
Evaluating SOAP for High Performance Business
Applications: Real-Time Trading Systems

Christopher Kohlhoff
Tenermerx Pty Ltd

6/50 Ben Boyd Rd, Neutral Bay
NSW 2089 Australia

chris@tenermerx.com

ABSTRACT
Web services. with an emphasis on open standards and flexibil-
ity. may provide benefits over existing capital markets integration
practices. However. web services must first meet certain technical
requirements including performance. security and fault-tolerance.
This paper presents an experimental evaluation of SOA P perfor-
mance using realistic business application message content. To get
some indication of whether SOAP is appropriate for high perfor-
mance capital markets systems. the results are compared with a
widely used existing protocol. The study finds that. although SOAP
performs relatively poorly. the difference is less than in scientific
computing environments. Furthermore. we find that in realistic
business applications it is possible for text-based wire formats to
have comparable performance to binary. and that the text-based na-
ture of XML is not sufficient to explain SOAP's inefficiency. This
suggests that further work may enable SOAP 10 become a viable
wire format for high performance business applications.

Categories and Subject Descriptors
C.2.2 [Computer-Communication Networks]: Network Proto-
cols-applicarion.l'; C.2.4 [Computer-Communication Networks]:
Distributed Systems-di.l'rribUied applications; K.4.4 [Computers
and Society]: Electronic Commerce--elecrronic data interchange

General Terms
Performance

Keywords
Performance study. SOAP. Web services. FIX

1. INTRODUCTION
Over the last decade. rapid advances in computing technology

have driven dramatic changes in the financial sector. The provision
of online services like real-time share trading has prompted a move
to new business models such as global markets, 24-hour trading.
and straight-through processing [21]. Tremendous growth in the
number of third party financial networks has increased competition
and accelerated the race to develop advanced. automated trading
systems [7].

To compete effectively. existing organisations need to form al-
liances and provide integrated services. However, business-to-
business integration is not a new concept for capital markets. The

Copyright is held by the author/owner(s).
WWW2003, May 20-24. 2003, Budapest, Hungary.
ISBN 963-31 1-355-5.

Robert Steele
University of Technology, Sydney

PO Box 123 Broadway
NSW 2007 Australia

rsteele@it.uts.edu.au

financial domain has utilised industry standard protocols for the in-
tegration of distributed applications since the 1970s [26].

Web services are now emerging as a technology for systematic
and flexible application-to-application integration [5]. Web ser-
vices differ from most existing integration practices in that they
utilise established, proven web protocols and open XML standards.

Capital markets systems may benefit from the introduction of
web services. Existing integration practice is characterised by com-
peting industry standards and many proprietary protocols, but web
services' emphasis on open standards may be an advantage in get-
ting industry players to agree. The use of XML, and its formal
definition language XML Schema, can help improve integration
protocol implementations by eliminating ambiguities, as well as
providing support for automatic validation of messages. Finally,
the extensibility of web services and XML can allow integration
mechanisms to evolve as markets require new functionality, with-
out causing further fragmentation of protocols.

However, before web services can be used for capital markets
systems, various technical requirements must be met. These re-
quirements include performance, security and fault-tolerance.

Existing research into SOAP performance has considered its ap-
plication in scientific areas such as grid computing, and has fo-
cused on the transmission of numerical data. With this emphasis,
the predominant cost and weakness of XML-based messages was
identified as the encoding and decoding of floating point values [4].

On the other hand, this study examines the performance of SOAP
in realistic business computing scenarios. More specifically, the
primary goal of this research is to consider the feasibility of us-
ing SOAP in capital markets systems, and particularly in real-time
trading systems.

The approach adopted by this study is to evaluate the perfor-
mance of SOAP against existing practice. The study compares the
performance of SOAP with the established, widely used, domain-
specific protocol, FIX. The relative performance of SOAP and FIX
may be useful in determining whether SOAP can meet the perfor-
mance requirements of capital markets.

The emphasis of this study was on the inherent performance lim-
itations of the wire formats. Both SOAP and FIX use a text-based
wire representation, and therefore it may seem reasonable to con-
clude, based on the existing research, that both would be impacted
by the same inherent inefficiencies. For this reason, a binary wire
format, CDR, was included in the comparison to gauge the costs
associated with text encoding.

The study finds. firstly, that in business applications SOAP does
indeed perform poorly compared to the binary wire format, CDR.
SOAP messages are some 2-4 times the size of the equivalent CDR
messages. Latency over local networks is substantially increased.

262

mailto:chris@tenermerx.com
mailto:rsteele@it.uts.edu.au

ICU~U;;;.<I.g8<~---_.~

I

I

i Sl.4JPlWilf (e.g. Exchange)

[0
~

Figure I: Integration between real-time trading systems

with encoding 8-10 times and decoding some 5 times more expen-
sive. These results are similar to the conclusions of earlier studies,
although the results show a less marked difference than when the
focus is on transmission of numerical data.

When compared to FIX, SOAP again exhibits poorer perfor-
mance. SOAP messages are 3.5-4.5 larger than FIX, latency is
2-3 times worse, and encoding/decoding costs are increased by up
to nearly 9 times.

