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Abstract. Constrained Natural Languages (CNLs) are becoming an 
increasingly popular way of writing technical documents such as requirements 

specifications. This is because CNLs aim to reduce the ambiguity inherent 
within natural languages, whilst maintaining their readability and 
expressiveness. 
The design of existing CNLs appears to be unfocused towards achieving 

specific quality outcomes, in that the majority of lexical selections have been 
based upon lexicographer preferences rather than an optimum trade-off between 
quality factors such as ambiguity, readability, expressiveness, and lexical 
magnitude. 
In this paper we introduce the concept of ‘replaceability’ as a way of 
identifying the lexical redundancy inherent within a sample of requirements. 
Our novel and practical approach uses Natural Language Processing (NLP) 
techniques to enable us to make dynamic trade-offs between quality factors to 

optimise the resultant CNL. We also challenge the concept of a CNL being a 
one-dimensional static language, and demonstrate that our optimal-constraint 
process results in a CNL that can adapt to a changing domain while maintaining 
its expressiveness. 

1 Introduction 

Eliminating the ambiguity inherent within a requirement specification is the 
seemingly unattainable ambition of the systems engineering zealot. This is because 
ambiguity is characteristic of poor quality requirements, and poor quality 
requirements are characteristic of challenged projects [1]. It has been suggested that 
the ambiguity of a requirement can be reduced if the lexicon and/or grammar used to 
express the requirement is constrained to a subset with stronger properties [2][3]. A 

Constrained Natural Language (CNL) is a subset of a Natural Language (NL) that has 
been restricted with respect to its grammar and/or lexicon [3]. By restricting the 
grammar, complicated sentence structures can be simplified. By restricting the 



lexicon, unnecessary linguistic variations can be removed, and retained words can be 

less ambiguously defined.  
One of the biggest criticisms of CNLs is that they tend to be unnatural to read and 

write [4]. Goyvaerts [5] claims that writing requirements in controlled languages is 
20% more time consuming that writing requirements in unrestricted NLs. Somers [4] 
highlights the importance of involving domain authors in all stages of CNL 
development to ensure the resultant lexicon is natural w.r.t. the domain of interest.  

There is a tendency to assume that reduced expressiveness is an unavoidable 
consequence of constraining a NL. This is because the expressiveness of a language is 

a measure of the variety of lexical and grammatical constructions it allows [4]. Since 
a CNL constrains such lexical and grammatical constructions – the subsequent 
expressiveness of the language is expected to decline. Moreover, existing CNLs are 
static languages that cannot adapt to express words that have not been designated in 

advance. CNLs are typically derived from large samples of naturally occurring text in 
a particular domain [6]. In many cases, a combination of domain experts and 
automatic parsers are used to extract domain keywords and reoccurring phrases 
respectively [7]. Fundamentally, this implies that a typical CNL is specific to a 
particular domain [7][8], and is largely driven by the lexicographers preference. 
Furthermore, there is a lack of evidence in the literature to confirm whether or not the 
design of existing CNLs has been rigorously focused upon achieving specific quality 
outcomes such as unambiguity, readability, and expressiveness. 

 In this paper we present our fully automatable approach to optimally-constraining 
the lexicon of a CNL. Our approach aims to exploit important semantic relationships 
between the words in a requirements sample as a way of logically reducing a NL to 
achieve a desired level of language quality. We propose a new concept called 

‘replaceability’ which builds upon an existing concept of ‘similarity’. We also show 
how our CNL lexicon remains able to adapt to accommodate new lexical terms that 
are encountered post its design. 

This is significant because existing CNLs tend to be the static result of 

lexicographer analysis. It is not clear how an existing CNL would be adapted to a new 
domain – or even how it could be expanded to accommodate a larger sample of text 
from the same domain. It is of course unlikely that the original lexicographers would 
always be available to extend their original analysis – and even if they were, it is 

unlikely that the results would be consistent. On the other hand, we are proposing a 
new application for existing and well-understood Natural Language Processing (NLP) 
techniques that practically eliminates the need for a lexicographer in the design of a 
CNL. 

2 Optimal-Constraint Process – Design Goals 

There are two fundamentally different constraints underlying any CNL. Firstly there 
is the constraint on the words that constitute each part of speech (the lexicon), and 
secondly there is the constraint on the grammatical constructions that will be 
allowable in the language. The focus of this paper is on optimally-constraining the 
lexicon. We do not address the issue of constraining the grammar.  



