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ABSTRACT

T he contemporary manufacturing landscape, characterized by global competition
and the advent of Industry 4.0, necessitates a paradigm shift in production sys-
tems. Small and medium enterprises (SMEs) face the daunting task of surviving

in this highly competitive environment marked by short product lifecycles. Even larger
enterprises grapple with the challenges posed by increased connectivity and complexity
resulting from Industry 4.0 tools. This complexity is further magnified in diverse pro-
duction settings, such as the High-Mix Low-Volume (HMLV) and Low-Mix High-Volume
(LMHV) environments, each presenting unique scheduling and variability challenges.
This thesis addresses the pressing need for an advanced production planning approach
capable of accommodating uncertainty and capturing the intricacies of different indus-
trial settings. It identifies a knowledge gap in existing research, highlighting a lack of
integrated approaches that combine heuristic optimization algorithms and discrete event
simulation (DES) comprehensively. While heuristic algorithms often overlook real-world
stochastic and dynamic elements, existing stochastic methods, such as stochastic pro-
gramming and fuzzy programming, exhibit limitations in accuracy and manageability.
The research focuses on developing a holistic framework that seamlessly integrates
heuristic optimization algorithms and DES, providing decision-makers with a more
realistic and comprehensive perspective on the challenges associated with production
systems. The proposed approach aims to address multiple production challenges in
stochastic and dynamic systems, offering adaptability across diverse industries and
operations, whether manual or automated. Ultimately, the goal is to enhance overall
productivity and streamline the planning processes in the ever-evolving landscape of
modern manufacturing. This thesis was conducted based on three studies that capture
different industrial settings: 1. Woolshed industry as an example of a heavily manual
process, 2. Additive manufacturing as an example of (HMLV), 3. Assembly line balancing
as an example of (LMHV). Research findings show the effectiveness of the proposed
approach in diverse production settings. In the woolshed industry, challenges related to
facility layout and resource planning are successfully addressed. In additive manufactur-
ing, the integration of discrete event simulation and genetic algorithms reduces total
production time, with notable advantages as the factory scales up. The study on assembly
line balancing demonstrates a 15% improvement in throughput and resource utilization
compared to heuristic methods in isolation in the low mix high volume industry.
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1
INTRODUCTION

1.1 Motivation

Manufacturing is becoming increasingly competitive due to global competition. The latest

industrial revolution, known as Industry 4.0, led to the advancement of manufacturing

systems. This is facilitated through big data availability, advanced automation, the

Internet of Things (IoT), additive manufacturing (AM), digital twins, machine learning,

and simulation [8]. This advancement accelerates innovation, production, and market

adaptability, leading to shorter product life cycles. Surviving in such a highly competitive

environment with short product life cycles poses a significant challenge for small and

medium enterprises (SMEs) [9]. Strategic planning and efficient resource management

are essential to support these enterprises. This is not limited to SMEs; even in large

enterprises, the system becomes more connected and complex, raising the need for a

production planning tool to capture this complexity and variability. Therefore, a dynamic

approach is essential to address the complexity and various production settings. For

instance, the High-Mix Low-Volume (HMLV) production environment is marked by high

variability and complexity attributed to a broad range of task processing times, result-

ing in scheduling challenges and potential errors [10]. This underscores the necessity

for an advanced scheduling approach to accommodate uncertain conditions. On the

other hand, the Low-Mix High-Volume (LMHV) production environment, in contrast to

HMLV, exhibits lower product variability, often associated with mass production [11].

However, despite this, the evolution of technology and intensified competition among

1



CHAPTER 1. INTRODUCTION

enterprises introduce challenges related to demand fluctuations. This dynamic presents

complexities and hurdles for the assembly line, impacting workload distribution, resource

efficiency, and the overall production planning process. This thesis aims to develop a

production planning approach that captures the variability and uncertainty conditions

in various industrial settings to solve several production challenges and improve overall

productivity.

1.2 Identifying Knowledge Gap

Extensive research has been conducted on the planning, designing, and performance

evaluation of various production systems. Including heuristics, a strategic method used to

solve specific types of problems, and discrete event simulation (DES), a method of study-

ing a system by simulating it digitally. For instance, Sahu and Pradhan [12] conducted

a review of existing methods aimed at enhancing production system productivity. This

research showed a predominant focus on either heuristic optimization algorithms such

as [13], and [14] or DES as seen in works like [15], and [16]. Heuristic algorithms treated

the examined problems in a static or deterministic manner, overlooking the real-world

elements of stochasticity and dynamism [17]. While stochastic methods, such as stochas-

tic programming [18], fuzzy programming [19], and stochastic dynamic programming

[20] attempt to capture real system stochasticity, but they tend to have lower accuracy

compared to DES and are challenging to apply to pure and complex mathematical mod-

els [21]. Therefore, DES appeals as a promising approach to these stochastic and complex

conditions. Nevertheless, there is a conspicuous gap in the investigation of integrated

approaches that combine heuristic methods and DES for diverse problems and settings.

Only a limited amount of research has developed a framework to guide decision-makers

in the production planning process (see chapter 2 for a detailed overview). This thesis

seeks to build a framework that takes into account the dynamic nature of the system

and its rooted noisy conditions, offering a more realistic and comprehensive perspective

on the challenges associated with production systems.

1.3 Research Focus

This thesis centers on the development of a holistic approach designed to address multiple

production challenges simultaneously, thereby improving productivity and the production

planning process in stochastic and dynamic systems. The objective is to construct an

2



1.4. SCOPE AND RESEARCH QUESTIONS

approach that is adaptable for use across diverse industries, encompassing both small

and large-scale operations, whether manual or automated. The aim is to enhance overall

productivity and streamline the planning processes of these industries.

1.4 Scope and Research Questions

The objective of this study is to examine the main research question, which is: How
can the implementation of advanced hybrid techniques that combine DES and
heuristics enhance productivity and production planning across diverse in-
dustrial settings within a dynamic production system? To fulfill the objective, the

following three research questions have been formulated:

• RQ1: To what extent can discrete event simulation be used in evaluating the

productivity of heavily manual production enterprises?

• RQ2: What is the effectiveness of combining DES with a metaheuristic method

(Genetic algorithm) to enhance productivity in High-Mix Low-Volume (HMLV)

Manufacturing?

• RQ3: What is the effectiveness of combining DES with heuristic methods to solve

the assembly line balancing problem (ALBP) in Low -Mix High-Volume (LMHV)

Manufacturing?

1.5 Research Approach

There are several ways to study and boost the productivity in manufacturing systems.

To illustrate, Figure 1.1 presents the approaches used to examine any system [1]. Con-

ducting experiments with actual systems to observe their behavior under new conditions

is feasible but typically uncommon and costly [22]. Therefore, utilizing a model for exper-

imentation is preferred. These models can either be physical or mathematical. Physical

models provide a tangible representation of the studied object, often scaled either up

or down [22]. On the other hand, mathematical models express the real-life system

through equations and constraints [23]. Analytical solutions involve the use of formulas

to obtain optimal results, but this approach demands significant computing time and is

unsuitable for intricate and stochastic systems. On the contrary, heuristics offer nearly

optimal solutions within a reasonable computation time frame, making them well-suited

3



CHAPTER 1. INTRODUCTION

Figure 1.1: Approaches for studying a system [1]

for complex systems. However, their effectiveness may be limited to specific problem

characteristics, and they may not be well-equipped to account for the stochastic elements

inherent in the system. Meanwhile, simulation is one of the industry 4.0 tools, which

involves a virtual representation of the real-life system to mimic its performance. DES is

a method widely utilized in manufacturing for testing system changes digitally before the

changes are physically implemented [7]. This tool is excellent for portraying stochastic

and dynamic systems. However, it is not designed to discover optimal solutions. In opera-

tion research, the combination of DES and heuristic optimization was treated separately

until the advancement of computational power was raised in the last two decades, which

facilitated their combination. However, developing a well-designed interaction is critical

and depends on the type of problem. This thesis aims to address the gap in existing

studies by exploring the combination of DES and heuristics in the field of production

planning. This combination, known as simheuristic, is a type of optimization algorithm

that integrates simulation or any of its forms into heuristic or metaheuristic techniques

[17].

To adopt a comprehensive approach, three distinct areas encompassing diverse

industrial settings have been chosen for investigation. Each of these industrial settings

4



1.5. RESEARCH APPROACH

serves as an individual case study. Data about the current state of production parameters,

such as processing time, failure rate, number of resources, and layout, will be collected

through on-site field visits. The selection of these industries and the rationale behind

their choice are outlined as follows:

• Wool industry: This industry relies heavily on manual processes. Moving toward

automation or changing the facility design has faced some resistance to introducing

wool growers due to a lack of awareness and the absence of simulation studies

conducted in this field. This thesis highlighted the importance of DES in such an en-

vironment and its role in developing a robust production plan before implementing

it.

• Additive manufacturing industry: Production planning in this field is still

in the early stage, while much research in additive manufacturing focuses on

part quality and printing technology [24], there is a gap in factory-level manage-

ment and production planning using simulation. This gap can be attributed to the

technology’s predominant application in prototype construction and its relatively

recent introduction to high-production settings, which has left this issue largely

unexplored in the existing literature. Determining the optimal number of resources

is important due to the high costs associated with tools, high variability, and pro-

cessing time between jobs. This is particularly relevant as the industry transitions

from the prototype phase to the production phase. Finally, it serves as an example

of the HMLV industry.

• Assembly line balancing: Uneven workload between workstations due to short

life cycle time and changes in demands. This creates an environment conducive to

studying, especially in situations with significant variability. The existing approach

in this field relies on heuristic techniques or employs simulation to assess the

effectiveness of these heuristics. This work covers the gap by integrating heuristic

task allocation methods with DES to capture various factory settings. This field is

a good example of the LMHV industry.

To address the research questions (RQs), each paper focused on a specific research

question related to different industrial areas (Figure 1.2).

5



CHAPTER 1. INTRODUCTION

Figure 1.2: Research questions and the papers that answer them

1.6 Structure of this Thesis

The structure of this thesis is as follows: chapter 2 provides a literature review and

background on simulation, heuristics, and their integration into production systems. This

section encompasses various topics, including the role of simulation in manufacturing,

the different types of simulation, a comprehensive definition of discrete event simulation

(DES), its applications, and an exploration of its advantages and disadvantages. It also

includes an Overview of heuristic and metaheuristic algorithms, their types, advantages,

and disadvantages, and introduces literature on the integration of simulation and opti-

mization in manufacturing. Additional literature relevant to the respective case studies

will be presented in their respective chapters. Chapters 3, 4, and 5 each introduce a

paper that addresses one of the sub-research questions. Paper 1: Woolshed Throughput

Improvement Using Discrete Event Simulation, Paper 2: Powder Bed Fusion Factory

Productivity Increase Using Discrete Event Simulation and Genetic Algorithm, Paper

3: A Novel Approach and Case Study to Assembly Line Balancing using Discrete Event

Simulation and Heuristic Methods. Cross-case analysis and discussion are presented

in chapter 6. Finally, chapter 7 concludes the research and its academic contribution,

practical implications, limitations, and future work.
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2
LITERATURE REVIEW

2.1 Overview of simulation and discrete event
simulation

In this section, the use of simulation in manufacturing in general and its uses in several

areas to solve specific manufacturing challenges have been introduced in section 2.1.1.

The types of simulations used in manufacturing are presented in section 2.1.2. Section

2.1.3 defines the discrete event simulation (DES) and its components. Section 2.1.4

presents the DES application. Lastly, the advantages and disadvantages of DES are

presented in section 2.1.5.

2.1.1 Simulation in manufacturing

Manufacturing is a type of production system that involves converting materials and

information into goods to meet human needs[25]. In today’s highly competitive business

landscape, the manufacturing industry faces ongoing challenges in creating innovative

products within a short period of time. To thrive in the market, companies must promptly

respond to customer demands, necessitating robust planning, design, scheduling, machin-

ing, and assembly capabilities [26]. Simulation plays a vital role in responding to these

challenges. As shown in Velazco [2], a significant body of research is conducted about

utilizing simulation in evaluating the resources required (workers, machines, equip-

ment), timing for each resource on a specific task, evaluating material handling systems,

7



CHAPTER 2. LITERATURE REVIEW

Figure 2.1: Manufacturing challenges across three key fields that have been addressed
by simulation. Recreated from [2]

and inventory management. Moreover, simulation proves it is effective in measuring

systems performance, such as measuring throughput and identifying bottlenecks; it has

been used to measure the time that the parts spend on the system, such as work in

progress (WIP) time, inventory time, processing time, etc. Another primary application

of simulation in operation management includes managing the supply chain, production

planning, scheduling, system reliability, quality management, and lean manufacturing.

In summary, simulation has effectively tackled several specific manufacturing challenges,

which can be categorized into three broad groups (Figure 2.1).

2.1.2 Types of simulation

Simulation can be defined as the use of a computer model to mimic a real or planned

system. This model can then be used to predict the performance of that system in several

alternative situations. However, simulation is a broad concept that encompasses various

types of simulation. According to Jahangirian [5], the most widely used simulation

techniques for production planning in manufacturing include the following: discrete

event simulation, system dynamics, and Agent-based modeling. This section aims to

introduce each of these techniques and highlight their differences.

Discrete event simulation(DES): It is a stochastic modeling technique employed

to simulate real-world systems, which can be broken down into distinct processes that

independently progress through time. Events occur within specific processes and are

associated with logical timestamps. The outcomes of these events can be passed on to

8



2.1. OVERVIEW OF SIMULATION AND DISCRETE EVENT SIMULATION

other processes, potentially leading to the generation of new events scheduled for future

timestamps [27].

System dynamics(SD): In this terminology, a system is made up of components

that interact to generate an object, and dynamic pertains to changes happening over

time [28]. SD is a widely used simulation technique for modeling continuous processes

characterized by nonlinear behavior and extensive feedback within the system [29]. In

practical terms, SD is frequently applied in strategic policy analysis [28].

Agent-based modeling (ABM): This type of simulation investigates how people, things,

places, and time interact with each other. It examines the outcomes resulting from the

actions of individuals within the system as well as the impacts on individuals due to the

actions of the system [30].

Comparison between these simulation types:
SD is deterministic in nature, while DES is stochastic. DES focuses on the meso details

of a system, while SD adopts a macroscopic perspective, considering the overall behavior

only [31]. Both DES and ABM are stochastic, but DES focuses more on the process flow

based on networks of queues, where entities wait in queues for processing, whereas ABM

systems do not involve the concept of queues and focus on the individual entities in the

system and their interactions. Figure 2.2 demonstrates that these three classifications

tackle various levels of abstraction and specifics, making them applicable across different

decision-making stages, namely macro level, meso level, and micro level. Demonstrating

that DES is the most fitting approach for operational and manufacturing levels since it

focuses on process and workflow. The following sections will offer a more comprehensive

exploration of DES and elucidate the rationale for its selection.

2.1.3 Discrete event simulation

Discrete-event simulation (DES) is an approach used to represent a system by capturing

a series of events that transpire at distinct time intervals. These events symbolize alter-

ations in the system’s state, encompassing instances like customer arrivals or departures,

machine breakdowns or repairs, and task commencements or completions. Through the

simulation of these events, one can observe the system’s behavior as it evolves over time

and assess performance metrics such as throughput, utilization, cost, and waiting time.

To construct a discrete-event simulation model, there are four fundamental components

that must be defined [32]: entities, resources, queues, and logic. Entities represent the

various objects that traverse the system, such as customers, products, or orders. Re-

sources encompass the elements that offer services or possess capacity for the entities,

9
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Figure 2.2: Types of simulation and their levels of abstraction [3]

such as machines, workers, or vehicles. Queues denote the locations where entities wait

for resources, such as lines, buffers, or storage areas. Logic comprises the set of rules that

dictate the behavior of the system, including the arrival and departure of entities, the

request and release of resources, and the decisions or actions undertaken by the entities.

2.1.4 Application of DES

In recent decades, discrete event simulation has gained significant traction across di-

verse application areas. This growing trend can be attributed to both the increased

adoption of technology across various scientific fields and the innovative utilization of

dedicated software programs by skilled experts with high computing power. According to

Jahangirian [5], the main application of DES within manufacturing is listed in Table 2.1.

Table 2.1 illustrates the comprehensive applications of (DES) in manufacturing,

showcasing its ability to analyze various aspects such as assembly line balancing (ALB),

capacity planning, transportation management, inventory management, process engi-

neering, production planning, scheduling, and supply chain management to enhance

efficiency and productivity at different operational levels.
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Table 2.1: Application of DES in manufacturing [5]

# Application Description

1 Assembly line balancing
Distribute the task among workstations on an as-
sembly line in the equivalent way

2 Capacity planning

Uncertainty arise from fluctuations in capacity lev-
els, the need to expand existing resources, and the
desire to enhance current operations to boost ca-
pacity

3
Transportation manage-
ment

Optimizing routes and improving overall efficiency
in transportation operations.

4 Inventory management
Cost of holding, buffer capacity, economic order
quantity, determining batch sizes, Just-in-time

5 Process engineering
Designing for new technologies, scheduling
rules, facility layout, bottlenecks identification, per-
formance measurements

6 Production planning
Optimizing resource allocation, identifying bottle-
necks, determining batch sizes, layout scheduling
rules

7 Scheduling
Throughput, delivery on time, job sequencing, min-
imize idle time and lead time

8 Supply chain management Inventory and distribution systems

2.1.5 Advantages and disadvantages of DES

DES offers the ability to analyze localized system changes and examine their impact on

the overall system without disrupting ongoing operations, provides pre-implementation

system behavior visualization, and captures real-world complexity. It can effectively

incorporate randomness, variability, dependencies, feedback loops, and interactions

within systems’ components. On the other hand, it has some limitations, such as it

requires specialized training, falls short of fully representing the real-world environment,

and can be time-consuming without optimization capabilities. Table 2.2 summarizes

DES’s advantages and disadvantages.

11



CHAPTER 2. LITERATURE REVIEW

Table 2.2: Advantages (from [6]) and disadvantages (from [7]) of DES

Advantages
Disadvantages

Analyze how localized changes affect the
overall system.

Need Training to build a simulation
model.

Analyze the system without interrupting
existing operations.

Not fully presented of the real-world envi-
ronment.

Visualize the effect of changes on the sys-
tem before implementing it

Cost and time consuming of building a dig-
ital model.

