utilise a single float. The
surface vessel begins at 1 and moves to subsequent actions to complete the drop off(square) and
pickup (circle) actions.

4.3.4 Analysis

The problem of finding optimal joint schedule ΦΦΦ∗ is computationally hard due to its inherently

large search space. Naively, the action space is given over a continuous flow field fc where the drop

position can be anywhere but the pickup position is constrained by flow field Pi,k = β̇(Di,k)∆t.

Since finding float trajectory in the presence of a flow field is computationally hard (i.e., no analyt-

ical solution is known) and there exists an infinite set of possible drop positions, a naive approach

is intractable. Instead, the proposed framework reduces the search space to a finite set of discrete

actions that are in the form of float trajectories. Since the performance (i.e., the number of POIs

visited) for each float trajectory is pre-computed, the search for an optimal joint schedule is com-

putationally scalable in the size of the environment and the number of floats. Furthermore, since

the scheduling step is decentralised across surface vessels, the overall computation also becomes

scalable in the number of surface vessels.

We guarantee that any given schedule ΦΦΦ is valid by ensuring that if a schedule is not valid (i.e.,

sequences of actions cause a vessel to be tardy τi,k < 0 when picking up a float), it has 0 utility;

thus the scheduler will not consider it a valid solution. Similarly, the valid action constraint in (4.8)

does not allow adding drop actions that invalidate the current considered partial schedule. Since
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we ensure that only a valid schedule is generated at each iteration, we preserve an important

algorithmic property in MCTS called anytime property. The property implies that scheduling can

be stopped at any time to get a valid solution. More computation time can be allowed to find a

better solution.

For our solution, each step in the hierarchy is asymptotically optimal with respect to the sub-

problem it solves. This is because they are based on the MCTS algorithm, which offers asymp-

totic optimality if the rollout process is able to sample the entire action space [235]. Our rollout

heuristics in (4.4) and (4.5) ensure that all possible rollout sequences have a non-zero probability

of being selected. The proposed rollout heuristics are likely to take actions that are not yet ob-

served, taken by other team members, and are near the vessel. Consequently, we achieve faster

convergence in the two sub-problems.

Since the two steps are independently optimised, the overall optimality of Problem 1 is not assured.

We argue that the overall solution is practically feasible, even close to a true optimal joint solution.

First, we observe that there only exists one unique float trajectory that passes through a given POI

in the oceanic flow field as illustrated in Figure 4.2. Intuitively, no float trajectories cross each

other. This is because ocean currents are incompressible in that the sum of all incoming flows to a

point equals the sum of all outgoing flows [236–238]. The observation implies that a truly optimal

solution is likely to include those float trajectories passing a large number of POIs. Note that the

first step in our framework is to find a set of float trajectories that maximises the number of POIs.

One immediate improvement to the framework is to expand the search space by relaxing a number

of constraints we imposed in the first step. For example, varying the lengths of the float paths and

planning over other sets of pick-up drop-off actions besides the minimal length POI set.

4.4 Simulation

In this section, we present simulation results that validate our proposed framework. We compare

its performance against a sequential greedy scheduler [102], commonly employed in multi-agent

planning applications. We demonstrate our method’s ability to produce higher-quality results.

Additionally, we briefly discuss the computational requirements of our approach.
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(a) Averaged makespan in simulated scenarios

(b) Averaged travel time per vessel

(c) Averaged total amount of time the surface vessels spend waiting for floats

Figure 4.4: Comparing the performance of the proposed framework against sequential greedy
method (in dashed black line) for makespan, average work time and waiting time for an increasing
number of surface vessels. Three float assignments are shown: one float (in red), two floats (in
blue) and three floats (in green) for each surface vessel.



92 Chapter 4. Stochastic Constraints

Parameter Value
Number of ASVs 1-5

Number of floats per ASV 1-3
Maximum flow field velocity 1m/s

Maximum surface vessel velocity 5m/s
Number of POIs 20

Computation time 60 seconds
Workspace size 2000x2000 meters

Makespan tuning parameter 0.000001
Number of sampled pick up and drop offs 10000

Float trajectory length 5 minutes

Table 4.1: Simulation parameters in Sec. 4.4

4.4.1 Simulation setup

Simulated experiments were performed to empirically show the suitability of our method to solve

the MVMF problem. These experiments were performed on simulated flow fields with the pa-

rameters shown in Table 4.1. These parameters were selected to be similar to the conditions we

expected to experience during field trials at Jervis Bay.

In the simulations, the maximum flow field speed is 1ms−1, the speed of the surface vessel

is 5ms−1, the number of POIs is 20 and the size of the workspace is 2km × 2km. We then

empirically compare the performances over a set of different float assignments for an increasing

number of surface vessels. The simulations were executed on a desktop computer with Intel i7

2.60GHZ CPU and 16GB RAM. Each simulated experiment was performed 50 times, and the

averaged results are shown, with a computation time limit of 60 seconds for each trial. This time

limit was selected to allow the system to be feasible for use in the field in a near real-time manner

of a short planning window followed by execution of the planned mission.

4.4.2 Simulation results

The compared sequential greedy algorithm works as follows. It sequentially allocates drop-off

and pick-up action pairs to the vessel that most improves the joint utility. The sequential greedy

algorithm can very quickly allocate the actions and produce valid joint schedules. However, the
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Figure 4.5: Average number of iterations per second for the DEC-MCTS planner within the
MVMF framework. The average is taken over 10 runs, and the specific number of iterations is
highly dependent on the specific problem and implementation; it should only be used as an in-
dicator of relative computational complexity. These results indicate that incorporating additional
floats has less impact than increasing the number of surface vessels. However, DEC-MCTS is
asynchronous, so a better parallel implementation should allow better scaling with the number of
vessels.

algorithm is not able to utilise multiple floats and can only produce potentially sub-optimal sched-

ules with no further improvement. This is partly because no two floats can be deployed at the same

time. Intuitively, the dropped float must be picked up before deploying another.

In Figure.4.3, a visual comparison between the schedule for 2 vessels generated from the surface

vessel scheduler (Figure 4.3a) and the sequential greedy (Figure 4.3b) is shown. Both the sequen-

tial greedy and our scheduler distribute the float actions between the vessels evenly. However, as

the sequential greedy algorithm cannot utilise multiple floats, its best solution is for each vessel to

drop-off and pick-up a single float sequentially. I.e., ϕϕϕi = Di,1Pi,1Di,1Pi,1 ∀i ∈ {1, 2}. In con-

trast, our scheduler can utilise multiple floats and can consider deploying floats in parallel when

valid. The benefit of such deployment strategy is shown in Figure 4.3a with the vessel sched-

ules, ϕϕϕ1 = D1,1D1,2P1,2P1,1 (blue) and ϕϕϕ2 = D2,1D2,1P2,1P2,2 (green), where the vessels are

shown to collectively drop-off and pick-up floats that leads to less wait time and travel time. The

parallel deployment strategy is possible because such actions can be considered when building the

search trees.

Figure 4.4 shows that our method outperforms the sequential greedy approach in the following
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metrics: makespan (i.e., the time difference between the team starting and finishing the sched-

ule), amount of vessel travelling time (i.e., the average time vessels spend travelling to drop-off

floats), and the overall wait time (i.e., time vessels spend waiting for floats to arrive for pick-up).

In Figure 4.4a, we show that the greedy approach works as good as the case with one-surface

vessel and one-float combination. However, as the number of floats increases, our method quickly

outperforms the greedy in that the overall mission time is shorter.

For higher numbers of floats, our method produces schedules where the surface vessels travel less

to complete the mission, as shown in Figure 4.4b. Surface vessels can complete the same amount of

work with shorter travel distance because our method utilises the extra floats by dropping them off

at nearby drop-off locations. Furthermore, the proposed framework finds a high-quality schedule

that reduces the travel distance and wait time, as also illustrated in Figure 4.4c.

4.4.3 Computational evaluation and implications

In this section, we briefly discuss the time it takes to compute solutions for the baseline and our

method which can impact the applicability to real-time fieldwork applications with respect to the

time to compute solutions.

Finding a good solution for the first problem of sampling the flow field and selecting candidate

float trajectories can be solved quickly given a reasonable selection of parameters. The computa-

tion length depends on the number of sampled pick-up and drop-off locations, the length of the

float trajectories, and the number of iterations used in the trajectory selection MCTS. The trajectory

length and number of samples were found empirically. For operational limitations, we determined

a satisfactory level by observing a slowdown in the convergence speed of the trajectory selection

MCTS within a few seconds. We assumed that additional computation would yield limited ad-

ditional optimality. For problems of the scale in this thesis, we observed that the sampling and

trajectory selection could be completed satisfactorily within a few seconds of computation.

The sequential greedy baseline finds a solution in a fairly consistent amount of time, and it takes

under 1 second per surface vessel to compute an allocation for the problems we considered. How-

ever, this comes with the aforementioned limitation of not utilising additional floats and having an

unbounded suboptimality.
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Recall that MCTS and Dec-MCTS are anytime algorithms capable of finding a quick solution

and improving it interactively. Therefore, analysing the number of iterations per second is more

relevant. Figure 4.5 shows the average number of iterations per second for the DEC-MCTS planner

within the MVMF framework. The averages shown here are taken over 10 runs, and the specific

number of iterations highly depends on the problem and implementation. However, these numbers

are useful for indicating relative computational complexity.

These results show that increasing the number of surface vessels impacts computational complex-

ity more than incorporating additional floats. Although DEC-MCTS is asynchronous and paral-

lelisable, there is still an overhead of communication between vessels and the additional complex-

ity of tracking more actions from other agents. Even with this overhead, the complexity increases

at an linear rate rather than exponentially with the growth of the size of the joint space of the robot

team. In contrast, adding more floats has a limited impact because deploying them in parallel is

restrictive (depending on the length of allowed surface loitering time and vessel speed), so the

depth of a rollout is minimally impacted.

While determining the precise number of iterations for a ‘good’ solution is difficult, we empirically

observed that 1000-2000 iterations were sufficient to find reasonable solutions for the problems

addressed in this thesis. We bounded the computation time to 60 seconds to reflect the desire to

use our method in a near realtime manner and balance finding sufficiently good solutions.

Overall, these simulation results validate our claims in Section 4.3.4 that the proposed framework

is computationally efficient and it finds a solution over large state space given practical compu-

tation time. With this property, we argue that the framework can be used in a plan-as-you-go

manner, where a new plan is generated when the flow field and the set of POIs change over time.

Furthermore, the results demonstrate that our method can reduce the costs of operating a team of

vessels and floats due to the reduction in makespan (that allows more missions to be deployed in

a given time period), reduction in travel time that means less operating cost of vessels due to wear

and tear and, the vessels waiting less.
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4.5 Online multi-vessel multi-float flow field problem field trial

In this section, we showcase the practical application of our method by trialling it in the field on

real-world hardware and in an oceanic environment. We begin by explaing the field trial setup

and the additions required to deploy our method in the field. Next, we discuss the data-gathering

process. Finally, we examine the results and discuss new insights discovered.

4.5.1 Field trial setup

In this work, we defined the MVMF Problem 4.3 and proposed a hierarchical solution. The largest

and untested assumption in our work is assuming a fully known time-invariant flow field. We as-

sumed that this is a reasonable assumption because ocean currents vary slowly and are driven by

prevailing meteorological conditions such as tides and wind. Typically, these processes occur on

the timescale of hours, while missions can be designed to last minutes to a few tens of minutes. In

other words, it is approximately static. Another practical limitation of our method is the require-

ment of a dense flow field model for planning the operations due to the float dynamics and our

desired application. To plan trajectories for the floats that are capable of observing the bathymet-

ric features represented as POIs, and due to the complex bathymetry of reefs and shorelines, we

require spatially dense (vectors at least every meter) over a small-scale (hundreds of meters) model

of the flow field. Typical flow field models produced by oceanographic sources are spatially sparse

(vectors every hundreds of meters) due to their large scale (hundreds of kilometres). These flow

fields are not suitable for our application because the under-actuation of the floats necessitates an

accurate knowledge of the flow field for predicting the movement of the system. The unavailability

of such a model means that we need to produce a local estimate of the flow field rather than rely

on existing sources of information in order to apply the planner in practice.

To gain a deeper understanding of the limitations of the fully-known time-invariant flow field as-

sumption, we introduce a process for estimating the flow field locally, which is then tested with

real-world experiments at Jervis Bay. To produce the local dense flow field, we use the Gaussian

process (GP)-based expectation-maximisation (EM) method developed by [238] because their ap-

proach allows estimation of a dense oceanic flow field from sparse point measurements. The point
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measurements we use for estimation are the deployment and retrieval locations of the floats or sub-

sampled GPS readings from drifters. The GP method works by exploiting the incompressibility of

ocean currents to deal with the underdetermined nature of the problem. The problem is underdeter-

mined because infinitely many candidate flow fields could have generated the same measurements.

By exploiting incompressibility, the search space can be reduced so that a feasible solution can be

computed. There are two open questions that make the applicability of this method to our problem

uncertain. First, the method was tested on sparse GPS point measurements of gliders instead of

more dense GPS measurements of drifters. The sparse GP-based method might be not applicable

for this much data. Second, the GP method was shown to work for gliders in deep ocean envi-

ronments. Our field trial takes place in regions with much shallower water (around 10-25 meters

depth), near shorelines, and near reefs. It is not yet known if the method will perform as well in

this new environment.

4.5.2 Sea trial operations

In this section, we discuss the technical approach that was taken during sea trials to assess the

applicability of the flow field GP estimator to real-world oceanic environments similar to our

expected operating areas.

To gather this data the drifters or floats need to be spread over the workspace. The size of the

workspace and thus needed triangle is limited by both the area that needs to be surveyed by the

imaging floats and the communication range of the drifters. The communication range is important

because the drifters communicate their locations blindly without caching. If the vessel is outside

the communication range, we partially lose the trajectory information. Once the drifters are de-

ployed, they are left to float along with the current for a fixed period of time, then retrieved by the

boat. A timely retrieval is important so as not to lose the hardware in the ocean. The selection of

the drift length is important because it needs to be long enough to gather sufficient data while not

being so long that the data gathered is no longer relevant due to the changing flow field. For our

tests, it was found emperically that around 10-15 minutes of drifting combined with the time taken

to deploy and retrieve was sufficient. For estimating a flow field, we observed that shorter drifts

produced flow fields that were too noisy and longer ones captured changing fields, so their time

series had to be cropped; otherwise, their estimations were not useful.
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Figure 4.6: Estimated surface ocean current data for a 390m x 390m oceanic environment. Current
estimated from three drifter trajectories deployed for 600 seconds in a triangle formation. The
colourmap represents the trace covariance. The resulting drift data is estimated using GP-based
estimator presented in [238].

The GP-based flow-field estimator then uses the gathered trajectories from the drifters to build an

estimate of what flow field best fits the observed trajectories. This estimate and fit were used to

determine what length of drifting was sufficiently long for further trials. The GP method depends

on a set of hyperparameters, which can require retuning. The tuning process during sea trials uses

a grid search over a range of possible sets of parameters and chooses the best set based on the

error between the projected trajectory from the estimated field and the observed field. This range

of hyperparameters was selected based on a much larger grid search of parameters over historical

data, which then informed the smaller grid search over the tuning parameters to evaluate during

flow field estimation in the field. Similar to the drift trajectory length selection process, we used

the ability of the estimated flow field to explain the trajectory observations to measure the quality

of the flow field estimate. We assume the model is accurate if an estimated flow field explains the

drift well.

4.5.3 Sea trial results

Twenty sea trials were conducted over five days at two sites (Murray Beach and Nelson Beach)

inside Jervis Bay, Australia. We present the most representative and interesting data gathered from

these trials.
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(a) Attempt 1, time: 145 sec (b) Attempt 1, time: 660 sec (c) Attempt 1, time: 790 sec

Figure 4.7: 1 vessel 2 drifter MVMF schedule, planned over the estimated flow field (blue quiver)
shown in Figure 4.6, executed one hour after the estimation. Each subfigure shows a snapshot
of the Kimbla (triangle) moving from one scheduled action to another. For clarity, only the Kim-
bla trajectory (black) associated for that snapshot is shown. The sequence of positions the Kim-
bla is to visit are determined a priori and are enumerated from 1 to 4; marked with either a drop-off
(x) or a pick-up (start) action. The actual drifter trajectory (red and blue solid line) is compared
against the expected trajectory (red and blue dashed lined). The drifter locations at each snapshot
are marked with a circle. The Kimbla cut through the red drifter path at both (a) and (b) before
waiting in the middle of the workspace to ensure communication to all deployed drifters. At time
600 sec, the Kimbla moves to position 3 to pickup the drifter before detouring to the actual drifter
location and then picking up the drifter at position 4. The detour resulted in a tardiness of 60 sec
for position 3 and 45 sec for position 4.

The trials were conducted aboard the MV Kimbla, an 18-meter long vessel from which we de-

ployed a heterogeneous team of under-actuated robotic floats [228–230] as shown in Figure 4.1.

The University of Sydney developed these robots. The two types of robots we used are a passive

surface drifter type float, which has no actuation, and a bottom-following benthic imaging-float

which is capable of diving to a controlled depth. For both systems, the motion is mainly driven

by the ocean currents, which allows interaction with the environment. Both types of robots are

equipped with an IMU, GPS, and communicate their state information over LORA. The GPS

position information is then filtered by a Kalman filter to reduce noise, During these trials, one

imaging float and three drifters were utilised to gather the current estimation data. A visualisation

of the drifter deployment for flow field estimation is shown in Figure 4.6.