Three design goals have been selected to optimally constrain the lexicon – that is 

to be readable, sufficiently expressive, and unambiguous. Our objective is to achieve 
the perceived advantage of CNLs (reduced ambiguity), whilst also attempting to 
overcome the perceived disadvantages (reduced readability and reduced 
expressiveness).  

2.1 Design Goal #1: To be Readable 

A popular criticism of CNLs is that they are unnatural to read and write [4]. Swaffar 

[9] suggests that what makes text readable is that it “deals with topics of interest or 
familiar to the intended readers (so that it allows for communication and expressions 
from within readers' frame of reference).”. When a lexicon is constrained, it is 
unlikely that all words from within the readers' frame of reference will be contained 
within the constrained lexicon. Consequently, readability is expected to decline.  

We believe that when constraining a language there must be cognisance paid to the 
inclusion of words from the readers' frame of reference. Since we are proposing to 
derive the CNL from a corpus of existing requirements within the domain of interest, 

the readers' frame of reference should present itself within the text. For example, by 
counting the frequency of each disambiguated word within the sample, we gain some 
insight into the popularity of certain words to express certain meanings. We can then 
use this insight to help ensure that conventional terms are retained and unconventional 

terms are replaced within the CNL. 

2.2 Design Goal #2: To be Sufficiently Expressive 

It appears that there are two fundamentally different schools of thought on the concept 
of expressiveness. Gnesi et al [10] and Fabbrini et al [11] imply that expressiveness 
relates to the ability of a language to convey meaning to a human reader, whereas 
Nyberg et al [4] believe that expressiveness of a language is some measure of the 

variety of lexical and grammatical constructions it allows (irrespective of the reader). 
Here we have two different measures of the size of a language – one relates to the 
number of semantic meanings that can be generated by a language, whereas the other 
relates to the number of syntactic expressions that can be generated (which is 

normally infinite since most useful grammars allow recursion).  
Figure 1 shows that a CNL consists of a grammar and a lexicon of ‘L’ words. The 

grammar consists of ‘n’ grammatical rules that apply to its eight main parts of speech 
(POS) [13]. Each POS consists of ‘W’ words, with each word having ‘P’ meanings. 

The CNL can generate ‘E’ expressions, with each expression having ‘M’ meanings as 
interpreted by the ‘n’ stakeholders. The domain of interest is scoped by ‘R’ 
requirements. Each requirement is an expression that may (or may not) be able to be 
generated by the CNL – this is indicated as 0..1 multiplicity [12].  

The expressiveness of a CNL is some measure of the variety of lexical and 
grammatical constructions it allows [4]. In our previous work, we proposed two 
measures of expressiveness as follows [12]: 



� Syntactic Expressiveness is the size of the set of unique ‘E’ expressions that can 

be generated from the CNL.  
� Semantic Expressiveness is the size of the set of unique ‘M’ meanings that can be 

generated from the CNL.  

 

Fig. 1. CNL Abstract Model 

To achieve our design goal of sufficient expressiveness means that when removing 

‘L’ words from the lexicon we must ensure that the ‘M’ meanings that are relevant to 
the ‘R’ requirements from our domain of interest are preserved, i.e. the intention is 
only to remove redundant and irrelevant words. 

2.3 Design Goal #3: To be Unambiguous 

The IEEE Recommended Practice for Software Requirements Specifications [14] 
states that “An SRS is unambiguous if, and only if, every requirement stated therein 

has only one interpretation.” This definition is consistent with that of Kamsties [15], 
Davis [16] and Harwell [17]. According to Gause and Weinberg [18], ambiguity has 
two sources, missing information and communication errors. Missing information has 
various reasons. For instance, humans make errors in observation and recall, tend to 

leave out self-evident and other facts, and generalize incorrectly. Communication 
errors occur because of expression inadequacies in the writing. 

There is a relationship between the expressiveness of a language, and the number 
of communication errors that result from the use of the language. Typically, the more 
constrained the lexicon, the more polysemous each word needs to be to maintain 
semantic expressiveness. Kamprath [7] believes that reducing polysemy is one way of 
reducing communication errors, since constraining each lexical term to a single 
meaning prevents miscommunication of the word sense. The corollary to this is of 

course an increase in lexical magnitude. 
We believe that there are certain parts of speech that encourage authors to “leave 

out self-evident and other facts, and to generalize incorrectly”. The parts of speech we 



are referring to are adjectives and adverbs. It is commonly felt that restricting the use 

of adjectives and adverbs should be a goal of any CNL: authors should be forced into 
using proper nouns (rather than adjectives and common nouns) and articulating 
performance requirements unambiguously (rather than using adverbs). 

