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ABSTRACT  

Spatial structures are widely used in large buildings and bridges. These structures are 

usually composed of thousands of members and joints. The damage of members and 

joints may result in changes in the loading path, reducing the load-bearing capacity and 

even progressive collapse of the entire structure. This study deals with the critical 

challenge of structural health monitoring (SHM) for large spatial bridge structures. With 

machine learning techniques, this work introduces a comprehensive approach including 

supervised, semi-supervised, and unsupervised methods to refine and enhance structural 

damage detection capabilities. 

Firstly, a novel generic element for nonuniform beams with semi-rigid joints is developed, 

addressing a main error that caused by assuming semi-rigid joints as rigid and nonuniform 

members as uniform elements. The proposed approach is proven to improve the accuracy 

of numerical modelling and damage detection for spatial structures. Moreover, an updated 

Mean Square Error (UMSE) loss function is proposed, specifically designed for 

supervised deep-learning-based structural damage detection problems. It is proved to 

achieve significant high convergence speed over the traditional MSE. Additionally, the 

NMSEC- PCA (normalized modal strain energy change index processed by PCA) index 

is proposed as damage feature, resulting significant low computational costs while 

achieving faster convergence and high detection accuracy. Furthermore, to enable the 

structural health monitoring in practice, a semi-supervised learning frame is proposed for 

structural damage detection, together with indices used for damage quantification. The 
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efficacy and applicability of the proposed method are validated using the experimental 

bridge model, showing their practicality for real-world scenarios. Finally, Continuous 

Wavelet Transform (CWT) based damage quantification of bridges using a convolutional 

Variational Autoencoder (VAE) is implemented, demonstrating the VAE's effectiveness 

in accurately reconstructing images and damage quantification, bridging the gap between 

theoretical models and real-world structural health monitoring applications. 

Overall, the thesis presents comprehensive research using supervised, semi supervised, 

and unsupervised methods for structural damage detection, all illustrated using numerical 

and experimental bridge models. The study provides machine learning based practical 

solutions for structural damage detection that are essential for maintaining the safety and 

integrity of large-scale spatial structures.  

Keywords: Structural health monitoring; Machine learning; Deep learning; Damage 

detection; Spatial frame structures with semi-rigid joints; Modal updating; Variational 

autoencoder; Long short-term memory (LSTM) network; Unsupervised learning; Semi-

supervised learning; Multiple set wireless measurements. 

 

 
 



  

1 

CHAPTER 1 INTRODUCTION 

1.1 BACKGROUND 

During the long service period, bridge infrastructures continuously suffer from both 

environmental influences such as eroding effects from the ground or the sea, and 

operational effects including the traffic (e.g., traffic-induced vibrations and traffic mass 

effects), temperature, and wind. Because of these effects, structural integrity is threatened 

all the time. Thus, it is of vital importance to monitor the health conditions of those major 

bridges, especially those newly constructed and aging bridges. Moreover, urgent damage 

detection tasks are often needed for those bridges that suffer from large-scale natural 

disasters like earthquakes and hurricanes. Huge losses of human life and property would 

have been avoided if effective monitoring systems had been set up before the disasters. 

In the past decades, as structural safety became a top priority, structural health monitoring 

(SHM) has been gaining increasing attention from both engineers and researchers. SHM 

is a process of observing and evaluating structures based on measurements from a sensing 

system. A typical SHM system can be seen in Figure 1.1, in which the key task is 

structural damage detection. The method of SHM uses signals from a sensor system to 

indicate the structural internal properties. Then structural change could be indicated by 

signal changes. Through extraction, processing, and analysis of the changed signals, the 

damage could be identified, and corresponding maintenance and reinforcement measures 

could be implemented to ensure structural safety.  
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Figure 1.1 Flowchart of structural health monitoring 

Damage detection has always been one main research interest in the SHM domain. 

Traditional damage detection methods include vision-based methods and non-destructive 

testing (NDT) methods such as ultrasonic, acoustic, electromagnetic, piezoelectric active 

sensing methods, and the electro-mechanical impedance method. The vibration-based 

damage detection (VBDD), aiming at detecting the existence, location, and severity of 

structural damage, has attracted massive research interest in detecting the damage to civil, 

mechanical, and aircraft structures. The basic idea of VBDD is that structural damage 

induces changes in mechanical properties such as stiffness and mass. These mechanical 

property changes could be further indicated by the variations of vibration properties (e.g., 

natural frequencies and mode shapes). By analysing the damage features extracted from 

the vibration data, structural damage can be detected, localized, and quantified.  

Damage being 
detected 

Structural information 
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signal 

No damage 

Excitation signal 

External load and environmental effects 

Target structure 

Sensor system 

Real time 
monitoring 
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Damage 
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Signal collection and 
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The VBDD can be classified into the model-based and data-driven methods. The model-

based methods aim to establish a computational model, e.g. finite element model, by 

updating model parameters with real measurements (Sun et al., 2020a). Despite the high 

accuracy they often achieve, they require prior knowledge and associated assumptions 

about the real structure which are sometimes not accessible or accurate enough. The 

uncertainty introduced by factors such as measurement noise, modelling errors, and 

environmental variations can significantly impact the reliability and accuracy of these 

models. Unlike the model-based method, the data-driven methods employ statistical 

models to directly interpret the vibration data into structural patterns without any prior 

knowledge.  

Recently, advances in the Artificial Intelligence (AI) technique revolutionized the data-

driven methods by allowing large data sets processing with high computation speed. This 

improvement has made the data-driven method one of the most attractive and promising 

approaches in the SHM domain. During the last two decades, research on machine 

learning-based methods has been extensively conducted to develop various damage 

detection methods. Machine learning modelling is a process of mapping the monitoring 

data into different structural patterns. Depending on the data availability of vibration data 

in damaged conditions, they could be divided into supervised and unsupervised learning. 

To be more specific, supervised learning requires labelled training data to indicate the real 

structural conditions while unsupervised ones do not. Nevertheless, both have been 

proven to be effective in structural damage detection. 
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This project aims to develop machine learning based methods for damage detection of 

spatial structures. The machine learning techniques including supervised, semi-

supervised and unsupervised methods are explored and developed for the damage 

detection of spatial bridge structures.  

1.2 PROBLEM DEFINITION 

Current advancements in machine learning are mainly developed for computer vision, 

with substantial successes in image recognition and analysis. Although the potential of 

these techniques could serve as advanced tools for Structural Health Monitoring (SHM), 

the challenge lies in adapting these methods to address the unique requirements of SHM, 

where the focus shifts from visual interpretation to the detection of subtle patterns for 

structural damage. This research aims to bridge this gap by extending machine learning's 

research into SHM, ensuring structures' integrity and safety with innovative, data-driven 

approaches. 

1.3 RESEARCH OBJECTIVES 

This research project aims to develop damage detection methods for spatial structures 

using machine learning techniques, bridging the gap between research and practical 

application in SHM. The detailed objectives are listed as follows. 

1) Developing a generic element for nonuniform members that consisting semi-rigid 

joints for structural damage detection of large-scale spatial structures. 



  

5 

2) Developing a machine learning-based approach for structural damage localization 

and quantification. 

3) Conducting both numerical and experimental verification of the proposed 

machine learning based SHM damage detection approaches. 

1.4 CONTRIBUTION OF THIS RESEARCH 

This study investigates the damage detection of complex spatial bridges using machine 

learning techniques. To bridge the gap between research and practice and adopt the 

advanced machine learning methods for damage detection, a couple of machine learning 

based methods were developed and investigated. The contributions of this study lie in  

 A novel generic element for nonuniform beams with semi-rigid joints at two ends 

was developed to improve the accuracy of the numerical modelling and damage 

detection for large-scale spatial structures.  

 A loss function for CNN based structural damage detection was proposed, 

specifically customized for the detection of structural damage, significantly 

reducing the computational cost, and achieving faster convergence speed and 

higher detection accuracy. This is for solving the challenge that the currently loss 

functions developed in machine learning are mostly for computer vision tasks 

rather than SHM.  

 The research successfully illustrated a practical approach to employing multi-
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channel data within a Long Short-Term Memory-Variational Autoencoder 

(LSTM-VAE) integrated semi-supervised framework for localising and 

quantifying the damage.  

 CWT based Variational Autoencoder (VAE) provided a robust framework for 

interpreting complex signal patterns and quantifying structural damage. 

 The effectiveness of supervised, semi-supervised, and unsupervised machine 

learning methods for damage detection in real-world scenarios were demonstrated.  

1.5 ORGANISATION OF THIS THESIS 

This thesis is organized into seven chapters as below, 

Chapter 1 introduces the research background, objectives, and contributions. 

Chapter 2 reviews Structural Health Monitoring (SHM), particularly Vibration-Based 

Damage Detection (VBDD) techniques. It highlights the combination of machine 

learning (ML) within SHM to enhance damage detection accuracy and efficiency across 

various structures, showing a shift towards data-driven in ensuring structural safety. 

Chapter 3 develops a novel generic element for nonuniform cross-section members with 

semi-rigid joints at both ends and proves its accuracy in numerical modelling and damage 

detection for spatial bridge structures. 

Chapter 4 investigates a 2D Convolutional Neural Network (CNN) based method for 
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structural damage detection using vibration data.  It proposes an innovative UMSE loss 

function as well as evaluation indices customized for structural damage detection. 

Chapter 5 proposes a semi-supervised learning framework that combines a Long Short-

Term Memory Variational Autoencoder (LSTM-VAE) network with a support vector 

machine to address structural damage detection for spatial bridge structures. 

Chapter 6 presents an unsupervised approach using a convolutional Variational 

Autoencoder (VAE) for bridge damage quantification, focusing on the VAE's capability 

to quantify damage with the proposed Average Reconstructed Error (ARE) and 

reconstruct Continuous Wavelet Transform (CWT) images. 

Chapter 7 presents the conclusions of this research together with recommendations for 

future study. 
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CHAPTER 2 LITERATURE REVIEW 

2.1 OVERVIEW 

The chapter begins with an exploration of Structural Health Monitoring (SHM), 

emphasizing the vital role of Vibration-Based Damage Detection (VBDD) in identifying 

structural damage through dynamic response analysis. VBDD has emerged as a critical 

technique for ensuring structural integrity, proving high structural damage detection 

accuracy and efficiency compared to traditional damage detection methods. This section 

introduces the current research using vibration-based methods for damage detection of 

various infrastructures. 

Moreover, this chapter introduces machine learning (ML) and deep learning (DL) 

applications, presenting their significant impact on SHM. These AI techniques make full 

use of large datasets to find patterns and anomalies that might indicate structural damage, 

improving the accuracy and predictive capabilities of damage detection methods. The 

combination of ML and SHM presents a future where real-time, data-driven decision-

making can solve structural damage detection problems, ensuring the safety of various 

structures. 

2.2 THE VIBRATION-BASED DAMAGE DETECTION (VBDD) 

Vibration-Based Damage Detection (VBDD) is an advanced technique in SHM, and it 

uses dynamic responses to identify structural damage. In terms of algorithms, it could be 
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generally classified as model-based (or parametric) and data-driven (non-parametric). 

The vibration parameters could be divided into frequency domain (e.g. modal parameters), 

time domain (e.g. time-history responses), and time-frequency domain (Hou & Xia, 2021).  

The VBDD implementation involves two procedures: feature extraction and feature 

discrimination. The former extracts damage-sensitive features from the original measured 

responses while the latter discriminates features from damaged to healthy quantitatively. 

Various damage features have been developed in the last three decades, including natural 

frequencies, mode shapes, modal strain energy, frequency response functions (FRFs), etc, 

each offering unique insights into structural health. The VBDD has superiority in the 

following two aspects, 1). they are suitable for even complex structures because they 

evaluate the overall structural condition rather than examining only the potential damaged 

local area like Non-Destructive Testing (NDT) methods; 2). Prices of the sensing system 

are quite acceptable. 

2.2.1 Model-based methods 

The model-based methods, known as the physics-based method or parametric method, 

aim to build a computational model, e.g. finite element (FE) model, though updating 

model parameters through real measurement data. The aim of model updating (or termed 

model calibration) is to minimize the discrepancy between the real target structure and 

the FE model since the FE model may not present every physical aspect of the real 

structure. Model property matrices could be updated, including stiffness mass, and 
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damping matrices. 

Based on the work of  Chen et al. (2018), the updating parameters for framed structures 

could be material properties, geometric properties, and non-dimensional scaler 

multipliers. To be more specific, these updates could be generalized as 1) stiffness and 

mass at elemental level; 2) stiffness at integration point level; 3) material properties and 

sectional properties; 4) parameters for continuum structures; 5) updating joints and 

boundary conditions.  

Model-based methods use parameters like mode shapes, modal strain energy, FRFs, and 

other dynamic or static responses to facilitate damage detection. Compared to the data-

driven method, the model updating could provide a more calibrated numerical model for 

damage detection generalized. The model updating has been studied for the damage 

detection for various structures.  Lee & Cho. (2016) used the updated finite element model 

to predict the probabilistic fatigue life for bridges. Additionally, Pu et al. (2019) used the 

model updating method and derived the frequency response functions for the damage 

detection and quantification of a laboratory-reinforced concrete beam.  

One challenge of model updating is that model simplification and omission could lead to 

unavoidable modelling errors. Another problem when applying model updating on large 

structures is the high computation cost because of the significant number of parameters. 

This would cause ill-condition detection problems with many local minima. To solve this 

problem, the sub-structuring technique has been used. The sub-structuring technique 
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divides an FE model into substructures that each consist of elements so that they can be 

analysed separately. The substructuring method was originally developed in the 1960s 

because of computing limits. Nowadays, component mode synthesis (CMS), one of the 

most popular substructuring techniques, is used to divide and condense large-scale 

structures for damage detection. Xu et al. (2018) presented a multi-level damage 

identification approach using CMS. They demonstrated its effectiveness by decomposing 

a bridge structure into substructures and verified the approach through both numerical 

and experimental studies. 

2.2.2 Data-driven methods 

The data-driven based methods use pattern recombination based on the previous 

measurements of the structure, rather than numerical or any other analytical model. The 

measured data could be natural frequencies, modal strain energy, damping, FRF, and their 

variants. The principle is that these modal parameters are the functions of the physical 

properties of structures such as mass and stiffness. Thus, structural damage could be 

detected by analysing these modal parameters. The widely used damage indicators in 

data-driven methods are reviewed here. 

 Damage indicator 1: Natural frequencies and mode shapes  

Natural frequencies, relatively simple to measure, are a major focus in damage detection. 

However, one main drawback of natural frequencies as damage indicators is that major 

damage may even lead to only small natural frequency changes. In addition, the measured 
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frequency may be influenced by the temperature change. By contrast, mode shapes, which 

are another parameter measured in data-driven methods, offer detailed information about 

local areas of a structure and is thus more sensitive to local damage. Despite this, the main 

drawbacks of mode shapes are that they can be easily affected by environmental noise, 

and also, mode shapes of lower modes may not easily be affected by local damage(Kim 

et al. 2003). Considering this, the natural frequencies and the mode shapes are sometimes 

combined to enhance damage detection capabilities. Capecchi et al. (2016) compared the 

role of modal frequencies, mode shapes, and curvatures on the damage detection using a 

double-hinged parabolic arch with a notch. Additionally, Umar et al. (2018) developed a 

new response surface damage detection method through combining the natural frequency 

and mode shapes and demonstrated its efficiency using a numerical beam and laboratory -

test steel frame. 

 Damage indicator 2: Modal strain energy 

Modal Strain Energy (MSE) is a fundamental VBDD concept, providing information 

about the energy distribution of a structure under vibrational motion. It could identify 

damage where the energy distribution of a healthy state changes due to structural stiffness 

and mass properties change. The modal strain energy-related damage features include 

modal strain energy change (MSEC) and MSEBI(modal strain energy change). Shi et al. 

(2000) used elemental MSEC to localize and quantify the damage and verified its 

efficiency using a numerical model and an experimental single-bay, two-story steel portal 

frame. Seyedpoor (2012) used modal strain energy-based index as the damage index and 
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combined it with the particle swarm (PSO) to determine damage extent and proved the 

proposed method on a numerical model of the cantilevered beam. More recently, 

Khosravan et al. (2021) proposed the Improved Modal Strain Energy Decomposition 

Method (IMSEDM) to detect jacket-type offshore platforms damage, illustrating the 

continuous advancement. The modal strain energy is sometimes also combined with other 

modal parameters like mode shapes and natural frequencies to enhance the damage 

detection accuracy. 

 Damage indicator 3: Frequency response functions (FRFs)  

The use of modal parameters like natural frequencies and mode shapes can lead to 

inaccuracies due to measurement and modal extraction errors, as these are often 

determined indirectly. To avoid such problem,  Wang et al. (1997) used the nonlinear 

perturbation equations of FRF data for detecting damage and proved the validity of the 

proposed method on a numerical and experimental plane 3-bay frame structure. The FRFs 

have the advantage of providing more structural information in the desired frequency 

range. Recently, the use of FRFs for damage detection has been increasing as 

demonstrated by Yoon et al. (2010), who use the experimental FRF to localize and 

quantify various damage including notches in steel beams, composite beams delamination, 

and dry spots of the composite hull structure. Moreover,  Kim & Eun. (2017) showed that 

the proper orthogonal modes (POMs) from the FRFs in antiresonance frequency ranges 

could be used to provide explicit information about damage locations. 
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2.3 MACHINE LEARNING BASED STRUCTURAL DAMAGE 

DETECTION. 

Machine learning (ML) is the main branch of Artificial Intelligence (AI). It has become 

an essential tool in various domains, including computer vision, medical diagnostics, civil 

engineering, mechanical and electrical engineering, and financial markets. By processing 

historical data, the ML makes decisions and predictions. In the Structural health 

monitoring field, the ML has applications for tasks including damage detection, damage 

localization, predictive maintenance, condition assessment, and anomaly detection. The 

section reviews the foundational machine learning methods including ANNs, SVMs, and 

other methods, and presents their applications in structural damage detection.  

2.3.1 Artificial neural networks (ANNs) 

ANNs are a computational system that consists of interconnected neurons to process 

information when there are external stimuli (Moein., 2014). It is a non-linear, multi-

layered, and parallel regression system. Two basic concepts of the ANNs are the neurons 

and weights. The neurons are the basic units of the neural network with internal and 

adjustable coefficients (weights) bound to them. The learning process of ANNs could be 

considered as weight updating. Depending on the structure, which is constituted by the 

connected neurons, ANNs could be divided as follows. 1) multilayer neural networks; 2) 

recurrent neural networks; 3) cellular neural networks. Multilayer neural networks are the 

most commonly used. A typical ANNs consists of the input layer, hidden layers, and 
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output layer, each layer consisting of numerous neurons. The ANNs have been widely 

applied in many practical tasks including process monitoring, medical diagnosis, and fault 

diagnosis. Recent years have seen increasing research using ANNs. İzgi et al. (2012) used 

the ANNs to predict the short-mid-term solar power. Mohanraj et al. (2012) concluded 

that ANNs could achieve acceptable accuracy in energy and exergy analysis of 

refrigeration, air conditioning, and heat pump (RACHP) systems. In the field of atomistic 

simulations, Pun et al. (2019) developed the physically informed neural network (PINN) 

by combining a physical-based model with a neural network.  

Artificial neural networks are a commonly used technique for bridge damage detection. 

Among various ANNs, the Back-Propagation Neural Network (BPNN) is the most used. 

For example, Neves et al. (2017) trained Artificial neural networks with acceleration data 

of healthy scenarios on a three-dimensional finite element of a fictitious railway bridge 

and established a threshold based on the statistical network prediction errors. By 

comparing the damage indices with the threshold, the damaged scenarios could be 

discriminated from the healthy. Shu et al. (2013) trained the Back-Propagation Neural 

Network (BPNN) with vibration responses for detecting the damage of a simply 

supported beam railway bridge. The results showed that damage localization is more 

difficult than damage quantification. It is also found that damage near the middle span of 

the bridge is more likely to be detected than damage in the support area. Also, the 

detection reliability is sensitive to noise, train speed, and axle loading. Malekjafarian et 

al. (2019) developed a two-stage machine learning method to detect bridge damage with 
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responses from a passing vehicle over the bridge. The ANN is trained in the first stage 

and in the second stage, a damage indicator is defined for detecting the distribution 

changes of the prediction errors. This method was implemented on a numerical vehicle-

bridge interaction and managed to detect damage when there are road roughness profiles 

and measurement noise. 

2.3.2 Support vector machine (SVMs) 

The support vector machine was a supervised machine learning methods that built a hyper 

plane to categorize new data points from a given dataset. It was firstly proposed in 1964. 

It was originally proposed for the classification and later was extended to solve regression 

problems. It is with high generalization ability, available in the high dimensional dataset, 

and could achieve high performance in dealing with recognition sample tasks of small 

size (Qin & He., 2005). One limitation of SVM is determining the kernel function. The 

SVM has been used in many domains such as computer vision, biotechnology, and 

chemistry. Recently, researchers tended to combine algorithms and techniques with SVM 

for various applications. For instance, Olatomiwa et al. (2015) introduced a hybrid 

method called SVM-FFA by coupling the SVM with the firefly algorithm (FFA) and used 

it to predict horizontal global solar radiation. Shamshirband et al. (2016) designed a 

coupled model by integrating the SVM and wavelet transform (WT) algorithm and used 

the model to estimate horizontal diffuse solar radiation. 

The research using support vector machines mostly focuses on the damage detection of 
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bridge piers. Many use hybrid soft computing algorithms, e.g., SVM tuned by particle 

swarm optimization. Bao et al. (2013) pointed out that damage detection of bridge pier is 

important yet hard to detect since the piers are either under or have many affecting factors 

on the damage. They employed the support vector machine to detect the damage to the 

bridge pier and then used Grubb’s test method to delete the outliers for SVM and extracted 

the SVM input parameters from a numerical analysis on a bridge pier. Results proved the 

efficiency of SVM for the detection of bridge pier damage. Gong et al. (2011) designed 

the SVM optimized by particle swarm optimization (PSO) for damage localization and 

quantification of a simply supported beam bridge with five girders. Both single and 

multiple damage cases were considered, and the results verified the effectiveness of the 

SVM using the PSO optimization algorithm. Another PSO-SVM is the work of Sreedhara 

et al. (2019). The authors investigated different shapes of the pier including circular, 

round-nosed, sharp-nosed, and rectangular piers, and built two models for comparison, 

these are the PSO-SVM and adaptive network-based fuzzy inference system (ANFIS) 

model with Gbell membership. The results showed that PSO-SVM outperformed the 

ANFIS model for the rectangular and sharp nose-shaped bridge pier. They concluded the 

PSO-SVM model can be an accurate and efficient method for pier scour depth prediction. 

In 2015, Soualhi et al. (2015) combined the Hilbert-Huang transform (HHT), the SVM, 

and the support vector regression (SVR) to monitor the ball bearing. In this method, the 

HHT is used for health indicator extraction from vibration signal, SVM is for detecting 

the degradation status, and the SVR is for estimating the remaining life. The results 
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proved the method could enhance the bearing degradation on detection, diagnostic and 

prognostic. Most recently, Huang et al. (2021) proposed a new method combining the 

SVM and moth-flame optimization (MFO) to detect structural damage considering 

temperature variations. In this method, the SVM is for determining the temperature 

variations and potential damage locations while MFO is for accurately locating and 

quantifying the damage. A numerical model proved that this combination could enhance 

damage detection efficiency and robustness. The efficiency of this method was proved 

through a simulated simply supported beam. They also implemented the method on a 

practical I-40 bridge and the results showed this method achieved high optimization 

performance and could detect damage of large complex bridges.   

There is also research that employed multiple machine learning algorithms for bridge 

damage detection. For example, Lu et al. (2020) stated that slender bridges may 

experience dynamic responses and complex stress status because of the dynamic effects 

of wave, wind, and vehicle loads. Such cases would initiate cracks and would further 

trigger elemental failures. Therefore, they used different machine learning methods 

including the SVM, neural network, random forest, and Gaussian process (GP) to 

quantify the stochastic fatigue damage, thus further estimating the remaining fatigue life 

of these slender bridges. The results showed that all methods exhibited an acceptable 

ability to estimate fatigue accumulation, yet GP methods outperformed other machine 

learning algorithms. Moreover, Sun et al. (2018) used the dynamic fingerprints as damage 

features and combined the Rough Set theory and the Naïve-Bayes classifier (RSNB) for 
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damage qualification and validated the efficacy of the this method with a numerical 

continuous bridge. They also compared the performances of the RSNB with BPNN, SVM, 

and decision trees method and found that RSNB was superior to other methods in 

accuracy, efficiency, transparency, robustness, and stability.  

