Illumination Map Smoothing (IMS):
A Convex and Differentiable
Mathematical Model to Rapidly
Enhance Low-Light Images

Abstract:

Automatically retrieving information from images recorded in a low-light environment is a
practical challenge for computer vision domain. So far, different mathematical models based
on Retinex theory have been proposed to enhance low-light images. Differentiability of the
objective function has received less attention in these models. This paper presents a
differentiability mathematical model and convex with linear constraints that can provide a
chance to acquire global optimum solution. The proposed mathematical model seeks to enhance
the visual quality of recovered images via smoothing the initial illumination map. Furthermore,
proposed method corrects the illumination map using a simple linear transformation to increase
the contrast and readability of enhanced images. This paper also presents a heuristic approach
to fast solve the proposed mathematical model with acceptable accuracy. Heuristic approach
could be used for image processing applications that low-light images must be enhanced with
no noticeable delay. To evaluate, the proposed method is compared with six other competitive
methods using six quantitative metrics as well as time cost. The results show that proposed
method outperforms other methods and can be used in real-time applications.

Keywords: Low-light Image Enhancement; Retinex theory, Illumination Estimation;
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1. Introduction

Algorithms such as object detection [1][2], tracking [3][4][5], scene understanding [6] and
occlusion detection [7] are mainly designed for high quality and clear images. The use of low-
quality and low-light images can challenge the performance of these algorithms. One of the
important factors and affecting the visual quality of images is the lighting of the shooting
environment. Images recorded in low-light environment often have low illumination and
contrast. In such images, some details of the target scenes are not well recognizable. Therefore,
having sufficient and appropriate light in the imaging environment is crucial. However, in some
cases, proper lighting is not possible in the shooting environment, such as [8]:

e Intelligence, reconnaissance and surveillance missions (e.g., recognizing and
distinguishing enemy warships and identify military bases).

e Shooting in adverse weather conditions (e.g., taking photos in fog and night).

e Unmanned vehicles (e.g., automatic landing of UAVs).



e Commercial industries (e.g., property security, personal mobile phone and surveillance
cameras).

Therefore, enhancing low-light images and revealing lost details are important. So, in practice,
illumination of low-light images must be improved before applying computer vision techniques
in order to ameliorate readability of these images.

Generally, in the literature, the introduced methods for enhancing low-light images can be
divided into four categories [9]:

I.  Gray Transformation (GT) methods.
II.  Histogram Equalization (HE) methods.
III.  Machine learning methods.
IV.  Retinex theory methods.

In table 1 categorizes some of the research done to enhance low-light images.

Table 1: Some research on enhancing low-light images

Method type
Authors Year | GT HE Machine Retinex
GHE LHE learning | Reflection | Illumination Noise

Chiu et al.[10] 2011
Huang et al. [11] 2012
Huang et al. [12] 2016

Srinivas et al. [13] 2019

SISNISNIS

Kim [14] 1977 v
Der Chen et al. [15] | 2003 v
Wang and Ward [16] | 2007 v
Kim et al. [17] 1988 v
Reza [18] 2004 v
Liu et al. [19] 2011 v
Lore et al. [8] 2017 v
Shen et al. [20] 2017 v
Wei et al. [21] 2018 v
Xu et al. [22] 2020 v
Jobson et al. [23] 1977 N
Jobson et al. [24] 1977 v
Guo et al. [25] 2016 V4
Wang et al. [26] 2013 V4 V4
Fuetal. [27] 2016 v v
Fu et al. [28] 2019 v v
Lietal. [29] 2018 v v v
Ren et al. [30] 2018 v v v

GT methods directly modify the gray values of low-light images using linear or nonlinear
transformation functions [31]. The GT is an efficient method which can be easily applied to
low-light images in order to increase the contrast and illumination [13][32]. In GT methods the
calculations are carried out on each pixel individually without considering the relationship with
its neighbors [25], therefore, the results may be vulnerable and visually inconsistent [13][25].



Inadequate ability to increase the contrast of low-light images, excessive brightness and loss of
some visual details are the main drawbacks of GT methods [30][32].

HE is another method that has been widely used to enhance low-light images by equalizing the
histogram of gray values [33][9]. Typically, HE normalizes the gray values in the range [0,1]
to prevent the saturation of relatively bright areas and consequently preserving the image details
[25]. HE methods can be categorized as follows [34][35]:

¢ Global Histogram Equalization (GHE)
e Local Histogram Equalization (LHE)

GHE (e.g. [14][16][15]) uses the entire gray levels histogram information of an input image.
GHE based methods mainly try to recreate the gray levels of the image based on the cumulative
density function [36]. This approach is suitable for overall image enhancement, but fails in
small gray levels [34][16]. To solve this problem, LHE approach (e.g. [17][18][19]) is
recommend where for each pixel, a small window is created containing the neighboring pixels.
Then the gray value of pixel is determined based on information obtained from its
neighbors[16]. So, LHE is less sensitive to high-frequency levels [19] but suffers from high
computational cost, noise sensitivity, and unnatural color rendering [34][36].