4.5.3.1 Trial 1 – drop-pick evaluation

We evaluate the consequence of the quasi-static assumption on the MVMF schedule with a simple

drop-off/pick-up mission using the Kimbla with two drifters. The kimbla operation consists of

moving from location to location in the schedule and deploying or retrieving drifters as needed. If
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(a) Attempt 2, time: 230 sec (b) Attempt 2, time: 680 sec (c) Attempt 2, time: 855 sec

Figure 4.8: Same mission as Figure 4.7, except the schedule was executed two hours after esti-
mation. To avoid the effect the Kimbla has on the drifters, this mission was executed with slower
vessel velocity and having the Kimbla travel around the drop-off and pick-up locations. Both
drifters however travelled more northerly compared to the expected drifter trajectory, which im-
plies the ocean current have changed. Again, the Kimbla visited position 3 at time 600 sec before
detouring to the actual drifter location then picking up the drifter at position 4. The detour resulted
in a tardiness of 80 sec for position 3 and 25 sec for position 4.

a drifter is not at the retrieval location when expected, the new retrieval location is set to the cur-

rent GPS position. The boat then moves to retrieve the drifter at its new location, and the mission

continues as expected. We execute the same MVMF schedule twice: one hour after estimation

and two hours after estimation. The evaluation compares the expected drifter trajectory from the

schedule with the observed drifter trajectory from both schedule attempts. If the quasi-static as-

sumption holds, then the expected and observed trajectories should be similar. For the evaluation,

we arbitrarily choose two drop-off locations in the workspace and define the corresponding pick-

up locations and expected drifter trajectory by forward integrating across the estimated flow field

for 600 seconds. We also define the action sequence a priori as parallel deployment as shown in

Figure 4.7.

The snapshot of executing the first schedule attempt is shown in Figure 4.7. The Kimbla deploys

the drifter at point 1 and 2, before waiting at the middle of the work environment to maintain

communication between the Kimbla and the drifters. After 600 seconds, the Kimbla attempts

to execute the scheduled pick-up actions while compensating for any discrepancy between the

expected and observed result. The blue drifter appears to closely follow the expected trajectory.

However, the red drifter trajectory is translated and slower than the expected result. We suspect

that the Kimbla may have created wakes near the red drifter that stalled and displaced it. We see

that the Kimbla cuts across red drifter’s expected trajectory in both Figure 4.7a and Figure 4.7b.

The delay caused by the wake forces the Kimbla to deviate from its schedule to retrieve the drifter,
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(a) Mission1, time: 1347 sec (b) Mission1, time: 1795 sec (c) Mission1, time: 2084 sec

Figure 4.9: Snapshot of two drifter trajectory (red and blue) crossing. Expected trajectory and
estimated flow field shown for comparison.

which by then the blue drifter passes over the expected pickup location before it is retrieved. This

result brings up an interesting challenge when planning for MVMF schedule:

Remark 1 (Disturbance due to surface vessel). Recklessly operating the surface vessel near the

float robot or its expected path can disrupt the intended float trajectory, which can negatively

impact the overall quality of the MVMF schedule.

This remark applies for both drifter and shallow diving float implementation. Though the distur-

bance on the drifters due to the Kimbla is more obvious for our small-scale trial, it nonetheless

should be avoided for general cases as the ocean current is a chaotic system. In particular, care

needs to be taken when deploying drifters for flow field estimation as they deploy around the same

time scale as our trial missions.

Snapshot of the second schedule attempt is shown in Figure 4.8. After learning from our previ-

ous attempt, we were cautious to operate the Kimbla without creating wake near drifters or its

expected path by travelling around the drop and pick location. While there was no evidence of

the Kimbla affecting the drifter trajectory, we observed they both drifted more northerly than the

expected trajectory. This implies that the ocean current has changed between the first and second

attempt. However, it remained reasonably static between the estimation step and the first attempt

as described in:

Remark 2 (Valid time window for ocean estimation). The quasi-static flow field assumption holds

true for real-world implementation for about an hour.
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Figure 4.10: Drifters on the ocean surface in an environment consistent with Langmuir Circula-
tions

4.5.3.2 Trial 2 – Langmuir circulation

During our trial, we also observed a special flow field structure that contradicts the planar in-

compressibility assumption made for estimating the flow field. Two deployed drifters that were

expected to move parallel to each other instead moved towards each other until, eventually, their

trajectories crossed. The snapshots of this case are shown in Figure 4.9.

As both drifters were deployed relatively close together, mere minutes apart, the trajectories cross-

ing implies that the oceanic streamlines cross, which is impossible in a planar incompressible flow

field. One hypothesis is that the drifters were sucked into a Langmuir circulation cell. That is,

there is a pair of corkscrew vortex rotating about the direction of the flow that draws nearby water

into a stream and pushes it down underwater. This oceanographic process occurs in the presence

of wind shear and when wind and waves move in a similar direction. We were also able to observe

this current phenomenon. Figure 4.9 shows sea debris, and slick were collected along a streamline,

and the floats were observed to be riding these streams. The existence of such a flow structure in-

validates the assumption we use for our estimator: that the flow field is planar and incompressible.

Remark 3 (Violation to assumption on incompressibility). There exist oceanographic processes

that may violate the incompressibility assumption for explicit 2D flow field cases near the ocean

surface.
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4.5.4 Potential approaches

During our field trial, we have identified various challenges that can be addressed to improve

the overall performance of executing a MVMF schedule in a difficult real-world environment.

In this section, we reflect on these challenges and discuss potential approaches to address these

challenges.

Disturbance due to surface vessel

From Remark 1 and from the second schedule attempt shown in Figure 4.7, we need to operate

the surface vessels with caution when near a drifter or shallow-depth float robot. There are several

operation-based approaches to mitigate the effect of surface vessels on floats, such as delaying

departure to the next position or reducing surface vessel speed when nearby floats. One possible

algorithmic solution is to plan the surface vessel trajectory such that, topologically, it does not

intersect the drifter trajectories nor come near the floats during deployment. Such an approach

allows the surface vessel to operate at max capacity while guaranteeing it will not influence the

float trajectory.

Valid time window for ocean estimation

As stated in Remark 2, Based on observed data the quasi-static flow field assumption is reasonable

for approximately an hour. However, such a window of operation limits the scope and size of

the mission due to the slow speed of the floats. In addition, the ocean flow field appears to make

sudden changes. That is, we can not use the drift information from the first schedule attempt

to predict the flow field for the second schedule attempt. This challenge motivates a time-varying

flow field estimator and planning a MVMF schedule over it. However, the time-varying problem is

intrinsically difficult. Another approach could be to integrate the estimation step into the MVMF

schedule planner and have the system be closed-looped. This approach has the added bonus of

being able to autonomously recall floats when the environment becomes too unstable mid-mission.

Violation of incompressibility assumption

From Remark 3, it is clear that we do not yet fully understand the ocean dynamics enough to make

robust flow field estimations. For instance, the GP-based estimator presented in [238] does not

account for wind, tide, or bathymetry, any of which impacts both ocean surface and depth flow

field. This challenge motivates a more comprehensive flow field estimator that accounts for other
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oceanic factors. The flow field estimator assumes a valid 2D incompressible flow field. External

disturbances from wakes or 3D oceanographic phenomena invalidate its assumptions and will lead

to incorrect estimations. So, care needs to be taken to ensure that the system operates under

conditions in which these assumptions hold.

4.6 Replanning field trial

During the trials, we experienced situations where the floats took a different trajectory than the

one estimated by the calibration measurements. The cause is ocean currents changing in the time

between calibrating for the flow field estimation and the observation deployments. To validate this

is the cause, we deployed the drifters and then shortly after redeployed them in the same area and

compared the expected and observed trajectories. This process can be seen in Figure 4.11. From

these tests and the previous field trials it can be seen that a system that is able to adapt to the

changing ocean currents is desirable. One approach to online planning is to continuously update

the flow field estimation using new drift information obtained throughout the MVMF missions.

Each time a float resurfaces or when a drifter is ready to be retrieved, the observed drift information

would be included in the flow field estimator and replanned with the new estimated flow field.

Using this replanning strategy, we performed another set of field trials. Figure 4.12 shows the

field trial to evaluate the planner with replanning. The schedule for the floats is initially planned

over an initial flow field using the estimation from the calibration dive. New float drift information

from the deployment is used to re-estimate the flow field, and the schedule is replanned over it.

The interval between each float dive was 30 minutes. The figure shows the results of sequential

replanning, changing the plan in response to the change in the flow field between each deployment.

These results demonstrate that the MVMF method we developed works if the quasi-static flow field

assumption holds. However, if the assumption is invalidated due to the operational environment

then with a simple modification online replanning can be used. It is able to be used in an online

replanning manner due to its design making it quick to compute and scalable.
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Figure 4.11: Example of ocean currents changing with time. The estimated ocean current using
the calibration trajectories (red arrows) is different to the current estimated using the validation
trajectories (yellow arrows). The two trajectories were taken hours apart.
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(a) Initial deployment and plan

(b) Replan 1
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(c) Replan 2

(d) Replan 3

Figure 4.12: Field trial to evaluate the planner under real-world mission conditions for a 1-float
1-vessel case. planner finds the initial schedule (yellow) over the perceived flow field (red). After a
float resurfaces, its drift information is considered to re-evaluate the flow field and the appropriate
new schedule (green).
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4.7 Summary

This chapter presented a solution for scheduling a heterogeneous team of information-gathering

vessels operating in the ocean. We demonstrated how a generic vehicle routing formulation would

not be feasible, and then we formulated the more specific multi-vessel multi-float problem. In

this problem, the goal is to observe points of interest by deploying bottom following floats con-

trolled by the ocean current and picking them up when they surface. The floats cannot be left

unattended on the surface for longer than a prescribed period, and the ocean current dynamics are

chaotic, making finding feasible schedules difficult. We address this difficulty by assuming the

ocean is quasi-static and planning short operations. To plan the operations, we use a hierarchical

planner that solves smaller subproblems in a decentralised manner. We empirically demonstrate

our method’s scalability and effectiveness through simulation. Next, we tested our planner on real

hardware in field trials, and through these field trials, we observed potential future research direc-

tions. Finally, we tested a replanning extension to our algorithm in the field to verify if the idea

improved the approach’s applicability to real-world operations.

Through this chapter, we demonstrated a solution to scheduling operations for problems with

stochastic constraints. In the MFMV problem, the stochasticity of the constraints is created by

the ocean currents. This problem was addressed through understanding the physical process that

causes the constraints to change and, thus, plans to become invalid. We were able to make plans

feasible by restricting operations to a short time horizon that is smaller than the larger timescale of

ocean current changes. This quasi-static assumption is beneficial because it makes the operations

feasible and avoids the need to predict the future of chaotic ocean currents.

In the next chapter, we examine scheduling problems where the tasks that need to be scheduled

are uncertain and are driven by a stochastic process. In stochastic constraint problems, the tasks

are fully known, and the plan to service the tasks can become invalid. Whereas, in stochastic task

problems, the tasks that need to be completed are uncertain, but a plan does not become infeasible

during execution. In these problems, the focus is less on creating methods that can make plans

feasible but instead on finding techniques to deal with completing potential future tasks.
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Stochastic Tasks

In this chapter, we focus on multi-agent scheduling problems with stochastic tasks. Tasks are the

work the agents complete by performing actions that are subsequently rewarded by the objective

function. The uncertainty in the formulation of the task defines stochastic tasks. This task uncer-

tainty can take multiple forms, such as not knowing ‘which’ tasks need to be done, ‘when’ the task

will be completed, or ‘how’ to complete the task due to it having stochastic costs.

This is the third component of our probabilistic scheduling framework. Unlike previous problem

classes that try to optimise with uncertain rewards for actions or try to find strategies to make a

specific plan feasible, it is unknown what work will be needed. Any feasible plan, once created,

will remain feasible but may be of low quality when considered in hindsight with the full sequence

of tasks defined. Stochastic task methods aim to avoid this regret by making decisions that consider

what could be required in the future.

We examine the class of scheduling with stochastic tasks by solving dynamic warehouse order

picking. In this problem, teams of logistics workers (agents) in an order-picking warehouse ser-

vicing dynamic, uncertain real-time orders throughout the day. Similar to previous work, we de-

velop a solution to the dynamic vehicle routing problem by partitioning the workspace into smaller

regions. The main novelty of our approach is modifying the cost metric used to form the parti-

tions to be more applicable for warehouse order picking. Analytically, we show that to maximise

throughput, the work in each region needs to be balanced. We then present a method to compute

this measure of work in each region and how to balance it between partitions iteratively. Finally,

109
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we evaluate our results in simulations of a typical warehouse picking environment and compare

them against a less specific partitioning algorithm and the naive method performed in practice.

Our results outperform the tested algorithms and demonstrate the effectiveness of our method.

5.1 Overview

Stochastic task scheduling problems are a class of problems where the tasks that need to be sched-

uled are not fully known a priori. Three main components of a task that need to be known to fully

schedule them. The start time, the length or end time, and the resources it costs. A stochastic

task is one where the arrival time of the task is not known exactly, and they are driven by some

stochastic process (either observable or not). The processing time or the length of time it takes to

complete a task can be similarly probabilistic. For the stochastic resources, the person or machine

that is capable of performing the task could be unavailable, and the planner needs to account for

this uncertainty. Real-world examples where this class of problem occurs are hospital emergency

departments [239], manufacturing [240], delivery of goods and servicing e-commerce orders in a

warehouse [241].

For this chapter, we focus on the warehouse order-picking problem. A central operation in ware-

house logistics is order picking, where items are collected from their warehouse storage locations

and then packaged to fulfil customer orders. Order picking is an on-demand process that can ben-

efit greatly from optimisation. Since it is not possible to know what items customers will order,

the problem is inherently a stochastic task scheduling problem.

Improving order-picking efficiency is also important in terms of cost savings. Because manual or-

der picking accounts for 55% to 70% of warehouse operation costs [242], a modest improvement

in efficiency can yield considerable economic benefits. Manual picker-to-part order picking sys-

tems are the most common in practice (up to 80% adoption) [243], but automation technologies,

including multi-robot systems, are also available and used.

In this chapter, we consider the problem of designing an efficient planning algorithm to opti-

mise order picking in warehouses. Our intention is to design algorithms that are applicable to

both robotic and manual operations. The rate at which orders arrive is not necessarily regular, so

planning algorithms must account for this dynamic aspect. Warehouse operations often require
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a team of people or robots (agents), so planning algorithms must also be capable of utilising the

cooperation of multiple robots to achieve high throughput. Finding optimal algorithmic solutions,

unfortunately, is infeasible for all but the smallest of scenarios because component subproblems

such as routing, batching, and allocation are NP-hard [81, 244].

To account for the scalability problem, we propose creating a method that solves the dynamic

warehouse picking by partitioning the environment into areas of equal work and then using a

service policy. According to an estimation of expected work, these partitions are equitable, ac-

counting for an irregular order arrival rate. These partitions facilitate the allocation of work to

each robot/agent: When an order of several items arrives, items are considered individually, and

work is allocated to the partition that contains the corresponding item. These item demands are

then serviced by robots/agents who follow a given policy. This approach of picking orders at the

level of constituent items requires a collating process at the depot where items are dropped off, but

this is a worthwhile tradeoff since picking is the dominant process in terms of time, complexity,

and cost. Our formulation scales well with the number of robots/agents because it avoids the joint

optimisation problems involved in batching and allocation and due to efficiencies gained through

the distributed design of the partitioning algorithm.

More formally, we create an initial set of Voronoi partitions [245] using kmeans++ [246] seed-

ing and then use Lloyds algorithm [247] to compute an initial spatially balanced/equally weighted

power diagram [248]. Subsequently, we iteratively update the weights in the power diagram us-

ing a local optimisation algorithm that balances regions according to a heuristic measure of work

required to service a partition. The measure of work is the expected time it will take to visit a set

of items to pick up and then return to the depot to drop off. This metric is computed by sampling

orders from a spatio-temporal model of order arrival. Once the partitions have been created, a

robot/agent is allocated to each and follows a policy to service a queue of demands allocated to

its partition. A benefit of the partitioning method is that our algorithm has the anytime property;

each iteration produces a feasible candidate partitioning. Additionally, its fast computation speed

means that it can be used as a design tool to evaluate the performance of various system char-

acterisations. Typically, warehouse operations seek to maximise the utilisation of robots/agents.

Therefore, we evaluate our method operating in a near heavy-load regime (i.e., the order arrival

rate is approximately equal to the service rate). The policy and design of our algorithm behave

accordingly and exhibit the best performance under these conditions.
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The empirical effectiveness of our method is evaluated through simulation of dynamic-order pick-

ing performed in a realistic warehouse environment. Our method is compared against a previously

not warehouse-specific partitioning-based dynamic vehicle routing solution and a typical process

called pick lists that are commonly seen in warehouse operations. Overall, we show that our

method is scalable and outperforms the comparative methods that do not leverage the prediction

of the work required to service future tasks.

5.1.1 Chapter outline

The remainder is this chapter is organised as follows. Section 5.2 defines the dynamic ware-

house ordering picking problem. Section 5.3 provides some analysis showing the throughput is

optimised when balanced according to work. Subsequently, we outline the algorithm to create

equitable partitions and the service policy. Section 5.4 gives some discussion about the properties

of our method, such as its scalability and approximation quality. Section 5.5 presents the results

of simulated experiments for empirical analysis of our algorithms. Finally, Section 5.6 concludes

the chapter.

5.2 Problem formulation

In this section, we present the problem formulation for the warehouse ordering picking problem.

In this problem, given a team of agents and dynamically arriving orders, the goal is to find a policy

that maximises the expected throughput of items over a long horizon. We first begin by showing

how solving this class of problem as a vehicle routing problem is difficult. Subsequently, we define

a queueing-based problem formulation that is more manageable to solve in the following sections.

5.2.1 Vehicle routing formulation

The order-picking problem has been described as a vehicle routing problem. We define warehouse-

order picking as a vehicle routing problem and show that this more generic definition can be

improved upon by considering the properties of the problem more carefully.
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Given a set of n demands D = {1, . . . , n} and K agents. Where each agent starts at the depot

and then visits a subset of demands and returns. All demands can be visited exactly once. Each

agent has a maximum capacity ofQ, limiting the number of possible demands that can be serviced

before returning to the depot. Representing the environment as a complete graphG(V, E) of which

the set of demands are a subset of the overall possible vertices D ⊂ V for notation’s sake, we say

the depot is vertex 0 and vertex n + 1. This allows the construction of routes that go from 0 to

n+1. The set E contains the edges between each pair of vertices with an associated cost cij . Each

demand has an associated service cost of qi > 0, with the cost of the depot vertices set to 0 q0 = 0

and qn + 1 = 0. The objective for a CVRP is to find a set of minimal-cost routes that service all

the demands, if possible.

