
© 2011 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in 
any current or future media, including reprinting/republishing this material for advertising or promotional purposes, 
creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of 
this work in other works.



1BZ-04 
 

DOMAIN DECOMPOSITION COMBINED RADIAL BASIS FUNCTION 
COLLOCATION METHOD TO SOLVE TRANSIENT EDDY CURRENT 

MAGNETIC PROBLEMS WITH MOVING CONDUCTORS 
 

Guangyuan Yang1, Xiaoming Chen1, Gang Lei1, K.R. Shao1, Youguang Guo2, Jianguo Zhu2, and J.D. Lavers3, 
Fellow, IEEE 

 
1College of Electrical & Electronic Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China 

2Faculty of Engineering and information technology, University of Technology, Sydney, N.S.W. 2007, Australia 
3Department of Electrical & Computer Engineering, University of Toronto, Toronto, ON M5S 3G4, Canada 

 
Radial basis function (RBF) collocation method is a kind of pure meshless numerical method and has been applied to solve static 

and transient electromagnetic problems. Especially, it shows a great advantage in the computation of moving conductor eddy current 
magnetic problems. To simulate the conductor movement, the field equations are decoupled with superposition principle and solved by 
time-domain iteration under moving coordinate systems. One problem is that the coefficient matrix of RBF governing equations, which 
needs to be computed in each iteration step, is full. As the number of RBF nodes increases, the computational capacity will grow 
rapidly. The domain decomposition method (DDM), which divides the solving domain into several sub-domains, could be conveniently 
combined with RBF collocation method. This paper first applies DDM combined RBF collocation method to compute transient eddy 
current magnetic field problems with moving conductors. With this novel method, the iteration only proceeds in the sub-domains 
containing conductors. And the magnetic field in the sub-domains without conductors needs to be computed just once before the 
iteration. The dimension of the coefficient matrix computed in the iteration is only determined by the number of nodes in the 
corresponding sub-domains and on the interfaces. An engineering problem is computed to show that the DDM combined RBF 
collocation method is much more efficient than the normal one. 
 

Index Terms—domain decomposition method, eddy current magnetic field, moving conductor, radial basis function 
 

I. INTRODUCTION 
he research on the computation of transient eddy current 
magnetic field problems with moving conductors has 

always been attractive in computational electromagnetics [1]-
[6]. Because of the movement of the conductor, the numerical 
model needs to be modified during the computation. The 
traditional mesh-based method, for example, the finite element 
method (FEM), is difficult to deal with this model 
reconfiguration. One approach is to refresh the meshes in the 
solving domain in each iteration step according to the 
conductor movement. But it is not economic when the model 
is complex. Some improved methods are developed to avoid 
the mesh refreshment such as mesh coupling method (MCM) 
[4], finite element-boundary element method (FEM-BEM) [5] 
and composite grid method (CGM) [6]. With these methods, 
the moving and static parts of the model are constructed under 
separate mesh systems and coupled together during 
computation. A great computational capacity is still required 
to deal with the model combination. 

  Radial basis function (RBF) collocation method is a newly 
developed meshless method and has been applied to solve 
static and transient electromagnetic problems [7]. As a kind of 
pure meshless method, the primary functions are constructed 
on nodes established in the whole solving domain and on the 
boundaries instead of meshes and the governing equations are 
obtained through using collocation on each nodes. This 
method has been proved effective to solve moving conductor 

eddy current magnetic problems by time-domain iteration 
under moving coordinate systems [8]. However, the 
coefficient matrix of the RBF collocation governing equation, 
which needs to be solved in each iteration step, is full. As the 
number of RBF node increases, the computational capacity 
will grow rapidly. Because of this limitation, it is difficult to 
apply RBF collocation method to solve 3-D problems or 
electromagnetic systems with complex shapes. 

