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Saturated core high temperature superconducting (HTS) fault current limiter (FCL) is one kind of limiter that can work effectively 

on short-circuit current limitation. In this paper, an equivalent circuit model depending on AC winding of HTS FCL is built for 
voltage distribution analysis under the pulsed voltage. The equivalent circuit components, such as the capacitances and inductances, 
are calculated by using finite element method. The voltage distribution and oscillation analysis of AC winding may benefit to the 
insulation design of HTS FCL. 
 

Index Terms—High temperature superconductor fault current limiter (HTS FCL), transient overvoltage, lightning wave 
 

I. INTRODUCTION 
he capacity of power system is increasing so as to the 
capacity of short circuit. Short-circuit current may exceed 
the interrupting capacity of breaker.  It is an emergency to 

take some steps for short-circuit current limitation. The 
Saturated core HTS FCL will be one kind of innovative 
protection apparatus for high voltage power grids. It works 
automatically; furthermore, it offers many advantages: rapid 
reaction to fault current, low impedance in normal conditions, 
and large impedance during fault conditions [1-3]. 

Voltage distribution of AC windings of HTS FCL is 
extremely uneven under the condition of impulse voltage 
excitation and high-frequency voltage oscillation is occurred, 
and then may destroy the AC winding insulation. In this paper, 
voltage distribution and its oscillation of HTS FCL are 
discussed under the lightning-impulse voltage. The insulation 
property may be verified by imposing the impulse electrical 
potential on each pancake of AC winding  

II. LUMPED PARAMETER MODEL UNDER TRANSIENT 
OVERVOLTAGE 

Fig. 1 shows the schematic of single-phase saturated core 
HTS FCL, which is composed of two magnetic cores, two AC 
windings and a superconducting DC bias coil. The 
permeability of the magnetic core is nonlinear. At the normal 
operation, both magnetic cores are driven into saturation by 
the DC bias. As saturated core FCL is saturated, the 
impedance of the FCL is very low. When a short-circuit fault 
occurs, rapid increased AC current drives both magnetic cores 
out of saturation alternatively. Hence, the cores of FCL 
alternately work in linearity. The impedance of the FCL 
becomes large to limit the fault current.  

Each of two AC windings of the same phase has the same 
structure with 60 turns and 36 pancakes. In order to analyze 
transient impulse voltage distribution, the AC winding needs 
to be subdivided into several units as shown in Fig. 2 (a). Each 
unit contains a longitudinal capacitance Cs, a grounding 
capacitance Cg and an inductance L. The equivalent circuit 

model is shown in Fig. 2 (b) [4-6]. Since the turn number of 
each pancake is less than 2, calculation based on one pancake 
will get higher accuracy. 

 
Fig. 1.  Experimental circuit for a one phase saturated core FCL. 

1, 2: AC windings. 3, 4: Magnetic cores.5: Superconducting DC coils 
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Fig. 2.  Equivalent circuit of FCL AC windings under impulse overvoltage 
excitation 
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III. CALCULATION OF EQUIVALENT PARAMETERS 
The distributed and stray capacitances of the AC coil in 

HTS FCL have a substantive effect on the transient voltage 
distribution in the coil. The distribution of the initial voltage in 
the coil is determined by the distributed capacitance when the 
steep-front impulse voltage invades the coil. However, the 
final voltage distribution of the coil is determined by the 
inductance distribution. The disparity of the initial voltage and 
the final voltage leads to voltage oscillation. Therefore, the 
accurate capacitance and inductance calculation model for the 
coils is crucial to compute the impulse voltage distribution. 

A. Calculation of capacitance parameters 
There are two kinds of capacitances in the equivalent 

circuit. One is longitudinal equivalent capacitance, and 
another is grounding capacitance. The longitudinal 
capacitance expresses the electric field effect between the 
turn-to-turn capacitance and the pancake capacitance, while 
the grounding capacitance indicates the electric field effect 
between the winding with ground, such as grounded core.  

In this paper, the equivalent capacitance parameters are 
calculated by finite element analysis (FEA) method. Because 
the number of turns per pancake is not an integer, the 3 
dimensional (3D) FEA model of the coil should be built to 
analyze the capacitance parameter. Fig. 3 shows the 3D FEA 
model for calculating the capacitance parameters.  

 

 Fig. 3.  Model of capacitance Calculation 
 

Fig. 4 shows the capacitances between the first with other 
pancakes. According to Fig. 4, obviously, the pancake 
capacitance is dominated by the capacitance between two 
adjacent connected pancakes, and the capacitances of the 
unconnected pancakes are too small to take into consideration. 
The grounding capacitances of the pancakes are depicted in 
Fig. 5. From Fig.4 and Fig.5, grounding capacitance is about 
10 percent of capacitance between adjacent pancakes. 
Therefore, the capacitance between pancakes has a major 
effect on the initial voltage distribution in coils under transient 
impulse overvoltage. 

