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Abstract: 

Automatically retrieving information from images recorded in a low-light environment is a 
practical challenge for computer vision domain. So far, different mathematical models based 
on Retinex theory have been proposed to enhance low-light images. Differentiability of the 
objective function has received less attention in these models. This paper presents a 
differentiability mathematical model and convex with linear constraints that can provide a 
chance to acquire global optimum solution. The proposed mathematical model seeks to enhance 
the visual quality of recovered images via smoothing the initial illumination map. Furthermore, 
proposed method corrects the illumination map using a simple linear transformation to increase 
the contrast and readability of enhanced images. This paper also presents a heuristic approach 
to fast solve the proposed mathematical model with acceptable accuracy. Heuristic approach 
could be used for image processing applications that low-light images must be enhanced with 
no noticeable delay. To evaluate, the proposed method is compared with six other competitive 
methods using six quantitative metrics as well as time cost. The results show that proposed 
method outperforms other methods and can be used in real-time applications.  

Keywords: Low-light Image Enhancement; Retinex theory; Illumination Estimation; 
Illumination map; Mathematical model 

 

1. Introduction 

Algorithms such as object detection [1][2], tracking [3][4][5], scene understanding [6] and 
occlusion detection [7] are mainly designed for high quality and clear images. The use of low-
quality and low-light images can challenge the performance of these algorithms. One of the 
important factors and affecting the visual quality of images is the lighting of the shooting 
environment. Images recorded in low-light environment often have low illumination and 
contrast. In such images, some details of the target scenes are not well recognizable. Therefore, 
having sufficient and appropriate light in the imaging environment is crucial. However, in some 
cases, proper lighting is not possible in the shooting environment, such as [8]: 

• Intelligence, reconnaissance and surveillance missions (e.g., recognizing and 
distinguishing enemy warships and identify military bases). 

• Shooting in adverse weather conditions (e.g., taking photos in fog and night). 
• Unmanned vehicles (e.g., automatic landing of UAVs). 



• Commercial industries (e.g., property security, personal mobile phone and surveillance 
cameras). 

Therefore, enhancing low-light images and revealing lost details are important. So, in practice, 
illumination of low-light images must be improved before applying computer vision techniques 
in order to ameliorate readability of these images.  

Generally, in the literature, the introduced methods for enhancing low-light images can be 
divided into four categories [9]: 

I. Gray Transformation (GT) methods. 
II. Histogram Equalization (HE) methods. 

III. Machine learning methods. 
IV. Retinex theory methods. 

In table 1 categorizes some of the research done to enhance low-light images. 

Table 1: Some research on enhancing low-light images 

  Method type 
Authors Year GT HE Machine 

learning 
Retinex 

GHE LHE Reflection Illumination Noise 
Chiu et al.[10] 2011 ✓       

Huang et al. [11] 2012 ✓       
Huang et al. [12] 2016 ✓       

Srinivas et al. [13] 2019 ✓       
Kim [14] 1977  ✓      

Der Chen et al. [15] 2003  ✓      
Wang and Ward [16] 2007  ✓      

Kim et al. [17] 1988   ✓     
Reza [18] 2004   ✓     

Liu et al. [19] 2011   ✓     
Lore et al. [8] 2017    ✓    

Shen et al. [20] 2017    ✓    
Wei et al. [21] 2018    ✓    
Xu et al. [22] 2020    ✓    

Jobson et al. [23] 1977     ✓   
Jobson et al. [24] 1977     ✓   

Guo et al. [25] 2016      ✓  
Wang et al. [26] 2013     ✓ ✓  

Fu et al. [27] 2016     ✓ ✓  
Fu et al. [28] 2019     ✓ ✓  
Li et al. [29] 2018     ✓ ✓ ✓ 

Ren et al. [30] 2018     ✓ ✓ ✓ 
 

GT methods directly modify the gray values of low-light images using linear or nonlinear 
transformation functions [31]. The GT is an efficient method which can be easily applied to 
low-light images in order to increase the contrast and illumination [13][32]. In GT methods the 
calculations are carried out on each pixel individually without considering the relationship with 
its neighbors [25], therefore, the results may be vulnerable and visually inconsistent [13][25]. 



Inadequate ability to increase the contrast of low-light images, excessive brightness and loss of 
some visual details are the main drawbacks of GT methods [30][32].  

HE is another method that has been widely used to enhance low-light images by equalizing the 
histogram of gray values [33][9]. Typically, HE normalizes the gray values in the range [0,1] 
to prevent the saturation of relatively bright areas and consequently preserving the image details 
[25]. HE methods can be categorized as follows [34][35]: 

• Global Histogram Equalization (GHE) 
• Local Histogram Equalization (LHE) 

GHE (e.g. [14][16][15]) uses the entire gray levels histogram information of an input image. 
GHE based methods mainly try to recreate the gray levels of the image based on the cumulative 
density function [36]. This approach is suitable for overall image enhancement, but fails in 
small gray levels [34][16]. To solve this problem, LHE approach (e.g. [17][18][19]) is 
recommend  where for each pixel, a small window is created containing the neighboring pixels. 
Then the gray value of  pixel is determined based on information obtained from its 
neighbors[16]. So, LHE  is less sensitive to high-frequency levels [19] but suffers from high 
computational cost, noise sensitivity, and unnatural color rendering [34][36]. 

Recently data-driven based techniques such as machine learning techniques have also been 
used to enhance low-light images (e,g. [8][20][21][22][40]). Yang et al. [40] presented a low 
light image enhancement method using coupled dictionary learning. Lore et al. [8] explored 
two types of deep architecture ((LLNet and SLLNet) for simultaneous and sequential learning 
of contrast-enhancement and denoising. Shen et al. [20] showed that MSR is equivalent to a 
feed-forward convolutional neural network with different Gaussian convolution kernels. 
Accordingly, they presented a deep convolutional neural network (MSR-net) to enhance low-
light images. Generally, Machine learning based methods could provide acceptable 
enhancement but demand high computation and reliable training datasets [9]. Because real data 
paired with normal light and low-light is difficult to collect, these methods may not fully 
characterize the formation of natural images in low light and lead to unnatural results [30]. 