The domain decomposition method (DDM) is a useful tool 
to divide the solving domain into several sub-domains. This 
method has been introduced into RBF collocation method to 
compute electrostatic problems with multi-materials [9]. With 
the DDM combined RBF collocation method, a sparse 
coefficient matrix like the FEM could be obtained. Moreover, 
in the transient eddy current problems, only the magnetic field 
on nodes belonging to the conductor area is governed by the 
convective diffusion equation. The field on the other nodes 
still satisfies the Poisson equation as static problems. 
Therefore, the iteration could only proceed in the sub-domains 
with conductor parts. So the dimension of the coefficient 
matrix computed in each iteration step could be greatly 
reduced by setting more sub-domains and limiting the node 
number in the sub-domains with conductor parts. 

To examine this method, an electromagnetic launcher 
system is computed and the computational capacity is 
analyzed. Through the numerical example, we could see that 
DDM combined RBF collocation method is much more 
efficient than the normal one. 

T 
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II. RBF COLLOCATION GOVERNING EQUATIONS OF MOVING 
CONDUCTOR EDDY CURRENT MAGNETIC FIELD PROBLEMS 
Without loss of generality, consider a 2-D magnetic field 

boundary value problem as follows. Scalars A and sJ express 
the z-axis direction component of magnetic vector potential 
and the excitation current density. The solving domain Ωwith 
a boundary ξ  is assumed homogeneous and isotropic. In Ω , a 
nonmagnetic conductor area is moving with a speed V and 

the nonconducting area is denoted by
eΩ

h eΩ = Ω ∩Ω . The 
conductivity σ and the permeability μ are assumed constant. 
The governing equations of A are: 

2 ( )y x
A A A

sA V V
t y x

Jσμ σμ∂ ∂ ∂
−∇ + + =

∂ ∂ ∂
μ           in eΩ           (1a) 

2
sA Jμ∇ = −                                                      in hΩ           (1b) 

                                                          on  ( )B A g= ξ            (1c)                                  
where means a boundary operator. On Dirichlet boundary 

and on Neumann boundary
( )B ⋅

( )B A A= ( ) /B A A x= ∂ ∂  or 
/A y∂ ∂ . g  is a known function defined on ξ . 

To solve (1), we sequentially set collocation 
nodes in and on

I BN N N+ =
Ω ξ respectively and obtain the RBF 

approximating form of A as:  

1

( , ) ( ) ( ) ( ) ( )
N

i i
i

A t a t tΤϕ
=

= − =∑x x x ϕ x a

)

                                 (2) 

where ( iϕ −x x is the RBF centered at the node with a 
coordinate ( , )i i ix y=x and ( )xϕ is the vector form, ⋅ means 
the Euclid norm, is the unknown coefficient vector. The 
RBF collocation iterative scheme to solve (1) could be seen in 
[8]. To simulate the conductor movement, A is regarded as a 
superposition of two fields A

( )ta

s and Ae approximated by separate 
RBFs in moving coordinate systems as: 

( ) ( ) ( ) ( )s e s s e eA A A t tΤ Τ= + = +s ex a x aϕ ϕ                               (3) 
where the subscripts s and e mean the excitation current and 
eddy current respectively. sA could be computed as static 
magnetic problems and we have a linear proportional 
relationship between sa and sJ [10]. So in the following 
analysis, sA is treated as known parameter in the iteration. 
And the computational capacity is mainly consumed to 
solve eA . The node number of eϕ is denoted by e eI eN N N B= + . 
Among the nodes in Ω , we assume that nodes numbered 
by 1 to and to belong to and respectively. 
The iterative scheme of could be written as: 

eIN

eEN 1eEN + eIN eΩ hΩ

ea
1( ( )) ( ( ))k k

e ei e e ei eL L i
Τ Τ+ + − +x a x aϕ = ϕ 1, eEN=

1 =

)g

b  ,   i        (4a) 
2 ( ( )) 0T k

e ei e
+∇ x aϕ ,                               (4b) 1eE eIi N N= +
1( ( )) (T k

e ei e eiB + =x a xϕ ,                           (4c) 1eI ei N N= +

where k is the number of iteration steps.  means a linear 
operator and has an expression as: 

