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Abstract

Continuous sign language recognition (CSLR) aims to rec-
ognize gloss sequences from continuous sign videos. Re-
cent works enhance the gloss representation consistency by
mining correlations between visual and contextual mod-
ules within individual sentences. However, there still re-
main much richer correlations among glosses across differ-
ent sentences. In this paper, we present a simple yet effective
Cross-Sentence Gloss Consistency (CSGC), which enforces
glosses belonging to a same category to be more consistent
in representation than those belonging to different categories,
across all training sentences. Specifically, in CSGC, a proto-
type is maintained for each gloss category and benefits the
gloss discrimination in a contrastive way. Thanks to the well-
distinguished gloss prototype, an auxiliary similarity classi-
fier is devised to enhance the recognition clues, thus yield-
ing more accurate results. Extensive experiments conducted
on three CSLR datasets show that our proposed CSGC sig-
nificantly boosts the performance of CSLR, surpassing ex-
isting state-of-the-art works by large margins (i.e., 1.6% on
PHOENIX14, 2.4% on PHOENIX14-T, and 5.7% on CSL-
Daily).

Introduction

Automatically recognizing signs from videos is signif-
icant for communication among the deaf and hard-of-
hearing community. The Continuous Sign Language Recog-
nition (CSLR) task is designed to recognize glosses (i.e., ba-
sic semantic symbols associated with signs) from a continu-
ous video stream.

Current CSLR models (Zhou et al. 2020; Min et al. 2021;
Hao, Min, and Chen 2021; Zuo and Mak 2022; Hu et al.
2022) typically consist of two modules for feature extrac-
tion: a visual module to extract short-term spatial-temporal
information from the input frames and followed by a contex-
tual (sequential) module aggregating long-term contextual
information. An alignment module is utilized to align the
extracted features with corresponding gloss labels. Accord-
ing to (Zuo and Mak 2022), recent methods improve CSLR
by enhancing the consistency between visual and contex-
tual modules, which is measured at a frame level (Min et al.
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Figure 1: Previous CSLR methods constrain the represen-
tation consistency between visual and contextual modules
only within the same sentence scope, i.e., intra-sentence
consistency, yet ignoring the rich correlations among cross-
sentence gloss features in the dataset scope. We reckon gloss
features belonging to a same category across different sen-
tences are expected to be consistent in representation, thus
presenting our Cross-Sentence Gloss Consistency.

2021; Hao, Min, and Chen 2021) or sentence level (Zuo and
Mak 2022). However, their consistency are all limited in a
single sentence scope. The lack of adequate gloss correla-
tions hinders its representation learning. In contrast, the rich
gloss correlations across different sentences, as an intuitive
sense to recognize language signs, has not been studied.

To investigate the above gloss correlations across sen-
tences, in this paper, we study the impact of cross-sentence
consistency for CSLR. As illustrated in Fig. 1, limiting
the representation consistency within individual sentences
is hard to distill comprehensive knowledge for gloss dis-
crimination. Based on this observation, we present Cross-
Sentence Gloss Consistency (CSGC) for CSLR. Instead of
previous intra-sentence consistency, our CSGC exploits the
cross-sentence gloss correlations in a global (dataset) scope,
thus efficiently benefiting the learning of gloss discrimina-
tion and significantly boosting the CSLR performance.



The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

Specifically, CSGC is constructed based on a core gloss
category representative component: Gloss Prototype (GP).
GP is designed as a referral dictionary containing a set of
category prototypes. Each gloss category is assigned with a
prototype and is maintained constantly in the training stage.
We fuse each sample of gloss feature into GP by momen-
tum updating the corresponding prototype. In the meantime,
GP benefits the discrimination of gloss samples in a con-
trastive way: on the one hand closing the gloss-to-prototype
distance between the gloss sample and its corresponding cat-
egory prototype, on the other hand enlarging the gloss-to-
prototype distances between the gloss sample and other cat-
egory prototypes. As the training progresses, GP is gradu-
ally comprehended with representations of all gloss samples,
which is able to comprehensively describe each gloss cate-
gory, leveraging exhaustive gloss knowledge learned among
gloss correlations on the whole dataset.