3 Optimal-Constraint Process – Description 

3.1 Introducing Replaceability 

In this section we discuss the concept of replaceability and propose a measure that 
can be used to optimise the constraining process with respect to our chosen Design 
Goals. Before defining replaceability, it is important to understand the underlying 
concept of similarity. Measures of similarity quantify how much two meanings are 
alike and are therefore useful in identifying redundancy in a language. Similarity is a 
well-defined subset of relatedness which includes synonyms, hypernyms and 

hyponyms/troponyms [21]. 
Whilst Miller and Charles [22] claim that similarity tools provide some measure as 

to the degree of contextual interchangeability, or the degree to which one word can be 
substituted by another in context, they can be misleading if used carelessly. For 

example, there is a path length of four between ‘apple#n#1’1 and ‘orange#n#1’ in 
WordNet, and while an apple and orange are similar in that they are both edible fruit – 
it would be misguided to think that either term could replace the other in a CNL. 

There is also the issue that whilst all ‘apples’ are ‘edible fruit’, not all ‘edible fruit’ 
are ‘apples’. In other words, whilst you may be able to replace a specific concept with 
a more general concept (i.e. hypernym) – you should not replace a general concept 
with a more specific concept (i.e. hyponym). This presents an ontological dimension 
to the CNL design. The question here is how the relative positioning of a concept 

within the semantic network affects its ability to be replaced by another (similar) 
concept. Whilst “similarity” is a specialised form of “relatedness” [21], we propose 
that a new concept “replaceability” be introduced that represents a specialised form of 
“similarity”. 

Replaceability: We define replaceability(x,y) as a measure of the ability of a 
concept ‘x’ to be replaced by another concept ‘y’ given a particular domain. 
Replaceability is asymmetric because there is no guarantee that the inverse 
replacement will be valid. This is particularly the case where a concept has been 

replaced by its hypernym (for instance, not all ‘edible fruit’ are ‘apples’). We believe 
that “replaceability” should be a function of similarity, conventionality, polysemy, 
and lexical ontology. We propose the following measure: 

Replaceability x,y
` a

= Similarity x,y
` a

A

F y

F x

fffffffff

A

P x

P y

ffffffff

 

Where: 

1. Fx/Px is the frequency/polysemy of x within the requirements sample, and 

2. ‘y’ is a synonym (or hypernym) of ‘x’, and 

(1) 

                                                           
1 We use the notation word#pos#sense to unambiguously define the meaning of word. 

apple#n#1 refers to the first sense of the noun apple in WordNet.  



3. Similarity(x,y) ≥ Similarity Threshold, and 

4. Similarity is a unity-normalised measure. 

Then: 

Replacebility(x,y) ≥ 1 means x can be replaced by y. 

Replacebility(x,y) < 1 means x cannot be replaced by y. 
 

This proposed measure for replaceability addresses our three design goals. 
Readability is addressed since replaceability(x,y) is increased when ‘y’ is used more 
frequently in the domain than ‘x’. Communications ambiguity is addressed since 
replaceability(x,y) is increased when ‘y’ is less polysemous than ‘x’, and ambiguity 
relating to “incorrect generalisation” is addressed by considering the lexical ontology 

and limiting replacements to synonyms and similar hypernyms only. Semantic 
Expressiveness is addressed since a word will only be replaced if there is another 
word that is a synonym or a (similar) hypernym, and that is used more frequently 
and/or less polysemously. If there is not a word that meets this criteria, then the 

original word is retained in the CNL. I.e. if a words meaning cannot be semantically 
expressed by another lexical term, then the original lexical term is retained. 