Recently data-driven based techniques such as machine learning techniques have also been
used to enhance low-light images (e,g. [8][20][21][22][40]). Yang et al. [40] presented a low
light image enhancement method using coupled dictionary learning. Lore et al. [8] explored
two types of deep architecture ((LLNet and SLLNet) for simultaneous and sequential learning
of contrast-enhancement and denoising. Shen et al. [20] showed that MSR is equivalent to a
feed-forward convolutional neural network with different Gaussian convolution kernels.
Accordingly, they presented a deep convolutional neural network (MSR-net) to enhance low-
light images. Generally, Machine learning based methods could provide acceptable
enhancement but demand high computation and reliable training datasets [9]. Because real data
paired with normal light and low-light is difficult to collect, these methods may not fully
characterize the formation of natural images in low light and lead to unnatural results [30].

Retinex theory is another method that has been welcomed by researchers to enhance low-light
images. Retinex theory decomposes an image into two factors: reflectance and illumination
[20].The illumination factor determines the amount of light intensity on objects and the
reflection factor determines the physical properties of objects [27]. In some studies, both
reflectance and illumination are estimates (e.g. [27][37][38][26][28]), but in some other studies,
in order to reduce the computation, only one of these factors is estimated and the other factor
is calculated based on the estimated factor (e.g. [25][24][23]). Early attempts such as single-
scale Retinex (SSR) [23] and Multi-Scale Retinex (MSR) [24] considered the reflection factor
as the final enhanced result and then calculated the illumination factor using the reflection
natural logarithm [29]. Excessive illumination and unnatural appearance of image colors are
the disadvantages of these two research [25]. Multi-scale Retinex method with color restoration
(MSRCR) [24] can eliminate these shortcomings. Although this method eliminates the problem
of color distortion to some extent, it may not be able to preserve the image detail well, especially
in bright areas [39]. In order to increase the quality of enhanced images, Wang et al. [26]
proposed a mathematical model for simultaneous reflectance and illumination estimation
(SRIE). Although SRIE results in impressive images [29], it mostly does not uniformly
distribute the illumination and in some cases generates halo artifacts [30]. Also, simultaneous



estimating reflection and illumination lead to a significant increase in computational cost [25].
To deal with this, the method of Low-light Image Enhancement via Illumination Map
Estimation (LIME) [25] acquires only the illumination factor using a mathematical model.
Authors of LIME claimed that their method worked better than SRIE which estimated both
reflection and illumination. Although the visual quality of enhanced images by LIME is often
desirable, but since the reflection is not estimated, some detail in the bright area may be lost
and also may observe more noise in enhanced images [29][30]. To deal with this Ren et al. [30]
estimated simultaneously reflection, illumination and noise by developing the mathematical
model of SRIE. Li et al. [29] argued that simultaneous estimation of reflection and illumination
could make more noise, so they estimated illumination and reflection in two Sequential
mathematical models, respectively.

So far, different mathematical models such as [25][26][29][30] based on Retinex theory have
been proposed. Most of these models (such as [26][29][30]) estimate both reflectance and
illumination in order to achieve impressive images. Increasing computational time is a major
challenge in these methods. For this reason, some other models, such as LIME, only estimate
the illumination factor. But, if the illumination is not estimated correctly, it can cause losing
details and excessive illumination in enhanced images. For this reason, this article tries to
estimate the illumination map more accurately than the mentioned models.

The objective function of the mathematical models mentioned above is not differentiable. For
this reason, classic optimization methods such as Newton, Gradient and Trust Region cannot
be used to obtain the global optimal solution. This paper presents a differentiable mathematical
model and convex with linear constraints that can provide a chance to acquire global optimum
solution. It is expected that the estimated illumination by proposed model will result in more
impressive images compared to other models. Because achieving the global optimal solution
takes a lot of computational time, this article also presents a heuristic approach to fast solve the
proposed mathematical model with acceptable accuracy.

The remainder of this paper is organized as follows. Section 2 explains the proposed method in
detail. Section 3 introduces several scales for assessing the visual quality of enhanced images.
In Section 4, the propose methods are evaluated equally and in section 5, the achieved results
are presented and discussed.

2. Proposed Method (IMS)

As it was reviewed in the previous section, direct increase in the brightness of low-light images
(GT based methods) can lead to loss of details particularly in bright spots [32]. HE methods
mostly cannot increase the brightness of low-light images well [25]. Machine learning based
methods could provide acceptable enhancement but demand high computation and reliable
training datasets [9]. Among the techniques which were summarized in Table 1, those methods
which built based on Retinex theory could provide a chance to simultaneously improve the
illumination and contrast of low-light images [17]. so far, different mathematical models (such
as LIME [25], JED [30], JIEP [41], SRRLI [29] and SRIE [27]) based on this theory have been
proposed. The objective function of the mentioned mathematical models is not differentiability,
this can make it difficult to achieve the global optimal solution. This paper presents a
differentiability mathematical model and convex with linear constraints that can provide a



chance to acquire the global optimum solution. The proposed method uses this model to smooth
the illumination map, for this reason, we call this method Illumination Map Smoothing (/MS).
IMS enhances low-light images using Retinex theory. It is expected that /MS could improve the
readability of low-light images within a practically short elapsed time. Moreover, IMS is
supposed to be hired for real-time computer vision applications on poor processors such as
mobile devices.

