
1 

 

Damping of Plasmons of Closely-Coupled Sphere 

Chains due to Disordered Gaps 

Mathias S. Scheurer
1,2

, Matthew D. Arnold
1*

, Jeffry Setiadi
1
, Michael J. Ford

1
 

1
 School of Physics and Advanced Materials, University of Technology Sydney, PO Box 123, 

Broadway NSW 2007, Australia. 

2
 visiting from Fakultät für Physik, Karlsruhe Institute of Technology, 76128 Karlsruhe, 

Germany 

* Corresponding author: matthew.arnold-1@uts.edu.au 

ph: +61 2 9514 9715 

fax: +61 2 9514 2219 

 

mailto:matthew.arnold-1@uts.edu.au


2 

 

Abstract: The damping of plasmons due to structural disorder may have important practical 

consequences.  Here we use spherical harmonic expansions to quantify the damping of 

plasmons of ensembles of closely coupled sphere chains with moderately disordered gaps.  

We show that the quadratic shift of average resonance position due to disorder is maintained 

in the transition from weak to close coupling, but the sensitivity to disorder increases.  

Further we find that although the main peak is most often damped and broadened by disorder, 

it is possible for the optical extinction of disordered gold chains to increase slightly due to 

red-skew into a region with more favorable metal properties. 

Keywords: electrostatic resonance, optical extinction, off-diagonal coupling, dipole mode 
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Introduction 

Plasmonic resonances strongly concentrate electromagnetic fields, which can be exploited 

in a range of applications including those involving energy transport
1,2

, imaging
3,4

, and 

sensing
5,6

.  The damping of plasmonic resonances usually reduces their performance in 

applications and understanding this problem is of considerable practical importance.  

Damping mechanisms range from large-scale mechanisms such as radiative damping, to 

small-scale quantum mechanisms
7-9

. In between these two extremes the performance can be 

maximized within the limitations of the materials and fabrication techniques.  The choice of 

material is quite important because the quality of plasmons is related to the ratio of the real 

and imaginary parts of the permittivity
10,11

.  Most often, however, practical constraints dictate 

the material used – the alkalis have the lowest loss and hence excellent plasmonic quality, but 

gold is used in the majority of cases because it is chemically inert even though its optical 

performance is somewhat inferior.  Given a particular material, the performance can be 

optimized by varying the geometry to align the resonance with the optimum frequency for the 

material.  To some extent, depending upon the particular method used to synthesize a 

nanostructure, disorder will always be present leading to damping independent of the material 

properties.  It is therefore important to understand how disorder affects the plasmonic 

performance and more importantly how tolerant to disorder this performance will be. 

Some types of disordered plasmonic structures have been studied extensively, such as 

random composites
12

, however in this article our focus is on simple structures with only 

moderate disorder due to fabrication tolerances.  In particular, previous investigations have 

considered only some aspects of the effect of moderate disorder on loosely coupled sphere 

arrays, including fundamental scalings of quasistatic modes
13

, reduced damping of non-

quasistatic modes
14

, and the effect of disorder on diffractive modes
15

.  As the system can be 

considered in terms of a matrix describing interactions of spheres, the disorder can be 
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classified as being “diagonal” or “off-diagonal”.  Diagonal disorder corresponds to variations 

in the self-interaction of each sphere due to variations in composition or size.  Although this 

type of disorder is a possible result of fabrication variations, we are more interested in off-

diagonal disorder which is due to variations in coupling between particles.  Variation in the 

gap between particles is expected to have a strong effect due to the concentration of the field 

in that region.  Previously a dipole model was used to find a fundamental scaling of off-

diagonal disorder that applies to weakly coupled quasistatic modes
13

.  In this article we will 

consider the effect of disorder on the longitudinal resonances of sphere chains due to 

variations in the interparticle spacing, and in particular systematically consider the effect of 

close coupling and compare the relative sensitivities of common plasmonic materials. This 

system is a coupled nanostructure
16

 that is relatively simple, but allows very strong 

enhancement and exhibits multipole resonances even in the small-scale electrostatic limit.  