Despite the replaceability rule whereby a word can only be replaced by its 
synonym or similar hypernym, there remains a potential for “incorrect 

generalizations” resulting in an increase in ambiguity. A good example of this might 
be if our requirements ReqtNL sample was extracted from the specification for the 
Control Computer within an Automatic External Defibrillator (AED) – a piece of 
medical equipment used in the defibrillation of the heart. Within this specification, the 

verbs “reboot#v#1 -- cause to load an operating system and start the initial 

processes” and “resuscitate#v#1 -- cause to regain consciousness” would probably be 
encountered. Counting the nodes between these two verbs in WordNet [23]  we get a 
path length of two (reboot#v#1 � resuscitate#v#1), which means that the concepts 

are very similar. Given our proposed measure for replaceability, there is great 
potential for resuscitate#v#1 to become the CNL term to replace reboot#v#1 (given 
the hypernymic relationship). It would (of course) be totally unconventional to ever 
replace the verb reboot#v#1 with its hypernym resuscitate#v#1. If this “incorrect 

generalisation” was permitted to occur, then the CNL may well increase ambiguity 
(rather than achieving its goal to be unambiguous). 

In the context of our AED example, the verb reboot#v#1 would likely be used 
when talking about the control computer, and the verb resuscitate#v#1 would likely 
be used when talking about the human patient. Interestingly, the shortest path between 
the object nouns computer#n#1 and human_being#n#1 in WordNet is quite long (at a 
length of 16) [23]. So although the two verbs are very similar, the fact that their object 
nouns are so dissimilar may provide the extra dimension of information that is 

required to prevent this “incorrect generalisation”. So far we have not discussed the 
scope of words (i.e. ‘x’ and ‘y’) that are measured against each other for 
replaceability. For example, is it possible that we could use our knowledge of 
dissimilarity between the object nouns computer#n#1 and human_being#n#1 to 

prevent the comparison of reboot#v#1 and resuscitate#v#1 (such that reboot#v#1 does 
not get replaced by resuscitate#v#1)? 

The replaceability measure that we presented above will work for any scope of 
words and is not sensitive to inter-relationships between parts of speech. We propose 
that instead of modifying the replaceability measure to account for inter-relationships 
between parts of speech, we introduce the concept of Replaceability Matrices to 



manage the scope of words that are appropriate to be compared to each other for 

replaceability. By appropriate, we mean that the words within a single Replaceability 
Matrix are all from the same part of speech, and all associate with similar words from 
grammatically related parts of speech (we discuss this in more detail (for verbs) in 
Section 4.1.1).  

3.1.1 Replaceability Matrices The Replaceability Matrix in Table 1 is effectively 
an N2 matrix that we will use to capture replaceability measurements for words from 
the same part of speech that are associated with similar words from related parts of 
speech. We will use the Replaceability Matrix to constrain the lexicon, since we will 

be making decisions on which words are to be replaced. 

Table 1. Replaceability Matrix 

NL XNL(FX)(PX) YNL(FY)(PY) ZNL(FZ)(PZ) 

XNL(FX)(PX) Repl(XNL,XNL) Repl(XNL,YNL) Repl(XNL,ZNL) 

YNL(FY)(PY) Repl(YNL,XNL) Repl(YNL,YNL) Repl(YNL,ZNL) 

ZNL(FZ)(PZ) Repl(ZNL,XNL) Repl(ZNL,YNL) Repl(ZNL,ZNL) 

 

To understand Table 1, it is essential to understand that XNL is a concept that is 
comprised of a NL lexical term X as well as a PoS and a sense (resulting from the 
shallow parsing and WSD respectively). Note that (FX) means the Frequency of XNL 

as relevant to this Replaceability Matrix. Therefore, if XNL happens to be a verb that is 
also used with other dissimilar subject (or object) nouns, then it would have other 
FX’s as applicable to each of the other Replaceability Matrices. Similarly, (PX) means 
Polysemy of XNL with respect to this specific Replaceability Matrix, i.e. (PX) does not 

mean the polysemy of XNL as found in a dictionary. Using a dictionary will likely 
over-inflate the polysemy count of many words that may be unambiguously used 
within the domain. YNL and ZNL have been used in Table 1 to give the impression that 
typically there will be a number of concepts being compared in a Replaceability 

Matrix. Each intersecting cell in the Replaceability Matrix represents the 
Replaceability between two concepts, i.e. Repl(XNL,YNL) measures the ability of 
concept XNL to be replaced by concept YNL. The following rule applies. 

Rule #1: The concept at the start of a row is replaced by the concept corresponding 

to the column having the highest replaceability value on that same row. 
 Notice that it is possible for a concept to be selected as the replacement for itself – 

which in effect means the original NL term is retained. This is exactly how the CNL 
achieves its goal of being sufficiently expressive. 