Retinex theory decomposed images into two factors; reflection and illumination Eq. (1):

L =RoT (D
where L represents the initial low-light image and R and T represent the enhanced image and
the illumination map, respectively. Also in Eq. (1) the operator © means element-wise
multiplication. Accordingly, in order to increase the brightness of an image in low light, the
IMS estimates a suitable illumination map (T) for each image. For this purpose IMS first,
obtains the initial illumination map (T) of the image from Eq. (2).

T = LS
(x,y) (Jmax (x,y) te

where € is a very small constant and it is used to prevent the denominator of Eq. (3) from
becoming zero. Also, R, G and B indicate the color value of Red, Green and Blue channels,
respectively. By replacing T in Eq. (3), raw bright image (R) is obtained.

R=1L/T A3)
As shown in Fig. (1), R is often much brighter than L. The histograms related to these two
images also show this fact.

Initial low-light image (L)  Raw bright image (R) Recovered image (R) Enhanced image (R)

Fig 1: Comparison of initial low-light image (L), raw bright image (R), recovered image (R) and enhanced
image (R) with their histograms.

As in Fig. (1) can be seen, many of the image important details are lost in R. IMS in order to
recover lost details by solving a novel mathematical model does more smoothness initial
illumination map (7). Smoothing the illumination map using the global optimal solution is
called Illumination Map Optimal Estimation (IMOE). IMOE requires a lot of computational
time to smooth the illumination map. In this paper, a heuristic method is proposed to faster
solve the mathematical model. Smoothing the illumination map using this initiative is called
Hllumination Map Heuristic Estimation (IMHE). IMOE and IMHE approaches are explained in

)



detail in Section 2.1. The illumination map estimated from these two approaches is called
recovered illumination map (T) and also we call R = % recovered image (R).

As shown in Fig. (1), histogram of recovered image (R) is more smoothed than raw bright
image (R). For this reason, R has a better visual quality compared to R. However, due to the
high brightness, the colors in R still look somewhat unnatural. Also, some details are not visible
in R. To address these shortcomings, /MS uses a simple Linear Transformation (LT) to correct
recovered illumination map (T). LT uses Eq. (4) to correct images:

T=T+w (4)
where w is a parameter for adjusting the illumination. If w is selected less than zero, the
brightness of the image will increase, and if it is selected greater than zero, the brightness of
the image will decrease. Since the brightness of recovered images is mostly high, w should be
greater than zero to reduce the brightness. The corrected illumination map is called enhanced

illumination map (T') and also we call R = % enhanced image (R). As can be seen in Fig. (1),

enhanced image (R) has desirable illumination and visual quality. The /MS steps can be seen

in Fig. (2).

Enter initial low-light image (1)

h A

l

Calculate initial illumination map (T) Using )
X Eq. (2) )

¥

Estimate recovered illumination map (T)

|

(" Calculate enhanced illumination map (T)
using Eq. (4)

¥

Obtain enhanced image (R) using Eq. (2)

Fig 2: IMS algorithm

2.1 Illumination map estimation approaches

In this section, two different estimation methods (/MOE and IMHE) for determining recovered
illumination map (T) are presented. IMOE method seeks for best T by searching the entire
solution space which demands a huge computation time. /MHE method aims to have a near



optimum solution but in real-time. In both methods the following assumptions are being taken
into account:

e Recovered illumination map (T) does not differ much from initial illumination map (T)
(To maintain image illumination).

e In recovered illumination map (T), the value for each pixel should be as close as
possible to the neighbor pixels (To enhance image quality and smoothness).

In a recovered illumination map (T), although minimizing the difference between illumination
values of neighbor pixels could improve the visual quality, a big difference between
illumination value of each pixel and its corresponding value in T might make the image so
dark. Thus in the two proposed approaches it is tried to balance between the two above-
mentioned issues in order to enhance illumination while keeping the image readability.
Generally, it can be said that the proposed approaches seek to smooth initial illumination
map (T).

2.1 Illumination Map Optimal Estimation (/IMOE)

In the literature, a wide range of techniques for light enhancement have been introduced (such
as LIME [25], JED [30], JIEP [41], SRRLI [29] and SRIE [27]) which their objective function
are not differentiable. For this reason, many optimization methods classic such as Newton,
gradient and Trust Region methods cannot be used to achieve the global optimal solution of
these models [42]. In this paper an attempt is made to propose a differentiable and convex
model in order to achieve the global optimal solution value of T. The proposed model is as
follows:

R N T (%)
min 37, 57, (TG ) - TG.))
s.t
T(l ]) _ aT(L,])+Wl}(L—1,])T(l—1,])+WU(l+1,])'1_"(l+1,])+WU(l,]—l)T(l,]—1)+WU(l,]+1)'f'(l,]+1) (6)

a+Wij(i—1,)+W;j(i+1,j)+W; ;@ j—D+Wy(i,j+1)