Retinex theory is another method that has been welcomed by researchers to enhance low-light 
images. Retinex theory decomposes an image into two factors: reflectance and illumination 
[20].The illumination factor determines the amount of light intensity on objects and the 
reflection factor determines the physical properties of objects [27]. In some studies, both 
reflectance and illumination are estimates (e.g. [27][37][38][26][28]), but in some other studies, 
in order to reduce the computation, only one of these factors is estimated and the other factor 
is calculated based on the estimated factor (e.g. [25][24][23]). Early attempts such as single-
scale Retinex (SSR) [23] and Multi-Scale Retinex (MSR) [24] considered the reflection factor 
as the final enhanced result and then calculated the illumination factor using the reflection 
natural logarithm [29]. Excessive illumination and unnatural appearance of image colors are 
the disadvantages of these two research [25]. Multi-scale Retinex method with color restoration 
(MSRCR) [24] can eliminate these shortcomings. Although this method eliminates the problem 
of color distortion to some extent, it may not be able to preserve the image detail well, especially 
in bright areas [39]. In order to increase the quality of enhanced images, Wang et al. [26] 
proposed a mathematical model for simultaneous reflectance and illumination estimation 
(SRIE). Although SRIE results in impressive images [29], it mostly does not uniformly 
distribute the illumination and in some cases generates halo artifacts [30]. Also, simultaneous 



estimating reflection and illumination lead to a significant increase in computational cost [25]. 
To deal with this, the method of Low-light Image Enhancement via Illumination Map 
Estimation (LIME) [25] acquires only the illumination factor using a mathematical model. 
Authors of LIME claimed that their method worked better than SRIE which estimated both 
reflection and illumination. Although the visual quality of enhanced images by LIME is often 
desirable, but since the reflection is not estimated, some detail in the bright area may be lost 
and also may observe more noise in enhanced images [29][30]. To deal with this Ren et al. [30] 
estimated simultaneously reflection, illumination and noise by developing the mathematical 
model of SRIE. Li et al. [29] argued that simultaneous estimation of reflection and illumination 
could make more noise, so they estimated illumination and reflection in two Sequential 
mathematical models, respectively. 

So far, different mathematical models such as [25][26][29][30] based on Retinex theory have 
been proposed. Most of these models (such as [26][29][30]) estimate both reflectance and 
illumination in order to achieve impressive images. Increasing computational time is a major 
challenge in these methods. For this reason, some other models, such as LIME, only estimate 
the illumination factor. But, if the illumination is not estimated correctly, it can cause losing 
details and excessive illumination in enhanced images. For this reason, this article tries to 
estimate the illumination map more accurately than the mentioned models. 

The objective function of the mathematical models mentioned above is not differentiable. For 
this reason, classic optimization methods such as Newton, Gradient and Trust Region cannot 
be used to obtain the global optimal solution. This paper presents a differentiable mathematical 
model and convex with linear constraints that can provide a chance to acquire global optimum 
solution. It is expected that the estimated illumination by proposed model will result in more 
impressive images compared to other models. Because achieving the global optimal solution 
takes a lot of computational time, this article also presents a heuristic approach to fast solve the 
proposed mathematical model with acceptable accuracy. 

The remainder of this paper is organized as follows. Section 2 explains the proposed method in 
detail.  Section 3 introduces several scales for assessing the visual quality of enhanced images. 
In Section 4, the propose methods are evaluated equally and in section 5, the achieved results 
are presented and discussed. 

 

2. Proposed Method (IMS) 

As it was reviewed in the previous section, direct increase in the brightness of low-light images 
(GT based methods) can lead to loss of details particularly in bright spots [32]. HE methods 
mostly cannot increase the brightness of low-light images well [25]. Machine learning based 
methods could provide acceptable enhancement but demand high computation and reliable 
training datasets [9]. Among the techniques which were summarized in Table 1, those methods 
which built based on Retinex theory could provide a chance to simultaneously improve the 
illumination and contrast of low-light images [17].  so far, different mathematical models (such 
as LIME [25], JED [30], JIEP [41], SRRLI [29] and SRIE [27]) based on this theory have been 
proposed. The objective function of the mentioned mathematical models is not differentiability, 
this can make it difficult to achieve the global optimal solution. This paper presents a 
differentiability mathematical model and convex with linear constraints that can provide a 



chance to acquire the global optimum solution. The proposed method uses this model to smooth 
the illumination map, for this reason, we call this method Illumination Map Smoothing (IMS). 
IMS enhances low-light images using Retinex theory. It is expected that IMS could improve the 
readability of low-light images within a practically short elapsed time. Moreover, IMS is 
supposed to be hired for real-time computer vision applications on poor processors such as 
mobile devices.    

Retinex theory decomposed images into two factors; reflection and illumination Eq. (1): 

(1) L = R○T 
where L represents the initial low-light image and R and T represent the enhanced image and 
the illumination map, respectively. Also in Eq. (1) the operator ○ means element-wise 
multiplication. Accordingly, in order to increase the brightness of an image in low light, the 
IMS estimates a suitable illumination map (𝑇𝑇) for each image. For this purpose IMS first, 
obtains the initial illumination map (𝑇𝑇�) of the image from Eq. (2). 

(2) 𝑇𝑇�(𝑥𝑥, 𝑦𝑦) = max
𝑐𝑐𝑐𝑐{𝑅𝑅,𝐺𝐺,𝐵𝐵}

𝐿𝐿𝑐𝑐(𝑥𝑥, 𝑦𝑦) + 𝜖𝜖 

where 𝜖𝜖 is a very small constant and it is used to prevent the denominator of Eq. (3) from 
becoming zero. Also, R, G and B indicate the color value of Red, Green and Blue channels, 
respectively. By replacing 𝑇𝑇�  in Eq. (3), raw bright image (𝑅𝑅�) is obtained. 

(3) 𝑅𝑅� = 𝐿𝐿 𝑇𝑇�⁄  
As shown in Fig. (1), 𝑅𝑅�  is often much brighter than 𝐿𝐿. The histograms related to these two 
images also show this fact. 

Enhanced image (𝑹𝑹) Recovered image (𝑹𝑹�) Raw bright image (𝑹𝑹�) Initial low-light image (𝑳𝑳) 

    

    
Fig 1: Comparison of initial low-light image (𝐿𝐿), raw bright image (𝑅𝑅�), recovered image (𝑅𝑅�) and enhanced 
image (𝑅𝑅) with their histograms. 