Previously we reviewed the applications and plasmonic properties of ordered sphere chains
17

.  

In particular, we showed how to exploit the separability of geometry and material properties 

to simplify the optimization of resonances for various metals.   

 

Methods 

The various shape parameters for the sphere chains considered here are represented in 

Figure 1.  This is a one-dimensional chain of N spheres each with identical radius a, and 

separated by a gap g. The centre to centre spacing of the spheres is therefore d=g+2a.  The 

gap fraction is defined as f=g/2a.  The plane-wave incident vector k is small enough that 

retardation can be ignored, such that kd<<1, and the electric field E excites the chain 

longitudinally.  

Disorder is introduced into the chain geometry by varying the interparticle gap. The 

disorder is characterized by statistical distributions about the mean (ordered) positions.  
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Gaussian (normal) statistics, with a deviation , were used because they are well understood 

and physically relevant to some fabrication processes.  This also gives us a relatively simple 

and consistent way to characterize the degree of disorder introduced into the chain spacings 

in terms of the ratio /g of the standard deviation of statistical spread of gap sizes to the 

ordered gap size. As this parameter increases in magnitude, the degree of disorder increases.  

However to ensure physically valid results and limit calculation time it is necessary to 

maintain positive inter-particle gaps which necessarily truncates the distribution.  Ultimately 

we limited the standard deviation ζ so that the truncation was statistically insignificant.  As 

expected a significant number of samples were required to ensure smooth statistics – we used 

10
4
 samples for most of our results.  The sample statistics of the ensembles were then 

calculated; however it is important to keep in mind throughout the analysis that an individual 

configuration could be quite different from the mean.  

Calculating the modes of the close-coupling regime requires a numerical technique that 

accurately samples the near-fields, especially in the rapidly varying gap region.  Due to 

spherical geometry, multipole spherical harmonics expansions are relatively efficient and can 

be used to find the mode parameters directly
18

.  The eigenmodes are described by the 

eigenvalues S and the eigenvectors   that are solutions to the usual eigenvalue problem 

  SH  . (1) 

The spherical harmonic basis used in this article describes eigenvectors   in terms of 

multipole moments numbered l on each sphere numbered n, with a Hermitian interaction 

matrix H that has off-diagonal blocks 
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We have rewritten the factorials usually used in Eq (2) to avoid numerical overflow.   More 

importantly, we have restricted our investigation to disorder along the chain to maintain 

azimuthal symmetry so that only the fundamental azimuthal mode (m=0) is required, which 

greatly increases numerical efficiency.  It is important to consider both the effect of the 

number of particles N and the number of orders retained (l=1...L).  Most of our results are 

based around N=9, which is less expensive than a long chain but relatively similar in 

behavior.  The time taken to diagonalize the interaction matrix goes as (NL)
3
, which must be 

balanced against large L required for accuracy.  We used the convergence of two spheres to 

estimate the required number of orders 

 fL /)(log10   (4) 

at a given tolerance (ξ=10
-6

) and gap fraction f.   

In order to compare mode parameters to a physically measureable quantity we will 

calculate the spectrum of the extinction cross-section Ce, which describes the relative power 

flux that is diverted due to scattering and absorption.  One way to solve this is to calculate the 

electric fields by adding a plane-wave excitation, where a direct interpretation would imply 

expensive numerical inversion at each frequency of interest.  However, this can easily be 

rewritten as a weighted sum over modes.  In the electrostatic limit it can be shown that the 

observable far-field properties are determined by the dipole moment, and in particular the 

extinction Ce may be expressed as  
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where )1/(1 s  is a continuous function of permittivity ratio  , k is the corresponding 

wave-vector, and V is the total volume of the spheres, and the sum is performed over the 
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geometry-dependent modes.  In our spherical harmonic basis, the eigenvalues Sj appear 

directly, and Aj are the corresponding weights given by the square of the net dipole moment 

19
.  Explicitly, the weighting due to uniform excitation is given by 

 

2

1

),1,(



N

n

jlnjA  . (6) 

Mode parameters are independent of material: once they have been calculated for a 

particular geometry, Eq (5) can be applied to any chosen material with minimal effort.  We 

verified the resulting extinction against a public domain vector spherical harmonic (VSH) 

code
20

, which we had previously tested against a range of other methods.  The calculations 

presented here are electrostatic (non-retarded), however we have previously shown that 

despite a systematic shift due to retardation, the relative scaling is very similar
17

 so 

retardation can be ignored. 