Given that FIX, like SOAP, is text-based, the surprising result
is that FIX performed comparably to CDR. From this we have
been led to conclude that, in realistic business application scenar-
ios, SOAP's poor performance cannot be adequately explained sim-
ply by the disadvantages of text-based over binary wire formats.
This also suggests that improvements in the efficiency of SOAP en-
coders and decoders may enable its use in high performance busi-
ness applications.

2. BACKGROUND
Software systems used in capital markets can be classified ac-

cording to their position in the trading lifecycle [21]:

• Pre-trade services. The delivery of real-time and historical
market data, analysis of this data, and routing of an order to
the best trading entity for a transaction.

• Trading. The execution of a trade itself at a trading en-
tity, such as an exchange like the Australian Stock Exchange
(ASX).

• Post-trade services. Operations performed prior to finalisa-
tion of a trade, such as surveillance, compliance checking, or
risk management.

• Settlement. Finalisarion of a trade by transferring money
between the buyer and seller.

• Registry. Transfer of ownership of the securities from seller
to buyer.

This paper will focus on the pre-trade part of the Iifecycle, and
in particular the integration needs of real-time trading systems. In-
tegration between real-time trading systems typically involves the
communication of live market data as well as the flow of buy and
sell orders, as shown in Figure I. Given the potentially large vol-
umes of data and the need for timely delivery, integration between
real-time trading systems has, in the authors' experience, the high-
est performance requirements in the domain.

Tag

~
Value Value

Figure 2: An example FIX protocol message fragment

2.1 FIX Protocol
The Financial Information eXchange (FIX) protocol [10] is a

messaging standard developed specifically for the real-time elec-
tronic exchange of securities transactions.

FIX messages are text-based, and consist of tag-value pairs sep-
arated by a special delimiter character (SOH. which is ASCII value
OxOI) as illustrated by Figure 2. The tags are short strings uf digits,
and types of values include strings, integers. floating point values,
timestamps and arbitrary binary data. Although the content of a
message is represented by complex application structures, the lay-
out of an encoded message is flat with flexible ordering of fields.
The protocol specification describes, in natural language, the set
of available tags, their corresponding business meanings, and the
required message structure.

Recent versions of the FIX protocol have introduced an XML-
based message format, called FIXML [9]. This provides FIX mes-
sages with a rich on-the-wire structure, enabling automated vali-
dation and reducing the inherent ambiguities of the tag-based ap-
proach. XML also allows the FIX standard to evolve to include
new functionality without causing further version fragmentation.

As this paper evaluates the suitability of SOAP for capital mar-
kets systems, the FIX protocol will be used as the basis for some
comparisons. FIX has been selected for this purpose over other in-
dustry protocols due to its wide usage. A 1999 survey of market
participants, referenced in [12], found that 82% of surveyed bro-
kers used FIX. The influence of FIX also extends to many organ-
isations that use variants of the standard protocol, or use protocol
message definitions that may be classed as FIX-like, such as the
ASX's SEATS Open Interface [I].

3. RELATED WORK
Several studies have evaluated the performance of SOAP and

XML [6, 13, 3J. These studies all agreed that SOAP and XML
incur a substantial performance penalty compared to binary proto-
cols.

[6] conducted an experimental evaluation of the latency perfor-
mance of various SOAP implementations, comparing with other
protocols such as Java RMI and CORBA/IIOP. A conclusion drawn
from these results was that SOAP is orders of magnitude slower,
although for some of the slowest SOAP systems this can be partly
explained by poor implementation.

[13] evaluated the performance of SOAP for high performance
scientific computing. Their experiments compared Java RMI with
SOAP by sending large arrays of doubles (i.e. floating point val-
ues with 18 decimal digits of precision). The results showed that
SOAP is much slower than Java RMI, typically by about a factor
of ten. They concluded that SOAP's XML messages were inher-
ently unsuitable for use in transferring bulk data, but due to the for-
mat's flexibility and accessibility, may be useful as part of a multi-
protocol system with SOAP as a "lingua franca".

[3] presented the results of experiments that compared the encod-
ing, decoding and network performance of various message for-
mats, including XML. They found that the marshalling and com-
munications costs of XML arc staggeringly high in comparison to
more traditional approaches. with XML some 2 to 4 orders ofmag-

263

nitude slower in encoding and decoding than CORBAIIIOP and
similar binary wire formats. They concluded that XML wire for-
mats are inappropriate for high performance systems, as the base-
line performance of all systems is strongly determined by their wire
format.

These studies identified some factors that can affect the perfor-
mance of web services and SOAP, which can be broadly grouped
into three main categories.

3.1 Quality of Implementation
Design and implementation decisions made by SOAP infrastruc-

ture vendors can have a considerable impact of performance. These
factors include:

• Choice of XML parsing method. Different XML parsing
models have different trade-offs with respect to memory effi-
ciency, computational speed, and ease of use. Of the generic
XML parsing models, pull parsing offers the highest perfor-
mance, as well as high memory efficiency [14]. However, [4]
found that schema-specific parsers can greatly enhance per-
formance compared to general purpose XML parsers, partic-
ularly where large data structures are involved.