2.3.3 Naïve bayes classifier 

Naïve Bayes classifier (or termed a simple Bayesian classifier) is a simple Bayesian 

Network (BN) and it uses a table of probabilities to calculate the likelihood of one 

instance belonging to a specific class (Fan & Leng Poh, 1 C.E.). The premise of the Naïve 

Bayes classifier is that the probability of historical events could potentially be used for 

estimating the future events’ probability. The Naïve Bayes classifier is easy to build and 

implement as structure learning is not needed. It is highly resistant to overfitting because 

of its inherent inability to fit the training datasets accurately (Cichosz., 2015). Text 

classification is one domain where Naïve Bayes is most often used and successful. The 

Naïve Bayes method has also been proven to be effective at early gesture recognition 

(Escalante et al., 2016). One problem is that in reality, the independence assumption 

among attributes is sometimes violated. This problem could be solved in two ways, one 

is relaxing the independence assumption, and the other is employing a pre-processing 

method to select or transform the attributes.  

2.3.4 Decision trees (DTs) 

The decision tree is a machine learning methods that divide data into branches at decision 
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points and it is a tree-like structure of conclusions mostly used for classification tasks 

(Quinlan., 1986). These methods have been studied for several decades and have 

numerous refinements and variations. Commonly used DT methods include random 

forest (RF), functional trees, classification, and regression trees. The DT requires less 

computation cost compared to other methods and does not need an assumption on data 

distribution. In the remote sensing domain, DTs could be used to exact geographical 

information (Wang & Li., 2008). Duan et al. used the decision trees to predict the potential 

zone of groundwater. Chen et al. (2018) compared the best-first decision tree, random 

forest, and naïve Bayes tree for landslide susceptibility mapping and found the random 

forest is the most promising method for landslide susceptibility mapping. 

Research using decision trees for damage detection of bridge structures is limited. Among 

various decision tree methods, random forest trees are relatively commonly used. Lei et 

al. (2020) developed a vibration-based seismic method for evaluating the damaged statues 

for regional bridges. In this method, they measured the structural dynamic and 

configuration parameters and trained a random forest algorithm. The results showed the 

model achieved 90% prediction accuracy. The random forest algorithm could also be 

combined with other machine learning algorithms for bridge damage detection. An 

example is the work of  Jia et al. (2020). The authors combined the random forest 

algorithm (RF) and artificial neural network (ANN) to develop a fast assessment for 

seismic damage to bridges. The importance of the uncertain influencing factor of seismic 

damage on arch bridges and girder bridges was evaluated. Data from the Wenchuan 
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earthquake were taken as training and testing datasets while data from the Tangshan 

earthquake were used for validation. The results demonstrated that the RF-ANN method 

performed well at damage states assessment of two real bridges. It was with good robust  

ability and could save time for rescue work after the earthquake and help with bridge 

construction. 

2.3.5 Principal component analysis (PCA) 

The principal component analysis, although not a machine learning method, is commonly 

used for dimension reduction in machine learning methods, reducing high-dimensional 

datasets into lower ones with orthogonal transformation yet retaining the most valuable 

information. PCA could collect hidden information within available data. The principal 

components (PCs) are the directions where the original data have the largest variances. 

By expressing the data with these selective PCs, the most contents of the data could be 

contained. PCA has been applied and studied in a wider variety of domains, including 

agriculture, genetics, geology, psychology, biology, chemistry ecology, and economics 

(Jolliffe., 2002). In omics fields, PCA is used for visualizing the omics data and 

confirming separation among groups (Gray., 2017). In ocean engineering, Eckert-Gallup 

et al. (2016) used PCA for creating an uncorrelated representation of sea state data. 

Recently, Cui et al. (2021) first employed PCA to obtain hidden information in the partial-

nitrification process.  

PCA has found significant use in Structural Health Monitoring (SHM), especially for 
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bridge damage detection. Its ability to condense high-dimensional vibration signals into 

informative, manageable components makes it an invaluable tool in this domain. Over 

the past two decades, PCA has been increasingly combined with machine learning 

techniques to enhance damage detection in bridges. This synergy often results in faster 

computation speeds with minimal loss in accuracy. 

In 2005, Mei et al. (2019) designed a novel PCA-based framework based on data collected 

from sensors installed on passing-by vehicles on bridges. They collected the acceleration 

data from the vehicles, extracted the transformed feature from Mel-frequency cepstrum 

coefficients (MFCCs) and PCA, and detected the damage by comparing the transformed 

feature distributions. The numerical and experimental results showed that the proposed 

method could detect damage existence and provide valuable information on damage 

degrees.  Sun et al. (2009) conducted PCA dimension reduction on the frequency response 

function to extract features and inputted those extracted features into the self-organizing 

map neural network. The effectiveness was demonstrated by a steel box girder model. 

The results showed that this method could distinguish the damaged scenario with good 

accuracy. Wang et al. (2020) pointed out the main problem of the previously used PCA-

based method for detecting bridge damage in varying environmental temperatures is the 

decrease of effectiveness caused by the fact that the deleted information of PCA operation 

may be related to damage features. To solve this problem, they proposed a hybrid method 

in which the PCA deals with the non-principal components while the Gaussian mixture 

method (GMM) is for classifying principal components into various clusters. Then the 
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proposed method was conducted on each cluster. By doing this, all information on the 

damage feature is fully used for bridge damage detection. Finally, they implemented this 

method on the damage detection of a numerical and a real bridge and proved that this 

method managed to detect the bridge under environmental temperature variations. 

PCA's role in SHM, particularly in bridge damage detection, highlights its effectiveness 

in distilling complex data into actionable insights. The continuous evolution of PCA-

based methodologies, especially when combined with other analytical techniques, 

underscores its enduring relevance in engineering and data science. 

2.4. DEEP LEARNING FOR STRUCTURAL DAMAGE DETECTION  

The deep learning (DL) technique, a sub-branch of machine learning, has gained the most 

attention among various machine learning algorithms and has been successfully applied 

to computer vision, natural language processing, medical diagnosis, online advertising, 

literary translation, and autopilot. Deep learning establishes deep neural networks (DNNs) 

with multiple layers to learn features of the data with multiple inherent patterns. DNNs 

characterize their automatic feature extraction and extraordinary ability to deal with big 

data sets. Great advantages of introducing DNNs into the SHM domain include, 1) the 

expert intervention of feature extraction in traditional SHM will be no longer necessary; 

2) real-time monitoring is expected as big data sets from large-scale structures could be 

effectively and rapidly processed.  

Most research modifies deep learning models and compares their performances with the 
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original models or other machine learning methods. Among various DNNs, 

Convolutional Neural Networks (CNNs) remain the state-of-the-art for their high 

accuracy and computational efficiency in object detection and classification. CNNs are 

particularly effective in processing large-scale structured sensor data and detecting 

localized damage patterns, which makes them well-suited for structural health monitoring 

tasks. However, recent developments in Graph Neural Networks (GNNs), introduced by 

Kipf and Welling (2016), have introduced techniques for capturing relational data in 

complex spatial structures, such as joints, beams, or different elements of a bridge, which 

CNNs may not fully capture. While CNNs are highly efficient for current structural 

damage detection, future research could explore the integration of GNNs to handle more 

complex relationships between structural components, potentially enhancing damage 

detection in such spatially distributed systems. 

2.4.1 Structural damage detection based on convolutional neural networks 

Among various DNNs, convolutional neural networks (CNNs) are considered to be state-

of-art for their high accuracy and computational efficiency in object detection and 

classification. Considering the input data of CNNs, the current research could be divided 

into the vibration based CNNs and vision based CNNs. This division could also be 

considered as time-series based CNN and image-based CNN according to Sun et al. 

(2020). The former CNN is trained by structural responses such as mode shape and modal 

strain energy while the latter is trained by images either signal images or structure damage 

images, e.g. crack images. In 2017, a CNN-based approach was first used to perform 
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vibration-based damage detection on a steel frame (Abdeljaber et al., 2017). Since then, 

CNN has gained increasing attention on structural damage detection and more related 

research was conducted.  

2.4.1.1 Vibration based CNNs 

The input data of the vibration based CNNs are the modal parameters such as modal 

shapes, natural frequency, modal strain energy, and FRFs, as presented in Section 2.2.1. 

In such cases, both Conv1D and Conv2D operations could be used. An example of a 

Conv1D application is the work of Zhang et al. (2020). The authors designed a new deep 

CNN called the SHMnet and trained the SHMnet with the acceleration data of damaged 

scenarios from a laboratory steel frame. The results showed that the SHMnet was effective 

and reliable and had high anti-noise abilities. In 2018, Abdeljaber et al. (2018a) input the 

acceleration data into enhanced 1D CNNs for damage detection of a four-story steel 

structure (a benchmark frame) and verified the efficiency of proposed method on damage 

quantification. Li et al. (2020) proposed a deep CNNs based model to detect the damage 

of a scale-down bridge model and achieved 96.9% accuracy. It is also verified that the 

proposed deep learning model outperformed other machine learning algorithms including 

the random forest, support vector machine (SVM), and k-nearest neighbour. 

The 1D training data could also be dealt with Conv2D operation. In such cases, the 

original data were usually collected with the reshape operation. An example is the work 

by Teng et al. (2020a) where the authors reshaped the original 1D data into 2D with 
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padded zeros and achieved good damage detection accuracy. They compared the results 

of training the CNN with a single damage parameter (modal strain energy) and multiple 

parameters (modal strain energy and acceleration data) from a numerical steel frame 

bridge and found the latter saw improvement in both classification accuracy and 

convergence speed. The results showed that the CNN could predict all damage states. 

Also, the method showed good anti-noise ability and was sensitive to small structural 

condition changes.  

2.4.1.2 Vision-based CNNs  

The vision-based CNNs are the direct adaptation of computer vision as they are trained 

with real structural images, e.g., crack images or bolt images. Based on the author’s 

knowledge, the vision-based CNNs could also be classified as signal-based and damage 

image-based according to the input type. For the signal-based, the input images are signals 

e.g. acceleration signal images. For example, He et al. (2020) first used the recurrence 

graph as a damage feature as it could indicate the internal structures, similarity, and 

damage information. They input the recurrence graphs of damaged scenarios into CNN 

and proved their efficiency using numerical and model experiments of a beam bridge. 

Nguyen et al. (2020) trained the CNN using images from the Gapped Smoothing Method 

(GSM) to locate the damage in the numerical beam model. They also constructed a finite 

element model of the girder bridge to test the trained CNN. The results proved the 

efficiency of the proposed GSM and CNN-based method on damage detection and 

localization. 
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For the damage images based method, Li et al. (2020) used the multi-layer features 

obtained from a full CNN and a naïve Bayes data fusion (NB-FCN) model for automatic 

crack segmentation. They trained the NB-FCN with 7200 images of 10 bridges taken in 

different illuminates and distances and calculated the crack length and width to verify the 

NB-FCN method. With 7200 datasets from 20 bridges, they compared the proposed 

method with other crack detection machine learning methods including the crack tree 

method, the fusion CNN, the relatively competitive CNN, and proved the superiority of 

the method on training time, error rates and detection accuracy. 

However, the performance of deep CNNs would be degraded because of the gradient 

vanishing problem as network depth increases. To overcome this difficulty, in 2016, 

Kaiming He et al. (2016) developed the deep ResNet by applying the residual learning in 

deep CNNs. They explicitly reformulate the layers as learning residual functions 

concerning the layer inputs. To do this, the shortcut connection was used to skip layers, 

which formed the building block of the residual network called the residual block. 

Currently, only limited research on bridge damage detection using ResNet has been found. 

Ahmed et al. (2020) proposed a novel automated rebar detection method for bridge 

inspections and maintenance by combining the deep residual networks and k-mean 

clustering techniques. They compared performances of different parameters including 

layer number and batch size of different deep residual networks and the results showed a 

positive correlation between these parameters and performances. 

For the damage-image-based methods, commonly used CNNs are regional CNNs 
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(RCNNs), fast RCNNs, and faster RCNNs. The RCNN algorithm was first developed by 

Girshick et al. (2013). The main difference between RCNN and CNN is that RCNN 

proposes a bunch of potential regions called region proposals. RCNN aims to examine 

which regions contain the target object. The faster RCNN is the combination of fast 

RCNN and region proposal networks (RPNs). The Regional CNN and faster Regional 

CNN are considered as two-stage detection, as the first stage is region proposing. Up till 

now, little research has been found using the RCNN to detect the damage on bridge 

structures. For the civil engineering domain, the RCNN-related model is mostly used to 

detect detection of looseness of bolts, concrete cracks, and stay cables. This research 

could also be potentially used for bridge structures; thus they are reviewed in the 

following.  

Zhang et al. (2020) employed the Faster RCNN for detecting the bolt states (tight and 

loosened) and the results showed that Faster RCNN could detect the bolt looseness with 

high accuracy. However, they found that the detection accuracy could be reduced due to 

the shooting angles, lighting conditions, and vibration conditions. Another example of 

RCNN for damage detection of bridge structures is the work by Huynh et al. (2019). They 

proposed a quasi-autonomous method for loosened bolt detection in which the RCNN is 

for detecting and cropping bolts and the Hough line transform for bolt angle estimation. 

They used the proposed method for detecting and cropping bolts on a real-scale girder 

ridge connection and the results showed the proposed method could be used for quasi-

real-time monitoring for bolts, but the shooting perspective should be under 40 degrees 
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to guarantee the detection accuracy. To assess the crack for concrete structures, Kim used 

the mask and region-based convolutional neural network (Mask R-CNN). They trained 

the Mask R-CNN with crack images from concrete structures and found the network 

could successfully detect most of the cracks 0.3mm or wider cracks.  

A problem of RCNN and its updated version is that the generation of region proposals 

can be time-consuming and inefficient because of the repetitive computation on 

overlapped regions (Zhang et al., 2020). Most recently, the single-stage detector called 

YOLO and their updated versions have been proposed for bridge damage detection. For 

example, Zhang et al., (2020) proposed an improved YOLOv3 for detection the of 

multiple damages on a concrete bridge and proved that the proposed method outperforms 

two-stage detectors like faster RCNN and ResNet. X. Chen et al. (2020) proposed the DT-

YOLOv3 based on YOLOv3 and proved its efficiency. 

In conclusion, both vibration-based and vision-based CNNs have their advantages and 

challenges on damage detection, yet the former is more promising because they use 

internal features and, hence could potentially detect damage regardless of location. For 

vision-based CNNs, one biggest challenges is that they rely heavily on image quality. 

Consequently, detection performance could be affected by lighting conditions, shooting 

angles, and shooting distances.  

2.4.2 Structural damage detection based on Autoencoders 

Autoencoders are unsupervised learning models that have gained significant traction in 
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structural health monitoring (SHM) for their ability to identify and quantify structural 

damage. Autoencoders consist of two components: the encoder and the decoder. The 

encoder compresses the original input data of high dimensions into a low-dimensional 

latent-space representation, and the decoder reconstructs the latent space representation 

back to its original dimension. This process of reconstruction aims to retain as much 

structural information as possible while reducing reconstruction error—the discrepancy 

between the input and its reconstructed output. An increased reconstruction error typically 

signals the presence of anomalies or damage within the structure, thereby serving as a 

critical performance indicator for the autoencoder. 

2.4.2.1 Autoencoders  

As one of the powerful unsupervised learning methods, they encode inputs into a lower-

dimensional latent space and subsequently reconstruct the latent space into the output, 

making them particularly useful for identifying anomalies. The application of 

autoencoders in SHM has evolved from early supervised approaches for regression 

problems to the current focus on unsupervised methods for anomaly detection. Most 

research uses time series data or modal information as input and uses reconstructed error 

as a damage index for anomaly detection. The following reviews the progressive use of 

autoencoders in SHM, highlighting input methods and anomaly detection indices. 

In 2018, Pathirage et al. (2018) proposed an autoencoder-based deep neural network 

method, AutoDNet, for detecting damage in steel frame structures. AutoDNet employs 
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modal information, like natural frequencies and mode shapes, as inputs. Its accuracy and 

efficiency in pinpointing damage locations and severities were validated through both 

numerical and experimental studies, AutoDNet is a significant step over traditional ANN 

methods, making full use of the strengths of autoencoders in a supervised way.  

Bao et al. (2019) take a supervised method by converting time-series SHM data into 

images for anomaly detection. This method trains the stacked autoencoders to classify 

and detect anomalies, achieving high accuracy in identifying multiple anomaly patterns. 

However, the requirement for labelling for training data, especially for damaged scenario 

data has been a limitation.  

In contrast, Hurtado et al. (2023) proposed a novel unsupervised learning framework 

using an adversarial autoencoder (AAE) for bridge health monitoring. This method use 

acceleration signals from vehicles crossing bridges to detect structural damage, using the 

Euclidean distance as the damage detection index. The innovation lies in its unsupervised 

nature, requiring no labelled data for training, and its ability to effectively identify damage 

severity. However, it relies on a consistent test vehicle and assumes constant vehicle speed, 

which poses practical limitations. Recent studies, including Mao et al. (2021) exploration 

of generative adversarial nets and Ni et al. (2020) development of a new SHM data 

compression and reconstruction method, signify the ongoing advancements in this field. 

2.4.2.2 Variational Auto-encoders (VAEs)  

VAE, a variant of autoencoders, is a generative model with latent space consisting of a 
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mixture of distributions rather than a fixed vector as the autoencoder. This is conducted 

by introducing randomness in the encoding process, making VAE a generative version of 

the autoencoders. This allows the VAE being able to generate new samples that resemble 

the previous sample, making the VAEs more robust as well as more suitable in situations 

with insufficiency of training data for damage detection.  

The VAE method was introduced for structural health monitoring in 2020 by X. Ma et al. 

(2020). They developed a 1D convolutional variational autoencoder (CVAE) for the 

damage localization of beam-like structures under moving load. Featuring being base line 

free and data-driven, this method was validated by numerical and experiments and is 

suitable for practical SHM application. However, there are generalization issues that the 

model may not be generalizing well to detect the scenarios that were not trained on. 

Anaissi et al. (2023) present a multi-objective variational autoencoder (MVA) for smart 

infrastructure maintenance, using multiple sensor data for detecting, localizing, and 

assessing the damage levels in an unsupervised way. This method does not require a preset 

threshold for damage detection and thus is promising for detecting damage from practical 

real-world structures. The potential limitations may include the need for large amounts of 

data to achieve high accuracy, as well as not being suitable for the infrastructure it wasn’t 

trained on. Most recent research by Pollastro et al. (2023) uses a hybrid method for 

structural anomaly detection, combining the variational autoencoder for feature extraction 

and ‘a one-class support vector machine (OC-SVM)’  for classification.  

The current VAE based research for structural health monitoring shares the common 
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limitations 1) data dependency: Performance is heavily influenced by the quality and 

quantity of data; 2) high computational cost; 3) Interpretability: The latent representation 

results from VAE can be hard to interpret; 4) the hybrid way of VAE based method in a 

semi-supervised way still needs labelling, which might be difficult to get. Overall, 

improvements on the model interpretability and generalizability as well as computational 

efficiency are the focus. 

2.4.3 Structural damage detection based on Recurrent Neural Networks (RNNs) 

2.4.3.1 RNNs 

RNNs have been extensively explored as a Structural Health Monitoring (SHM) method 

across various types of structures due to their ability to maintain the memory of previous 

inputs. This ability is vital for processing time-series data features of SHM, where the 

detection of temporal patterns can indicate structural deterioration. Notably, the efficiency 

of RNN in SHM has been demonstrated within various structures including bridges 

(Mousavi & Gandomi, 2021; Sony et al., 2021), buildings (Perez-Ramirez et al., 2019), 

and Dams (Y. Li et al., 2022). These studies prove the capability of RNNs in capturing 

complex dependencies, therefore improving early detection accuracy of potential damage. 

This research mostly uses time series data  (Fathnejat et al., 2023; Li et al., 2022) as input 

data, leveraging the sequential processing capabilities of RNNs to interpret temporal 

patterns that might indicate damage. Moreover, natural frequencies, waveform entropy, 

and other conventional indicators could also serve as data inputs and be proven to improve 

the prediction performance of related models (Zhang et al., 2019; Mousavi & Gandomi, 
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2021).  

Emergent research also suggests that the efficacy of RNNs in damage detection can be 

further improved by customizing the network architecture. This customization may 

involve replacing standard layers with LSTM units, Gated Recurrent Units (GRU), or 

developing neural network variants suitable to specific structural characteristics. Such 

adaptations aim to optimize the network's ability to capture complex dependencies within 

the input data, thus providing a more reliable framework for SHM (Zhang et al., 2019). 

Innovative approaches were also seen recently by combining RNNs with other machine 

learning approaches to enhance feature extraction from sensory data. Fathnejat et al. 

(2023) proposed a deep learning model that combines both 1D CNN and RNN variants. 

Furthermore, a Hierarchical CNN and GRU framework (HCG) was proposed by Yang et 

al. (2020) to model the relationship between spatial and temporal data for structural 

damage detection and was proven to outperform other existing models significantly.  

Despite their successes, RNN applications in SHM face challenges such as being sensitive 

to noisy data and high computational costs. Additionally, the black-box nature of these 

models often leads to challenges in interpretability, a critical aspect of SHM. The 

integration of RNNs with emerging technologies such as digital twins and the Internet of 

Things (IoT) presents exciting prospects. Concurrently, there's also a growing interest in 

exploring unsupervised learning models to overcome the limitations of extensive labeled 

data dependency, making the SHM method more applicable and flexible in various 
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conditions. 

2.4.3.2 LSTM Units 

LSTM units, a typical Recurrent Neural Network (RNN), feature their capability to obtain 

long-term dependencies from datasets, a critical aspect for monitoring the structural 

integrity over time and identifying structural damages in various structures. Their internal 

memory allows them to process input data of varying lengths, suitable for practical 

applications in SHM. 

The RNNs with LSTM layers have marked a significant progression in SHM, specifically 

in the areas of predictive maintenance and continuous real-time monitoring. A 

representative paper by Zhang et al. (2019) proposed a LSTM recurrent neural network 

method for bearing performance degradation assessment. This study demonstrates the 

potential of LSTM-RNNs in identifying the bearing degradation states and the remaining 

life prediction. Mousavi et al. (2021) combined Variational Mode Decomposition (VMD), 

Minimum Covariance Determinant (MCD), and RNN with Bi-directional Long-Short 

Term Memory (BiLSTM) cells for long-term out-only condition monitoring of civil 

infrastructures, aiming to detect early signs of structural changes or damage. It identifies 

significant deviations in the prediction errors of Mahalanobis distances, which are not 

considered in the RNN's initial healthy condition training stage. Damage becomes clear 

when there is a significant rise in the prediction errors for these distances, suggesting a 

change from the previously established patterns the model has learned. The bidirectional 
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nature of the LSTM cells offers a more robust representation of the signals, as it consists 

of both past and future information, which is a significant improvement compared to the 

traditional unidirectional LSTMs. This approach was designed for the real-time 

monitoring of civil infrastructures, presenting a refined method for the early detection of 

potential structural failures. 

2.5 SUMMARY  

This chapter reviews the structural damage detection methods, from the fundamentals of 

Vibration-Based Damage Detection (VBDD) to advanced machine learning methods. 

Innovations in deep learning, including CNNs, VAEs, and Recurrent Neural Networks 

(RNNs), have advanced the methods for predictive maintenance, real-time structural 

monitoring and damage detection. Two major research gaps have been identified: 

 The assumptions about joint rigidity and elemental uniformity result in 

inaccuracies in numerical modelling, which are particularly evident in modelling 

large structures with numerous elements and joints. When data from these less 

accurate models are used to power data-driven methods, the efficacy of machine-

learning approaches for identifying structural damage is reduced. 

 To use machine learning techniques, which were originally developed for a wide 

range of applications, for damage detection, there is a need for customization. This 

involves customization in selecting appropriate input data, implementing 
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algorithms, evaluating results, and interpreting data to ensure that these methods 

meet the unique challenges of structural damage detection effectively.  
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CHAPTER 3 STRUCTURAL DAMAGE DETECTION FOR 

SPATIAL FRAME STRUCTURES WITH SEMIRIGID 

JOINTS USING WIRELESS MEASUREMENTS 

3.1 OVERVIEW 

The large spatial structures are widely used for bridge and stadium constructions in the 

world. The spatial structure has deteriorated due to environmental erosion, aging material, 

uneven support settlement, fatigue, and extreme external loads such as earthquakes and 

typhoons (Adams, 2007; Kim & Bartkowicz, 1993). The failure of such structures could 

lead to huge economic costs and human lives loss. It is important to ensure their safety 

and detect damage at an early stage to avoid the possible collapse of structures and extend 

the structural service life. Structural damage detection for spatial structures has attracted 

the interest of researchers and engineers (Xu et al., 2022). The joint is a key component 

of the spatial structure. Most existing methods consider the joint as rigid, non-uniform 

element as uniform, and these assumption leads to a large error in the damage identified 

result. Due to the complex mechanism at the joint of the spatial structure, it is still a 

challenging task to detect its damage in operational environments. 