Eq. (5) ensures that T does not differ much from T. Hence it can be ensured that R has the
necessary illumination. In order to improve smoothness of the initial illumination map (T), Eq.
(6) is added to model as main constraint to maintain the illumination value of each pixel as
close as possible to the neighbor pixels. a is a calibration parameter larger than zero. If a close
value to zero is assigned to «, a smoother T is obtained. If a large value is assigned to a, T will
be numerically closer to T which lead to a very bright image.
In Eq. (6), W is weight matrix, which determines the effect of the neighbors of a pixel. In the
literature two main strategies have been introduced to calculate the weight matrix (W) [25]:
I.  Weightless strategy: In this strategy, the effects of all neighboring pixels are
considered the same. So, weights of all pixels are considered equal to 1.
II.  Weighted strategy: In this strategy, for each pixel, the effect of neighboring pixels with
values of similar brightness to the central pixel is more considered.
1 (7
TG, ) —Timn)|+e
where W;;(m, n) specifies the effect of the pixel (m,n) on the pixel (i, ).




Acquiring global optimum solution of T for large instances might be computationally hard, so
in the following section a heuristic method is proposed to find a near optimum solution for T
with less time cost.

2.1.1 lllumination Map Heuristic Estimation (/MHE)

Given that the proposed mathematical model is a differentiable, convex model with linear
constraints, it is possible to find the global optimal solution by using different optimization
methods. But, since the exact solution of this model requires a high computational time (due to
the high number of constraints because Eq. (6) is repeated for each pixel), Algorithm 1 is
developed to quickly find a near optimum solution for T.

Algorithm 1 considers constraints of the proposed mathematical model (Eq. 6) as follows:

TGH-TG)H = %(Wij(i —LATGE= L) +W;G+ LOTGE+ L) + WG — DTGj — D+ WG+ DTG+ 1) )
- Wy =1L+ WG+ 1)) + WG j— 1)+ WG  + 1D)TGE)

First, Eq. (8) ensures that any solution obtained by the heuristic approach does not violate the
feasible region of the proposed model (Eq. 6). Second, left phrase of Eq. (8) is equal to the
square root of objective function in proposed model (Eq. 5). So, global optimal solution of
proposed model can be found among the solutions of Eq. (8). Suppose Ty, Ts, ..., T, are
solutions for Eq. (8). Tp is global optimal solution of proposed model if and only if for each

1<qg<n:

ii T(lJ)—T(u) ii T(l])—T(l]) 9)

i=1j=1 i=1j=1

For T =T, objective function (Eq. (6)) is equal to zero. For this reason, Algorithm I uses T as
initial solution (T® = T). For T® = T, left phrase of Eq. (8) is equal to zero but often in this
case right phrase of Eq. (8) is much greater than left phrase of Eq. (8). Therefore, T° should be
changed so that right phrase of Eq. (8) decreases. In Eq. (8), the least value of right phrase
occurs for T (i, j)s that satisfy the following equation:

Wy = LATG = L) + Wy + LHTG + 1) + Wy(Qj = DTGj = D + Wy + DTG+ 1D (10)
Wi =1, )+ WG+ 1,7) + W@ j — 1D+ WA, j + 1)

T(0,j) =

According to this, Algorithm I applies changes on T° to reduce right phrase of Eq. (8). For
this reason, Algorithm 1 calculates T* in each iteration as follows:

Wi — LT G- L) + Wi+ LHTG+ 1)) + W) — DTG j — 1) 4+ Wy (i + DTG j + 1) (11)

Tt+1
@ = W= 1) + WG+ 1) + Wi, Goj — D) + Wy (i) + 1)

Algorithm 1 should continue until T satisfies Eq. (8). In this case, Tt will be in feasible region
of proposed mathematic model. Also, because T is used as the initial solution, we expect T'*



not to differ much from global optimal solution (For T° = T the value of the objective function
is zero). The proposed algorithm is as follows:

Algorithm I: A heuristic method for solving the mathematical model

Input: initial illumination map (T)
1: Calculate the weight matrix W.
2:SetT®=Tandt = 1.
3: Do the following until the stop condition is met:
a) Calculate Ttusing Eq. (11).
b) Sett =t+ 1.
4:SetT =T¢.

Computational Complexity of Algorithm 1: The computational complexity of Algorithm 1
for an image with N pixels is mainly determined by step 3 where for each pixel Eq. (11) must
be calculated. The number of calculations performed in Eq. (11) for each pixel is of order O (1).
Due to fact that the input image has N pixels, O(N) operations are performed in each iteration.
Thus the computational complexity of Algorithm I is equal to O(tN) where t is equal to the
number of Algorithm I iterations.

3. Visual Quality Evaluation
This paper uses the following metrics to evaluate the visual quality of enhanced images:

e Absolute Mean Brightness Error (AMBE) [15]

e Lightness Order Error (LOE) [43]

e Blind/Reference less Image Spatial Quality Evaluator (BRISQUE) [44]
e Natural Image Quality Evaluator (NIQE) [45]

e Structural SIMilarity (SSIM)[46]

e Peak Signal-to-Noise Ratio (PSNR) [47].