Additionally, the time window component introduces a temporal component to the CVRP/VRP;

we define a time window as [wa
i , w

b
i ], which defines the start time at node i as wa

i and needs to

be completed before wb
i . For the rest of the temporal components, we define a service time si

for each node and a travel time tij for each edge in the graph. Let Mij be a sufficiently large

value to ensure that jobs are completed on time Mij − max(wb
i − wa

j ). We define the decision

variables of the problem. Let xij be a binary decision variable representing if an edge is taken in

the routes. Let yi be a continuous decision variable representing the accumulated demand of the

route that goes from the depot to vertex i, including vertex i. Subsequently, for the time window

form, let wi be a continuous decision variable representing the time at which service starts at node

i. Finally, using the above, we can define the Capacitated Vehicle Routing Problem with Time

Windows (CVRPTW) problem as follows:
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min

n+1∑
i=0

n+1∑
j=0

cijxij (5.1a)

subject to
n+1∑

j=1,j ̸=0

xij ≤ 1 i = 1, . . . , n, (5.1b)

n∑
i=0,i ̸=h

xih −
n∑

j=1,i ̸=h

xhj = 0 h = 1, . . . , n, (5.1c)

n∑
j=1

x0j ≤ K, (5.1d)

yj ≥ yi + qjxij −Q(1− xij), i, j = 1, . . . , n+ 1, (5.1e)

qi ≤ yi ≤ Q, i = 0, . . . , n+ 1, (5.1f)

wj ≥ wi + (si + tij)xij −Mij(1− xij), i = 0, . . . , n, j = 1, . . . , n+ 1, (5.1g)

wa
i ≤ wi ≤ wb

i , i = 0, . . . , n+ 1, (5.1h)

yi ∈ R+, (5.1i)

wi ∈ R+, (5.1j)

xij ∈ {0, 1}. (5.1k)

A brief description of the constraints are: Equation 5.1a is the cost-minimising objective, and since

the cost is the distance travelled, it is the same as minimising total time. Constraint 5.1b ensures

that each demand is serviced only once. Constraint 5.1c guarantees the flow of agents if an agent

arrives at node h, then it must depart from this node; it cannot teleport around. Constraint 5.1d

is used to cap the maximum number of routes to K, so at least K agents need to be allocated.

Constraint 5.1e Constraint 5.1f are used to eliminate sub-tours and to ensure that the capacity

constraints are respected. Constraint 5.1g and Constraint 5.1h are used to ensure that a job cannot

start before its start time and that travel time between jobs is respected Constraint 5.1k the integer

decision variable saying if the edge from i to j is taken. This formulation can be solved in a

number of ways, and there is a large body of literature on solving this class of problems. However,

these types of solutions do not scale well. Additionally, this formulation currently does not have a

concept of stochastic tasks.

Complexity discussion
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To extend the CVPRTW problem definition to work with stochastic tasks, the arrival times of the

tasks would need to be known. The set of demands D is unknown, and the time windows they

may arrive at are also unknown. Without knowing these, the best you can do is either predict the

future (which is infeasible for this problem) or solve the problem using existing demands and then

replan as new demands arrive. The integration of newly arriving orders and replanning has been

attempted in the literature but has been shown to perform poorly as the problem scales and the

arrival rate of orders increases. This breakdown occurs due to the complexity of solving the initial

problem each time and/or the plans not being created while considering the potential future arrival

of demands.

This is why replanning ignores the unknown future demands and serves what is known here and

now. This approach is sufficient for some instances of the problem, but if the rate of dynamically

arriving demands is high, the solution quality suffers greatly due to myopia and can be deadlocked.

Predicting the future and preemption can be used to alleviate some of this downside if it is possible

to model a distribution of future demands. If we had an oracle that could perfectly tell you the

upcoming demands, then the stochastic problem would be identical to the deterministic problem.

Unfortunately, this is not feasible in practice. However, if we assume that the historical demand

data is predictive of future demands, then we can use them to create a policy that will do well

considering the wide variety of possible realised futures.

5.2.2 Dynamic warehouse order picking

Suppose we have a two-dimensional warehouse W ∈ R2 with a known layout of the shelves and

obstacles O ⊂ W as depicted in Figure 5.1. The warehouse stores a known set of items I =

{I0, I1, . . .} and their pickup locations XI = {x0,x1, · · · } are known in advance. We assume that

the stored quantity for each item is practically infinite, and there exists only one location to pick

up an item I ∈ I (i.e., item Ik can only be picked up at xk). All items in I have the same weight

and size. Items are then dropped off at depot D ∈ W\O to be serviced.

We define an order as a set of item-quantity pairs to be serviced. The order received at time t is

denoted as ot = {{Itk ∈ I, N t
k ∈ Z+}}Ik∈I ∈ O, where O denotes a set of all possible orders (i.e.,

item-quantity pairs). The timed discrete sequence of orders received is denoted as O = ot0ot1 · · · .
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Figure 5.1: Example illustration of a warehouse with robots performing order picking. The black
circles are the item locations that robots must visit to pickup an item. The depot shown as a black
square is where robots must return to drop off their collected items.

We assume that the interarrival time of orders and the item-quantity pair within orders are both

independent and identically distributed. As commonly practiced [249–251],

Order arrivals are modelled as a continuous time Poisson process {P(t)}t∈R+ . The contents of

those orders (i.e., item-quantity pairs) are drawn according to item selection distribution φ and

quantity distribution ψ. Note that the item and quantity distributions can be arbitrary and are often

derived based on a historical dataset of orders. An order is considered serviced when all requested

items are delivered to the depot D.

Items in orders are added to a first-in-first-out (FIFO) queue Q defined as a discrete sequence of

items, denoted as Q(t) = (Ik ∈ I)k∈Z≥0
, where k indicates the indexes of items (i.e., the very

first item added to the queue is denoted as I0). The queue describes the set of items yet serviced

at time t. Therefore, the number of items serviced, denoted as N(t), is k − 1 where k is the

superscript of the next item to be serviced in the queue.

To service the orders received, we deploy m homogeneous robots/agents R = {r0, · · · , rm}

(henceforth called robots for clarity) where the number does not change. Robot ri ∈ R is capable

of carrying Rc items at a time and moves at a constant speed Rt. The time it takes to pick up and
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drop off items are Rp and Rd, respectively. A robot ri ∈ R is assigned a multiset of items from

the queue Q called batch Bi where the number of less than or equal to Rc. Note that a batch may

contain duplicate items. Once robot ri delivers all items in the batch to the depot D, it receives a

new batch. Given a batch Bi for robot ri ∈ R, a policy σi : Bi → (W\O) is used to complete

the batch, where σ ∈ Σ dictates a sequence of positions in environment W; the set of policies

for all robots R is denoted as Σ. The sub-route between two adjacent positions is assumed to

be the collision-free shortest path, which can be easily found using path planning algorithms like

probabilistic roadmap (PRM) [211].

We define the warehouse picking problem as how to allocate i.i.d. arriving orders O and the

corresponding items to robots to maximise the number of items serviced. We formally define the

warehouse picking problem as follows:

Problem 5.1 (Dynamic Warehouse Order Picking Problem). Given a set of items I and their

locations X in a warehouse W with obstacles and shelves O, and the spatio-temporal process P

that describes the order and the time of arrival, find a set of optimal policies Σ∗ = {σ∗0, · · · , σ∗m}

for service robots R with capacity Rc that maximises the expected throughput of servicing items

over a long time horizon, such that

Σ∗ = argmax
Σ

lim
t→∞

E
[
N(t)

t

]
, (5.2)

where robots R receives new batches of items from the queue Q.

5.3 Distributed equitable partitioning

Partitioning of the environment is a well-known approach for solving DVRP problems with infi-

nite capacity [46], and limited capacity [178]; we extend it to work in warehouse order-picking

environments. To solve the dynamic warehouse order picking problem, we consider a class of

policies that partition the environment W into a set of m regions P1, . . . , Pm ∈ M, where the

pickup locations of items within each partition are assigned to a robot. The key idea is that the

maximum expected throughput of servicing items can be achieved by minimising the expected

wait time of the orders. This minimisation can be done by servicing batches of orders in each

partition at around the amount of time it takes for a new batch to arrive. This arrival rate is dictated
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by the spatio-temporal process P . The service rate is controlled by the partitions and the policy

that robots follow. A robot ri ∈ R assigned to a partition P that is characterised by a subset

of items Ii ⊂ I in the warehouse and the corresponding policy σi(Bi) that dictates the order of

pickups.

The distributed warehouse partitioning problem is decomposed into three sub-problems. We first

formally define a service policy and associated cost metric for each robot that evaluates the ex-

pected service time for a batch. We then present a sampling-based evaluation of the cost metric

given an arbitrary spatio-temporal process. We argue that our framework can work with any type

of spatial distribution that describes which items are within an order. Finally, we use the sampling-

based cost metric to iteratively find a set of equitable partitions that perform well for the defined

service policies for robots.

Finding the expected service time for a batch requires defining the robots’ policy to do the ser-

vicing. The choice of policy can affect the partitions that need to be created. Our first step is to

compute the expected cost of servicing demands using this policy and then subsequently find the

partitions that give the best performance.

5.3.1 Cost metric for partitions

Our servicing policy is to allocate a robot to each partition. Subsequently, each robot is responsible

for servicing demands that arrive to vertices inside their partition. If there are no demands to

service in partition i, then the robot i should wait at the point that minimises the travel distance to

each pick location in its partition. This can be found by computing the centroid of the set Pi. If

there are demands to service in the queue of the robot, the robot waits until a batch of size Rc of

demands have arrived. These batches are then added to a queue and served according to a FIFO

discipline. To service a batch, the robot computes a shortest tour consisting of the demands in

the batch and the depot and then follows the tour to service the demands. Using standard Kendall

notation [159], this system is classified as a G/G/1 queue due to a general arrival time distribution,

a general service time distribution, and each queue is serviced by a single robot.

We denote the arrival rate in the set Pi as λi, where λi =
∑

xu∈Pi
λu. Recall that the Poisson

process is defined by the Poisson distribution. The Erlang distribution is complementary to the
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Poisson distribution, and it counts the amount of time until the occurrence of a fixed number of

events. Hence, observe that the inter-arrival times for batches of size Rc are randomly distributed

according to an Erlang distribution with mean Rc/λi and variance Rc/λ
2
i . Let E[Li] be the ex-

pected tour length to service a batch of size Rc in partition i and RcRp be the total time in each

tour for scanning and picking-up the items. Then the expected time to service a demand arriving

in partition i is

Ti =
1

2
Rc/λi +

1

2
(E[Li] +RcRp) +Qi, (5.3)

where Qi is the expected wait time in the queue of robot i. The queue of each robot is a G/G/1

queue with arrival rate λi/Rc. In the heavy load regime where the batches arrive frequently, the

time to form a batch in each robot’s queue is negligible compared to the expected time to service

the demands in the queue, i.e. servicing time dominates waiting time. Now, let c2a denote the

variance of arrival times to a queue of a robot, and c2s denote the variance of service times. Then

an approximation for the expected wait time of a batch in a G/G/1 queue is provided by Kingman’s

formula [252], i.e.,

Qi ≈
λi(E[Li] +RcRp)

Rc − λi(E[Li] +RcRp)

(
Rc/λ

2
i + c2s
2

)
(E[Li] +RcRp). (5.4)

Note that fulfilling an order may consist of picking from different sets in the partition. Therefore,

for any given partition P1, . . . , Pm of the environment, the number of items picked by robot i

with the highest waiting time Qi is a bottleneck on the total number of orders fulfilled in the

warehouse. Therefore, the goal is to find a partition of the environment which minimizes the

maximum expected wait time of the demands across all partitions, i.e.,

min
P1,...,Pm

max
i∈[m]

Ti ≈ min
P1,...,Pm

max
i∈[m]

1

2
(E[Li] +RcRp) +Qi. (5.5)

Observe that for a given partition of the warehouse P1, . . . , Pm, in the heavy load regime, the

expected wait time for a demand is a monotonically increasing function of λi(E[Li] + RcRp).
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Therefore, the problem of minimising the maximum expected wait time is equivalent to

min
P1,...,Pm

max
i∈[m]

λi(E[Li] +RcRp). (5.6)

From (5.5), it can be seen that as the size of the set Pi increases, the time to form a batch decreases,

and the expected tour lengths increase. This, combined with the desire to operate with as few

robots as possible, motivates finding partitions that work near heavy load, i.e., 0.5 ≤ λRp +

2λr̄
mRc

≤ 1 where r̄ is the expected distance of items to depot [178]. It is shown that under heavy

loading regimes, the unbiased Travelling Salesman Problem (TSP) policy is optimal for servicing

demands [46, 253]. This motivates computing partitions that are designed to balance the length of

the tour and are equitable to optimise (5.5).

5.3.2 Equitable workload partitioning

Our approach for computing regions of equal workload consists of initialising a set of partitions

and then using an iterative local optimisation method to adjust these partitions until they are equi-

table according to our cost metric.

Recall that the warehouse stores a known set of items I = {I0, · · · } and their pickup loca-

tions XI = {x0, · · · } and we want to partition the warehouse and the corresponding pickup

locations into P partitions Ii ⊂ I

We create partitions by partitioning the warehouse using a generalised Voronoi diagram called a

power diagram. A power diagram consists of power cells that are defined by a generator location

and a weight parameter. The cell contains all points that have the lowest power distance (weighted

distance) between the point and a generator. The power cells are used to compute the partitioning

by allocating each point to the power cell that has the lowest power.

More formally, let each partition contain a power cell defined as Ci = (gi, wi) where gi is the

generator, and wi is the weight for partition i. Let ωi be the centroid of the partition Ci that

minimises the distance to each pickup location.
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To allocate a pickup location x to the power cellCi that describes the partition i, we use a modified

version of the power of a point equation [248],

P(x, Ci) = p2x − w2
i . (5.7)

We define p2x as the collision-free shortest path cost in the warehouse W for traversing from the

centroid ωi of power cell Ci to pickup location x.

Calculating the cost of time to service a batch for an arbitrary distribution of items in orders can be

analytically difficult or overly specific. Therefore, we use sampling to compute an approximation

of the time it takes to service a batch. For a given finite length horizon H , let S be the set of items

that are contained in a set of sample orders drawn from a simulation of the spatio-temporal Poisson

process P . Using the modified power of a point equation (5.7) the sampled item demands can be

allocated to the partitions by the following

P s
i = {s ∈ S|P(s, Ci) < P(s, Cj), ∀Cj ∈ C − {Ci}}. (5.8)

Using these partitions and allocated samples, we can compute an approximation of the batch ser-

vice time. The cost of servicing a batch consists of the expected tour length E[Li] to service a

batch of size Rc, the time it takes to return to the depot, and how long it takes for a batch to form.

To compute this cost, we use approximations: the time for batches to form is approximated as the

number of batches formed over the finite horizon H , the depot returns are assumed to be from the

centroid of the cell ωi, and the expected tour lengths are found by computing the expected cost of

TSPs over random batches selected from the set of samples allocated to a partition. Formally, the

expected tour length is equal to

E[Li] = E(TSP(P s
i , ωi, Rc) + V (ωi)). (5.9)

Let TSP (P s
i , ωi, Rc) be an approximate polynomial time solution for the TSP that begins and

ends at ωi while making a tour over Rc samples randomly selected from P s
i . The function V

returns the round trip cost of returning to the depot from the power cell’s waiting point ωi. Then

using that expected tour length and the other components, the cost to service a region over the



122 Chapter 5. Stochastic Tasks

horizon is

Zi =
|P s

i |
Rc

(RcRp + E[Li]) . (5.10)

5.3.3 Iterative optimisation

This cost is then used in an iterative local optimisation method to adjust the weights of the par-

titions based on their cost relative to their neighbours to produce the set of equitable partitions

with respect to (5.10). Our partitioning algorithm produces a fixed number of partitions, and we

allocate one robot per partition, so it is initialised by creating a partition for each of the m robots.

With no loss of generality, we chose to initialise the partitions as approximately spatially equal

since, in practice, it works well. The initial partitions are found using the Lloyds algorithm with

the kmeans++ seeding algorithm to create the initial partitions P that are approximately equal in

size. A power cell is created for each partition and is initialised with equal weight. These initial

weights are the starting point for optimisation.

The initial partitions are roughly equitably sized. However, they are not balanced according to the

expected cost of servicing a partition (5.10). To balance the costs of servicing these partitions,

we iteratively optimise neighbourhoods by adjusting their relative power cell weights. To perform

the optimisation, let W be a tuple containing the weight of each power cell W = (w1, . . . , wm).

Then, the cost of servicing all the regions is

Hv(W ) =
m∑
i=1

wi.

The difference in workload between partitions is computed as

RCi =
∑
j∈Ni

1

2γij

(
1

wj
− 1

wi

)
/Hv(W ),

where γij = ||gj − gi||. Ni is the set of neighbouring partitions for partition i. This local difference

is used to adjust the weights according to

w′
i = RCi · α+ wi
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where α is a scalar selected to control the step size of each iteration. The new weights are used to

update the weight tuple W that defines the new iteration of power cells:

W = (w′
1, . . . , w

′
m).

The set of weights is updated simultaneously then the new partition allocations are computed. This

method results in changing the weights by their portion of the total cost and their cost relative to

their neighbours. This results in partitions that are more expensive than their neighbours and make

up more of the total cost getting a negative weight which shrinks their partition size. Similarly,

lower-cost partitions get a positive weight and increase their partition size.

This process continues until the allotted calculation time elapses or the system stabilises on a local

minimum.