Finite element (FE) modelling has been widely used to investigate the behaviour of spatial 

frame structures in practice. The idealization or simplification of joint connections and 

boundary conditions has a big effect on the results of the numerical modelling (Hou et al., 

2021). The joints are usually idealized as fully rigid in existing models. The flexibility 
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always occurs at the joint as multiple structural elements are connected at the joint with 

fasteners such as bolts, welds, or screws. It has been proved that the structural behaviour 

is significantly affected by the flexibility of the joint (Jezequel., 1983). The flexibility of 

joints should be considered to achieve better accuracy for structural analysis(Law et al., 

2001). The semi rigid joint model is used to include the joint flexibility (Paral et al., 2021). 

The stiffness matrix of a member with elastic restraints at the ends were obtained by 

modifying with a correction matrix and it was used to investigate the frame with semi-

rigid connections (Monforton & Wu, 1963). A mechanical model with three springs and 

a non-deformable node was proposed to analyse the behaviour of the steel frames with 

semi-rigid joints (Ihaddoudène et al., 2009). The material and geometric nonlinearities 

have been considered in the numerical modelling for a single-layer spatial structure and 

the influence of the joint rigidity on the mechanical performance of the structure is studied 

( Ma et al., 2015). In practice, the members at the joint are mostly with nonuniform cross-

section properties due to the need to install non-structural components like bolts. Little 

research has been found including the nonuniform cross section properties into the 

stiffness matrix of the member with semi-rigid joints.  

The vibration-based method is widely applied for detecting damage of spatial structures. 

The change of structural dynamic properties, such as natural frequencies, mode shapes, 

damping, modal strain energy (MSE), frequency response function (FRF), and their 

variants, etc., can be used to detect structural damage (Hou & Xia, 2021). The MSE based 

damage detection is one of the most promising methods as it incorporates the system 
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vibration behaviour and physical properties ( Wang & Xu, 2019). Many modal strain 

energy-based methods have been proposed for structural damage detection in the last two 

decades, including the modal strain energy change (MSEC) (Shi et al., 1998), the cross-

modal strain energy (CrossMSE) method (Hu et al., 2007; Zhang et al., 2022), the modal 

strain energy based index (MSEBI) (Seyedpoor, 2012), the modal strain energy 

equivalence index (MSEEI) (Guo & Li., 2014), and the improved modal strain energy 

decomposition method (IMSEDM) (Khosravan et al., 2021) etc. The performance of the 

above model-based methods highly depends on the accuracy of the finite element model. 

Most existing methods consider the joints are either pinned or rigid for simplicity in 

structural damage detection. Simplified assumptions may lead to false damage 

identification (Hou et al., 2021). In this study, the non-uniform cross-section element with 

semi-rigid joints at both ends will be incorported into the finite element model and the 

modal strian energy based index (NMSEC) is adopted to detect the member and joint 

damage of spatial structures.  

In this chapter, a novel generic element of the nonuniform cross-section member with 

semi-rigid joints at both ends has been developed and the finite element model of spatial 

structures has been established using the proposed generic element. An 8-meter spatial 

bridge model with bolted connections has been built in the laboratory. Wireless sensors 

are used to monitor the responses of the bridge under random excitation and the reference-

based stochastic subspace identification (Ref-SSI) method is adopted to extract the mode 

shapes from multiple sets of measurements. The finite element model is validated first 
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using the experimental results of the bridge without damage. Different scenarios of the 

bridge with the beam and joint damage are then simulated using the validated model. The 

modal strain energy change-based damage index is obtained and adopted for structural 

damage detection. The experimental results were used to further verify the damage-

identified results. The results show that the proposed method is reliable and accurate in 

localizing both the beam and joint damage of the structure. 

3.2 GENERIC ELEMENT FOR A NONUNIFORM BEAM WITH 

SEMI-RIGID JOINTS 

This section is to introduce the nonuniform beam with rigid joints first and then derive 

the generic element stiffness matrix of the nonuniform cross-section beam member with 

semi-rigid joints at the ends. Furthermore, the modal strain energy-based damage index 

is defined for structural damage detection. 

3.2.1 Stiffness matrix of the nonuniform beam with rigid joints 

Beams are mostly nonuniform in practice and they consist of several segments connected 

by bolts. The segments have different cross-section properties. As shown in Figure 3.1(a), 

the nonuniform beam could split into three segments, e.g., a uniform middle beam and 

two end beams with small cross-sections. To derive the generic element, an equivalent 

uniform beam as shown in Figure 3.1(b) is considered. In this section, the stiffness matrix 

of the three-segment beam is obtained using the equivalent beam and joint stiffness.
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(a) The three-segment beam (b) The equivalent uniform beam 

Figure 3.1 Uniform and nonuniform beams

The nonuniform beam with the total length L in Figure 3.1(a) is divided into three uniform 

beam segments with four nodes. The moment of inertia I, the cross-section area A and the 

length L of three segments are different. Here I1, A1 and L1 are for the middle segment

(noted as Segment 2), and I2, A2 and L2 are for two side segments (noted as Segments 1 

and 3). The subscripts y and z are the moment of inertia on Y and Z axes, respectively. A 

three-dimensional (3D) beam element has 12 degrees of freedom (DOFs), and each node 

has six DOFs, e.g. the displacement vector {𝑢,𝑣, 𝑤, 𝜙𝑥, 𝜙𝑦, 𝜙𝑧} . Thus, the element 

stiffness matrixes of three segments could be represented separately as  𝑲(𝟏) ,𝑲(𝟐)

and 𝑲(𝟑) (𝑲(𝟏) = 𝑲(𝟑)). The force vectors {𝑋𝑖, 𝑌𝑖, 𝑍𝑖, 𝑀𝑖𝑥,𝑀𝑖𝑦,𝑀𝑖𝑧} of Segments 1 and 3 

can be represented using the corresponding displacement vectors {𝑢𝑖,𝑣𝑖, 𝑤𝑖,𝜙𝑖𝑥 , 𝜙𝑖𝑦, 𝜙𝑖𝑧}

at Nodes 1, 2, 3 and 4. Similarly, the force vectors of Segment 2 is 

{𝑋′𝑖, 𝑌′𝑖, 𝑍′𝑖, 𝑀′𝑖𝑥 ,𝑀′𝑖𝑦,𝑀′𝑖𝑧} and it can be represented as by {𝑢𝑖,𝑣𝑖, 𝑤𝑖,𝜙𝑖𝑥, 𝜙𝑖𝑦, 𝜙𝑖𝑧} at 

Nodes 3 and 4. Since Segments 1 and 2 share Node 3, and Segments 2 and 3 share Node 

4, the following equations can be obtained by the equilibrium. 
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{
  
 

  
 
𝑋𝑖 + 𝑋

′
𝑖 = 0

𝑌𝑖 + 𝑌
′
𝑖 = 0

𝑍𝑖 + 𝑍
′
𝑖 = 0

𝑀𝑖𝑥 + 𝑀
′
𝑖𝑥 = 0

𝑀𝑖𝑦 + 𝑀
′
𝑖𝑦 = 0

𝑀𝑖𝑧 + 𝑀
′
𝑖𝑧 = 0

,     i=3,4                        (3.1)   

With Eq. (3.1), the nodal displacements at Nodes 3 and 4 can be represented by the 

functions of the nodal displacements at Nodes 1 and 2. Substitute these representations 

into force-displacement equations of Segments 1 and 3, and the displacement vectors of 

Nodes 3 and 4 are eliminated. This equivalent stiffness matrix 𝑲𝒆  of the nonuniform 

beam element with different cross-section properties of three segments can be obtained 

as, 

𝑲𝒆 = |
𝑲𝟏𝟏 𝑲𝟏𝟐
𝑲𝟏𝟐
𝑻 𝑲𝟐𝟐

|                                                           (3.2) 

where, 

𝐾11 =

|

|

|

|
𝑒1
𝐸𝐴1
𝐿

⬚ ⬚ ⬚ ⬚ ⬚

⬚ 𝑒2
12𝐸𝐼1𝑧
𝐿3

⬚ ⬚ ⬚ 𝑒2
6𝐸𝐼1𝑧
𝐿2

⬚ ⬚ 𝑒3
12𝐸𝐼1𝑦
𝐿3

⬚ −𝑒3
6𝐸𝐼1𝑦
𝐿2

⬚

⬚ ⬚ ⬚ 𝑒4
𝐺𝐼1𝑝
𝐿

⬚ ⬚

⬚ ⬚ −𝑒3
6𝐸𝐼1𝑦
𝐿2

⬚ 𝑒5
4𝐸𝐼1𝑦
𝐿

⬚

⬚ 𝑒2
6𝐸𝐼1𝑧
𝐿2

⬚ ⬚ ⬚ 𝑒7
4𝐸𝐼1𝑧
𝐿

|

|

|

|
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𝐾12 =

|

|

|

|
−𝑒1

𝐸𝐴1
𝐿

⬚ ⬚ ⬚ ⬚ ⬚

⬚ −𝑒2
12𝐸𝐼1𝑧
𝐿3

⬚ ⬚ ⬚ 𝑒2
6𝐸𝐼1𝑧
𝐿2

⬚ ⬚ −𝑒3
12𝐸𝐼1𝑦
𝐿3

⬚ −𝑒3
6𝐸𝐼1𝑦
𝐿2

⬚

⬚ ⬚ ⬚ −𝑒4
𝐺𝐼1𝑝
𝐿

⬚ ⬚

⬚ ⬚ 𝑒3
6𝐸𝐼1𝑦
𝐿2

⬚ 𝑒6
2𝐸𝐼1𝑦
𝐿

⬚

⬚ −𝑒2
6𝐸𝐼1𝑧
𝐿2

⬚ ⬚ ⬚ 𝑒8
2𝐸𝐼1𝑧
𝐿

|

|

|

|

 

𝐾22 =

|

|

|

|
𝑒1
𝐸𝐴1
𝐿

⬚ ⬚ ⬚ ⬚ ⬚

⬚ 𝑒2
12𝐸𝐼1𝑧
𝐿3

⬚ ⬚ ⬚ −𝑒2
6𝐸𝐼1𝑧
𝐿2

⬚ ⬚ 𝑒3
12𝐸𝐼1𝑦
𝐿3

⬚ 𝑒3
6𝐸𝐼1𝑦
𝐿2

⬚

⬚ ⬚ ⬚ 𝑒4
𝐺𝐼1𝑝
𝐿

⬚ ⬚

⬚ ⬚ 𝑒3
6𝐸𝐼1𝑦
𝐿2

⬚ 𝑒5
4𝐸𝐼1𝑦
𝐿

⬚

⬚ −𝑒2
6𝐸𝐼1𝑧
𝐿2

⬚ ⬚ ⬚ 𝑒7
4𝐸𝐼1𝑧
𝐿

|

|

|

|

  

where E, G are the Young’s modulus and the shear modulus, respectively. 𝐼1𝑦 , 𝐼1𝑧 are the 

moment of inertia for the middle segment about the Y and Z axes, respectively. 𝐼1𝑝 =

𝐼1𝑦 + 𝐼1𝑧 is the polar moment of inertia. The parameters 𝑒1 to 𝑒8 are as follows, 

𝑒1 =
𝐴2𝐿

2𝐴1𝐿2 + 𝐿1𝐴2
; 𝑒2 =

𝐼2𝑧𝐿
3

𝐼2𝑧𝐿1
3+ 6𝐼1𝑧𝐿1

2𝐿2+ 12𝐼1𝑧𝐿1𝐿2
2 + 8𝐼1𝑧𝐿2

3 ; 

𝑒3 =
𝐼2𝑦𝐿

3

𝐼2𝑦𝐿1
3 +6𝐼1𝑦𝐿1

2𝐿2+ 12𝐼1𝑦𝐿1𝐿2
2 + 8𝐼1𝑦𝐿2

3 ; 𝑒4 =
𝐼2𝑝𝐿

2𝐼1𝑝𝐿2+ 𝐼2𝑝𝐿1
; 

𝑒5 =
𝐼2𝑦𝐿(16𝐼1𝑦𝐿2

3 +2𝐼2𝑦𝐿1
3+ 18𝐼1𝑦𝐿1𝐿2

2+ 6𝐼1𝑦𝐿1
2𝐿2+ 6𝐼2𝑦𝐿1𝐿2

2 + 6𝐼2𝑦𝐿1
2𝐿2)

2(12𝐼1𝑦
2 𝐿1

2𝐿2
2 + 24𝐼1𝑦

2 𝐿1𝐿2
3 + 16𝐼1𝑦

2 𝐿2
4 + 8𝐼1𝑦𝐼2𝑦𝐿1

3𝐿2+ 12𝐼1𝑦𝐼2𝑦𝐿1
2𝐿2

2+ 8𝐼1𝑦𝐼2𝑦𝐿1𝐿2
3 + 𝐼2𝑦

2 𝐿1
4 )

 

𝑒6 =
𝐼2𝑦𝐿(8𝐼1𝑦𝐿2

3 + 𝐼2𝑦𝐿1
3 + 6𝐼1𝑦𝐿1𝐿2

2 + 6𝐼2𝑦𝐿1𝐿2
2+ 6𝐼2𝑦𝐿1

2𝐿2)

12𝐼1𝑦
2 𝐿1

2

2

2
+ 24𝐼1𝑦

2 𝐿1𝐿2
3 + 16𝐼1𝑦

2 𝐿2
4 + 8𝐼1𝑦𝐼2𝑦𝐿1

3𝐿2+ 12𝐼1𝑦𝐼2𝑦𝐿1
2𝐿2
2 + 8𝐼1𝑦𝐼2𝑦𝐿1𝐿2

3 + 𝐼2𝑦
2 𝐿1

4
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𝑒7 =
𝐼2𝑧𝐿(16𝐼1𝑧𝐿2

3 + 2𝐼2𝑧𝐿1
3+ 18𝐼1𝑧𝐿1𝐿2

2 + 6𝐼1𝑧𝐿1
2𝐿2+ 6𝐼2𝑧𝐿1𝐿2

2 +6𝐼2𝑧𝐿1
2𝐿2)

2(12𝐼1𝑧
2 𝐿1

2𝐿2
2 + 24𝐼1𝑧

2 𝐿1𝐿2
3 + 16𝐼1𝑧

2 𝐿2
4 + 8𝐼1𝑧𝐼2𝑧𝐿1

3𝐿2+ 12𝐼1𝑧𝐼2𝑧𝐿1
2𝐿2

2+ 8𝐼1𝑧𝐼2𝑧𝐿1𝐿2
3 + 𝐼2𝑧

2 𝐿1
4 )

 

𝑒8 =
𝐼2𝑧𝐿(8𝐼1𝑧𝐿2

3 + 𝐼2𝑧𝐿1
3 + 6𝐼1𝑧𝐿1𝐿2

2 + 6𝐼2𝑧𝐿1𝐿2
2+ 6𝐼2𝑧𝐿1

2𝐿2)

12𝐼1𝑧
2 𝐿1

2𝐿2
2 + 24𝐼1𝑧

2 𝐿1𝐿2
3+ 16𝐼1𝑧

2 𝐿2
4+ 8𝐼1𝑧𝐼2𝑧𝐿1

3𝐿2+ 12𝐼1𝑧𝐼2𝑧𝐿1
2𝐿2

2 + 8𝐼1𝑧𝐼2𝑧𝐿1𝐿2
3 + 𝐼2𝑧

2 𝐿1
4 

3.2.2 Stiffness matrix of a uniform beam with semi-rigid joints 

Joint connections are always simulated as pins or rigid joints while most joints behave 

semi-rigidly with some flexibility. A 3D generic beam element with semi-rigid joints can 

be modelled with zero-length springs as shown in Figure 3.2 (Hou et al., 2021). The 

rotational springs stiffness at the left and right ends are 𝑘𝜃𝐿 and 𝑘𝜃𝑅 respectively. For a 3D 

beam element, each end has 6 DOFs, that include the axial and shear deformations, and 

three rotations modelled by three rotational springs.  

 

Figure 3.2 3D beam element with semi-rigid joints 

The joint rotational stiffness factor is introduced to evaluate the joint contribution to 

bending and it is defined as the ratio of the rotational stiffness 𝑘𝜃  over the flexural 

stiffness 𝐸𝐼/𝐿. A joint with a higher joint rotational stiffness factor behaves more rigid in 

that direction while the lower factor joint behaves more like a pin. As each end has three 

rotational springs, six rotational stiffness factors are defined as follows, 
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𝑘𝜃𝑦
𝐿 = 𝛼𝐿

𝐸𝐼𝑦

𝐿
; 𝑘𝜃𝑦
𝑅 = 𝛼𝑅

𝐸𝐼𝑦

𝐿
; 𝑘𝜃𝑧

𝐿 = 𝛽𝐿
𝐸𝐼𝑧

𝐿
  ; 𝑘𝜃𝑧

𝑅 = 𝛽𝑅
𝐸𝐼𝑧

𝐿
; 𝑘𝜃𝑥
𝐿 = 𝛾𝐿

𝐺𝐼𝑝

𝐿
; 𝑘𝜃𝑥
𝑅 = 𝛾𝑅

𝐺𝐼𝑝

𝐿
   (3.3) 

where 𝛼, 𝛽, 𝛾  are the rotational stiffness factors at y, z, and x directions. The subscripts 

‘L’ and ‘R’ represent the left and right ends respectively. 𝐼𝑦 𝑎𝑛𝑑 𝐼𝑧 are the moment of 

inertia of y and z directions and 𝐼𝑝 = 𝐼𝑦 + 𝐼𝑧 is the polar moment of inertia. E and G are 

the elastic modulus and shear modulus.  

The above stiffness factors represent the rigidity of the semi-rigid joint. The joint damage 

is defined as the stiffness reduction, and it can be quantified by the factor reductions. The 

stiffness matrix of the beam element with semi-rigid joints can be obtained by introducing 

these factors into Eq. (3.2). The stiffness matrix of the nonuniform cross-section beam 

with semi-rigid joints can be represented as,  

𝑲𝒆‘ = |
𝐾11
′ 𝐾12

′

𝐾12
′𝑇 𝐾22

′
|                                                           (3.4) 

where 

𝐾11
′ =

|

|

|

|
𝑎1
𝐸𝐴1
𝐿

⬚ ⬚ ⬚ ⬚ ⬚

⬚ 𝑎2
12𝐸𝐼1𝑧
𝐿3

⬚ ⬚ ⬚ 𝑎7
6𝐸𝐼1𝑧
𝐿2

⬚ ⬚ 𝑎3
12𝐸𝐼1𝑦
𝐿3

⬚ −𝑎8
6𝐸𝐼1𝑦
𝐿2

⬚

⬚ ⬚ ⬚ 𝑎4
𝐺𝐼1𝑝
𝐿

⬚ ⬚

⬚ ⬚ −𝑎8
6𝐸𝐼1𝑦
𝐿2

⬚ 𝑎5
4𝐸𝐼1𝑦
𝐿

⬚

⬚ 𝑎7
6𝐸𝐼1𝑧
𝐿2

⬚ ⬚ ⬚ 𝑎6
4𝐸𝐼1𝑧
𝐿

|

|

|

|
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𝐾12
′ =

|

|

|

|
−𝑎1

𝐸𝐴1
𝐿

⬚ ⬚ ⬚ ⬚ ⬚

⬚ −𝑎2
12𝐸𝐼1𝑧
𝐿3

⬚ ⬚ ⬚ 𝑎12
6𝐸𝐼1𝑧
𝐿2

⬚ ⬚ −𝑎3
12𝐸𝐼1𝑦
𝐿3

⬚ −𝑎11
6𝐸𝐼1𝑦
𝐿2

⬚

⬚ ⬚ ⬚ −𝑎4
𝐺𝐼1𝑝
𝐿

⬚ ⬚

⬚ ⬚ 𝑎8
6𝐸𝐼1𝑦
𝐿2

⬚ 𝑎9
2𝐸𝐼1𝑦
𝐿

⬚

⬚ −𝑎7
6𝐸𝐼1𝑧
𝐿2

⬚ ⬚ ⬚ 𝑎10
2𝐸𝐼1𝑧
𝐿

|

|

|

|

 

 

𝐾22
′ =

|

|

|

|

𝑎1
𝐸𝐴1
𝐿

⬚ ⬚ ⬚ ⬚ ⬚

⬚ 𝑎2
12𝐸𝐼1𝑧
𝐿3

⬚ ⬚ ⬚ −𝑎12
6𝐸𝐼1𝑧
𝐿2

⬚ ⬚ 𝑎3
12𝐸𝐼1𝑦
𝐿3

⬚ 𝑎11
6𝐸𝐼1𝑦
𝐿2

⬚

⬚ ⬚ ⬚ 𝑎4
𝐺𝐼1𝑝
𝐿

⬚ ⬚

⬚ ⬚ 𝑎11
6𝐸𝐼1𝑦
𝐿2

⬚ 𝑎13
4𝐸𝐼1𝑦
𝐿

⬚

⬚ −𝑎12
6𝐸𝐼1𝑧
𝐿2

⬚ ⬚ ⬚ 𝑎14
4𝐸𝐼1𝑧
𝐿

|

|

|

|

 

where 𝑎1 to 𝑎14 are as follows.  

𝑎1 = 𝑒1; 𝑎2 = 𝑒2
𝛼𝐿 + 𝛼𝑅 + 𝛼𝐿𝛼𝑅

4(𝛼𝐿 + 𝛼𝑅) + 𝛼𝐿𝛼𝑅 + 12
; 𝑎3 = 𝑒3

𝛽𝐿 +𝛽𝑅 +𝛽𝐿𝛽𝑅

4(𝛽𝐿 +𝛽𝑅) + 𝛽𝐿𝛽𝑅 + 12
;  

𝑎4 = 𝑒4
𝛾𝐿𝛾𝑅

𝛾𝐿+𝛾𝑅 +𝛾𝐿𝛾𝑅
; 𝑎5 = 𝑒5

𝛽𝐿(3 + 𝛽𝑅)

4(𝛽𝐿 +𝛽𝑅) + 𝛽𝐿𝛽𝑅 + 12
;  

𝑎6 = 𝑒7
𝛼𝐿(3 + 𝛼𝑅)

4(𝛼𝐿 +𝛼𝑅) + 𝛼𝐿𝛼𝑅 +12
; 𝑎7 = 𝑒2

𝛼𝐿 (2 + 𝛼𝑅)

4(𝛼𝐿 +𝛼𝑅) + 𝛼𝐿𝛼𝑅 +12
 ;⬚ 

𝑎8 = 𝑒3
𝛽𝐿(2 + 𝛽𝑅)

4(𝛽𝐿 +𝛽𝑅) + 𝛽𝐿𝛽𝑅 + 12
; 𝑎9 = 𝑒6

𝛽𝐿𝛽𝑅

4(𝛽𝐿 + 𝛽𝑅) + 𝛽𝐿𝛽𝑅 + 12
; 

𝑎10 = 𝑒8
𝛼𝐿𝛼𝑅

4(𝛼𝐿 +𝛼𝑅) + 𝛼𝐿𝛼𝑅 +12
; 𝑎11 = 𝑒3

𝛽𝑅(2 + 𝛽𝐿)

4(𝛽𝐿 + 𝛽𝑅) + 𝛽𝐿𝛽𝑅 +12
; 
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𝑎12 = 𝑒2
𝛼𝑅(2 + 𝛼𝐿)

4(𝛼𝐿 +𝛼𝑅) + 𝛼𝐿𝛼𝑅 +12
; 𝑎13 = 𝑒5

𝛽𝑅(3 + 𝛽𝐿)

4(𝛽𝐿 + 𝛽𝑅) + 𝛽𝐿𝛽𝑅 +12
; 

𝑎14 = 𝑒7
𝛼𝑅(3 + 𝛼𝐿)

4(𝛼𝐿 +𝛼𝑅) + 𝛼𝐿𝛼𝑅 +12
 

Eq. (3.4) represents the stiffness matrix of the generic element for a nonuniform beam 

with semi-rigid joints. The element can be incorporated into the finite element model of 

the spatial structure.  

3.2.3 Modal strain energy-based damage index 

The elemental damage is defined as the beam element stiffness reduction and the joint 

rotational stiffness reduction. From Eq.(3.4), the elemental stiffness matrix of a uniform 

beam with semi-rigid joints consists of several parameters, including 

A, 𝐼𝑦 , 𝐼𝑧 , 𝐼𝑝 , 𝛼
𝐿 , 𝛼𝑅, 𝛽𝐿 , 𝛽𝑅, 𝛾𝐿 , 𝛾𝑅 . For simplicity, in this study, the damage of the beam 

members is simulated by the elastic modulus reduction and the damage of the joint by the 

moment of inertia reduction (IYY). 