• Message length calculation. When using SOAP with an
HITP/1.0 network binding, the length of the body must be
specified in the "Content-Length" header field [2]. Setting
the HTTP Content-Length field is difficult for dynamic data,
because the message must be buffered as it is constructed to
determine how long it is, and the message itself is not sent
until encoding is finished [6].

• Connection establishment costs. HTTP/1.0 [2] mandates
the establishment of a new connection for each operation.
Establishing a new connection for each transaction can have
a negative impact on performance due to interaction with cer-
tain TCP features [23], such as the three-way handshake [24]
and slow start algorithm [16]. When looking at HTTP/l.O
performance over the Internet. at least one quarter of the
transaction time may be taken up by connection establish-
ment [17]. HTTP/\.l provides a connection keep-alive fea-
ture that allows a client to perform multiple operations over
a single connection [8].

• Pipe lining HTTP/I.l adds support for pipelining [8], which
is the ability to send multiple requests on the connection
before waiting for a response. This allows the connection
to be used more efficiently. As an alternative to pipelin-
ing, an HTTP/l.O implementation can make multiple single-
operation connections in parallel, typically by using multi-
threading. [19] found that an HTTP/\.l implementation us-
ing buffered pipelining will use less than 10% of the num-
ber of TCP packets that HTTP/l.O does, and execute in less
elapsed time. However HTTP/\.l without pipelining has a
higher elapsed time than HTTP/l.O using multiple connec-
tions. This indicates that connection keep-alive alone is in-
sufficient to improve performance.

• Inappropriate TCP options. [6] found that some SOAP im-
plementations suffered from significantly worse performance
due to interaction between the Nagle algorithm and the TCP
delayed acknowledgement algorithm in the operating sys-
tems for the client and server [24]. Clearly this is not an
inherent problem with either SOAP or HTTP.

3.2 Network Protocol Binding
The FIX protocol defines a session as a "bi-directional stream

of ordered messages between two parties" [10], and so there are no
request-response semantics imposed by its specification. Conse-
quently, when seeking to apply SOAP to a real-time trading sys-
tem we would prefer to use messaging-style rather than RPC-style
communication. Since HTTP is a request-response protocol [8]
with strict client and server roles, it may be ill-suited to use in
message-style communication.

Fortunately, SOAP does not specify a particular network trans-
port binding, and using SOAP with alternative network protocols
may offer performance advantages. This clearly implies that the
inefficiencies attributed to HTTP are not inherent to SOAP.

3.3 Inherent Limitations of SOAP
Open metadata technologies such as XML can provide a large

gain in usability, but the success of these technologies requires that
their use does not unreasonably degrade performance [28].

XML is extremely robust with respect to changes in the format of
the incoming record [3J. However, the use of XML can negatively
impact the performance of SOAP in the following areas:

• Speed of encoding and decoding. The conversion of data
from binary to ASCII and vice-versa is the major perfor-
mance cost of XML [3]. This is particularly the case for
floating point values. which were found constitute the ma-
jor cost of XML encoding and decoding 14]. The use of a
text-based protocol also precludes the application of opti-
misations available to binary protocols when communication
occurs between homogeneous systems [3].

• Message size. For XML, an expansion factor of 6-8 times
over the original binary data is not unusual [3]. [4] measured
expansion at 4 to 10 times, and [13] found that SOAP's data
representation size is typically about 10 times the size of the
equivalent binary representation. This substantially greater
size may result in higher network transmission costs and in-
creased latency.

One suggested strategy for overcoming these inherent perfor-
mance inefficiencies is the use of binary XML representations [28,
11,25,18].

4. EXPERIMENTAL DESIGN
The FIX protocol, like XML and SOAP, is text-based [10]. This

means that FIX has the same performance issues with regard to the
encoding and decoding of numerical data. Similarly, FIX messages
may be larger than their equivalent binary representation, although
overhead is lower than for XML due to FIX's compact tag-value
format.

The focus of this study is on the inherent performance issues of
the SOAP and FIX wire formats. With this in mind, the experi-
ments were designed to eliminate quality of implementation and
network protocol factors from consideration. This was done by
sending messages encoded in the various wire formats over "raw"
TCP sockets, using a consistent network programming model in
each case. SOAP bindings such as HTTP were not used. Fur-
thermore, initial transmissions were excluded from the results to
eliminate effects from the TCP slow start algorithm [16], and the
TCP _NODELA Y option was turned on to disable the Nagle algo-
rithm [24].

To aid in the identification of performance issues associated with
text-based wire formats, comparisons were also made with a binary

264

msg.header.SenderCompID = 'ABC'
msg.header.TargetCompID = 'XYl:'
msg,header.SendlngTime = '2002111&10:15:28'

msg.body.MarkeIDatalnc.MDReqID= 'MYREQ"

msg.body.MarketDatalnc.MDEnlry(Oj.MDUpdateAetion= Change
msg.body.MarketDatalnc.MDEntry(Oj.MDEnlryID= ·FOO.lasr
msg.body.MarketDatalnc.MDEnIry(Oj.MDEnlryPx= 13.42
msg.body.MarketDatalnc.MDEntry{Oj.MDEnlrySize= 1200

Figure 3: An example application data structure for the "mar-
ket data incremental refresh" message

wire format. The Common Data Representation (CDR) [20], which
is used as the basis of CORBA communication, was selected for

this purpose.
Three types of experiment were conducted:

• Message Size. The encoded representation of the application
structure in the three wire formats was compared.