As in Fig. (1) can be seen, many of the image important details are lost in 𝑅𝑅� . IMS in order to 
recover lost details by solving a novel mathematical model does more smoothness initial 
illumination map (𝑇𝑇�). Smoothing the illumination map using the global optimal solution is 
called Illumination Map Optimal Estimation (IMOE). IMOE requires a lot of computational 
time to smooth the illumination map. In this paper, a heuristic method is proposed to faster 
solve the mathematical model. Smoothing the illumination map using this initiative is called 
Illumination Map Heuristic Estimation (IMHE). IMOE and IMHE approaches are explained in 



detail in Section 2.1. The illumination map estimated from these two approaches is called 
recovered illumination map (𝑇𝑇�) and also we call 𝑅𝑅� = 𝐿𝐿

𝑇𝑇�
 recovered image (𝑅𝑅�). 

As shown in Fig. (1), histogram of recovered image (𝑅𝑅�) is more smoothed than raw bright 
image (𝑅𝑅�). For this reason, 𝑅𝑅� has a better visual quality compared to 𝑅𝑅�. However, due to the 
high brightness, the colors in 𝑅𝑅� still look somewhat unnatural. Also, some details are not visible 
in 𝑅𝑅�. To address these shortcomings, IMS uses a simple Linear Transformation (LT) to correct 
recovered illumination map (𝑇𝑇�). LT uses Eq. (4) to correct images: 

𝑇𝑇 = 𝑇𝑇� + 𝜔𝜔 (4) 
where 𝜔𝜔 is a parameter for adjusting the illumination. If 𝜔𝜔 is selected less than zero, the 
brightness of the image will increase, and if it is selected greater than zero, the brightness of 
the image will decrease. Since the brightness of recovered images is mostly high, 𝜔𝜔 should be 
greater than zero to reduce the brightness. The corrected illumination map is called enhanced 
illumination map (𝑇𝑇) and also we call 𝑅𝑅 = 𝐿𝐿

𝑇𝑇
 enhanced image (𝑅𝑅). As can be seen in Fig. (1), 

enhanced image (𝑅𝑅) has desirable illumination and visual quality. The IMS steps can be seen 
in Fig. (2). 

 

Fig 2: IMS algorithm 

2.1 Illumination map estimation approaches 

In this section, two different estimation methods (IMOE and IMHE) for determining recovered 
illumination map (𝑇𝑇�) are presented.  IMOE method seeks for best 𝑇𝑇�  by searching the entire 
solution space which demands a huge computation time. IMHE method aims to have a near 



optimum solution but in real-time. In both methods the following assumptions are being taken 
into account:  

• Recovered illumination map (𝑇𝑇�) does not differ much from initial illumination map (𝑇𝑇�) 
(To maintain image illumination). 

• In recovered illumination map (𝑇𝑇�), the value for each pixel should be as close as 
possible to the neighbor pixels (To enhance image quality and smoothness). 

In a recovered illumination map (𝑇𝑇�), although minimizing the difference between illumination 
values of neighbor pixels could improve the visual quality, a big difference between 
illumination value of each pixel and its corresponding value in  𝑇𝑇�  might make the image so 
dark. Thus in the two proposed approaches it is tried to balance between the two above-
mentioned issues in order to enhance illumination while keeping the image readability. 
Generally, it can be said that the proposed approaches seek to smooth initial illumination 
map (𝑇𝑇�). 

2.1  Illumination Map Optimal Estimation (IMOE) 

In the literature, a wide range of techniques for light enhancement have been introduced (such 
as LIME [25], JED [30], JIEP [41], SRRLI [29] and SRIE [27]) which their objective function 
are not differentiable. For this reason, many optimization methods classic such as Newton, 
gradient and Trust Region methods cannot be used to achieve the global optimal solution of 
these models [42]. In this paper an attempt is made to propose a differentiable and convex 
model in order to achieve the global optimal solution value of 𝑇𝑇�. The proposed model is as 
follows: 

min
𝑇𝑇
∑ ∑ �𝑇𝑇�(𝑖𝑖, 𝑗𝑗)− 𝑇𝑇�(𝑖𝑖, 𝑗𝑗)�

2
𝑛𝑛
𝑗𝑗=1

𝑚𝑚
𝑖𝑖=1   

𝑠𝑠. 𝑡𝑡 

(5) 

𝑇𝑇�(𝑖𝑖, 𝑗𝑗) = 𝛼𝛼𝑇𝑇� (𝑖𝑖,𝑗𝑗)+𝑊𝑊𝑖𝑖𝑖𝑖(𝑖𝑖−1,𝑗𝑗)𝑇𝑇�(𝑖𝑖−1,𝑗𝑗)+𝑊𝑊𝑖𝑖𝑖𝑖(𝑖𝑖+1,𝑗𝑗)𝑇𝑇�(𝑖𝑖+1,𝑗𝑗)+𝑊𝑊𝑖𝑖𝑖𝑖(𝑖𝑖,𝑗𝑗−1)𝑇𝑇�(𝑖𝑖,𝑗𝑗−1)+𝑊𝑊𝑖𝑖𝑖𝑖(𝑖𝑖,𝑗𝑗+1)𝑇𝑇�(𝑖𝑖,𝑗𝑗+1)
𝛼𝛼+𝑊𝑊𝑖𝑖𝑖𝑖(𝑖𝑖−1,𝑗𝑗)+𝑊𝑊𝑖𝑖𝑖𝑖(𝑖𝑖+1,𝑗𝑗)+𝑊𝑊𝑖𝑖𝑖𝑖(𝑖𝑖,𝑗𝑗−1)+𝑊𝑊𝑖𝑖𝑖𝑖(𝑖𝑖,𝑗𝑗+1)     

 

(6) 

Eq. (5) ensures that 𝑇𝑇� does not differ much from 𝑇𝑇� . Hence it can be ensured that 𝑅𝑅� has the 
necessary illumination. In order to improve smoothness of the initial illumination map (𝑇𝑇�), Eq. 
(6) is added to model as main constraint to maintain the illumination value of each pixel as 
close as possible to the neighbor pixels. 𝛼𝛼 is a calibration parameter larger than zero. If a close 
value to zero is assigned to 𝛼𝛼, a smoother 𝑇𝑇� is obtained. If a large value is assigned to 𝛼𝛼, 𝑇𝑇� will 
be numerically closer to 𝑇𝑇�  which lead to a very bright image.  
In Eq. (6), 𝑊𝑊 is weight matrix, which determines the effect of the neighbors of a pixel. In the 
literature two main strategies have been introduced to calculate the weight matrix (W) [25]: 

I. Weightless strategy: In this strategy, the effects of all neighboring pixels are 
considered the same. So, weights of all pixels are considered equal to 1. 