AMBE measures the brightness of images so that for brighter images, AMBE is larger. LOE
metric is used to measure the discrepancy in lightness order between an initial low-light image
(L) and enhanced image (R). A smaller LOE means that the order of the image lightness is
better preserved during processing. BRISQUE metric can be used to assess blurring and noise
in an image. A smaller score indicates better perceptual quality. NIQE evaluates how natural
an image looks, for more natural images this value is less. SSIM is used to evaluate the
structural similarity between two images, and generally a larger SSIM means better processing.
PSNR determines the degree of deviation from the original image based on human perception
of contrast [8]. Higher PSNR indicates better image reconstruction. Generally, these metrics
can be used to compare the visual quality of enhanced images.

4. Experiments and results

This paper presents a method which called Illumination Map Smoothing (/MS) to enhance
illumination of low-light images. Using the proposed mathematical model (/MOE), IMS seeks
for global optimum solution. /MOE is implemented in IBM ILOG CPLEX 12.10 on a machine



with 8 GB of RAM and CPU core i5. Also, the heuristic approach (IMHE) is implemented in
MATLAB R2017b package.

In section 4.1, the parameters of /MS are checked. Then in section 4.2, the performance of IMS
1s compared with popular methods such as DONG [48], NPE [26], SRIE [27], SRLLI [29],
JED [30] and LIME [25]. In this evaluation, the images of references [25] and [30] are used.
The AMBE [15], LOE [43], (BRISQUE) [44], NIQE [45], SSIM [46]and PSNR [47] metrics
are used to make a qualitative comparison.

4.1 IMS parametric check

The IMS in order to estimates the recovered illumination map (T) uses IMOE or IMHE
approach. It then uses LT to improve image visual quality. In section 4.1, the performance of
LT is examined. Then in section 4.2 parameters of IMS are investigated in two mode of IMOE
and /MHE. Finally in section 4.3, the performance of IMOE and IMHE approaches are
compared.

4.1.1 Parametric check of LT

Visual quality of recovered images (R) obtained using IMOE and IMHE approaches are not
desirable (as shown in Fig. 3). To tackle this issue, in the literature a couple of techniques were
introduced (such as Gamma Correction and Linear Transformation) that could effectively
enhance visual quality. In this paper to demonstrate how this process works, we implement LT.
The most parameter in LT which must be determined is w. If a big constant is assigned to w,
enhanced images become too dark, and if w is a small number, the contrast of enhanced images
would not improve quite well.

Generally, the correct value of w should be selected by trial and error and according to the
brightness of each image. According to Fig. (3) and other experiments performed by authors,
commonly LT for w = 0.08 works well in /MS. For this reason, in the continuation of this
article, this value is used to correct images.

Recovered image (R) w =0.04 w =0.08 w=0.12 w=20.16

Fig 3: Parametric check of LT



Table 2 examines from the aspect of AMBE, LOE, BRISQUE, SSIM, PSNR and NIQE metrics
the performance of LT by selecting w = 0.08. The numbers reported in this table are obtained
by calculating the average of 10 images used in this article. From an AMBE metric perspective,
LT reduces the illumination of R correctly. In addition, LT from the perspective of LOE,
BRISQUE, SSIM, PSNR and NIQE metrics, increases the visual quality of R. So, LT is
effective in improving the visual quality of recovered images.

Table 2: Evaluation of LT efficiency using AMBE, LOE, BRISQUE, SSIM, PSNR and NIQE metrics

AMBE LOE BRISQUE | SSIM | PSNR | NIQE
Recovered image (R) | 0.5927 2131 20.46 0.2317 | 5.79 3.70
Enhanced image (R) | 0.4092 969 17.09 0.3433 | 10.62 | 3.32

4.1.2 Experiment of IMOE approach

When IMS uses the IMOE approach to estimate enhanced illumination map (T), the following
factors affect the visual quality of enhanced images (R):

I.  Value of a parameter
II.  Type of weight matrix calculation strategy ().

Table 3 examines the effect of these parameters on the visual quality of enhanced images. If
a = 0 is selected, the visual quality of enhanced images is generally not desirable (e.g. images
(b), image (e), image (i) and image (1) in Table 3). In this case, some details in enhanced images
may be lost. If « is set to 0.5 then the readability of the images is improved (e.g. images (c),
image (j), image (f) and image (m) in Table 3). Generally details in enhanced images rises with
a is increased. Excessive increasing o may cause unnatural colors in the enhanced images (e.g.
images (d), image (k)). According to experiments performed by the authors, generally for
different images, selecting oo = 0.5 gives a desirable output. Finding the optimum value for a
could be consider as future works.

Table 3: Investigation effect of o and W on the visual quality of images

Initial image Weightless strategy Weighted strateg
a=0 a=0.5 a=1 a=0 a=0.5 a=1

h) O O | ® 0 m | @

In Table 3 you can also see the difference between using two strategies for calculating weight
matrix (W). Generally in the IMOE approach, weighted strategy in comparison to weightless
strategy have led to a higher quality (Table 3). So, in this paper, weighted strategy is selected
to be used in IMOE.