We will now briefly discuss the expected mode parameters and some implications.  In our 

choice of basis the eigenvalues can be identified as depolarizations, which must lie in the 

range 0<S<1; specifically isolated spheres start from S=1/3 and coupling breaks degeneracy 

of collective modes causing splitting in the red (small) and blue (large) wavelength 

directions. Mode weights lie in the range 0<A<1, and are constrained by the sum rule ΣA=1.  

Chains of spheres have a mode scaling that depends weakly on the number of spheres N but 

very strongly on the ratio between the sphere size a and the gap g between them
21

.  Coupling 

increases with decreasing gap fraction f=g/2a, resulting in a strong red-shift of the dipole and 

increasing contribution of higher order modes.  With this knowledge it is easy to predict the 

behavior of any material and identify the optimum geometry.  For many common plasmonic 

materials, interband transitions lie near the plasma frequency which means the optimum is 

considerably red-shifted requiring quite small gaps compared to the particle size
17

.  
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Unfortunately this regime is most susceptible to fabrication anomalies, and so it is important 

to quantify the associated damping effect.  

 

Results and Discussion 

We first present here our ensemble results in terms of the depolarization factors S and 

weights A of Eq (5) for the three lowest modes (j=1,2,3).  The weight for each mode 

represents its spectral strength, while the depolarization determines the mode position in 

wavelength. Plotting the (considerable) amount of data in this way is a convenient way to 

display the statistical variation.  It also allows us to demonstrate the effect of disorder 

independent of material properties. Figure 2 shows how the mode strengths and positions 

spread in response to disorder in the interparticle gap. 

The dominant mode is typically the collective dipole mode (j=1) which has the lowest 

frequency and thus red-shifts the most (its depolarization decreases).  This occurs because 

narrower gaps red-shift the dipole and they make a stronger contribution to polarization than 

wider gaps so the net response is skewed to the red. Disorder weakens this mode compared to 

the ordered chain due to reduction in symmetry.  Conversely, the even modes increase in 

strength because strict anti-symmetry is broken resulting in a net dipole moment: for the 

ordered chain these modes have zero weight as can be seen by the j=2 mode in Figure 2.    

Now that we have the calculated mode weights and depolarizations (such as those shown in 

Figure 2), the extinction spectra for a particular material can be calculated from the 

corresponding dielectric function and Eq (5). Figure 3 shows an example of this for 

potassium spheres where the bulk dielectric function interpolated from experimental tables is 

used
22

. There is a definite damping of the ensemble average compared to the ordered 

response. Some additional damping would be expected at strong coupling due to non-local 

effects
8
.  We will return to the effect of material properties in more detail later where we will 
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compare four representative high quality metals based on either common usage in plasmonics 

(Au, Ag), unusual behavior (Al), or very low losses (K).  We now detail the effect of disorder 

on mode scaling, concentrating on the collective dipole (j=1) mode.  As noted earlier, our 

discussion is considerably simplified by ignoring retardation - Figure 4 shows that this 

simplification has little effect on the scaling of the mode shift. 

Figure 5 shows how the various mode parameters relate to disorder ζ and gap fraction f.  

The average shift of the depolarization (mode position) S for varying disorder is 

proportional to ζ
2
 across the entire range of coupling strengths (Figure 5a).  Although not 

shown here, the lowest modes all have a similar shift albeit with some subtle variation.  