II. Weighted strategy: In this strategy, for each pixel, the effect of neighboring pixels with 
values of similar brightness to the central pixel is more considered. 

𝑊𝑊𝑖𝑖𝑖𝑖(𝑚𝑚,𝑛𝑛) =
1

�𝑇𝑇�(𝑖𝑖, 𝑗𝑗)− 𝑇𝑇�(𝑚𝑚, 𝑛𝑛)�+ ϵ
 (7) 

where 𝑊𝑊𝑖𝑖𝑖𝑖(𝑚𝑚, 𝑛𝑛) specifies the effect of the pixel (𝑚𝑚,𝑛𝑛) on the pixel (𝑖𝑖, 𝑗𝑗). 



Acquiring global optimum solution of 𝑇𝑇� for large instances might be computationally hard, so 
in the following section a heuristic method is proposed to find a near optimum solution for 𝑇𝑇� 
with less time cost.   

 

 

 

2.1.1 Illumination Map Heuristic Estimation (IMHE) 

Given that the proposed mathematical model is a differentiable, convex model with linear 
constraints, it is possible to find the global optimal solution by using different optimization 
methods. But, since the exact solution of this model requires a high computational time (due to 
the high number of constraints because Eq. (6) is repeated for each pixel), Algorithm 1 is 
developed to quickly find a near optimum solution for 𝑇𝑇�. 

Algorithm 1 considers constraints of the proposed mathematical model (Eq. 6) as follows:   

𝑇𝑇�(𝑖𝑖, 𝑗𝑗)− 𝑇𝑇�(𝑖𝑖, 𝑗𝑗) =
1
𝛼𝛼 (𝑊𝑊𝑖𝑖𝑖𝑖(𝑖𝑖 − 1, 𝑗𝑗)𝑇𝑇�(𝑖𝑖 − 1, 𝑗𝑗) +𝑊𝑊𝑖𝑖𝑖𝑖(𝑖𝑖+ 1, 𝑗𝑗)𝑇𝑇�(𝑖𝑖+ 1, 𝑗𝑗) +𝑊𝑊𝑖𝑖𝑖𝑖(𝑖𝑖, 𝑗𝑗 − 1)𝑇𝑇�(𝑖𝑖, 𝑗𝑗 − 1) +𝑊𝑊𝑖𝑖𝑖𝑖(𝑖𝑖, 𝑗𝑗+ 1)𝑇𝑇�(𝑖𝑖, 𝑗𝑗 + 1)

−  (𝑊𝑊𝑖𝑖𝑖𝑖(𝑖𝑖 − 1, 𝑗𝑗)+ 𝑊𝑊𝑖𝑖𝑖𝑖(𝑖𝑖+ 1, 𝑗𝑗) + 𝑊𝑊𝑖𝑖𝑖𝑖(𝑖𝑖, 𝑗𝑗 − 1) +  𝑊𝑊𝑖𝑖𝑖𝑖(𝑖𝑖, 𝑗𝑗 + 1))𝑇𝑇�(𝑖𝑖, 𝑗𝑗)) 
(8) 

First, Eq. (8) ensures that any solution obtained by the heuristic approach does not violate the 
feasible region of the proposed model (Eq. 6). Second, left phrase of Eq. (8) is equal to the 
square root of objective function in proposed model (Eq. 5). So, global optimal solution of 
proposed model can be found among the solutions of Eq. (8). Suppose 𝑇𝑇�1 ,𝑇𝑇�2 , … ,𝑇𝑇�𝑛𝑛  are 
solutions for Eq. (8). 𝑇𝑇�𝑝𝑝  is global optimal solution of proposed model if and only if for each 
1 ≤ 𝑞𝑞 ≤ 𝑛𝑛: 

���𝑇𝑇�𝑝𝑝(𝑖𝑖, 𝑗𝑗) − 𝑇𝑇�(𝑖𝑖, 𝑗𝑗)�
2

𝑛𝑛

𝑗𝑗=1

𝑚𝑚

𝑖𝑖=1

≤ ���𝑇𝑇�𝑞𝑞(𝑖𝑖, 𝑗𝑗) − 𝑇𝑇�(𝑖𝑖, 𝑗𝑗)�
2

𝑛𝑛

𝑗𝑗=1

𝑚𝑚

𝑖𝑖=1

 
(9) 

For 𝑇𝑇� = 𝑇𝑇� , objective function (Eq. (6)) is equal to zero. For this reason, Algorithm 1 uses 𝑇𝑇�  as 
initial solution (𝑇𝑇�0 = 𝑇𝑇�). For 𝑇𝑇�0 = 𝑇𝑇� , left phrase of Eq. (8) is equal to zero but often in this 
case right phrase of Eq. (8) is much greater than left phrase of Eq. (8). Therefore, 𝑇𝑇�0 should be 
changed so that right phrase of Eq. (8) decreases. In Eq. (8), the least value of right phrase 
occurs for 𝑇𝑇�(𝑖𝑖, 𝑗𝑗)s that satisfy the following equation: 

𝑇𝑇�(𝑖𝑖, 𝑗𝑗) =
𝑊𝑊𝑖𝑖𝑖𝑖(𝑖𝑖 − 1, 𝑗𝑗)𝑇𝑇�(𝑖𝑖 − 1, 𝑗𝑗) + 𝑊𝑊𝑖𝑖𝑖𝑖(𝑖𝑖 + 1, 𝑗𝑗)𝑇𝑇�(𝑖𝑖 + 1, 𝑗𝑗) + 𝑊𝑊𝑖𝑖𝑖𝑖(𝑖𝑖 , 𝑗𝑗 − 1)𝑇𝑇�(𝑖𝑖, 𝑗𝑗 − 1) + 𝑊𝑊𝑖𝑖𝑖𝑖(𝑖𝑖, 𝑗𝑗 + 1)𝑇𝑇�(𝑖𝑖, 𝑗𝑗 + 1)

𝑊𝑊𝑖𝑖𝑖𝑖(𝑖𝑖 − 1, 𝑗𝑗) + 𝑊𝑊𝑖𝑖𝑖𝑖(𝑖𝑖 + 1, 𝑗𝑗) + 𝑊𝑊𝑖𝑖𝑖𝑖(𝑖𝑖 , 𝑗𝑗 − 1) + 𝑊𝑊𝑖𝑖𝑖𝑖(𝑖𝑖 , 𝑗𝑗 + 1)  (10) 