Structural damage leads to stiffness reduction at one or several elements and causes 

changes in the mode shapes. The modal strain energy of an element is defined as the 

product of the elemental stiffness matrix and the mode shapes as (Shi et al., 1998), 

𝑀𝑆𝐸𝑖𝑚 = Φ𝑚
𝑇 𝐾𝑖Φ𝑚              (3.5) 

where 𝑀𝑆𝐸𝑖𝑚  is the modal strain energy of the mth mode at the ith element. When damage 

occurred, mode shapes changed, leading to changes in elemental modal strain energy. For 

the mth mode, the modal strain energy change ratio (MSECR) of ith element was further 
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defined as the elemental change ratio of MSE before and after damage, as follows. 

𝑀𝑆𝐸𝐶𝑅𝑖
𝑚 =

|𝑀𝑆𝐸𝑖𝑚
𝐻 −𝑀𝑆𝐸𝑖𝑚

𝐷 |

𝑀𝑆𝐸𝑖𝑚
𝐻        (3.6) 

where 𝑀𝑆𝐸𝑖𝑚𝐻   and 𝑀𝑆𝐸𝑖𝑚𝐷  is the corresponding modal strain energy of the mth mode at 

the ith element with the healthy and damaged scenarios. In this study, normalized modal 

strain energy (𝑁𝑀𝑆𝐸𝐶) based damage index is utilized by considering multiple modes, 

and the 𝑁𝑀𝑆𝐸𝐶 of the ith element is defined as,  

𝑁𝑀𝑆𝐸𝐶𝑖 =∑ 𝑤𝑚𝑀𝑆𝐸𝐶𝑅𝑖
𝑚𝑁𝑚𝑜𝑑𝑒

𝑚=1
= ∑ 𝑤𝑚

|𝑀𝑆𝐸𝑖𝑚
𝐻 −𝑀𝑆𝐸𝑖𝑚

𝐷 |

𝑀𝑆𝐸𝑖𝑚
𝐻

𝑁𝑚𝑜𝑑𝑒

𝑚=1

,       

𝑚 = 1,2,… , 𝑁𝑚𝑜𝑑𝑒; 𝑖 = 1,2, … , 𝑁𝑒𝑙𝑒𝑚𝑒𝑛𝑡.                    (3.7) 

where Nmode and Nelement are the numbers of modes and elements respectively. In this 

study, the number of modes is 6 and the number of elements is 160. 𝑤𝑚 is the weighting 

factor of the mth mode and it is defined as, 

𝑤𝑚 = |
∑ 𝑀𝑆𝐸𝑖𝑚
𝑁𝑒𝑙𝑒𝑚𝑒𝑛𝑡
𝑖=1

𝑇𝑀𝑆𝐸
|
−1

                                                  (3.8) 

where TMSE is the total modal strain energy of all six modes. The weighting factor 𝑤𝑚 

is introduced as the higher mode inherently has a higher modal strain energy while it does 

not contribute much to the damage localization (Shi et al., 1998). Using 𝑤𝑚, it allows 

lower modes have more weight. Figure 3.3 illustrates the steps to verify the proposed 

model as follows. 

1) The detailed experimental setup and procedure of a spatial bridge model are 

introduced first, and the tests have been carried out. 
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2) The modal parameters are extracted from multiple measurement datasets on the 

bridge model with different damage scenarios using Ref-SSI method. 

3) A finite element model for the spatial bridge is built and validated using the 

experimental results.

4) The sensitivity analysis of the beam and joint damage is carried out using the updated 

model. 

Figure 3.3 Flowchart of this chapter

3.3 EXPERIMENTAL SETUP AND MODAL ANALYSIS

3.3.1 The bridge model

Figure 3.4 shows a 14-span spatial frame bridge with 7.98 m long, 0.6 m wide, and 0.6 m

high. The model was built according to the design specification presented by the Smart 

Structures technology Laboratory (SSTL) of the University of Illinois at Urbana-
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Champaign (Gao and Spencer, 2007). The bridge is simply supported with a pin at the 

left end and a roller at right end. The bridge consists of 160 tubular beam members and 

56 joints. There are two kinds of beam members, e.g. the diagonal and non-diagonal 

members. All beam members are nonuniform and two end portions are solid segments of 

10 mm diameter connected with the middle part by screws. The length of the solid 

segment is 100 mm. The cross section of the middle part is with an inner diameter of 12 

mm and an outer diameter of 18 mm. The length of the middle part for diagonal members 

is 600 mm while it is 400 mm for vertical and horizontal members. The members are 

connected at joints by bolts.

Figure 3.4 The 7.98m experimental truss bridge

3.3.2 Experimental setup

Figure 3.5 shows the experimental system including a power amplifier (CF6502), a shaker 

(CF6900-100), a signal generator (AFG1022), 13 wireless tri-axis accelerometers, and 
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the wireless data acquisition system. The shaker was connected to the bridge on the fifth 

joint from left of the lower chord through a stinger. The white noise signal with an

amplitude 10 V was generated by the signal generator and amplified by the power 

amplifier and then the excitation force was applied on the bridge joint through the stinger. 

The tri-axis wireless accelerometers were installed on the upper surface of joints through 

strong magnetic blocks. The sampling frequency is 256Hz and the responses at horizontal

(X) and vertical (Z) directions were recorded. The recording length for each test is 20 

minutes. Figure 3.6 shows the horizontal response of Accelerometer No. 4 in Set 1.

Figure 3.5 Experimental setup

Figure 3.6 Acceleration response of accelerometer No.4 in horizontal direction

To get spatial mode shapes of the bridge, four measurement sets were recorded for four 

longitudinal edges respectively. For each measurement set, eight accelerometers were 

installed evenly along the bridge's longitudinal direction and another five accelerometers 

were used as reference. The locations of accelerometers for Sets 1~4 are shown in Figure 

3.7. Four accelerometers (No. 5~8) in the middle span of the bridge and another 



53

accelerometer (No. 13) were used as reference points. Upon finishing one edge 

measurement, eight accelerometers were moved to next edge and the reference 

accelerometers were stayed stationary. 

Figure 3.7 Accelerometer locations of four set measurements

3.3.3 Ref-SSI based spatial mode shapes extraction using multiple set measurements

Spatial mode shape was extracted from four set measurements using the reference-based 

stochastic subspace identification (Ref-SSI) method (Peeters & De Roeck, 2000). Firstly, 

the stochastic subspace identification (SSI) method was conducted on each set of 

measurements to obtain corresponding natural frequencies and local mode shapes of each 

edge. Then, with Ref-SSI method, spatial mode shapes were obtained by combining the 

mode shapes of four edges through rescaling.

In this study, ARTeMIS Modal 6.0 was used to extract natural frequencies and mode 
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shapes of each longitudinal edge from Measurement sets 1~4. Figure 3.8 shows the 

measurement set in ARTeMIS. For each set, there are 13 accelerometers as shown in 

Figure 3.7. The stabilization diagrams of four measurement sets were obtained as shown 

in Figure 3.9. From the figure, the natural frequencies of four sets were extracted and 

listed in Table 3.1. The frequencies of the bridge were obtained by averaging the power 

spectra of four edges. The first six modes were obtained as shown in Table 3.2, including 

three bending modes and three torsional modes.  

  

(a)Set 1 (b)Set 2 
  

(c)Set 3 (d)Set 4 

Figure 3.8 Sets modeling in ARTeMIS 

With the SSI method, local mode shapes of each edge could also be extracted. The 

Reference based SSI method is then applied to transfer the local mode shapes of four 

edges into spatial mode shapes of the bridge. A rescaling procedure is conducted as 

(Amador & Brincker, 2021), 

𝚽𝒊 =
Φ𝑟𝑒𝑓

𝜑𝑖,𝑟𝑒𝑓
𝝋𝒊(𝑖 = 1,2,3,4)                                                 (3.9) 

where 𝝋𝑖 and 𝚽𝑖 is the local and global mode shape vector of Set i; 𝜑𝑖,𝑟𝑒𝑓  is the local 

mode shape value of Set i at the reference point. Φ𝑟𝑒𝑓 is the mode shape value at the 

reference point of the selected set. Φ𝑟𝑒𝑓 could be taken from a reference point at any sets. 

However, there is only one Φ𝑟𝑒𝑓 for each global mode shape. For example, for Mode 1, 

the Φ𝑟𝑒𝑓 could be from Set 3, thus all sets would be rescaled according to the mode shape 
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value at the reference point from Set 3. Since the reference points could be any locations 

that remain at their original location during the whole measuring process, the No.13 

accelerometer and the accelerometers (No.5, 6, 7 and 8) at the middle span could all be 

considered as reference points in this study.   

Table 3.3 is the modal assurance criterion (MAC) matrix of these spatial mode shapes and 

Figure 3.10 presents the six spatial mode shapes. The diagonal values of the MAC matrix 

are close to one while the values at other locations are very small, and that indicates no 

coupling effect between these mode shapes. 

Table 3.1 Natural frequencies of four sets (Hz) 

Set 1 Set 2 Set 3 Set 4 Average 
14.63 14.34 14.61 14.55 14.6 
23.44 23.18 23.37 23.40 23.4 
39.50 39.54 39.55 39.38 39.5 
44.80 45.15 45.02 44.61 44.9 
45.78 45.70 45.73 45.52 45.7 
57.96 57.65 57.83 57.86 57.8 
67.04 67.19 66.83 66.85 67.0 
72.01 71.69 72.36 71.74 71.9 

Table 3.2 Natural frequencies of the experimental truss bridge 

Mode No. 1 2 3 4 5 6 
Mode type Bending Torsional Torsional Bending Torsional Bending 

Natural 
frequencies (Hz) 14.6 23.4 39.5 45.7 57.8 71.9 

Table 3.3 MAC matrix of experimental mode shapes 

 14.6 Hz 23.4 Hz 39.5 Hz 45.7 Hz 57.8 Hz 71.9 Hz 
14.6Hz (Bending mode 1) 1.00 0.00 0.00 0.00 0.00 0.00 
23.4Hz (Torsional mode1) 0.00 1.00 0.00 0.00 0.00 0.00 
39.5Hz(Torsional mode 2) 0.00 0.00 1.00 0.00 0.00 0.00 
45.7Hz (Bending mode 2) 0.00 0.00 0.00 1.00 0.00 0.00 
57.8Hz(Torsional mode 3) 0.00 0.00 0.00 0.00 1.00 0.00 
71.9Hz (Bending mode 3) 0.00 0.00 0.00 0.00 0.00 1.00 
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(a) Set 1 

 

 
(b) Set 2 
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(c) Set 3 

 

 
(d) Set 4 

Figure 3.9 The stabilization diagram of four sets 
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Experimental mode shape 

 
Numerical mode shape 

 

 

Bending mode 1. Frequency 14.0Hz Bending mode 1. Frequency 18.6Hz 

 
 

Torsional mode 1. Frequency 23.0Hz Torsional mode 1. Frequency 47.5Hz 
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Torsional mode 2 Frequency 39.0Hz Torsional mode 2 Frequency 80.9Hz 

 

 

Bending mode 2. Frequency 45.7Hz Bending mode 2. Frequency 61.0Hz 
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Torsional mode 3. 57.0Hz Torsional mode 3. Frequency 94.5Hz 

 

 

Bending mode 3. Frequency 71.0Hz Bending mode 3. Frequency 112.1Hz 
Figure 3.10 Spatial mode shapes of numerical and experimental models 
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3.4. NUMERICAL SIMULATION AND MODEL UPDATING 

3.4.1 Numerical model  

Figure 3.11 is the finite element model (FE model) of the bridge established using ANSYS 

19.0. The left end of the bridge is constrained for displacements in all directions (X, Y, 

and Z), and the right end is constrained in X, Z directions and free in Y longitudinal 

direction. The bridge model members are simulated by Beam4 element with uniform 

circular tube section. Details of the structure and Beam4 element are listed in Table 3.4. 

All joints are modelled as rigid joints in this section.  

 
Figure 3.11 Finite element model of the bridge 

Table 3.4 Details of the model and the cross section of beam4 element  

Properties 
Structural Tube cross section 

Young’s 
modulus 

Density 
(kg/m3) 

Outer 
radius 

Inner 
radius 

Area (m2) IYY and IZZ (m4) 

Value 2× 1011𝑃𝑎 7800 0.009m 0.006m 1.41361 × 10−4  4.134 × 10−9 

3.4.2 Comparisons between numerical and experimental results  

Figure 3.10 shows a comparison of the first six mode shapes by the numerical model 

together with the corresponding experimental results. Here the numerical model is with 

the rigid joints. From the figure, the mode shapes from the numerical model match well 

with the corresponding experimental results. Table 3.5 lists the natural frequencies of the 

numerical and experimental models and the corresponding MAC values. Table 3.6 
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presents the MAC values of the mode shapes from the numerical model and Table 3.7 is 

the MAC values between the experimental and numerical mode shapes. The MAC values 

at non-diagonal locations are very small in both Tables 3.6 and 3.7. The results shows that 

there is no coupling effect for the numerical mode shapes as well as experimental mode 

shapes. From Table 3.5, the torsional frequencies of the numerical model have high 

relative differences from 63% to 99% compared with the experimental results. There are 

low relative differences for bending modes, ranging from 27% to 56%. The main reasons 

are that 1) all joints are simulated as rigid while they are semi-rigid joints. 2) the uniform 

beam element is used while the real beam element composes of three segments connected 

by screws. These two factors will be updated in the simulation model in the following 

section. 

Table 3.5 Natural frequency and mode shapes comparison between experimental and numerical model  

 

Table 3.6 MAC matrix of numerical mode shapes 

MAC 18.6Hz 46.2Hz 78.5Hz 61.0Hz 94.2Hz 112.2Hz 
18.6Hz (Bending mode 1) 1.00 0.00 0.01 0.00 0.00 0.03 
46.2Hz (Torsional mode1) 0.00 1.00 0.00 0.00 0.00 0.00 
78.5Hz (Torsional mode 2) 0.01 0.00 1.00 0.00 0.00 0.00 
61.0Hz (Bending mode 2) 0.00 0.00 0.00 1.00 0.00 0.00 
94.2Hz (Torsional mode 3) 0.00 0.00 0.00 0.00 1.00 0.00 
112.2Hz (Bending mode 3) 0.03 0.00 0.00 0.00 0.00 1.00 

Experimental Model Numerical model 

Mode f (Hz) Mode 
Order f (Hz) 

Errors 
MAC 

A* R* 
Bending mode1 14.6 N2 18.5 3.9 27% 0.99 
Torsional mode1 23.4 N5 46.2 22.8 97% 0.54 
Torsional mode 2 39.5 N7 78.5 39 99% 0.59 
Bending mode 2 45.7 N 6 61.0 15.3 33% 0.67 
Torsional mode 3 57.8 N 9 94.2 36.4 63% 0.66 
Bending mode 3 71.9 N 15 112.2 40.3 56% 0.82 

f  Natural Frequencies; A*Absolute error; R* Relative error; 
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Table 3.7 MAC matrix of experimental and numerical mode shapes 

Modes and frequencies 18.6Hz 46.2Hz 78.5Hz 61.0Hz 94.2Hz 112.2Hz 
14.6Hz (Bending mode 1) 0.99 0.00 0.00 0.01 0.00 0.03 
23.4Hz (Torsional mode1) 0.00 0.54 0.01 0.00 0.00 0.00 
39.5Hz (Torsional mode 2) 0.00 0.01 0.59 0.00 0.06 0.00 
45.7Hz (Bending mode 2) 0.00 0.01 0.02 0.67 0.00 0.00 
57.8Hz (Torsional mode 3) 0.00 0.00 0.11 0.00 0.66 0.00 
71.9Hz (Bending mode 3) 0.02 0.00 0.00 0.00 0.00 0.82 

3.4.3 Model updating 

In this section, the finite element model updating has been conducted in two-steps. In the 

first step, the beam element stiffness is updated to match the bending modal frequencies 

of experimental and numerical models. In the second step, both the beam elemental and 

joint stiffness are updated to match the torsional frequencies. Finally, the updated elastic 

modulus value was validated using a simply supported three-segment beam. 

• Beam elemental stiffness updating  

As shown in Figure 3.4, the bridge beam components are nonuniform three segment beam 

elements while an equivalent uniform beam element is used in the numerical model. This 

effect could be considered by elastic modulus reduction. Frequency based objectives are 

considered, comparing natural frequency matching of the experimental and numerical 

models. Three objectives were investigated as defined below, 

Objective 1 considers all six modes as:  𝑓1 = ∑ |
𝑓𝐸𝑖−𝑓

𝑁⬚

𝑓𝐸𝑖
| 𝑖=1,2,3,4,5,6. , where 𝐸𝑖  is the ith 

mode of experimental bridge and the 𝑁𝑖 is the numerical mode that matches to the ith 

experimental mode.  
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Objective 2 considers three bending modes as: 𝑓2 = ∑ |
𝑓𝐸𝑖−𝑓𝑁𝑖

𝑓𝐸𝑖
| 𝑖=1,4,6., where Mode 1, 4 

and 6 are the bending modes.

Objective 3 considers three torsional modes as: 𝑓3=∑ |
𝑓𝐸𝑖−𝑓𝑁𝑖

𝑓𝐸𝑖
| 𝑖=2,3,5., where Mode 2, 3 

and 5 are the torsional modes.

Figure 3.12 is the effect of elastic modulus changes on the three objective functions. The 

optimum elastic modulus value is different from the objective function. The objective 

function 𝑓2 has the optimum E=1.13×1011 Pa. Table 3.8 shows the mode matching of the 

experimental and numerical models before and after element stiffness updating. From the 

results, the bending modes match well with the experimental results after the model 

updating using the objective function 𝑓2 . The relative differences for the first and second 

bending modes are 4.3% and -0.3% respectively. Moreover, the corresponding value at 

MAC matrix remains the same after updating.

Figure 3.12. Elastic modulus effect on frequency based on three objective functions

/Pa
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Table 3.8 The mode matching of the experimental and numerical models before and after updating 

element stiffness  

• Joint stiffness updating  

Although bending frequencies saw better matching, torsional frequency matching 

remains poor, with around 50% frequency differences with the experimental mode for 

first two torsional modes. This is because all joints are simulated as rigid while they are 

semi rigid joints. To include this effect, elemental moment of inertia (IYY) is updated. It is 

found that the semi rigid joint consideration has significant effect on the torsional mode 

frequencies. By manually adjusting, it is found that when 𝐸∗ = 0.62 × 𝐸 = 1.24 ×

1011𝑃𝑎  (element stiffness updating) and 𝐼𝑌𝑌∗ = 0.27 × 𝐼𝑌𝑌 = 1.12𝑒
−9𝑃𝑎  (semi rigid 

joint updating), frequencies of all experimental and numerical modes match well, except 

the torsional mode 2 shows a 40% relative error. Detailed comparison results are given in 

Table 3.9. It is worth noting that different from element stiffness updating, the semi-rigid 

joint updating is conducted through manual adjusting rather than optimization methods.  

• Validation of the updated elastic modulus 

Experimental 
Model 

Numerical model 
Before updating 
(E=2 ×1011 Pa) 

After updating  
(E=1.13×1011 Pa) 

Mode f * 
(Hz) 

f* 
(Hz) A* R* f (Hz) A* R* MAC 

Bending mode1 14.6 18.5 3.9 27% 13.98 0.62 4.3% 0.99 
Torsional mode1 23.4 46.2 22.8 97% 35.70 -12.3 -52.6% 0.54 
Torsional mode 2 39.5 78.5 39 99% 60.48 -21.0 -53.1% 0.59 
Bending mode 2 45.7 61.0 15.3 33% 45.85 -0.15 -0.3% 0.67 
Torsional mode 3 57.8 94.2 36.4 63% 71.03 -13.2 -22.9% 0.66 
Bending mode 3 71.9 112.2 40.3 56% 84.25 -12.4 -17.2% 0.82 
Note: f* is Natural Frequency; A* is Absolute error; R* is Relative error; 
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To verify rationality of the updated E as 1.24 × 1011𝑃𝑎, a simply supported beam with 

three segments was built with line pressure of 1000N/m, as shown in Figure 3.13. This 

three-segments-beam was considered as the real bar element situation where a hollow bar 

is in the middle with two end beams. It is worth noting the moment of inertia of three-

segments-beam differs that of the single beam, thus different bending displacement were 

obtained. The idea is calculating the elastic equivalent modulus through matching their 

maximum displacements. Table 3.10 shows the related parameters, and the equivalent 

elastic modulus result is 1.4446 × 1011𝑃𝑎 which is close to the final updating results of 

𝐸 = 1.24 × 1011𝑃𝑎. 

 

Table 3.9 The mode matching of the experimental and numerical models after updating member and 

joint stiffness  

Experimental 
Model 

Numerical model 

Before updating  
(E=2 ×1011 Pa) 

After updating 
( E*=1.24 ×1011 Pa and   

𝒂𝒏𝒅 𝑰𝒀𝒀∗ = 𝟏. 𝟏𝟐 × 𝟏𝟎−𝟗𝒎𝟒) 

Mode f*  
(Hz) 

f*  
(Hz) A* R* MAC f*   

(Hz) A* R* MAC 

Bending 
mode1 14.6 18.5 3.9 27% 0.99 14.6 0 0 0.99 

Torsional 
mode1 23.4 46.2 22.8 97% 0.54 23.7 0.3 1.2% 0.68 

Torsional 
mode 2 39.5 78.5 39 99% 0.59 55.5 16 40% 0.55 

Bending 
mode 2 45.7 61.0 15.3 33% 0.67 46.1 0.03 0.06% 0.67 

Torsional 
mode 3 57.8 94.2 36.4 63% 0.66 66.6 -8.79 15% 0.71 

Bending 
mode 3 71.9 112.2 40.3 56% 0.82 69.7 -2.17 -0.03% 0.57 

Note: f* : Natural Frequencies; A*: Absolute error; R* : Relative error. 
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(a) The real bar element (the horizontal 
direction)

(b) the real bar element simulation

Figure 3.13 The real bar element and its simulation

Table 3.10 Equivalent elastic modulus of bars in three directions

Total 
length(m) L1(m) L2(m)

Maximum Displacement Equivalent elastic 
modulus (EE)Single 

beam(m)
Three-segments-

beam(m)
0.6 0.4 0.1 0.00204 0.00283 1.4446 × 1011𝑃𝑎

3.5. Structural damage detection using the updated model

As previously discussed, the model is updated in two aspects, member and joint 

stiffnesses. To further verify the performance of the proposed model, structural damage 

detection using the rigid or semi-rigid joint models were compared. 

3.5.1 Scenarios description

As shown in Figure 3.14, the elements were numbered along the bridge, with Element 1 

at the left end, Element 160 at right end and Element 80 at the middle span. The damage 

detection using semi-rigid joint and rigid models were compared considering the beam

element damage of three scenarios: diagonal beam damage (Element 36), vertical beam

damage (Element 104), double beam damage (Elements 36 and 104), each with three 

damage severity levels (35%, 60% and 83%), as the scenarios design shown in Table 3.11. 
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The beam damage is simulated by the elastic modulus reduction. 

Figure 3.14 Element number

3.5.2 Structural damage detection using the proposed model

Elemental damage index NMSEC of three damage scenarios including, 1) damage of 

diagonal beam element 36; 2) vertical beam element 104; 3) double damage scenarios

using the semi-rigid and rigid joint models were calculated, as shown in Figures 3.15, 

3.16 and 3.17. Figure 3.15 shows the NMSEC values of the structure with the damage in 

a diagonal member using the semi-rigid and rigid joint models. The NMSEC values of the 

structure with the vertical beam damage and the double damage using the semi-rigid and 

rigid joint models were shown in Figures 3.16 and 3.17 respectively. From Figure 3.15(a),

the damaged beam is identified clearly for diagonal element damage scenario using the 

Table 3.11 Scenarios design

Damage
scenarios

Damage degrees Location
Bar 36 Bar 104

Healthy - -

Diagnal 
member 
damage

35%
-60%

83%
Vertical 
member 
damage

-
35%
60%
83%

Double 
damage 83%

35%
60%
83%
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semi-rigid joint model. Also, the NMSEC value is increased with the damage level. Figure 

3.15(b) shows the results using the rigid joint model and there are large errors at the two 

ends of the bridge. The similar observations are also obtained from Figures 3.16 and 3.17. 

As shown in Figure 3.17, the damage in the diagonal member is more clearly identified 

than that of the vertical member. The damage could be identified clearly using the semi-

rigid joint model compared with the rigid joint model. 