3.2 Optimal-Constraint Process 

Figure 2 presents the process that we have developed to optimally constrain the 

lexicon of a CNL. The process is optimised in the sense that we employ a 
replaceability measure that is focused on achieving our design goals. One of the major 
challenges with optimally constraining a lexicon is determining which words are 
redundant or irrelevant and can be removed without reducing the semantic 

expressiveness of the language for a selected domain of interest. One of the novel 



contributions of this research is the application of existing NLP tools and techniques 

to this process, such that the result is goal-optimised and repeatable. 

 

Fig. 2. Optimal-Constraint Process Flowchart 

Figure 2 shows that the design process begins with a NL requirement (ReqtNL). 
The first step is to shallow parse the ReqtNL to determine the parts of speech and 

grammatical phrases. Shallow Parsing can be used to perform tokenisation, POS 
tagging, and phrase boundary detection (e.g. noun phrases, verb phrases, prepositional 
phrases, etc.) such that grammatical relations can be identified [19]. Word Sense 
Disambiguation (WSD) would then occur aiming to associate a given word in a 

passage of text with the authors original intended meaning or sense [20]. At this point, 
each word in each ReqtNL could be represented in the form of word#pos#sense. 

The ‘Optimise?’ and ‘Translate?’ decision points reflect two fundamentally 
different phases in the life of a constrained lexicon. The first phase could be 
considered the ‘setup phase’, where the ReqtNL sample would be injected into the 
optimal-constraining process to update the Replaceability Matrices (recall Section 
3.1.1). The second phase could be considered the ‘operating phase’ where the 
established Replaceability Matrices are then used to replace each NL Requirement 

(ReqtNL) with its semantically equivalent CNL alternative (ReqtCNL). In ‘setup phase’ 
the constraining process would typically be optimising but not translating. In 
‘operating phase’ the constraining process would typically be translating but not 
optimising. The ‘Translation Possible?’ decision allows for the event whereby ReqtNL 

contains terms that have no CNL translation in the established Replaceability 
Matrices. In this case it is possible to optimise the Replaceability Matrices to 
accommodate the new concept – ensuring that the constrained lexicon maintains 
sufficient expressiveness. Ideally, inexperienced authors would be prevented from 
optimising the CNL such that is does not accommodate their ‘bad habits’. 

4 Optimal-Constraint Process – Design Decisions and Rationale 

Whilst the Optimal-Constraint Process Description (Section 3) is intended to be non-
implementation specific and thus future-proof, the design decisions presented in this 

section are based upon the capability of currently available technology. The 



expectation is that as NLP technology improves, future researchers can revise these 

decisions without needing to revisit the Optimal-Constraint Process Description. 

4.1 Parts of Speech to Constrain 

Whilst it may be theoretically possible to apply the optimal-constraint process to each 
of the eight main parts of speech, there are two reasons why we currently limit the 
application of our process to verbs.  

Firstly, subject and object nouns in requirement text are often domain-specific 

proper nouns (e.g. the “SPS-49 Air Search Radar” rather than the “long-range high-
power radar”). The use of proper nouns also means that adjectives are rarely used in 
requirement text (in fact, experts often recommend against the use of adjectives and 
adverbs as they are seen as vague words [24]). Function words (determiners, 
prepositions, conjunctions, and pronouns) are already closed parts of speech and it 
could be argued that further constraining the lexicon in these parts of speech is 
unnecessary. Interjections are, by their nature, inappropriate for use in technical 
writing [13]. Therefore, when constraining the lexicon for writing requirements, it 

could be argued that verbs are the only part of speech that should be constrained in 
this way. Given there are over 29,000 verbs in the English language [25] and that on 
average, verbs are the most polysemous part of speech [23], constraining verbs seems 
to be necessary.  

Secondly, the semantic networks that are in existence today do not manage 
hypernymic or hyponymic (/troponymic) relationships between these other parts of 
speech. Presently they are limited to nouns and verbs only. Miller [26] states that 
updating WordNet with is-a relationships for adjectives and adverbs is a work in 

progress. 
 

4.1.1. Scope of Replaceability Matrices for Verbs In Section 3.1 we introduced 
the concept of the Replaceability Matrix to be used as the mechanism to manage the 
scope of words from the same part of speech, that are associated with similar words 
from grammatically related parts of speech. For verbs, the grammatically related parts 
of speech would be the subject noun and object noun (transitive verbs). The following 
rule is proposed. 