According to this, Algorithm 1 applies changes on 𝑇𝑇�0  to reduce right phrase of Eq. (8). For 
this reason, Algorithm 1 calculates 𝑇𝑇�𝑡𝑡 in each iteration as follows: 

𝑇𝑇�𝑡𝑡+1(𝑖𝑖, 𝑗𝑗) =
𝑊𝑊𝑖𝑖𝑖𝑖(𝑖𝑖 − 1,𝑗𝑗)𝑇𝑇�𝑡𝑡(𝑖𝑖 − 1, 𝑗𝑗) +𝑊𝑊𝑖𝑖𝑖𝑖(𝑖𝑖+ 1,𝑗𝑗)𝑇𝑇�𝑡𝑡(𝑖𝑖+ 1, 𝑗𝑗) +𝑊𝑊𝑖𝑖𝑖𝑖(𝑖𝑖, 𝑗𝑗 −1)𝑇𝑇�𝑡𝑡(𝑖𝑖, 𝑗𝑗 − 1) +𝑊𝑊𝑖𝑖𝑖𝑖(𝑖𝑖, 𝑗𝑗+ 1)𝑇𝑇�𝑡𝑡(𝑖𝑖, 𝑗𝑗+ 1)

𝑊𝑊𝑖𝑖𝑖𝑖(𝑖𝑖 − 1, 𝑗𝑗) +𝑊𝑊𝑖𝑖𝑖𝑖(𝑖𝑖+ 1, 𝑗𝑗) +𝑊𝑊𝑖𝑖𝑖𝑖(𝑖𝑖, 𝑗𝑗 −1) +𝑊𝑊𝑖𝑖𝑖𝑖(𝑖𝑖, 𝑗𝑗 + 1)  (11) 

Algorithm 1 should continue until   𝑇𝑇�𝑡𝑡 satisfies Eq. (8). In this case, 𝑇𝑇�𝑡𝑡 will be in feasible region 
of proposed mathematic model. Also, because  𝑇𝑇�  is used as the initial solution, we expect 𝑇𝑇�𝑡𝑡 



not to differ much from global optimal solution (For 𝑇𝑇�0 = 𝑇𝑇�  the value of the objective function 
is zero). The proposed algorithm is as follows: 

Algorithm 1:  A heuristic method for solving the mathematical model  
Input: initial illumination map (𝑇𝑇�) 
1: Calculate the weight matrix 𝑊𝑊. 
2: Set 𝑇𝑇�0 = 𝑇𝑇� and 𝑡𝑡 = 1. 
3: Do the following until the stop condition is met: 

a) Calculate 𝑇𝑇�𝑡𝑡using Eq. (11). 
b) Set 𝑡𝑡 = 𝑡𝑡 + 1. 

4: Set 𝑇𝑇� = 𝑇𝑇�𝑡𝑡.   
 

Computational Complexity of Algorithm 1: The computational complexity of Algorithm 1 
for an image with 𝑁𝑁 pixels is mainly determined by step 3 where for each pixel Eq. (11) must 
be calculated. The number of calculations performed in Eq. (11) for each pixel is of order 𝑂𝑂(1). 
Due to fact that the input image has 𝑁𝑁 pixels, 𝑂𝑂(𝑁𝑁) operations are performed in each iteration. 
Thus the computational complexity of Algorithm 1 is equal to 𝑂𝑂(𝑡𝑡𝑡𝑡) where 𝑡𝑡 is equal to the 
number of Algorithm 1 iterations.  

 

3. Visual Quality Evaluation  

This paper uses the following metrics to evaluate the visual quality of enhanced images: 

• Absolute Mean Brightness Error (AMBE) [15] 
• Lightness Order Error (LOE) [43] 
• Blind/Reference less Image Spatial Quality Evaluator (BRISQUE) [44] 
• Natural Image Quality Evaluator (NIQE) [45] 
• Structural SIMilarity (SSIM)[46] 
• Peak Signal-to-Noise Ratio (PSNR) [47]. 

AMBE measures the brightness of images so that for brighter images, AMBE is larger. LOE 
metric is used to measure the discrepancy in lightness order between an initial low-light image 
(𝐿𝐿) and enhanced image (𝑅𝑅). A smaller LOE means that the order of the image lightness is 
better preserved during processing. BRISQUE metric can be used to assess blurring and noise 
in an image. A smaller score indicates better perceptual quality. NIQE evaluates how natural 
an image looks, for more natural images this value is less. SSIM is used to evaluate the 
structural similarity between two images, and generally a larger SSIM means better processing.  
PSNR determines the degree of deviation from the original image based on human perception 
of contrast [8]. Higher PSNR indicates better image reconstruction. Generally, these metrics 
can be used to compare the visual quality of enhanced images. 

4. Experiments and results 

This paper presents a method which called Illumination Map Smoothing (IMS) to enhance 
illumination of low-light images. Using the proposed mathematical model (IMOE), IMS seeks 
for global optimum solution. IMOE is implemented in IBM ILOG CPLEX 12.10 on a machine 



with 8 GB of RAM and CPU core i5. Also, the heuristic approach (IMHE) is implemented in 
MATLAB R2017b package.  

In section 4.1, the parameters of IMS are checked. Then in section 4.2, the performance of IMS 
is compared with popular methods such as DONG [48],  NPE [26],  SRIE [27],  SRLLI [29],  
JED [30] and LIME [25]. In this evaluation, the images of references [25] and [30] are used. 
The AMBE [15], LOE [43], (BRISQUE) [44], NIQE [45], SSIM [46]and PSNR [47] metrics 
are used to make a qualitative comparison. 

4.1 IMS parametric check 

The IMS in order to estimates the recovered illumination map (𝑇𝑇�) uses IMOE or IMHE 
approach. It then uses LT to improve image visual quality. In section 4.1, the performance of 
LT is examined. Then in section 4.2 parameters of IMS are investigated in two mode of IMOE 
and IMHE. Finally in section 4.3, the performance of IMOE and IMHE approaches are 
compared. 

4.1.1 Parametric check of LT 

Visual quality of recovered images (𝑅𝑅�) obtained using IMOE and IMHE approaches are not 
desirable (as shown in Fig. 3). To tackle this issue, in the literature a couple of techniques were 
introduced (such as Gamma Correction and Linear Transformation) that could effectively 
enhance visual quality. In this paper to demonstrate how this process works, we implement LT. 
The most parameter in LT which must be determined is ω. If a big constant is assigned to ω, 
enhanced images become too dark, and if ω is a small number, the contrast of enhanced images 
would not improve quite well.  