Capture complexity, uncertainty, random-
ness, and variability.

Not an optimization tool.

One of the disadvantages of DES is that it remains extensively utilized for designing

and analyzing manufacturing systems. It can be contended that DES finds even broader

applications in manufacturing systems than in any other field. Several factors contribute

to this phenomenon, including the following [33]:

• The advancement in automation raised the need for DES because automated

systems are more complex, and they can only be analyzed by simulation.

• High cost of equipment, which raises the need for extensive planning before invest-

ing in unnecessary equipment.

• Significant decrease in computing costs due to faster and more affordable PCs.

• The advancements in simulation software, particularly the introduction of graphi-

cal user interfaces (GUIs), have resulted in a reduction in model development time.

The presence of animation in simulations enhanced comprehension and increased

utilization of simulation among manufacturing managers.

After clarifying the first main pillar of the proposed approach (DES), how it works,

and its effectiveness in solving various problems in the manufacturing field, the sub-

sequent sections will spotlight the second pillar, optimization methods (heuristic and

metaheuristics). This will involve furnishing definitions for each method, providing a

broad overview of their mechanisms, showcasing popular examples, and their advantages

and disadvantages.
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2.2 Overview of heuristic and metaheuristic method

Heuristic and metaheuristic are both optimization techniques for solving problems, but

they differ in their scope and application A heuristic is a problem-dependent method

that uses knowledge about the problem to find a solution[34]. A metaheuristic is a

problem-independent method that groups several guidelines to find a solution for a

wide range of problems. A metaheuristic does not require specific knowledge about the

problem [35].

2.2.1 Types of heuristics methods

There are three primary categories of heuristics [36]:

• Trial-and-error: This heuristic involves employing various strategies until a

successful one is found. Individuals randomly select potential actions and continue

exploring different options until they settle on a choice they believe will lead to the

most optimal decision.

• Rule-based: This type of heuristics entails applying general principles or rules

while solving problems. This form of heuristic thinking is widely considered as the

prevalent approach in problem-solving today.

• Adaptive learning: Adaptive learning heuristics incorporate past experiences into

the decision-making process for future choices. Feedback from previous experiments

is utilized to guide and inform subsequent ones.

Heuristic algorithms are typically designed for a particular problem. For instance,

in the domain of facility layout problems, a variety of rule-based heuristics have been

developed to tackle such challenges. These include constructive methods like ALDEP

(Automated Layout Design Program) [37], and CORELAP (Computerized Relationship

Planning) [38], as well as improvement heuristics like CRAFT (Computerized Relative

Allocation of Facilities Technique) [39]. Similarly, in the context of assembly line balanc-

ing problems (ALBP), heuristic approaches such as ranked positional weight technique

(RPW) [40], KWC (Kilbridge and Wester’s method) [41], and others are employed to

optimize task allocation and sequencing. In this study, the choice of heuristics is based

on the specific characteristics of the problem and their broad applicability.
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2.2.2 Types of metaheuristics

Meta-heuristic algorithms consist of four main groups: Evolution-inspired, Nature-

inspired, Human-inspired, and Natural-like inspired [42].

1. Evolution-inspired: the algorithms that use mathematical models to simulate bio-

logical evolution. They begin by creating a random population, with each individual

representing a potential solution. Through natural selection and genetic variation,

new offspring are generated. An alternative strategy is then used to decide which

individuals will continue as offspring and parents. Genetic algorithm (GA) is one of

the most well-known algorithms in this category. Which is a technique used to solve

optimization problems, both constrained and unconstrained. It operates by simulat-

ing the process of natural selection, similar to biological evolution. The algorithm

iteratively modifies a population of individual solutions, selecting random individ-

uals as parents to generate the offspring for the next generation. As generations

progress, the population evolves, moving closer to an optimal solution[43].

2. Nature-inspired: the algorithms that are based on the inspiration of behavior of

natural phenomena, including aspects like animal behaviors and various chemical

and physical systems [44]. Famous examples include the Artificial Bee Colony

(ABC) optimization algorithm, which mimics how bees search for food and com-

municate information about food sources in terms of distance, time, location, and

quantity [45]. Another example is Particle Swarm Optimization [46] and Ant

Colony Optimization (ACO) [47].

3. Human-inspired: This algorithm is inspired by human social behavior and their

response to the environment [42]. Some examples are Teaching Learning Based

Optimization (TLBO) [48] and social-based Algorithms (SBA) [49].

4. Natural-like inspired: This type is inspired by phenomena or nonlinear sciences,

including physics, chemistry, and mathematical laws. A well-known example is

simulated annealing (SA) [50], which is an optimization technique inspired by the

metal cooling process to find the global optimal solution for the objective function.

The annealing process is the process of heating the metals and then letting them

cool slowly to enhance their mechanical properties [51].

In this research, GA was chosen as the optimization method based on previous

research that highlighted the robust performance of GA in the context of Discrete Event
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Simulation [52]. Additionally, GA is well suited to problems with a large set of possible

parameters and where an obvious global maximum or minimum is not readily apparent,

such as in scheduling scenarios with fluctuating resource availability [53].

2.2.3 Advantages and disadvantages of heuristics and
metaheuristics

There are several advantages and disadvantages of using heuristics and metaheuristics.

Heuristics, for example, offer distinct advantages in solving complex problems that

could take long computation time or be impossible to solve using exact methods. So, it

could be used for quick decision-making, reducing computation efforts, and capturing

uncertainty. However, their lack of precision and inflexible nature, marked by rigidity

and resistance to change, can impede adaptation to evolving circumstances. Despite their

data independence, heuristics pose a risk of biased decision-making.

On the other hand, similar to heuristics, metaheuristics reduce the time required

for solving optimization problems that are hard to solve using exact methods. They

are, however, more flexible than heuristics, and their flexibility allows application to

a wide range of problems, irrespective of the problem type. Yet, the generic design of

metaheuristic algorithms may limit their ability to exploit specific problem knowledge,

potentially resulting in suboptimal solutions. While enabling extensive exploration for

finding global optima, these algorithms often exhibit a long convergence time, requiring

numerous iterations for an acceptable solution. Additionally, the presence of multiple

parameters in metaheuristics necessitates careful tuning for optimal performance, posing

a challenge in finding suitable values and highlighting the sensitivity of the algorithm’s

effectiveness to parameter settings. The advantages and disadvantages of heuristic and

metaheuristic are summarized in Table 2.3.

In summary, both heuristic and metaheuristic methods strive to achieve efficient

solutions within a short time frame compared to traditional numerical approaches, specif-

ically, the exact approaches, which often entail lengthy computation times, especially

for NP-hard problems, and in some complex problems, it becomes impossible. Therefore,

heuristics and metaheuristics are the most suitable for use. Even if these methods

cannot guarantee finding the optimal solution, they can provide a good enough solution

depending on the nature of the problem and search cost. In this thesis, heuristic and

metaheuristic were utilized in the proposed approach to solve several NP-hard problems

such as scheduling and assigning tasks to workstations in ALBP.
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Table 2.3: Advantages and disadvantages of heuristic and metaheuristics

Optimization
method

Advantages Disadvantages

Heuristics
Quick decision making
which reduce efforts [54].

Lack of precision (optimal solu-
tions are not guaranteed) [55].

Effective decision-making
under uncertainty [54].

Inflexible nature, heuristics often
exhibit rigidity and resistance to
change, impeding the ability to
adapt to new information or evolv-
ing circumstances [56].

Data independence means
heuristics are not depen-
dent on the quantity of avail-
able data [54].

Risk of biased decision-making
[57].

Metaheuristics

Addressing the limitations
of traditional numerical ap-
proaches decrease the time
required for solving opti-
mization problems [58].

Meta-heuristic algorithms are
typically designed to be generic
and do not take advantage of spe-
cific problem knowledge. Conse-
quently, their ability to exploit the
structure or characteristics of a
problem may be limited, poten-
tially leading to suboptimal solu-
tions [59].

Flexible and applicable to
a wide range of problems,
regardless of the problem’s
type [58].

Meta-heuristic algorithms may
exhibit a long convergence time
as they often require numerous
iterations to reach an acceptable
solution [60].

Enables extensive explo-
ration for finding global op-
tima [58].

Meta-heuristic algorithms often
include multiple parameters that
require careful tuning for optimal
performance. Finding suitable pa-
rameter values can be a challeng-
ing task, and the algorithm’s ef-
fectiveness can be influenced by
the sensitivity of its performance
to parameter settings [61].

16
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Figure 2.3: Simulation optimization classes

2.3 Integration of simulation and optimization in
manufacturing

This chapter provides an overview of existing literature concerning the integration of

simulation and optimization in manufacturing. It outlines the nature of integration and

highlights distinctions from the proposed new simheuristic approach in a general context.

However, a more in-depth exploration of relevant literature regarding the wool industry,

additive manufacturing, and assembly line balancing is presented in subsequent sections,

with detailed discussions tailored to the specific studies covered in the chapters of the

papers (Chapter 3, Chapter 4, and Chapter 5).

In the field of operations research, simulation and optimization have traditionally

been regarded as separate approaches until two decades ago when a significant ad-

vancement in computational power led to the start of combining them together [62].

However, crafting a well-designed interaction is crucial depending on the type of problem.

According to Rabe [63], the integration of simulation with optimization techniques can be

categorized into four distinct classes: optimization integrated into simulation, simulation

as the objective function, simulation results as a start for optimization, and optimization

for configuring simulation (Figure 2.3).

1. Optimization integrated into simulation: In this class, the simulation temporarily

stops and employs optimization to assess a particular problem. The outcome of this

optimization is then fed back to the simulation, allowing it to resume its activity.

2. Simulation as an objective function: Optimization offers a potential solution that

undergoes evaluation using simulation. The simulation-derived results are sub-
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sequently integrated back into the optimization process to generate alternative

solutions.

3. Simulation results as a start for optimization: The simulation is carried out before

the optimization process. The simulation provides the initial parameters or starting

point for the optimization.

4. Optimization for configuring simulation: In this case, the simulation is utilized to

assess the feasibility of a solution identified by the optimization process.

The challenges that this combination seeks to solve are [64]:

1. Uncertainty: This is tackled through various conventional approaches, including

stochastic programming, fuzzy programming, and stochastic dynamic program-

ming. However, these methods exhibit significantly lower accuracy and detail

compared to simulation approaches. In addition to the difficulty when handling

pure mathematical models.

2. The complexity of the problem and the nonlinear relationships make it hard to be

modeled mathematically.

In the assembly line balancing context, there are several studies that combined DES

and optimization, such as Unal et al. [65]. They proposed a heuristic algorithm for

line balancing and used simulation to evaluate the performance of the heuristic under

various line configurations (class 4). Eryuruk et al. [66] used two heuristic methods

called Probabilistic Line Balancing Technique and Largest Set Rule Algorithm to balance

multi-model assembly line, then they used simulation as a supported tool to compute

time losses and queues (class2). Mirzaei et al. [67] used the Grouping Evolution Strategy

(GES) algorithm to minimize the number of workstations and smoothness index and

maximize the line efficiency for two configurations: straight and U-shaped assembly

lines. Then, DES will capture the stochastic behavior of the production line for both

layouts (class 4). Lee et al. [68] used simulation as an evaluation tool for the output of a

genetic algorithm to enhance productivity, line efficiency, and tardiness (class 4). Yu and

Su [69] integrated simulation to the genetic algorithm for solving mixed model assembly

line problems. Their approach focuses on integrating task assignments using GA and

sequencing decisions using simulation; their goal is to minimize cycle time (class 2). In

contrast, this research is geared towards minimizing the number of workstations and
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maximizing resource utilization while keeping the cycle time fixed.

Overall, all studies in assembly line balancing used simulation as an evaluating tool un-

der the class “Simulation as objective function” or used the simulation as an alternative

solution to capture the stochastic nature of the system.

Juan et al. [70] used the second class to minimize the makespan based on the stochastic

processing time of the flow shop scheduling problem. Guimarans et al. [71] introduced

a simulation and heuristic algorithm for the two-dimensional vehicle routing problem

with stochastic travel times. Bernaus et al. [72] used this approach to solve the facility

location problem and compared the performance of this approach against the traditional

stochastic programming method; they observed that this approach effectively addresses

large-scale instances that are beyond the capabilities of the stochastic programming

method within reasonable computational time. Finally, Rabe et al. [73] used the case

of “Simulation results as a start for optimization” to solve the logistic problem. Dengiz

and Alabas [74] introduced a tabu search algorithm combined with a simulation model

of a just-in-time system to determine the optimal number of kanbans that align with

production demands. Tiacci [75] devised a hybrid approach comprising a genetic algo-

rithm and simulation to concurrently address two manufacturing problems: the buffer

allocation problem (BAP) and the assembly line balancing problem (ALBP) for a complex

assembly line. This comprehensive solution accounts for stochastic task times, parallel

workstations, and buffers between workstations.

The integration of DES and optimization has been utilized in various applications such

as scheduling [70] and routing problems [76], facility location problems [77], logistics

networks [73], buffer allocation problem, and assembly line balancing problem [75], and

various other contexts. However, most of the existing research focused on either class 2

(Simulation as an objective function) or class 4 (optimization for configuring simulation),

and all of the conducted research targeted problems with one known setting (specific

number of resources). However, the new approach aims to utilize simulation alongside

optimization by combining class 2 and class 3 to test various settings, considering the

facility scaling up, such as changing the number of machines and workers. Additionally,

it involves grouping various problems together, such as facility layout problems, resource

planning, scheduling, assembly line balancing, and bottleneck identification to enhance

productivity.

This integration leads to solving a third challenge, which is modeling alternative sce-

narios. Diverging from conventional methods and prior composite classes that evaluate
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various input parameters and their effects on performance indicators, the new approach

goes beyond just diverse inputs. It also considers varying process structures. For example,

it could examine the impact of adding extra counters in a restaurant on the queue length

and delivery time, while other approaches collect and model the problem depending on

the specific number of resources without considering other what-if scenarios.

The upcoming sections address three areas of study. Each area answers one of the

research questions. Chapter 3 introduces research Paper 1 under the title “ Woolshed

Throughput Improvement Using Discrete Event Simulation”. This paper aims to show

the effectiveness of discrete event simulation in evaluating woolshed designs to address

the highly manual production environment. In chapter 4, the second study, which was

presented in paper 2 under the title “Powder Bed Fusion Factory Productivity Increase

Using Discrete Event Simulation and Genetic Algorithm” was used to answer the second

research question about the effectiveness of integrating DES and genetic algorithm

in evaluating low mix high volume production environment. Chapter 5 presented the

third paper titled “A Novel Approach and Case Study to Assembly Line Balancing using

Discrete Event Simulation and Heuristic Methods” spotted the light on the third research

question about the effectiveness of integrating DES and heuristic methods in evaluating

low mix high volume environment. A discussion of the three studies and their finding on

the main research question is presented in chapter 6. Finally, chapter 7 wrapped up the

research’s conclusion.
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PAPER 1: WOOLSHED THROUGHPUT IMPROVEMENT

USING DISCRETE EVENT SIMULATION

This section introduces the first study which aims to answer the first research question

“To what extent that discrete event simulation could be used in evaluating productivity

of heavily manual production enterprises?” The wool industry is used as an example

of this type of production since it is a small enterprise that totally relies on manual

processes and this approach has not been tested before in this area. A case study was

conducted in one of the Australian woolsheds and utilized DES to evaluate the facility

design including the layout and other improvement scenarios to boost it is productivity.

The paper thoroughly details the research methodology and presents the findings in

depth.

Paper statues: published in the Journal of Industrial Engineering and Management
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1. Introduction

Computer-Aided Production Engineering (CAPE) is a science of  representing a system or process for the intent
of  evaluation  and  examination  (Barton,  Joines  & Morrice,  2017).  This  digitalization  process  is  popular  in
manufacturing due to its ability to visualize and provide a better understanding of  the whole manufacturing
process. It is commonly used when planning a new facility or optimizing an existing one to save time, money,
and effort  by testing proposed ideas and options before implementing them. CAPE has been successful  in
enabling  production  evaluation  and  optimization  in  several  industrial  sectors  (Florescu  &  Barabas,  2020).
However, it has yet to be widely applied in on-farm agricultural processes due to skillset and access barriers
(Gittins, McElwee & Tipi, 2020). In particular, it has not been used in wool handling and shearing sheds. This
material flow process can benefit from the well-developed production simulation tools offered in modern CAPE
software. In particular, competing shed layouts are evaluated to identify bottlenecks and offer suggestions for
system improvement. 

Discrete Event Simulation (DES) is a major method in CAPE. DES simulates the behavior of  entities when an
event happens at a specific point in time. These events are then evaluated over time. It is commonly used to
simulate the performance of  an actual process, system, or facility (Klingstam & Gullander, 1999). DES has been
utilized by several industries such as aircraft manufacturing (Powell, 1999), healthcare (Jacobson, Hall & Swisher,
2006), supply chain management  (Kogler & Rauch, 2018), material handling  (Bhosekar, Ekşioğlu, Işık & Allen,
2021), and product development (Pérez-Escobedo, Azzaro-Pantel & Pibouleau, 2011) to improve production flow
and reduce all forms of  waste. This diverse set of  applications shows the value of  DES as a tool for production
and logistics planning. Different approaches to categorizing the areas of  application can be found in the literature.
Jahangirian, Eldabi, Naseer, Stergioulas and Young (2010) examined 250 studies in simulation, which are assigned to
the categories of  order planning, inventory management and factory planning, among others. Negahban and Smith
(2014) categorize around 290 simulation studies as production system design and planning. These categories can be
assigned to the areas of  planning and control of  production systems  (Meyr, Wagner & Rohde, 2015).  Semini,
Fauske  and Strandhagen (2006)  note  that  the  focus  is  on  the  use  of  simulation  in  the  semiconductor  and
automotive industries, however, the literature contains diverse application examples across several industries. Some
examples use-cases include:

1. Kampa  and  Gołda  (2018) employed  DES  to  create  three  models  which  evaluated  changes  to  a
manufacturing system of  steel casting foundry. They simulated the replacement of  a human workforce
with automation and evaluated the work efficacy. The results  of  the simulation model confirmed the
benefits of  replacing the manual-operated line with the automated one in terms of  throughput, products
quality, and production speed. 