 
(a) Semi rigid joint model 

 

 
(b)Rigid joint model 

Figure 3.15 elemental NMSEC of diagonal bar damage 

 
(a) Semi rigid joint model 
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(b) Rigid joint model 

Figure 3.16 Elemental NMSEC of vertical bar damage 

 

 
(a)Semi rigid joint model 

 
(b)Rigid joint model 

Figure 3.17 elemental NMSEC of double bar damage scenarios 

3.5.3. Joint damage detection performance (semi rigid joint model) 

This section investigates the joint damage detection of the frame structure. All damage 

scenarios and damage severities are simulated as Section 3.5.1 except that the joint 

damage is simulated by reduction of IYY. For example, 60% joint damage at location 36 

means that the IYY of Element 36 is 0.4×(0.27× IYY).  
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(a) joint damage of diagonal bar 36 

 
(b) joint damage of vertical bar 104 

 
(c) double joint damage on bar 36 and bar 104 

Figure 3.18 NMSEC of double joint damage scenario 

The NMSEC values for the structure with three joint damage scenarios are shown in 

Figure 3.18. Unlike beam damage, the joint damage inevitably influences nearby 

connected elements. From the figure, the joint damage could be detected for all scenarios 

(e.g. around 1/3 of the span in Figure 3.18 (b)). In Figure 3.18(a), Element 36 and its 

nearby elements (Elements 33-44) show a higher NMSEC value. Same observation could 

be obtained for the joint damage around the vertical beam (Figure3.18(b)). In the joint 

damage around the diagonal beam 36 (Figure 3.18(a)) and double joint damage (Figure 
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3.18(c)), some elements at the middle span (bar 80-86) also show slightly higher NMSEC 

values. In all scenarios, the NMSEC value increases with the damage level, and it could 

be used to indicate the severity of the joint damage. 

3.6 SUMMARY 

A novel generic element for nonuniform beams with semi-rigid joints has been developed 

and the modal strain energy-based damage index has been proposed for structural damage 

detection. An 8-meter spatial frame bridge model has been built in laboratory. Numerical 

and experimental results show that the proposed method is reliable and accurate to detect 

the structural damage of the spatial frame structures. The following conclusions can be 

obtained, 

1) Compared with the existing methods with the rigid joint model, the damage of beam 

members can be identified accurately using the semi-rigid joint model.  

2) The results show that the damage in diagonal members is easier to detect than that of 

vertical elements. The member damage is more easily detected than joint damage. 

This is because joint damage usually influences nearby members, leading to most 

nearby elements with high damage index values.  

3) The proposed method can improve the damage detection accuracy for the complex 

spatial frame structures in practice.  
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CHAPTER 4 STRUCTURAL DAMAGE DETECTION USING 

PCA AND CONVOLUTIONAL NEURAL NETWORK 

4.1 OVERVIEW 

In this chapter, a 2D CNN is used to detect the damage in a numerical bridge model based 

on structural vibration information. CNNs were trained using the mode shapes and 

normalized modal strain energy-based index (NMSEC) respectively. The NMSEC features 

were conducted with PCA dimension reduction before inputted into the CNN. We intend 

to overcome the common challenges of the vibration based CNNs like high computational 

cost, poor robust ability and make corresponding suggestions.  

4.2 METHODOLOGY 

4.2.1 Convolutional neural network (CNN) architecture for damage detection 

The CNN consists of multiple convolutional layers, activation layers, pooling layers, fully 

connected layers, and output layers. The following are brief descriptions of these layers.  

1) Input layer.  

The input layer could be vectors, matrices, images, or any other kinds of data. For damage 

detection problems, mode shapes, acceleration signals and images of the target structures 

are commonly used inputs. 

2) Convolutional layer.  
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The convolutional layer, a key operation of the CNN, is a process of weights learning of 

kernels, with various kernels sliding over the input features. This process could also be 

simplified as Output = kernelInput, where  represents the convolution operation. The 

depth of kernels is the same as the input, but the width and height are smaller. Each kernel 

produces an output feature and then all kernel features are stacked together and considered 

as the input of the next layer.  

3) Activation layer.  

The convolutional layer is usually followed by a nonlinear activation layer to enable a 

nonlinear mapping and efficient training. Commonly used activations include Sigmoid, 

Tanh, and more recently, Rectified linear unit (Relu). Relu is used in this chapter since 

it’s faster and does not have the gradient vanishing effect (Wang et al., 2020). 

4) Pooling layers.  

Pooling is a process of compressing feature dimensions (width and height) by taking the 

maximum or average value in each input patch. The two most used pooling are Max-

pooling and Average-pooling. It is worth noting that pooling is not a learning process but 

only a size reduction operation. It could reduce the number of parameters to learn and 

improve training speed.  

5) Fully connected (FC) layers.  

The fully connected layers are the same as in artificial neural networks. At this point, the 
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outputs are usually flattened into 1D dimensional vectors before going through the fully 

connected layers.   

6) Output layer.  

The output layer constrains the network’s output through the number of units and 

activation function. The unit number determines the output classes while the activation 

constrains the output value. For example, the sigmoid activation converts arbitrary values 

into the [0,1] interval, and the Relu activation zeros out negative values. In this study, the 

CNN output layer ended with a sigmoid activation to achieve damage quantification.  

7) Mini-batch.  

Training an entire huge dataset at one time is slow and sometimes infeasible because of 

memory constraints. In such cases, the datasets could be split into small batches for 

calculating error and updating coefficients of the model. Each fixed size of samples is 

called a mini-batch and the fixed number of samples in each mini-batch is called the batch 

size. For each iteration, a small subset of the whole dataset was processed. The mini-batch 

technique could improve computational efficiency as could allow reaching the global 

minimum quickly in the cost function. 

8) Dropout.  

Drop out is one of the most used techniques for reducing overfitting. When applying a 

dropout layer, the dropping out rate is required, representing the fraction of features that 
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are zeros out, and this rate is usually set between 0.2-0.5. After building the CNN, 

repeated tests are conducted to modify the model. During the training, overfitting problem 

might occur. This is when the model overfit to the training data, and in such cases, the 

validation accuracy degrades with the training process going. Reducing the network’s size 

and regularization techniques are effective ways to avoid overfitting (Yang et al 2019). 

To achieve better performances, hyper-parameters such as the learning rate, the unit 

number of each layer and dropping out rate could be tuned. These hyper parameters are 

usually decided based on empirical results or parameter studies.  

4.2.2 Loss and damage evaluation indices 

The loss function is also called the objective function. It measures the error between the 

predicted value and the true value. The commonly used MSE loss function is as follows. 

𝑀𝑆𝐸 =
1

𝑛
∑(𝑌𝑖 − �̂�𝑖)

2

𝑛

𝑖=1

 
(4.1) 

where Y and �̂�are the true and predicted value of the ith sample among the total n samples. 

Another commonly used loss function is the mean absolute error (MAE) of the difference 

between the predictions and the targets, as shown in Eq. (4.2).  

𝑀𝐴𝐸 =
1

𝑛
∑|𝑌𝑖 − �̂�𝑖|

𝑛

𝑖=1

 
(4.2) 

More often, the MAE is used as a training metric during the training process while MSE 

is used for testing the CNN performances. In this study, an updated MSE loss function 

UMSE, a training metric MAED and two testing performance evaluation indices DLA and 
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MAEDD were specifically developed for damage detection using a popular framework 

Pytorch. 

4.2.2.1 The UMSE loss function  

For the damage detection problem, the training label of CNN is a matrix of which all 

locations are zeros except for some locations with specified damage degrees. Hence these 

locations in the training matrix could be divided into two categories: one called the intact 

region, the other called the damaged region. Figure 4.1 illustrates the intact regions (white) 

and damaged regions (blue) using an example target matrix, where there are 9 samples in 

total and three damage scenarios, three samples for each scenario. A loss function based 

on this location division could be designed as follows. 

UMSE=α×MSEI + β×MSED (4.3) 

where MSEI and MSED are the mean square error of the wrong detection in the intact 

region and the failure detection in the damaged region respectively. α and β are the 

weighting factors for MSEI and MSED respectively. In detail, they could be calculated by 

the following equations. 

𝑀𝑆𝐸𝐼 =
1

𝑚
∑(𝑌𝑖 − �̂�𝑖)

2

𝑚

𝑖=1

𝑚 = 1,2 … 𝑛𝑖 
(4.4) 

𝑀𝑆𝐸𝐷 =
1

ℎ
∑(𝑌𝑖 − �̂�𝑖)

2

ℎ

𝑖=1

ℎ = 1,2 …𝑛𝑑 
(4.5) 

where 𝑛𝑖 and 𝑛𝑑 are the number of intact and damaged locations in the label. It is worth 

noting that the sum of α and β is one as they represent weighting factors for the intact and 
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damaged regions which are the two components that make up the matrix of the training 

label. For example, after certain damage localization accuracy is reached, an assignment 

of β=0.8 allows the network to focus on the iterations on damage degrees rather than 

wasting computation on damage locations. Moreover, an updated loss function with 

α=β=0.5 is just the same as the MSE loss function except they differ only in scale.  

 
Figure 4.1 The example target matrix 

4.2.2.2 MAED training metric 

The MAED, the Mean absolute error (MAE) of failure detection in the damaged region, 

was proposed and used as a training metric. Suppose there are m damage scenarios, each 

with Nm training samples and for each sample i, there are k damaged elements, the MAED 

is defined as follows. 

𝑀𝐴𝐷 =
1

𝑁1+2𝑁2…+𝑘𝑁𝑚
(∑ |𝑇𝑖1 −𝑃𝑖1 | + ∑ ∑ |𝑇𝑖𝑗 − 𝑃𝑖𝑗 |

2
𝑗=1 +⋯+𝑁2

𝑖=1
𝑁1
𝑖=1

∑ ∑ |𝑇𝑖𝑗 −𝑃𝑖𝑗 |
𝑘
𝑗=1

𝑁𝑚
𝑖=1 )  

(4.6) 
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where Tij and Pij stand for the true and predicted damage degree of the jth damaged member 

for the ith sample; Basically, MAED is the mean absolute difference of the true and 

predicted matrix in the damaged region. While the MAE evaluates the prediction matrix, 

the MAED evaluates only the damage degrees in the damage region. Thus, the MAED is 

a more straightforward way of validating the model prediction accuracy on damage 

degrees. 

4.2.2.3 Damage localization and quantification indices: DLA and MAEDD  

It is of vital importance to fully evaluate the performance of the deep learning network 

on damage identification. The commonly used MSE and MAE indices do tell the damage 

detection accuracy as a whole but fail to indicate the accuracy of damage localization and 

quantification separately. To solve this problem, two indices, damage localization 

accuracy (DLA) and MAE of damage degrees (MAEDD) were proposed. The DLA is 

defined as follows: 

𝐷𝐿𝐴 =
𝑅

𝑇𝑁
 

(4.7) 

where R represents the number of samples of which the CNN outputs the correct locations 

of damaged members, while TN is the total number of testing samples. The definition of 

MAEDD is defined as follows. 

𝑀𝐴𝐸𝐷𝐷 =
1

⬚
(
1

𝑁1
∑|𝑇𝑖 −𝑃𝑖  |

𝑁1

𝑖=1

+
1

2𝑁2
∑∑|𝑇𝑖𝑗 −𝑃𝑖𝑗 |

2

𝑗=1

+⋯+
1

𝑘𝑁𝑚
∑∑|𝑇𝑖𝑗 − 𝑃𝑖𝑗 |

𝑘

𝑗=1

𝑁𝑚

𝑖=1

𝑁2

𝑖=1

) 

(4.8) 
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Different from the testing MSE and MAE, the MAEDD evaluates only the damage degree 

prediction accuracy of damaged members. The smaller the MAEDD, the higher damage 

quantification accuracy the network achieves. To avoid the incorrectly identified 

members have impacts on both DLA and MAEDD, the calculation of MAEDD accounts 

only the correctly identified bars. With DLA and MAEDD, the overall performance of 

CNN on damage detection could be fully evaluated.  

4.2.3 Mode shape based and modal strain energy-based damage index  

This section introduces the commonly used features for structural damage detection, 

namely, mode shape and modal strain energy-based features. To get structural mode 

shapes, modal analysis is conducted. For free vibrations of the undamped structure, this 

could be represented by (Paz & Kim, 2019) 

(𝐾 − 𝜔𝑖
2𝑀)𝜑𝑖 = 0, 𝑖 = 1……𝑛𝑑𝑓  (4.9) 

where K and M are the stiffness matrix and mass matrix. 𝜔𝑖 is the 𝑖𝑡ℎ natural frequency 

and 𝜑𝑖 is the modal shape vector corresponding to the 𝑖 𝑡ℎ frequency. In this study, the 

first six mode shapes of the designed damaged scenarios were extracted using the finite 

element software Ansys 19.0. 

The modal strain energy of the eth structural element in mode i is defined as (Wang & Xu, 

2019): 

𝑀𝑆𝐸𝑖
𝑒 =

1

2
𝜑𝑖
𝑒𝑇𝐾𝑒𝜑𝑖

𝑒 , 𝑖 = 1, … ,𝑛𝑑𝑓, 𝑒 = 1,… , 𝑛𝑡𝑒 
(4.10) 

where 𝜑𝑖𝑒 is the nodal displacement of the eth element in mode i, namely the mode shape. 
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𝐾𝑒 is the stiffness matrix of the eth element. The total modal strain energy of the mode i 

could be calculated as: 

𝑀𝑆𝐸𝑖 =∑𝑀𝑆𝐸𝑖
𝑒

𝑛𝑡𝑒

𝑒=1

  𝑖 = 1, … , 𝑛𝑑𝑓, 𝑒 = 1,… , 𝑛𝑡𝑒  
(4.11) 

Using Eq.(4.11), the modal strain energy of eth element in ith mode is normalized by the 

modal energy summation of the eth element: 

𝑁𝑀𝑆𝐸𝑖
𝑒 =

𝑀𝑆𝐸𝑖
𝑒

𝑀𝑆𝐸𝑖
  𝑖 = 1, … , 𝑛𝑑𝑓,   𝑒 = 1, … , 𝑛𝑡𝑒  

(4.12) 

Structural damage, simulated by stiffness parameter variation of the element, leads to 

changes of the 𝑁𝑀𝑆𝐸𝑖𝑒. Thus, an index called normalized modal strain energy change 

(NMSEC) is defined based on the difference of the 𝑛𝑚𝑠𝑒𝑖𝑒  before and after damage, as 

expressed in Eq. (4.13). 

𝑁𝑀𝑆𝐸𝐶 = (𝑁𝑀𝑆𝐸𝑖
𝑒)𝑑 − (𝑁𝑀𝑆𝐸𝑖

𝑒)ℎ  , 𝑒 = 1,2, … 𝑛𝑡𝑒  (4.13) 

where  (𝑁𝑀𝑆𝐸𝑖𝑒)𝑑  and (𝑁𝑀𝑆𝐸𝑖𝑒)ℎ  denote the normalized modal strain energy in 

damaged and healthy scenarios.  

Another commonly used modal strain energy based index for damage detection is MSEBI, 

defined as follows(S. Lee et al., 2021). 

𝑀𝑆𝐸𝐵𝐼𝑒 = 𝑚𝑎𝑥 [0,
(𝑁𝑀𝑆𝐸𝐶𝑖

𝑒)𝑑 − (𝑁𝑀𝑆𝐸𝐶𝑖
𝑒)ℎ

(𝑁𝑀𝑆𝐸𝐶𝑖
𝑒)ℎ

] 
(4.14) 

In this study, the original NMSEC datasets were used for CNN training rather than MSEBI. 

The main reason is that the NMSEC does not have the max operation, meaning that 

negative values are also taken into consideration. Also, the NMSEC matrix is filled with 

values in the range of [-1,1] which are inherently suitable for the training since no 
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normalization will be needed in such a case. We firstly conducted the principal component 

analysis (PCA) on the original NMSEC data and then fed the produced datasets into the 

CNN. 

4.2.4 Effects by element and mode based on principal component analysis (PCA) 

In this study, the effects by element and mode were also investigated. This started with 

dimension reduction of the original NMSEC dataset with PCA. After that, the selected 

PCs could be expressed by the linear combination of the original variables. In this study, 

the original NMSEC input is 960 dimensional (160 elements×6modes). Suppose 36 PCs 

were selected (this result could be further seen in Section 3.4), these selected PCs could 

be expressed as follows.  

[𝑃𝐶1 𝑃𝐶2 … 𝑃𝐶36] = [𝑋1 𝑋2 … 𝑋960] [

𝑤11 𝑤1,2 ⋯ 𝑤1,36
𝑤2,1 𝑤22 ⋯ 𝑤2,36
⋮ ⋮ ⋮ ⋮

𝑤960,1 𝑤960,2 ⋯ 𝑤960,36

]     (4.15) 

where PCj and Xi is the jth principal component and the ith original variable. The wij is the 

coefficient of the ih original variable in the jth principal component, namely the loadings. 

This equation could be simplified as  

𝑃 = 𝑋𝑊 (4.16) 

where P, X and W denote the principal component matrix, original variable vector, and 

the loadings. The importance of original variables could be measured by multiplying the 

principal component matrix P by the explained variance ratio vector, as written in  

𝑃𝑅𝑇 = 𝑋𝑊𝑅𝑇  (4.17) 
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𝑃𝑅𝑇 = [𝑋1 𝑋2 … 𝑋960] [

𝑤11 𝑤1,2 ⋯ 𝑤1,36
𝑤2,1 𝑤22 ⋯ 𝑤2,36
⋮ ⋮ ⋮ ⋮

𝑤960 ,1 𝑤960,2 ⋯ 𝑤960,36

] [

𝑟1
𝑟2
⋮
𝑟36

] 

 

= [𝑋1 𝑋2 … 𝑋960] [

𝑤11𝑟1 + 𝑤1,2𝑟2 +⋯+ 𝑤1,36𝑟36
𝑤2,1𝑟1 +𝑤22𝑟2 +⋯+𝑤2,36𝑟36

⋮
𝑤960,1𝑟1 +𝑤960,2𝑟2 + ⋯+ 𝑤960,36𝑟36

]                              (4.18) 

 

where R=(r1, r2,... r36) and rj stands for the explained variance ratio of the jth principal 

component (PCj). Eq.(4.18) could also be written in the following simple form. 

𝑋𝑊𝑅𝑇 = 𝑐1𝑋1 + 𝑐2𝑋1 + ⋯+ 𝑐960𝑋960 (4.19) 

where 𝑐𝑖 = 𝑤𝑖1𝑟1 + 𝑤𝑖2𝑟2 +⋯+𝑤𝑖,36𝑟36 , 𝑖 = 1,2, … 960 . 𝑐𝑖  , the coefficient for Xi, 

represents the importance of 𝑋𝑖 for the whole dataset.  

To evaluate the effect of the element, for the element k, the coefficients in the six modes 

could be added together and then normalized with respect to the total coefficients’ 

summation. This could be considered as the coefficient for the bar element k, as written 

in 

𝐸𝑘 =
∑ |𝑐160(𝑚−1)+𝑘 |
6
𝑚=1

∑ |𝑐𝑛|
960
1

    𝑚 = 1,2… 6,  𝑘 = 1,2,… 160, 𝑛 = 1,2, … 960 
(4.20) 

Accordingly, the effect by mode could also be evaluated according to the following 

equation. 

𝑀𝑖 =
∑ |𝑐𝑘|
𝑘=160𝑖
𝑘=160(𝑖−1)

∑ |𝑐𝑛 |960
1

  𝑖 = 1,2… 6, 𝑘 = 160(𝑖 − 1), 𝑛 = 1,2, … 960 
(4.21) 

where 𝑀𝑖 represents the effects of mode i. The normalized 𝑀𝑖 were used for mode effect 

evaluations. The effect evaluation on bar elements and modes would potentially work as 
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a guidance for representative information selection for damage detection and thus would 

greatly reduce the computational cost.

4.2.5 Flowchart of this chapter

For clarity, Figure 4.2 illustrates the procedures of damage detection on a truss bridge 

model using the proposed loss function and indices in this study. Firstly, the mode shapes 

under three damaged scenarios were extracted from a FE model of a truss bridge. These 

mode shapes were trained in CNN with the proposed UMSE as a loss function. After the 

training, DLA and MAEDD were used for performance evaluation on damage detection. 

Moreover, the modal strain energy was extracted and corresponding NMSEC were

calculated and then conducted with PCA. Finally, dimension-reduced data (The PCs, 

namely the NMSEC-PCA data) were sent into the CNN for damage detection. The damage 

detection effects by elements and modes were analysed based on theories in Section 4.2.4. 

Figure 4.2 Flowchart of the investigations in this pter

As shown in Figure 4.2, a novel method based on the UMSE loss function was proposed 

and performance indices damage localization accuracy (DLA) and mean absolute error 

of damage degrees (MAEDD) were used for damage detection problems in this chapter. 

The UMSE loss function achieved faster convergence speed and higher accuracy on 
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damage quantification than the commonly used MSE.

4.3. NUMERICAL SIMULATIONS 

4.3.1 Numerical modelling 

Figure 4.3 shows the finite element model of a truss bridge constructed in Ansys 

workbench 19.0. The bridge model consists of 56 nodes and 160 beam elements. It is with 

a length of 8.4 m, a width of 0.6 m, and a height of 0.6 m. The left end of the model is 

simply supported. The right-end are constrained in X, Z directions and free in the 

longitudinal direction Y. The bridge model is a frame structure with members simulated 

by beam 188 element with circular tube section, giving 336 (56×6) degree-of-freedom 

(DOF). The Young’s modulus and density are 2.01011 Pa and 7800 kg/m3. The designed 

damage scenarios consist of single damage, double damage, and triple damage. Details 

of the damaged element number and locations are given in Table 4.1. All the damage is 

simulated by elastic modulus reduction of bar elements. For instance, 10% damage of a 

certain bar element means a 10% reduction of the elastic modulus on that bar. 

 
Table 4.1 Scenarios for damage detection 

Scenarios Damaged elements  
No. Locations 

Single 
Damage 129 

 

Double 
Damage 82,96 

 

Triple 
Damage 

13,89 
100 

 

*Elements in red are damaged 
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Figure 4.3 Finite element model of the truss bridge

4.3.2 Implementation details of CNN 

Modal analysis was conducted on the numerical model of the truss bridge. The first six 

mode shapes of the designed damaged scenarios were extracted and taken as the original 

input of CNN. Figure 4.4 shows the data preparation and the architecture of CNN. As can 

be seen, the original data were nodal displacement data, namely the mode shapes, at six

DOFs in six modes and they were flattened to one-dimensional (1D) vector of shape 1×

2016 (56 nodes×6 DOFs×6 modes). To apply 2D convolution, they were reshaped to a 

square matrix of 1×45×45 with 9 padded zeros. Before being fed into CNN, these mode 

shapes were rescaled to a range of [-1,1] using min-max normalization. 

Figure 4.4 The data preparation and the architecture of the CNN 

To get enough training samples, for each scenario, 2000 randomly generated damage 
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degrees from 0 to 1 were generated and corresponding mode shapes were extracted and 

used for training. The sample size of 2000 per scenario was selected based on a balance 

between computational feasibility and ensuring a comprehensive representation of the 

damage range from 0 to 1. This number of samples allows the model to adequately capture 

varying damage degrees while maintaining computational efficiency. In total, the dataset 

concluded 6000 samples from three scenarios, each with 2000 samples. The dataset 

division was 70% (4200 samples) for training, 15% (900 samples) for validation, and 15% 

(900 samples) for testing. 

Table 4.2 presents the architecture of the mode shape-based CNN. It contained two 

convolutional layers with kernel size 3, each followed by a ReLu activation and max-

pooling layer with a kernel of size 2×2. After the convolution, damage features were 

flattened into vectors and went through multiple fully connected (FC) layers. The first FC 

layer contained 300 neurons while the output layer contained 160 neurons as there are 

160 potential damaged bar elements. Since CNN aimed to quantify damage, the output 

layer was a regression layer with the sigmoid activation. The proposed UMSE (Eq. (4.3)) 

was used as the loss function and rmsprop as the optimizer. The learning rate was 0.0002. 

The proposed MAED (Eq. (4.6)) worked as a training matric and DLA (Eq. (4.7)) and 

MAEDD (Eq. (4.8)) were used for performance evaluation. The models were 

implemented using PyTorch within the PyCharm IDE and trained on a G7 7700 laptop 

with an Intel Core i7-10750H CPU @ 2.60 GHz, 16.0 GB of RAM, and an NVIDIA 

GeForce RTX 2070 GPU for accelerated computations. The training time depends on the 
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model architecture, and for a typical CNN with two convolutional layers as described in 

this section, training on 4200 samples took approximately 10 minutes. 