( )eL ⋅

21( ) ( ) ( ) ( ( ) ( ))
2

k k
e xL V

t x
σμ σμ± ∂ ∂

⋅ = ⋅ ⋅ ∇ ⋅ ± ⋅ + ⋅
Δ ∂

∓

where tΔ  is the time interval. According to (3), the 
component could be rewritten as . 

is a known quantity which could be solved through 
( ( )) k

e ei eL Τ− x aϕ ( )k
eiL A−

ib sA as: 
1 1( ) ( )( )

k k
k ks ei s ei

i x y
A Ab V V

x y
σμ

+ +′ ′∂ ∂
= − +

∂ ∂
x x  

1( ( ( ) ( ))k k
s ei s eiA A

t
σμ + ′− −
Δ

x x′                (6) 

where ei′x  means the coordinate of node in the coordinate 
system of

eiN

sA . There are unknowns in (4) and the coefficient 
matrix is full. As increases, the computation to solve (4) 
will become quite time-consuming.  

eN

eN

III. DDM COMBINED RBF COLLOCATION METHOD 
The main idea of DDM is to divide the solving domain Ω  

into several sub-domains in which the field could be computed 
simultaneity. This method has been introduced into RBF 
collocation method to solve multi-materials electrostatic 
problems [9]. 

Without loss of generality, we divide Ω into two sub-
domains 1Ω and 2Ω . The conductor area belongs to eΩ 1Ω . 
The boundaryξ  is also divided into two parts 1ξ and 2ξ as the 
boundaries of 1Ω and 2Ω respectively. The magnetic field 

1eA and 2eA  in each sub-domain satisfy (4). The interface 
between 1Ω and 2Ω  is denoted by Γ and we have:  

1 2 0e eA A− =                                    on                               (7a) Γ

1 2/ /e eA n A n 0∂ ∂ − ∂ ∂ =                     on                              (7b) Γ
where n is the normal direction of Γ .  

Then we use the DDM combined RBF collocation model to 
solve (4). First, we sequentially set two groups of RBF nodes 
in each sub-domain and on their boundaries respectively. 
Their numbers are denoted by and . Among these 

and nodes, the last and nodes are 
respectively set on 

1eN 2eN

1eN 2eN 1eLN 2eLN
Γ . The magnetic fields approximated by 

these two groups of RBFs like (2) are denoted by 1eA′ and 2eA′ . 
Then we set another NΓ  nodes on and use Γ Γx to denote 
their coordinates. Apparently, this group of nodes could be 
seen in both sub-domains. So we define functions 1λ  and 2λ  
on them and let: 

yV
y∂

              (5) 

1 1 1e eA A′ λ+ 2 2 2e eA A, ′= λ+                                                   (8) =

1eA′  and 2eA′  could be solved through: 
1

1 1 1 1( ( )) ( )k k
e i e e iL LΤ+ + − +ex aϕ = iA b ,              11 eEi N=      (9a) 

2
1 1 1( ( ))T k

e e i e
+1 0∇ =x aϕ ,                          (9b) 1 11eE eIi N N= +
1

1 1 1 1( ( )) (T k
e e i e e iB g+ =x a xϕ ) 1

0

,           (9c) 1 11eI e eLi N N N= + −
1

1 1 1( ( ))T k
e e i eB + =x aϕ ,                    (9d) 1 1 1e eLi N N N= − + 1e

1 02
2 2 2( ( ))T k

e e i e
+∇ =x aϕ ,                              21 eIi N=    (10a) 
1

2 2 2 2( ( )) (T k
e e i e e iB g+ =x a xϕ ) 2

0

,      (10b) 2 21eI e eLi N N N= + −
1

2 2 2( ( ))T k
e e i eB + =x aϕ ,                 (10c) 2 2 1e eLi N N N= − + 2e
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Using the subscript p=1 or 2 to denote the corresponding sub-
domain, the expression of component  is: 1k

pλ
+

1 1

1

( , )
N

k k T
p m pm m p

m

aλ ψ
Γ

+ +
Γ Γ

=

= =∑ x x ψ a ,          p∈Ωx               (11) 