5.4 Analysis

The overall problem is computationally hard, mainly due to multiple agents and order uncertainty

in space and time. In order to address the inherent challenge, we presented a number of heuristics

and approximations. For example, we randomly sample from the process P rather than finding

an analytical solution to simulate demand. Therefore, our sampling-based approach applies to any

warehouse setting with complex and arbitrary representations of order estimates. On top of that,

this approach is known to work well in practice [105].

Solving a TSP optimally is NP-Hard, so using it as a part of the partitioning cost seems detrimen-

tal. However, for conventional rectangle warehouse layouts, an optimal TSP can be computed in

linear time [254]. For more generic warehouses, there still exist good quality polynomial-time

approximations [255].

Since the partitioning algorithm produces valid partitions each iteration, it is anytime and can

be stopped for the current best solution or left to run for iteratively improved solutions. This is

possible because the computational complexity for computing an iteration is polynomial and can

be run for a finite number of iterations, all of which give a solution.
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Our method scales with the problem size and number of robots due to computing the optimisation

over local neighbourhoods; it only needs to consider a subset of neighbouring partitions for each

partition instead of all pairwise combinations. In addition, we avoid the batching and allocation

problems with our policy choice. Online, each robot only needs to consider jobs inside their

partition and follow the policy to service them. The decomposition into a series of single robot

problems avoids needing to plan in the joint space.

Figure 5.2: Figure showing the change in the distance around the warehouse according to different
cost metrics. The distance is shown as a heat map originating from the red star to all points
in the warehouse. Column 1 is our distance metric, column 2 is L2 norm (Euclidian), column
3 is L1 norm (manhattan distance). Both L1 and L2 norm are computing without obstacles to
demonstrate that the distance considering the obstacles is different to a distance metric that respects
the additional cost of routing around shelves.
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Computing the TSP around the warehouse and the shortest path between points needs to be com-

puted according to a cost metric. We show some examples of different cost metrics in Figure 5.2;

the leftmost column is our cost metric, the middle column is the L2 norm (Euclidian), and the

rightmost column 3 is the L1 norm (manhattan distance). From these plots, it can be seen that the

cost of traversing around shelves is almost like the L2 norm, but it changes based on the location

of the agent inside the shelves. Changing the metric used changes the cost between points which

in turn can change the partitions that are created. This phenomenon is explored further in the

partitioning results Section 5.5.3.

5.5 Simulation

This section outlines the setup for the simulation environment that we use to validate our algo-

rithms’ performance and use these empirical results to validate our algorithm. We also provide

some insight into the effect of various parameters on the performance of our method vs a typical

order-picking process or the previous equitable partitioning method. Finally, we conclude with an

analysis demonstrating our method’s effectiveness.

5.5.1 Simulation setup

Our simulation environment consists of 5-robot (pickers) operating in a two hundred-meter by

two hundred-meter picking area within a two-block (rows are split into two blocks) warehouse

with a two-meter spacing between rows and 1200 pick locations. The geometry of our simulated

warehouse is based on a typical fulfilment warehouse owned by a logistics company that does

manual-picker-to-part operations [199]. The parameters we selected for our simulations are sim-

ilar to those used in multiple previous works addressing the dynamic warehouse order-picking

problem. Additionally, our work does not consider the problem of selecting between multiple lo-

cations for the same item or the storage capacity of a specific item at a location, as these are not

concerns for certain classes of warehousing operations [138, 194, 198, 256].

The spatio-temporal compound Poisson process {P(t)}t∈R+ is defined time-intensity parameter λ.

For the simulations in this work, we model the item-quantity ψ ∼ Binomial(n, p) as a binomial

distribution with a sample size n of 5 and a probability of 0.625 which is roughly equivalent to a
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normal distribution with a mean of 5 and variance of 2. The item spatial order density function ϕ

determines the likelihood for each item to be included in the order is modelled as a discrete uniform

distribution ϕ. We compare how the tested methods perform under heavy loading 0.5 ≤ ρ ≤ 1.

The robots in our simulation have a varying amount of capacity Rp depending on the simulation.

The robot travels at a constant walking speed of 1 meter per second. We assume it takes a constant

five seconds per item to pickup Rp and drop-off Rd. In this work, to find the warehouse traver-

sal road map, we use the Fast Marching Tree(FMT) algorithm [257] and build this map offline.

For this work, we assume that all items are similarly sized and, hence, have a capacity cost of

1. Additionally, we ignore changes in speed caused by moving carts around corners and robots

blocking rows with their carts. Finally, we assume that all robots are homogeneous. The hardware

used to perform the experimental evaluation is a desktop computer with a 17-6700 CPU and 32Gb

system memory, running a 64-bit Ubuntu 15.10 operating system. The software was written in

64-bit python 3.6 The experimental results are averages of 60 simulation trials (approximately two

months of operation) that are 10-hours long in the same environment with different sets of orders

drawn from the Poisson process for each day. Each algorithm is tested for each day using the

same set of demands drawn from the Poisson process to ensure that the only factor changing is the

algorithm the robot team uses to service the dynamically arriving unknown demands.

The equitable partitioning algorithm we compare against is from [46] where the partitions are eq-

uitable with respect to ϕ, but it has no considerations for the obstacles by using Euclidean distance

rather than the obstacle-free route distance, and it does not account for depot returns. However,

once these partitions are found, they follow the same servicing policy as our algorithm, so the main

point of comparison is how the partitions are found. To identify what features of our method are

most beneficial and gain some comparative insight, we compare our method against two methods

found in practice: single-order with optimal routing and equitable partitioning without modifica-

tion. Single-order picking is the policy where whole orders are naively allocated to a robot without

consideration for future orders or sharing work between robots. However, it is still practised by

industry due to its simplicity. For the single-order method, a robot is allocated a batch of items,

and it follows a near-optimal route found by a TSP solver and visits the items on their list, then

returns to the depot. By comparing these two methods, we can understand if the partition-based

policy or the balancing of partitions alone has a crucial role in the performance of the system and

demonstrate the importance of selecting an appropriate cost metric.
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Figure 5.3: Partitions created for five robots with return depot D (red asterisk) showing how our
method (upper left corner) differs from existing methods. The results show that considering depot
return in the cost metric in (5.10) induces larger partitions near the depot. Similarly, the layout of
the warehouse affects the partition since it affects the practical travel distance.

5.5.2 Cost metric component effect

To examine the effect of different cost metric components on the partitions created, we note that

(5.10) consists of two main components of cost. First, the expected tour length in the warehouse

graph to service demands, which we call TSP and the cost to return to the depot to drop off

the collected items, we call depot return. We disable the TSP cost component by replacing it

with obstacle-free Euclidean distance when computing the expected tour lengths and setting the

depot return costs to 0. In Figure 5.3, we show the different partitions that are generated when

different parts of the cost are changed. Disabling the TSP cost component produces partitions

shaped according to Euclidean distance (ignoring obstacles) to the power generator instead of

using the routes in the warehouse. Turning off the depot returns means that partitions are sized

evenly throughout the warehouse. When depot returns are used, the partitions are larger when
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closer to the depot than further away, which implies that the closer-to-depot partitions can cover

more item locations for the same amount of work. This test helps to explain the performance

differences between our method and the equitable partitions produced by the Bullo method. Their

partitions are equivalent to the disabled TSP and disabled depot return.

(a) Rp = 1 (b) Rp = 3 (c) Rp = 5

(d) Rp = 1 (e) Rp = 3 (f) Rp = 5

Figure 5.4: (a, b, c) Equitable partitions produced by our method for five robots with capaci-
ties Rp = {1, 2, 3}; capacity affects the partitions as capacity increases the importance of depot
returns decreases. Partition 3 (in yellow) becomes smaller at higher capacity, while Partition 0
becomes larger. (d,e,f) Normalised costs of each partition over iterations. Tour costs for a single
partition may increase to reduce the depot return costs for another partition, resulting in lower
overall totals.

5.5.3 Partitioning balance results

To examine the quality of our equal work partitioning, we tested a scenario with five robots and

allowed the algorithm to run, then observed the costs for each partition after each iteration. The

results of 500 iterations of the algorithm for various capacities are shown in Figure 5.4. The first

row shows that the capacity of the robots changes the partitions that the algorithm produces; as

capacity increases, the importance of depot returns decreases. This effect can be seen by observing
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(a) Rp = 1 (b) Rp = 3 (c) Rp = 5

Figure 5.5: Performance comparison between our method at different iterations and Bullo [46]
and order picking for five robots with varying capacity Rp = {1, 2, 3}, where order picking is a
baseline greedy method without partitions. The improvement as we increase the capacity RP is
shown in (a, b, c).

that partition labelled three becomes smaller at a higher capacity, and similarly, partition 0 becomes

slightly larger.

The second row shows that initially, the amount of work needed to service each partition is quite

unbalanced, with the most expensive partition taking nearly six times the amount of work to serve

as the least expensive according to our cost metric. After 500 rounds, our algorithm reduces the

gap to within 5-10%; these results are consistent with most of our tested scenarios. Our algo-

rithm produces near-balanced results that, when used in practice, can produce high-quality im-

provements over the unbalanced initial partition configuration. This result demonstrates that the

gradient descent balances the workload between partitions and that the anytime aspect of the al-

gorithm is useful. Additionally, It can be seen that tour costs for a single partition may increase

to reduce the depot return costs for another partition, which results in overall lower totals. Recall

that increasing the partition size increases the frequency of batch forming and the expected tour

cost. Therefore, growing partition three and shrinking partition 0 allow the system to increase

the frequency that batches form in 3 and reduce how often partition 0 has to return to the depot,

which is comparatively more expensive than returning from partition 3. This result shows that our

method can balance the costs between partitions through the growing and shrinking of the size of

neighbouring partitions.
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5.5.4 Order density partitioning results

To illustrate how the partitions’ shapes can vary with order density, we present partitioning results

under different order density distributions. We model the item spatial order density function ϕ,

as a truncated discredited normal distribution. This allows us to explore orders containing items

predominantly localised in a specific area. We examine two scenarios where items in orders are

mostly selected from either the bottom left of the warehouse (near the depot) or the top right (far

from the depot). We center the distribution at µx = 50, µy = 50 and µx = 150, µy = 150. To

ensure the distribution spares the entire warehouse, the standard deviation needs to be large enough

so that the entire workspace is within three standard deviations to allow each item a sufficient

chance of being ordered. Using the selected distribution centres, the needed standard deviation

can be computed using σ =
√

(σx − 0)2 + (σy − 0)2/3 =
√

(150− 0)2 + (150− 0)2/3 ≈ 73

so the standard deviation needs to be larger than 73. Hence, we set σx = σy = 75.

Using the aforementioned distributions, we present the partitioning results for the bottom-left dis-

tribution in Figure 5.7 and the top-right distribution in Figure 5.6. It can be seen that the partitions

created using these distributions vary and are differently shaped from those created using a uni-

form distribution, such as those in Figure 5.4. The initial state from the weighted Voronoi reflects

the underlying distribution, but our optimisation process refines this initial partitioning to include

the impact of travel time. Notable, even with non-uniform distributions, the optimisation shrinks

partitions further from the depot and expands those closer, demonstrating the influence of the travel

time component.

(a) Initial state (b) After 500 iterations (c) Order density distribution

Figure 5.6: Partitions created for 5 robots with the spatial order distribution defined as a Gaussian
distribution centered in the top right of the warehouse far from the depot.
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(a) Initial state (b) After 500 iterations (c) Order density distribution

Figure 5.7: Partitions created for 5 robots with the spatial order distribution defined as a Gaussian
distribution centered in the bottom left of the warehouse near the depot.

5.5.5 Orders picked results

These box plots were created from sixty runs of a 10-hour workday simulation for 5-robots with

varying capacities. In addition, we tested our servicing policy on the partitions generated by our

gradient descent algorithm at several iterations to demonstrate that with more iterations, perfor-

mance should improve if the metric being balanced is applicable.

We compare against the equitable partitions from literature called ‘Bullo’ here. The baseline

comparison order-picking is not a partitioning-based method; it greedily allocates an order to an

idle robot and adds it to the queue to allocate later when a robot becomes free.

Figure 5.5(a) shows the results for robots with one capacity. In this configuration, our method

performs similarly to order-picking as the robots constantly traverse back and forth from their

partitions to the depot. These constant depot returns reduce the opportunity for improvement by

minimising the travel distance to subsequent items inside a batch. Figure 5.5(b) shows the results

for robots with three-capacity. In this scenario, the benefit of having robots distributed around the

warehouse becomes apparent as they can reduce wasted travel by being closer to demands when

they arrive. Additionally, even the less specific ‘Bullo’ partitioning outperforms greedy allocation.

Lastly, Figure 5.5(c) shows that these results continue to hold as you increase capacity. Our method

can pick up 10-30% more orders over a simulated workday in the higher capacity cases.
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5.6 Summary

This chapter presented a framework for the dynamic warehouse order-picking problem. We demon-

strated how modelling as a generic vehicle routing problem limits the scalability and how the type

and method of replanning need to be carefully considered. Subsequently, we defined the problem

by modelling the warehouse and the arrival of orders to pick as a Poisson process that generates

items from an arbitrary distribution. To solve the servicing of the dynamically arriving demands,

we need to find a policy that maximises throughput. To find the policy, we developed a computa-

tionally efficient partitioning-based algorithm that creates regions of equal work suitable for near

heavy-load regimes. Using a simple service policy, a robot is then allocated to each partition to

service dynamically arriving jobs. We have shown analytically that the method is near optimal

for heavy loading regimes. The important contribution of our method is that we address impor-

tant aspects such as travel time to the depot and non-Euclidean space, which is often neglected.

We validated the approach in simulations over a two-month operation under varying capacity con-

straints; the proposed framework is proven to outperform typical single-order or previous equitable

partition methods under heavy loading conditions.

This chapter presented a solution to produce schedules for problems with stochastic tasks. The

dynamic warehouse-order picking requires optimising throughput for a scenario where the tasks

arrive dynamically throughout the workday. This uncertainty was dealt with by modelling a

stochastic process that describes the orders and then creating a policy (instead of a specific plan)

that performs well given the operational reality described by that process. Maximising the sys-

tem’s throughput described by that process means that our method accounts for many potential

sequences of tasks rather than planning over what is available now. The key idea is to define the

policy so that all agents are working equally and that agents are near where work is expected to

arrive, thus utilising the team effectively and reducing the cost of completing the work.

In the next chapter, we examine the final component of our probabilistic scheduling framework,

scheduling with stochastic resources. In these problems, the resources consumed by completing

tasks are replenished through a stochastic process. These problems differ from stochastic task

problems because the tasks are fully known, but the plan can become infeasible due to insufficient

resources when trying to complete a task. Initially, it seems like stochastic constraint and stochastic

resource problems are the same. However, stochastic resource problems differ from stochastic
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constraint problems, as the process that causes schedules to become infeasible is coupled with the

resources consumed through task execution rather than the constraints. Resources are accumulated

over time and can be spent to service tasks, so the ordering and timing of tasks are paramount.

Whereas in constraint problems, there is no accumulation, and the plans need to deal with the

changing constraints.





Chapter 6

Stochastic Resources

In this chapter, we address scheduling problems that have stochastic resources. In a subset of

scheduling problems, resources are required to complete tasks and are consumed during the work.

The resources are considered stochastic when a stochastic process replenishes them, thus making it

uncertain if enough resources will be available when completing a task in the future. The process of

obtaining more resources can be uncertain for various reasons, such as unclear production amounts

or arrival times.

This fourth component of our probabilistic scheduling framework differs from the other three types

of stochasticity presented so far in this thesis. The objective is deterministic, and the tasks are fully

known, but the plan can become infeasible due to insufficient resources when trying to complete

a task. This makes it most similar to stochastic constraints, but the key difference lies in how

constraints and resources interact with the planning. The consumption of resources is based on the

planned actions and replenished by a stochastic process. In contrast, constraints change over time

in response to the change in the operating environment regardless of the actions taken.

We explore stochastic scheduling problems by introducing the risk-bounded stochastic resource

scheduling problem. This problem is a variant of a scheduling problem in which a stochastic

process replenishes the resources consumed by jobs, and the produced schedules have a bounded

acceptable risk. Our method is based on taking high-quality forecasts of the resource production

and then perturbing them into a set of alternative forecasts (with associated probabilities) using the

expected forecast precision. This set of forecasts and their probability of occurring is then used to

135
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plan a schedule with a bounded amount of risk. This method is applied to a real-world problem

of scheduling operations for a hydrogen research facility that consumes the resources produced by

uncertain wind power. Finally, we empirically evaluate our approach through extensive backtests.

6.1 Overview

In this chapter, we consider the problem of scheduling a set of jobs with a mixture of typical deter-

ministic scheduling constraints and a stochastic resource constraint. The deterministic constraints

we consider are the time bounds of the jobs, the amount of resources consumed by a job, and the

number of jobs that can be processed in parallel. A stochastic resource is a replenishable resource

such as energy or fuel produced through a stochastic process. Additionally, we are interested in

creating schedules that have a bounded risk of failure when executed. A scheduling failure occurs

when the produced schedule exhausts its supply of resources before all scheduled jobs have been

completed.

The key challenge of this class of problems is that it can be difficult to model the stochastic process

that produces the replenishable resource. It would seem possible to estimate the expected amount

of resources available at each point in time and then find a schedule that maximises the reward

using that expectation. However, it is not sufficient to summarise the state of the system as the ex-

pected amount of resources because many sequences of production can result in the same amount

of resources at the given time with differing amounts of resources available at previous times. To

validate that the schedule stays valid throughout the entire execution of the schedule, a distribution

of the resource must be estimated. Additionally, this scheduling problem is non-Markovian due

to the dependence of the amount of resources on the history of previous resource production and

consumption.

In this work, we explore a real-world problem of scheduling operations for a facility that relies

on hydrogen produced by wind power. Wind power is inherently uncertain and difficult to pre-

dict. Additionally, for operational reasons, we want to minimise the risk of cancelling jobs that

have been committed to, and the facility needs to commit to schedules a week ahead. This fu-

ture commitment adds complexity to the scheduling problem because forecasting weather over
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longer horizons becomes more difficult due to increased complexity and removes the possibility

of reacting to changing system states.