4.1.3 Experiment of IMHE approach



When IMS uses the IMHE to estimate enhanced illumination map (T), the following factors
affect the visual quality of enhanced images (R):

I.  Weight matrix calculation strategy (W)
II.  Iterations number of Algorithm I

To achieve an image with desired visual quality, the above factors should be adjusted according
to brightness. In IMHE, unlike IMOE, weightless strategy is more cost-effective without
compromising the visual quality. As it can be seen in Table 4, when the weightless strategy is
used, the colors of the enhanced images look a bit more natural. This is also confirmed by NIQE
metric.

Table 4: Investigating the difference between weightless strategy and weighted strategy in the IMHE approach

Weightless
strategy

weighted
strategy

Time 1.08 0.69 218 1.05
NIQE 2.48 487 259 453

Fig. (4) is depicted to investigate the quality of the enhanced images when iteration number of
Algorithm 1 is varied. As it can be seen in this Table, after 50 iterations the quality of enhanced
images have not been changed significantly and after 1000 iterations the visual quality is started
to be deteriorated (for example, in Fig. (4a) the area around the lamp is blacked, in Fig. (4b)
the details of mug are lost, in Fig. (4c) pink flower color is changed to white, and in Fig. (4d)
details of clouds are almost lost). So, IMHE is terminated after 50 iterations.

Therefore, iterations number of Algorithm I should not be selected very much or very little.
Often, by selecting 50 to 100 iterations the desired visual quality can be achieved. On the other
hand, Algorithm 1 is not a very cheap computational process, So it seems that choosing 50
iterations for Algorithm [ is better decision.
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4.1.4 Comparison of IMOE and IMHE approaches

Fig 4: Check iterations number in /IMHE approach

As it was described in details, this paper proposes two approaches (IMOE and IMHE) to
estimate the recovered illumination map. IMOE seeks for optimum solution, while IMHE is a
heuristic based method looking for a near optimum solution but within a very short computation

time.

In this section, IMOE and IMHE are compared using AMBE, LOE, BEISQE, NIQE, SSIM and
PSNR metrics and also computational time.

As it can be seen in Fig. (5) and Table 5, in terms of visual quality, there is not much difference
between IMOE and IMHE approaches. But IMOE takes very more time to calculate the
recovered illumination map ( T) in comparison with IMHE (Table 5). For this reason, in the
following section to compare /MS with other similar methods, we use the IMHA approach to
estimate the recovered illumination map.




Original

IMOE
IMHE
Fig 5: Comparison of the performance of IMOE and IMHE
AMBE LOE BRISQUE NIQE SSIM PSNR Time
Image (a) [MOE  0.2122 821 31.70 4.20 0.2396 15.41 10.25
IMHE  0.2142 878 31.82 441 0.2323 15.26 0.32
Image (b) IMOE  0.3326 816 8.16 2.54 0.3350 12.10 35.10
IMHE  0.3341 778 9.30 2.49 0.3312 12.01 0.72
Image (c) [IMOE  0.3712 656 10.09 2.45 0.2707 9.70 7.27
IMHE  0.3687 640 15.50 2.40 0.2615 9.78 0.28
Image (d) IMOE  0.5305 1256 9.31 4.89 0.4971 10.39 5.40
IMHE  0.5358 1373 9.62 4.60 0.4854 9.92 0.24
Image (¢) [MOE  0.4024 976 16.75 2.48 0.4159 10.85 8.50
IMHE  0.4019 956 16.50 2.42 0.4119 10.86 0.32

Table (5): Comparison of IMOE and IMHE approaches in terms of LOE, BEISQE, NIQE, SSIM and PSNR

metrics and execution time.

4.2 Comparison of IMS with other similar methods

In this section, IMS performance is compared with competitor methods including DONG [47],
NPE [23], SRIE [24], SRLLI [26], JED [27] and LIME [22]. The test images are borrowed
from [22] and [27]. To quantify the visual quality 6 different metrics are used including AMBE

[15], LOE [42], BRISQUE [43], NIQE [45], SSIM [44] and PSNR [46].

Fig. (6) compared the performance of IMS with other competitor methods on the test images.
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Fig 6: Enhancing low-light images using DONG [48], NPE [26], SRIE [27], SRLLI [29], JED [30] LIME [25]
and /MS methods.

According to Fig. (6), IMS provided promising results and visually outperformed DONG and
NPE (especially for Figs (6a), (6b) and (6d)). Enhanced images by DONG and NPE are often
unnatural, this shortcoming is not seen in the enhanced images by /MS. In addition, /MS have
provided images with a higher brightness (e.g. Figs (6¢), (6d) and (6h)). Although the visual
quality of enhanced images by SRIE is better than DONG and NPE, the visual quality of
enhanced images by IMS is better than SRIE. In terms of brightness, SRIE has a weaker
performance compared to the other similar methods which have led to lose details in the
enhanced images by SRIE (e.g. Figs (6a) and (6d)) while it is not the case in the enhanced
images by IMS.