The primary function pmψ is constructed on node mΓx and 

expressed by the RBFs in the sub-domain pΩ as: 

1

( , ) ( )
epN

pm m pj ep epj
j

ψ β ϕΓ
=

= −∑x x x x ,                        (12) p∈Ωx

 From (11)-(12), we could see that the function pmψ has a 

similar property to the RBF. The coefficient pβ could be 
solved through: 

1

1 1 1 1
1

( ( )) 0
eN

j e e i e j
j

Lβ ϕ+

=

−∑ x x = ,                  i      (13a) 11 eEN=

= N= +

1

)

1eN N= − +

= N=

2N N= + −

)

2e

1
2

1 1 1 1
1

( ( )) 0
eN

j e e i e j
j

β ϕ
=

∇ −∑ x x ,           i N  (13b) 1 11eE eI

1

1 1 1 1
1

( ( )) 0
eN

j e e i e j
j

Bβ ϕ
=

− =∑ x x ,     (13c) 1 11eI e eLi N N N= + −

1

1 1 1 1 1 1
1

( ) (
eN

j e e i e j e m e i
j
β ϕ ϕ Γ

=

− = −∑ x x x x ,  

                                                       i N  (13d) 1 1 1e eL

2
2

2 2 2 2
1

( ( )) 0
eN

j e e i e j
j

β ϕ
=

∇ −∑ x x ,                i     (14a) 21 eI

2

2 2 2 2
1

( ( )) 0
eN

j e e i e j
j

Bβ ϕ
=

− =∑ x x ,  i N (14b)  2 21eI e eL

2

2 2 2 2 2 2
1

( ) (
eN

j e e i e j e m e i
j
β ϕ ϕ Γ

=

− = −∑ x x x x , 

                                                       (14c) 2 2 1e eLi N N N= − +

After we obtained the function pψ on each node , Γx 1k+
Γa  could 

be solved through substituting (8)-(12) into (7b) as: 
1 21

1

( ( , ) ( ,
N

j jk
j i j i

j

a
n n
ψ ψΓ

+
Γ Γ Γ Γ

=

∂ ∂
−

∂ ∂∑ x x x x ))jΓ  

2 1
1 12 1

2 2 1
1 1

( ) ( 1

e eN N
k ke e
e j i e j e j i e j

j j

a a
n n
ϕ ϕ+ +

Γ Γ
= =

∂ ∂
= − − −

∂ ∂∑ ∑x x x x ) , 

                                                                        1,2,i NΓ=  (15) 

According to (8), the field 1k
eA + could be expressed as: 

1 1 1+( ) ( ) ( )k T k T k
e ep ep pA + +

Γ= +x x a ψ x aϕ ,      p∈Ωx

Ω

                 (16) 

Consider the situation that W sub-domains Ω with M 
interfaces 

1 W

1 MΓ Γ are defined inΩ . We still could use (9) or 
(10) to compute epA

1 2[ , , ,T T T
MΓ Γ Γ Γ=a a a a ]T                                                     (17) 

One sub-domain, for example, Ω may have several interfaces 
between other sub-domains. On these interface, we should 
compute the function 

1

1ψ  on each nodes. And on the interfaces 
which do not belong to 1Ω , we have 1 0ψ = . This means that 
the coefficient matrix of (15) to solve a  is a sparse one 
which is easy to save and compute. 