Table 4.2 Mode shape based CNN architecture  

Layer Layer type Kernel 
size 

No. of kernels/ 
neurons 

Stride Activation Output shape 

1 Input - -  - 45×45 
2 Convolution 3×3 100 1 ReLu 43×43 
3 Max 

pooling 
2×2  2 - 21×21 

4 Convolution 3×3 300 1 ReLu 19×19 
5 Max 

pooling 
2×2  2 - 9×9 

6 FC - 300 - - - 
7 Output - 160 - Sigmoid - 

4.3.3 Data augmentation 

Data augmentation is a commonly used technique for mitigating overfitting in computer 

vision. With data augmentation, more training samples could be generated from the 

existing training samples. In this study, 900 extra training samples were generated by 

adding 5 % Gaussian noise to the original datasets using the Eq. (4.22), 300 for each 

damage scenario. 

ℎ̅ = ℎ(1 + 0.05𝑅) (4.22) 

where ℎ is the original data, and ℎ̅ is the data with 5% noise.𝑅 follows a distribution of 

𝑅~𝑁(0,1).The added noise follows a distribution of N (0,1). By feeding the network with 

these extra samples, the learning ability and anti-noise ability are expected to improve. 

4.3.4 Modal strain energy based PCA 

The NMSEC training data was conducted with PCA for dimensionality reduction. The 
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explained variance by the first forty components was shown in Figure 4.5. As can be seen, 

the first 10 components contained approximately 90% of the variance, while around 30 

components described close to 100% of the variance. In this case, 36 components, 

retaining 99.98% of the variance, were selected. With the PCA transform, the dimension 

of the train data matrix was reduced from the original 960 (160 elements×6modes) to 36. 

The transformed matrix was then reshaped to 6×6 and inputted into CNN. The 

architecture of NMSEC-PCA based CNN is given in Table 4.3 The proposed UMSE and 

MAED were used as loss function and training metric. DLA and MAEDD were used for 

performance evaluation.  

Table 4.3 NMSEC-PCA based CNN architecture  

Layer Layer type Kernel 
size 

No. of kernels/ 
neurons 

Stride Activation Output 
shape 

1 Input - -  - 6×6 
2 Convolution 2×2 100 1 ReLu 5×5 
3 Max 

pooling 
2×2  2 - 2×2 

4 Convolution 2×2 300 1 ReLu 1×1 
5 FC - 300 - - - 
6 Output - 160 - Sigmoid - 

 

 
Figure 4.5 Explained variance by components 
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4.4. RESULTS AND DISCUSSIONS  

4.4.1 Architecture selection 

Network architecture selection is important to achieve high performance. In this section, 

three architectures with a different number of convolutional layers were compared and 

the commonly used MSE was used as a loss function. Figure 4.6 shows the validation loss 

comparison of these architectures. Among all, one convolutional layer CNN with 100 

kernels (CNN1) converges the fastest, while the network with two convolutional layers 

(CNN 2) achieves the best loss performance. After training, for each CNN, 900 samples 

were tested, and a prediction matrix could be obtained. Table 4.4 shows the prediction 

results when evaluated with three statistical indices. It can be seen that CNN2 outperforms 

other architectures in terms of testing MSE (2.1903×10-05), DLA (99.66%), and MAEDD 

(0.026). Overall, CNN with two convolutional layers achieved the best performance and 

was thus used for the rest of this chapter. 

 
Figure 4.6 Validation loss of different architectures 
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Table 4.4 Comparisons of architectures 

Architectures Test MSE DLA MAEDD 
100 6.3165×10-05 96.33% 0.038 

100-300 2.1903×10-05 99.66% 0.026 
100-300-300 6.3046×10-05 98.00% 0.037 

4.4.2 Effects of the loss function  

To study the effects of weighting factors α and β on CNN performance, a parameter study 

on the updated loss function was conducted. The validation curves of the updated MSE 

(UMSE) with selective weighting parameter combinations were compared, as presented 

in Figure 4.7. It can be seen that the updated MSE with α=0 and β=1 (C8) converged the 

fastest among all, followed by α=0.2 and β=0.8 (C7). Moreover, with enough epochs of 

800, most MAED curves converged to the same level. Interestingly, for cases where β<0.4, 

namely C1-C3, the MAED curves remained stable at around 0.5 at the beginning. For C1, 

the MAED even ended at around 0.5. This is because the CNN is trapped into a local 

optimum of a prediction matrix filled mostly with numbers close to zero. In such a case, 

the values in the damaged regions were also near zero, leading to a poor damage 

localization accuracy. 

 
Figure 4.7 Comparisons of validation curves relating to different weighting factor combination 
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Testing performances of these combinations (C1-C8) were also compared in terms of 

testing MSE, DLA, and MAEDD as shown in Table 4.5. It can be seen that from C2 to C7, 

as β grows, the DLA remained stable at around 99% while both testing MSE and MAEDD 

saw improvements, test MSE from 4.466 e-5 to 1.307e-5 and MAEDD from 0.0359 to 

0.0170. Among all combinations, C7(α=0.2 and β=0.8) performed the best, achieving low 

test MSE (1.307e-05) and MAEDD (0.0170).  

When α=1, C1 reached a random DLA of 33% as the prediction matrix was filled mostly 

with near-zero numbers. As expected, in C8 where β = 1, the CNN achieved the best 

MAEDD but the worst DLA (0.78%). This means that it failed to locate damage in 893 

out of a total 900 testing samples. The main reason is that the UMSE of C8 considered 

only the values in the damaged regions, leading to a prediction matrix where intact regions 

filled mostly with values around 0.5. 

Based on the above analysis, β relates to how close the damage degrees are predicted, 

namely the MAEDD, while α relates to the damage localization accuracy (DLA). In other 

words, with high β, the updated MSE would usually achieve good damage quantification 

Table 4.5 CNN testing results evaluation of the updated MSE 

Combination 
No. Loss function of CNN Testing 

MSE DLA (%) MAEDD 

C1 α=1 and β=0 0.0041 33.33 0.517 
C2 α=0.9 and β=0.1 4.466e-05 98.33 0.0359 
C3 α=0.7 and β=0.3 1.920e-05 99.78 0.0202 
C4 α=0.6 and β=0.4 2.741e-05 97.67 0.0265 
C5 α=0.5 and β=0.5 (MSE) 2.221e-05 99.00 0.0268 
C6 α=0.4 and β=0.6 2.355e-05 98.67 0.0236 
C7 α=0.2 and β=0.8 1.307e-05 98.67 0.0170 
C8 α=0  and β=1.0 0.2558 0.78 0.0086 
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performance, while with a high α, a better damage localization accuracy could be 

expected. 

It is worth noting that, in practice, α and β should be rigorously assigned according to 

situations. Generally, β in the range of [0.3,0.8] is recommended to get a higher CNN 

performance as well as avoid local optimum. For the rest of this study, the updated MSE 

with α =0.2 and β=0.8 was used as it achieved not only a faster convergence speed but 

also the best testing MSE, MAEDD, and a relatively higher DLA. 

Merits of the proposed UMSE loss function are as follows: 1). It has high flexibility as 

the users could weigh the damage localization and damage quantification by assigning 

different weighting factor values. 2). The updated MSE loss function (β>0.5) avoids 

unnecessary iterations on the intact region but focuses on only the predictions of damage 

degrees in the damaged region, thus achieving a higher damage quantification accuracy. 

3). The practical engineering projects usually consist of thousands of bar elements , 

resulting in a large CNN training label matrix. The customized UMSE would reduce the 

epoch number, and iteration time and enhance the damage detection accuracy of the 

network. 

4.4.3 Feature visualization 

To demonstrate the automatic feature extraction ability of the proposed CNN, the t-

distributed Stochastic Neighbor Embedding (t-SNE) was used for feature visualization. 

The t-SNE was firstly proposed by Maaten (Maaten & Hinton, 2008) for dimension 
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reduction of high-dimensional data for visualization. The t-SNE firstly converts the points 

similarities to joint probabilities and then takes the Kullback-Leibler divergences between 

joint probabilities of the low-dimensional space and high dimensional data as cost 

function (Lin et al. 2017). The results of t-SNE varies due to the different initializations. 

 
Figure 4.8 CNN feature visualization with t-SNE: 

(a) the input (b) after first Conv layer (b) after the second Conv layer (d) after the FC layer 

In this study, the testing datasets (900 samples, three scenarios each with 300 samples) 

were inputted into the CNN for visualization. It is worth noting that as the original outputs 

of the convolutional layers were four dimensional (samples, channel, width, height), they 

were reshaped to two dimensional before conducting the t-SNE transformation. Four 

output features were visualized as shown in the Figure 4.8, including the features of the 

original testing data, features after two convolutional layers and features after fully 
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connected layer. It can be seen that the original testing data were dispersed into several 

clusters (Figure 4.8 (a)) while after the two convolution layers, fewer clusters were seen. 

In Figure 4.8 (d), most points from the same scenarios gather in the same cluster, 

indicating good feature extraction ability of the proposed CNN.

4.4.4 Effects of data augmentation 

For comparison, two Convnets, CNN1 and CNN2, were trained, CNN 2 with data 

augmentation while CNN 1 without. Implementation details of data augmentation could 

be seen in Section 4.3.3. After the training, the original 900 testing samples were added 

with 3% and 5% noise and were tested respectively. Figure 4.9 shows the validation loss 

and metric (MAED) of the Convnets. It can be seen that the CNN 2 converges slightly 

faster in the first 200 epochs. A positive effect of data augmentation on anti-noise ability 

could be seen in Table 4.6 where the prediction results of noise-free 3% and 5% noise 

polluted samples are evaluated in terms of testing MSE, DLA, and MAEDD. When tested 

with noise-free samples, both CNN1 and CNN2 achieved high damage detection accuracy, 

with the testing MSE from 1.30e to 5-1.97e-5, DLA at around 98%, and MAEDD at 

around 0.018. However, when tested with noise polluted samples, both saw noticeably 

declined performances in all three indices. Despite of the declines, CNN 2 achieved higher 

damage localization and quantitation accuracy than CNN 1 for both 3% and 5% noise 

polluted data.   

To further prove the effectiveness of data augmentation, prediction results of three 
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randomly selected samples (sample 26, 418, and 635) were presented in Figure 4.10. It 

can be seen that 1) when tested with non-noise testing data, both CNN1 and CNN 2 

achieved high detection accuracy on damage localization and quantification in all samples; 

2) for the polluted data (3% and 5% noise), CNN2 outperformed CNN1 on damage 

localization and quantification. Particularly, in Figure 4.10 (b), for the 5% noise polluted 

sample, CNN 1 failed to detect the damaged bar 96 and showed false alarms on other 

elements while CNN 2 successfully identified the damaged bars with acceptable 

prediction accuracy on damage degrees. Overall, although Convnets trained by the 

original mode shape datasets could achieve high damage detection accuracy, they may 

exhibit slightly poor robust ability. In such cases, data augmentation is a way to mitigate 

this problem.  

 

 

 
 

(a) Loss curves of the CNNs (b)Validation curves of the CNNs 
Figure 4.9 Comparisons of the CNN with and without data augmentation  

Table 4.6 CNN performance evaluation using noise-free and 5% noise testing samples 

Test 
samples 

Testing MSE DLA MAEDD 
CNN 1 CNN 2 CNN 1 CNN 2 CNN1 CNN 2 

Noise-free 1.3067e-5 1.9706e-05 98.67% 98.88% 0.0170 0.0186 
3% noise 0.0003 0.0002 89.22% 92.33% 0.0850 0.0649 
5% noise 0.0006 0.0004 81.00% 88.11% 0.134 0.0941 
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(a) Prediction results of sample 26 (damaged bar number: 129) 

 
(b) Prediction results of sample 418 (damaged bar number: 82,96) 

 
(c) Prediction results of sample 635 (damaged bar number: 13,89,100) 

Figure 4.10 Prediction results of selective samples using CNN1 and CNN2 

4.4.5 The NMSEC-PCA based CNN 

According to Section 4.3.4, the PCA dimensionality reduction operation produced a 

NMSEC-PCA based input matrix of 36 dimensional. It was then reshaped to 1×6×6 and 

fed into the CNN. After the training, the features of the CNN using testing samples were 
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visualized using t-SNE method, as presented in Figure 4.11. Figure 4.12 presents 

validation curve comparisons between the mode shape-based method and the NMSEC-

PCA based method. Accordingly, Table 4.7 compares these two methods in terms of input 

shape, training time, and testing indices. Testing results on selected samples (sample 

26,418, and 635) of these two CNNs were also compared in Figure 4.13. Overall, it can 

be seen that these two methods achieved almost the same convergence speed and testing 

performance. In terms of testing DLA and MAEDD, the NMSEC-PCA based CNN 

achieved slightly higher accuracy. However, NMSEC-PCA based method is significantly 

ten times faster than the mode shape based. This advantage would enable the NMSEC-

PCA based method to have more potential for real application on the damage detection 

problem of large-scale structures. 

 
Figure 4.11 NMSEC-PCA based CNN feature visualization with t-SNE: 

(a) the input (b) after first Conv layer (b) after the second Conv layer (d) after the FC layer  
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Table 4.7 Comparisons of the two methods 

Methods Mode shape based NMSEC-PCA based 

Input shape 4200×1×45×45 4200×1×6×6 

Training time Around 10 minutes Within a minute 

Testing MSE 1.3067e-05 3.9385e-5 

Testing DLA 98.67% 99.22% 

Testing MAEDD 0.0170 0.0154 

 

 
Figure 4.13 Prediction results of selective samples using mode shape based CNN and NMSEC-PCA based 

CNN 

 
Figure 4.12 Validation curve comparisons between mode shapes 

based and NMSEC-PCA based index 
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4.4.6 Effects by element and mode 

From the obtained PCs, effects by element and mode were calculated according to Eqs. 

(4.20) to (4.22) as shown in Figures 4.14 and 4.15. Bar elements 10,108 and 115 account 

for the first three most valuable pieces of modal strain energy information. Figure 4.15 

shows that mode 4 accounts for the most information of the whole dataset while mode 6 

contributes the least information, thus mode 6 could be abandoned. In the future research, 

this analysis could help estimate the sensitivity of elements and modes on the modal strain 

energy.  

 
Figure 4.14 The effect by bar element 

 
Figure  4.15 The effect by mode 
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4.5. SUMMARY 

This section proposed a novel updated loss function UMSE and damage detection 

evaluation indices for damage detection problems and demonstrated the efficiency of the 

proposed method on a truss bridge model. PCA was conducted on the NMSEC for 

dimension reduction. The NMSEC-PCA based data were trained by CNN and damage 

detection accuracy were compared to the mode shape-based CNN. The following 

conclusions could be drawn. 

1) CNN with two convolutional layers were selected as it achieved the best damage 

detection accuracy. The t-SNE were employed to visualize the output of each 

network layer to demonstrate the automatic feature extraction of the proposed 

CNN. 

2) The proposed UMSE loss function outperforms the commonly used MSE as it 

could greatly reduce the computational cost, achieve faster convergence speed and 

higher detection accuracy, and is highly flexible for practical engineering 

structures applications as it could be customized according to needs. Based on this 

research, a combination of α=0.2 and β=0.8 in the UMSE is suggested for damage 

quantification problems. 

3) For a clear comparison, we used both testing MSE and proposed indices (DLA 

and MAEDD) for evaluation. A near-zero testing MSE cannot indicate an overall 

high detection accuracy since they are inherently near zeros in this study. In reality, 
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even a slight change in testing MSE could mean a great difference in the damage 

accuracy. An example of this could be seen in Table 4.6. When the two CNNs 

were tested by 5% noise polluted samples, there is only a slight difference in the 

testing MSE (CNN1:0.0006 and CNN2:0.0004) while notable differences were 

seen in DLA and MAEDD. Therefore specifically developed indices are needed.  

4) When tested with noise polluted data, the CNN with data augmentation achieved 

better detection accuracy than the one without. In practice, the mode shape-based 

CNN may exhibit a slightly poor robust ability. In such a case, data augmentation, 

that is generating samples by adding noise, could be a way to mitigate the noise 

effect. 

5) Compared to mode shape input, the NMSEC-PCA as input is computationally 

cheaper yet equally effective. This reduction in computation cost would allow 

CNN more suitable for real structural application, especially for large-scale and 

complex structures. 

6) Effects by element and mode were analysed based on NMSEC-PCA index. The 

result could potentially provide guidance on selecting valuable components from 

the original modal strain energy training data for the future research.  
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CHAPTER 5 ENHANCING BRIDGE HEALTH 

MONITORING WITH LSTM-VAE: A SEMI-SUPERVISED 

LEARNING FRAMEWORK FOR DAMAGE DETECTION 

5.1 INTRODUCTION 

Structural health monitoring (SHM) system guarantees the integrity and safety of key 

infrastructures like bridges. Due to their importance, the early detection and repair of 

damage in time in these bridges are important as there would be a huge human and 

financial loss if structural failure happened. However, the health monitoring of the bridges, 

particularly those consisting of thousands of joints and members, can be a challenging 

task due to the complexity and the vast amounts of data recorded by numerous sensors 

(Avci et al., 2021). 

Identifying and quantifying damage in complex bridge structures is not straightforward. 

Traditional methods often require a lot of manual inspection, and they can be time-

consuming, subjective, experience-based, and prone to errors. Also, the structural data 

can be influenced by various environmental factors, making it a complicated task. Thus, 

it is needed to have a more robust and automated yet accurate damage detection method. 

Recent research has seen a shift towards data-driven methodologies, particularly those 

using machine learning methods, to address these challenges. These approaches offer a 

systematic and objective means of processing and analysing structural data, significantly 

reducing the effect of external factors, and enhancing the detection accuracy of subtle 
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damage indicators. Among the various machine learning techniques, unsupervised 

learning models, especially those using Variational Autoencoders (VAE), have been 

promising in identifying anomalies within complex datasets. Importantly, the VAEs do 

not require prior knowledge of damage conditions. This is particularly beneficial in 

situations where the damaged states are not predefined or entirely unknown. 

The variational autoencoders, with LSTM layers (LSTM-VAE), are used for time series 

anomaly detection. This model combines the LSTM layer's and VAE capabilities. LSTM 

is for capturing temporal dependencies in sequential data, and VAE is for compressing 

high-dimensional data into meaningful latent representations. Such a combination is 

particularly useful for analysing time-series data, making it a powerful tool for structural 

damage detection in bridges. 

Despite the potential of LSTM-VAE models in SHM, their application to bridge health 

monitoring, particularly in quantifying damage levels without damage data, remains 

underexplored. To the best of our knowledge, no research has been found employing 

LSTM-VAE specifically for SHM, highlighting a significant gap in the field. This study 

aims to fill this gap by proposing a novel application of the LSTM-VAE network tailored 

for bridge SHM. We introduce the Average Reconstructed Error (ARE) and the Statistical 

ARE (SARE) as innovative indices for damage quantification, providing a direct and 

objective measure of the extent of structural damage. Furthermore, a semi-supervised 

learning framework that combines t-SNE with ARE features is proposed, achieving 

significant accuracy in classifying damage levels. This methodology's effectiveness is 
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validated through both numerical simulation and experimental results, proving its 

practicality and potential to significantly enhance maintenance strategies for bridges. 

This chapter not only contributes to the advancement of machine learning applications in 

civil engineering but also addresses a critical need for more efficient, reliable, and data-

driven approaches to structural health monitoring. Through this research, a significant 

step towards enhancing the safety and longevity of bridges is taken, thereby supporting 

the sustainability of our infrastructure. 

5.2 METHODOLOGY   

5.2.1 LSTM-VAE networks for enhancing structural health monitoring 

Bridges, with their complex structures comprising numerous joints and members, 

generate huge amount of data when attached with hundreds of sensors. Current machine 

learning methods, mostly designed for computer vision tasks, may not be directly 

applicable to the specific demands of multi-dimensional bridge sensor data. These 

methods usually reshape information from various sensors into a single sample, which 

can lead to the loss of critical spatial information essential for accurate damage detection. 

Furthermore, many existing approaches are supervised methods that rely on known 

damage information for training which is often not available structures in practice. 

To address these challenges, a novel semi supervised network framework specifically 

designed for analysing multi-channel time-series data from structural damage detection 
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system is introduced. This approach maintains spatial information that is important in the 

detection of damage. Two key indices within this framework were also developed: 

Average Reconstructed Error (ARE) and Statistical ARE (SARE) are indices derived 

from the unsupervised part of model's output. ARE offers a direct measure of potential 

damage, while SARE refines this measurement by averaging anomalies across multiple 

samples to improve reliability. 

The steps of the semi-supervised method for damage detection are as follows: 

1) Data is collected from an array of sensors that are placed along the healthy bridge 

structure and then pre-processed for analysis. 

2) The pre-processed data is then trained in the LSTM-VAE model, an unsupervised 

learning component that has been designed for multi-channel input, effectively 

capturing both temporal and spatial features intrinsic to the data.  

3) After the training, the whole datasets are sent to the trained model to compute the 

Average Reconstructed Error (ARE), offering an initial damage quantification by 

comparing the ARE of the healthy baseline with that of the unknown samples. 

4) t-SNE is used to visualize the latent features of the datasets, improving the 

interpretative understanding of the datasets. 

5) ARE and t-SNE are combined to create a comprehensive feature for damage 

classification. 

6) An SVM classifier is subsequently trained using this feature, achieving the 

classification of the bridge's structural damage state. 
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This methodology is illustrated in Figure 5.1 and it takes advantage of LSTM-VAE in 

dealing with multi-channel time-series data, which is more suitable for the practical needs 

of structural engineering than standard image-based machine learning models. With the 

proposed indices, we establish a robust and practical framework for the two-step task of 

damage detection: initial damage quantification and subsequently classifying the severity 

of detected damages. This method contributes to a comprehensive strategy for the 

maintenance and safety of bridge infrastructures in practice.

Figure 5.1 The flowchart of this chapter

5.2.1.1 VAE network architecture

Variational Autoencoders (VAE) is suited for data compression and generation, encoding 

data into a latent space with a defined probabilistic distribution. Different from the 

traditional autoencoders, VAEs are designed to be generative, being able to generate new 

data using latent space representation. The newly generated data matches the statistical 
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properties of the original dataset. Figure 5.2 illustrates a typical VAE that receives 𝑥 as 

input and encodes it into the latent space. Then the decoder receives the input from the 

latent space and produces 𝑥′ which shares the statistical property with 𝑥 (“Variational 

Autoencoder,” 2024). This function could be useful for the aim of predictive maintenance 

and anomaly detection.    

 

Figure 5.2 Variational autoencoder (VAE)(“Variational Autoencoder,” 2024) 

5.2.1.2 RNNs with LSTM layer  

Recurrent Neural Networks (RNNs) with LSTM layer are designed to break the 

limitations of traditional RNNs by dealing with long-range dependencies. The key layers 

to their architecture are LSTM layers which contain units called LSTM cells. LSTM layer 

consists of a series of memory cells that can maintain information in memory for long 

periods. The key components of these cells are the gates: the input, the output, and the 

forget gates. These gates regulate the flow of information into and out of the cell, and the 

decision to retain or discard data at each timestep. This gating mechanism allows LSTM 

layers to capture temporal dynamics and dependencies within the data, which is crucial 
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for accurate modelling and prediction of structural responses. This is particularly 

beneficial in Structural Health Monitoring (SHM) applications that involve time-series 

data from sensors monitoring the integrity of structures over time. 

5.2.1.3 LSTM-VAE  

The LSTM-VAE is an advanced machine learning model (Terbuch et al., 2022). Merging 

the LSTM's temporal modelling capabilities with the VAE's compression ability, the 

LSTM-VAE network is adept at reducing high-dimensional sensor data into a latent 

representation that contains the most essential features for accurate reconstruction and 

damage detection. This combination, consisting of the LSTM's encoding of time-series 

data into a latent space followed by the VAE's reconstruction of the data, ensures that the 

temporal integrity of the signals is maintained, improving anomaly detection in structural 

damage.  

Informed by the advanced framework detailed in Terbuch et al.'s paper (Terbuch et al., 

2022) on hybrid machine learning for anomaly detection in industrial time-series data, 

this chapter proposes a similar LSTM-VAE network architecture for multi-channel time-

series analysis using the MATLAB programming.  

An experimental study has been conducted on an eight-meter bridge model under the 

external excitation. 10 wireless accelerometers are installed on the bridge to capture 

structural acceleration responses of the bridge. The sensor data is typically organized into 

samples, each sample consisting of 10 channels ×5120 data points that represent the 
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signals from all ten sensors over a given period. 

Figure 5.3 shows the architecture of the LSTM-VAE and its architecture illustrates a 

process of signal transformation. The original signal, structured in batches of ten channels

each containing 5120 data points, is fed through a sequence of LSTM layers that capture 

temporal dependencies and significant features of the bridge acceleration data. This 

information is then encoded into a latent space, providing a representation that is decoded 

back into the original data space, producing the reconstructed signals. Discrepancies 

between the original signal and reconstructed signal were used to detect and quantify 

structural damage, illustrating the network's ability to find subtle patterns indicative of 

damage.