Perhaps not surprisingly the shift is also larger at closer coupling, however it does not vary as 

dramatically as the eigenvalue itself.  Figure 5b shows that with disorder ratio (ζ/g) fixed the 

red-shift decreases as the gap fraction is increased, and analysis of the data shows that it 

varies approximately exponentially at strong coupling (f<1) according to the expression  

 )exp()/(~/ 2 fgSS  , (7) 

but for weak coupling scales more like 

 32)/(6~/ fgSS  . (8) 

There is no obvious quantitative explanation for the strong-coupling result, but the weak 

coupling result is perhaps not surprising given the scaling of the ordered chain shown in 

previous work
17

.  These tentative models have been overlaid on Figure 5b.  As discussed 

below, it is relatively difficult to predict these results analytically, but the main result of 

reduced red-shifting with decreasing coupling is still useful.  The data also shows how the 

dipole mode is damped in response to disorder – naturally increasing disorder has a stronger 

damping effect (Figure 5c), but relative damping as measured by AA / decreases in 

magnitude with increasing coupling (Figure 5d). 
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Higher order statistics of the disordered modes are required for a full description of the 

observed behavior, and so the standard deviation and skewness of the mode position and 

strength are shown in Figure 6.  It is important to understand that the standard deviation is 

typically larger than the mean shift, as can be observed by comparing Figure 6a to Figure 5a.  

Further, Figure 6b shows that the shift is skewed and that this increases with disorder.  The 

strength of the modes also have significant standard deviation (Figure 6c).  Although not 

shown here, there are some differences in the strength of different modes because even 

modes start from zero strength.  The dipole mode is unique in that it is skewed towards 

reduced strength (Figure 6d) – all other modes skew towards increasing strength, especially 

the even modes which are zero in the ordered chain and therefore have skew nearly 

independent of disorder.  Kurtosis is also evident in the mode parameters but this has similar 

origin to the skew.  In short, the distributions are both wide and strongly skewed which 

should be considered when interpreting mean results. 

The effect of disorder ζ can be modeled using perturbation theory.  Assuming that a 

disordered interaction matrix is perturbed by H compared to the ordered case, the 

perturbation of the eigenvalues to second order is approximated by 

 )( 3

2

HO
SS

H
HS

jk kj

jk

jjj 


 



 



. (9) 

Previously, the average of the perturbed eigenvalue to first order was estimated using the 

analytical average of nearest-diagonals of H , yielding the correct ζ
2
 dependence

13
.  

However the coefficient found does not match full numerical results and this approach cannot 

be reliably extended to higher orders.  We found it impractical to calculate the full 

perturbation analytically, but some insight can be gained by considering how the various 

parts contribute, which can be confirmed numerically (Figure 7).  It can be shown that both 

first and second order perturbation have ζ
2
 dependence for the strongest terms, while third 
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order and above only require ζ
4
 so can be neglected for most practical purposes (as seen in 

Figure 7b).  Second order terms strictly require the calculation of covariances between the 

elements of the interaction matrix.  This is relatively expensive to calculate but is dominated 

by nearest-neighbor interactions.  It is also interesting that the most significant contributions 

come from correlated movements where at least one of the particle movements is due to the 

same particle (i.e. two- or three- body rather than a four-body correlation).  This explains why 

the second order makes a significant contribution to the perturbation (Figure 7a).  These 

results are consistent with the observation that progressively adding particles to the chain 

makes progressively less difference after three particles – that is, nearest-neighbor 

interactions dominate but both nearest-neighbors of a particle are important. 

We turn now to the extinction described by Eq (5), which provides an experimentally-

relevant measure of the contribution of all modes. In particular, we focus on the main peak 

which predominantly results from the j=1 mode, and measure the maximum extinction, the 

wavelength at which this occurs, and the full-width-half-maximum (FWHM).  Unlike 

previous figures, these results derived from extinction depend on the permittivity
22

 for the 

four metals selected (Ag, Al, Au, K).    

Firstly, Figure 8 shows the average relative shift of the peak wavelength λp.  The red-shift 

of the peak is relatively small, which means that experimental resonances would not be 

expected to move very much in wavelength.  It should be noted that the shift for nearly ideal 

metals such as K (Figure 8d) is larger than that of Au (Figure 8c), because Au has a relatively 

flat real permittivity due to the close proximity of a relatively strong absorption band.  