This problem resembles the renewable energy planning and stochastic resource problems we ex-

plored in Section 2.2. However, none of the existing methods are entirely suitable for this problem

directly. Existing risk-based methods such as conditional value-at-risk [258] and robust optimisa-

tion [259] require modelling the expected distribution of rewards to quantify risk. These methods

tend to have strong assumptions such as autocorrelation [260] or being able to model as simple

Gaussian or Weibull) statistical distributions [151], which are not practical to apply on the week

ahead wind forecast. Wind-powered stochastic resource production is complex, so it cannot be

sufficiently modelled using a simple distribution. While data-driven approaches that fit synthetic

distributions and historical data offer an alternative, they face their limitations when trying to

model a non-stationary, highly non-linear process like wind accurately. Existing methods are in-

sufficient to meet these constraints, and most of the existing literature focuses on using longer-term

predictions for strategic decisions [261], which do not require the accuracy and sampling rate pre-

dictions needed here. Moreover, typically, they plan a single day [153–155, 262, 263] or rely on

recourse to adjust their plans if the schedule becomes infeasible [152]; the problem defined here

does not allow these changes due to the commitment requirement. The ideal method must handle

medium-term (one week) forecasting at a fine-grained sampling rate (hours) and accommodate the

operation constraints of green hydrogen production. To address these challenges, we propose a

solution that decouples the forecasting and scheduling components.

Instead of trying to model and predict wind ourselves, we use a forecast from a different model

and then model the expected error between the forecast we are using and the real wind. We treat

the forecasting data as a prior estimate of the wind, which acknowledges that modern forecasting

methods are reasonably accurate but not infallible, so we use them with the expectation that they

will have some errors. This consideration of error allows the trade-off between optimality and

operational risk to be considered. Assuming more errors in the schedule should result in more

conservative resource usage. At the same time, higher levels of trust will give a greater reward

and a higher risk of failure if the forecasts are incorrect. This allows us to leverage any suitable

forecaster that delivers a good quality forecast with sufficiently dense predictions, allowing us

to use complex forecasting models and produce schedules with the constraints and robustness

required.
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We propose a method to address the risk-bounded stochastic resource scheduling problem that

works by taking a forecast of the upcoming time horizon and applying perturbations to produce

multiple scenarios with an associated likelihood of each. To minimise risk, we use the forecast

as an upper bound, and the perturbations create alternative forecasts that predict lower amounts

of production. This one-sided bounding avoids the failure cases that occur due to schedules over-

allocating resources. Subsequently, we estimate the risk of a schedule as the total probability of

the forecasts that fail. To find a schedule, these scenarios, their likelihoods and the set of jobs are

passed into a sampling-based planner, which generates feasible schedules that fail in an acceptable

number of cases.

Formally, we create the perturbed forecast sequences and their associated likelihoods by enumerat-

ing a Bernoulli process to modify the original forecast and then produce a schedule using a Monte

Carlo Tree Search (MCTS). To create the perturbed forecasts, we discretise the original forecast

into a series of binary variables over a fixed period of windows representing whether resource

production occurs. We estimate the expected precision of the forecast and use this to generate

biased sequences. To create the perturbation sequences, we enumerate a binary tree to represent

all possible outcomes of the Bernoulli process with success probability related to the expected

precision of the forecast. These sequences are then used to mask out the positive predictions of

the forecast. This works because it assumes errors come in blocks related to discretisation win-

dow size. It assigns a higher probability to sequences close to the forecast and less to ones farther

away. Sequences and their probabilities are then used in a Monte Carlo Tree Search (MCTS) al-

gorithm to produce valid schedules that meet the constraints. A benefit of this algorithm is that it

has the anytime property and has a fast computation speed, so it can be used to evaluate various

parameterisations of the problem.

Using this method, we can produce valid near-optimal schedules quickly with an acceptable level

of risk/robustness. Our approach to solving this problem offers several vital contributions over the

existing methods: we formally define the risk-constrained stochastic scheduling problem, intro-

duce a new method to produce scenarios with associated probabilities, demonstrate a high-quality

scheduler that is able to meet the specified constraints, and finally demonstrated our approaches

ability to produce near-optimal schedules on a real-world dataset.



Chapter 6. Stochastic Resources 139

6.1.1 Chapter outline

The remainder is this chapter is organised as follows. Section 6.2 formally defines the resource

scheduling problem that would be solved if we had perfect information. Subsequently, it defines

the stochastic resource variant with additional risk constraints. Section 6.3 describes our process to

solve the stochastic resource risk-constrained scheduling problem. It first outlines our process of

creating the perturbed forecasts and their likelihoods that are used in the scheduler as stand-ins for

the stochastic process. Next, we explain our sampling-based scheduler algorithm that produces the

schedules. Next, Section 6.4 describes the real-world green hydrogen research scheduling prob-

lem and presents simulation experiments that empirically prove the effectiveness of our proposed

method. Finally, Section 6.5 summarises the chapter.

6.2 Problem formulation

We consider the problem of scheduling jobs that consume a resource produced from some process

with an uncertain outcome, which subsequently makes the available amount of resource stochas-

tic. This uncertain amount of resources requires consideration of the likelihood of having a given

amount of resources available at any time. We are interested in maximising the utility of complet-

ing jobs while limiting the risk of a schedule that requires more resources than is available. We

define the problem in more detail in the following section.

Given a set J = (J1, J2, . . . , Jn) of n jobs to schedule in a set L = (L1, L2 . . . , Lm) of m

possible homogeneous locations that allow m jobs to be completed in parallel. Each job Ji ∈ J

has an associated resource expense Ei ∈ E that is consumed during the job’s execution, and an

associated reward or utility Ui ∈ U that is gained by completing this job. Let T be the finite

planning horizon (1, 2, . . . , T ) over which the schedule will take place with a total length T .

A schedule consists of a sequence of decisions that represent the allocation of a job to a location

at a specific point in time. Let the set of all possible time, job, and location decisions be X and

from this, define the set of selected decisions that make up a schedule to be X ⊂ X . Subsequently,

xti,l ∈ X means that job Ji is scheduled to start at time t at location Ll. Because the locations

are homogeneous, tracking the allocated locations is unnecessary as long as the method ensures
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that fewer than m jobs are scheduled simultaneously. Therefore, without loss of generality, for

simplicity of the notation, we can define xti ∈ X.

The system has an initial resource budget of B0, and for problems where the budget represents

a physical property such as fuel, stored energy, or inventory, there is a finite maximum bud-

get of Bmax. The additional resource is not stored if the additional production exceeds the

maximum capacity. Given a sequence of expected production of the resource over time C =

(C1, C2, Ct, ..., CT ), whereCt is the amount of production at time t. Similarly, let the total amount

of resources used by a schedule from time t = 0 to time t be ϕ(X, t). Using these definitions, the

capacity at time t can be calculated as follows:

B(C,X, t) =


B0 + Ct − ϕ(X, t) if B0 + Ct − ϕ(X, t) < Bmax

Bmax if B0 + Ct − ϕ(X, t) ≥ Bmax.

(6.1)

For this problem, we want to bound the amount of risk, so let λ be the acceptable level of risk for

the selected schedule. Where risk is defined as the likelihood that a schedule will fail. Schedule

failure occurs if at any time the resource budget is negative Bt < 0. Subsequently, we need

to estimate the probability of failure given a schedule and a model of resource production. Let

P(C,X) be the probability of failure of a given schedule. Therefore, a schedule is valid if P ≤ λ.

We formally define the risk-bounded stochastic resource scheduling problem as follows:

Problem 6.1 (Risk-Bounded Stochastic Resource Scheduling Problem). Given set of n jobs J

with associated utilities U and costs E, the expected production of the resource C, find a set of

optimal job, time, location allocation decisions X ∈ X over time horizon T that maximises their

utility Uj , not exceeding the resource budgetBt > 0∀t and ensuring the risk is below the threshold
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P(C,X, t) ≤ λ.

max
X∈X

n∑
i=0

T∑
t=0

xtj .Uj ∀x ∈ X (6.2a)

subject to
T∑
t=0

xti ≤ 1 ∀i ∈ (1, . . . , n), (6.2b)

n∑
i=0

xti ≤ m ∀t ∈ (1, . . . , T ), (6.2c)

B(C,X, t) ≥ 0 ∀t ∈ (1, . . . , T ), (6.2d)

P(C,X, t) ≤ λ, ∀t ∈ (1, . . . , T ), (6.2e)

xtj ∈ 0, 1. (6.2f)

This problem formulation, when solved, gives a solution to the risk-bounded stochastic resource

scheduling problem, and the constraints define the rules to which the schedule must adhere. The

objective function 6.2a sets the goal of maximising the total utility gained from all selected jobs

while adhering to the following constraints. The constraint 6.2b ensures that each job can only

be selected once, which limits the possibility of selecting duplicate jobs to gain additional reward.

The next constraint 6.2c models the system limitation that no more than m many jobs can be

selected at any time, and there are only m positions, so the system cannot service more jobs in

parallel. Additionally, the constraint 6.2d forces schedules where the total budget used by jobs,

while considering the generated resource, does not exceed the budget at any time; this ensures

that the schedule cannot use resources that are not available at the time t. Then we have the

constraint 6.2e that ensures that the probability of the schedule failing is less than the acceptable

risk level denoted as λ. Finally, constraint 6.2f means that a job selection is discrete, meaning

that a job is either fully allocated or not allocated at all; this removes the possibility of partial job

selection. The budget 6.2d and risk 6.2e constraints include the stochastic sequence of resource

production, so particular care must be taken when selecting the sequence and the calculation of

these constraints. The sequence is a time series of production, so there are temporal and magnitude

components that both need to be correct for schedules to be properly validated.
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6.3 Risk constrained scheduling with stochastic forecasts

In the following section, we introduce our methods for solving the risk-bounded stochastic re-

source scheduling problem, which in particular addresses the uncertainty of the stochastic resource

in a way that considers the probability of the temporal component and the total production of the

resource.

The available budget for the system Bt is produced from the stochastic process. If the amount of

resource varies from the expected sequence C, then the budget available at time t is different from

what is expected, which can cause valid solutions to the scheduling problem (Problem 6.1) to be

actually invalid. In this problem, the resource is produced by a sequence of hidden variables, and

in practice, only a noisy forecast of what value this variable will take is available. We know that

the forecast is noisy, but we do not know the amount of noise or when the error will occur during

the sequence. To account for this, we want to turn the singular forecast into a distribution of the

resource over time, and then ensure that the schedule is valid given with respect to the probability

we assigned to the resource distribution. If the problem can be modelled as a distribution or a

stochastic process, then we could use this to get the probability that for various sequences and meet

the risk and stochastic budget constraints. However, in this work, we are interested in scheduling

using resources generated by some external process that is difficult to model and thus want to use

a model-free data-driven method. In particular, the motivating problem for this work generates

resources via wind power, and wind is a system that is too complex to be accurately modelled

in a closed form. Hence, we propose a method that uses a forecast (such as those generated by

complex meteorological models) as a prior, which is then modified to create candidate scenarios

with associated probabilities. This process does not require that we have an explicit model and can

generate the predictions and probabilities from the data directly.

We propose approximating the resource production distribution by creating a variety of candidate

scenarios given the forecast data and assigning the probability that the scenario will occur based

on an expectation of the amount of error.
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6.3.1 PPV based forecast perturbation

Given a forecast C of the expected production of resources over time and an associated forecast

uncertainty CT
σ . We want to turn the forecast C into a discrete finite set of k production sequences

with associated probabilities C∗ = ((C1, P1), (C2, P2) . . . (Ck, Pk)). Ci is the i-th sequence in

the set and Pi is the associated probability that that sequence occurs. This set of sampled sequences

and their associated probabilities approximate the distribution of potential futures.

Using this set of sequences it is possible to compute the probability that a schedule will fail. The

probability of a schedule failing given the potential production sequences is:

ρ(Ci,X, t) =


0 if B(Ci,X, t) ≥ 0, ∀t ∈ (1, 2, . . . , T )

Pi if B(Ci,X, t) < 0, ∀t ∈ (1, 2, . . . , T ).

(6.3)

This means if a schedules budget is valid for all points in time its failure probability is equal to 0

else it is the probability of that sequence occurring. Similarly, the probability that a schedule is

valid is equal to the sum of all probabilities for all production sequences in C∗. The probability of

a schedule failing by time t can be calculated using

P(C∗,X, t) =
∑

Ci∈C∗

ρ(Ci,X, t). (6.4)

Using this set of production sequences and probabilities, it is possible to compute the probability

of schedule failure and, subsequently, the risk of a schedule failing. The question is, ‘How do you

create these sequences and assign them a probability in such a way that makes sense?’. Given that

we cannot model the underlying process that generates the wind speed, one naive approach would

be to randomly sample from all possible sequences and assign them an equal probability. Alter-

natively, we have a forecast that we know is of good quality, and we could estimate the possible

amount of error and use this to create the sequences. Looking at the type of error, we first note that

the direction and type of error are important to consider for this problem. Schedule failures occur

when there are too many Type-I or false positive errors between the forecast production sequence

and the true production sequence. That is, if the forecast says there is generation at a point when

there is really no generation, the schedule allocates more resources than would actually be avail-

able. This problem is exacerbated when the error occurs together in blocks due to having less time
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for Type-II errors (false positives) to cover up the previous forecast error and give the schedule

more resources than it expected at a point in time. Assuming that we can estimate the positive

predictive value (PPV) of the forecast, meaning that we know that the forecast is going to have

some positive error, but we do not know when during the sequence the error is going to occur.

Using the expected PPV τ and the original forecast C, we want to compute a set of refill sequences

C∗ and their associated probabilities. To define the PPV of the schedule (how much over-allocation

we expect our forecast to have), we convert the resource production sequence C to a sequence of

binary values that represent whether there is production or not at each point in time. Let Ypred be

the binarized forecast of production, and let the binarized ground truth refill sequence be Ytrue.

That is to say τ is the expected PPV between Ypred and Ytrue.

We build a Bernoulli process binary tree to create the perturbed production sequences C∗. The

outcomes of successive Bernoulli trials can be modelled as a binary tree of depth D with its two

children representing the success and failure outcomes. The probability of these children is the

probability of the root-to-child path. These paths encode a sequence of success or failure trial

results according to the trial success probability of ζ. The trial success ζ represents the odds of

failing a single Bernoulli trial while the PPV τ is the expected error over the entire sequence.

To convert τ to ζ we empirically sample the Cumulative Distribution Function (CDF) for the

Binomial distribution. The distribution is parameterised as the number of successes k = D − 1,

the number of trials n = D and a sample trial likelihood P ∈ (0, 1). The process is outlined

in Algorithm 6.1; the computation repeats with slowly decreasing P until the P that results in the

correct distribution is found. This distribution results in the all True trial case aka perfect forecast

case, having a probability τ which matches the expected PPV of the forecast and the rest of the

probability density is spread over the other trials.

After creating the Bernoulli process binary tree, let G and L be all the root-to-leaf paths and their

associated probabilities, respectively. To create the perturbed production sequences C∗ we take

the original forecast C and split it into D many windows. This split forecast is then perturbed by

using the paths in the Bernoulli process tree to modify the production in each time window and

the paths have an associated probability. This process is shown visually in Figure 6.1. To compute

the perturbed sequences, for each of the sequences in G take C and for each period in D if the

step in the sequence is a success, return the forecast as is during that period. If the sequence step
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Figure 6.1: Demonstrative figure showing the perturbed forecast generation tree. The root node in
the tree is the original forecast. Each child represents a success or failure in a Bernoulli trial. If a
trial is a success, the forecast is kept the same. If the trial fails, the forecast is masked out. This
process repeats to create all the leaf nodes that represent perturbed forecasts.

is a failure, mask out the production during that period to account for a potential incorrect positive

prediction. This process results in the creation of 2D−1 many perturbed production sequences.

These production sequences and the tree sequence probabilities L are combined to create C∗.

Algorithm 6.1 PPV based binomial trail success finder
Require: D, τ,∆
Ensure: P
k = D − 1
n = D
P = 1 +∆
B = 0
target = 1− τ
while B >= target do

P = P −∆
B = BionomialCDF (k, n, P )

end while
return P

6.3.1.1 Selection of precision value

The quality of the perturbed forecast probabilities is dependent on the selection of the precision or

PPV value τ . If the PPV is set too high the system will assign a higher probability to schedules

with little to no error. Similarly, if it is set too low the system will assume a higher amount of
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error and thus produce schedules that are more conservative. The parameter can be estimated from

historical data by comparing historical forecasts against the historical data. In certain problem

scenarios such as the problem, we address in this chapter the historical forecasts PPV can be

modelled well by the data which results in a principled way to tune the parameter. If this is not

possible then the parameter needs to be selected along with the acceptable risk λ based on the

practitioners’ tolerance for optimality vs safety tradeoff, with larger lambda and lower τ being

safer and the opposite being less conservative.

6.3.2 Sampling-based schedule generation

This section outlines our method to produce robust schedules for the stochastic scheduling problem

using the perturbed resource production sequences and the expected forecast precision. Given the

large search space of the problem, we modify the general Monte Carlo Tree Search algorithm to

make it more applicable. The main differences are the integration of the risk to find valid actions

in a termination state and the choice of action selection heuristics.

For completeness sake, we include a short description of the Monte Carlo Tree Search algorithm

here; for more details, please refer to Section 3.4.1. MCTS is a sampling-based heuristic search

algorithm that is suitable for problems with large state spaces, such as scheduling problems, and

can deal with complex objective functions and constraints. The algorithm is a biased search that

balances exploring possible actions and exploiting previously seen good possible actions to grow

the search tree in a manner that results in good solutions faster than random sampling. The al-

gorithm begins with an initial condition (or state) and then iteratively grows a tree representing

the search by selecting subsequent actions from this state. If there are multiple possible states,

it uses a selection criterion to select a promising state in the tree from which to further explore.