Besides, considering the well-distinguished GP to bring
benefits of our cross-sentence gloss consistency into the fi-
nal recognition, we design a fusion module named Auxiliary
Similarity Fusion Strategy (ASFS). ASFS enriches the ini-
tial recognition (i.e., outputs of the fully-connected classi-
fier) with cross-sentence gloss consistency clues. In ASFS,
we first measure each gloss sample with a similarity table,
i.e., the gloss-to-prototype similarities with all prototypes in
GP. Then by normalizing the similarity table, we obtain a
gloss prediction probability in the aspect of cross-sentence
gloss discrimination. Next fuse it with the output probability
from the initial classifier (which contains only intra-sentence
gloss discrimination) as our final recognition probability.
Since ASFS considers the gloss prediction in both cross-
sentence and intra-sentence perspectives, it further improves
the recognition performance.

We evaluate our CSGC on three CSLR benchmarks,
including PHOENIX14 (Koller, Forster, and Ney 2015),
PHOENIX14-T (Camgoz et al. 2018) and CSL-Daily (Zhou
et al. 2021). Quantitative results indicate that we surpass ex-
isting state-of-the-art works by big margins. Remarkably,
we improve the state-of-the-art performance by 1.6% on
PHOENIX 14, 2.4% on PHOENIX14-T, and 5.7% on CSL-
Daily.

Related Work
Continuous Sign Language Recognition

Feature representation is always an important part in CSLR.
Before deep learning era, traditional methods (Freeman and
Roth 1995; Gao et al. 2004; Han, Awad, and Sutherland
2009; Koller, Forster, and Ney 2015) usually devise hand-
crafted features to represent visual and temporal informa-
tion. Bringing deep learning techniques into CSLR achieves
great success (Koller et al. 2016; Koller, Zargaran, and Ney
2017) thanks to the significant feature representation ability
of convolutional neural networks, recurrent neural networks
and recent Transformers (Vaswani et al. 2017; Camgoz et al.
2020; Zuo and Mak 2022). Current CSLR methods follow
a standard pipeline, which consists of two encoding back-
bones and an alignment module: a visual encoding back-
bone (i.e., 2D-CNN (Zhou et al. 2020; Cheng et al. 2020;
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Min et al. 2021) and 3D-CNN (Pu, Zhou, and Li 2019)), a
contextual encoding backbone including a short-term tem-
poral modeling (i.e., TCN (Min et al. 2021; Hu et al. 2022),
temporal lifting (Hu et al. 2022)) and a long-term sequence
modeling (e.g., BILSTM (Cui, Liu, and Zhang 2017; Min
etal. 2021; Hu et al. 2022), Transformer (Hu et al. 2022; Niu
and Mak 2020; Camgoz et al. 2020)) and a CTC loss (Graves
et al. 2006) for alignment between the extracted gloss fea-
tures and corresponding labels.

Particularly, a branch of works are target at enhancing
the representation consistency. VAC (Min et al. 2021) pro-
poses to constrain the alignment between visual and sequen-
tial outputs directly. SMKD (Hao, Min, and Chen 2021) bal-
ances the focus between short-term and long-term informa-
tion from visual and contextual module by a shared classi-
fier. C>SLR (Zuo and Mak 2022) proposes a sentence em-
bedding consistency between visual and contextual module.
As a critical factor in gloss discrimination, the research of
feature representation consistency in CSLR has been con-
tinuous for years.

However, these works mostly learn to understand signs
under visual and contextual consistency within individual
sentences while omitting the rich gloss correlations across
different sentences. In contrast, our proposed cross-sentence
gloss consistency fully leverages the inherent gloss discrim-
ination, thus leading to more effective representation learn-
ing.

Prototype Learning

Previous cognitive psychological studies (Aamodt and Plaza
1994; Newell, Simon et al. 1972; Yang, Zhuang, and Pan
2021) indicate that people use past cases as models when
learning to solve problems. In machine learning practice, the
prototype based classification (Duda, Hart, and Stork 1973;
Hastie et al. 2009; Shawe-Taylor, Cristianini et al. 2004) has
been studied for long time, from traditional statistics ap-
proaches to Support Vector Machine to Multilayer Percep-
tions. Prototype based classification has experienced sus-
tainable development thanks to its simple and intuitive in-
sight: observations are directly compared with representa-
tive prototypes. Recently, the prototype based research have
been promoted into deep learning schemes, thus facilitat-
ing prototype learning in various aspects, including few-
shot (Snell, Swersky, and Zemel 2017), zero (Jetley et al.
2015), unsupervised (Wu et al. 2018; He et al. 2020), and
supervised (Yang et al. 2018) learning.