• Latency. Test programs were written to measure round trip
times for sending a single message using each of the wire
formats. High resolution timers enabled the separation of
the times spent on encoding, decoding and network trans-
mission.

• Throughput. These tests attempted to measure the amount
of time required to transmit, in a single direction, a large vol-
ume of messages. The first set of tests measured throughput
from application data structure at one end to application data
structure at the other. Comparing with the throughput of pre-
encoded messages allows a determination as to whether en-
coding/decoding costs or the network was the limiting factor.

4.1 Data
The "market data incremental refresh" FIX Message was se-

lected as the business data for the experiment. This message is used
for sending market data updates, such as the latest stock prices,
throughout a trading day and would typically be high volume and
time critical. Randomly generated instances of this message type,
similar to that shown in Figure 3, were transmitted. The number
of MDEntry items in each message is varied from 1-10 to alter
the message size and allow estimation of the fixed and incremental
performance costs for each message.

4,2 Software
Application data structures were translated to and from the wire

formats using schema-specific encoders and decoders. The soft-
ware tools used to accomplish this were as follows:

• SOAP messages were produced using gSOAP [27], a free,
high performance toolkit. Studies [27,4] showed that gSOAP
had substantially higher performance than some commonly
used SOAP implementations, although not as high as another
special-purpose research implementation. The XML schema
for the message was based on the FlXML DTD [9], with en-
coders and decoders generated in C++.

• An implementation of a subset of the FIX protocol was de-
veloped specifically for the research. The application struc-
ture was defined in CORBA IDL, and the encoders and de-
coders were in C++.

2500

2000

3 • 5 6 7 B
Number of market data entries per message

10

Figure 4:. Message size comparison of the wire formats

Table l' Summary of message size costs
Fixed Cost Per-Entry Cost

FIX 130.0 bytes 55.05 bytes

CDR 129.2 bytes 93.28 bytes
SOAP 695.8 bytes 166.0 bytes

• The same CORBA IDL definition as used with the FIX im-
plementation was compiled using the TAO CORBA ORB's
[22)IDL compiler to generate C++ encoders and decoders
for the CDR wire format.

4.3 Environment
The latency and throughput tests were run over both 10 Mbps

and 100 Mbps Ethernet. Communication between real-time trad-
ing systems often occurs across leased lines or the public Internet,
and so 10 Mbps may be more comparable to the available band-
width in these cases.

The client system was a uniprocessor 900 MHz Pentium 3 with
256 MB of RAM, 256 KB level 2 cache and running Windows
2000. The test software for this system was compiled using the
Borland C++ 5.6.1 compiler.

The server was a uniprocessor 500 MHz Pentium 3 with 256 MB
of RAM, 512 KB level 2 cache, running Redhat Linux 7.3 with the
2.4.18-3 kernel. The test software for this system was compi led
using the g++ 3.2.1 compiler.

5, EXPERIMENTAL RESULTS

5.1 Message Size
Prior to running experiments to measure latency and throughput,

data were collected to compare the size of the application messages
when encoded in each of the SOAP, FIX and CDR wire formats.

Figure 4 and Table I show the message sizes of the application
data structure when encoded into each format. The figure shows
that SOAP messages are substantially larger, being some 3.5-4.5
times larger than the equivalent FIX message, and 2-4 times larger
than one in encoded using CDR. This is on the low side of the rela-
tive size results presented by existing SOAP and XML performance
studies [3, 4. 13].

Figure 5 shows the application structure from Figure 3 encoded
using FIX, and Figure 6 shows the same data encoded into SOAP.

265

< ?xml version="l.O" encoding="UTF-ll"?>
< SOAP-ENV: Envelope
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soapienvelopef
xmlns:SOAP-ENC="http://schemas.xmlsoap.orglsoapiencodlngl"
xmlns:xsi="http://www.w3.orgl2001fXMLScherm-instance">
<SOAP-ENV:Body
SOAP-ENV:encodingStyle="ht1p:llschemas. xmlsoap.orglsoaplencodlng!" >
<sendMessage>
<FIXMLMessage>
<Header>
<Sender> <CompID> ABC </CoI1llID> </Sender>
<Target> <CompID> XYZ<;/CompID> <!Target>
<SendlngTime>2002-11-16Tl0:15:2BDOO</SendingTime>

</Header>
<ApplicationMessage>
< Marl<etDatalnc>

<MDReqID>MYREO</MDReqID>
<MDlncList>
<MDlncGroup>
< MDUpdateAetion> 1</MDUpdateAc1lon>
<MDEntryID>FOO.last</MDEntryID>
< MDEntryPx > 13.42 <IMDEntrypx >
< MDEntrySize > 1200<IMDEntrySlze>

<IMDlncGroup>
<IMDlncLlst>

</MarketDatalnc>
</ApplicationMessage>

</FIXMLMessage>
</sendMessage>

</SOAP-ENV:Body>
</SOAP-ENV: Envelope>

Figure 6: SOAP representation

8=FIX.4.3.9=OOOOOO98.35=X.49=ABC.56=XVZ.34=1.52=20
021116-10: 15:28.262=MYREO.268=1.279=1.278=FOO.last.
270=13.42.271=1200.10=185.