From the selected state, successive actions are selected using a sampling heuristic (such as biased

random or uniform random), and this process continues until a termination condition has occurred

(such as exhausting computation time or resource budget). This action selection process is called

a rollout. The rollout result is then back propagated up the tree from the selected state and updates

the summary statistics about these states, which represent the expectation of reward from taking

actions from these states.
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The MCTS algorithm is used to plan a sequence of allocations that make up a schedule. Given

the matrix of perturbed resource production scenarios and their probabilities C∗, the set of jobs,

and other parameters of the problem, we want to produce a schedule that meets the constraints

of Problem 6.1. We find a valid schedule using a Monte Carlo Tree Search over a tree where

the nodes are a (job, location, time) allocation and a path through the tree represents a schedule.

The utility function of our scheduler is the summation of the reward for the jobs allocated for

a given schedule Eqquation 6.2a. In this problem, we want to maximise the reward gained by

allocating jobs using the finite budget. To speed up convergence towards promising solutions, we

bias the rollout to more often consider jobs with higher budget-to-reward ratios. Using this ratio,

we modify the likelihood of selecting an action. The rollout biasing is computed using:

p(xti,l|X) = (Ei/Ui) + ϵ. (6.5)

Where xti,l is the action, Ei is the resource expense required, Ui is the utility gained by completing

the job, and adding ϵ ensures that all actions are probabilistically feasible to select.

6.3.2.1 Action generation

Due to the combinatorial nature of the action space (every possible joint allocation of job, location,

time) and the sparsity of the reward space caused by the large number of invalid schedules, naively

considering all actions is not feasible. To speed up convergence to high-quality solutions, we

modify the action generation only to consider allocations where the time and slot would be feasible

for a candidate job. To achieve this convergence speed-up, we restrict the action space by removing

the selection of location and the time allocations, so it becomes a job subset selection problem,

and the ordering of the jobs encodes their time and location allocations.

The location selection problem can be avoided (which reduces the size of the action space) by using

the fact that for this problem, we assume that the locations are homogeneous. Thus, to ensure that

the location constraint Equation 6.2c is met, we check if there are sufficient locations and maintain

a counter representing the number of occupied locations at time t. Then, when selecting the set

of valid times, if adding a job exceeds the max number of jobs in parallel constraint, the time is

returned as invalid. Similarly, we want to reduce the action space further by pre-checking and

filtering out by filtering invalid times and using a heuristic to select from the set of valid times.
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Rather than selecting a time, job pair for an action during an MCTS rollout, an action consisting

of a single job is selected using the rollout biasing. Using this job, the set of feasible times for the

jobs is found (if any exist), and then a heuristic is used to select a single time from the list of times.

6.3.2.2 Heuristic for selecting allocation time

Using a heuristic to select the valid time for a candidate’s job opens the question of what heuristic

to use to make the selection. For this work, we consider two heuristics, the classic scheduling

heuristic of ‘earliest available time first’ and a greedy heuristic which selects the time that has the

highest expected resource budget, which we call ‘greedy budget time’. The focus on these two

heuristics is due to their differing strengths in selecting the time to allocate the job. The earliest

time heuristic tries to allocate as many jobs as possible by finding the first possible time when it

is feasible to schedule the job. However, this has no consideration for the stochastic and variable

nature of the budget, which can result in leaving very little slack in the budget and can result in

small variations, causing the schedule to be invalid. Alternatively, ‘greedy budget time’ tries to

spread the risk of a schedule failing due to a poorly allocated job by scheduling it at a time when

the budget is expected to be higher. By focusing on allocating to the safer times first, smaller

variations in the production should cause schedules to fail less due to the less concentrated budget

consumption.

It can be hard to select a heuristic that works for all possible distributions of job costs and re-

source production sequences, so in practice, the best feasible heuristic is a design decision for

the practitioner. The most applicable heuristics should be selected by analysing their impact on

representative data through backtesting.

6.3.3 Analysis

The stochastic resource scheduling problem is closely related to the classical scheduling problem

on parallel machines with capacity constraints. This scheduling problem is known to be NP-Hard,

and the stochastic resource problem has the additional complexity of resource uncertainty. The

stochastic variant is also NP-Hard, and finding optimal solutions for large problems is infeasible.

The search space for the stochastic resource problem is combinatorial between the joint problems
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of selecting a job, selecting a time, and selecting a testing location. This complexity limits the

applicability of explicit solutions to only small-scale problems with a time horizon or very few

jobs. Sampling-based methods are more applicable for larger practical real-world scaled problems

but typically come with the trade-off of suboptimality. Monte Carlo Tree Search algorithms are

sampling-based and are asymptotically optimal given enough randomness in their sampling and

enough computation time.

The assumption that locations are homogenous and thus can be dropped from the action generation

and replaced by a constraint check is restrictive and may not be feasible for all problems. For ex-

ample, if robots need to travel to locations to perform a job, the location induces a state-dependent

cost and cannot be considered homogenous. In this case, the state space reduction trick used in

this method would not be valid, and the solution would need to consider the value of the location

variable and include it in the cost computation, thus further expanding the state space.

Even with sampling, if the search space is massive, it can be difficult for the planner to converge

to better solutions. The set of times that a job is valid for is small due to the combination of

needing a valid location and, more difficultly, a point in time where the probability of a schedule

failing due to production variability is below the risk threshold. Due to the arbitrary nature of the

resource productions, there can not be a closed-form solution for when it is valid, which means

that each point in time needs to be explicitly tested. This process allows the algorithm to know the

expected utility of adding a specific job to an existing schedule, which is a far smaller search space

than all action, job, and location combinations. This reduction of the action space to job-selection

sequences with imputed times and locations results in faster convergence. However, there may be

a reduction in optimality, but as we show in our simulation results for large problems, the effect

on optimality is minimal while the scalability of the solution is heavily improved, allowing it to

schedule far more jobs.

Robust scheduling requires producing schedules that have a near 0% chance of failure due to

planning for the ‘worst case’. Typically, the more restrictive the robustness constraints the more

utility needs to be yielded to meet the constraint. If risk of failure can be quantified then it allows it

to be tuned for operational purposes. Because production sequences have an associated probability

an acceptable level of risk λ can be computed.
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Bernoulli trials assume the events are independent which is not an accurate description of all time-

varying stochastic processes. The difficulty is that there are two components of note, the amount of

error and when the errors will occur. More complex temporal models are difficult especially when

the underlying process is not possible to model explicitly. Hence, our method of estimating the

expected amount of error and capturing a temporal structure using a tree allows a simple sampling

and estimation of schedule risk.

6.4 Risk constrained probabilistic consumption scheduler for wind-

powered hydrogen production

In this section, we validate our stochastic resource scheduling algorithm on a real-world instance

of the problem. The problem we focus on in this work is scheduling scientific tasks using a limited

hydrogen resource that is produced by stochastic wind power. We set up the background for the

problem and then test our method in simulation to show that our algorithm is capable of producing

high-quality results while limiting the operational risk for these operations.

DLR has a history of the application and production of hydrogen. The DLR Lampoldshausen site

operates multiple test facilities and has expertise in space propulsion. There is currently a focus on

transferring this expertise to terrestrial commercial applications and developing an environmen-

tally friendly C02-neutral site. The purpose of this laboratory is the implementation, testing and

demonstration of technologies related to the production, storage and use of hydrogen from renew-

able energy sources. Current hydrogen sources typically come from natural gas, whereas green

hydrogen is produced from renewable (green) energy sources. With the focus on the reduction of

C02 and environmental improvement, DLR wants to focus on the production and use of Green

Hydrogen. Part of this process is the creation of the Zero Emission-H2 Test Center (H2CT), where

green hydrogen is produced and consumed by engineering and scientific tests. The use of green

hydrogen allows the test centre to facilitate the utilisation of hydrogen for scientific progress with

a lower carbon footprint.

The test centre receives multiple requests, so there needs to be a process that allocates the limited

resources of hydrogen and testing locations to these requests. These requests should be selected

so the centre does not allocate more resources than it has. Additionally, the requests should be
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selected to maximise the reward, which is a measure of the expected utility to the test centre from

the request, be it money, scientific impact, or some other factor. Due to dealing with external

clients, the schedule of which requests will be serviced and when they need to be published in

advance (around one week ahead) are hard to change. These constraints motivate producing robust

(as in unlikely to fail) maximal schedules that are committed to for an upcoming time horizon. A

schedule is considered to have failed if, during execution, there is not enough remaining hydrogen

capacity to service the allocated requests.

The green hydrogen used by the centre is produced by electrolysis machines powered by renewable

wind power sources. Wind power is a renewable source of electric power. However, its output is

variable and uncertain on multiple time scales (hourly, daily, monthly, and yearly), which makes

the scheduling complex. This uncertainty requires longer horizon robust schedule planning. To

enable further green Hydrogen-based research, we want to establish a test centre that provides

green hydrogen for engineering and scientific testing. The green hydrogen provided is produced

through electrolysis powered by renewable power sources, specifically wind. The green hydrogen

production process starts with the wind farm producing power from wind turbines, which is then

used by electrolysers to produce gaseous hydrogen that is stored in tanks. Finally, the produced

hydrogen is consumed by jobs at the test centre.

6.4.1 Simulation setup

This section outlines the setup for the simulation environment and the simulation results we use to

empirically validate our algorithms’ performance. The simulation comprises several components:

the wind and electrolyser models, The data sets used for forecasting and ground truth, the jobs

that need to be scheduled, the facility operation parameters, and finally, the methods used for

comparison.

The wind farm produces power through the spinning of wind turbines. Turbine output is a function

of the manufacturer’s power curve and the wind speed at the hub height. The wind speed at

different heights can be computed using vwt = vm
ln(hm/z0)
ln(hwt/z0)

. Where vwt is wind velocity at the

wind turbine, vm is measured wind velocity, hm is the height of the measurement, hwt is the height

of the wind turbine, and z0 is the surface roughness which is estimated based on the type of terrain

the wind farm is located in, (needs reference). A wind farm consists of multiple turbines so the
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production from one turbine Pwt is multiplied by the number of turbines nwt. Pf = Pwt.nwt is

the power produced from the wind farm given the wind speed at the hub height.

For the electrolyser the minimum required power to turn it on is Emin at which it produces its

minimum output, and it follows a production curve until it reaches its maximum output at Emax.

For this work, we assume Emin=Emax so the electrolyser turns on and produces its maximum

effective output once the wind farm output reaches a sufficient level. The hydrogen produced for

a given produced power is:

H(Pv) =


0 if Pf < Emin

1 if Pf ≥ Emin

(6.6)

The hydrogen produced is then stored in the hydrogen storage tank and can be released out at a

constant pressure to be used by the test centre. The tank has a maximum capacity hence resource

budget Bmax, and a starting capacity B0.

For these simulations to model realistic wind conditions and the forecast data that was available at

that point in the past, we used two meteorological research datasets. The forecast set is based on

the TIGGEE Historical forecasts [264] With each week of data forecasted at two-hour blocks. For

the ground truth set, we used the ERA5 historical data [265]. For both datasets, we are interested

in a simulated facility located at Lampoldshausen, Germany (49.2631619N,9.4007921E).

For the simulations, we used a 7-day-ahead lock-in schedule requirement, which means that fore-

casts must be a week long. For simplicity, we did Monday to Monday, but the schedules do not

need to be aligned with the week. For the hydrogen tank capacity, we set a maximum capacity of

30 units with a starting capacity of 20 units. In this work, we ignore the impact of temperature and

changes in pressure. We treat the tank as a black box that can supply units of hydrogen at a known

pressure.

To generate the set of jobs to be scheduled, each week 100 jobs with costs of 1 to 10 units were

sampled from a uniform distribution U(1, 10) with an associated reward sampled from the uniform

distribution 1 to 5 units U(1, 5). The length of jobs was drawn from a truncated normal distribu-

tion with a N(4, 2) with a lower bound cap of 1 hour and a maximum bound cap of 12 hours. This

job distribution configuration was informed by discussions with DLR Lampoldshausen employees
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about the expected future demand of the planned systems. These simulations indicate the com-

plexity of scheduling is expected to be faced in the future if the research infrastructure becomes

more heavily used.

We compare our method against three baseline methods: forecast only (forecast), naively perturb-

ing the forecasts (naive perturbation), and perfect forecasting (ground truth). The forecasts-only

method produces a schedule using the forecast information and is unable to adjust the expectation

of risk because it only has one scenario it considers. This is the same as solving a deterministic

resource-constrained scheduling problem. Naive perturbation is the method of creating randomly

perturbed forecasts by randomly perturbing the forecast and weighting all scenarios as equally

likely. This method is useful to demonstrate if the process we use to perturb the forecasts and to

allocate probability is beneficial compared to uninformed random perturbations. An illustrative

example comparing our method to the naive perturbations is shown in Figure 6.2. Finally, perfect

forecasting uses ground truth to create a schedule. While this method is extremely difficult to

achieve in practice, it is useful to understand the relative performance of the methods by knowing

how well they could have done if they had perfect information.

A 20-minute per trial computation limit for all of the methods compared. The naive perturbation

method requires the selection of the number of forecast scenarios and the process used to perturb.

We generated 200 perturbed forecasts to be scheduled with an equal weight assigned for each. We

used the same Tau parameter for our PPV-based perturbation to perturb the schedules, flipped a

biased coin for each timestep, and used that outcome to adjust the production.

To check the effect of heuristic selection on the methods, we produced schedules using an earliest-

time heuristic and our greedy budget-time heuristic. The earliest-time heuristic simply finds the

first point in time that a job can be validly scheduled and allocates it.

In these simulations, a failure is recorded for a trial if the schedule produced by the scheduler has a

negative budget at any time when the produced schedule would have been executed using ground

truth production.



154 Chapter 6. Stochastic Resources

Method Heuristic Confidence N Fail Success
Rate Reward Failure

our
method

earliest
time 0.99 4 0.97(0.0) 85.12(8.8) -0.5(4.2)

our
method

greedy
budget
time

0.70 13 0.91(0.0) 90.33(8.4) -1.8(8.4)

our
method

greedy
budget
time

0.80 3 0.98(0.0) 87.83(7.6) -0.3(2.2)

our
method

greedy
budget
time

0.90 3 0.98(0.0) 87.80(7.8) -0.2(1.9)

our
method

greedy
budget
time

0.99 0 1.00(0.0) 81.82(7.3) 0.0(0.0)

forecast earliest
time 0.99 51 0.66(0.0) 93.37(10.3) -5.2(10.2)

forecast
greedy
budget
time

0.99 30 0.80(0.0) 91.37(9.8) -1.2(3.8)

ground
truth

earliest
time 0.99 0 1.00(0.0) 97.30(9.1) 0.0(0.0)

ground
truth

greedy
budget
time

0.99 0 1.00(0.0) 94.25(9.3) 0.0(0.0)

naive per-
turb

earliest
time 0.99 8 0.95(0.0) 85.71(11.6) -1.6(7.8)

naive per-
turb

greedy
budget
time

0.70 9 0.94(0.0) 89.97(8.9) -0.7(4.0)

naive per-
turb

greedy
budget
time

0.80 4 0.97(0.0) 89.45(8.8) -0.1(0.7)

naive per-
turb

greedy
budget
time

0.90 3 0.98(0.0) 88.40(9.1) -0.1(1.1)

naive per-
turb

greedy
budget
time

0.99 2 0.99(0.0) 83.66(11.8) -0.0(0.5)

Table 6.1: Backtesting results for three years of weekly schedules. A schedule is invalid if the
ground truth resource budget goes below 0. The mean for the reward and failure amounts is shown
with their Standard deviation in brackets.
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Figure 6.2: An example of a schedule produced using noisy perturbation forecasts (left) and our
method to create forecasts(right). It can be seen that our method can create fewer forecasts with a
more considered probability instead of the scattershot approach of noisily perturbing. This allows
our method to create schedules that can use more of the resources with the same risk bounds.

6.4.2 Results

We ran our method and the comparative methods over each week of forecast data for January 2018

to January 2021, and the collated results are shown in Table 6.1. It can be seen that both forms

of perturbation-based scenario schedulers were able to increase the success rate from 66%-80% to

nearly 100%.

As the accepted level of risk increases, the perturbation methods’ average reward increases with a

corresponding increase in the number of failures. If the forecasts are accurate, then the acceptable
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level of risk can be set higher to gain a higher reward without as much downside.

Selection of scheduling heuristic

The earliest time heuristic has a higher failure rate because it front-loads schedules and makes them

more sensitive to misestimation during the early part of the schedule. Additionally, by spending

the expected amount of budget early, any negative error later in the schedule can cause a fail case

without the possibility of any positive error covering it up.

The heuristic choice was less impactful for the perturbation-based methods, likely because they

consider various scenarios. These scenarios likely include cases where the production error in later

parts of the schedule would cause an allocation to fail and thus be invalid. The heuristic produces

a different earliest time (if possible) for the different methods based on what is considered valid.

This process results in schedules that could fail due to the greedy front loading being pruned due

to the risk tolerance.

The Greedy budget time heuristic resulted in fewer errors at the expense of some potential reward.

This was because spreading the jobs based on the highest minimum budget at each time uses

the worst-performing forecast scenario at this time for picking when to allocate. This process

is conservative and schedules fewer jobs because using the worst minimum results can result in

having no more valid allocations once the worst schedule for each point in time has been exhausted.

While there still may be valid allocations in individual scenarios, there is no valid allocation across

the minimums for all times.

Figure 6.3: Fifty perturbed weekly forecasts with no consumption for January 2019 (left) and June
2019 (right). It can be seen that in this week in January, twice as much resource is produced than
in July. This is due to the higher wind speeds running the electrolyser more often.
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Figure 6.4: Weekly forecast precision over time. This plot shows that the precision of the wind
speed forecast is highly seasonal.

Impact of precision parameter selection

The amount of refilling that happens during a schedule is a function of how often the wind strength

is sufficiently high enough to run the electrolyser. The wind is highly seasonal; an illustrative

example of two production sequences for different times of the year is shown in Figure 6.3. It can

be seen that during January, it takes far longer than it does during July to fill the tank capacity.

