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In this paper, a robust optimization method based on Design for Six Sigma (DFSS) is combined to the optimization of a surface 

mounted permanent synchronous machine (PMSM) by using Multilevel Genetic Algorithm (MLGA). Firstly, MLGA and DFSS are 

introduced in the robust optimization. Secondly, by taking into account the tolerances of the motor production, important input 

parameters could be varied with six sigma distribution and monte-carlo simulation (MCS) method is used to reduce the calculation 

cost. Thirdly, to verify the new algorithm, the presented algorithm is applied to the optimization of a PMSM. The results compared 

with those of traditional GA and MLGA and the discussion of the robust optimization combined with MLGA are presented. 

  

Index Terms—Multilevel Genetic algorithm, robust optimization, design for six sigma, permanent magnet (PM) machine  

 

I. INTRODUCTION 

umerical simulation technology and optimization 

method have been applied to improve the design 

quality and shorten the design cycle of the PMSM. 

However, the existence of fluctuation in design variables or 

operation conditions has a great influence on the motor 

properties. 

DFSS is an effective method to improve the design 

quality and decrease the sensitive of product quality to 

uncertain. Y. Q. Li [1] employs the six design method to the 

optimization of deep-drawing sheet metal process combined 

with the dual response surface model and design of 

experiment; the optimal results improve the reliability and 

robustness of the production and also increase the design 

efficiency. P.N. Koch [2] presents an implementation of 

design for six sigma to measure the design quality of the 

production through mathematical method. X.Y. Liu [3] 

used DFSS to the optimization of current distribution 

among the multilayer conductors in a high-temperature 

superconducting (HTS) cable. 

In order to estimate the effects of parameter perturbations 

in design and to improve the design efficiency, a robust 

optimization method based on design for six sigma (DFSS) 

is presented in this paper. The optimization results shows 

that the proposed optimization procedure can not only 

achieve a better performance of motor, but also improve 

significantly the reliability and robustness of the PMSM 

performance, comparing with those by using GA and 

multilevel Genetic Algorithm. 

II. MULTILEVEL GENETIC ALGORITHM 

Multilevel optimization is described by using the 

problem matrix which may be used to allocate the design 

variables on different levels. And the parameters in the 

problem matrix are deduced by using correlation analysis 

[4]. The architecture and implementation of multilevel 

genetic algorithm are carried out base on multilevel 

optimization. The architecture of MLGA is shown in Fig. 1. 

In MLGA the design optimization variables are classified 

and allocated to different levels according to the relative 

importance among the variables and objective functions, 

constraints, as well as the practical engineering weight and 

optimization sequence.  The variables on different levels 

are encoded independently. Each level may have multiple 

populations and each of them can adopt different dynamic 

genetic operators and parameters. Furthermore, the 

relationship between sub-problems in multilevel problems 

can be handled by MLGA.  
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Fig. 1.  Block diagram of MLGA 
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In Fig.1, the GA1 is the master GA module and GA2i , 

GA3i consist of a number of modules, in which each module 

corresponds to a sub-system. The sub-system in the 

multilevel structure is not independent for the interactions 

between the sub-systems on upper and lower levels. The 

module in the upper level of the MLGA acts as a solver 

which affects GA of other sub-system. 

 

The implementation process of MLGA is as follows. 

 

First, determine the objective functions, constraints and 

design variables. Second, make analysis using correlation 

analysis, then determine the architecture of MLGA. Third, 

allocate all the requirements and build up the relationships 

among different levels and different modules on each level. 

Each module corresponds to a genetic algorithm module. 

Forth, implement MLGA and feedback messages. Last, 

reach the termination criterion and end the total solving 

process. 

 

MLGA possesses some special advantages as follows. 

 

The encoding of design variables on lower level 

chromosome may be modified with upper level 

chromosome. The diversity of the population can be 

independently enhanced by the parallel genetic operations 

performed in different modules within one level. The 

genetic operators of selection, crossover, mutation, 

population size and number of evolution generations can 

dynamically change in the implementation for each 

independent module. 