2. Siderska (2016) used plant simulation to test a model to eliminate wasted time and increase productivity in
a bar stool production company. 

3. Kliment, Popovič and Janek (2014) used Plant Simulation to analyze production line capacity and explain
the effects of  individual workstation failures on the efficiency of  the whole production line. Also, an
experiment was done to determine the lowest number of  pallets needed to ensure the maximum use of
production lines. The results showed that the elimination of  5% of  bottlenecks led to an increase in
production by around 5%.

4. Another application specifically for Tecnomatix Plant Simulation software was conducted by Borojevic,
Jovisevic and  Jokanovic (2009) to introduce a model for crankshaft  production and assembly of  saw
engines. This model helped by identifying bottlenecks, inefficient workstations, and increasing the whole
processing time by introducing buffers between workstations to reduce the transportation times. It also
recommended extra machines be added to optimize the whole production process.

Thus, simulation studies have been applied in many industrial sectors for various fields of  application and in
combination with optimization methods for the identification of  optimal process parameters. To date, the authors
are aware of  no such application of  DES in the wool industry using DES for production enhancement.
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Shearing shed research for the wool industry has focused on human factors and ergonomic design or wool quality
metrics. Such ergonomics research seeks to reduce the risk of  worker injury due to poor posture and repetitive
actions during their work. For example, to reduce lower back pain (LBP) injuries, Harvey, Erdos, Bolam, Cox,
Kennedy & Gregory (2002) analyzed different types of  shed floor and floor slope to reduce the force required to
drag sheep onto the shearing board. Similarly, the effect of  using a back harness to support shearers has been
studied by  Gregory,  Laughton,  Carman, Milosavljevic and Callaghan (2009),  while  Milosavljevic, Gregory,  Pal,
Carman, Milburn & Callaghan (2011) investigated the amount and duration of  axially twisted postures on the
probability of  being affected by LBP. The research concentrated on the factors that contribute toward improving
wool quality and quantity, studied the influence of  using chemical lice treatments (Niven & Pritchard, 1985), sheep
nutrition (Kelly, Macleod, Hynd & Greeff, 1996), and shearing time (Story & Ross, 1960). None of  this prior work
looks at the flow of  material throughout the entire shed. 

Shearing shed design not only affects human and animal safety but also plays an important role in the amount and
quality  of  harvested  wool.  Woolshed  designs  vary  by  shearing  stand  arrangement,  board  position,  and  size
depending on the number of  workers, skirting tables, wool presses, and location of  wools bins. Traditionally, wool
sheds would conform to a  linear layout where shearing stands are arranged in a single straight line (Figure 1a).
However, recent research from Australian Wool Innovation (n.d.) has proposed an alternative layout, which will be
called  curved (Figure  1b).  This  research  uses  DES  to  simulate  the  two  current  competing  shearing  shed
arrangements and compare their performance. These two shed layouts are chosen as the dominate designs in
industry. 

Figure 1. Shearing stands arrangement, (a) Linear layout (Shearing Shed Solutions, n.d.), 
(b) curved layout (Kendrick Sheds, n.d.)

2. Methodology

This section describes the steps to build and compare the digital models for both shed layouts. The digital model
was  defined in  a  systematic  procedure  with  experimental  validation (Figure  2).  The objective  was  defined  as
identifying the bottlenecks in a manual on-farm wool shed, followed by collecting field data to construct the model
then verify and validate the simulation. Once the model was validated, it was used to analyse the bottlenecks and the
efficiency opportunities in two proposed shed layouts. 

The problem is defined as evaluating which shed layout has the better performance in terms of  productivity and
resource utilization. Resource utilization was selected as the evaluation criteria. 
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Data collection is the third step and it is critical in determining the accuracy of  the model. Data was collected
through  direct  measurements  of  an  on-farm  visit  during  a  typical  shearing  and  wool  handling  day  and
supplemented with a review of  industry reports and relevant literature. 

The following subsections are organized as: an overview of  the wool harvesting process in section 2.1, while
section 2.2 illustrates wool processing data collection. Modelling of  the shearing shed using DES in section 2.3.
model verification and validation are presented in section 2.4. 

Figure 2. The procedure for building a digital production model (Ruiz-Zúñiga, Urenda-Moris & Syberfeldt, 2016; 
Ng, Persson & Urenda-Moris, 2008)

2.1. Overview of  the Wool Harvesting Process

In general, wool harvesting comprises four main processes (Figure 3): (1) shearing; (2) skirting; (3) classing, and
(4) pressing and baling:

1. Sheep are taken from catching bins by workers called  shearers to the shearing stands. Then the shearers
shear them to remove the fleece and small wool cuts. 

2. The workers called wool handlers gather and collect fleece from shearing stands then pass it to the skirting
table.  Meanwhile,  cleaners  sweep the  floor and collect  short  cuts of  wool  and send it  to  small  bins
stationed near the skirting table. At the skirting table, wool handlers carry out skirting, i.e., removing reject
wool (soiled, stained, or contaminated) from the rest of  the fleece. 

3. The worker called a wool classer evaluates the fleece and categorizes it into one of  multiple classes. Typically,
the most valuable or largest volume class is pressed first. Wool that cannot be put in the press immediately
is  passed to  different  buffer  cages  according  to  its  quality  (length,  strength,  color,  etc.)  based on its
designated class.
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4. Finally,  fleeces  are  added  and  pressed  in  a  wool  press  until  the  bale  reaches  the  required  weight
(110-204 kg). A worker called a  wool presser fastens and seals the bale, then it is taken for labelling and
moved into storage. 

Figure 3. Shed layout overview diagram for the visited shed indicating the four main process areas: shearing stands, skirting
tables and presses, buffer cages and final product storage. Workers transport the wool between stages, blue arrows represent

fleece movements.

2.2. Wool Processing Data Collection 

Field  data  and industry  reported  values  were  combined  for  the  simulation.  An actively  working  woolshed  in
Bathurst, New South Wales, Australia, was observed and data collected on in-shed wool processing for educational
purposes. This data was then used for this project a later stage. The field visit was carried out to this 3-stand
shearing shed on 13 August 2020. Figure 4 shows photos of  this shed during the shearing and wool skirting
processes, respectively. This shed is used as a source of  information in constructing the digital model. Observations
of  the shed were made for 1 shearing session, approximately 2 hours, and recorded in a notebook. The durations
of  the steps/processes were measured by stopwatch and recorded. Interviews with shed staff  were also conducted
to ensure  the  data was  representative.  The shed contained 9 workers (3 shearers,  2  wool  handlers,  1  classer,
1 presser, and 2 floating shed hands), although one staff  member more than is typical, it provided useful data on
processing speed for each stage and to confirm literature ranges are suitable. 

In addition, training materials and literature reported values for shearing, skirting, baling, and pressing times were
acquired that were complementary to the shed visit, e.g., conventional shed layout information was collected from
the Australian Wool Innovation (n.d.).  Measured field data was consistent with industry training materials and
published processing times for both individual processes and overall shed throughputs. No tendency toward any
particular probability distribution was found in the data. 

Figure 4. Shearing stage (left) and skirting stage (right)

2.3. Modelling of  the Shearing Shed Using Discrete Event Simulation 

To visualize the current production process and compare the performance of  the two sheds layouts, a digital model
has been developed using a product lifecycle management (PLM) software called Tecnomatix Plant Simulation.
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This software was chosen for its ability to provide effective analytical tools such as layout optimization, bottleneck
analysis, diagrams for tracking material flow, and statistical data outputs (Siderska, 2016).

The  constructed  layout  was  built  according  to  a  typical  shed’s  dimensions,  collected  from  its  design  sheet
(Australian Wool Innovation, n.d.). Here the distance between shearers is around 2.3m and the distance between the
skirting table and shearing stands is around 6.5m in the curved layout, while the equivalent linear layout is built by
adjusting the shearing stands with keeping the distances between shearers fixed. 

The comparative study compares two shed designs containing 14 workers (6 shearers, 2 wool handlers, 2 cleaners
(or shed hands), and 3 people doing the skirting, with one of  them carrying out wool classification and 1 presser).
Skirting table, shearing stand sizes and locations were taken from the current common linear layout and the more
recently  proposed  curved  layout  and  modeled  (Figure  5).  Bins,  press,  cage  (buffer),  and  store  locations  and
dimensions are arranged according to the observed layout in Bathurst facility. 

Figure 5a represents the constructed model built using the PLM software to mimic the real shearing shed. The
developed model consists  of  six shearing stands (arranged in a  curve),  a  skirting table located in the center,
surrounded by two bins on each side, two wool presses followed the skirting table, five cages, and stores. While
Figure 5b represents the same shed but with the shearing stands arranged in a single straight line, this will be
referred to as a linear layout.

Worker  parameters  are  assumed  constant  for  both  layouts,  meaning  processing  time,  recovery  time,  process
variation, skill level, and travel speed are kept constant in both arrangements. The perturbed variable for simulation
is the location of  shearing stands. Table 1 shows the parameters that were used for workers as input in both layouts.
Traveling speed is 1.5 m/s and worker efficiency is 100%.

Figure 5. Shed layout in Plant Simulation, (a) Curved, (b) Linear shearing stand arrangement, 
blue arrows represent fleece movements 

Worker Amount Shift Speed Efficiency Additional services

1 *.Resources.handler 2 Day 1.5 100 handling swiping

2 *.Resources.shearer 6 Day 1.5 100 shearing

3 *.Resources.skirtter 3 Day 1.5 100 skirting

4 *.UserObjects.cleaner 2 Day 1.5 100 cleaning

5 *UserObjects classifier 1 Day 1.5 100 classifing pressing

Table 1. Workers’ parameters for both layouts in Plant Simulation

The processing and recovery time for the workers measured during the shed visit varied from 2 to 3 ½ minutes
depending on the shearer’s ability, as well as the sheep’s size, temperament, and condition (see Appendix A for the
individual measurements). In the model the processing time for the shearers follows a uniform distribution, the
minimum and maximum values are varied between the six shearers, while the recovery time is set to one of  two
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values 10 and 15 seconds. The observed processing time for skirting took between 25 to 28 seconds. For baling,
processing time follows a uniform distribution between 2 minutes to 2:30 minutes, while the recovery time was 30
seconds (the mode). Based on these observations, Table 2 shows the data which is used in the model.

After collecting data, two digital models were constructed using Tecnomatix plant simulation, one for each layout as
seen in Figure 6.

Process processing time
(min: sec)

Recovery time
(min: sec)

Shearing 1 2:30-3:00 0:10

Shearing 2 2:40-3:00 0:10

Shearing 3 2:20-3:00 0:15

Shearing 4 2:30-2:50 0:15

Shearing 5 2:30-3:30 0:15

Shearing 6 2:30-3:00 0:15

Skirting 0:25-0:28 00:00

Balling 2:00-2:30 0:30

Table2. Processing and recovery time for shearing and skirting processes based on the collected data

Figure 6. Tecnomatix 3D model for both layouts: curved (left), linear (right)

2.4. Model Verification and Validation

After  constructing the digital  model,  a  verification and validation process  was  applied to make sure  that  the
developed digital models represent the physical model (real-life harvesting process) accurately. Verification is the
process of  checking that the model is working as programmed and there is no error or bugs occurred in the
software. And to check the model in detail at steps during simulation to ensure every resource (worker) is correctly
performing their assigned task.

The next step is validation which is the step of  comparing the digital model results with the real-life results. To do
the validation the amount of  produced fleece from the digital model is compared with the real amount obtained
from the visited shed in a model that reflects the number of  workers and setup in the observed shed. The workers
processed 485 fleeces in  average.  The digital  model  predicts  an average of  478 per  day,  which results  in an
acceptable error of  1.4% given the expected variation. 

After ensuring the performance and accuracy of  the constructed models in the verification and validation stage. The
base model was extended to compare the performance between the two target layouts as well as to detect production
inefficiencies, such as the bottlenecks. To reduce these production inefficiencies, what-if  scenarios were applied in the
simulation models. The analysis results and suggested improvements are presented in the next section.
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3. Results and Discussion 

The model simulates a single workday of  7 hours 40 minutes of  working time. According to the processing time
for the six workstations within 7:40 hours, the output of  the production line was 826 fleeces in the curved layout
and 815 fleeces in the linear layout. Statistical analyses of  work at each workstation executed at the end of  the
production process showed that this difference is a consequence of  an increase in the shearers being blocked by the
skirting table, as indicated by the increased yellow portions in Figure 7b, compared to Figure 7a. 

Figure 7 also shows that the working percentage for the skirting table was 79.06% and 78.04% for the curved and
linear layouts, respectively. As well as there was some blockage in the skirting process in both layouts 4.11% (curve),
and 4.22% (linear),  the reason behind this is the baling process. Which stops the flow of  skirted fleece from
buffering inside of  the press. This occurs after the bale is has reached the weight limit and while it is being unloaded
and a new wool pack (bag) is inserted.

A deeper look at the statistical results showed that the output of  the curved layout is improved due to the wool
handlers  traveling  shorter  distances  overall  throughout  the  working  day.  Table  3  illustrates  the  total  travelled
distance by cleaners and wool handlers in each layout. The workers experience approx. 30% drop in distances
travelled with the curved shed layout, meaning they are more often ready to receive fleeces from the shearer and
deliver them to the wool table without delays. In a real shed, this has an added benefit of  reducing worker effort by
limiting their walking distance, which supports the human factors intention of  the curved design.

Despite the curved layout reducing blocking, both layouts still suffer from a bottleneck created by the skirting table.
Figure 7 shows the blocking percentages and blocking time for each layout.

Figure 7. Resource statistics from Plant Simulation model for (a) Curved shed layout, (b) Linear shed layout

Layout
  Worker

Linear (m) Curve (m)

Cleaner1 6018 4275

Cleaner2 10081 7127

Wool handler 1 8191 5865

Wool handler 2 8841 5893

Table 3. Travelled distances by workers in each layout
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The suggested solutions to increase productivity are a) adding another skirting table, b) adding extra wool handlers,
or c) reducing the skirting table processing time. These scenarios have also been analyzed on the curve layout.

First solution suggestion: add another skirting table (Figure 8a).  The simulation model for this solution
showed satisfying effects,  as it  raised the production to 856 fleeces of  wool within 7:40 hours. The blocking
percentage and blocking time in the curved layout after this addition decreased. This makes the shearers work near
full capacity, as shown in Figure 8b. However, some blockage at the shearing stations can be noticed after adding an
extra skirting table and the reason behind this is the variability of  wool handlers’ arrival rate and the service rate
variability at the skirting table. In general, adding a buffer between the skirting table and the shearer stations could
be a solution to manage variability issues, but wool handling requires specific handling methods that make this
infeasible. Fleeces must be passed to the skirting table directly and without mixing with other fleeces. So, carrying
the fleece again from the buffer and to the skirting table would consume more time due to the extra handling and
may reduce quality by spreading contaminants.

Figure 8. Plant Simulation model showing the curved wool shed layout 
with two skirting tables and accompanying resource statistics

The next simulated solution: add extra wool handlers. To evaluate This solution five experiments were applied.
The number of  wool handlers was increased from 2 to 6 workers. A proportional relationship was observed
between the number of  wool handlers and the output up to a saturation point. The maximum number of  produced
fleeces in this case when the system has 6 wool handlers was 833 as shown in Table 4. The first solution of  adding
a skirting table showed better results, and the additional worker(s) add more cost than the small increase in fleece is
worth.

Number of  wool handlers Number of  fleece (curve)

2 826

3 827

4 828

5 833

6 833

Table 4. the second scenario adding extra wool handlers

The last scenario is reducing the processing time of  the skirting table by adding a worker to do the skirting
or by automating the process. By utilizing DES, a set of  thirty-one (31) experiments were simulated for a range of
skirting processing times (10-40 sec). The results shown in Figure 9 illustrate the optimal processing time that
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provides the maximum operation time and maintains the highest throughput was 22 seconds which yields an output
of  868 fleeces per day. This processing time ensures the shearers are not blocked as shown in Figure 10, maximising
utilization.

Figure 9. Number of  shorn fleeces according to skirting table processing time with the optimal speed highlighted in blue 

Figure 10. Resource statistics for skirting process time equal to 22 seconds

DES provides a straightforward and low-cost route to generate and evaluate potential solutions for the bottleneck.
The associated layout changes show an increase in employee productivity and thus an increase in the output of  the
production system. Processing times are assumed to be uniformly distributed. This choice reflects the small sample
size  of  the  experiment  not demonstrating a clear  distributional  form and provides convergence to a  normal
distribution should a sufficiently large simulation be performed. This property makes for a conservative estimate on
the process variability with the limited data.

4. Conclusion
This study used discrete event simulation to compare the performance of  different wool shed layouts (curved vs
linear) and evaluate solutions to improve shearing shed performance. This is the first study of  this problem for
wool  handling  to  improve  production.  The  digital  model  revealed  that  the  curved  layout  showed  better
performance than the linear layout. Specifically, the curved layout showed better performance than the linear
layout by an increase in output of  11 fleeces over a one-day working period (equivalent to 33 min saving). The
underpinning reason was the reduction in travelling time for workers in the curved layout, which helped to
reduce the blocking at the skirting table. Several scenarios were explored to improve the production in the curve
layout. Adding a second skirting table decreased the blocking problem. That meant the shearers could work near
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their full capacity, leading to an improvement in the throughput, this enhanced production from 826 to 856
fleeces. A second scenario of  increasing the number of  wool handlers’ number showed that only a small gain
was possible with the highest throughput of  833 with an extra four handlers. Finally, the best possible scenario
was reducing the processing time for the skirting table to 22 seconds resulting in higher productivity reaches to
867 fleeces.

The paper shows how improvements in this industry can be identified and evaluated using DES. Through further
simulation-based investigation of  the wool harvesting process, an optimized production layout could be designed
and examined with regard to its potential for improvement. This approach eliminates the need for costly planning,
which is usually associated with high investment costs.
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Appendix A
Field data for three shearers and skirting through using stop watch and supplementary data extracted from industry
literature 

Shearer Shearing
speed 1

Shearing
speed 2

Shearing
speed 3

Shearing
speed 4

Recovery time 

Shearer 1 2:30-3:00 (RSPCA Australia, n.d.) 10

Shearer 2 2:40 2:43 2:54 3:00 0:10,0:12,0:10,0:09

Shearer 3 2:20 2:27 2:48 3:00 0:12, 0:15, 0:15, 0:14

Shearer 4 2:30 2:35 2:42 2:50 0:15, 0:15, 0:15, 0:14

Shearer5 2:30-3:30 (Australian Wool Innovation, 2015a) 15

Shearer6 2:30-3:00 (RSPCA Australia, n.d.) 15

Skirting 0:25, 0:25, 0:28, 0:26 0:00

Balling 2:00-2:30 (Australian Wool Innovation, 2015b) 0:30 (Australian Wool Innovation, 2015b)
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This paper addresses the first research question: “ To what extent can discrete

event simulation be used to evaluate the productivity of heavily manual production

enterprises?”