Generally, the correct value of ω should be selected by trial and error and according to the 
brightness of each image. According to Fig. (3) and other experiments performed by authors, 
commonly LT for ω = 0.08 works well in IMS. For this reason, in the continuation of this 
article, this value is used to correct images. 

𝛚𝛚 = 𝟎𝟎.𝟏𝟏𝟏𝟏 𝛚𝛚 = 𝟎𝟎.𝟏𝟏𝟏𝟏 𝛚𝛚 = 𝟎𝟎.𝟎𝟎𝟖𝟖 𝛚𝛚 = 𝟎𝟎. 𝟎𝟎𝟒𝟒 Recovered image (𝑹𝑹� ) 

     

     

     
Fig 3: Parametric check of LT 

 



Table 2 examines from the aspect of AMBE, LOE, BRISQUE, SSIM, PSNR and NIQE metrics 
the performance of LT by selecting ω = 0.08. The numbers reported in this table are obtained 
by calculating the average of 10 images used in this article. From an AMBE metric perspective, 
LT reduces the illumination of 𝑅𝑅� correctly. In addition, LT from the perspective of LOE, 
BRISQUE, SSIM, PSNR and NIQE metrics, increases the visual quality of 𝑅𝑅�. So, LT is 
effective in improving the visual quality of recovered images. 

Table 2: Evaluation of LT efficiency using AMBE, LOE, BRISQUE, SSIM, PSNR and NIQE metrics 

NIQE PSNR SSIM BRISQUE LOE AMBE  
3.70 5.79 0.2317 20.46 2131 0.5927 Recovered image (𝑅𝑅�)  
3.32 10.62 0.3433 17.09 969 0.4092 Enhanced image (𝑅𝑅) 

 

4.1.2  Experiment of IMOE approach 

When IMS uses the IMOE approach to estimate enhanced illumination map (𝑇𝑇�), the following 
factors affect the visual quality of enhanced images (𝑅𝑅): 

I. Value of α parameter 
II. Type of weight matrix calculation strategy (𝑊𝑊). 

Table 3 examines the effect of these parameters on the visual quality of enhanced images. If 
α = 0 is selected, the visual quality of enhanced images is generally not desirable (e.g. images 
(b), image (e), image (i) and image (l) in Table 3). In this case, some details in enhanced images 
may be lost. If α is set to 0.5 then the readability of the images is improved (e.g. images (c), 
image (j), image (f) and image (m) in Table 3). Generally details in enhanced images rises with 
α is increased. Excessive increasing α may cause unnatural colors in the enhanced images (e.g. 
images (d), image (k)). According to experiments performed by the authors, generally for 
different images, selecting α = 0.5 gives a desirable output. Finding the optimum value for α 
could be consider as future works.  

Table 3: Investigation effect of α and 𝑊𝑊 on the visual quality of images 

Initial image Weightless strategy Weighted strategy 
α = 0 α = 0.5 α = 1 α = 0 α = 0.5 α = 1 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 
(g) 

 
(h) 

 
(i) 

 
(j) 

 
(k) 

 
(l) 

 
(m) 

 
(n) 

   

In Table 3 you can also see the difference between using two strategies for calculating weight 
matrix (W). Generally in the IMOE approach, weighted strategy in comparison to weightless 
strategy have led to a higher quality (Table 3). So,  in this paper, weighted strategy is selected 
to be used in IMOE.   

4.1.3 Experiment of IMHE approach  



When IMS uses the IMHE to estimate enhanced illumination map (𝑇𝑇�), the following factors 
affect the visual quality of enhanced images (𝑅𝑅): 

I. Weight matrix calculation strategy (𝑊𝑊) 
II. Iterations number of Algorithm 1 

To achieve an image with desired visual quality, the above factors should be adjusted according 
to brightness. In IMHE, unlike IMOE, weightless strategy is more cost-effective without 
compromising the visual quality. As it can be seen in Table 4, when the weightless strategy is 
used, the colors of the enhanced images look a bit more natural. This is also confirmed by NIQE 
metric. 

Table 4: Investigating the difference between weightless strategy and weighted strategy in the IMHE approach 

Weightless 
strategy 

    
Time 0.32 0.21 0.72 0.30 
NIQE 2.42 4.60 2.49 4.41 
weighted 
strategy 

    
Time 1.08 0.69 2.18 1.05 
NIQE 2.48 4.87 2.59 4.53 

 

Fig. (4) is depicted to investigate the quality of the enhanced images when iteration number of 
Algorithm 1 is varied. As it can be seen in this Table, after 50 iterations the quality of enhanced 
images have not been changed significantly and after 1000 iterations the visual quality is started 
to be deteriorated (for example, in Fig. (4a) the area around the lamp is blacked, in Fig. (4b) 
the details of mug are lost, in Fig. (4c) pink flower color is changed to white, and in Fig. (4d) 
details of clouds are almost lost). So, IMHE is terminated after 50 iterations.  

Therefore, iterations number of Algorithm 1 should not be selected very much or very little. 
Often, by selecting 50 to 100 iterations the desired visual quality can be achieved. On the other 
hand, Algorithm 1 is not a very cheap computational process, So it seems that choosing 50 
iterations for Algorithm 1 is better decision. 

 

 

 

 

 

 



Fig 4: Check iterations number in IMHE approach 

 

4.1.4 Comparison of IMOE and IMHE approaches 

As it was described in details, this paper proposes two approaches (IMOE and IMHE) to 
estimate the recovered illumination map. IMOE seeks for optimum solution, while IMHE is a 
heuristic based method looking for a near optimum solution but within a very short computation 
time.  

In this section, IMOE and IMHE are compared using AMBE, LOE, BEISQE, NIQE, SSIM and 
PSNR metrics and also computational time.  