For optimization of SPMSM, sometimes, MLGA may 

save the finite element (FE) calculation time. For example, 

on the basis of given structural and material parameters, 

select the thickness and width of permanent magnets as 

design variables on Level 1 and assign the conductor 

number per slot and diameter of the conductors as design 

variables on Level 2. On level 1, calculate d-axis and q-axis 

components of inductances per turn by the no-load EMF 

when design variables are modified. On other levels, the 

thickness and width of permanent magnets are determined 

on Level 1, the EMF, d-axis and q-axis components of 

inductances are proportional to the conductors per slot 

which means FEM will not be conducted on Level 2. The 

computing cost of FEM in MLGA is less than that in 

traditional GA for the total of populations and evolution 

generations of traditional GA are equal to those of MLGA, 

III. DFSS ROBUST OPTIMIZATION APPROACH 

The six-sigma methodology was proposed at Motolola 

and developed into DFSS at General Electric (GE). DFSS is 

one of the robust optimization methods, and the term 

“sigma” here refers to standard deviation σ, which is a 

measure of dispersion. The performance level 6σ is 

equivalent to 3.4 defect parts per million (PPM), while at 

3σ level (the average sigma level for most companied) the 

defect ratio is about 66800 PPM. 

During traditional optimization problem, the objective 

function f(X) of design variable X should be minimized or 

maximized and subjected to constraints gk(X) as follows. 

min  ( )

s.t.   ( ) 0,     =1,2,...,Number of constraints.k

f X

g X k
    (1) 

 

In DFSS, six sigma and reliability are combined to define 

the robustness of disturbance, constraints and the original 

object function and constraints may be rewritten as 
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where, LSL, USL, μf and σf  are the lower bound, upper 

bound, mean value and standard deviation of the original 

function, respectively, X is the input design variables, XL, 

XU, μX, σX are the lower bound, upper bound mean value 

and standard deviation of the variables, respectively. n is 

the sigma level. 

Robust optimization should consider the mean value and 

minimum variation of the objective function, it can be 

defined as 
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where, ω1i, ω2i are the weight factors to mean and minimum 

variation to the objective function.s1i, s 2i are the proportion 

factors to mean and minimum variation of the objective 

function. Mi is the mathematical expectation and l is the 

number of performances concerned. 

IV. ROBUST OPTIMIZATION MODEL OF  PMSM 

In order to verify the proposed methodology, a PMSM 

controlled by field oriented control (FOC), rated at 1000W 

output power, 2000 rpm speed and 128V line to line voltage 

is used to verify the MLGA and DFSS based robust 

optimization. 

The bi-level optimization model is defined as follows  
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2

cos (Cu) cos (PM) 100
max  ( ) /

max(Cu) max(PM) 100

. .  0.78

      745W

t t
f X K

s t sf

p


  

 
   

 





   (4) 

 

where, design variable X1=[hm bm Ns WindD]; max(Cu) 

and max(PM) are possible maximum of the cost of stator 

windings and permanent magnets, respectively; cost(Cu) 

and cost(PM) represent the cost of stator windings and 

magnets, respectively; η is the efficiency of SPMSM, K, ω1, 

ω2 andω3 are weight factors defined by designer. P2 is 
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output power and sf is fill factor, hm and bm are thickness 

and width of the permanent magnet. Ns and WindD are 

conductors per slot and the conductor diameter, and hm, bm 

and WindD are selected as robust optimization variables. 

According to (2) and (3), (4) is modified as 

2 2

2 2
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    (5) 

 

In the bi-level optimization, hm and bm are assigned on 

Level 1 and WindD are allocated on Level 2, respectively. 

The robust optimization model described in (5) is regarded 

as the common objective function and constraints on both 

Level 1 and 2.  