The digital model demonstrates an average daily production of 478 fleece, with a standard

deviation of 1.5. This production rate was influenced by workers’ skills and other factors.

Although the model assumed 100% worker utilization, this assumption did not affect

the overall results or conclusions of the study because the worker utilization would

work as a scaling factor and evenly scale up/down all results. So, that will not affect

any ratios/ranking between the analyzed options. Additionally, the analysis explored

various factors, such as testing different layouts, adding extra resources, and examining

the impact of variations in human skills on production. This showcases the model’s

flexibility in predicting output under various conditions and provides a proof of concept,

highlighting the applicability of the proposed approach to this industrial environment.

Appendix A (Page 83) presents the SimTalk programming codes used to control the

production flow in the woolshed case study. It also includes the results from running the

model five times, demonstrating how changes in the number of wool handlers affected the

number of sheared fleeces within the curve layout scenario. The next chapter explores

the second area of study, which covers high-mix, low-volume industrial environments.
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PAPER 2: POWDER BED FUSION FACTORY

PRODUCTIVITY INCREASE USING DISCRETE EVENT

SIMULATION AND GENETIC ALGORITHM

This paper addresses the second research question “What is the effectiveness of combining
DES with metaheuristic method (Genetic algorithm) to enhance productivity in High-Mix
Low-Volume (HMLV) Manufacturing? ” Answering this question could demonstrate the

feasibility of the proposed approach in a manufacturing setting characterized by diverse

product types and relatively low production volumes.

Paper status: Submitted/under review
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ABSTRACT

Additive manufacturing has emerged as a growing technol-
ogy showing promise for the future of manufacturing, particularly
in mass individualization production. In particular, powder bed
fusion processes have achievedwide use across industries for both
polymer and metallic components. However, due to the relatively
slow deposition speed per unit mass compared to conventional
methods, scheduling and production planning play a crucial role
in scaling up additive manufacturing productivity to medium and
higher volumes. Most research on additive manufacturing pro-
duction scaling has focused on the quality of individually pro-
duced parts and control of printing technology rather than factory
level management. In conventional production systems, several
existing factory management and organization techniques exist
including discrete event simulation and heuristic optimization
methods. These have successfully improved productivity for con-
ventional manufacturing but have not been examined in detail for
the style of lot size 1 factories enabled by additive manufacturing.
This paper introduces a framework combining discrete event sim-
ulation to evaluate factory dynamics and a genetic algorithm for
further improvements through scheduling optimization resulting
in makespan improvement opportunities for small scale powder
bed fusion style factories. A particular case of multi-jet fusion
machines and process flow are analyzed for a fixed ingest of 20
jobs. Worker and capital equipment levels are varied. Processing
time for parts at each station represents a realistic dynamic sys-
tem through discrete event simulation with data sourced from the
historical performance of multi-jet fusion machines. The results
show that bottlenecksmove amongworkstations and process steps
based on worker or capital equipment availability depending on
which constraint is active. These bottlenecks are also dependent
on the size of the facility shifting as the facility grows in size.
Productivity improvement is limited when either the number of
workers or capital equipment is fixed showing a resource-driven
constraint. The combined discrete event simulation and heuristic

∗Corresponding author: lee.clemon@uts.edu.au

optimization approach shows the trade-off of worker and capital
equipment to achieve makespan improvements at varying facility
levels. The addition of personnel or equipment removes some
blockages and increases production with further gains achieved
by scheduling optimization. Changes in resources provide pro-
ductivity gains of 53% makespan improvement when adding the
first worker with scheduling optimization using a genetic algo-
rithm. This highlights the minimum level of manual processing
required in powder bed fusion based manufacturing. The method
developed here will help decision-makers in designing, staffing,
and operatingmulti-jet fusion factories and inform similar studies
on other powder bed fusion technologies.

Keywords: additive manufacturing, scheduling, dis-
crete event simulation, multi-jet fusion

NOMENCLATURE

𝐽 set of jobs to be assigned [𝑢𝑛𝑖𝑡𝑠]
𝑗 a job of 𝑝 parts to be manufactured
𝑛, 𝑝, 𝑚 count variables
𝑖, 𝑗 , 𝑘 indices for each machine, job, and process stage
𝑃 processing time
𝑋 assignment variable for scheduling
𝑤 makespan
𝑆 sequence of jobs
𝑧 size of the GA generation

INTRODUCTION

Powder bed fusion (PBF) [1], has become a viable option
for industrial and commercial production. It has enabled the
production of parts that are more complex, customized, and vari-
able than conventionally manufactured parts. In this particular
study, we focus on Multi Jet Fusion (MJF), which uses infrared
lamps and a doping agent deposited by inkjet nozzles for fusing
polymers together, and is classified in the PBF family of additive
manufacturing processes per ISO/ASTM 52900 [1].In compari-
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FIGURE 1: SELECT EXAMPLE PARTS USED TO CALIBRATE
PROCESSING TIME IN PRODUCTION STEPS

son to Material Extrusion1, MJF is up to ten times faster with
superior surface finish and more isotropic mechanical properties
[2] leading to commercial adoption for tooling [3], production
line components [4], and orthotics[5]. The recent announcement
of HP’s metal system, which is modeled on the MJF process has
sparked interest in the industry for factory arranged production
systems [6]. However, the scale-up of additive manufacturing
for production-level fabrication is challenged by the low mass
deposition per unit of time and the classic problem of high mix
low volume products [7]. MJF systems allow for individual
customization of parts built in the same batch leveraging the ge-
ometric freedom and enabling economic lot size 1 production.
MJF is a layer-by-layer process, and the deposition rate is lim-
ited by the size of the deposition nozzles, the resolution of the
print, and the properties of the material being used [8]. This
can result in longer production times per unit compared to con-
ventional manufacturing methods like injection molding. At a
factory level, additional variables affect the total production time
such as machine failure, worker availability, and shift time. When
production quantities increase, the impacts of these variables be-
come more significant and as the number of pieces of equipment
and jobs increases explicit modeling becomes intractable. This
type of scheduling problem is classified as an NP-hard problem,
meaning finding guaranteed optimal solutions is not feasible, and
thus stochastic or heuristic methods are required.

Scheduling and production planning methods in AM are still
developing with a recent review indicating limited investigation
into this topic and that most research was published within the
last four years [9]. This indicates a need to adapt and update
production planning methods from other production systems for
the AM context. Prior studies on production planning in AM
treated this challenge as a nesting problem to group parts in
batches [10–13] and use a static representation of the production
system [13–15]. Their objectives varied including minimizing
production cost [12, 14], minimizing lateness [15], minimizing
makespan [10], ormaximizing profit and resource utilization [16].
Kucukkoc, et al. [13] added the consideration of creating batches
on parallel identical and non-identical machines. Oh, et al. [17]
investigated a heuristic algorithm to optimize the build orienta-

1also known as fused filament fabrication

tion and 2D packing. Akram, et al. [18] examined the batching
of identical parallel AM machines, aiming to meet distinct order
deadlines while minimizing overall tardiness. They introduced
both the mathematical framework for this challenge and a heuris-
tic approach. The problem was deconstructed into two subprob-
lems: first, the allocation of parts/jobs via part clustering linked
to due dates, followed by job tardiness. This body of research
focused on reducing the makespan with a static representation
of the system and does not consider the stochastic and dynamic
nature of a factory floor. Static implementations are unable to
update with dynamic changes in worker or machine availability
and setups. Thus, simulation methods that incorporate stochastic
production challenges (like machine failures or worker absence)
and queues are needed. Dynamic methods of simulating produc-
tion flows can provide better insight into factory planning and
management.

To overcome the challenges of a dynamic factory, adapting
methods of production planning from conventional manufactur-
ing could be beneficial. A seminal work in dynamic system
simulation introduced Discrete Event Simulation (DES) to cap-
ture real-world variability for production scheduling [19]. DES
has been successfully applied for bottleneck identification [20]
and manual assembly [21]. DES has been a successful method
for simulating solving complex queuing problems in conventional
manufacturing [22–26], but has not been applied to additive man-
ufacturing. Additive manufacturing is a lot size 1 production
method with a flow shop type equipment arrangement. DES may
be suitable for analyzing and improving AM process planning.
DES does not iteratively perform optimization on its own. In-
stead, a suitable optimization method is also needed to provide
further improvements in combination with DES. We apply Dis-
crete Event Simulation integrated with a genetic algorithm to
evaluate the impacts of factory level scheduling and capital re-
source allocation to address the highly stochastic variation AM
and fill this gap.

This work presents a simulation-optimization approach to
solve a scheduling and bottleneck identification problem in addi-
tive manufacturing for a powder bed fusion-based process which
can inform factory planning and operations. This research ex-
tends productivity improvementmethods from conventionalman-
ufacturing into the field of additive manufacturing showing the
effectiveness of integrating GA with DES. Application of this
method can enable companies to reduce their makespan and
make informed decisions about equipment and staffing arrange-
ments while reducing costs and improving customer service. This
approach helps systematically analyze and identify the specific
trade-off point between intended output performance and required
machines and personnel as well as the contribution of intelligent
scheduling.

PROBLEM STATEMENT
The production flow in an additive manufacturing facility is

defined as a scheduling problem where 𝑛 jobs, 𝑗 ∈ 𝐽 = 1, 2, ..., 𝑛,
enter the facility in a processing window and need to be com-
pleted. Each job is comprised of 𝑝 parts of varying dimensions
and numbers. For example 𝑗1 contains 5 parts 𝑗2 has two parts
𝑗𝑛 has 𝑝 parts as 𝑝𝑗1 = 5 and 𝑝𝑗2 = 2. Each job is restricted
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FIGURE 2: ASSIGNMENT STRUCTURE OF N JOBS TO
M MACHINES THROUGH K STAGES USED TO SCHEDULE
PRODUCTION

to a single batch. A batch is defined as a group of parts that
are produced together in the 3D printer as a group at one time.
The batch (or job) is then processed in subsequent stages as a
collective unit.

Each job must progress through 𝐾 processing stages. The
sequence of stages is the same for each job, but the processing
time for each stage varies depending on the features of the job
(𝑝 parts, part dimensions, and part quantities). No restrictions
have been made on the types of parts or their features other
than those imposed by the machine used for fabrication. The
processing time, 𝑃𝑗 ,𝑘 , of a given job, 𝑗 at stage 𝑘 ∈ 𝐾 is dependent
on the number of parts and their design properties, such that
𝑃𝑗 ,𝑘 = 𝑓𝑘 ( 𝑗). Processing time also includes any waiting time for
worker availability, job setup, material transfer, and buffering.

The facility has𝑚𝑘 parallel machines in stage 𝑘 such that any
available machine, 𝑀 (𝑘, 𝑖), in stage 𝑘 can be assigned the next
job. Define 𝑀 (𝑘, 𝑖) as the machine with individual reference 𝑖 in
stage 𝑘 . The presence and number of workers in the facility have
an effect on the production speed. For some stages, a worker must
be present to initialize the operation and for others, the worker
must perform tasks throughout the duration of that processing
stage. Thus, the layout of the facility and transit to and from
each machine across all stages is included. Fig. 2 illustrates a
general problem structure, depicting multiple stages and multiple
machines within each stage. Jobs progress through the stages
with the help of workers transporting them. In some stages, a
worker must be present for processing. Additionally, the figure
depicts multiple jobs that need to be allocated to these machines.

The goal is tominimize the total processing time for all 𝑛 jobs
𝑗 ∈ 𝐽 = 1, 2, . . . . . . , 𝑛 with processing time (𝑃𝑗 ,𝑘,𝑖 =

∑︁
𝑘 𝑃𝑗 ,𝑘,𝑖)

on 𝑀 (𝑘, 𝑖) parallel machines 𝑖 ∈ 𝐼 = 1, 2, . . . 𝑚𝑘 , where the
machine assigned to the job at each stage may vary. This mini-
mization considers the uncertainty and the dynamic nature of the
additivemanufacturing environment such asworkers’ availability,
shift time, facility layout, and traveling distances.

To assign jobs to parallelmachines, define the binary variable
𝑋𝑖 𝑗𝑘 = [0, 1] that takes the value 1 if the job is assigned to the
machine in stage k and is 0, otherwise. Consider the following
objective function to minimize makespan (𝑤) of the sequence,
similar to [27]:

𝑤 =
𝐾∑︂
𝑘=1

𝑛∑︂
𝑗=1

𝑃𝑗𝑘𝑋𝑖 𝑗𝑘 (1)

In Eqn. 1 the makespan is defined as the completion time for
all jobs where each job must be assigned to exactly one machine
in each stage and must progress through all processing stages
sequentially. We seek to find an order of such jobs and their
allocations in each stage tominimize the total time for all available
jobs to complete.

METHODOLOGY
The production simulation task is divided into two parts:

(A) facility resourcing and (B) job scheduling optimization. For
(A), the impacts of the number of workers and the number of
capital equipment at the bottleneck location are sought. Then for
each facility resourcing, a genetic algorithm is used to search for
a schedule that minimizes makespan addressing (B). This work
examines an example facility that exclusively uses the powder
bed fusion (PBF) machines produced by Hewlett Packard (HP)
called multi-jet fusion, which uses a series of inkjet nozzles for
ink deposition and a heat lamp for thermal fusing. For (A) facil-
ity resourcing, a DES model of the factory is created and used to
identify bottlenecks and evaluate worker and equipment utiliza-
tion for each job schedule. The DES model captures additional
information about the production to represent real-world produc-
tion issues including worker shifts, worker travel, and machine
downtime for each scheduling evaluation. For (B) job scheduling
problem is solved to minimize makespan using a genetic algo-
rithm and test candidate solutions given each variation in the
number of machines and workers.

The MJF workflow comprises five main stages: (1) slicing,
(2) printing, (3) cooling, (4) unpacking, and (5) sandblasting.
Slicing is the process of converting the 3D drawing into instruc-
tions for the printer to action. Printing is the actual process of
depositing powder and forming the parts. Cooling refers to let-
ting the printed parts cool down tomaintain dimensional accuracy
and surface finish, it occurs in the building unit which contains
the platform where the printed parts are constructed. The build-
ing unit in HP MJF machines can be removed from the printer
for further post-processing such as cooling and unpacking which
provides additional flexibility in scheduling allowing printers to
become available quicker than other PBF processes. Unpacking
is the stage of extracting the printed parts from the powder in
building units using a vacuum. Sandblasting refers to completely
removing powder from printed parts to achieve clean parts. This
process is carried out by workers using a combination of airflow
and sand. Other post-processing steps such as polishing and dy-
ing are possible but not included in this study. A digital model
for production facilities was built to test the total production time
of varying (a) parts (and processing times), (b) workers, and (c)
machines using Siemens Tecnomatix Plant Simulation[28].

A test set of jobs was generated using historical data from a
university additive manufacturing facility’s HP Multi-Jet Fusion
4200 machine and initially randomly ordered. A range of fac-
tors influences the duration of each job stage. During unpacking
and sandblasting, factors such as part geometry, packing density
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(number of parts), build height, material type, desired surface
finish, and operator efficiency play a pivotal role in determining
processing time. In this study, the number of parts was used
as the primary determinant of processing time assuming all the
parts have equivalent complexity within a job but vary among
different jobs. To capture the variability in processing time for
different parts’ geometry, we have measured the processing time
and simulated random values for unpacking between 2 min to 6
min and for sandblasting 2 min to 4 min per part. These values
are obtained from the university’s facility (Fig. 1). The objective
is to demonstrate the varying time requirements of different jobs
for scheduling purposes, rather than delving into the tool/material
interface of the manufacturing process itself, thus approximated
values informed by these measurements provide insight into re-
alistic processing expectations. A set of twenty jobs and their
processing times derived from this testing and variable range is
listed in Tab. 1.

The type of production in this study is classified as flow
shop production where all jobs follow the same route to comple-
tion but may vary in other aspects of their processing. First, a
discrete event simulation model was built using Siemens Tecno-
matix plant simulation to represent the real production process of
printing parts using MJF printers including worker(s) and travel
distance between machines. Next, a GA searches for the sched-
ule that minimizes makespan, which improves productivity and
reduces production costs. GA starts with defining valid inputs to
establish the search space, in this case, it is limited to any order
of the jobs, but a list that includes all jobs. This defines the pop-
ulation of possible solutions. Samples (sequences of jobs) are
randomly selected from the population of all possible sequences.
Each sequence selected by the GA represents a ‘chromosome’, or
input string. Each chromosome is scored. Our fitness function
is makespan, Eq. 1, to be minimized. The chromosomes that
are highly score better (shorter makespan) than existing chromo-
somes are retained for the next generation (iteration) of the search.
In this next generation, retained chromosomes have sections of
job orders that are swapped with another chromosome. For ex-
ample, Chromosome A has within it the sequence j4, j8, j10,
whereas chromosome B has the sequence j10, j8, j4. These two
segments of the schedule are swapped in place with each other to
create two children, Chromosomes C and D, where Chromosome
C is identical to Chromosome A except for the segment that was
taken from Chromosome B of j10, j8, j4. In addition to crossover,
top performers aremutatedwhere a new chromosome is produced
where two jobs are swapped in the global ordering of the orig-
inal chromosome, e.g. j2 and j19 exchange places. Crossover
and mutation produce new solutions that are close to the exist-
ing found solutions and thereby find local optima, leveraging the
high-performance pieces of the parents. In addition to crossover
and mutation is the stochastic search of random new sequences
outside of the prior evaluated sequences. The best overall scoring
chromosomes are retained until the convergence criteria or com-
putational search time limit is reached [29]. Appendix B provides
a visual depiction of the crossover and mutation processes.