Figure 5: FIX representation

union OptionaLString switch(boolean) {
case TRUE:

string value;
};

Figure 7: Optional field idiom used for application data struc-
ture definition in CORBA IDL

Here we see that the XML namespaces, the more verbose tag names
and syntax contribute to the SOAP message being substantially
larger.

Figure 4 also shows that FIX has a more compact wire repre-
sentation than CDR, which runs counter to what is expected. CDR
is approximately 50% larger due to CORBA IDL's lack of built-in
support for optional fields. We have instead used a common id-
iom for defining optional fields in CORBA [15), as illustrated by
Figure 7. This means that each optional field uses a single-byte in-
dicator to show whether it is present or not. As the message header
contains approximately 20 optional fields, and as each market data
entry contains more than 40. then with most of these fields un-
set there is considerable overhead. Alternative binary wire formats
with true support for optional fields, such as ASN.I/BER, may of-
fer more compact messages.

5"2 Latency
Figure 8 and Table 2 present the measurements for round-trip

times over a 10 Mbps network. This shows that FIX has the low-
est time with CDR not much greater, especially when compared to
SOAP which has a round trip time of slightly more than twice the
other two.

The breakdown of costs in Figure 9 shows that for all three wire
formats, over a 10 Mbps network. the largest cost is the time spent
on the network. This would suggest that in this environment the
size of the message on the wire is the major limiting factor. Over
the slower network, FIX's more compact message representation
contributes to its lower round-trip times than CDR.

Over a 100 Mbps network, time spent on the network is less sig-
nificant in overall round-trip times. Figure 10 and Table 3 show
the encoding costs for the wire formats, and Figure II and Table 4
show the relative decoding costs. For 100 Mbps Ethernet, the sub-
stantially higher encoding and decoding costs for SOAP contribute

700

'00

FIX

-- COR
• SOAP

500

i
§. 400..
E

"Q.-.s 3.00

'Es
It 200

--_ ...•-------

100

000 +-_-+-_-+-_--+-_-+_--+_---<f--_+-_+_----<
3 • 5 6 7 B 10

Number of market data entries per message

Figure 8: Round-trip times over 10 Mbps network

Table 2: Summary of round-trip costs over 10 Mbps network
Fixed Cost Per-Entry Cost

FIX I. I03 msec O.1130 msec
CDR 1.076 msec 0.1851 msec
SOAP 2.525 msec 0.3875 msec

most to its poorer performance, with round-trips some 2-3 times
more expensive than FIX or CDR.

An interesting result shown in Figure II is that FIX. a text-
based wire format, has lower decoding costs than CDR. a binary
format. This is particularly significant given the greater complexity
involved in decoding FIX, with the presence of the tags in the wire
format, flexible field ordering, and the fact that many fields mayor
may not be present at allan the wire. With CDR, on the other hand.
all fields would be decoded in a fixed order as determined by their
definition in the CORBA lDL. This result suggests two things:

• With this realistic application message content there is a mix
of string, integer and floating point values. The cost of con-
verting numerical data from text to binary, identified as major
by other studies, does not have a predominant role.

• The cost of handling the complexity of the FIX message
structure is minor compared to the cost of decoding a field,
and that greater benefit is derived from not having to process
the large number of optional fields that are not present on the

266

~ FIX round-trip over 10Mbps 2.23 msec ---.
dient encode network server decode server encode network client decode

I I I •O.073msec O.961msec O.092msec O.081msec O.961msec O.063msec

CDR round-trip over 10Mbps 2.92 msec~ ---.
dient encode network server decode server encode network client decode

I I I
O.062msec 1.26msec O.l48msec O.074msec 1.26msec O.107msec

SOAP round-trip over 10Mbps 6.40 msec~ ----..
dient encode network server decode server encode network client decode
I I
O.29Omsec 2.11msec O.735msec O.700msec 2.11msec O.446msec

FIX round-trip over 100Mbps 1.25 msec.-- ---..
dient encode network server decode server encode network client decode
I I I
O.073msec O.471msec O.092msec O.081msec O.471msec O.063msec

CDR round-trip over 100Mbps 1.46 msec~ --...
dient encode network server decode server encode network client decode
I I , I
O.062msec O.535msec O.148msec O.074msec O.535msec O.107msec

SOAP round-trip over 100Mbps 3.02 msec~ ---...
dient encode network server decode server encode network client decode
I
O.29Omsec O.425msec O.735msec O.700msec O.425msec O.446msec

Figure 9: Cost breakdown for round-trip times for messages with 10 market data entries

oso

--_..:.------___ ~ ~ ~ • ~ 4 _

·~-·-AX-
0.70 i -- CDR !