Figure 5.3 The flowchart of LSTM-VAE architecture

5.2.2 Reconstructed Error-Based Indices

In structural health monitoring, accurately evaluating damage through data interpretation, 

particularly for large-scale or complex bridges, remains a significant challenge. To 
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address this, we introduce two metrics: Average Reconstructed Error (ARE) and 

Statistical ARE (SARE), both of which are derived from the reconstruction errors of the 

LSTM-VAE model. 

• Metric 1: Average Reconstructed Error (ARE) 

The absolute reconstructed error is often used as an anomaly detection threshold in 

unsupervised learning methods. Given the multi-channel nature of the sensor data in this 

study, which employs unsupervised learning, there is a need for a damage quantification 

index that is customized for machine learning based damage detection using multi-

channel sensor data. The ARE is thus proposed as the mean of the absolute differences 

between the original and the reconstructed signal across all sensor channels. This measure 

is intended to evaluate damage levels using the multi-channel LSTM-VAE model. The 

basic idea is that as damage influences structural response, an increase in ARE is expected 

with increasing damage severity, making it a potential metric of structural damage levels. 

The ARE for a single sample i with N data points across H channels is defined as: 

𝐴𝑅𝐸 =
1

𝑁𝐻
∑ ∑ |𝑥

𝑛,ℎ

(𝑖)
− �̂�

𝑛,ℎ

(𝑖)
|

𝑁

𝑛=1

𝐻

ℎ=1

 
(5.1) 

where 𝑥
𝑛,ℎ

(𝑖)  is the original signal value and �̂�
𝑛,ℎ

(𝑖)
 is the reconstructed signal value at the nth 

data point for the hth channel of the ith sample. 

• Metric 2: Statistical ARE (SARE) 

To gain a clear measure of the damage level, particularly when multiple samples from the 

same scenario are available for damage detection, SARE is introduced. This index is the 
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average of the ARE values across all samples for a given scenario, thus reducing sample-

specific noise and variability. SARE for a scenario with M samples is defined as: 

𝑆𝐴𝑅𝐸 =
1

𝑀
∑ 𝐴𝑅𝐸𝑖

𝑀

𝑖=1

 
(5.2) 

This approach allows for a more robust and statistically significant assessment of damage 

levels, which is particularly useful in scenarios where individual sample errors may vary 

due to environmental factors or operational noise. 

This methodology allows for a more robust and statistically significant assessment of 

damage levels, which is particularly valuable in scenarios where individual sample errors 

may vary due to environmental factors or noise. The Statistical ARE (SARE) is especially 

practical, as it provides damage measurement by averaging the ARE over multiple 

samples, thereby offering more stable damage evaluation results. This is crucial when 

monitoring structures that are subject to varying conditions or in cases where data 

collection may be inconsistent. With SARE, the assessment of structural health is not only 

more reliable but also reflects a true representation of the structure's condition over time. 

The proposed indices, ARE and SARE, are robust indicators customized for damage 

detection methods using multi-channel machine learning techniques, serving as a 

practical tool in health monitoring system for complex structures. 

5.2.3 Semi-Supervised Learning Framework 

In this section, the semi-supervised learning framework is proposed by combining the 

LSTM-VAE and SVM. This approach combines the benefits of unsupervised feature 
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extraction with the classification ability of supervised learning models. 

In the semi-supervised learning section, the feature includes t-SNE features and the ARE 

values. The ARE values, derived from the reconstruction error of the LSTM-VAE 

network, provide a quantitative measure of the deviation from normal structural behaviour. 

By combining t-SNE with ARE, we generate feature datasets that capture both the 

inherent structural damage information and the quantifiable damage metrics. 

The generated feature is then used as input to a Support Vector Machine (SVM) classifier. 

SVM is chosen for its robustness and effectiveness in handling non-linear classification 

problems. It features in finding the optimal hyperplane that maximizes the margin 

between the classes in the feature space, which now represents varying levels of structural 

damage. 

In summary, Section 5.2 presents a structured methodology that combines an LSTM-VAE 

network with a semi-supervised learning framework to address structural damage 

detection in bridges. By using the LSTM's ability to capture temporal patterns and the 

VAE's efficient data compression, this approach establishes a robust framework for 

extracting features. The application of t-SNE provides a visual interpretation of the data, 

while the combination of ARE with SVM classification shows the potential of machine 

learning in improving SHM applications. The validation of this approach, using both 

numerical and experimental data, proves the effectiveness of the proposed method. This 

research could serve as a practical tool for engineers and infrastructure managers, 
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improving better decision-making in the maintenance and damage detection of bridge 

structures. 

5.3. EXPERIMENTAL MODEL AND MODAL ANALYSIS 

An experimental bridge model was built, and modal analysis was conducted to obtain the 

basic structural information. Seven scenarios were designed to conduct experimental 

studies in this section. 

5.3.1 Experimental model and setup 

A 14-span spatial truss bridge with dimensions of length × width × height: 7.98 m× 0.6 m 

×0.6 m was constructed, left end simply supported and the right end with a roller, as 

shown in the Figure 3.5. The bridge consists of 160 tube steel elements and 56 joints. The 

bridge consisted of two kinds of tube element members, diagonal (length 0.6m) and non-

diagonal members, all with a cross-section of an inner radius of 6mm and an outer radius 

of 9 mm. All members consist of three segments connected by screws, and they are 

connected to a L-shaped semi-rigid joint by bolts. 

Experimental instruments included a signal generator, a shaker, a power amplifier, a 

laptop, and wireless accelerometers. White noise excitation with a 10 V amplitude was 

produced, amplified through a power amplifier, and transferred to a shaker to induce 

vibrations, and the acceleration signals of the bridge were subsequently recorded by a 

laptop. More details about the experimental bridge and setup could be found in Section 
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3.3.

5.3.2 Sensor arrangement

Figure 5.4 illustrates the arrangement of ten sensors on the bridge, six sensors are 

distributed along the lower chord, and an another four are attached at the middle span. 

Under white noise excitation, 20-minute signals of vertical (Z) directions were recorded. 

All signals were normalized using the Z-score method before further processing. Figure

5.5 is twenty second acceleration signal of Sensor 4 in the vertical direction.

Figure 5.4 Sensor arrangement

Figure 5.5 Acceleration of Sensor 4 in the vertical direction

5.3.3 Modal analysis 

Modal analysis was conducted on the experimental bridge using ARTeMIS Modal 6.0

software. The modal analysis results are calculated based on the four sets measurement

described in Section 3.3. The four sets modelling in ARTeMIS can be found in Figure 

3.8(a). The stabilization diagram, provided in Figure 3.9(a) serves as a verification tool, 
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illustrating the stability of the estimated modes across a range of model orders, thereby 

confirming the accuracy of the identified natural frequencies. Table 3.2 lists the natural 

frequencies of the bridge's first six modes, obtained through the Stochastic Subspace 

Identification (SSI) method, consisting of three bending and three torsional modes. 

5.4 NUMERICAL STUDY 

5.4.1 The numerical bridge and model updating. 

A finite element model as shown in Figure 5.6 of the bridge was constructed in Ansys 

Workbench 19.0, mirroring the dimensions and structural properties of the experimental 

bridge. The finite element model comprises 56 nodes and 160 elements, each with a 

tubular cross-section to simulate the steel segments used in the experiment. Details of the 

material properties and cross-sectional dimensions are given in Table 3.4. 

 
Figure 5.6 The numerical bridge model 

Modal analysis was conducted on the numerical model and natural frequencies from the 

numerical model were compared with the experimental results. To address the natural 

frequency discrepancies between experimental and numerical model, model updating was 

performed as described in Section 3.4.3. This involved utilizing a generic element with a 

nonuniform cross-section member with semi-rigid joints at both ends. The updated 

numerical model showed markedly improved alignment with the experimental results. 
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The updated model serves as a fundamental model for the subsequent damage 

identification process. 

5.4.2 Data compression using the LSTM-VAE for damage quantification. 

5.4.2.1 Data preparation  

A 2100-second vertical white noise excitation was applied to the fifth node from the left 

of the bridge as depicted in Figure 5.7. The bridge dynamic response was then recorded, 

sampling the vertical direction signals at 256 Hz from 12 nodes that align with the 

experimental sensor positions. Figure 5.8 illustrates the force excitation segment of 100 

seconds and Figure 5.9 presents the corresponding raw acceleration signal from Sensor 1. 

An overlap ratio of 30% was applied to the total 2100-second time series to ensure 

thorough coverage of the dynamic behaviour. The resulting dataset for each of the seven 

damage scenarios, therefore, comprised 149 overlapping samples from 10 sensors, with 

every sample encompassing a time series of 5120 data points. Consequently, the dataset 

for each scenario is of size 149 samples ×10 sensors×5120 data points. After collection, 

the dataset was normalized using z-score normalization, ensuring comparability and 

consistency for machine learning analysis. 

 
Figure 5.7 Excitation location 



  

118 

 

Figure 5.8 The force excitation 

 

Figure 5.9 The vertical signal from Sensor 1 of the healthy scenario 

Seven damage scenarios were established to reflect conditions ranging from single to 

double bar damage, simulated by reducing the elastic modulus of the selected elements. 

Table 5.1 presents the designed damage scenarios applied to the bridge model, each 

labelled from S1 through S7. Scenario S1 shows the bridge in a healthy state with no 

damage. Progressively, Scenarios S2 to S7 introduce damage at various degrees to Bar 1 

and Bar 2, simulating real-world deterioration. For instance, S2 demonstrates a 35% 

damage degree applied on Bar 1, whereas S3 escalates this damage to 60%. The severity 

of damage continues to increase with S4, where Bar 1 experiences 83% damage in 

integrity. Scenarios S5, S6, and S7 illustrate double damages, combining 83% damage in 

Bar 1 with 35%, 60%, and 83% damage in Bar 2, respectively. The damage in each 

scenario is visually indicated on the bridge model, providing an intuitive guide to the 

location and level of structural damage. The damage was introduced to the bar by elastic 

modulus reduction. For instance, 60% damage on Bar 1 is simulated by reducing the 

original elastic modulus value to Young’s modulus. 
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Table 5.1 The scenario design 

 
Damage 
scenarios 

Damage degrees Location 
Bar 1 Bar 2 

S1 - - 
 

S2 35% - 
 

S3 60% - 
 

S4 83% - 
 

S5 83% 35% 
 

S6 83% 60% 
 

S7 83% 83% 
  

5.4.2.2 LSTM-VAE Architecture 

The designed LSTM-VAE architecture for this study combines a Long Short-Term 

Memory (LSTM) network with a Variational Autoencoder (VAE), forming a powerful 

tool for time-series analysis. The encoder consists of two LSTM layers with 100 and 60 

neurons, which process the input sequences to capture the inherent temporal correlations 

and encode them into a latent space. The VAE structure effectively organizes the latent 

space to support generative processes, enabling the efficient reconstruction of data. The 

decoder, mirroring the encoder, utilizes a 100-neuron LSTM layer for this purpose. 

This architecture is particularly well-suited for the high-dimensional and sequential 

nature of bridge monitoring data, as it compresses the time series while retaining vital 

structural health information. By training the LSTM-VAE with a careful selection of 

learning rate (0.001) over extensive training (1000 epochs), the network is trained to 
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discern tiny damage signatures from the sensor data. This results in a model that not only 

performs well in data compression but also provides an enhanced capability for damage 

quantification. 

5.4.2.3 Training Process and Testing 

The LSTM-VAE model was trained on a dataset from only the healthy bridge scenario to 

establish a baseline for normal structural behavior. During training, the Mean Squared 

Error (MSE) loss function was used to monitor and optimize the network's performance. 

Convergence of the MSE loss, as shown in Figure 5.10, indicates the model's ability to 

accurately reconstruct the input time series signals.  

 

Figure 5.10 Training process 

Subsequently, the model was evaluated using a testing dataset of 1043 samples, with 149 

samples labeled from S1 to S7. The Average Reconstructed Error (ARE) between the 

original and reconstructed signals served as an indicator for damage quantification. As 
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depicted in Figure 5.11, the ARE increases with the level of damage, providing a 

quantitative measure of structural damage. This relationship was further affirmed by the 

Statistical ARE plots (Figure 5.12), which show a clear trend of rising ARE values 

corresponding to increasing damage levels. 

To enhance the robustness of our findings, we analyzed the SARE using different sample 

sizes. The box plot using all 149 samples (Figure 5.12(a)) was compared against a reduced 

sample size of 20 (Figure 5.12(b)), showing that a larger dataset yields more accurate 

damage quantification results. Nonetheless, even with a smaller sample size, the resulting 

plot displayed consistent damage quantification trends.  

Figure 5.13's histogram of reconstructed error offers a view of the model's error 

distributions. The diversity in the shape and spread of these distributions across scenarios 

allows for a deeper interpretation of the model's performance. Specifically, the varied 

distribution widths suggest differing levels of uncertainty in damage quantification, while 

the central error range of the distributions relate to the model's typical error magnitude in 

each scenario. 

For further validation, a single sample from Sensor 3 was selected to demonstrate the 

LSTM-VAE’s reconstruction accuracy. Figure 5.14 compares the original and 

reconstructed signals in the time domain, and Figure 5.15 shows the Fast Fourier 

Transform (FFT) comparison. The close matching of the peaks in the FFT plots verifies 

the model's ability to preserve the original essential signal characteristics. 
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The outcomes of this comprehensive training and testing procedure, combined with the 

robustness of the SARE analysis, shows the LSTM-VAE model's dependability for bridge 

damage identification. The consistency and reliability demonstrated by the model, 

coupled with the proposed ARE and SARE indicators, not only detect damage with 

precision but also quantify it effectively, making it a promising tool for structural damage 

detection.

Figure 5.11 Testing ARE

(a) Statistical Box plot using all 149 samples (b) Statistical Box plot using 20 samples
Figure 5.12 Statistical ARE plot of the testing results
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Figure 5.13 The histogram of the ARE

Figure 5.14 The comparison of the original and reconstructed signals

Figure 5.15 FFT Comparison of the original numerical signal and reconstructed signal (Sensor 3)
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5.4.2.4 Latent Representation Visualization using t-SNE  

For bridge structures with thousands of joints and elements, the interpretation and use of 

sensor data is critical yet challenging. In the last section, the LSTM-VAE model plays a 

vital role in addressing this challenge by reducing the dimension from a 10-channel signal, 

each channel dense with 5120 data points, to a 5-dimensional latent representation. This 

reduction is particularly significant in the context of bridges, enabling the processing of 

extensive sensor information with efficiency and retaining essential structural health 

information. 

Once the data is compressed to latent space, the t-SNE (t-distributed Stochastic 

Neighbour Embedding) is employed to project the flattened latent space onto a two-

dimensional space, transforming complex and abstract high-dimensional data into a 

visual format that is easy to interpret. By subtracting the t-SNE features of a healthy 

baseline from the damaged scenarios, the plot in Figure 5.16 presents the different damage 

scenarios (S1 to S7), allowing for a direct visual comparison of the degrees of damage. 

The combined use of LSTM-VAE and t-SNE offers a practical solution for the health 

monitoring of large bridge infrastructures. It enables a rapid, clear assessment of 

structural health across a bridge's expanse, potentially averting structural failures. By 

providing a visual map of structural health, this method allows stakeholders to make data-

driven decisions with greater confidence and precision. 



  

125 

 

Figure 5.16 t-SNE features 

5.4.3 Semi-supervised learning for damage classification  

For the classification of bridge scenarios, two-dimensional t-SNE extracted from latent 

representation from Section 5.4.2 is employed as damage features. This technique proved 

effective for scenario classification, using the features for a clearer separation of damage 

states. 90% of the total 1043 samples is used for training and validation while the 

remaining 10% is for testing. 

In evaluating various classification models, we considered Support Vector Machines 

(SVM), Ensemble Bagged Trees, and Fine Trees. Based on the comparison of validation 

and testing accuracies, as shown in Table 5.2, the SVM model achieved the best 

performance, achieving a validation accuracy of 99.9% and a test accuracy of 100%. This 

exceptional performance shows the suitability of SVM for this semi-supervised learning 
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task, particularly when dealing with the high-dimensional, complex datasets typical in 

bridge health monitoring. 

The confusion matrices from the SVM validation and testing phases, depicted in Figure 

17(a) Validation and (b) Testing, further verify the effectiveness of the SVM approach. 

The validation phase exhibited high classification with a single misclassification, while 

the testing phase demonstrated perfect classification across all numerical scenarios. These 

results highlight the robustness of the SVM model in distinguishing between varying 

degrees of damage, enhancing its application as a reliable tool for semi-supervised 

learning in structural health monitoring.  

Table 5.2 Validation and test accuracy of semi-supervised methods 

Classification Model Validation accuracy Test accuracy 
SVM 100% 100% 

Ensemble bagged trees 91.3% 96.2% 
Fine tree 84.3% 86.5% 

 

  
(a)Validation (b)Testing 

Figure 5.17 Confusion Matrix using SVM for classification 

The robustness of the semi-supervised classification method was thoroughly evaluated 
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by introducing noise at various levels, e.g. 10%, 20%, and 30% to the whole original 

signal dataset. This evaluation is designed to reflect potential real-world disruptions 

where environmental noise may affect data integrity. The noisy datasets were firstly sent 

to the LSTM-VAE to extract latent representations, subsequently processed with t-SNE, 

and finally tested using the trained SVM classifier. 

Figure 5.18 compares the original signal to one with 30% added noise. The test confusion 

matrices, displayed in Figure 5.19, prove the highly robust performance of the LSTM-

VAE semi-supervised method. The results of high testing classification accuracies of 100% 

for 10% noise, 99.8% for 20% noise, and 96.1% for 30% affirm the proposed method's 

high precision and robustness, illustrating its ability to consistently deliver accurate 

classifications despite the presence of increasing levels of noise. 

 

Figure 5.18 Comparison of the original signal and 30% noise signal 
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(a) 10% noise: 100% accuracy (b) 20% noise: 99.8% accuracy 

 

 

(c) 30% noise: 96.1 % test accuracy  

Figure 5.19 Testing Confusion matrix using noisy signals 

5.5 EXPERIMENTAL STUDY   

5.5.1 Experimental study 

The experimental study was designed to validate the LSTM-VAE semi-supervised 

method's efficacy. Following the setup described in Section 5.3, we simulated damage by 

substituting structural elements of the experimental bridge with bars of reduced cross-

sections, as depicted in Figure 5.20. The original bars were replaced by bars of smaller 

cross sections with smaller moments of inertia to simulate the damaged scenarios. The 
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experiment involved capturing acceleration signals under multiple damage scenarios, as 

detailed in Table 5.1. Beginning with the intact S1 scenario, we applied white noise 

excitation and recorded the acceleration response. Subsequently, Bar 1 was replaced with 

a smaller cross-section bar, representing the S2 damage scenario, as illustrated in Figure 

5.20. This process was iterated for each damage case, culminating in seven scenarios, 

with signal acquisition and recording undertaken for each. In the experimental procedure, 

the bridge was subjected to white noise excitation by a shaker, and the response signals 

were recorded for 20 minutes for each damage scenario. These signals were then 

segmented into 85 samples for each scenario, employing a 30% overlap ratio to enrich 

the dataset and enhance the continuity across samples.

Figure 5.20 bar replacements and dimensions

5.5.2 Experimental verification

5.5.2.1 LSTM-VAE 

In the verification phase, the Long Short-Term Memory Variational Autoencoder (LSTM-

VAE) model was trained using a dataset consisting of healthy scenarios from both 

numerical simulations and experimental models, 234 samples in total—149 from the 

numerical model and 85 from experiments. The model's architecture and parameters were 
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kept consistent with those used in the preliminary numerical study. The training loss curve, 

depicted in Figure 5.21, shows a satisfactory reduction over epochs, indicating the 

model's learning progress. 

After the training phase, all experimental signals —595 samples across 10 sensors, each 

with a time series of 5120 points—were used to test the LSTM-VAE to assess the model’s 

ability of damage quantification and signal reconstruction. The ARE between the original 

and reconstructed signals was calculated to serve as for damage quantification. As 

illustrated in Figure 5.22, the scatter plot shows individual ARE values for each sample, 

revealing variances in reconstruction. Notably, Figure 5.23 provides a clear visual 

indication that the SARE tends to increase with the severity of damage in subsequent 

scenarios. This trend serves as an important confirmation of the model's sensitivity to 

damage, although an interesting deviation is observed in Scenario 4, where the SARE 

does not follow the incremental pattern seen in other scenarios. Although the severity of 

damage increases from S1 to S7, it is important to note that the Statistical ARE (SARE) 

does not show a perfectly consistent rise, as demonstrated by the values for S4 and S5. 

This discrepancy may be attributed to the complex nature of how damage impacts 

different structural components, where variations in local stiffness might influence the 

recorded responses. Further investigation into these factors could provide insights into 

refining the model’s performance in quantifying damage severity more consistently. 

The consistency between the original and reconstructed signals, particularly for samples 

from Scenarios 1 (S1) and 7 (S7), is analysed in Figures 5.24 and 5.25. These figures 
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demonstrate that the model can accurately reconstruct signals, with a strong correlation 

between the original and the reconstructed data. This capability is further validated by the 

Fourier Transform comparisons in Figure 5.26, which show that the reconstructed signals 

retain essential structural information, a critical aspect of accurate signal representation.  

Moreover, the testing of LSTM-VAE on all experimental datasets of 595 samples, enabled 

the extraction of latent representations on samples from damaged scenarios. These 

representations were condensed into a two-dimensional space through the T-distributed 

Stochastic Neighbour Embedding (T-SNE) technique, facilitating the upcoming 

classification task. This dimensionality reduction is a crucial step towards using a semi-

supervised method to classify the states of structural damage. 

 
Figure 5.21 Training curve  
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Figure 5.22 Testing ARE using the experimental signals from all scenarios.

Figure 5.23 Statistical ARE bar plot
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Figure 5.24 The reconstructed sample and original signal (Sample 20 from Scenario 1) 

 

 
Figure 5.25 The reconstructed sample and original signal (sample 500 from Scenario 7) 

 

Figure 5.26 FFT comparison  

5.5.2.2 Semi-supervised classification  

Dimensionality reduction on the latent features from all scenario samples was performed 

using the t-SNE method. The feature set was reduced from the 5-dimensional sensor data 

(each with a 5120-point time series) to a smaller 2-dimensional t-SNE space. The reduced 



  

134 

feature set was then classified using an SVM. 90% of the samples (535 out of a total of 

595) are used for training the classifier and the remaining 10% for testing. The 

classification results showed an accuracy of 32.5% for validation and 32.5% for testing, 

as detailed in Figure 5.27. The inclusion of an additional dimension with 3D t-SNE, 

shown in Figure 5.28, led to better classification accuracy, with validation and testing 

accuracies improving to 41.0% and 35.6%, respectively. This suggests that the additional 

dimension provided the SVM with more information within the data, crucial for effective 

classification. 

A notable improvement in classification performance was achieved by combining the 3D 

t-SNE features with the ARE. This combination resulted in a substantial increase in 

accuracy, with validation and testing accuracies rising to 68.8% and 71.2%, respectively 

(Figure 5.29). The effectiveness of this integrative approach confirms that combining the 

t-SNE feature of latent representations with error metrics like ARE enhances the model's 

ability to classify different scenarios. 

Upon reviewing Figures 5.27, 5.28, and 5.29, it is evident that certain scenarios were 

more challenging to classify compared to the numerical scenarios, due to the similarity in 

damage patterns or the presence of noise within the signals. Specifically, the matrices 

indicate that while the model performs well in distinguishing certain scenarios, there is 

room for improvement in others, especially where the number of false positives and false 

negatives is higher. 
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The improved outcomes with the integrated feature set, particularly when incorporating 

the ARE, highlight the proposed method's potential in experimental scenarios. These 

results underscore the viability of the method for practical applications, demonstrating its 

capacity to effectively discern structural states in a diverse dataset, thus proving its value 

for real-world structural health monitoring. 