Rule #2: If 

VerbA#Verb relates to SubjectA#Noun and ObjectA#Noun, and 
VerbB#Verb relates to SubjectB#Noun and ObjectB#Noun; 

then, VerbA and VerbB can only exist in the same Replaceability Matrix if SubjectA 
and SubjectB are similar AND if ObjectA and ObjectB are similar. 

4.2 Shallow Parsing and Word Sense Disambiguation 

We decided to use the Memory Based Shallow Parser (MBSP) [27] to identify phrase 
chunks in simple sentence requirements. Daelemans [27] claims that the MBSP is 
over 90% accurate for noun and verb phrase detection, making the MBSP one of the 

more accurate shallow parsers available. Manning [19] suggests that whilst NLP 
taggers and chunkers can mine data automatically, it is often the case that in order to 



obtain accurate results, the process must be highly interactive. We therefore decided 

to use a human inspection to confirm the results of the MBSP. 
Although there are automated WSD tools freely available, we trialled both 

WordNet::SenseRelate [28] and Sense Learner 2.0 [29] with both tools failing to 
accurately disambiguate the requirement text in the majority of cases. The 
disappointing results are believed to stem from the fact that WSD tools rely on 
contextual information to make a probabilistic determination on the sense of each 
word. For example, to disambiguate a verb – the WSD tool would look at the sense of 
the surrounding nouns. Given that in requirement specifications the surrounding 

nouns are typically domain specific proper nouns, the WSD tool was unable to make 
sense of the necessary contextual information. Interestingly, Manning finds that 
human performance is typically the upper bound for WSD [19]. For this reason we 
decided to manually disambiguate the sense of each word. We used WordNet [23] as 

the reference dictionary. 

4.3 Similarity Measurement 

4.3.1 Similarity Measure The decision has been made to use WordNet [23] as the 
semantic network for defining and relating lexical concepts. WordNet is an on-line 
lexical reference system whose design is inspired by current psycholinguistic theories 
of human lexical memory. English nouns, verbs, and adjectives are organized into 

synonym sets, each representing one underlying lexical concept [26]. Synonym sets 
are then associated with other synonym sets via lexical relationships (e.g. synonymy, 
antonymy, hyponomy (“is a”), meronymy (“part of”), and morphological 
relationships). WordNet::Similarity [21] is a tool that draws upon the lexical network 

of WordNet to provide a measure of similarity between any two words from the same 
Part of Speech. There are three inputs required for this tool to operate: 
word1#pos#sense, word2#pos#sense, and the chosen Similarity Measure. The output 
is a value representing the similarity between the two concepts. We decided to use the 

Wu and Palmer [30] similarity measure since its developers described this measure to 
be most appropriate to a verb taxonomy.  
 

4.3.2 Similarity Threshold The Similarity Threshold is perhaps the most 

instrumental factor in trading off readability, expressiveness, ambiguity, and lexical 
magnitude. In general, the higher the Similarity Threshold the better the readability 
and expressiveness since there will be fewer lexical replacements (and therefore more 

of the original and conventional NL words will be available within the CNL lexicon). 
Ambiguity relating to “missing information” will likely be reduced with a higher 
similarity threshold, since there will be a reduced potential for “incorrect 
generalizations”. On the other hand, it may be possible to worsen the ambiguity 
relating to “communications errors” by raising the Similarity Threshold, since words 
may be prevented from being replaced by less polysemous, or more conventional 
alternatives. 

When the Similarity Threshold is increased, so too is the number of Replaceability 
Matrices, since there will be reduced similarity between Subjects and between 

Objects. Additionally, within each of the Replaceability Matrices, there will be 



reduced similarity between verbs – resulting in reduced lexical replacements (and 

therefore less reduction in the CNL lexical magnitude). In summary, the 
disadvantages of having a high Similarity Threshold are that the resulting CNL lexical 
may be large, and communications ambiguity may not be reduced by allowing less 
polysemous, or more conventional replacements. Whilst we cannot recommend one 
magical similarity threshold value that will work in all situations, we have found 
through our own empirical research [12] that a similarity threshold of 0.6-0.7 seems to 
achieve a reasonable trade-off between syntactic expressiveness and lexical 
magnitude when using WordNet::Similarity with the Wu & Palmer measure. 