Each DES setup is manually constructed by adding or re-
moving machines and workers and then the GA schedule opti-
mization is performed. Finding an optimal solution to the flow

shop scheduling problem requires exploring a large number of
possible scheduling combinations, which becomes increasingly
difficult as the number of jobs and machines increases. The jobs
can be assigned to themachines in (n!) sequences. Which is in the
case of 20 jobs generating 20! = 2.4𝑒18 possible orderings. The
best solution given a limit on search effort using the GA is kept.
We evaluate the makespan improvement by comparison to the
original randomly generated sequence in Table 1, sequence (S):
𝑠0 = 𝑗1, 𝑗2, 𝑗3, ....., 𝑗𝑛−1, 𝑗𝑛. The GA creates a population of dif-
ferent sequences, each candidate sequence is generated randomly
𝑆 = [𝑠1, 𝑠2, 𝑠3......𝑠𝑧]. The jobs are assigned to the available ma-
chines according to their sequence with the priority rule of first
in first out (FIFO) (Fig.2). The GA parameters are set according
to trial and error (number and size of generation). Crossover and
mutation are applied to produce additional new solutions. Then
the value of these solutions is evaluated by computing their fitness
value which is the makespan in Eqn. 1. The DES calculates the
makespan of each tested sequence. Then, the best children (so-
lutions) are used to generate additional possible solutions. This
process is repeated through a present number of generations. A
pseudo-code of the GA is provided Alg. 1. This study assumes:

• The processing time for each job is known a priori.

• Setup time is independent of the job sequence and is con-
sidered part of the processing time.

• It is not possible for a machine to process more than one job
at a time.

• Each job contains a different number of parts, and the com-
plexity (difficulty in extraction and cleaning) of parts is iden-
tical within a job.

• All machines are available at the beginning of the scheduling
period.

• A 1% failure rate is incorporated into each printingmachine.

• Printing time depends mainly on the maximum Z height in
each job [9]. Derived from HP’s specifications at a rate of 1
inch per hour ([30]) calculated on a layer thickness of 0.003
inches and thus 8.3 seconds for each layer. The build height
in each job is generated randomly from 2 inches to 15 inches
(maximum height on reference printer).

The objective is to minimize the total production time mea-
sured as the makespan, or total time to process all jobs in the
schedule. The main two factors that affect makespan are job
assignments and resource availability (workers, machines, etc.).
The combination of DES and GA methods is applied to both
different resource configurations. For the first setup, 3 printing
machines are used with an input of 20 jobs. Unpacking stations
are varied from 1 to 3, sandblasting stations from 1 to 2, and
available workers from 1 to 3 (Tab. 2). Each arrangement (Exp)
is evaluated using DES, the makespan is reported for the random
default ordering and then the GA (Alg. 1) is used to optimize the
scheduling order for the factory setup. GA has been parametrized
based on running various experiments until the best fitness val-
ues are achieved, which involves adjusting the number and size of
generations. Appendix C shows the parameters that were used.
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TABLE 1: GENERATED LIST OF 20 JOBS FOR PROCESSING WITH PROCESSING TIMES IN EACH STAGE

Job Number Max Z height P-Slicing P-Printing P-Unpacking P-Sandblasting
of parts (units) (inches) (min) (min) (min) (min)

1 34 15 68 900 204 102
2 57 9 114 540 228 114
3 8 2 16 120 32 32
4 33 13 66 780 132 132
5 11 11 22 660 44 22
6 41 9 82 540 164 123
7 37 9 74 540 222 148
8 28 13 56 780 112 112
9 54 12 108 720 216 216
10 39 4 78 240 234 156
11 54 10 108 600 324 108
12 8 13 16 780 40 16
13 29 7 58 420 116 87
14 10 8 20 480 50 30
15 60 3 120 180 240 180
16 51 5 102 300 255 153
17 48 11 96 660 192 192
18 44 10 88 600 176 176
19 13 11 26 660 52 26
20 14 6 28 360 84 28

Algorithm 1 GENETIC ALGORITHM

Require: 𝑆0 = { 𝑗1, ..., 𝑗𝑛} ⊲ available jobs
1: S𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = {𝑆1, ..., 𝑆𝑞} ⊲ generate initial candidates
2: Execute DES for 𝑆𝑟 ∈ S
3: Compute 𝑤 =

∑︁𝐾
𝑘=1

∑︁𝑛
𝑘=0 𝑃𝑗𝑘 , 𝑋𝑖 𝑗𝑘

4: for 𝑁 generations do
5: Mutate best performers, add to pool
6: Crossover best performers, add to pool
7: S𝑛𝑒𝑤 = {𝑆1, ..., 𝑆𝑞} ⊲ generate new candidates
8: S = [S, S𝑛𝑒𝑤] ⊲ add candidates to pool
9: for each 𝑆𝑟 ∈ S do

10: Execute DES for 𝑆𝑟
11: Compute 𝑤 =

∑︁𝐾
𝑘=1

∑︁𝑛
𝑘=0 𝑃𝑗𝑘 , 𝑋𝑖 𝑗𝑘

12: Order 𝑆𝑟 by shortest 𝑤 to longest
13: Retain best 𝑡 performers
14: return S, 𝑤(S)

The makespan includes working time and non-working
hours. There were two breaks (a short break of 15 minutes
and a lunch break of 45 minutes) during the shift (8 hrs/day).

RESULTS
With a single worker, the makespan remains unaffected by

increased other resources. For example, adding an extra unpack-
ing station to this scenario kept the makespan constant, see Exp1
vs Exp2 (Tab.2). Thus, equipment resources are not constraining
production in this scenario. However, with the addition of one
extra worker without scheduling optimization, the makespan was
reduced up to 30% (Exp1, Exp3) with 3 machines, indicating that
the bottleneck in this arrangement was the availability of workers.

Introducing an unpacking station and performing theGA schedul-
ing optimization to the two workers’ setup dropped the makespan
31% from Exp3 before GA to Exp5 after GA. This results in a to-
tal improvement of 52% improvement from Exp1 without the GA
scheduling optimization to Exp5 after the scheduling optimiza-
tion. Adding an extra sandblasting station did not significantly
change the makespan, 0.6% (Exp3, Exp4).

In certain instances, the application of the genetic algorithm
schedule leads to a more significant reduction in the makespan
than adding extra workers or equipment. For instance, in Exp5,
the makespan was reduced 25% from 12:02:44:41 to 9:03:31:45
after applying the GA. Moving from Exp5 to Exp10 by intro-
ducing an extra worker, an extra unpacking station, and an ex-
tra sandblasting station only reduced the makespan by 0.4% to
12:01:30:28 without applying the GA scheduling optimization.
The total improvement from Exp1 to Exp10 is 53%. Figure 3
shows a snapshot of the activities for workstations and machines
in Exp5 before the GA scheduling. We see the worker break
periods are deemed paused time, and ‘unplanned’ refers to time
without a worker on shift. These variations in availability and the
simulated job sequence give realistic factory performance which
is also unique to the job sequence. Given portions of MJF manu-
facturing can be unmanned, the GA search preferences schedule
longer tasks that do not require a worker to begin toward the end
of a shift.

The makespan improved significantly after adding an addi-
tional unpacking station, but a greater improvement was observed
by adjusting the job schedule through the GA (Table 2). This ta-
ble displays the average values obtained from running the DES
model five times. The individual values for each replicate are
provided in Appendix D. The GA ran for 100 generations with
five candidate solutions in each generation. The GA largely con-
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TABLE 2: MAKESPAN RESULTS BEFORE AND AFTER SCHEDULING OPTIMIZATION FOR VARIOUS FACTORY RESOURCES

USING 20 JOBS

Exp Workers Unpacking Sandblasting Makespan Makespan GA Reduction by GA

(ID) (#) (#) (#) (dd:hh:mm:ss) (dd:hh:mm:ss) (%)

1 1 1 1 19:02:25:36 16:05:50:26 15

2 1 2 1 19:02:25:36 16:05:50:26 15

3 2 1 1 13:07:33:00 12:02:37:36 9

4 2 1 2 13:05:33:32 12:02:42:01 9

5 2 2 1 12:02:44:41 9:03:31:45 25

6 2 2 2 12:01:30:21 9:02:58:29 24

7 3 1 1 13:07:33:00 12:02:37:36 9

8 3 2 1 12:02:13:35 9:01:36:08 25

9 3 3 1 12:02:05:47 9:01:29:52 25

10 3 3 2 12:01:30:28 9:01:10:46 25

FIGURE 3: PROCESSING STATISTICS OF EACH STATION BY

ACTIVITY IN EXP 5 (TAB. 2) PRIOR TO GA SCHEDULING OP-

TIMIZATION

TABLE 3: MAKESPAN IMPROVEMENT FROM BOTH DES

AND GA COMBINED AS A PERCENTAGE (%) FOR 100 JOBS

Workers

Units
1 2 3

1 4 5 5

2 49 49 49

3 50 64 66

verged after 16 generations, with only a small improvement found

after 60 generations, as shown in Fig. 4).

The best performing assignment orders were those with the

most resources and use of GA: Exp 8, 9, and 10. Exp 8 saves

approximately 3 working days which is a 25% reduction in man-

ufacturing time and uses the fewest resources for comparable per-

formance. This represents a significant reduction in makespan

for a production facility, saving more than a day a week in time

without increasing resources.

In order to assess the scalability of GA in minimizing

makespan in this environment, the number of jobs was increased

from 20 to 100 (Fig. 5) for a consistent configuration (3 workers,

3 printers, 1 building unit, 3 unpacking stations, and 3 sandblast-

ing stations). The scaling shows that increasing the problem size

leads to greater improvements from GA scheduling, up to 66%

from the default list (Table 3).

FIGURE 4: CONVERGENCE CURVE OF GENETIC ALGO-

RITHM IN REDUCING THE MAKESPAN WITH INCREASING

GENERATIONS

FIGURE 5: THE VALUE OF MAKESPAN AT DIFFERENT SIZES

OF JOBS SHOWING THE INITIAL VALUE OF MAKESPAN

(M INITIAL) AND THE BEST AND WORST SOLUTIONS OB-

TAINED BY GA (M BEST AND M WORST)
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DISCUSSION
The simulation model was developed to explore improve-

ment opportunities in a multi-jet fusion factory through a com-
bined discrete event simulation and scheduling optimization using
a genetic algorithm. The developed method of combining DES
and GA optimization showed improvement opportunities from
both industrial resource changes, like adding more machines and
scheduling improvements. This highlights the multiple dimen-
sions of production system design addressed by this combined
approach which is not provided by either DES or GA when used
in isolation. The evaluated job scaling also illustrates oppor-
tunities and gives guidance on scaling up MJF to factory-level
production. For example, temporary job shocks can be managed
effectively through scheduling optimization which was able to
reduce the makespan by up to 25% in the 20 jobs load. The
objective to minimize total production time (makespan) through
combined DES production planning and scheduling in additive
manufacturing offers a path for the scale-up of production vol-
umes. The introduction of this approach overcomes problems
associated with other scheduling works for AM factory planning,
which rely on assumptions of static systems and simplifications
that may not capture real-world scenarios. DES allowed simula-
tion of worker movements, downtime, and shift schedules as well
as dynamic bottlenecks. The simulation experiments show the
necessary number of workers is contingent upon the quantity of
unpacking stations and building units present in the facility. This
is due to the manual unpacking process, which can obstruct the
flow of printed parts from the printers. Moreover, if the number of
workers falls short of the desired number, adding extra equipment
may prove to be redundant and lead to increased costs without
improving the makespan. For instance, when a single worker is
already present adding more building units (2 to 3) will not lead
to any improvement. Because the building units in this case are
not the bottleneck. However, the addition of extra units could
be more useful in cases where there are more workers, roughly
scaling with the number of building and unpacking units. If there
are insufficient workers, adding more equipment does not add
value.

The example facility used HP Multi-Jet Fusion 4200 ma-
chines with all major production tasks included from file prepa-
ration through to cleaning printed parts. This example facility can
be used as a representative of a polymer factory with many paral-
lels to metal machines. The biggest improvements from a single
resource addition are observed when adding the second worker
in all production unit arrangements with up to 49% reduction
in makespan with the 100 jobs case. For the tested number of
jobs, there appears to be a decreasing marginal benefit with the
addition of more capital resources as the factory scales up.

A failure rate is included which adds unplanned downtime
that is not captured in static analyses but offers the genetic algo-
rithm some additional search space. In a continuous job arrival
mode using the same job list on loop, the resource statistical
results show that the printers have a low working time due to
blockages (Fig. 3). The main reason for this blockage is the
cooling time is about 24 hrs which is done in the building unit
so the printer can’t be run until the the building unit is removed
and a new one is installed. The printers do not have unplanned

or paused time by definition because they could be run with-
out a worker present, i.e. 24 hours per day. However, printer
starts are limited by the availability of a worker to commence a
job and downstream processing of printed parts. This suggests
that multiple shifts could further increase production and reduce
or eliminate the high percentage of the blockage shown in the
activity statistics.

The GA schedule perturbation showed improved makespan
for most of the experiments, up to 25%. However, in a couple
of cases, it did not find a better job order, such as when there
were 2 workers with 2 or 3 unitsFor these scenarios, the de-
fault job order may be a sufficiently good order given the worker
availability constraints. The initial job order was randomly de-
termined and is not the worst possible job ordering, so it may
also be that this initial random order was a pretty good sched-
ule. Though it is possible that a much longer search time may
find some additional improvement in the job order. Processing
time and complexity of the produced parts were assumed to not
vary with individual part geometry, therefore the only factors that
affected the processing time at any station were the number of
parts and their maximum build height in the building unit. This
provided sufficient variation in job processing time for this level
of simulation for factory management. Additional research in
packing arrangements[17, 31] or toolpath optimization[32, 33]
was not in scope in this study and would merely inform the print-
ing time for further simulations using the presented approach.
This assumption is easily adjusted for specific use cases by fu-
ture practitioners. The effectiveness of combining discrete event
simulation with a genetic algorithm may vary in magnitude for
different printing equipment or factory layouts.

This framework will help decision-makers design and max-
imize production in current and future factories for the AM in-
dustry. Existing factories can use this approach to understand
their system and needs in a virtual environment without inter-
rupting the production line and to test different scenarios before
implementation.

CONCLUSION
This work introduces a simulation optimization-based anal-

ysis to support additive manufacturing planning and scheduling
for factory production based on combining discrete event simula-
tion and a genetic algorithm. DES was used first as an evaluation
tool to analyze the performance of different resource configura-
tions and to identify bottlenecks. Subsequently, GA was used to
further improve the makespan by reordering the available jobs.
The case studies revealed that the bottleneck was often the worker
availability, suggesting matching workers closely to the number
of unpacking stations. Adding an extra worker led to a signifi-
cant reduction in makespan by up to 53% for 20 jobs. The DES
experiments identified the makespan reduction with either the
addition of more workers, more building units, or a combination.
Integrating GA into the DES model for scheduling introduced a
further reduction in the makespan by up to 25%. However, it
also showed adding extra resources may prove to be redundant
and lead to increased costs without improving the makespan if
the number of workers falls short of the desired number. Instead,
it helps to find the right balance between the number of workers
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and the number of different equipment for a given job set. De-
termining this balance can occur through using the methodology
developed in this work as a production planning tool for dynamic
production systems. This can help decision-makers determine
the proper number of resources to deliver parts in time and how
to allocate limited resources in the most efficient and flexible way.
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PAPER 3: A NOVEL APPROACH AND CASE STUDY TO

ASSEMBLY LINE BALANCING USING DES AND

HEURISTIC METHODS

This paper addresses the third research question, “What is the effectiveness of combining
DES with heuristic methods to solve assembly line balancing problem (ALBP) in Low
-Mix High-Volume (LMHV) Manufacturing?” Answering this research question provides

a proof of concept for the proposed approach in a production environment that is greatly

influenced by demand fluctuations, leading to an uneven distribution of workload across

workstations and consequently reducing overall resource utilization. The paper is orga-

nized as follows: It begins with an introduction to the assembly line balancing problem,

providing an overview of methods used in the literature to address it and offering back-

ground information on various assembly line types. The research methodology, along

with case studies, is then presented to elucidate the approach. Three heuristic methods

are implemented alongside DES. The implementation details are analyzed and discussed,

and finally, the paper concludes with a wrap-up.

Paper status: submitted to the journal of Production and Operations Management
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CHAPTER 5. PAPER 3: A NOVEL APPROACH AND CASE STUDY TO ASSEMBLY
LINE BALANCING USING DES AND HEURISTIC METHODS

A novel approach and case study to assembly line balancing using discrete
event simulation and heuristic methods

Abstract:
Assembly line balancing can help reduce idle time, maximize throughput, identify bot-

tlenecks, and improve the flow of production when the workload is distributed evenly

across workstations. This allows manufacturing companies to reduce waste and improve

overall productivity. In this study, we present a novel approach to increase the efficiency

and throughput of the assembly line through the combination of heuristic task allocation

methods and discrete event simulation (DES). We applied our method in a case study for

an enclosure manufacturing company. We started by collecting data from their current

line setup. Then, three heuristics techniques for task allocation: (1) Largest Candidate

Rule (LCR), (2) Ranked Positional Weight (RPW), and (3) Kilbridge and Wester Column

(KWC) have been used to generate alternative preliminary solutions. We then build a dig-

ital model matched to the existing line to simulate the real-world system and adjust this

model to propose and evaluate various alternative improvement scenarios. The results

show that LCR and RPW assign tasks in a similar manner, while KWC allocates tasks

differently. Despite these variances, all three heuristic methods demonstrate comparable

improvements, increasing line efficiency from 72.8% to 76.4%. Applying DES through

implementing "what-if" analyses to the initial solutions obtained by heuristic task alloca-

tion methods led to an increased line efficiency of 91.6%. Therefore, integrating DES with

heuristic task allocation methods appears to be a promising strategy for decision-makers

seeking substantial enhancements in line efficiency, especially compared to the use of

heuristic methods alone.

KEYWORDS: assembly line balancing, discrete event simulation, heuristic methods

5.1 Introduction

The Assembly Line Balancing Problem (ALBP) is a central challenge in manufacturing

that often emerges due to an uneven distribution of workload across workstations [78].