Knowing this fact, we investigated seasonality’s effect on the forecasts’ precision. Figure 6.4

shows how the precision of the forecast compared against the ground truth changes over time and

has a seasonality. This is because the wind speed is lower during the less precise periods, so

that the precision can be changed based on the season. When most of the wind speed is below

the electrolyser turn-on point, then the number of true cases is lower. Additionally, any error in

the magnitude causes the value to fluctuate around the turn-on point. From this, we infer that a

combination of the lower number of true cases and the closeness to the turn-on point causes the

lower precision.

This trend seems to hold over the long term for this wind forecasting problem. Knowing this fact

allows the automatic selection of the precision parameter dependent on the time of year, allowing

a variable error. This better-conditioned error allows tighter bounds and the appropriate allocation

of risk, thus resulting in better results.
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6.5 Summary

This chapter defines the risk-bounded stochastic resource scheduling problem, which involves

scheduling jobs that consume a resource produced by an uncertain process. We propose a method

to solve this problem by creating a set of perturbed forecasts from a single high-quality forecast of

the resource production. These perturbed forecasts are created using a Bernoulli binary tree and

the forecast’s expected PPV. Using this set of forecasts, we use a Monte Carlo Tree Search algo-

rithm to find schedules that maximise the utility and have a bounded risk. We apply this method

to a real-world case study of scheduling operations for a green hydrogen research facility pow-

ered by wind power. We evaluate the performance of our method through simulation and compare

it against other baseline methods. Overall, our method outperformed the baselines and reduced

scheduling failures to near zero with limited loss of utility. This chapter presented the problem of

scheduling with stochastic resources. The probabilistic consumption scheduling for wind-powered

hydrogen production requires producing schedules based on consuming a stochastic resource. The

uncertainty of resource levels is handled by our data-driven sampling-based model that produces

schedules with a defined risk level. We create multiple alternative forecasts with associated prob-

abilities to account for the uncertainty in resource production caused by imperfect forecasting.

These forecasts are created using professional meteorological forecasts and a principled expecta-

tion of error based on external factors such as time of year. These forecasts can then be used to

give the risk of a schedule failing, thus allowing us to plan a schedule with the level of acceptable

risk. This process accounts for the uncertain level of the resources available and creates schedules

that account for the probabilistic and temporal nature of the resource production. It is not just a

matter of knowing how much resource is available; the timing and order of the operations using

the resources must be considered.
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Conclusions and Future Work

The work in this thesis was done in the pursuit of addressing real-world practical multi-robot

planning challenges in various domains. Real-world problems are human-driven, unstructured,

uncertain and large-scale. We introduce a probabilistic scheduling framework for multi-robot co-

ordination problems to deal with these complexities. Our framework considers four core sources

of uncertainty (stochastic objective, constraints, tasks and resources) that each impact a typical

component of a planning problem. Some of these components are not traditionally considered

in coordination problems and algorithms. However, they have been considered in the field of

scheduling. By viewing the multi-robot problems as stochastic scheduling problems, we can har-

ness the strengths of both domains. This perspective illuminates the source of the complexities

in the problem and can be used to identify potential simplifications. This understanding of the

problem structure allows the development of more suitable algorithms than possible beforehand.

This thesis contributes to a suite of planning algorithms for multi-robot task allocation with our

four core types of uncertainty in various scenarios. We emphasise scalable, practical solutions

that would be feasible to deploy for real-world-sized problem instances. We explain the useful

properties of our developed solutions analytically. Similarly, we demonstrate the effectiveness and

quality of our solution against traditional approaches through simulation.

In this final chapter, we provide a short summary of each chapter in Section 7.1 with the main

contributions of each in Section 7.2. Next, in Section 7.3 presents some possible future work

159
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directions. Finally, in Section 7.4, we conclude with an outlook for the future of multi-robot and

automation applications in real-world scenarios.

7.1 Thesis summary

In this thesis, we presented multiple practical solutions to real-world multi-robot and automa-

tion planning problems. Our framework consists of viewing scheduling as uncertainty problems

through decomposition, which gives insight into their structure. This insight is then useful in de-

termining how best to approach the problem based on its scalability and type of uncertainty. We

have demonstrated the usage of predictive techniques, decomposition or heuristics to account for

the uncertainty and scale of the problem. We evaluated the methods we developed through al-

gorithmic analysis, empirical simulation results, and hardware trials. These methods have been

demonstrated to be useful in various domains, such as warehouse order picking, planetary explo-

ration, oceanographic mapping and green hydrogen production scheduling.

7.1.1 Stochastic objectives: intuition-guided multi-robot orienteering (Chapter 3)

We first began in Chapter 3 by tackling problems with stochastic objectives. In this problem, the

amount of utility gained by completing a task is not known a priori. We define the Discoverable

Edge Cost Orienteering Problem (DECOP). In this problem, an agent traverses around an environ-

ment (with a noisy prior) to visit as many Points of Interest (POIS) as possible given a limited time

or energy budget. Given the noisy map, the traversing cost may differ from the initial expected

cost, thus changing the reward for a given action. To deal with this uncertainty, we replan as local

information is gathered. However, naive replanning can be expensive computationally or lead to

short-sighted reward-chasing behaviour.

We solve DECOP by modelling it as a different problem we call the Intuition-Guided Multi-robot

Orienteering Problem (IGMOP). The IGMOP is similar to DECOP but has the additional reward of

intuition, which means the robot gains the additional reward for following this intuition. We solve

the IGMOP using a decentralized Monte Carlo Tree Search (Dec-MCTS) using a team consisting

of a physical robot and virtual guiding agents (which provide the intuition). A ground station

computes the virtual agents. Additionally, we speed up convergence between the two solutions
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by biasing the physical robot’s search using pheromones created by the virtual agent search. This

combination of biasing and DEC-MCTS allows the agents to communicate infrequently and solve

the IGMOP problem while not over-constraining the physical agent’s decision-making.

We provide empirical results for our formulation when applied in a planetary exploration context.

We show that our method performs better than solving DECOP for the physical agent alone or

using more extensive computing that does not take advantage of local information gained during

plan execution.

A limitation of the Intuition-guided hybrid planner algorithm and IGMOP as a solution to the

DECOP is their dependence on communication between the ground station and the mobile robot.

Furthermore, we assume that the prior knowledge adequately represents the environment. If the

prior is significantly inaccurate (we have not investigated the specific impact of levels of mis-

alignment), the plans generated by the virtual agents may be detrimental to the mobile robots’

performance rather than aiding in exploration. These limitations restrict the applicability of our

solution for scenarios where communication and prior map information are limited, such as un-

derground exploration. Future work could investigate the specific impacts of prior misalignment

and address the issue by enabling the ground agent to model the benefit derived from the virtual

agent’s suggestions and dynamically adjusting the influence of their suggestions based on their

alignment with the real world. Another area of potential research is to investigate stochastic rep-

resentations of the map using bayesian methods, applying matching learning to estimate priors or

other techniques used in recent advances in MCTS research to improve the performance of the

MCTS component.

In conclusion, this chapter examines multi-robot planning and scheduling problems with stochas-

tic objectives through a stochastic orienteering problem in the context of planetary exploration.

We present a method to solve it that acknowledges the imbalance of computational resources

and information available in a distributed heterogeneous team. We present simulation results that

demonstrate that this is a promising approach towards enhancing the shared autonomy and effi-

ciency of robotic exploration in uncertain environments.



162 Chapter 7. Conclusions and Future Work

7.1.2 Stochastic constraints: MVMF scheduler (Chapter 4)

In Chapter 4 we examine a type of scheduling problem with stochastic constraints. In this problem,

the constraints determining whether a schedule is valid are stochastic and hard to define. We

demonstrate this problem by creating a scheduler for a Multi-Vessel Multi-Float (MVMF) system

operating in an oceanic environment. In this problem, the team must visit all points of interest

while minimising makespan. The difficulty lies in the fact that the underactuated floats are subject

to ocean currents and need to be collected within a time window. The ocean currents are chaotic

and difficult to predict, which makes a schedule infeasible based on where the currents will send

the floats. To address the chaos of the ocean currents, we assume the system is quasi-static and

plans only short-horizon missions over a locally observed flow field.

To solve this problem, we developed a hierarchical solution that decomposes it into two smaller

subproblems. The first problem that is solved is the minimal set of deployments that visit all of the

POIs. Following this, the set of deployments is allocated to the vessels and floats through solving

the second problem.

We show through simulation that our method outperforms a naive, greedy method. Our method

can scale well with the size of the team and can use the additional agents efficiently as the team

grows. Following this, we tested our method in the field using real hardware. Through these

field trials, we validated our method and found practical areas to improve upon in future research.

Finally, we extended upon a limitation that was observed in the first field trials through another

brief set of field trials that included a replanning extension and iteratively updating the flowfield.

This replanning extension is promising and needs further testing.

The core limitations of this work is caused by the difficulty of predicting dense flow fields of a dy-

namic ocean environment and the limited actuation of the bottom sensing floats. Prediction errors

in the flow field can render the planned schedules infeasible. Furthermore, our framework requires

the assumption of a quasi-static flow field, which, while valid for short durations in our field tri-

als, may not always hold true. Future work can address this limitation by incorporating temporal

flow field prediction models, online flow field re-estimation, and online schedule replanning. The

fragility of the system can also be reduced by giving the bottom sensing floats some form of lateral
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actuation. However, this can be difficult to achieve and will increase the cost, so further research

is required.

In summary, this chapter addressed problems with stochastic constraints in the context of a novel

MVMF system operating in an ocean environment. By solving this problem, our framework can

potentially reduce the barrier of entry for oceanographic data collection and motivate further re-

search in dense flow field prediction and low-cost ocean robotics.

7.1.3 Stochastic tasks: dynamic warehouse order-picking (Chapter 5)

Scheduling problems with stochastic tasks were addressed in Chapter 5. This class of problem

needs to find a schedule for tasks that are not known a priori and are created by some stochastic

process. In this chapter, we focus on the dynamic warehouse order-picking problem. We show

that vehicle routing approaches are limited in their scalability. To address this, we want to find a

policy that maximises the throughput of the system.

We address the scalability by developing a computationally efficient partitioning-based algorithm

that creates regions of equal work. We then present a method to compute this measure of work

in each region and how to balance it between partitions iteratively. Using the partitions an agent

is allocated to each and follows a simple service policy online to service the dynamically arriving

demands.

We show analytically that servicing the regions of equal work is optimal for heavy-load regimes.

Next, we empirically prove our method’s performance by simulating a typical warehouse picking

environment and comparing our method against a less specific dynamic vehicle routing method

and a more naive method used in practice. Our results outperform these baseline methods and

demonstrate the effectiveness of our proposed solutions.

While effective, the distributed equitable partition method has several limitations and assump-

tions. We assume an accurate prediction of the expected demands and no mismatch between the

expected demand used to generate the partitions and the demand the actual demand the agents

service. Future work can investigate the impact of such demand misalignment and techniques to

dynamically adjust partitions online or reallocate agents or jobs between partitions to minimise
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this error. Furthermore, several sub-problems and considerations are overlooked, including mul-

tiple storage locations of items, multiple drop-off depots, finite shelf capacity, heterogenous item

priority, and varying the size of items. These assumptions can impact the method’s applicability to

real-world warehousing operations and require further research to determine the impact that these

constraints will have on our solution’s usefulness.

In this chapter, we investigated scheduling with stochastic tasks, focusing on the dynamic ware-

house order-picking problem where order arrivals and, thus, the tasks are uncertain. We demon-

strated a technique that creates a policy that balances queues of expected tasks and indirectly

optimises throughput. Our method offers a promising solution for improving the efficiency of

warehouse order picking under the conditions of our problem formulation.

7.1.4 Stochastic resources: risk constrained scheduling with stochastic forecasts

(Chapter 6)

The final class of scheduling problem in this thesis is scheduling with stochastic resources. In this

problem, the resource consumed while servicing the tasks is replenished by a stochastic process.

We show this problem in a real-world operational scenario of trying to schedule the usage of

green hydrogen that is created via wind power. Wind is stochastic, so the amount of hydrogen is

unknown.

To address this problem, we define the risk-constrained scheduling with stochastic forecasts prob-

lem. To solve this problem, we take a single high-quality forecast and an estimation of its precision,

then use this to perturb it and create a set of sample forecasts. The perturbation is done by splitting

the forecast into a series of windows and performing a Bernoulli trial for each. The outcome of

this trial modifies the forecast during that window, and the final forecast has an associated proba-

bility based on the likelihood of those trial outcomes. Next, we take the set of forecasts and use a

Monte Carlo tree search to find a schedule that maximises the utility of the scheduled jobs and has

a bounded amount of risk.

We demonstrate our probabilistic Consumption Scheduler for Wind-Powered Hydrogen Produc-

tion through simulation for a real-world client. We demonstrate that our method receives nearly as

much utility as the baseline methods but with a drastically lower schedule risk.
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Our method’s key limitations lie in its reliance on a simplified error prediction model and simple

infrastructure modelling. Future work could enhance the schedules’ robustness and optimality by

employing more sophisticated scenario-generation techniques or more informative perturbation

methods beyond the simple Bernoulli method presented here. Additionally, investigating the im-

pact of alternative problem parameterizations, such as its sensitivity to job generation functions

or more complex hydrogen production and consumption models, could offer valuable research

contributions.

In conclusion, this chapter introduces a complex stochastic scheduling problem and provides a

method for producing high-quality schedules that are less likely to fail. Lastly, it also motivates

further research in the crucial area of operationalizing green hydrogen infrastructure.

7.1.5 Handling general uncertainty

While this thesis’s primary focus is on the design and applications of our probabilistic scheduling

framework, it is crucial to understand how our methods deal with the two sources of general

uncertainty, epistemic and aleatoric. Understanding these factors allows insight into our methods’

limitations and directions for further improvement.

Epistemic uncertainty (incomplete knowledge) is primarily mitigated through prior models and

beliefs that are updated with new information gathered during the planning or execution of a

plan. Epistemic uncertainty is handled in the context of planetary exploration (Chapter 3); the

robots begin with a noisy prior map (incomplete knowledge) and refine their understanding of the

environment as they gather data during the mission. In Chapter 4, the MVMF framework briefly

addresses this through the replanning process; this strategy addresses the epistemic uncertainty in

the flow field temporal dynamics. Chapter 5 handles epistemic uncertainty in predicting future

tasks by using historical data to construct a probabilistic demand.

Aleatoric uncertainty (inherent randomness) is managed by making the system robust to the vari-

ance and adapting the plan. Aletoric uncertainty is managed in Chapter 4 by accepting the random-

ness of flow fields and designing the constraints and operation window to minimise the exposure

to the variance. The variability of dynamic orders in Chapter 5 is accounted for by the policy

design and partitions, allowing the orders to be stochastic. Finally, in Chapter 6, the variability in
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wind power generation is addressed by generating multiple perturbed forecasts and incorporating

risk constraints into the scheduling process, ensuring robustness against fluctuations in resource

availability.

7.2 Summary of contributions

In this section, we elaborate on this thesis’ specific contributions that are outlined in Chapter 1.4.

7.2.1 Multi-robot probabilistic scheduling framework

The novelty is that it is a new way of dealing with real-world and decision-making problems.

The theoretical impact should lead to more research by people building upon the ideas presented.

The broader impact is it should facilitate more field applications of robotics with a societal and

economic impact. Solving this broad collection of examples leads to the beginning of a new theory

of robotics scheduling that addresses a set of four fundamental components of how stochasticity

manifests.

The four components of our probabilistic scheduling framework, stochastic objectives, constraints,

tasks, and resources, must be handled differently. We develop new methods to handle these various

conditions using our new insights gained through application.

Stochastic objective problems have fully known tasks, the constraints are static, and there are no

uncertain resources to deal with. The main difficulty lies in producing a plan that has a high reward

even though the utility of taking a sequence of actions is stochastic. We demonstrate solving

a problem in this class by leveraging smart online replanning and integrating new information

gained during operation to reduce the reward uncertainty of taking an action in the local area. Our

method guided this local information gathering with a longer horizon search to avoid the myopia

seen in local optimization methods.

For stochastic constraint problems, the tasks that need to be completed are fully known, the ob-

jective function is deterministic, and there are no stochastic consumable resources that need to

be considered. However, the constraints that determine if a solution is valid can change, and the

methods used to address this need to be able to deal with this. One type of method is the technique
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we employed to solve the MVMF problem. By understanding the physical process that changes

the constraints and causes plans to become invalid, we produced a method that can successfully

operate in this restrictive domain. The timescale of ocean current changes is large, meaning that

if the plans are short enough, the ocean current appears to be quasi-static. This assumption al-

lows our method to avoid the need for ocean current forecasting and makes planning under these

conditions feasible.

In stochastic task problems, the objective function is deterministic, the constraints do not change

during operation, and there are no stochastic resources. The uncertainty in the formulation of the

task defines stochastic tasks. This task uncertainty can take multiple forms, such as not knowing

‘which’ tasks need to be done, ‘when’ the task will be completed, or ‘how’ to complete the task due

to it having stochastic costs. In these problems, the focus is on creating methods that can account

for tasks that will be required to complete in the future. This task uncertainty was dealt with by

modelling a stochastic process that describes the future orders for an order-picking warehouse and

then creating a policy (instead of a specific plan) that performs well given the operational reality

described by that process. Maximising the system’s throughput described by that process means

that our method accounts for many potential sequences of tasks rather than planning over what is

available now. The key idea is to define the policy in a way such that all agents are working equally

and that agents are near where work is expected to arrive, thus utilising the team effectively and

reducing the cost of completing the work.

In a subset of scheduling problems, resources are required to complete tasks and are consumed

during the work. The resources are considered stochastic when a stochastic process replenishes

them, thus making it uncertain if enough resources will be available when completing a task in

the future. The process of obtaining more resources can be uncertain for various reasons, such as

unclear production amounts or arrival times. The uncertainty of resource levels is handled by our

data-driven sampling-based model that produces schedules with a defined risk level. We create

multiple alternative forecasts with associated probabilities to account for the uncertainty in re-

source production caused by imperfect forecasting. These forecasts are created using professional

meteorological forecasts and a principled expectation of error based on external factors such as

time of year. These forecasts can then be used to give the risk of a schedule failing, thus allowing

us to plan a schedule with acceptable risk. This process accounts for the uncertain level of the

resources available and creates schedules that account for the probabilistic and temporal nature of
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the resource production. It is not just a matter of knowing how much resource is available; the

timing and order of the operations using the resources must be considered.