Nevertheless, all metals tested here exhibit increasing shift with both increasing disorder and 

increasing coupling, consistent with the general observation that the resonances are more 

sensitive to gap changes when the gaps are small. 
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Further, Figure 9 shows how the FHWM (labeled Δp) is affected by disorder.  In this case 

disorder has more effect, but once again the response of Au (Figure 9c) is substantially 

different compared with other metals due to its unusual permittivity function.  The other 

metals show some broadening around moderate coupling.  It is important to understand that 

generally a peak associated with a well-distinguished mode would not necessarily broaden
17

, 

even though its magnitude may be decreased due to redistribution to other well-distinguished 

modes.   In the case shown in Figure 9, other nearby modes are contributing to the extinction 

around the main peak – in particular the adjacent j=2 mode increases in magnitude with 

disorder (see Figure 2 for example).  The effect on the main peak is most pronounced at 

moderate coupling, because at weak coupling the additional modes have low strength, and at 

strong coupling they have less influence due to better spectral separation.  Additionally we 

have included an estimate of the broadening of an ensemble of chains (dashed lines), where 

notably there is a further increase in broadening for K at strong coupling (Figure 9d) due to 

comparatively larger smearing of the peak position.         

The most important experimental evidence of damping is the change in peak extinction 

(labeled Cp) shown in Figure 10.   It is notable that the maximum extinction of some 

disordered chains exceeds similar ordered chains by a small margin (about 1%), most 

noticeably for gold spheres near gap-fraction f=0.5 (see Figure 10c), but also to a lesser 

extent for Ag near f=2 (Figure 10a).  Although the strength of the dominant dipole mode 

declines with disorder, it does so slowly, and the other modes spread to replace it.  Further, 

many metals (with the notable exception of aluminum) exhibit reduced loss with red-shift, 

which is the reason that extinction usually increases as the coupling is increased
17

.  A 

practical consequence is that the strength of plasmons of gold spheres chains is relatively 

robust against positional variation.  However, because alkalis are nearly ideal metals, their 

loss reduces relatively weakly with red-shift and the high quality modes are more sensitive to 
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variation, so they are noticeably less robust (Figure 10d), as are those of Al (Figure 10b).  

The peak ensemble extinction (dashed) for K shows additional damping at strong coupling 

due to smearing of the peak positions. 

A final comment is that damping of the delocalized chain plasmon is associated with 

localization
13

, which is a subject of considerable interest.  The practical consequence is that 

the polarization and hence electric field is greatly enhanced around particular gaps, which is 

particularly useful for sensing techniques such as SERS.  It would be interesting to 

investigate the field enhancements in this system, however doing so would require 

considerable computational resources and would need to be compared critically to the 

enhancement of higher order multipoles.  Additionally, it is expected that the electric field 

would be quite strongly affected by non-local effects
23

. 

 

Conclusion 

In conclusion, we have investigated the effect of moderate gap disorder on electrostatic 

resonances sphere chains, and found that quadratic scaling of the average dipole shift extends 

into the close-coupling regime.  Increased coupling increases the sensitivity to disorder.  The 

distribution of optical response is significantly skewed compared to the structural 

distribution, which is expected due to higher sensitivity to narrowing than widening gaps.  

We find that perturbation analysis should be approached carefully because second order 

terms are significant, and although analysis of higher order terms confirms that mode shift is 

quadratic with disorder, estimating the average effect of coupling from configuration 

statistics is impractical and instead requires averaging individual configurations.  When 

considering how optical extinction would be affected by the metal used, we find the average 

extinction of chains composed of reasonably ideal metals such as K is damped significantly 
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by disorder, but poorer metals such as Au are surprisingly resilient to disorder and can be 

slightly enhanced at moderate coupling.  
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Figure 1: Geometry of the system to be simulated together with the excitation conditions.  