Γ

Then we analyze the computational capacity in each 
iteration step. From (10), we see that eA′  in sub-domains 
without conductors could be treated as static problems and 
computed just once before the iteration like sA . In the sub-
domains with conductors, the governing equation (9) has a 
similar form to (4) and need to be computed in each step. 
Equation (9) has a ep epN N× full coefficient matrix. Fortunately, 

we could reduce by dividing more sub-domains. Because 

does not change during the iteration, 
epN

pψ pβ could also be 
computed and saved beforehand. As mentioned above, 
equation (16) has a N NΓ Γ× sparse coefficient matrix and need 
to be solved in each step. Using C and ep CΓ  to express the 

computational capacity of solving (9) in Ω and solving (16) 
respectively, the computational capacity of DDM combined 
RBF collocation method to solve (4) in one iteration step is: 

p

1

P

t ep
p

C C CΓ
=

= +∑ ,        P W≤                                                (18) 

where we assume that the serial numbers of sub-domains with 
conductors are 1, 2,…, P. 

IV. NUMERICAL EXAMPLE AND RESULT ANALYSIS 
A tubular electromagnetic launcher system (coil gun) is 

computed to examine the presented method. This is a typical 
moving conductor eddy current magnetic problem. 

 
Fig. 1.  Dimensions of the 2-D axisymmetric model of electromagnetic 
launcher system. (Unit: m) 

′  according to the condition that whether 

there is conductor area in pΩ . However, because (15) must be 
applied on all the interfaces, the number of nodes to construct 

pλ  should be equal to the sum of nodes number on each 

interface as:  and  should be rewritten as: 
1

M

m
m

N NΓ Γ
=

= ∑ Γa

Fig. 1 shows the 2-D axisymmetric model of the system. 
The excitation current, which is illustrated in Fig. 2, is 
assumed homogeneous in the coil section and the turn number 
of the coil is 60. Because of the time-variable magnetic field, 
eddy current will be generated in the hollow-cylinder shaped 
conducting projectile. And the projectile will be accelerated to 
a high speed in a short time by the magnetic force. At t=0, the 

0.03427
0.02857 0.02205 0.02485

0.06352 

0.03688

Coil 

Projectile 

y

x
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left edge of the projectile is at the middle place of the coil, 
which refers to the plane x=0. The detailed RBF collocation 
model to compute magnetic force and motion parameters of 
the conductor could be seen in [8]. 

 
Fig. 2.  Variation curve of excitation current in the coil. 

In this paper, the eddy current magnetic field eA defined by 
(3) is solved by the normal RBF and DDM combined RBF 
collocation method respectively. Because of the symmetry, the 
solving domain is defined as: , 0.06 0.12x− ≤ ≤ 0 0.y 06≤ ≤ . 
In the normal RBF model, the number of nodes is 
61×41=2501. And we divide the solving domain into 6 sub-
domains as shown in Fig. 3. The projectile section is in one 
sub-domain with 23×21=483 nodes and there are 66 nodes on 
all the interfaces. 

 
Fig. 3.  Nodes distribution in DDM combined RBF model. The round and 
square markers refer to the nodes in the sub-domains and on the interfaces 
respectively. The projectile section is expressed by dashed lines. 

The speed of the projectile calculated by normal and DDM 
combined RBF collocation method is shown in Fig. 4. The 
experiment data and numerical result calculated by FEM [11] 
are also illustrated. Fig. 4 shows that a proper result could be 
obtained by both methods. However, the computing time of 
normal and DDM combined method in one iteration step is 
63.7 s and 0.632 s respectively. 

 
Fig. 4.  Measured and calculated speeds of the projectile versus time. 

Fig. 5 shows the isopotential lines of eA  at t=0.5 ms 
calculated by the DDM combined method. From Fig. 5, we 
could see that the field near the interfaces is small distorted. 
To get a more accurate result, we should carefully optimize 
the location of nodes and the shape parameter of RBF.  

 
Fig. 5.  Isopotential lines of Ae at t=0.5 ms. 

V. CONCLUSION 
DDM combined RBF collocation method is first 

implemented to solve moving conductor eddy current 
magnetic field problems in this paper. With this novel method, 
the computational capacity could be greatly reduced compared 
with the normal RBF model. This offers us a useful tool to 
solve electromagnetic systems involving conductor movement 
with multi-materials, large size and complex shapes. 
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