7.2.2 Intuition-guided hybrid planner algorithm

We developed a new paradigm for planning operations for low-power mobile agents. The novelty

lies in the idea that the ground station can be used for more than monitoring and can be part of

a heterogeneous team. This team consists of virtual guiding agents (computed by the ground sta-

tion) and physical agents performing the work. This algorithm plans operations for the physical

agent that are biased towards longer-term plans. The biasing for the physical agent’s plans comes

from integrating a virtual biasing function (created from the virtual agent’s actions) that acts like

an intuition for the ground agent. The biasing function is designed not to constrain the physical

agent’s decision-making ability, which allows it to utilise its local sensor information. It outper-

forms methods that only consider the mobile robot’s limited computation or information available

to the ground station. This is the first algorithm for solving orienteering by leveraging offboard

computation in a way that alleviates myopia and does not constrain the mobile agent.

7.2.3 Hierarchical scheduling framework for Multi-Vessel-Multi-Float (MVMF) sys-

tem

We proposed a hierarchical scheduling framework for a new multi-vessel multi-float system. The

MVMF problem involves multiple surface vessels picking up and deploying multiple information-

gathering floats in an oceanic environment. The novelty of the MVMF system is that it is a new

approach towards oceanographic information gathering with a substantially lower hardware cost,

but it comes with new planning complexities. To address this, we formulated a new problem

definition that defines the operation of these systems and introduced new algorithms capable of

producing operation schedules. Our method is a sampling-based two-step hierarchical algorithm

that first finds a subset of deployment locations. It then efficiently searches for pickup and drop-off

actions that visit the deployment locations. Our algorithm offers a scalable way to find a plan that

utilises all the agents and meets the demands of scheduling operations for a MVMF system with

the stochastic constraints caused by changing ocean currents. Additionally, it is fast enough to

compute that it can be used to perform online replanning.
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7.2.4 Distributed partitioning based distributed multi-agent warehouse order pick-

ing

We propose an equitable partitioning and batch servicing policy-based approach to solve the dy-

namic warehouse order-picking problem. This method includes a novel cost metric that accounts

for the obstacles and depot returns in warehouse order picking. It also includes approximations to

compute it in polynomial time for an arbitrary distribution that describes orders. This policy has

been shown analytically to perform well in heavy-loading scenarios. Similarly, we demonstrate

empirically that our method has improved performance compared to typical order picking and a

more generic equitable partitioning method.

7.2.5 Forecast perturbation based risk constrained scheduling

We developed a new perturbation-based risk-constrained scheduling method that can find risk-

bounded solutions for scheduling problems with uncertain resource levels. This is the first algo-

rithm that considers the problem of the resource consumed by the schedule being replenished by a

stochastic process. The algorithm is a data-driven sampling-based method that leverages existing

high-quality forecasts as a prior. It avoids the problem of trying to model complex systems and

uses existing expertise. A single parameter for error parameterises the uncertainty and produces

schedules with a bounded risk level. This approach allows the scheduling of medium-term opera-

tions that consume a stochastic resource produced by an arbitrarily complex stochastic process.

7.2.6 Analytical results

For each method we presented in this thesis, we have also provided a set of analytical results.

These results show our developed methods’ suitability, scalability and usefulness for their des-

ignated problems. Despite the computational complexity of the addressed problems, we show

that our methods can produce high-quality solutions that are practical and suitable for real-world

applications.

Our analysis for the intuition-guided hybrid planner algorithm focused on showing that a good

solution to the IGMOP was also a good solution to the DECOP. We show that the deviations
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between the agent’s solutions for the two problems are caused by the mismatch in information

between the two agents. Given that the ground station has substantially more computational power,

the alternative plans produced by the mobile robot must have enough marginal benefit that sticking

to the intuition would be suboptimal. Similarly, we show that the biasing function we introduce

to the Dec-MCTS component does not break the asymptotically optimal property, as every action

can still be explored during the planning phase.

The main analytical results for MVMF scheduler are to show that the hierarchical method produces

valid solutions to the MVMF problem in a scalable way. We first show that the large search space

is computationally difficult, and naive approaches are intractable. Next, we show that it is not

possible for the planner to consider invalid actions; thus, if a plan is produced, it is valid with

respect to the constraints. Finally, we show that even though we cannot prove the optimality of

our algorithm. Through using the physical properties of ocean currents, we prove that the joint

solution produced by our method is near optimal.

There are several analytical contributions to our distributed equitable partitioning policy algorithm.

In particular, we show using queueing theory for heavy-loading regimes, and throughput can be

maximised by creating partitions that balance the cost to service. Next, we show that our expected

workload heuristic can be computed in polynomial time despite containing a TSP as part of the

cost. Finally, we show that it is scalable by avoiding considering the pairwise combination of all

partitions, simplifying the task allocation.

Our analysis for the risk-constrained scheduling with stochastic forecasts algorithm shows the

problem is NP-hard, which inherently limits the applicability of exact methods and motivates

sampling-based solutions. Our analysis also provides insight into the balance between the level of

risk that needs to be accepted and the utility of produced solutions.

7.2.7 Empirical results

For each method, we presented empirical results from extensive simulation trials. These simulation

results validate the theoretical claims and demonstrate the applicability of our algorithms to their
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designed use cases. For all algorithms, the computation is shown to be fast and scalable to real-

world-sized instances. These simulation experiments were performed for scenarios that match

real-world problems.

For our intuition-guided hybrid planner algorithm, we presented experiments demonstrating its

ability in a planetary exploration context. These results showed that our algorithm improved the

number of visited points over the ‘solo’ planner (consisting of the mobile agent only) and the ‘long

horizon’ planner that used the ground stations compute only. These improvements were achieved

using limited communication and did not require additional computational power on the mobile

robot.

For the MVMF scheduling algorithm, we present an extensive set of simulations in various prob-

lem instances. These results empirically confirm our analytical claims and show that our method

outperforms a greedy sequential allocation method. These simulation results also show the scala-

bility of our approach both in terms of effectively utilizing more agents and being fast to compute

as team size grows.

We empirically evaluated our distributed equitable partitioning policy algorithm for dynamic ware-

house order picking through simulation. These simulations present results for two months of op-

eration in a typically sized warehouse environment. Our results demonstrate that our approach

can service more orders than the typical naive picklist approach and a less considered partitioning-

based method. We show that the importance of partitioning grows as a function of picker capacity

due to the larger benefit of being able to minimise travel between items increases. We also present

evidence that our equal work partitioning algorithm creates partitions that are approximately equal

concerning the partition cost metric.

Through backtesting using years of historical weather data, we empirically show the quality of

our risk-constrained scheduling with a stochastic forecast algorithm. Our results show that our

method achieves results with nearly as much utility as the forecast-only scheduler but with near-

zero failure cases. Additionally, the simulations show that our method respects the confidence

bounds and looser confidence results in higher utility with more failures and conversely. Similarly,

we show that the precision of the forecast is dependent on the time of year.



172 Chapter 7. Conclusions and Future Work

7.2.8 Hardware field trials of the MVMF system

Hardware field experiments were conducted to assess the practicality and performance of our

MVMF scheduling algorithm. The trials confirmed that the system operates under the anticipated

constraints in a real-world oceanic environment. Moreover, these real-world experiments provided

critical insights that inform future research and enhancements to our algorithm and other marine

robotics research.

Some of the main insights gained were regarding how to run hardware operations in the water that

were not initially considered. A key oversight was not accounting for the wake of the deployment

vessel when deploying the floats. Other insights are about the limitations of 2D ocean current

modelling assumptions being broken by observing 3D current structures such as Langmuir circu-

lation. Finally, while the ocean currents are slow to change, integrating new information through

replanning can account for accumulating estimation errors over time. This idea was tested in a

short exploratory field trial that integrated a simple replanning extension. This replanning was

shown to be promising and motivates further research.

7.3 Future work

Throughout this work and the analysis of the related literature, there are several possible general

directions for future work.

7.3.1 Improvements to flow field estimation

The flow field estimation used in our MVMF field trials in Section 4.5.1 works under the assump-

tion that flows of water are incompressible, operate in a 2D plane and have no interaction with

physical obstacles. These assumptions are reasonable in deep water operations, but in our field tri-

als, we have observed these not holding true for shallower waters for several reasons. To improve

the robustness of the estimator, it is important to consider the following factors: identify where the

2D flow incompressibility assumption fails and deal with these cases, account for the interaction
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between the bathymetry and the flow fields, and account for wind conditions at the surface. Ex-

tending the method to deal with these issues should improve the flow estimation quality and enable

our scheduler to produce better plans.

Another area of operational improvement is considering the initial flow field estimation calibra-

tion dives as part of the sampling mission. Our current operation plan is to deploy the floats

spatially dispersed around the environment for short dives so they will resurface within eyesight.

The surfacing location of the floats is then used to calibrate the flow fields, and the planner can

now produce the information-gathering mission plans. Rather than sampling randomly, we could

assume a random or zero initial prior flow field and select initial positions most likely to gather

useful information, thus reducing the amount of work remaining after the calibration phase. The

idea would be to gradually build a full-flow field map iteratively, with the estimation getting more

and more accurate until it is sufficient for planning.

7.3.2 Online adaptive repartitioning

The equitable partitioning method in Section 5.3.2 is done offline, and the allocations for the items

to be picked are done online. For future work, there is potential to update the partitions online using

iterative optimisation if the work balance becomes too unequal. A mismatch between the historical

data and the realised order distribution can cause an imbalance in the work required to service the

partitions. The orders can be reallocated by updating the partitions online, and the system can be

rebalanced to match the changed distribution. This is not a simple extension and requires further

research, as the changing regions require more trajectory planning to avoid collisions between

agents. Additionally, careful consideration needs to be made not to cause orders to switch back

and forth between agents, which can result in items being never serviced.

7.3.3 Learning approximation functions

There has been a large amount of research and advances in the abilities of deep learning. While

deep learning and reinforcement learning have yet to be demonstrated to be useful for many

planning-type problems, there are still directions where they can be used beneficially as part of
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a planning algorithm. The main avenue we believe is promising is learning approximation func-

tions that can be used as heuristics or predictors for specific problems. It could be possible to speed

up some problems through deep learning, reinforcement learning or imitation learning. Using the

models as a function inside the planning framework can lead to higher-quality results or speed

up convergence to high-quality solutions. Specific examples would be to learn to predict the map

based on the local observations for the planetary exploration problem or learn a function that can

estimate the risk of job time allocations to augment the scheduling in the risk-constrained resource

allocation problem.

7.3.4 Effects of compound types of stochastic uncertainty

This work is an initial investigation into the probabilistic scheduling framework. In this work,

each of the components was considered separately to be able to identify key features and gain a

deeper understanding of their implications. For future work, we would like to examine the impact

of compounding multiple types of uncertainty together for more complex and uncertain problems.

We provide a few examples related to the domains addressed in this work for discussion, but our

methods can apply to many domains. An example of a stochastic resource and constraint prob-

lem could be scheduling a MVMF system where the vessels are charged using solar panels on the

surface vessels. A stochastic resource and task example is scheduling wind-powered green hydro-

gen consumption, where the demands arrive during the week and must be added to the schedule.

For stochastic tasks and constraints, you could consider a problem where warehouse operations

have dynamic tasks, but the machines can break down during operation, and the goal is to find

a schedule that accounts for these possible failures. Finally, for stochastic objectives and tasks,

the problem could be exploring an unknown area with tasks that are revealed during exploration

or dynamically allocated to the agents. The possibilities are not limited to these examples, as the

stochastic components can come in many variations and mixtures.

By viewing the multi-robot problems as stochastic scheduling problems, we can harness the

strengths of both domains. This perspective illuminates the source of the complexities in the prob-

lem and can be used to identify potential simplifications. By furthering the understanding of these

problem classes and their interactions, we can feasibly address even more real-world problems and

extend the abilities of multi-agent systems.
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Furthermore, there exists a body of work in uncertainty quantification and identifying the struc-

ture of uncertainty. Considering additional characteristics of uncertainty in more detail, such as

temporal dynamics and distribution shifts, could lead to improvements in the uncertainty identifi-

cation of our framework and give insight into techniques for effectively managing uncertainty in

multi-robot planning problems.

7.3.5 Hardware experiments

In this thesis, we did hardware experiments for one of the four tested problem domains. We

demonstrated that including hardware trials as part of the research process allows for identifying

potential weaknesses and leads to more suitable algorithms for real-world applications. We pre-

sented empirical results from simulated experiments for the rest of our methods. These simulations

are useful for validating the behaviour and suitability of our algorithms to solve the problem as for-

mulated. However, simulations do not always capture the complexities and realities of operating

in the real world. These problems can be sources of uncertainty not accounted for in the algo-

rithm, communication failures, and other environmental limitations. As such, we would like to

demonstrate our other methods onboard real systems and extend our work into field applications.

7.4 Outlook

In Chapter 1, we argued that robotics are important, and there have been many practical advances

in hardware and algorithms. A single robot can only do so much, and to deal with large, com-

plicated problems that matter to people, you need to use multi-robots. Similarly, the adoption

of Industry 5.0 presents many opportunities for robotics and will be transformative for society.

This new paradigm is characterised by flexibility, robustness, and collaboration between humans

and machines. Integrating smarter probabilistic scheduling into multi-agent systems will enable

greater flexibility, reliability, sustainability, and efficiency in systems that can handle real-world

problems.

In the near future, we can imagine the widespread emergence of ‘smart factories’ where humans

and robots work in tandem. These new factories can leverage the abilities of robots and humans

while adapting to the rapidly changing demands of modern society. Probabilistic scheduling that
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accounts for the messiness and complexities of the real world will enable these multi-agent systems

to adjust to changing demands and the dynamic nature of human-centric environments. Moreover,

probabilistic scheduling will play a crucial role in optimising energy consumption and minimising

waste by more efficiently using resources.

The usefulness of Multi-agents is not restricted to business operations. Making robotics more ac-

cessible and functional can improve many aspects of scientific research. Through the advances

in system robustness and scalability afforded by probabilistic scheduling, new avenues of field

research can be performed. Some new problems that could be feasible are large-scale informa-

tion gathering, exploring unknown planetary bodies autonomously, and continuously monitoring

forests for potential fire risks. By enabling more general scientific research, improvements in

robotics can improve society in general.

The research presented in this thesis lays the groundwork for these advancements. Our work offers

a glimpse into a future where robots are general enough to deal with the uncertainty and multiple

paradigms of structure that form a sort of ordered chaos that we humans operate in every day. This

future is about enhancing human life and steering society towards a more sustainable, efficient and

connected future.
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Appendices

A Supplementary algorithmic and implementation details

A.1 Float dynamic model

A proper evaluation of the float and vessel path quality in flow field environment is needed for valid

deployment planning. One approach to path evaluation is to numerically integrate the vehicle

dynamic model across the flow field. However, deriving for a full dynamic model is complex

and expensive from a planning perspective. A simplified approach using kinematic models with

directly controllable velocity provides a quick approximation to the vehicle path. In this appendix,

we define the flow field model used for the simulations and the float and vessel model. We also

define the vehicle path trajectory given the initial conditions and the control input.

A.1.1 Flow field model

Given a position X = [x, y, z]T , the Taylor-Green model is used to represent the oceanic flow

field. For max flow field strength A and eddy width s:

Vflow,Taylor(γk, δk) =


−A sin(πx/s) cos(πy/s)

A cos(πx/s) sin(πy/s)

0

 . (A.1)

A common practice in modelling oceanic flow field is to assume the flow field in the z-axis is zero.

In practice, there does exist a flow in the z-axis, but it is negligible compared to the other vector
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component. The flow field model can be superimposed with other flow field to create interesting

streamlines. Suppose we had a linear flow field that rotates its direction with a period of T :

Vflow(X, t) = Vflow,Taylor(X, t) +


cos(2πt/T )

sin(2πt/T )

0

 (A.2)

A.1.2 Float dynamics

The float does not possess forward propulsion and is required to drift along the current to relocate.

The float can however move along the depth-axis. Suppose the diving/surfacing velocity of the

float is 0.5m/s. Assuming a kinematic model where the velocity is directly controllable, the float

dynamic in still water is expressed as:

Vfloat =


ufloat

vfloat

wfloat

 =


0

0

±0.5

 (A.3)

By considering drift into the float dynamic, the net float velocity under the influence of flow field

is expressed as:

Vtotal,float(X, t) = Vfloat + Vflow(X, t) =


uflow(X, t)

vflow(X, t)

±0.5

 (A.4)

A.1.3 Vessel dynamics

Similar to the float dynamics, we model the dynamics of the surface vessel as a kinematic model

with directly controllable velocity. Assuming a constant speed Vs with heading θ and instantaneous

turning rate:

Vvessel =


uvessel

vvessel

wvessel

 = Vs


cos θ(t)

sin θ(t)

0

 (A.5)
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The vessel dynamics under the flow field influence is expressed as:

Vtotal,vessel(X, t) = Vvessel + Vflow(X, t) =


Vs cos θ(t) + uflow(X, t)

Vs sin θ(t) + vflow(X, t)

0

 (A.6)

A.1.4 Trajectories

The trajectory is evaluated through forward integration. To avoid using extremely small time-steps

to derive the trajectory, we use the two-step Adams-Bashforth method:

Xn = Xn−1 + (1.5Vtotal (Xn−1, tn−1)− 0.5Vtotal (Xn−2, tn−2)) · dt

tn = n · dt+ t0

(A.7)

Where:

• X0 = [x0, y0, z0]
T is the initial start position

• t0 is the initial start time

• X1 = X0 + Vtotal(X0, t0) · dt
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