As it can be seen in Fig. (5) and Table 5, in terms of visual quality, there is not much difference 
between IMOE and IMHE approaches. But IMOE takes very more time to calculate the 
recovered illumination map ( 𝑇𝑇�) in comparison with IMHE (Table 5).  For this reason, in the 
following section to compare IMS with other similar methods, we use the IMHA approach to 
estimate the recovered illumination map. 
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Fig 5: Comparison of the performance of IMOE and IMHE 

  AMBE LOE BRISQUE NIQE SSIM PSNR Time 
Image (a) IMOE  0.2122 821 31.70 4.20 0.2396 15.41 10.25 

IMHE  0.2142 878 31.82 4.41 0.2323 15.26 0.32 
Image (b) IMOE  0.3326 816 8.16 2.54 0.3350 12.10 35.10 

IMHE  0.3341 778 9.30 2.49 0.3312 12.01 0.72 
Image (c) IMOE  0.3712 656 10.09 2.45 0.2707 9.70 7.27 

IMHE  0.3687 640 15.50 2.40 0.2615 9.78 0.28 
Image (d) IMOE  0.5305 1256 9.31 4.89 0.4971 10.39 5.40 

IMHE  0.5358 1373 9.62 4.60 0.4854 9.92 0.24 
Image (e) IMOE  0.4024 976 16.75 2.48 0.4159 10.85 8.50 

IMHE  0.4019 956 16.50 2.42 0.4119 10.86 0.32 
Table (5): Comparison of IMOE and IMHE approaches in terms of LOE, BEISQE, NIQE, SSIM and PSNR 

metrics and execution time. 

4.2 Comparison of IMS with other similar methods 

In this section, IMS performance is compared with competitor methods including DONG [47],  
NPE [23],  SRIE [24],  SRLLI [26],  JED [27] and LIME [22]. The test images are borrowed 
from [22] and [27]. To quantify the visual quality 6 different metrics are used including AMBE 
[15], LOE [42], BRISQUE [43], NIQE [45], SSIM [44] and PSNR [46]. 

Fig. (6) compared the performance of IMS with other competitor methods on the test images. 
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Fig 6: Enhancing low-light images using DONG [48],  NPE [26], SRIE [27], SRLLI [29],  JED [30] LIME [25] 

and IMS methods. 

According to Fig. (6), IMS provided promising results and visually outperformed DONG and 
NPE (especially for Figs (6a), (6b) and (6d)). Enhanced images by DONG and NPE are often 
unnatural, this shortcoming is not seen in the enhanced images by IMS. In addition, IMS have 
provided images with a higher brightness (e.g. Figs (6c), (6d) and (6h)). Although the visual 
quality of enhanced images by SRIE is better than DONG and NPE, the visual quality of 
enhanced images by IMS is better than SRIE. In terms of brightness, SRIE has a weaker 
performance compared to the other similar methods which have led to lose details in the 
enhanced images by SRIE (e.g. Figs (6a) and (6d)) while it is not the case in the enhanced 
images by IMS.  

The visual quality of enhanced images by JED and SRLLI are very similar to each other which 
in some cases (e.g Figs (6a), (6d) and (6g)) led to blurriness and losing some important details. 



This shortcoming can impair the performance of computer vision algorithms such as object 
detection. Enhanced images by LIME are mostly clear, bright and desirable. As shown in Fig. 
(6), LIME and IMS supplied almost similar outcomes, so six image quality assessment metrics 
(AMBE, LOE, BRISQUE, NIQE, SSIM and PSNR) are used to quantify the visual 
characteristic of the enhanced images. 

AMBE (↑) metric is used to evaluate the brightness of images. Fig. (7) shows the AMBE metric 
for the test images enhanced by IMS and other similar methods. According to the results, SRIE 
achieved lowest AMBE values and LIME and IMS respectively achieved the best performance.  

 
Fig 7: Evaluation of the test images using AMBE (↑) metric 

AMBE metric only measures the brightness, but LOE, BEISQE, NIQE, SSIM and PSNR 
metrics could take into account other factors such as blurring, contrast, distortion and noise. 

The LOE (↓) metric is used to measure the discrepancy in lightness order between an initial 
low-light image and its enhanced image. A smaller LOE means that the order of the image 
lightness is better preserved during processing. In Fig. (8), the test images are compared in 
terms of the LOE where IMS performed better than DONG and NPE, SRIE, JED and LIME in 
5, 4, 3, 5 and 6 cases, respectively. As shown in Fig. (8), the IMS method performed much 
better than the SRLLI in all cases. In average, IMS compared to DONG, NPE, SRILI, JED and 
LIME achieved better LOE while SRIE performed a bit better than IMS.  
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Fig 8: Evaluation of the test images using LOE (↓) metric 

BRISQUE (↓) metric can be used to assess blurring and noise in an image. In Fig. (9) using 
BRISQUE metric, the test images are evaluated. The achived results show that IMS has 
performed better than DONG, NPE, SRIE, SRLLI, JED and LIME in images (f), (d),(e),(e), 
(g), (g) and (d) 4 respectively. In average, in terms of BRISQUE metric, enhanced images by 
IMS method are better than all other competitor methods (especially DONG, SRLLI and JED). 

Fig 9: Evaluation of the test images using BRISQUE (↓) metric 

NIQE (↓) metric evaluates how natural an image is. In Fig. (8), the test images are compared 
in terms of the NIQE where IMS performed better than DONG, NPE, SRIE, SRLLI, JED and 
LIME in images (f), (d), (b), (f), (d) and (g), respectively. In average, IMS compared to 
DONG, SRLLI and LIME achieved better NIQE. 
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Fig 10: Evaluation of the test images using NIQE (↓) metric 

SSIM (↑) metric is used to evaluate the structural similarity between the initial low-light image 
and the enhanced image. Also, PSNR (↑) metric determines the amount of deviation from the 
initial low-light image based on human perception of contrast [8]. SSIM and PSNR metrics for 
test images are reported in Figures 11 and 12, respectively.  

In terms of SSIM and PSNR metrics, IMS is better than other methods whenever it undergoes 
fewer changes to images during processing. But it should be noted that to increase the 
brightness of a low-light image, changes must be made accordingly. So a higher of these two 
metrics do not necessarily mean a better enhancement of an image. In other words, in analyzing 
an image using these two metrics, its brightness (AMBE metric) should also be considered 
simultaneusly. For example, according to Figures 11 and 12, DONG, NPE and SRIE compared 
to IMS, LIME, JED and SRLLI have made fewer changes to the original images. But as shown 
in Fig. (6) and Fig. (7) enhanced images by SRIE, NPE and DONG are less bright than 
enhanced images by IMS, LIME, JED and SRLLI methods. This happened because the changes 
made by SRIE, NPE and DONG were not enough, SSIM and PSNR for these methods are not 
included in the advantage. Therefore for these two metrics, we only compare IMS with LIME, 
JED and SRLLI. 