~---~~;

0.'0

000 +---+---+---i-~+_-_+_-_+_-_+--t_____<
1 3 4 s 6 7 8

Number 01 market data entries per message
10

Figure 10: Server-side encoding costs

wire. With the message encoding, encoders for all wire for-
mats must test the presence of every field, and the advantage
is lost.

5.3 Throughput
Figure 12 displays the measurements for throughput over a 10

Mbps network. For this slower network configuration, the network
itself was observed to be the bottleneck for all three wire formats.
As with latency. this result suggests that in an environment with
lower bandwidth, the size of the message is the major factor affect-
ing performance. This allows FIX, with the most compact mes-

Table 3: Summary of server-side encoding costs
Fixed Cost Per-Entry Cost

FIX 0.0232 msec 0.0058 msec
CDR 0.0141 msec 0.0059 msec
SOAP 0.1012 msec 0.0599 msec

Table 4: Summary of server-side decoding costs
Fixed Cost Per-Entry Cost

FIX 0.0358 msec 0.0057 msec
CDR 0.0358 msec 0.0112 msec
SOAP 0.1878 msec 0.0547 msec

sages, to achieve the highest throughput values.
For 100 Mbps networks, the CPU on the slower server machine

was observed to be the bottleneck, and consequently the network
was under utilised. The results in Figure 13 show that FIX again
achieved the highest throughput, although CDR has lower encodi ng
costs. This is a result of the decoding, which had a lower cost for
FIX than CDR, being performed on the slower machine. Reversing
the roles of the machines changes the relative throughput of the
wire formats.

Interestingly, the throughput performance of SOAP relative to
the other two wire formats is worse for the 100 Mbps network.
This is due to the ratio of SOAP decoding cost to FIX or CDR
being greater than the equivalent ratio for message size.

5.4 SOAP Message Compression
Over lower network bandwidth the size of the message on the

wire is the limiting factor for performance. As a result, it may be

267

O.OOT······································ . .

FAX:
070 i -- CORi

,-- ..•..·IOAP,

1°00

§ 0."

~roo
: 0.30

"I020 _ ..•----~-------~---------------_ ..-0.10

000-1-_-+-_--+_---< __ +-_-+-_-+- _ ___+--+---<

1 3 •• 5 6 7 8
Number 01 mar1(et data entries per message

10

Figure 11: Server-side decoding costs

1eooo T···......................................•

...........

_ ..-------_ ...------_ ..•--.--,-'

0+---+---+----+----<--+---+---+----+-----'

1 3 4 5 8 7 a
Number of marital data entries per message

10

Figure 12: Throughput over 10 Mbps network

possible that compression of the SOAP message data would con-
fer some advantage. To determine if this is the case an additional
latency test was run where the SOAP messages were compressed
immediately before being transmitted. For this purpose, the zl ib
compression library was used on the lowest (and fastest) cornpres-
sion level. This achieved compression savings of 50-70%.

The results, as shown in Figure 14, indicate that compression
is in fact detrimental, substantially increasing the round-trip time.
The increased CPU time spent compressing and decompressing the
messages outweighs any benefits. Compression may only be useful
for considerably slower networks.

5.5 Compact XML Tags
An alternative method for reducing the size of the SOAP meso

sages investigated in this study was to reduce the length of the XML
tag names. This was done by replacing the FIXML names with
short 2-4 character strings based on the numeric FIX tags. This
reduced the size of the SOAP messages by approximately 25-35%
as shown in Figure 15, but clearly sacrifices message readability in
favour of the potential performance gains.

Figure 16 shows that the more compact SOAP messages do pro-
vide gains in performance over 10 Mbps Ethernet. where the time

llOOOO

----_ .•. ---~

80000

FIX

-- CDR
~-SOAP-g

~ 70r0?

Z,80000

~~..
l!
~ 40000

j
~ 30000 "',,. •••

i
20000

1"~ roccoz

o --+---+1 ----<--+---~---+----+--+--
3 4 5 6 7 8 10

Number of market data entries per message

Figure 13: Throughput over 100 Mbps network

800 --_.-0
.:«>:-,-

",
» >:.,-

• SOAP

-- ~p' •• _Md SOAP ,,-
700

800

1,00..
~ 400
Co

E
'l! 300

6a:
'00

100

000-I---+----+----<~-+---+----+-----+--+--

4 5 6 7
Number of market data entries

10

Figure 14: Round-trip times over 10 Mbps network for com-
pressed and uncompressed SOAP messages

on the network is the major cost. However, the performance im-
provement is not in the same proportion to the reduction in mes-
sage size. When considering the relative decoding costs shown in
Figure 17, we see that there is not a commensurate improvement
in decoding performance. Furthermore, the use of compact SOAP
has a negligible effect on encoding efficiency. This suggests that the
major cost of the XML encoding and decoding is in the structural
complexity and syntactic elements, rather than the data contained
in the message or the tag names.

6. DISCUSSION
Earlier studies into SOAP and XML performance [3, 4] found

that the conversion from text to binary and vice versa was the ma-
jor cost, and particularly the costs associated with encoding and de-
coding floating point values. However, these studies were oriented
towards the application of SOAP and XML to scientific comput-
ing, with message data consisting, for the large part, of numerical
values.