This unevenness results from changes in demand, the introduction of new products,

unforeseen equipment malfunctions, or inefficient management and process control

[79]. Thus, a crucial aspect of ensuring a streamlined operation of production processes

involves equal task allocation across workstations while adhering to certain techno-

logical constraints. This task allocation strongly affects metrics of the overall system
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performance, such as production time, throughput, resource utilization, and system

efficiency.

The fundamental principle of assembly line problems involves distributing tasks

among stations in a sequential order while respecting the precedence relationships and

obtaining certain efficiency measures [80]. ALBP is considered an NP-hard problem due

to the extensive possible combinations of tasks and workstations [81]. The identification

of optimal assignments necessitates the evaluation of each possible combination, which

is impractical for large sizes of assembly lines. Salveson was the first to discuss this topic

in 1955, proposing linear programming as a solution [66]. Subsequent research has been

extensive, and scholars have suggested solutions under four primary categories: math-

ematical optimization techniques, heuristic methods, metaheuristics, and simulation

[14]. The quality of solutions varies among these methods. For instance, mathematical

programming provides optimal solutions but requires significant time for computation.

Conversely, the other categories offer satisfactory or near-optimal solutions within a

feasible time but might not discover globally optimal solutions. However, heuristic and

metaheuristic methods, given their static nature, may not fully represent the dynamic

aspects of assembly line systems. Meanwhile, simulation methods excel in modeling

complex and dynamic environments but are not efficient standalone optimization tools.

To the best of our knowledge, existing literature did not attempt to solve this problem

by combining DES alongside heuristics; the majority used DES as an evaluating tool only.

This study aims to answer the following research question: What are the potential
benefits of integrating Discrete Event Simulation (DES) with heuristic methods
for ALBP optimization?. Our investigation focuses on the comparative effectiveness of

this integration as opposed to prior work, which uses each method as an alternative or

evaluation tool only for solving ALBPs. We conducted a case study involving an assembly

line to address this research question and employed three heuristic methods. Then,

we used the results (number of workstations and task assignments) to integrate them

into the DES model, analyze the solution, and propose various enhancement scenarios

guided by DES analysis. Finlay compares the line efficiency and throughput between the

heuristic and raised scenarios.

A background of ALBP types and a review of relevant literature in this space is presented

in section 2. Section 3 provides a detailed description of our research methodology. Our

findings are presented and discussed in Section 4, while Section 5 summarizes our

concluding remarks.
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5.2 Background

ALBPs are primarily divided into two types based on the underlying assumptions: Simple

Assembly Line Balancing Problems (SALBPs) and Generalized Assembly Line Balancing

Problems (GALBPs). If the following assumptions hold true, the problem can be classified

as a SALBP. These assumptions include [82]: the processing time for each task being

known, and precedence relationships are well established. It is also assumed that all

tasks need to undergo processing and that the costs related to each workstation are

roughly equivalent. Tasks are individable and cannot be spread across two or more

workstations. The flexibility of task assignment is maintained with the provision that

any workstation can handle any task. In terms of operational capacity, it is understood

that the time taken at a workstation must not exceed the cycle time. Lastly, the SALBP

assumes that assembly systems are structured to cater to a single unique model of an

item. If any of these assumptions do not apply, the problem falls under the category

of GALBPs [83]. A significant portion of the existing research has focused on SALBPs.

These have been divided further into two main categories based on their objective,

called SALBP-1 and SALBP-2 [84]. The primary goal of SALBP-1 is to minimize the

number of workstations within a given cycle time, while SALBP-2 aims to minimize

the cycle time given a fixed number of workstations. Assembly lines can be divided into

two primary categories based on the arrangement of workstations: straight lines and

U-shaped assembly lines [85]. In a U-shaped line, workers can operate at both the start

and end of the production line. In contrast, straight assembly lines limit workers to

operating only along the line. Additionally, straight assembly lines can assign tasks

once their predecessors have been assigned to stations. In contrast, U-shaped lines can

allocate tasks in either direction, implying that the number of stations required for a

U-shaped layout will never exceed that required for a traditional straight-line layout

[85].

5.2.1 Analytical methods

Analytical methods seek to define the ALBP setup explicitly in a set of mathematical

formulas and equations, which are solved. The objective is to minimize a certain perfor-

mance measure, such as cycle time, workstations, or production rate, subject to a set

of constraints. The first step in mathematical programming is identifying the problem

variables, such as the number of tasks, workstations, assignment condition variables,

cycle time, and precedence relationships. Next, the objective function and constraints
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are defined based on the problem requirements and constraints, such as the available

resources, task times, and precedence relationships. Past efforts to solve ALBP with

this approach include dynamic programming [86], branch and bound method [87], and

mixed integer programming [88]. Although analytical modeling can provide an exact

optimal solution for the ALBP, it requires significant computational resources and may

not be feasible for many complex and dynamic problems found in practice [14]. Therefore,

heuristic and metaheuristic techniques are often used as a compromise between solution

quality and computational complexity.

5.2.2 Heuristic and metaheuristic methods

Heuristic and metaheuristic methods are simplified optimization techniques that are

used extensively to solve ALBPs [84]. Heuristic methods are often problem-dependent,

meaning that a suitable method is defined as narrowly applicable to a particular problem

and may or may not be generalized. The most common heuristics used for ALBPs are

the largest candidate rule (LCR), rank position weight (RPW), and Kilbridge and Wester

Column (KWC) methods [80]. These techniques use priority values calculated from task

completion times and the precedence relations. In the LCR method, tasks are arranged

in descending order according to their duration, the task with higher processing time has

higher priority to be assigned first if it does not violate the precedence constraints and

does not lead the total workstation time to exceed the cycle time. The tasks continued

to be added to stations until all tasks were assigned. In comparison, RPW starts by

computing the RPW for each task by summing the processing time for the task and all

the tasks that follow it on the precedence diagram. After that, the tasks are arranged in

descending order according to their RPW number. The tasks with higher RPW have the

priority to be assigned first to the workstation. KWC assigns tasks to stations according

to their location in the precedence diagram. The priority of assignment is the task with

the highest processing time, which is located in the commencement columns. To assign

tasks for the workstations, the selection starts from the top of the list considering that

the summation of processing time for the located tasks into the workstation shouldn‚Äôt

increase the cycle time as well as the precedence constraints. In general, to solve any

assembly line problem, The first step is breaking the assembly process into tasks and

computing each task processing time. If the problem type is ALBP-1, the first step is to

compute the cycle time which is the product’s completion time, or the total time to move

the product from one workstation to another, and then calculate the theoretical number

of workstations according to the following formulas [80]:
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(5.1) Cycletime (C)= Available time per day
Desired throughput per day

(5.2) Theoretical number of Workstations (W) = Total task time
Cycle time

Afterward, heuristic methods are employed to assign tasks to the stations in order to

minimize the total number of workstations. The assignment process is then evaluated

using performance measures such as lead time, idle time, and line efficiency. Using the

following formulas [80]:

(5.3) Lead time (L)=Number of workstations (N)×Cycle time (C)

(5.4) Idle time (I)=
N∑

i=1
(Cycle time−Workstation timei)

(5.5) Line efficiency (E)= Total task time
Lead time

×100%

Metaheuristic methods are similar to heuristic methods in that they do not seek

to capture all problem aspects explicitly nor find globally optimal solutions. However,

metaheuristics use more sophisticated techniques to search for good solutions and are

more generalizable than problem-specific heuristics. Metaheuristics starts with an initial

solution and then uses randomized or stochastic methods to explore the search space

for better solutions, keeping the best-found solution. Many researchers conducted either

heuristic or metaheuristic methods. For example, [89] proposed combining multiple

heuristic methods to optimize a single model assembly line. Similarly, [90] introduced

an algorithm based on integrating ant colony optimization with a genetic algorithm for

mixed-model assembly line balancing problems taking into consideration the sequence-

dependent setup times between tasks. Other researchers built a comparative evaluation

between existing optimization methods such as [14]. They compared the performance of

eight heuristic methods in balancing a large-scale automotive enterprise. According to

their finding, there was a slight variation in the heuristic results. At the same time, other

researchers such as [58] found that some heuristics perform better than others according

to the problem constraints in terms of the quality of the solution and the computation

time. In this study, we compared our approach with the three most widely used heuristics

(LCR, RPW, and KWC).
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5.2.3 Simulation

Simulation has been used in solving ALBP. Simulation starts with building a virtual

model that represents the real-world production system. This model is then used to

observe the performance of the assembly line under various configurations. Simulation

can help identify the bottleneck stations, inefficient areas, and opportunities for improve-

ment. Moreover, it can be used to test different scenarios virtually without disrupting

the actual production process. However, it is not an optimization tool on its own [91]. It

simply computes system behaviors under specified conditions but could be used with

other methods for iterative optimization. [65] proposed a heuristic algorithm for line

balancing and used simulation to evaluate the performance of the heuristic under var-

ious line configurations. [67] used the Grouping Evolution Strategy (GES) algorithm

to minimize the number of workstations and smoothness index and maximize the line

efficiency for two configurations: straight and the U-shaped assembly line. Then DES to

capture the stochastic behavior of the production line for both layouts. [68] used simula-

tion as an evaluation tool for the output of a genetic algorithm to enhance productivity,

line efficiency, and tardiness. [69] integrated simulation to the genetic algorithm for

solving mixed model assembly line problems. Their approach focuses on integrating

task assignments using GA and sequencing decisions using simulation. Their goal is to

minimize the cycle. In contrast, our research is geared towards minimizing the number of

workstations and maximizing resource utilization while keeping the cycle time fixed. [66]

used two heuristic methods called Probabilistic Line Balancing Technique and Largest

Set Rule Algorithm to balance multi-model assembly line, then they used simulation as

a supported tool to compute time losses and queues.

Summary of the previous work

Previous research in solving ALBP focused on comparing existing methods or combining

several techniques to achieve higher performance levels. The use of discrete event

simulation was focused on evaluating other proposed heuristics and approaches. DES

has very little prior use in the loop as part of the optimization strategy for ALBP. Thus,

using DES alongside heuristic methods to modify the production line and applying

"what-if” scenarios may offer new insights and further increase productivity. In our

work, we introduced this concept of combining DES and heuristic optimization through

a real-life case study. We collected production data and then used several heuristic

methods to produce initial solutions. Next, those solutions entered into a simulation
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model to investigate the probability of achieving further optimization. DES model helps

by identifying the bottleneck station, which can not be captured by heuristics. This was

followed by proposing several improvement scenarios to reduce the effect of bottlenecks,

such as reassigning tasks to other stations and changing the layout and number of

workstations. Ending with selecting the most effective solution. [92] used simulation as

an alternative tool and compared its performance to a heuristic method called ‘Hoffman’.

5.3 Research Methodology

To address our research question. We propose a hybrid approach based on integrating

the heuristic methods with the DES. We analyze the current state, find the bottleneck,

and improve resource utilization through a hybrid line balancing technique, which leads

to enhanced overall productivity. To achieve this, we proceed through the following three

phases:

Figure 5.1: Iterative optimisation phases for ALBP informed by heuristic arrangement
and updated from DES outputs..

1. First we used the heuristic methods to determine the required number of worksta-

tions to match the desired demand (throughput ) and identify how the tasks should

be assigned to these workstations. These methods were conducted manually and

in a parallel manner. Each method’s performance has been assessed based on line

efficiency and throughput to identify the optimal method, which will be employed

in subsequent stages to achieve the best solution.
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2. We developed a digital model of the production process, using Tecnomatix Plant

Simulation software [93] to mimic the solutions created by each method. This

software was chosen among other simulation tools because it is user-friendly, easy

to connect to other tools, and has advanced analysis and visualization features

such as a bottleneck analyzer, animation, and statistics. These features allow users

to examine the results of simulations and make informed decisions about how the

system can be optimized [94].

3. Then we raised multiple improvement scenarios based on the DES model that

involve changes to the assembly line layout, number of resources, and the allocation

of tasks to resources until we achieve higher line efficiency.

In summary, the integration process commences with the initial computation of a theo-

retical solution in isolation, followed by the creation of a digital model that accurately

reflects the current state of the assembly line. This digital model is then employed

to apply the theoretical solution to the DES model. Simultaneously, an iterative pro-

cess is initiated to evaluate and refine these solutions through the DES model until a

satisfactory solution is achieved (Figure 5.1).

Case study

A company for production enclosures in Australia was selected for study due to its

operational setup involving assembly lines. It has three assembly lines designed for

enclosures of different types and sizes. In this study, the chosen line was dedicated to

producing small-size enclosures. The line was experiencing challenges in meeting the

desired demand. Data was collected on that line, such as recording all tasks required to

assemble small-size enclosures, the processing time for each task, tasks’ relationships,

the number of workers available, working and non-working hours, as well as the layout

of the production line. The field visit was carried out to this company on 15 November

2022, and the observations of the assembly line were made for 2 days. The assembly

process was broken down into a set of tasks. The duration of each task was measured

by stopwatch and recorded in a notebook. The assembly process commences with the

placement of the enclosure’s main body onto the assembly conveyor. Subsequently, a

series of tasks are carried out, including the attachment of screws, joints, and doors, the

application of stickers, the insertion of joint kits, and the preparation of the enclosure

for packaging. Table 5.1 presents a summary of the tasks involved in producing the

enclosure. It includes tasks’ labels, descriptions, the precedence relationship between
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the tasks, and the average processing time for each task. The precedence relationship

is visualized in Figure 5.2. The assembly line contained four workers, and it ran one

shift of 8 hrs and 30 minutes, including a 30-minute lunch break and two short breaks of

15 and 10 minutes (the break time used to be deducted from the actual working hours).

The line’s average throughput was 252 enclosures per day, falling short of the target

of 400 enclosures. To enhance the line’s productivity, we implemented our method and

evaluated its performance against three existing heuristics. The results obtained are

shown and discussed in section 4.

Table 5.1: Assembly line task list with precedence dependencies, and measured task time

Task label Task description Predecessor Avg Task time (sec)

A Load the part - 60

B Screw 4 screws A 28

C Add stickers A 10

D Mount the joints A 40

E Mount the door D 60

F Paper taps to close the door E 10

G Packaging box preparing - 30

H Fill the box with joint kits F, B 20

I Glue the box H, G 15

J Transport the part I 40

Total 313

Figure 5.2: Precedence diagram of the tasks
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5.4 Results and Discussion

This section presents the outcome of applying three heuristic techniques in task allocation

to workstations, including the necessary count of workstations and other performance

indicators such as line efficiency and productivity (Section 5.4.1). Additionally, this

section highlights the integration of DES with prior methods and suggests alternative

enhancement scenarios that can lead to further improvement when compared to the

utilization of heuristic techniques alone (Section 5.4.1).

5.4.1 Heuristic techniques (phase 1)

The first step in ALBP-1, regardless of the type of heuristic method(s) used, is to com-

pute cycle time and the number of workstations. The cycle time was calculated using

equation (5.1) by dividing the available working time per day by the desired throughput,

resulting in 455 minutes / 400 parts = 68.25 seconds/part for the case study. Similarly,

using equation (5.2), the ideal number of workstations was computed as 5 workstations.

However, in reality, the realized number of workstations depends on the specific require-

ments and constraints of the problem. To determine the realized number of workstations

and how tasks were assigned to workstations, we compared three heuristic methods:

LCR, RPW, and KWC.

Largest Candidate Rule (LCR)

In this method, the tasks are arranged in descending order according to their required

time (Table 5.2). This method assigns tasks to six stations, as shown in Figure 5.3. Task

A was assigned to Workstation 1, tasks D and B were assigned to Workstation 2, tasks C

and G were assigned to Workstation 3, Task E was assigned to Workstation 4, tasks F, H,

and I were assigned to Workstation 5, and finally, tasks J was assigned to workstation 6.

Figure 5.3: Tasks assignment with total workstation processing time according to LCR
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Table 5.2: Tasks arrangement in descending order

Task label Predecessor Avg task time (sec)

A - 60

E D 60

D A 40

J I 40

G - 30

B A 28

H F 20

I H, G 15

C A 10

F E 10

Rank Position Weight Technique (RPW)

In the RPW technique, the tasks were arranged according to their computed weight

(Table 5.3). These Weights were calculated by the cumulative sum of the current task

and all subsequent tasks. Then tasks were assigned to workstations following this rule

procedure ( Figure 5.4)

Figure 5.4: Tasks assignment with total workstation processing time according to RPW

Kilbridge and Wester Column Technique (KWC)

After implementing the KWC method, it was determined that a minimum of six work-

stations is required. Represented by the black borders (Figure 5.5), light blue circles

represent the possible task’s location in the columns. The table labeled as Table 5.4
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Table 5.3: Tasks ordered according to their RPW

Task label RPW Predecessor

A 223 -

D 155 A

C 145 A

E 113 C, D

B 85 A

G 85 -

F 85 E

H 75 F,B

I 55 H

J 40 I

displays tasks assigned based on their respective columns. This grants priority to tasks

in the commencement column to be selected and assigned to workstations.

Figure 5.5: Tasks arranged into columns for KWC method

Following KWC procedures, the final assignment of tasks to workstations and the

total processing time for each workstation are shown in (Figure 5.6).

In this case study, both LCR and RPW produce the same task assignments (Figure 5.3,

Figure 5.4). While the KWC method allocated tasks differently in stations two and three;

workstation 2 grouped tasks G, B, and C. Workstation 3 takes only task D (Figure 5.3).

However, these three techniques required 6 workers to meet the demand. This results
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Table 5.4: Arranging tasks according to their column

Task label Column Task time Predecessor

A 1 60 -

G 1,2,3,4,5 30 -

D 2 40 A

B 2,3,4 28 A

C 2 10 A

E 3 60 C, D

F 4 10 E

H 5 20 F, B

I 6 15 H

J 7 40 I

Figure 5.6: Tasks assignment with total workstation processing time according to KWC

in the same lead time, idle time, and line efficiency, which is equal to 97s, 409.5 s,

and 76.4% respectively. While the heuristic approach does help in aligning with the

desired throughput and improving efficiency, the question arises: Is this solution the

most optimal one? Considering the use of heuristics, we further explored opportunities

for additional enhancements by incorporating DES in Section 5.4.1.

5.4.2 Discrete Event Simulation (DES)

5.4.2.1 Evaluate the heuristic method using DES (phase 2)

A digital model was built using Tecnomatix plant simulation software to test the so-

lutions proposed by LCR, RPW, and KWC (Figure 5.7). To validate the digital model,

all these methods were simulated. The output of this model matched the theoretical
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results and gave the same expected throughput (400 units) with almost the same line

efficiency (76.34%). Individual workstation utilization shows workstation 2 (W2) is at

near maximum efficiency and workstation 6 (W6) is least efficient (Table 5.5).