In this paper, Monto-Carlo Simulation (MCS) method is 

used to implement the random simulation sampling, to 

avoiding large-scale sampling, the descriptive sampling 

method is employed. Data around the design variables are 

sampled and calculated to get the objective values. The 

reliability and robust of the design variables are evaluated 

according to those sample points values.  

 

The MCS can be described as follows: 

 

First, the design variables are sampled in the disturbance 

scale by using regular sampling method according to the 

step length.  

Second, the sample points set is rearranged according to 

the actual probability distribution [2]. The reliability and 

robust of the design variables are evaluated by (5). 

This paper combines the DFSS with the MLGA 

optimization of PMSM. The flowchart is shown in Fig. 2. 

V. RESULTS 

Table I lists the robust optimization results when given 

different design variables disturbance scale and weight 

factorsωμ andωσ in the objective function (5). The sigma 

level is set as n=3, and the number of sample points is 10. 

 

The fitness of the objective function varies with the 

disturbance of the variables, the bigger change range of the 

fitness, the bigger deviation degree of the objective function. 

That is the lower robust of the system. When the 

disturbance scale is ±0.05 and the number of sample points 

is 100, we will get the frequency histogram of the objective 

function. Fig.3 and Fig. 4 are DFSS and MLGA 

optimization frequency histogram, respectively. It can be 

seen from those two figures when DFSS is used to the 

robust optimization, the range of the objective function is 

0.266~0.274, and MLGA is 0.23~0.26. The latter range of 

MLGA is 0.022, which is bigger than that of DFSS. It is 

suggested that the robustness of the robust optimization is 

higher than MLGA optimization. 
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Fig. 2.  Flowchart of DFSS based MLGA 

 

 

TABLE I 

 ROBUST OPTIMIZATION RESULT OF PMSM 

Disturbance 

scale ωμ:ωσ Fitness μf σf 

±0.01 1:100 2.1330 0.2120 1.2097e-006 

±0.01 1:50 1.8147 0.2009 8.4983e-007 

±0.01 1:10 2.0520 0.1999 2.9441e-007 

±0.025 1:50 2.2769 0.2359 1.2210e-006 

±0.05 1:50 2.0403 0.1979 2.4259e-006 

 

 

 
Fig. 3.  DFSS optimization frequency histogram 
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Fig. 4.  MLGA optimization frequency histogram 

 

Table II lists the optimization results for PMSM by using 

MLGA and DFSS respectively. Both optimization methods 

may provide better performances than that of original 

design. Although the efficiency achieved by MLGA is little 

higher than that of DFSS, the cost of windings and 

permanent magnets optimized by DFSS are less than that 

calculated by using MLGA. It is crucial that the results 

optimized by DFSS possesses higher reliability than those 

analyzed by MLGA. 
 

TABLE Ⅱ 

RESULTS COMPARISON OF MLGA AND DFSS 

Variables and performance Original MLGA DFSS 

Thickness of PM, hm / cm 0.18 0.23 0.1788 
Width of PM, bm / cm 3.14 3.03 3.0018 

Conductors per slot, Ns 72 67 83 

Diameter of conductor, WinD / mm 0.5 0.56 0.50 
Back-EMF E0 / V 66.0 61.9 75.7777 

q-axis component of current Iq / A 4.78 5.27 4.3258 

d-axis component of current Id / A 1.60 0.05 0.0503 
Efficiency, η (%) 83.7 86.4 85.7811 

Cost of Wire / RMB 72.6 84.7 82.1443 

Cost of PM / RMB 41.3 50.9 39.3848 
Output power, P2 / W 946 949.5 951.9331 

Fill factor, sf (%) 67 77.7 76.7050 

VI. CONCLUSION 

In this paper, considering the uncertainties in PMSM 

structural design, an optimization algorithm based on 

design for six sigma combining with MLGA is applied to 

perform a robust design. The comparison among traditional 

GA and MLGA and DFSS-based MLGA shows that the 

robust optimization using DFSS is superior to the MLGA 

algorithm to achieve a higher reliability and quality. 
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