Figure 2: Example of spreading of eigenvalues and mode weight with disorder.  These chains 

had N=9 particles, average gap fraction of f=0.1, and random configurations characterized by 

disorder with standard deviation 0.1 times the gap. The black circles indicate the modes of 

the ordered chain, and the dots indicate modes of disordered chains. Only the lowest order 

modes are shown for clarity, with the collective dipole mode on the left (j=1).  Note the much 

stronger spread of weight than depolarization. 

Figure 3: Example of extinction for potassium spheres with modes corresponding to those in 

the previous figure – short wavelength peaks have been omitted for clarity.  The black circles 

indicate the modes – the ordering in wavelength space is reversed compared to depolarization 

so the collective dipole (j=1) is now on the right.  The black line is the extinction for the 

ordered chain, while the blue line is the mean extinction for the ensemble.  The red 

background shows the statistical distribution – note particularly the high degree of skew 

around the dipole peak. 

Figure 4: Comparison of relative mode-shifts with (red circles labeled “VSH”) and without 

(blue dots labeled “multimode”) retardation, showing that the scaling is very similar and thus 

retardation is not significant.  In this example the gap fraction is f=0.04, and the retarded 

results are for Au spheres with a=7.5nm.  The relative shift is shown in terms of the 

disordered peak permittivity ε
dis

 compared to the ordered peak permittivity ε
ord

.  These results 

are directly related to the non-retarded mode parameter S, but this relationship is less rigorous 

when retardation is included.   

Figure 5: Average red-shift (-<δS>) and damping (-<δA>) of the collective dipole mode (j=1) 

as a function of disorder (ζ/g) and coupling strength.  (a) The mode shift is quadratic with 



18 

 

disorder ζ/g, even at strong couplings (f<1).  (b)  The shift decays nearly exponentially with 

reduced coupling (increasing f).  The asymptotic models described by Eq (7) and (8) are 

overlaid at small f (dashed) and large f (dash-dotted) respectively.  Relative damping of the 

dipole strength A increases with increasing disorder (c) but decreases with increasing 

coupling (d). 

Figure 6: Standard deviation (left) and skew (right) of the red-shift (top) and damping ratios 

(bottom), as a function of disorder at different gap fractions, for the collective dipole mode 

(j=1).  Note that the normalized deviation (a & c) is quite significant compared to the mean 

value shown in the previous Figure.  Further, the skew is strong and increases strongly with 

disorder, but is nearly independent of gap fraction (b & d).  Hence, when considering 

ensemble results it is important to remember that individual results can vary widely from the 

mean, and that the distribution is strongly skewed. 

Figure 7: Fractional contributions to perturbation of the collective dipole mode (j=1) as a 

function of disorder and coupling strength.  Second order clearly makes a significant 

contribution, and surpasses the first order for strong couplings when gap-fraction f<0.5 (a).  

Higher orders are negligible, especially for weak disorder (b). 

 

Figure 8: Average relative shift of the main peak wavelength λp for various metals (Ag, Al, 

Au, K) as a function of coupling strength (inversely related to the gap fraction f).  The shift of 

the wavelength is quite small, especially for Au (c), but it increases with both coupling and 

disorder.  The dashed line shows the shift of the ensemble for the largest disorder, which is 

very similar to the average shift of individual configurations. 
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Figure 9: Average relative broadening of the main peak width Δp for various metals (Ag, Al, 

Au, K) as a function of coupling strength (inversely related to the gap fraction f).  There is 

some broadening at moderate coupling, but this is less pronounced for Au (c).  The dashed 

line shows the broadening of the ensemble for the largest disorder, which is substantially 

stronger for K (d) at strong coupling. 

 

Figure 10: Average change of the main peak extinction Cp for various metals (Ag, Al, Au, K) 

as a function of coupling strength (inversely related to the gap fraction f).  The extinction of 

chains of ideal metals such as K is damped by disorder (d) whereas poorer metals such as the 

commonly used Au are much more robust (c).  The dashed line shows the change in peak 

extinction of the ensemble, which shows significantly increased damping for K (d). 
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(Figure 2) 
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(Figure 3) 
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(Figure 6) 
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(Figure 8) 
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