  

(a)Validation accuracy 32.5% (b)Testing accuracy 32.2% 
Figure 5.27 Confusion Matrix with 2d t-SNE feature 

  

(a)Validation accuracy 41.0% (b)Testing accuracy 35.6% 
Figure 5.28 Confusion Matrix with 3d t-SNE feature 
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(a)Validation accuracy 68.8% (b)Testing accuracy 71.2% 
Figure 5.29 Confusion Matrix with 3d tSNE and ARE feature 

5.6 SUMMARY 

This section introduces an innovative approach to bridge health monitoring, designed for 

complex structures characterized by numerous joints and elements. The novelty of this 

study lies firstly in the introduction of Average Reconstructed Error (ARE) as a novel 

index for damage quantification, providing a direct measure of structural damage 

quantification. Further, the study proposes a semi-supervised learning framework that 

combines t-SNE with ARE features, achieving a notable 71% accuracy in damage 

classification on experimental scenarios. The efficacy and applicability of the proposed 

methods are rigorously validated using an 8-meter experimental bridge model, showing 

their practicality for real-world scenarios. The results suggest that this approach could 

contribute to the enhancement of maintenance strategies for bridges, providing a step 

towards more data-driven management of structural health.  
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CHAPTER 6 CWT BASED DAMAGE QUANTIFICATION 

OF BRIDGES USING CONVOLUTIONAL VAE  

6.1 OVERVIEW 

This chapter introduces an unsupervised learning approach to quantify bridge damage 

through a convolutional Variational Autoencoder (VAE). A numerical investigation was 

conducted to explore the ability of the VAE to reconstruct the Continuous Wavelet 

Transform (CWT) based images and detect damage from the original CWT images, as 

indicated by the Average Reconstructed Error (ARE). The experimental study is 

conducted to verify the feasibility and practicability of the VAE method on bridge damage 

detection, using actual sensor data to detect damage in a physical bridge model. This 

chapter comprehensively demonstrates the unsupervised VAE method's capability for 

damage quantification using the numerical to experimental study. 

6.2 METHODOLOGY   

This section outlines the methodology used for bridge damage detection using a CWT-

based Convolutional Variational Autoencoder (VAE). VAE is an unsupervised machine 

learning model that combines principles from convolutional neural networks (CNNs) and 

probabilistic models, as detailed in Section 5.2.1.1. The CWT based VAE architecture 

employed in this section consists of an encoder and a decoder, with the purpose of 

learning compact representations of the input CWT data and reconstructing them for 
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comparison. 

In the encoder phase, latent features are extracted from the input Continuous Wavelet 

Transform (CWT) images, which represent the time-frequency characteristics of the 

bridge’s structural responses. These latent features are passed through a probabilistic 

distribution to encode the input into a latent space with defined probabilistic properties. 

This allows for more robust handling of structural variations in the data, enabling better 

generalization when detecting structural damage. 

In the decoding phase, the latent representations are reconstructed into the original CWT 

image format, allowing for a direct comparison between the original and reconstructed 

images. The Average Reconstructed Error (ARE) and Statistical ARE (SARE), as 

presented in Eqs. (5.1) and (5.2), between these images serves as the primary indicator of 

structural damage. Higher ARE and SARE values suggest greater discrepancies between 

the original and reconstructed signals, indicative of more severe damage. This approach 

makes the CWT based Convolutional VAE particularly suited for identifying subtle but 

progressive damage states that might not be detectable using traditional methods. 

The CWT process is conducted using the Morlet wavelet function in MATLAB, which is 

widely applied for signal analysis due to its time-frequency localization properties. The 

Morlet wavelet is a product of a complex exponential function and a Gaussian window, 

expressed as (Yan & Miyamoto, 2006)   

𝜓(𝑡) = 𝜋−
1

4𝑒𝑗𝑤0𝑡𝑒
−𝑡2

2                                                 (6.1) 
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where 𝑤0  is the central frequency of the wavelet. The CWT is implemented through the 

convolution of the wavelet function with the signal, represented as (Kim & Melhem, 2004) 

𝐶𝑊𝑇(𝑠, 𝜏) = ∫𝑥(𝑡)
1

√𝑠
𝜓∗ (

𝑡−𝜏

𝑠
)𝑑𝑡                                       (6.2) 

with 𝑠 as the scale factor and 𝜏 as the time shift, and 𝜓∗ the complex conjugate of the 

wavelet function. This process not only shows the time-frequency characteristics of the 

signal but also provides necessary analytical dimensions for damage detection. 

By combining CWT for signal representation and convolutional VAE for reconstruction 

and anomaly detection, this methodology effectively captures both localized and global 

damage patterns in the bridge structure. 

6.3 NUMERICAL STUDY  

 6.3.1 Numerical model and data preparation  

A numerical model was built in Ansys workbench19.0 and it was updated considering 

element stiffness updating and joint stiffness updating, as proposed in Chapter 3. The 

parameters of this model can be found in Section 5.4.1. With this updated numerical 

model, a white noise excitation of 2100 seconds was applied on the fifth node from the 

left of the bridge of the lower chord to collect the structural acceleration responses. The 

white noise excitations were generated as a Gaussian distribution function with a zero 

mean and a standard deviation of one in MATLAB. These signals were then amplified by 

a factor of 100 to simulate the magnitude of forces. Due to the computation limitations, 
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the generated force was divided into twenty-one segment signals, each consisting of a 

100-second signal. An example of 100 seconds generated force can be seen in Figure 6.1. 

Each of these excitation segments was applied on the numerical model one by one to 

record the corresponding vertical acceleration responses at 10 locations for seven 

scenarios as designed Table 5.1. Figure 6.2 uses the green points to indicate the positions 

where accelerations are recorded. An example the vertical acceleration response from the 

middle span is given in Figure 6.3.  

 
Figure 6.1 The Gaussian white noise force excitation of 100 seconds 

 
Figure 6.2 Recorded acceleration locations 

 
Figure 6.3 The vertical acceleration response from the middle span location 

Each location's (called channel in the following) data is segmented into overlapping time 

windows, each lasting 20 seconds, with a sampling rate of 256 Hz, resulting in a high-

resolution data structure of 5120 points per segment. This overlapping window process, 

with a 30% overlap ratio. This operation results in 149 samples for each scenario with 

seven scenarios in total. 

Normalization of the signals is performed using the Z-score method, standardizing the 



  

141 

data to have zero mean and unit variance, thereby eliminating potential bias due to varying 

signal magnitudes across the different samples. The normalized data segments are then 

processed with the wavelet transform. 

The processing is a multi-step procedure designed to transform the raw acceleration signal 

into a format suitable for a Variational Autoencoder (VAE). The following data 

manipulation strategy detailed in this section presents the conversion of one-dimensional 

acceleration data into two-dimensional time-frequency representation images using 

Continuous Wavelet Transform (CWT) presented as Eqs. (6.1) and 6.2 in Section 6.2. 

This conversion is crucial for capturing both temporal and frequency characteristics 

inherent in structural responses, transforming each sample of the one-dimensional signals 

to two-dimensional images which are then resized to a size of 112 by 112 pixels, a suitable 

size for the input layer of the convolutional VAE. Also, each CWT image is normalized 

to ensure pixel intensity values range between 0 and 1and then stored as training and 

testing datasets of the VAE model.  

The dataset encompasses 1043 samples, with each sample corresponding to 20-second 

segments from a total signal duration of 2,100 seconds, captured by ten sensors. These 

signals are normalized and transformed into CWT images, each with a dimension of 

112×112 pixels, forming a 4D dataset across ten sensor channels. Figure 6.4 shows the 

CWT images representing the time-frequency characteristics of the structural response. 

The x-axis (originally time) and y-axis (originally frequency) have been resized to fit the 

112x112 input dimensions required for the VAE model, and thus, represent relative time 
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and frequency scales rather than exact values. The colour indicates the magnitude of the 

wavelet coefficients, with brighter colours representing higher energy content in the 

signal. 

The organized and structured approach to data processing outlined is made for structural 

health monitoring, ensuring that the raw structural response data is converted into a 

refined format, ready for the application of damage detection and analysis methods in 

machine learning techniques. 

 

 

   

(a) sensor 1 (b) sensor 2 (c) sensor 3 

   

(d) sensor 4 (e) sensor 5 (f) sensor 6 
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6.3.2 Convolutional VAE network  

The convolutional VAE architecture, as shown in Table 6.1, uses a non-symmetric 

structure with an encoder featuring convolutional layers, a fully connected layer, and 

ReLU activations for potent non-linear data transformation. It includes a subsequent mean 

and log-variance sampling stage for latent space projection. In contrast, the decoder 

reconstructs the CWT images using transposed convolutional layers, concluding with a 

sigmoid activation to match the output to the original signal distribution’s size. 

   

(g) sensor 7 (h) sensor 8 (i) sensor 9 

 

  

(j) sensor 10   
Figure 6.4 CWT images across different sensors (random sample 10) 

(X-axis: Time (seconds), Y-axis: Frequency (Hz), Amplitude: colour) 
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With the 1024 samples from seven scenarios, only those from the healthy scenario are 

trained. All other samples from six damaged scenarios are used for testing. During 

training, an Adam optimizer is employed to refine the VAE's parameters, with initial 

settings critical for achieving a stable and effective learning process. The training data, 

consisting of 149 samples from the bridge's undamaged state, is shuffled at each epoch 

onset to enhance model robustness. Loss value is recorded by presenting mean squared 

error (MSE) loss across the 1,000 epochs, ensuring the VAE's learning accuracy in 

reconstructing the healthy state of the bridge. By using the undamaged scenario samples 

for training, the VAE establishes a benchmark for the bridge's baseline state, which is 

critical for subsequent damage identification. 

Table 6.1 The convolutional VAE Architecture  

Network Layer Activations 

Encoder 

Image input 112(S) ×112(S) ×10 (C) ×1 (B) 
Convolutional 1 56 (S) × 56(S) × 32 (C) ×1 (B) 
Relu 56 (S) × 56(S) × 32 (C) ×1 (B) 
Convolutional layer 2 28 (S) × 28(S) × 64 (C) ×1 (B) 
Relu 28 (S) × 28(S) × 64 (C) ×1 (B) 
Fully connected layer   1 (S) × 1 (S) ×128 (C) ×1 (B) 
Mean and log-variance sampling  - 

Decoder 

Feature input 64 (C) × 1 (B) 
Projection and reshape layer 28 (S) ×  28(S)  × 64  (C) ×1 (B) 
Transposed Convolutional Layer 1 56 (S) ×  56(S)  × 64  (C) ×1 (B) 
Relu 56 (S) ×  56(S)  × 64  (C) ×1 (B) 
Transposed Convolutional Layer 2 112(S) ×112(S) × 32  (C) ×1 (B) 
Relu 112(S) ×112(S) × 32  (C) ×1 (B) 
Transposed Convolutional Layer 3 112(S) ×112(S) × 10  (C) ×1 (B) 
Sigmoid  112(S) ×112(S) × 10  (C) ×1 (B) 
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6.3.3 Numerical results discussion 

Figure 6.5 presents the training loss curve of the VAE, showing decreasing loss over 

epochs, proving the model's convergence. After the training, all samples (147 samples × 

7 scenarios) are sent to the trained VAE, outputting the reconstructed CWT images.  

Differences between undamaged and damaged states were evaluated by the Average 

Reconstructed Error (ARE) (Eq. 6.1) as plotted in Figure 6.6 showing higher ARE values 

indicative of more severe damage.  

From Figure 6.6, it can be seen that the ARE values generally increase with damage 

severity across the seven scenarios, ranging from approximately 0.01 for Scenario 1 (the 

healthy case) to around 0.013 for Scenario 7 (the most damaged case). Additionally, 

Figure 6.7 presents the Statistical Average Reconstructed Error (SARE) values, where the 

median SARE for each scenario shows a clear upward trend, particularly from Scenario 

4 to Scenario 7. The median SARE increases from approximately 0.011 for Scenario 1 to 

around 0.013 for Scenario 7, confirming the model’s ability to quantify increasing damage.  
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Figure 6.5 The training process of VAE

Figure 6.6 Damage quantification using Average Reconstructed Error(ARE)
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Figure 6.7 Box plot of SARE

Figure 6.8 The testing average reconstructed error of VAE distribution

Figure 6.8 is the test error distribution for the VAE, with a histogram skewed towards 
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lower error values. This suggests that the VAE generally reconstructs the CWT images 

with high confidence. A tail of higher error values signifies less frequent, yet critical 

instances of potential structural anomalies that need further inspection. 

The performance of the VAE in accurately reconstructing CWT images is visually 

depicted in Figure 6.9, where the original CWT image (a) is next to the reconstructed 

CWT image (b). The comparison showcases the VAE's high performance in replicating 

the detailed energy patterns of the undamaged bridge state, improving the model's utility 

in structural health monitoring applications.  

  

 
(a)The original CWT image 

 
(b)The reconstructed CWT image 

Figure 6.9 Comparison of the original and reconstructed CWT images (Sensor 3) 

 

Figure 6.10 Generating new CWT images using VAE 

Fr
eq

ue
nc

y 
(H

z)
 

50 

100 

Fr
eq

ue
nc

y 
(H

z)
 

100 

50 

Time(s) 
10                        20 

Time(s) 
10                           20 

Time(s) 
10                           20 



  

149 

The Variational Autoencoder (VAE) not only reconstruct but also to generate new CWT 

images that are representative of the learned latent space. For example, Figure 6.10 shows 

a generated image from Sensor 3, generated by the VAE from a random vector. The 

significance of this generation process lies in its contribution to data augmentation. By 

generating additional CWT images, the model enhances the robustness of the dataset, 

potentially improving the VAE's ability to generalize and aiding in the identification of 

damage patterns not explicitly present in the original dataset. This augmented dataset can 

be helpful in refining the model's predictive accuracy and in providing a more 

comprehensive understanding of the bridge's structural health. 

In summary, this numerical analysis validates the Convolutional VAE's capability to 

detect and quantify bridge damage via CWT image analysis. The model's architecture 

could capture complex signal patterns, and it is unsupervised, focusing on training 

undamaged bridge samples, coupled with validation, proved its precision in quantifying 

damage severity. 

6.4 EXPERIMENTAL STUDY 

6.4.1 The experimental data collection 

An 8-meter experimental model was built in the laboratory, consisting of 160 tube steel 

elements connected by 56 joints. Experimental devices include a signal generator, a 

shaker, a power amplifier, a laptop, and ten wireless accelerometers. More detailed 

information including dimensions of the bridge and tube steel elements, and devices 
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parameters could be found on Section 5.3.1. 

White noise excitation with a 10 V amplitude was produced by the signal generator, 

amplified through a power amplifier, and transferred to a shaker to induce vibrations, and 

the acceleration signals of the experimental bridge were subsequently recorded by a 

laptop.   

Like the numerical study in Section 6.3, seven bridge scenarios including one healthy 

scenario are considered, described in Table 5.1. The bridge under various damage 

scenarios is simulated by substituting bridge elements with replacements of reduced 

cross-section. Dimensions of the original element and replacements of seven scenarios 

are shown on Figure 5.20. For each scenario, 20 minutes responses from the bridge were 

recorded by wireless accelerometers following the sensor arrangement in Figure 5.4. 

Figure 6.11 is 20 seconds of the experimental acceleration signal recorded from the 

location at middle span at lower chord from healthy bridge state. 

 

 
Figure 6.11 Experimental acceleration signal from healthy scenario 

To effectively use the experimental data for structural health monitoring, an overlapping 

window technique is used. Specifically, a 30% overlap ratio is applied to the twenty-

minute acceleration signals from each scenario, dividing them into eighty-five samples, 

each consisting of a duration of twenty seconds, the same length as the samples from the 
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numerical study. Across all seven scenarios, this results a total of 595 samples. These 

samples are uniformly normalized using the Z-score method to mitigate any potential 

distortion from varying signal magnitudes across the different channels. Subsequently, 

these samples are subjected to the same Continuous Wavelet Transform (CWT) 

methodology as used in the numerical study in Section 6.2. 

The CWT process involves the transforming the original one-dimensional acceleration 

signals into two-dimensional CWT images of 112 by 112 pixels, which are then used for 

the unsupervised Variational Autoencoder (VAE) training. This standardized and 

consistent treatment of the experimental signals ensures that the subsequent VAE phase 

is grounded on a robust and uniform dataset, important for the accurate damage detection.  

The CWT images from a randomly selected sample of ten sensors are displayed in Figure 

6.12, showing the time-frequency representations captured by each sensor. Although 

these images might appear to be reshaped due to the nature of the CWT process, they still 

effectively represent the vibration patterns induced by the white noise excitation, 

showcasing the CWT's sensitivity in detecting structural changes. 



  

152 

   

(a) Sensor 1 (b) Sensor 2 (c) Sensor 3 

   

(d) Sensor 4 (e) Sensor 5 (f) Sensor 6 

   

(g) Sensor 7 (h) Sensor 8 (i) Sensor 9 

 

  

(j) Sensor 10   
Figure 6.12 CWT image across different sensors (random sample 10) of the experimental bridge 
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6.4.2 Experimental verification 

The training dataset of the VAE consists of 149 CWT images from numerical healthy 

bridge and 85 CWT images derived from the experimental setup in the healthy state. This 

combination of experimental data can be seen as an enhancement or fine-tuning of the 

VAE, ensuring that the model is fed to realistic baseline conditions. 

The VAE training process, illustrated in Figure 6.13, shows the VAE’s training curve, 

which quickly converges, indicating successful adaptation to the healthy state data. The 

VAE's ability to reconstruct the baseline state and identify deviations associated with 

damage was refined throughout this process. 

 

Figure 6.13VAE training process 

After the training, the whole experimental datasets are sent to VAE for testing, resulting 

corresponding reconstructed CWT images. ARE is calculated by comparing the original 

Iterations 
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sample with the reconstructed sample. Figure 6.14 is a scatter plot, showing ARE across 

all samples from seven scenarios. An overall increasing trend is seen, from S1 to S7, 

indicative of rising damage severity. However, between S4 and S5, this trend is not 

consistent, suggesting a complexity in damage progression that may require additional 

exploration. Further analysis of the VAE's performance for damage detection is provided 

in Figure 6.15, which shows a box plot of the Statistical ARE (SARE). The plot highlights 

the range of the errors, with scenarios of higher median Statistical ARE values indicative 

of more severe structural damage statistically. One possible reason for the SARE values 

of Scenarios 5 and 6 being smaller than Scenario 4 could be due to the non-linearity in 

how damage progression affects the vibration signals. As damage severity increases, the 

model might become less sensitive to specific types of structural changes, especially if 

the damage leads to more complex or distributed vibration patterns that the model cannot 

easily detect. This phenomenon could result in higher errors for less severe damages (like 

in Scenario 4) compared to more severe but more distributed damage (like in Scenarios 5 

and 6).  Figure 6.16 presents a histogram of the testing average reconstructed error (ARE) 

of the VAE, showing the distribution of error frequencies. The most prominent peak 

occurs in the error range just above 5×10-3, where the highest frequency of samples, 

around 140, is found. This peak indicates the most common error value range that the 

VAE produced during testing. There are significantly fewer samples with very low errors 

(close to 0) or higher errors approaching 15×10-3. 
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Figure 6.14 Damage quantification using Average reconstructed error(ARE)

Figure 6.15 Box plot of SARE of VAE
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Figure 6.16 The testing error distribution of VAE 

Figure 6.17 compares the selected original experimental CWT image and its 

corresponding reconstructed images by the VAE. This illustrates the model's ability to 

replicate the patterns observed in the experimental CWT data. Such precise reconstruction 

capability suggests that the VAE can effectively learn and imitate the underlying structural 

behaviour captured by the sensors.

Figure 6.18 shows the VAE's advanced generative function, where with the random input,

it generates new CWT images based on the learned latent space. These generated images 

are predictions of how the CWT images of sensor data might appear under healthy 

conditions. The ability to create such data is crucial for enhancing the machine learning

model's generalization capabilities, which is significant when lacking training data.
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Figure 6.18 Generating experimental CWT images using VAE 

6.5 SUMMARY  

This section presents a comprehensive study of structural damage quantification using an 

unsupervised learning method with Continuous Wavelet Transform (CWT) based images 

as input. The effectiveness of the CWT using a Variational Autoencoder (VAE) was 

verified using numerical and experimental results, and the results show that it is a robust 

  

(a) the original CWT image (b) the reconstructed CWT image 

Figure 6.17 Comparison of the original experimental CWT image and reconstructed image 
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framework for interpreting complex signal patterns and detecting structural damage. The 

results not only highlight the VAE's capability to identify damage signatures but also 

illustrate a clear methodology for employing this technology in the practical detection of 

structural damage. 
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CHAPTER 7   CONCLUSIONS AND 

RECOMMENDATIONS 

7.1 CONCLUSIONS 

This thesis has dived deeply into the realm of damage detection for complex bridge 

structures, using machine learning techniques to bridge the gap between numerical 

simulations and practical applications. It comprehensively introduced and evaluated 

several machine learning methodologies - supervised, unsupervised, and semi-supervised 

- each contributing significantly towards enhancing processes for detecting structural 

damage. The following can be concluded, 

1) The development of a novel generic element specifically designed for nonuniform 

beams with semi-rigid joints stands out as a main achievement. This innovation 

has not only improved the accuracy of numerical modelling but also enhanced the 

damage detection capabilities, as validated through an experimental study on an 

8-meter truss bridge. This generic element's efficacy in localizing both beam and 

joint damages has been conclusively demonstrated, showing its potential for 

widespread application in Structural Health Monitoring (SHM). 

2) The thesis introduced a specialised Convolutional Neural Network (CNN) loss 

function, customized for structural damage detection. This loss function 

significantly reduces computational costs while ensuring fast convergence and 

high accuracy, addressing a crucial gap in machine learning applications within 
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SHM.  

3) A novel semi-supervised learning framework was proposed, using LSTM-VAE 

networks for damage quantification and SVM for classification. By introducing 

the Average Reconstructed Error (ARE) as a direct damage measurement index 

and combining t-SNE with ARE features, the study achieved a remarkable 71% 

accuracy in classifying damage levels in an experimental bridge model. This not 

only shows the effectiveness of the proposed semi-supervised learning framework 

but also highlights its practical viability for improving maintenance strategies for 

bridges. 

4) The investigation also studies unsupervised learning, employing a Variational 

Autoencoder (VAE) enhanced with Continuous Wavelet Transform (CWT) based 

images inputs to quantify structural damage. This approach was rigorously 

validated through numerical simulations and practical applications, showing its 

capability to identify damage signatures effectively. 

Overall, this thesis presents a comprehensive exploration of machine learning 

applications in damage detection for bridges, offering novel insights and methodologies 

that promise to significantly advance the field of structural health monitoring. 

7.2 RECOMMENDATIONS FOR FUTURE WORK 

The recommendations provided here are intended to enhance their methodologies' 
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applicability for modern infrastructure monitoring. These suggestions are designed to 

guide future research and practice in SHM, ensuring continued progress and adaptation 

to new challenges. 

1) Data Enhancement and Model Generalization: It's essential to enrich the dataset 

with a more diverse set of structural damage states, including subtle and 

progressive damages of more elements and combinations. This can help in 

improving the robustness and generalization of the models. 

2) Utilization of All Data Sets: The current thesis utilizes one set of signals for 

damage detection, leaving three additional sets, previously used for spatial mode 

shape extraction, unexplored for damage information. Future work should tap into 

these rich data resources for a full damage detection analysis, promising 

substantial gains in SHM accuracy and insight. 

3) Advanced Element Modelling: Further refinement and testing of the novel generic 

element for nonuniform beams with semi-rigid joints are recommended. This 

includes its application in different types of bridges and structural systems to 

validate its universality and effectiveness. 

4) Algorithm Optimization: The developed CNN with the customized loss function 

for structural damage detection can be optimized further by exploring advanced 

deep learning techniques like transfer learning for improved performance. 
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5) Exploration of Hybrid GNN and CNN Models: Future research could explore the 

integration of Graph Neural Networks (GNNs) with Convolutional Neural 

Networks (CNNs) to improve relational data processing in spatial structures. 

GNNs can potentially capture the relationships between different structural 

elements (e.g., joints and beams) in a bridge, while CNNs are effective for 

analysing localized damage patterns in sensor data. Combining these two methods 

is expected to result in more comprehensive damage detection, allowing both 

localized and system-wide analysis of structural integrity. 

6) Real-world Application and Validation: Implementing and validating the models 

in real-life bridge monitoring scenarios would be a crucial step. This can involve 

collaborations with industry partners for field-testing on operational bridges to 

ensure the practical applicability of the research findings. 

Through these recommendations, future researchers and practitioners can continue to 

build based on this thesis's findings, progress the field of SHM, and enhancing the safety 

and longevity of bridge infrastructures. The proposed methods, especially the 

combination of data-driven approaches and deep learning algorithms, are particularly 

well-suited for complex structures with multiple joints and bar members, such as steel 

bridges. These structures often experience localized damage, which is challenging to 

detect using traditional methods. The model’s ability to handle high-dimensional sensor 

data and capture subtle structural changes can also be extended to other infrastructure 

types with similar characteristics, such as trusses, towers, or offshore platforms. Moreover, 
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the robustness of these methods under varying environmental conditions, including 

fluctuating temperatures and humidity levels, could be explored to assess their 

applicability in a broader range of real-world settings.
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