 
 Fig. 4.  Capacitances between the first and other pancakes 

  
  

 Fig. 5.  Grounding capacitances of the pancakes 
 

B. Calculation of inductance 
A single-phase AC winding consists of two coils with the 

same structure and size. The two coils are wounded on 
separate cores, respectively. The mutual inductance of these 
two coils could be ignored. However, the self-inductance of 
each pancake and mutual inductances among pancakes in the 
coil should be considered. 2D axisymmetric magnetic field is 
adopted for analysis. In the case of very fast transient 
overvoltage, due to skin effect,  the core can be ignored [4].  

The self- and mutual inductance of the pancakes in FCL AC 
winding are calculated using the Energy Perturbation method 
based on FEA [3]. Fig. 6 shows the FEA model of inductance 
calculation.  

 
Fig. 6.  Model of Inductance Calculation 
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Fig. 7 shows the mutual inductances between the 10th and 

other pancakes, According to Fig.7, The mutual-inductances 
should be considered Fig. 8 shows the self-inductances of all 
units.  

 
Fig. 7.   Mutual inductances between the 10th and other pancakes 

 

 
Fig. 8.  Self-inductances of all units 

 

IV. CALCULATION RESULTS  
The nodal equation of the equivalent circuit can be 

expressed as follows. 
2 2

2 2
t t

n n t r r t
d u d eC L u C L e
dt dt

+ = +                           (1) 

where, ut is the column vector of the voltage, Cn is the nodal 
capacitance matrix, Ln is the nodal inverted inductance matrix, 
Cr and Lr respectively are right column vectors of the 
capacitive and inductive branches, and et is the impulse wave 
voltage source, the winding resistance is ignored. 

The coefficient matrix in (1) is symmetric positive definite 
which satisfies the generalized eigenvalue problem. Therefore, 
the generalized eigenvalue method of solving coefficient 
matrix can be used to solve this problem. 

A. Voltage distribution under full lightning wave 
 According to the equivalent model shown in Fig. 2, the 

standard full and chopped lightning-impulse voltages are 
respectively excited to the AC winding of FCL. Under the 
standard full lightning-impulse voltage, the electrical potential 
distribution of all the pancakes at the moment, 0.8µs, is 
depicted in Fig. 9. It can be seen that the voltage distribution 

of AC windings of HTS FCL is extremely uneven under the 
condition of impulse voltage excitation. Figs. 10 and 11 show 
electric potential of the 5th and 50th pancakes, respectively. 
The transient electric potential of pancakes fluctuates due to 
the interaction of inductances and capacitances.  

The maximum voltage of oil ducts is shown in Fig. 12. The 
p. u. peak electric potential gradient, about 7.08% under full 
lightning wave, is located at the 27th oil duct. The voltage drop 
can be calculated as 950×7.08%=67.26kV, comparison with 
the permitted voltage threshold of the oil duct. 

 
Fig. 9.  Voltage distribution of all pancakes at the moment at 0.8 µs 

 

 
Fig. 10.  Transient electric potential of the 5th of pancake  

 

 
Fig. 11.  Transient electric potential of the 50th of pancake 
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Fig. 12.  Maximum electric potential difference 

 

B. Voltage distribution under chopped lightning wave 
Excited by the standard chopped lightning-impulse voltage, 

the electrical potential distribution of all the pancakes at the 
moment, 1.1 µs, is illustrated in Fig. 13. The voltage 
distribution of AC windings of HTS FCL is extremely uneven 
under the standard chopped lightning-impulse voltage. Figs. 
14 and 15 show electric potential of the 5th and 50th pancakes, 
respectively. The maximum voltage of oil ducts is shown in 
Fig. 16. 27th oil duct has the peak electric potential gradient 
about 7.72% under chopped lightning wave as same as full 
wave. The voltage drop can be calculated as 1050 ×
7.72%=81.06kV, comparison with the permitted voltage 
threshold of the oil duct.  

 
Fig .13.   Voltage distribution of all pancakes at the moment at 1.1 µs 

 

 
Fig. 14.  Transient electric potential of the 5th of pancake 

 

 
Fig. 15.  Transient electric potential of the 50th of pancake 

 

 
Fig. 16.  Maximum electric potential difference 

 

V. CONCLUSION: 
This paper presents the voltage calculation of saturated core 

type HTS FCL under transient overvoltage. The distribution of 
electric potential and electric potential difference in the cases 
of full and chopped lightning-impulse voltage are analyzed. 
Both maximum electric potential gradient under full wave and 
chopped wave exists in 27th oil duct. The weaknesses of minor 
insulation exist around 27th oil duct in AC winding. 
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