In terms of SSIM metric, IMS performed better for all the test images compared to SRLLI, JED 
and LIME. Also, in terms of PSNR metric for all the test images, IMS performance compared 
to SRLLI and LIME is significantly better. IMS compared to JED  achieved better LOE in 3 
cases. Based on these results, it is expected that more details can be seen in enhanced images 
by IMS compared to SSRLI, JED and LIME. 
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Fig 11: Evaluation of test images using SSIM (↑) metric 

 

Fig 12: Evaluation of test images using PSNR (↑) metric 

In Table 7, the computational time of  DONG, NPE, SRIE, SRLLI, JED, LIME and IMS 
methods for test images is reported. As can be seen, the computational time of IMS is less 
compared to all other methods (especially SRLLI, SRIE, NPE and JED). 
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Table 7: Computation time of DONG, NPE, SRIE, SRLLI, JED, LIME and IMS methods for test images 

 

 

 

 

 

In summary and according to the above-mentioned results, the proven advantages of IMS 
compared to other similar methods are obvious. IMS in term of AMBE, LOE, BRISQUE, 
NIQE, SSIM and PSNR was ranked 2, 2, 1, 4, 4 and 5, respectively, and was faster in terms of 
implementation time than all other methods. 

5. Discussion 

This paper presents a new mathematical model called Illumination Map Smoothing (IMS) to 
robustly enhance low light images. In the proposed mathematical model, the smoothing of the 
illumination map is included in the model constraints and is done separately for each pixel. In 
similar mathematical models, the smoothing of the illumination map, along with other factors, 
is in the objective function. Smoothing in such cases can be influenced by other factors of the 
objective function (especially if the balance between the factors of the objective function is not 
well set). Providing a multi-objective mathematical model instead of placing contradictory 
factors in an objective function can be considered as future tasks. In the objective function of 
the proposed mathematical model, compared to similar models, only proximity to the initial 
illumination map is optimized. For this reason, according to AMBE metrics, IMS often results 
in more bright images compared to DONG, NPE, SRIE, SRLLI and JED. 

In terms of BRISQUE and LOE metrics,  IMS was ranked first and second, respectively. This 
could be due to better smoothing of the illumination map in proposed mathematical model 
(smoothing in constraints). 

In terms of SSIM and PSNR, the proposed model makes fewer changes than SRLLI, JED and 
LIME in the original images. This is because the constraints of the proposed model (Eq. 6 or 
Eq. 8) limit the difference from the initial illumination map for each pixel. This limitation is 
not seen in other similar models. 

IMS had less computational time compared to other methods. This is because in IMS method, 
unlike SRIE, SRLLI, JED and LIME only the illumination factor is estimated. Of course, LIME 
method also only estimated the illumination factor, but its computational complexity 
(𝑂𝑂(𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡)) is more lorge than IMS (𝑂𝑂(𝑡𝑡𝑡𝑡)). Given that for IMS 50 iterations are sufficient, 
its computational complexity (𝑂𝑂(50𝑁𝑁)).) becomes a desirable value. 

In summary, IMS performs considerbaly better than other similar methods because IMS is the 
only differentiabile and convex method provides a chance to obtain the global optimal solution.  

 

 

 

)i ( )h ( )g ( )f ( )e ( )d ( )c ( )b ( )a (  
0.35 0.45 1.45 0.86 0.32* 0.31 0.38 0.79 0.37 DONG 
7.82 11.70 34.13 20.1 9.22 6.81 8.51 20.80 9.91 NPE 
20.01 17.79 170 34.2 10.21 17.63 8.92 25.92 17.62 SRIE 
17.31 16.48 97.31 43.2 12.41 14.12 12.32 63.23 34.31 SRLLI 
2.97 3.77 17.70 7.8 2.85 2.50 2.82 8.48 3.60 JED 
0.73 0.91 2.54 1.54 0.84 0.63 0.75 1.50 0.76 LIME 
0.28 0.32 1.25 0.67 0.32 0.24 0.31 0.72 0.32 IMS 



Conclusion 

This paper proposed a method called Illumination Map Smoothing (IMS) to enhance low-light 
images. The main idea of IMS is to smooth initial illumination map (𝑇𝑇�). For this purpose, IMS 
first obtains initial illumination map (𝑇𝑇�). Then estimates recovered illumination map (𝑇𝑇�) by 
solving a new mathematical model (IMOE). The main advantage of the developed 
mathematical model compared to other similar models is convexity and differentiability of the 
objective function which provides a chance to acquire global optimum. The quadratic nature of 
objective function and linearity of constraints in the proposed model are other advantages of 
IMS. Rather than IMOE which provides global optimum solution but demands a considerable 
computations time, this paper also proposed a heuristic approach (IMHE) to quickly provide a 
near optimum solution for the mathematical model introduced. The results of section 4.1.4 
shows that there is in terms of visual quality significant no difference between the exact solution 
supplied by IMOE and the IMHE output. However, the computational time of IMHE is much 
less compared to IMOE. So it seems more economical to use IMHE for estimating recovered 
illumination map (𝑇𝑇�).    

IMS uses a simple Linear Transformation (LT) to correct the illumination map (𝑇𝑇�). In section 
4.1.4, LT is parametrically examined. The results of the experiments show that LT by selecting 
ω = 0.08 can provide a promising result.   

Finally, IMS was compared with DONG, NPE, SRIE, SRLLI, JED, and LIME similar methods. 
The results show that the visual quality of enhanced images by IMS is similar to LIME method 
and better than the other methods mentioned. Also, these methods were compared by AMBE, 
LOE, BRISQUE, NIQE, SSIM and PSNR metrics. In terms of the AMBE metric, IMS method 
is in second place after LIME. According to this, IMS can increase the brightness of low-light 
images more than DONG, NPE, SRIE, SRLLI and JED methods. Also in terms of the LEO 
metric, enhanced images by IMS have better visual quality than all methods of above (except 
SRIE). In terms of the BRISQUE metric, IMS performance was better than all methods 
mentioned. Moreover, in terms of the NIQE metric, enhanced images by IMS look more natural 
compared to DONG, SRLLI and LIME. In terms of SSIM metric, IMS performed better for all 
test images compared to SRLLI, JED and LIME. Also, in terms of PSNR metric for all test 
images, IMS performance compared to SRLLI and LIME is better. Moreover, computational 
time of IMS compared to all mentioned methods was less. Generally, using IMS compare to 
other methods for low-light images enhancement seems more economical. For this reason, IMS 
can be a good option to increase the performance of computer vision algorithms. In addition, 
IMS can be used independently to enhance low-light images. 
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