Figure 5.7: Tecnomatix 2D model for the assembly Line

Table 5.5: Workers’ utilization for the heuristic‚Äôs methods using DES

Worker (W) W1 W2 W3 W4 W5 W6 Total

Utilization 88.22% 99.74% 58.53% 87.67% 65.65% 58.22% 76.34%

Since all heuristics perform similarly, no matter which heuristic will be chosen for

the simulation, KWC was entered into the simulation model as an initial solution and

evaluated. After implementing DES, multiple improvement options have been raised.

Simulation statistics showed that workstation 2 (tasks GBC) is the bottleneck, as it

has the highest working percentage (highlighted with the red rectangle (Figure 5.8),

resulting in blocking workstation 1 (task A) (Figure 5.8). As is common in live manu-

facturing, the bottleneck can move around the factory, and thus, dynamic adaptation to

changing conditions is needed. DES was employed to simulate various scenarios through

conducting “what-if" analyses to explore potential solutions for further improvement,

such as:

1. Task reassignment

2. Reduce the number of workers

3. Reduce the number of workers with reassignment tasks
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Figure 5.8: Stations’ statistics for the heuristic methods using DES

5.4.2.2 Improvement scenarios using DES (phase 3)

DES provides a visual representation of the assembly line, enabling users to make

adjustments and modify the system through what-if analysis. It also demonstrates the

impact of these changes directly on the system’s performance, including metrics like

throughput and utilization. Leveraging the capabilities of DES, we formulated three

improvement scenarios.

1. Task reassignment Following the heuristic assignment, the bottleneck workstation

was workstation 2 because it blocked the first workstation so the first scenario for

improvement is to reassign the tasks in a way that makes the processing time for

workstation 2 less than the cycle time of 68 seconds. The suggested solution is grouping

tasks G and B in the second workstation with a total processing time of 58 s and tasks

C and D in the following workstation with a processing time of 50 s. This assignment

removed the blockage from workstation 1 (Figure 5.9) and increased the production rate

from 400 to 453 units without additional resources (same number of workers (6)) and the

line efficiency increased up to 86.49% (Table 5.6).

Table 5.6: Workers’ utilization for the first scenario using DES

Worker (W) W1 W2 W3 W4 W5 W6 Total

Utilization 99.95% 96.42% 82.96% 99.30% 74.34% 65.95% 86.49%
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Figure 5.9: Stations’ statistics for the first scenario

2. U-shaped layout Increasing the utilization of resources, such as workers, and

eliminating idle time can enhance line efficiency. Waste time can be reduced by employing

multi-skilled workers and optimizing facility layout. One possible solution is to switch

the assembly line from a straight to a U-shaped layout, allowing workers to operate in

multiple workstations with two directions, as illustrated in Figure 5.10.

Figure 5.10: Straight and U-shaped assembly line

Before implementing this scenario, the workstations with lower utilization and

higher idle time were workstations 6,3 and 5, respectively (Table 5). The U-shaped layout

allowed workers to work on nonadjacent workstations, therefore reducing the number of

workers to 5 instead of 6 and increasing the line efficiency to 91.59% (Table 5.7) while

achieving the desired throughput (400 parts). Two workers instead of three are sufficient

to handle the work on the workstations that have high idle time. In this scenario, the
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workers’ travel time is assumed to be 1 meter per second, and they are permitted to leave

their work and resume it later.

Table 5.7: Workers’ utilization after the second scenario (U-shaped and deducting one
worker)

Worker (W) W1 W2 W3 W4 W5 Total

Utilization 88.22% 99.74% 91.27% 87.65% 91.06% 91.59%

3. Reduce the number of workers with reassignment tasks To develop a solution,

we combined the first and second improvement scenarios. In this approach, tasks were

assigned to stations based on the first scenario, and then the number of workers was

reduced from six to five according to the second scenario. The reassignment of tasks

proposed in the first scenario outperformed the theoretical assignments (LCR, RPW,

KWC) when there were six workers. However, this scenario proved to be less effective

when only five workers were present, resulting in a reduced throughput of 373 parts and

a line efficiency of 85.64%, as presented in Table 5.8.

Table 5.8: Workers’ utilization in the third scenario

Worker (W) W1 W2 W3 W4 W5 Total

Utilization 82.57% 79.61% 81.92% 91.88% 92.24% 85.64%

The application of our approach resulted in multiple feasible improvement scenarios,

each with a higher line efficiency compared to the heuristic method alone and compared

to the current state of the observed facility. Table 5.9 compares the line efficiencies and

throughputs for the existing case, theoretical methods, and the three proposed scenarios.

As illustrated in Table 5.9, the current state of the assembly line was not able to reach

the required throughput. The line efficiency is computed by dividing the actual production

rate( throughput) by the standard production rate time 100 % (255/350=72.8%), where

350 is computed by dividing the available time per day on the total task time to produce

one enclosure (455 min/5.2 min = 87.5 enclosures/workers ). So, four workers propose to

produce 78.5*4= 350 enclosures. Analyzing the current state shows the assembly line

suffers from two problems: first, shortage of resources (workers) and second, inefficient

utilization of existing ones. By observing the line, we noticed that workers might be
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Table 5.9: Comparison of existing and improved methods

State Line Throughput Number Throughput

efficiency of workers per worker

Current state 72.8% 252 4 63

Theoretical methods 76.30% 400 6 66.6

Scenario 1 86.49% 453 6 75.5

Scenario 2 91.60% 400 5 80

Scenario 3 85.64% 373 5 74.6

assigned additional tasks beyond their designated roles, which reduces their efficiency

within the line. The theoretical heuristics indicate the necessity of adding two additional

workers to meet the desired demand and enhance efficiency to 76.3%. However, employing

DES alone (scenario 1) yielded a 10% greater improvement in line efficiency compared to

the theoretical solution. This was because DES was capable of identifying the bottleneck

station, mitigating its impact by redistributing the workload, and transferring one

task to the subsequent station. The second scenario was developed by integrating DES

and heuristics, resulting in the highest efficiency of 91.6%. This achievement can be

attributed to task assignments following heuristic principles, with DES optimizing the

layout and reducing the workforce requirement. Conversely, the last scenario failed to

match the throughput of five workers. This outcome was primarily due to DES driven

task reassignment (as in scenario 1), and reducing the number of workers was not the

optimal solution.

5.5 Conclusion

This paper introduced a new approach to solving assembly line balancing problems by

using discrete event simulation combined with heuristic methods. The study aims to

increase line efficiency and decrease the number of workstations and waste time, thereby

enhancing the production rate. To assess the applicability of this new approach and

compare it with existing methods, a case study was conducted at an enclosure factory

located in Australia. First, the current state of the factory has been analyzed, and it was

shown that the production line needs to be balanced to match the desired demand (400
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units per day). The observed throughput was 252 units with line efficiency (72.8%). Three

heuristic methods (LCR, RPW, KWC) were employed to enhance productivity, resulting

in a consistent 76.4% efficiency across all techniques. While LCR and RPW exhibited

similar task assignments, KWC differed. Despite these variances, overall performance

remained the same. To further enhance efficiency, a DES model was developed, and

based on it, several improvement scenarios were raised. The first scenario optimized

task assignments, raising production to 453 units while eliminating the bottleneck

workstation. The second scenario reduced workstations to five, achieving an impressive

91.6% efficiency. However, the last scenario fell short of meeting demand with five

workers.

In conclusion, while the heuristics methods produced good results, they are static

and not optimal. Our proposed approach, which integrates DES with heuristics, led to a

significant improvement in line efficiency compared to using the heuristic method alone.

While DES does not provide a guaranteed optimal solution, it effectively helps identify

bottlenecks, accounts for stochasticity, explore various "what-if" scenarios, and determine

better solutions. This approach is applicable to both small and large enterprises. As

systems become more complex and incorporate additional entities, its performance may

improve even further. However, with increased complexity, the computational cost of DES

rises due to the greater number of events and interactions. GA can mitigate this issue by

optimizing the simulation process, reducing the number of simulations needed to identify

effective solutions, and thus lowering computational costs. This approach helps balance

the need for detailed simulation with the practical constraints of computing resources.

Additionally, it can be used on existing and non-existing production lines. In contrast to

heuristic alone, it offers a visual representation of the process, enabling decision-makers

to directly observe the impact of any modifications to their system’s performance. Overall,

the approach offers a promising solution for improving production line efficiency and

reducing waste in a range of industrial settings. A limitation of this work is that the

developed improvement scenarios are based on domain knowledge of the system and are

not easily automated. It is assumed that workers could operate at full capacity all the

time. While idealized these assumptions do not affect the core conclusions or the relative

results of the case study. Additionally, this work considered SLBP to assemble one type

of product, and only it tests three heuristics. A potential direction for future research is

to apply this approach to GALBP, including a mixed model (various products assembled

in the same line), investigate the combination of DES with metaheuristic methods, and

a broader selection of heuristics.
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6
CROSS-CASE ANALYSIS AND DISCUSSION

This Chapter begins by addressing the research gaps, contributions, and research find-

ings for each case study. It is followed by a cross-case analysis and then a detailed

structure of the developed approach. Finally, a discussion will be provided comparing

this thesis to the most relevant theses.

6.1 Research gaps, contributions, and the findings

This section summarises the research gap and contribution of each paper as well as their

findings:

Paper 1 (Woolshed industry Production Planning)

Research gap: The wool industry has seen limited use of production simulations

because of the absence of awareness in this field, including factors like farmers’ age,

attitude, and skills. Due to the industry’s labor-intensive nature and the elevated risk

of injuries, there is a conspicuous shortage of workers. This shortage underscores the

urgent necessity to adopt automation in line with the progress of the fourth industrial

revolution. Production simulations by providing visualizations and testing any changes

to the shed design before implementing them can play a crucial role in offering clear

insights into future planning, which is essential for the industry’s evolution. This work

covers the gap by applying discrete event simulation to evaluate woolshed design, which

is a novel application in this industry.
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Contribution: This work demonstrates that layout, resources, and processing time

changes can significantly improve production in woolsheds and highlights the effective-

ness of discrete event simulation in this context. It helps reduce the need for costly

real-world experiments.

Finding: This research paper shows that DES can be employed to explore different

improvement scenarios to increase daily throughput without disrupting the production

process. These scenarios encompass modifying the facility layout, identifying bottleneck

stations, determining the optimal speed for select stations to mitigate congestion, and

assessing the effects of increasing resource availability. For instance, when applying the

new approach to the wool industry. The results were as follows: Altering the shearing

stand layout from a linear configuration to a curved one led to a 30% reduction in the

wool handlers’ traveling distance. Therefore, there was an 11-fleece-per-day increase

in production. Introducing an additional skirting table in the curved layout further

boosted production by 30 fleeces per day. However, there was no significant impact on

production when it came to increasing the number of wool handlers. This work shows

how improvements in this industry can be identified and evaluated using DES. According

to Gittins et al. [95]. Their study reveals that attitudes toward computer simulation

within the farming community were predominantly negative. Traditional farmers who

resist technology serve as a significant barrier to its adoption. However, the research

indicates that the younger generation of farmers is more receptive to this technology.

This study represents one of the initial applications of discrete event simulation to assess

woolshed operations and demonstrate its effectiveness in this domain. Through further

simulation-based investigation of the wool harvesting process, an optimized production

layout could be designed and examined with regard to its potential for improvement.

This approach eliminates the need for costly planning, which is usually associated with

high investment costs.

Paper 2 (Additive Manufacturing Production Planning)

Research gap: While much research in additive manufacturing focuses on part qual-

ity and printing technology, there’s a gap in factory-level management and production

planning using simulation. This gap can be attributed to the technology’s predomi-

nant application in prototype construction and its relatively recent introduction to

high-production settings, which has left this issue largely unexplored in the existing

literature.

Contribution: The combination of discrete event simulation and genetic algorithms

for production planning in additive manufacturing is a novel approach. The study
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provides insights into how to optimize scheduling and resource allocation in additive

manufacturing facilities, which is essential for scaling up production.

Finding: In this research paper, the effectiveness of combining DES with genetic

algorithms was investigated to reduce the total production time in the AM industry. DES

was used first as an evaluation tool to analyze the performance of different resource

configurations and to identify bottlenecks. Subsequently, GA was used to improve the

makespan further by reordering the available jobs. For example, implementing the new

simheuristic approach to multiple PBF factory sizes shows that its ability to identify the

bottleneck station easily and adding extra workers could reduce the makespan by 30- 45%

depending on the facility size. Adding extra resources at non-bottleneck stations could

have no or little significant impact on overall performance. This shows the effectiveness

of this hybrid approach as a production planning tool for dynamic production systems in

additive manufacturing facilities that can help decision-makers determine the proper

number of resources to deliver parts in time and how to allocate limited resources most

efficiently and flexibly. Since this industry developed from producing prototypes to series

production, This research is the second application after Wiese et al. [96], who considered

AM process chain planning. The Majority of AM planning processes focus on the printing

phase without considering the post-process. As the industry is evolving within the context

of Industry 4.0, there is a growing need to pay greater attention to this specific field.

Paper 3 (Assembly Line Balancing Production Planning)

Research gap: Assembly line balancing is critical for maximizing throughput and

reducing waste in manufacturing. In all assembly line balancing studies, simulation

serves as the evaluation tool, either under the category of Simulation as an objective

function or as an alternative solution to account for the stochastic nature of the system.

This work covers the gap by integrating heuristic task allocation methods with DES to

capture various factory settings.

Contribution: The study demonstrates that combining heuristic methods with DES

can significantly enhance assembly line efficiency, surpassing the improvements achieved

by each method separately. It offers a promising strategy for decision-makers seeking

substantial enhancements in assembly line efficiency.

Finding: This study has shown the effectiveness of combining DES alongside heuris-

tic methods in ALBPs, starting with the initial solutions obtained from heuristic, then

entering this solution into the DES model and raising several improvement scenar-

ios including layout changes, varying number of resources, and tasks rearrangement.

Considering the stochastic nature of the studied system. The results gained from imple-

69



CHAPTER 6. CROSS-CASE ANALYSIS AND DISCUSSION

Table 6.1: Comparison of the three case studies

Study Study 1: Wool industry Study 2: AM industry
Study 3: Assembly in-
dustry

Industrial set-
ting

Heavy manual LMHV HMLV LMHV

Implemented
method

DES
DES+ metaheuristic
(GA)

DES + heuristic (LCR,
KWC, RPW)

Targeted Prob-
lems

Facility layout,
bottleneck identifica-
tion, resource plan-
ning

Scheduling,
bottleneck identifica-
tion, resource plan-
ning

Assembly line balanc-
ing, facility layout, bot-
tleneck identification,
resource planning

Objective (KPI) Maximize throughput Minimize makespan
Maximize throughput,
and line efficiency

Productivity im-
provement

Curved layout showed
better performance
than the linear layout
by an increase in
output of 11 fleeces

Integrating GA into
the DES model for
scheduling introduced
a further reduction in
the makespan by up to
25%

Integrating heuristic
with DES led to an in-
creased line efficiency
by 15 % more than
using heuristic alone,
and throughput per
worker by 20%

Overall results

Improvements in this
industry can be identi-
fied and evaluated us-
ing DES

Decision-makers could
use this approach to
determine the proper
number of resources to
deliver parts in time
and how to allocate
limited resources in
the most efficient and
flexible way in the
HMLV environment

This industry could
gain more benefit
when using this ap-
proach by capturing
the stochastic nature
of the studied system

menting this approach in the enclosure assembly factory proved that. The throughput

and resource utilization in this case study can be enhanced by an impressive 15% more

compared to using heuristic methods in isolation.

6.2 Cross case analysis

Table 6.1 provides an overview of the three case studies, including aspects of the indus-

trial settings, implementation method, type of the problem targeted, study’s objective,

achieved productivity improvement, and the overall results.
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In summary, the simheuristic approach is suitable for three distinct industrial con-

texts: those characterized by significant manual involvement, scenarios involving a

high mix with low volume, and situations with a low mix but high volume. Moreover,

it has proven effective in catering to the needs of both small and medium enterprises,

exemplified by its application in woolshed and additive manufacturing facilities, as well

as larger enterprises, as demonstrated in the assembly line study. The structure of this

approach is detailed in Section 6.3.

6.3 The proposed approach context

The approach developed through this thesis outlines several steps and serves as a road

map for production planners and decision-makers. It encompasses general processes,

simulation modeling processes, and optimization processes (Figure 6.1). The color coding

in this figure highlights the high-level steps. A detailed explanation of each step is

provided in the text below.

6.3.1 General processes

First, The general processes with blue code (Figure 6.1) represent the systematic ap-

proach applicable to problem-solving in any context. Nevertheless, this approach is

specifically tailored based on the studied cases, incorporating three essential steps as

outlined below:

1. Problem definition: In order to address any problem effectively, the initial step

is to clearly define it. This encompasses various challenges, including facility

layout problems, flow shop scheduling problems, assembly line balancing problems,

resource allocation problems, and scheduling problems. Additionally, it involves

the identification of bottlenecks within the system.

• Facility layout problem (FLP) is concerned with arranging equipment,

workstations, machines, and departments in a way that achieves a desired

objective for existing or new facilities. A layout decision is primarily concerned

with ensuring a smooth flow of information, people, material, and work [97].

For example, in the wool industry study, two different layouts of the woolshed

have been evaluated.
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• Flow Shop Scheduling Problem (FSP), This type is a common production

problem where a group of jobs have to be carried out on a set of machines with

similar workflows. The goal is finding the optimal or near-optimal assignments

that maximize or minimize a particular objective (e.g., Makespan, lateness,

Tardiness) [98].

• Assembly Line Balancing Problem (ALBP), this type is classified as a

decision-making problem, where the tasks have to be distributed among

the workstations equally to optimize some performance measures such as

increasing the production rate, the line efficiency and reducing the overall

idle time [99].

• Resource planning problem: It involves assessing the number of workers,

machines, and materials required to execute project activities [100].

• Bottleneck identification: The act of recognizing a particular step within a

series of processes that acts as a limiting factor due to its restricted capacity,

consequently constraining the overall capacity of the entire process chain

[101].