5 Applying the Process – Example 

The following example aims to solidify the readers understanding of our process by 
applying it to a small sample of hypothetical requirements. Table 2 includes three 
columns. ‘ID’ is an arbitrary requirement identifier, ‘ReqtNL’ and ‘ReqtCNL’ present 
the sample requirements before and after replacement respectively. We limit our 
example to the constraining of verbs as per the decision made in Section 4.1. 

Table 2. Example Requirements – ReqtNL and ReqtCNL 

ID ReqtNL ReqtCNL 

Req-01 The radar shall track aeroplanes… The radar shall trackobserve aeroplanes… 

Req-02 The radar shall monitor helicopters… The radar shall monitorobserve helicopters… 

Req-03 The radar shall observe aircraft… The radar shall observe aircraft… 

Req-04 The 3d radar shall observe missiles… The 3d radar shall observe missiles… 

Req-05 The radar shall monitor the interface… The radar shall monitor the interface… 

Req-06 The captain shall be able to watch helicopters… The captain shall be able to watch helicopters… 

Req-07 The radar shall watch meteorological balloons… The radar shall watch meteorological balloons… 
 

Notice that Req-01-Req-07 have been simplified by truncating the Prepositional 
Phrases (PP) that follow the Subject-Verb-Object triple. This is because our process 
does not rely upon PP information to constrain verbs. For instance Req-06 should 
probably state “The captain shall be able to watch helicopters from standing on the 

bridge”. The first step of the process is to shallow parse the ReqtNL text. Using the 
Memory Based Shallow Parser [27] on Req-01 gives: 
[NP1

Subject The/DT radar/NNP NP1
Subject] [VP1 shall/MD track/VB VP1] [NP1

Object aeroplanes/NNP NP1
Object] 

Manually using WordNet, we can then disambiguate the sense of the subject 

“radar” as “measuring instrument in which the echo of a pulse of microwave 

radiation is used to detect and locate distant objects” which is a noun with sense #1. 
We represent this in shorthand as radar#n#1. Similarly we can do this for the verb 

“track” and object “aeroplane” to get track#v#2 and aeroplane#n#1 respectively. We 
could then continue this process for Req-02 to Req-07.  

Figure 3 illustrates the result of applying Rule #2 on our sample requirements. The 
“Verb” section in Figure 3 shows how we would determine the number and 
composition of each Replaceability Matrix based on identifying similar words from 



grammatically related parts of speech, i.e. for verbs there is the relationship to similar 

subjects and similar objects (the ovals illustrate the groupings of similar concepts)2.  

 

Fig. 3. Subject-Verb-Object Relationships 

Table 3 shows the first of the three Replaceability Matrices. As an example, 
consider track#v#2 and observe#v#4 as our ‘x’ and ‘y’ respectively in the 

replaceability measure. Note that observe#v#4 is a hypernym of track#v#23 in 
WordNet [23].  

Table 3. Replaceability Matrix – Example 

 

Given that FX = 1, PX = 1, FY = 2, PY = 1, we get a replaceability measure of 1.72. 
Rule #1 states that the concept at the start of the row (track#v#2) is replaced by the 

concept corresponding to the column having the highest replaceability value on that 

same row (observe#v#4), so the replacement for track#v#2 is observe#v#4. This same 
process would be applied to all rows in the three Replaceability Matrices. Note that 
we have not shown the Replaceability Matrices for Monitor#v#1 or Watch#v#1 since 

these would only contain a single verb, and would end up being replaced by 
themselves – resulting in no constraining of the lexicon. The end result of this 
example can be seen in Table 2 where we have re-written the requirements using the 
constrained lexicon (ReqtCNL). 

Some key observations from Table 2 ReqtCNL column: Notice that “observe” seems 
to be a reasonable replacement for the verbs “track” and “monitor” in Req-01 and 
Req-02 respectively. Notice that “monitor” in Req-05 is not replaced since it was part 
of a different Replaceability Matrix (recall Figure 3). Notice that “watch” cannot be 

replaced in Req-07 since the Replaceability Matrix contains no other words which are 
hypernyms or synonyms (i.e. watch#v#1 is more general than the other terms).  