In this study we have attempted to study the performance of
SOAP using realistic business application messages, with capital
markets trading systems as the context. The results comparing

268

2000

.

103 " 5 6 7 B

Number of market data entries per message

Figure 15: Message size reduction when compact XML tags are
used

1.00 -- ...-.-.----.-----~.---

~~
'.00 ~~

500

1.00

~
Cl.
'E 3.00

1
IX 2.00

....... , ..

...........
•..........

"" .

......
" ..-~.....

1.00

000 +---_-+-_-t-_-+ __ +--_-+-_-+-_--+_----.,f-----l

1 103 " 5 8 7 8
NU!'1ber of mar1(et data entries per message

Figure 16: Round-trip times for compact SOAP messages over
10 Mbps network

SOAP to the binary wire format, CDR, do display poor perfor-
mance for SOAP, although the difference is not as large as for the
numerical data used in earlier studies. Given that the overall per-
formance of FIX, with its text-based wire format, was comparable
to CDR - and in fact outperforming it for decoding - it is clear
that conversion of text-to-binary and back is not a major factor
affecting performance in this case.

Two important results of this study with respect to the perfor-
mance of SOAP are:

• In business computing scenarios, it is possible for text-based
formats to have comparable performance to binary wire for-
mats. The poorer performance of SOAP implementations
compared to other wire formats cannot be fully explained
simply by the fact that SOAP is text-based.

• Simply reducing the size of the encoded SOAP messages by
using shorter tags did not proportionally improve the speed
of encoding and decoding.

Together, these results mean that a likely cause of the poor per-
formance of SOAP as a wire format is the complexity of the XML

0.80

SOAP
070 --=-~JNKrt_~~.;

~08Og
8 050
u

0,10

000 +-_-+-_--+_----.,f--_-+---_-+-_-+-_-+ __ +__-----;

3 " 5 6 7 8

Number of market data entrlel per message

Figure 17: Decoding costs for compact SOAP messages

syntax and the richness of its on-the-wire structure. The SOAP
message definition used in this study, based closely on FIXML [9],
is complex with a high degree of nesting. It may be useful to con-
duct further research to gauge the effect on performance of alter-
native XML message representations. Results from such research
could provide some guidance to developers on how to effectively
design SOAP message layouts for high performance applications.

The results of this study suggest some areas where SOAP imp le-
mentors, in focusing any efforts to improve performance for busi-
ness applications, may find the most benefit. Further study would
be valuable in clarifying the causes of SOAP's poor performance,
and what approaches may be used to address them.

Furthermore, in this study we have considered only the inherent
performance characteristics of the SOAP wire format. The other re-
quirements for using SOAP in capital markets systems, such as se-
curity and fault tolerance, may have an additional impact on SOAP
performance.

Finally, the results show that it is important to consider the envi-
ronment in which a system will be deployed when identifying the
performance issues related to SOAP most relevant to that applica-
tion. Although for fast networks the speed of encoding and de-
coding is the predominant determining factor, for slower networks
it is the size of the encoded message that determines both latency
and throughput performance. This is important for business-to--
business integration which, in capital markets as in most other do-
mains, often occurs over wide area networks.

7. CONCLUSIONS
In this paper we have presented the results of a performance eval-

uation of SOAP in a business application context. Our results in-
dicate that, while SOAP did fare poorly when compared to both
binary CDR and the established industry protocol FIX, the differ-
ence is less than that measured for scientific computing applica-
tions. Furthermore, in realistic business environments it is possible
for text-based wire formats to have comparable performance to bi-
nary. This indicates that the text-based nature of XML is not in it-
self the major contributing factor to inefficiency in SOAP encoding
and decoding. This finding suggests that further work in improving
the performance of SOAP encoders and decoders may make it vi-
able for use in high performance business applications. In spite of
this, when designing performance-conscious systems for integra-
tion across wide area networks, bandwidth is generally the limiting

269

factor, and it is worth considering the size of an encoded message
when selecting an appropriate wire format.

8. REFERENCES
[I] Australian Stock Exchange. The SEATS computer system,

2ooo.http://www.asx.com.au/markets/14/
SEATS_AM4. shtm, accessed I June 2002.

[2] T. Berners-Lee, R. Fielding, and H. Frystyk. Hypertext
transfer protocol - HTTP/I.O, 1996. IETF RFC 1945,
http://www.ietf.org/rfc/rfc1945.txt.

[3] F. E. Bustamante, G. Eisenhauer, K. Schwan, and P. Widener.
Efficient wire formats for high performance computing. In
Proceedings of the 2000 Conference on Supercomputing,
2000.

[4] K. Chiu, M. Govindaraju, and R. Bramley. Investigating the
limits of SOAP performance for scientific computing. In
Proceedings of the l l th IEEE International Symposium on
High Performance Distributed Computing, pages 246-254,
2002.

[5] F. Curbera, M. Duftler, R. Khalaf, W. Nagy, N. Mukhi, and
S. Weerawarana. Unraveling the web services web: An
introduction to SOAP, WSDL, UDDI. IEEE Internet
Computing, 6(2):86-93, March-April 2002.