The visual quality of enhanced images by JED and SRLLI are very similar to each other which
in some cases (e.g Figs (6a), (6d) and (6g)) led to blurriness and losing some important details.




This shortcoming can impair the performance of computer vision algorithms such as object
detection. Enhanced images by LIME are mostly clear, bright and desirable. As shown in Fig.
(6), LIME and IMS supplied almost similar outcomes, so six image quality assessment metrics
(AMBE, LOE, BRISQUE, NIQE, SSIM and PSNR) are used to quantify the visual
characteristic of the enhanced images.

AMBE (1) metric is used to evaluate the brightness of images. Fig. (7) shows the AMBE metric
for the test images enhanced by /MS and other similar methods. According to the results, SRIE
achieved lowest AMBE values and LIME and /MS respectively achieved the best performance.
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Fig 7: Evaluation of the test images using AMBE (1) metric

AMBE metric only measures the brightness, but LOE, BEISQE, NIQE, SSIM and PSNR
metrics could take into account other factors such as blurring, contrast, distortion and noise.

The LOE (|) metric is used to measure the discrepancy in lightness order between an initial
low-light image and its enhanced image. A smaller LOE means that the order of the image
lightness is better preserved during processing. In Fig. (8), the test images are compared in
terms of the LOE where IMS performed better than DONG and NPE, SRIE, JED and LIME in
5, 4, 3, 5 and 6 cases, respectively. As shown in Fig. (8), the IMS method performed much
better than the SRLLI in all cases. In average, IMS compared to DONG, NPE, SRILI, JED and
LIME achieved better LOE while SRIE performed a bit better than /MS.
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Fig 8: Evaluation of the test images using LOE () metric

BRISQUE (|) metric can be used to assess blurring and noise in an image. In Fig. (9) using
BRISQUE metric, the test images are evaluated. The achived results show that /MS has
performed better than DONG, NPE, SRIE, SRLLI, JED and LIME in images (f), (d),(e),(e),
(g), (g) and (d) 4 respectively. In average, in terms of BRISQUE metric, enhanced images by
IMS method are better than all other competitor methods (especially DONG, SRLLI and JED).
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Fig 9: Evaluation of the test images using BRISQUE (| ) metric

NIQE (|) metric evaluates how natural an image is. In Fig. (8), the test images are compared
in terms of the NIQE where IMS performed better than DONG, NPE, SRIE, SRLLI, JED and
LIME in images (f), (d), (b), (f), (d) and (g), respectively. In average, IMS compared to
DONG, SRLLI and LIME achieved better NIQE.
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Fig 10: Evaluation of the test images using NIQE (|) metric

SSIM (1) metric is used to evaluate the structural similarity between the initial low-light image
and the enhanced image. Also, PSNR (1) metric determines the amount of deviation from the
initial low-light image based on human perception of contrast [8]. SSIM and PSNR metrics for
test images are reported in Figures 11 and 12, respectively.

In terms of SSIM and PSNR metrics, /MS is better than other methods whenever it undergoes
fewer changes to images during processing. But it should be noted that to increase the
brightness of a low-light image, changes must be made accordingly. So a higher of these two
metrics do not necessarily mean a better enhancement of an image. In other words, in analyzing
an image using these two metrics, its brightness (AMBE metric) should also be considered
simultaneusly. For example, according to Figures 11 and 12, DONG, NPE and SRIE compared
to IMS, LIME, JED and SRLLI have made fewer changes to the original images. But as shown
in Fig. (6) and Fig. (7) enhanced images by SRIE, NPE and DONG are less bright than
enhanced images by /MS, LIME, JED and SRLLI methods. This happened because the changes
made by SRIE, NPE and DONG were not enough, SSIM and PSNR for these methods are not
included in the advantage. Therefore for these two metrics, we only compare /MS with LIME,
JED and SRLLI.

In terms of SSIM metric, /MS performed better for all the test images compared to SRLLI, JED
and LIME. Also, in terms of PSNR metric for all the test images, IMS performance compared
to SRLLI and LIME is significantly better. /MS compared to JED achieved better LOE in 3
cases. Based on these results, it is expected that more details can be seen in enhanced images
by IMS compared to SSRLI, JED and LIME.
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Fig 11: Evaluation of test images using SSIM (1) metric
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Fig 12: Evaluation of test images using PSNR (1) metric

In Table 7, the computational time of DONG, NPE, SRIE, SRLLI, JED, LIME and IMS
methods for test images is reported. As can be seen, the computational time of /MS is less
compared to all other methods (especially SRLLI, SRIE, NPE and JED).