                                                           
2 Note that throughout this example, we use WordNet::Similarity and the Wu & Palmer similarity measure 
with a Similarity Threshold of 0.6. 
3 The similarity between the two terms is 0.86 

        VERB 

 track#v#2 (1)(1) observe#v#4 (2)(1) monitor#v#1 (1)(1) watch#v#1 (1)(1) 

CNL 

track#v#2 (1)(1) 1 1.72 Not Hyp/Syn 0.67 observe#v#4 

observe#v#4 (2)(1) Not Hyp/Syn 1 Not Hyp/Syn 0.4 observe#v#4 

monitor#v#1 (1)(1) Not Hyp/Syn 1.72 1 0.67 observe#v#4 

watch#v#1 (1)(1) Not Hyp/Syn Not Hyp/Syn Not Hyp/Syn 1 watch#v#1 



6 Limitations and Future Work 

6.1 Replaceability Measure 

Our proposed measure for replaceability is somewhat simplistic in that it does not put 
weightings on the relative importance of similarity vs. frequency vs. polysemy. For 
instance, when considering the replaceability(x,y), this means that a ‘y’ with half the 
polysemy count is equally as replaceable as a ‘y’ that is used twice as frequently. One 
improvement would be to introduce weightings, whereby we could weight the relative 
importance of similarity vs. frequency vs. polysemy. Furthermore we could even use 

requirement weightings to put some weighting on the importance of each lexical term. 
Another limitation with our proposed replaceability measure was to restrict lexical 

replacements to synonyms and hypernyms only in an attempt to prevent “incorrect 
generalisations” (you can’t compare apples with oranges!). In some cases, this may 

prove to be overly conservative, resulting in an under-constrained CNL. There are 
possibly situations where it would be appropriate to replace a word with its coordinate 
(sibling) term. For example, consider the coordinate verbs save#v#2, store#v#1, and 
retain#v#3. It could be argued that a lexicon may not be optimally constrained if it 
were to retain all three of these terms. 

6.2 Integrating with Constrained Grammars 

The ideas presented in this paper on constraining a lexicon complement current 
research on constraining grammars. For example, ACE [2], PENG [3], and Grover [6] 
all have a constrained grammar and a constrained lexicon of function words 
(determiners, prepositions, conjunctions, and pronouns), but allow the user to invent 

their own list of content words (verbs, nouns, adjectives, adverbs). The problem with 
this is that there is no guidance given to the user as to how they might go about 
deriving such a list (e.g. how would they decide which verbs to include?). This of 
course is the very focus of our paper. Given that our process is specifically targeted at 

deriving such “content words” from the domain of interest, we strongly believe that 
the two branches of research are complementary (and non-overlapping). Combining 
these two areas of research may empower the analyst to do consistency checking and 
logical reasoning (for example they could query the resultant specification for all of 

the inputs and outputs of a specified subject noun by looking for verbs similar to 
“accept” and “provide” respectively). 

7 Conclusion 

The aim of this paper was to present a fully automatable NLP-based process for 

optimally constraining the lexicon of a CNL. Our optimal-constraint process is 
significant since we have identified a new application for existing NLP tools and 
techniques that ensures a rigorous and repeatable outcome, and means we potentially 
no longer require a lexicographer to manually sift through the large volume of text 



and make (possibly unrepeatable and unjustifiable) subjective decisions on the 

content of the lexicon. We bounded ‘optimal-constraint’ by defining three design 
goals for the constrained lexicon, to be readable, sufficiently expressive, and 
unambiguous. We proposed a new concept ‘replaceability’, which we argued provides 
a better measure than ‘similarity’ as to the degree of contextual interchangeability, or 
the degree to which one word can be substituted by another in context. This is 
because ‘replaceability’ is a function of conventionality (frequency), polysemy, 
lexical ontology and similarity – rather than similarity alone, which we argue can be 
misleading. 

Although not a limitation of the process, we did find that the immaturity of WSD 
tools prevented total automation of the process. This limitation is considered to be 
time-sensitive, and reflective of the current (developmental) state of NLP technology. 
It is expected that as WSD algorithms and tools improve this limitation will cease to 

exist, and complete automation will be possible. Our process theoretically makes it 
possible to automatically generate a constrained lexicon from a sample of 
requirements. We believe that our process is pragmatic and accessible since it relies 
on nothing more than existing NL requirement specifications, freely available NLP 
tools, and domain knowledgeable individuals. 

The next stage in our longitudinal study will be to empirically validate that our 
optimal-constraint process actually does achieve its design goals by using a domain 
specific requirements sample. The resultant lexicon will then be the subject of a 

controlled experiment to measure the effects on the respective quality factors 
(readability, expressiveness, and ambiguity).  
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