2. Objective determination: To assess the productivity improvement of a produc-

tion system, it is essential to identify key performance indicators (KPI) depending

on the objective. That could be either minimizing or maximizing some performance

indicators such as:

• Throughput: It measures the actual output of products or services.

• Resource utilization and efficiency: It measures how effectively and

efficiently resources, such as workers, machines, or materials, are used within

a system.

• Makespan: total production time to complete a set of tasks or jobs in a

production process.

3. Data collection: This process includes collecting data from several sources, such

as direct observations, motion and time studies, literature studies, and interviews.

The nature of data can be classified as workstation processing time, workstation

layout, Process sequence, and number of available resources.
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6.3.2 DES processes

After incorporating the fundamental general processes, the subsequent DES pro-

cesses are executed (highlighted with green in Figure 6.1). These processes encom-

pass the following steps:

4. Model construction: building a digital model mimics the physical system using

one of DES software. Some well-known suitable commercial software: Arena by

Rockwell Automation [102], FlexSim by FlexSim Software Products [103], Plant

simulation by Siemens [104], and Witness by Lanner [105]. Any of these software

can be employed to solve various types of problems. However, the selection depends

on the preferable programming environment, toolboxes, or add-in functions. In

the thesis, Tecnomatix Plant Simulation was employed to construct the model. It

incorporates the Simtalk programming language for implementing customized

behaviors and logic in the simulation model, addressing aspects not covered by the

built-in functionality of the simulation. See Appendix D for the code that has been

used to build and control the simulation model that represents the production flow

in the woolshed (Chapter 3).

5. Model verification and validation: Verification is verifying that the digital

model has been built correctly. Validation is determining if the built model accu-

rately represents the real-world system. In the three studies, the models underwent

thorough verification and validation before being employed in subsequent analyses

to ensure that their outputs align with the actual outputs of the physical system.

6. Model analyzing: This stage examines the current system’s behavior to identify

its weaknesses. A what-if analysis is conducted to generate and assess various

improvement scenarios, evaluating their potential impact on production outcomes.

This analysis encompasses simulating alterations in production volumes, introduc-

ing new resources, modifying production lines, or testing alternative production

strategies. Decision makers can analyze the results of these simulations to assess

different options to enhance the efficiency and productivity in their facility [106].

Various improvement scenarios were raised in the three studies in accordance with

the decision-maker’s vision.
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6.3.3 Optimization processes

The commencement of this procedure occurs after the acquisition of study data.

The integration of heuristic techniques and Discrete Event Simulation (DES)

encompasses the subsequent steps:

7. Heuristic selection: This phase involves choosing the most appropriate heuristic

that best fits the problem from a range of available heuristics.

8. Heuristic implementation: This stage provides theoretical solutions for the

problem. As heuristics represent strategies for problem-solving, there isn’t a dedi-

cated computational tool or software for their implementation. They can be applied

manually or through Microsoft Excel and programming languages like Python,

Java, etc.

9. Heuristic evaluation: In this step, the performance of the chosen heuristic is

assessed by comparing it to other available options.

The final step is to integrate both techniques together following simulation opti-

mization class 2 (simulation as objective function), and class 3 (simulation results

as a start for optimization) to obtain an optimized solution:

10. Heuristic integration: This phase integrates the heuristic solutions to the sim-

ulation model and evaluates it. Then, an iterative optimization process could be

applied until a satisfactory solution is obtained. In the case where the solution

remains unsatisfactory, various scenarios can be explored. This exploration may

involve adjusting factors such as resource allocation or implementing scheduling

modifications. The genetic algorithm could be used to assign jobs to workstations

effectively.

Finally, the whole approach is summarised in Figure 6.1, which represents the final

structure of this approach.

6.3.4 Comparison to the most relevant thesis:

The thesis by Gerdin [7] highlights the importance of using simulation modeling to

enhance manufacturing systems, emphasizing the potential benefits for industrial plants.

However, it also acknowledges challenges in applying simulation in practice, mainly

related to social and organizational acceptance. The thesis suggests that simulation
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Figure 6.1: The proposed Simheuristic approach

75



CHAPTER 6. CROSS-CASE ANALYSIS AND DISCUSSION

can complement other plant objectives and proposes future work involving model op-
timization and real-world implementation to validate its effectiveness in providing

an accurate representation of system behavior. As an extension of this research, the new

simheuristic approach has been applied in industries that are traditionally resistant

to simulation adoption, such as the wool industry case. This application demonstrated

the benefits of simulation in designing wool sheds and improving productivity. This case

can serve as a motivating example for other agriculture sectors that heavily rely on

manual labor and have yet to embrace technological advancements. Furthermore, the

new simheuristic approach incorporated optimization methods into the developed simula-

tion model, exemplified in the additive manufacturing and assembly line balancing case

studies demonstrating the application and efficacy of optimization techniques within the

simulation framework.

In Lathher’s thesis [21], Lather introduced a framework that integrates simulation,

optimization, and visualization for healthcare facility layout planning to optimize the

process and layout. The findings show that this integration helps in assessing five

different layouts efficiently. Similarly, the research carried out by Asio [107] conducted a

DES model to create a facility layout plan for a grain delivery terminal; her research aims

to identify bottlenecks and optimize the number of resources to minimize the average

waiting time. This thesis findings align with the previous study ([21]) and ([107]) on

the effectiveness of DES in evaluating various facility layouts and its impact on the

performance of production as illustrated in the first study (Chapter 3) in evaluating

two different layouts of the studied wool shed. However, the proposed approach extends

beyond facility layout concerns. It encompasses a comprehensive framework that can be

applied to various problems such as scheduling problems, resource planning problems,

and bottleneck identification as presented in Chapter 4, assembly line balancing problem

as illustrated in the third study (Chapter 5). This thesis provides a systematic method

for researchers to consider when utilizing simulation in their work and shedding light

on various problems that can be taken into account at the production planning level.
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CONCLUSION

This section presents a summary of this thesis, contributions to knowledge, practical

implications, research limitations, and potential avenues for future research.

7.1 Summary

These days, production enterprises are evolving to become more dynamic and complex

due to advances in technology that have arisen from the fourth industrial revolution. Fac-

tors such as short product life cycles, demand fluctuation, and a more complex network

of the production flow raise the need for advanced production planning tools through

forecasting, assessing, and comparing the efficiency of physical facilities and manu-

facturing. Integrating simulation into the production planning process is crucial for

these enterprises to anticipate and project their performance accurately. The primary

objective of this thesis is to pioneer a novel approach in the production planning process,

specifically designed to assist decision-makers in enhancing the productivity of their

production systems. This approach aims to be comprehensive, offering a thorough anal-

ysis of various improvement scenarios. To achieve this goal, three distinct production

areas were examined: heavily manual processes with low mix high volume, high mix

low volume, and low mix high volume. The findings indicate that the proposed approach

exhibits efficacy across these diverse production areas. For instance, in the woodshed

industry, DES successfully applied to address challenges such as the facility layout

problem and resource planning. This thesis demonstrates how different improvement
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scenarios can be systematically examined, highlighting their respective impacts on total

throughput. In additive manufacturing, scheduling problems and resource allocation

problems have been addressed, and the effectiveness of integrating DES and genetic

algorithms in reducing the total production time was highlighted. The advantages of

this integration were particularly notable as the factory scaled up. The last study, in

assembly line balancing, showed that low mix high volume industry could benefit from

this approach, implementing the new approach to balance the workload on the worksta-

tions. The throughput and resource utilization in this case study were enhanced by an

impressive 15% more compared to using heuristic methods in isolation.

7.2 Academic Contribution

This thesis contributes to the existing body of knowledge in the field of manufacturing

and operations management. The methodology serves as a theoretical advancement,

offering a framework that can guide and inform similar production systems.

The developed approach, which is built upon the integration of discrete event simulation

with heuristic optimization, offers a range of significant advantages:

Flexibility: This approach demonstrates a remarkable capability to compare alter-

natives, evaluate trade-offs, and incorporate elements such as randomness, variability,

dependencies, feedback, and interactions among various components within a system.

Stochastic and Dynamic Characteristics: Unlike alternative methods, the combi-

nation of DES and heuristic optimization excels in capturing the stochastic and dynamic

behaviors of systems, providing insights that may remain elusive through other ap-

proaches.

Comprehensive Solutions: The approach proves invaluable in addressing a spec-

trum of industrial challenges, including bottleneck identification, scheduling, facility

layout design, and resource allocation.

Enhanced Decision-Making: Beyond mere analysis, the fast and optimized solu-

tions generated by this approach empower decision-makers to identify the most optimal

course of action efficiently.

Applicability Across Settings: The versatility of this approach extends to various

settings, making it a robust and adaptable tool for decision support in diverse industrial

contexts.
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7.3 Practical Implication

The proposed methodology aims to enhance the productivity and service levels of compa-

rable manufacturing systems. Furthermore, it can function as a guiding framework for

similar production systems. The consequential improvement in productivity and service

levels offers manufacturing companies with aging facilities a competitive edge against

newly established factories. The outcomes can furnish valuable insights for managers,

stakeholders, and decision-makers, assisting them in making informed decisions and

facilitating the implementation of transformation changes and redesigns in their manu-

facturing systems.

Planning and managing industrial processes should prioritize critical elements, in-

cluding optimizing resource allocation, tasks allocation, designing effective
facility layouts, efficiently scheduling operations, and identifying bottlenecks.

The integration of all these elements into a digital simulation model, which emulates

real-world scenarios and incorporates heuristic optimization techniques, empowers in-

dustrial decision-makers with a more comprehensive understanding, enhanced control,

and the ability to optimize their production processes. The proposed approach not only

addresses a multitude of industrial challenges but also demonstrates adaptability in

handling the complexity and dynamism of the systems under study, thereby facilitating

the decision-making process.

In summary, these three case studies address specific gaps in research within their

respective domains by introducing novel approaches or methodologies and providing

practical insights into improving production processes, whether in woolsheds, additive

manufacturing, or assembly line balancing. However, various industries beyond
those could benefit from this approach, such as automotive manufacturing,
healthcare, supply chain management, aerospace, etc. That may fall under the

same categories, such as high-mix, low-volume, and low-mix high-volume production. All

cases considered the stochastic nature of workstations’ processing time, failure, and shift

time, which capture the stochasticity and dynamic of the system in contrast to the tradi-

tional method, as well as the ability to group several problems and solve them at one time.

7.4 Research limitations

Here are some potential challenges and constraints associated with this approach:
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• Despite the numerous benefits that could be derived from this approach, conducting

a cost analysis is crucial. Simulation is not without expenses, and factors such as

the cost of simulation software licenses and the time invested in developing the

model need to be evaluated compared to other planning methods.

• There is no guarantee that this approach would prove effective in another setting,

and it may or may not be suitable for scenarios entirely different from those

observed in the specific case studies, such as low mix low volume situations, because

there is not a significant production flow to analyze, and the problem becomes less

intricate. Similarly, in high mix, high volume settings, which represent a newly

developed setting, the applicability of the approach remains uncertain. However,

this thesis shows the applicability of this approach in diverse settings; this indicates

a high likeliness for broader applicability in other settings.

• Several assumptions were made during the development of the simulation model

due to the difficulty of fully capturing the real system during the simulation.

For example, in the wool industry study, worker parameters were assumed to be

constant for both layouts (chapter 3). In additive manufacturing study (chapter 4),

Setup time is considered as a part of the processing time.

• The current integration has primarily focused on genetic algorithms and assembly

line balancing heuristics. The limitations of these methods may overlook potential

benefits that could be gained from other optimization algorithms. Exploring a

broader range of optimization techniques could reveal more effective approaches

for specific scenarios.

• Optimization is a crucial aspect. However, the integration may not fully address

the cost implications of improvement scenarios. A more comprehensive analysis

that considers various cost factors and their impact on the optimization results

could provide a more realistic assessment of the proposed changes.

• Data were collected manually based on observation or from literature.

7.5 Future Work

This thesis explores the significant advantages of digitalization across various indus-

tries, including those still in their early stages, such as the wool industry. Digitalization

enhances our understanding of production systems and allows for adjustments without
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disrupting operations. As companies expand and the connections between their compo-

nents grow more complex, tracking these connections becomes increasingly challenging.

Digitalization offers a viable solution to managing this complexity, potentially serving

as a key component in navigating the complexities of the Fourth Industrial Revolution

(Industry 4.0).

Industry 4.0 envisions utilizing real-time data and analytics within manufacturing

and industrial environments [21]. Integrating real-time data into the built simulation

model, such as implementing sensors and cameras that capture the processing time,

failures could have a huge benefit and reduce the efforts of collecting these data by

observation and end with a more accurate model. Integrate other optimization algo-

rithms and compare their performance. Increase the complexity of the studied system by

incorporating multiple assembly lines featuring diverse assembly line types, including

mixed model assembly lines and introducing additional problems to this approach, such

as buffer allocation problems, energy consumption analysis to promote sustainability,

and cost analysis for the improvement scenarios.
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Table A.1 shows the results from running the model five times (replicant) on the number

of sheared fleeces under the curve layout scenario as the number of wool handlers was

varied.

Followed by the SimTalk programming codes that were used to control the production

flow in the woolshed case study.

Table A.1: Number of sheared fleeces for each replicate under the curve layout scenario

Number of wool handlers Replicant 1 Replicant 2 Replicant 3 Replicant 4 Replicant 5
2 826 826 826 826 826
3 827 827 827 827 827
4 828 828 828 828 828
5 833 833 833 833 833
6 833 833 833 833 833
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Figure B.1: Types of children after crossover and mutation [4]
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Figure C.1 shows a screenshot of the parameters used to set up the GA wizard in

Tecnomatix plant simulation

Figure C.1: GA’s parameters
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This appendix presents the makespan values from 5 replications (Rep) of the DES

model runs. Table D.1 and Table D.3 display the makespan in the format of days: hours:

minutes: seconds, before and after implementing the GA, respectively. Table D.2 and

Table D.4 provide the same data converted into seconds, along with additional statistical

information, including the mean and standard deviation.

Table D.1: Makespan values for five replications (Rep)

Makespan (dd:hh:mm:ss)
EXP (1) Rep 1 Rep 2 Rep 3 Rep 4 Rep 5
1 19:02:25:35 19:02:26:00 19:02:24:55 19:02:25:40 19:02:25:26
2 19:02:25:35 19:02:26:05 19:02:24:55 19:02:25:45 19:02:24:45
3 13:07:32:55 13:07:33:00 13:07:33:20 13:07:32:45 13:07:33:10
4 13:05:33:20 13:05:33:45 13:05:33:30 13:05:32:55 13:05:34:10
5 12:02:44:30 12:03:44:45 12:02:44:35 12:02:25:20 12:02:44:50
6 12:01:29:55 12:01:30:10 12:01:30:30 12:01:30:05 12:01:30:25
7 13:07:30:05 13:07:30:15 13:07:30:30 13:07:29:50 13:07:30:25
8 12:02:12:50 12:02:14:10 12:01:13:30 12:02:13:45 12:02:12:50
9 12:02:05:45 12:02:05:50 12:02:05:30 12:02:05:55 12:02:05:40
10 12:01:29:50 12:01:31:10 12:01:30:15 12:01:32:20 12:01:28:45
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Table D.2: Makespan values for five replications (Rep), where the units converted to
seconds

Makespan (seconds)
EXP (1) Rep 1 Rep 2 Rep 3 Rep 4 Rep 5 Mean S. d
1 1650335 1650360 1650295 1650340 1650326 1650331.2 23.76
2 1650335 1650365 1650295 1650345 1650285 1650325 33.91
3 1150375 1150380 1150400 1150365 1150390 1150382 13.50
4 1143200 1143225 1143175 1143210 1143250 1143212 27.97
5 1046670 1046685 1046675 1046665 1046690 1046677 10.36
6 1042195 1042210 1042230 1042205 1042225 1042213 14.40
7 1150205 1150215 1150230 1150190 1150225 1150213 16.04
8 1044795 1044770 1044860 1044810 1044750 1044797 42.07
9 1044345 1044350 1044330 1044355 1044340 1044344 9.61
10 1042190 1042270 1042215 1042320 1042125 1042224 74.78

Table D.3: Makespan values for five replications (Rep) with implementing GA

Makespan (dd:hh:mm:ss) with GA
EXP (1) Rep 1 Rep 2 Rep 3 Rep 4 Rep 5
1 16:05:50:30 16:05:50:25 16:05:50:20 16:05:30:25 16:05:50:25
2 16:05:50:00 16:05:50:20 16:05:50:50 16:05:50:55 16:05:51:01
3 12:02:37:00 12:02:36:45 12:02:38:15 12:02:37:30 12:02:36:10
4 12:02:41:59 12:02:42:00 12:02:42:00 12:02:42:02 12:02:42:01
5 9:03:31:40 9:03:31:50 9:03:31:30 9:03:31:45 9:03:32:00
6 9:02:57:45 9:02:59:10 9:02:58:25 9:02:58:35 9:02:58:30
7 12:02:37:35 12:02:37:25 12:02:37:45 12:02:37:30 12:02:37:50
8 9:01:35:55 9:01:36:15 9:01:36:05 9:01:36:10 9:01:37:00
9 9:01:29:40 9:01:29:55 9:01:29:50 9:01:30:00 9:01:29:45
10 9:01:10:35 9:01:10:55 9:01:10:42 9:01:10:43 9:01:10:55
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Table D.4: Makespan values for five replications (Rep) with implementing GA, where the
units converted to seconds

Makespan (seconds) with GA
EXP (1) Rep 1 Rep 2 Rep 3 Rep 4 Rep 5 Mean S. d
1 1403430 1403425 1403420 1403430 1403425 1403426 4.18
2 1403400 1403420 1403450 1403455 1403461 1403437.2 26.10
3 1046220 1046205 1046295 1046250 1046170 1046228 47.24
4 1046460 1046520 1046520 1046522 1046521 1046508.6 27.18
5 790260 790310 790290 790305 790320 790297 23.34
6 788220 788350 788305 788315 788310 788300 48.08
7 1046220 1046245 1046265 1046250 1046270 1046250 19.68
8 783300 783375 783365 783370 783420 783366 42.92
9 782940 782995 782990 783000 782985 782982 24.13
10 781835 781855 781842 781843 781855 781846 8.774
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