Table 7: Computation time of DONG, NPE, SRIE, SRLLI, JED, LIME and IMS methods for test images

@ | ® | © | @ (©) ® | @ | 0 ()
DONG | 037 | 0.79 | 038 | 031 | 0.32% | 0.86 | 145 | 045 | 035
NPE | 991 | 20.80 | 851 | 6.81 | 9.22 | 20.1 | 34.13 | 11.70 | 7.82
SRIE | 17.62 | 25.92 | 892 | 17.63 | 10.21 | 34.2 | 170 | 17.79 | 20.01
SRLLI | 3431 | 63.23 | 12.32 | 14.12 | 12.41 | 432 | 9731 | 1648 | 17.31
JED | 3.60 | 848 | 2.82 | 2.50 | 2.85 | 7.8 | 17.70 | 3.77 | 2.97
LIME | 0.76 | 1.50 | 0.75 | 0.63 | 0.84 | 154 | 254 | 091 | 0.73
IMS | 032 | 072 | 031 024 | 032 | 0.67 | 1.25 | 0.32 | 0.28

In summary and according to the above-mentioned results, the proven advantages of IMS
compared to other similar methods are obvious. /MS in term of AMBE, LOE, BRISQUE,
NIQE, SSIM and PSNR was ranked 2, 2, 1, 4, 4 and 5, respectively, and was faster in terms of
implementation time than all other methods.

5. Discussion

This paper presents a new mathematical model called Illumination Map Smoothing (/MS) to
robustly enhance low light images. In the proposed mathematical model, the smoothing of the
illumination map is included in the model constraints and is done separately for each pixel. In
similar mathematical models, the smoothing of the illumination map, along with other factors,
is in the objective function. Smoothing in such cases can be influenced by other factors of the
objective function (especially if the balance between the factors of the objective function is not
well set). Providing a multi-objective mathematical model instead of placing contradictory
factors in an objective function can be considered as future tasks. In the objective function of
the proposed mathematical model, compared to similar models, only proximity to the initial
illumination map is optimized. For this reason, according to AMBE metrics, IMS often results
in more bright images compared to DONG, NPE, SRIE, SRLLI and JED.

In terms of BRISQUE and LOE metrics, IMS was ranked first and second, respectively. This
could be due to better smoothing of the illumination map in proposed mathematical model
(smoothing in constraints).

In terms of SSIM and PSNR, the proposed model makes fewer changes than SRLLI, JED and
LIME in the original images. This is because the constraints of the proposed model (Eq. 6 or
Eq. 8) limit the difference from the initial illumination map for each pixel. This limitation is
not seen in other similar models.

IMS had less computational time compared to other methods. This is because in IMS method,
unlike SRIE, SRLLIL, JED and LIME only the illumination factor is estimated. Of course, LIME
method also only estimated the illumination factor, but its computational complexity
(O(tNlogN)) is more lorge than IMS (O(tN)). Given that for IMS 50 iterations are sufficient,
its computational complexity (O (50N)).) becomes a desirable value.

In summary, IMS performs considerbaly better than other similar methods because /MS is the
only differentiabile and convex method provides a chance to obtain the global optimal solution.



Conclusion

This paper proposed a method called I/lumination Map Smoothing (IMS) to enhance low-light
images. The main idea of IMS is to smooth initial illumination map (7). For this purpose, IMS
first obtains initial illumination map (7). Then estimates recovered illumination map (T) by
solving a new mathematical model (IMOE). The main advantage of the developed
mathematical model compared to other similar models is convexity and differentiability of the
objective function which provides a chance to acquire global optimum. The quadratic nature of
objective function and linearity of constraints in the proposed model are other advantages of
IMS. Rather than IMOE which provides global optimum solution but demands a considerable
computations time, this paper also proposed a heuristic approach (IMHE) to quickly provide a
near optimum solution for the mathematical model introduced. The results of section 4.1.4
shows that there is in terms of visual quality significant no difference between the exact solution
supplied by IMOE and the IMHE output. However, the computational time of IMHE is much
less compared to IMOE. So it seems more economical to use /IMHE for estimating recovered
illumination map (T).

IMS uses a simple Linear Transformation (LT) to correct the illumination map (T). In section
4.1.4, LT is parametrically examined. The results of the experiments show that L7 by selecting
w = 0.08 can provide a promising result.

Finally, IMS was compared with DONG, NPE, SRIE, SRLLI, JED, and LIME similar methods.
The results show that the visual quality of enhanced images by /MS is similar to LIME method
and better than the other methods mentioned. Also, these methods were compared by AMBE,
LOE, BRISQUE, NIQE, SSIM and PSNR metrics. In terms of the AMBE metric, /MS method
is in second place after LIME. According to this, /MS can increase the brightness of low-light
images more than DONG, NPE, SRIE, SRLLI and JED methods. Also in terms of the LEO
metric, enhanced images by /MS have better visual quality than all methods of above (except
SRIE). In terms of the BRISQUE metric, /MS performance was better than all methods
mentioned. Moreover, in terms of the NIQE metric, enhanced images by IMS look more natural
compared to DONG, SRLLI and LIME. In terms of SSIM metric, IMS performed better for all
test images compared to SRLLI, JED and LIME. Also, in terms of PSNR metric for all test
images, IMS performance compared to SRLLI and LIME is better. Moreover, computational
time of /MS compared to all mentioned methods was less. Generally, using /MS compare to
other methods for low-light images enhancement seems more economical. For this reason, /MS
can be a good option to increase the performance of computer vision algorithms. In addition,
IMS can be used independently to enhance low-light images.
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