[6] D. Davis and M. Parashar. Latency performance of SOAP
implementations. In Proceedings of the 2nd IEEElACM
International Symposium on Cluster Computing and the
Grid, pages 407-412, 2002.

[7] M. Fan, J. Stallaert, and A. B. Whinston. The internet and the
future of financial markets. Communications of the ACM,
43(11):83-88, November 2000.

[8] R. Fielding, J. Gettys, 1. Mogul, H. Frystyk, L. Masinter,
P. Leach, and T. Berners-Lee. Hypertext transfer protocol -
HTTP/I.I. 1999.IETF RFC 2616,
http://www.ietf.org/rfc/rfc2616.txt.

[9] FIX Protocol Ltd. FIXML: A markup language for the FIX
application message layer.
http://www.fixprotocol.org/WORKGROUPS/
928951581 Iwpaper. html, accessed 8 June 2002.

[10] FIX Protocol Ltd. The Financial Information Exchange
Protocol (FIX), version 4.3, August 2001.
http://www.fixprotocol.org/
sped ficationl fix- 43 -pdf. zip, accessed 8 June
2002.

[I I] M. Girardot and N. Sundaresan. MilIau: An encoding format
for efficient representation and exchange of XML over the
web. In Proceedings of the 9th International World Wide Web
Conference, pages 747-765, 2000.

[12] J. Goeller. FIXML and STP related efforts, 2000.
http://www.fixprotocol.org/WORKGROUPS/
928951581/XML_STP_John6. ppt, powerpoint
presentation, accessed 8 June 2002.

[13] M. Govindaraju, A. Slominski, V.Choppella, R. Bramley,
and D. Gannon. Requirements for and evaluation of RMI
protocols for scientific computing. In Proceedings of the
2000 Conference on Supercomputing, 2000.

[14] S. Graham, S. Sirneonov, T Boubcz, D. Davis, G, Daniels.
Y.Nakamura, and R. Neyama. Building Web Services with
Java: Making Sense ofXML, SOAP, WSDL, and UDDI.
Sams Publishing, Indianapolis, 2002.

r 15] M. Henning and S. Vinoski. Advanced CORBA Programming
with C++. Addison-Wesley. Reading, Massachusetts, 1999.

[16] V.Jacobson. Congestion avoidance and control, In
Symposium proceedings on Communications architectures
and protocols, pages 314-329. ACM Press, 1988.

[17] B. Liu and E. A. Fox. Web traffic latency: Characteristics
and implications. 1.UCS: Journal of Universal Computer
Science, 4(9):763-778, 1998.

[18] B. Martin and B. Jano. WAP binary XML content format,
June 1999. http://www . w3 . org ITR/wbxml I .
accessed 1June 2002.

[19] H. F. Nielsen, J. Gettys, A. Baird-Smith, E. Prud'hommeaux.
H, W. Lie, and C. Lilley. Network performance effects of
HTTP/l.I,CSSl,andPNG.ln Proceedings of the ACM
SIGCOMM '97 conference on Applications, Technologies.
Architectures, and Protocolsjor Computer Communication,
pages 155-166.1997,

[20] Object Management Group. The Common Object Request
Broker Architecture: Core Specification. version 3.0.
November 2002.

[21] F. A. Rabhi and B. Benatallah. An integrated service
architecture for managing capital market systems. IEEE
Network,16(1):15-19,2002.

[22J D. C. Schmidt, D. L. Levine. and S. Mungee. The design of
the TAO real-time object request broker. Computer
Communications. 21(4):294-324, April 1998.

[23] S, E. Spero. Analysis of HTTP performance problems. 1994.
http://www.w3.org/Protocols/HTTP/l.O/
HTTPPerformance.html, accessed 15 June 2002.

[24] W. R. Stevens. TCP//P lllustrated. volume I: The Protocots.
Addison-Wesley, Reading. Massachusetts, 1994.

[25] N. Sundaresan and R. Moussa. Algorithms and programming
models for efficient representation of XML for internet
applications. In Proceedings ofthe 10th International World
Wide Web Conference, pages 366-375. 2001.

[26] SWIFT. About SWIFT - History.
http://www.swift.com. accessed 3 June 2002.

[27) R. A. van Engelen and K. A. Gallivan. The gSOAP toolkit
for web services and peer-to-peer computing networks. In
Proceedingsofthe 2nd IEEElACM International Svmposium
on Cluster Computing and the Grid, pages 128-135.2002.

[28] P. Widener, G. Eisenhauer, and K. Schwan. Open metadata
formats: Efficient XML-based communication for high
performance computing. In Proceedings (if/he l Oth IEEE
International Symposium on High Performance Distributed
Computing, pages 371-380, 2001.

270

http://2ooo.http://www.asx.com.au/markets/14/
http://www.ietf.org/rfc/rfc1945.txt.
http://www.ietf.org/rfc/rfc2616.txt.
http://www.fixprotocol.org/WORKGROUPS/
http://www.fixprotocol.org/
http://www.fixprotocol.org/WORKGROUPS/
http://www.w3.org/Protocols/HTTP/l.O/
http://www.swift.com.

ISBN 963-311-355-5

Printed in Hungary • Amulett'98 Kft.

ii