To the best of our knowledge, previous CSLR models
rarely study the gloss representation via prototype learn-
ing. We observe the gloss-to-prototype correlation nature in
gloss discrimination and leverage the superiority of proto-
type learning to facilitate the CSLR task.

Proposed Method: CSGC

We introduce a Cross-Sentence Consistency (CSGC) for
CSLR. As illustrated in Fig. 2, our framework contains
three main components: a gloss prototype (GP), a gloss con-
trastive loss function and an auxiliary similarity fusion strat-
egy (ASFS).
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Figure 2: The CSGC framework is designed to analyze continuous video streams for sign language recognition. It first extracts
gloss features and predictions from the video using a combination of visual-contextual backbones and an FC classifier. At its
core, CSGC uses these predictions to operate its three main elements: (i) the Gloss Prototype, a comprehensive repository of
gloss representations (left green box); (ii) a gloss contrastive loss that refines the feature learning between glosses and prototypes
(right bottom box); and (iii) an auxiliary similarity fusion strategy that integrates cross-sentence gloss consistency to improve

the accuracy of gloss recognition (right middle box).

Gloss Prototype

Gloss Prototype (GP) serves as a comprehensive feature dic-
tionary within our framework, characterized by three pri-
mary operations: initialization, query (referral), and update.
Functionally, it aggregates and maintains generalized fea-
ture representations, which are dilated from all gloss sam-
ples in memory across various categories, and undergoes
continuous updating throughout the entire training process.
We denote one segment of the gloss features (the output
of the visual & contextual encoder) in a specific sample as
f € RY (indicated by the blue dotted box in Fig. 2), where
C is the channel size.

GP is initialized by an empirical distribution or a statisti-
cal distribution. It consistently maintains the representative
gloss prototypes during the whole training, and contributes
critical gloss representation references for following mod-
ules.

Referral with Memory As a global representation refer-
ence provider, GP can serve as a prototype memory bank.
The query in GP can be formulated as a dictionary look-up
task.

Since in CSLR task, there is no specific boundary label
for gloss segments, we utilize the pseudo label produced by
the CTC for gloss segments. Specifically, given the specific
gloss feature f, a gloss representation reference g, € G
stored in GP is provided with expected category n, where
the category index n is estimated by the intra-sentence learn-
able FC classifier (i.e., pintra in Fig. 2). The referral of f is
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expressed as:

n = argmax(Pntra(f)),
Ref(f) = gn,

where prntra(f) = Linearc—,n(f) is the learnable fully-
connected classifier. C, N denote the channel size and the
number of gloss categories, respectively.

(D

Momentum Update To distill representative prototypes
from diverse gloss samples, we propose to repressively re-
fine the GP by a momentum update. Specifically, we update
the referral n-th gloss prototype in GP by:

gn = Bf+ 1= B)gn, (2)

where 0 < 8 < 1 is a scaling factor, Ref(f) = g, is the
referral representation of f as described in Eq. 1. ¢ is the
updated representation after each iteration. The small 5 will
encourage GP to focus on feature memory and obtain a sta-
ble statistic while the large 5 will encourage GP to focus on
instance variances and obtain exquisite statistics.

A well-refined GP will provide representative gloss fea-
ture references and benefit the gloss contrastive learning.

Gloss Contrastive Loss Function Contrastive loss (Had-
sell, Chopra, and LeCun 2006) is widely used to measure the
distance between paired sample points based on their simi-
larity. Here we utilize this form to constrain our gloss proto-
type learning: on the one hand closing the gloss-to-prototype
distance between the gloss sample point and its belonging
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prototype (as positive samples), on the other hand enlarging
the gloss-to-prototype distances between the gloss sample
point and other category prototypes (as negative samples),
thus making both GP and gloss representations more distin-
guishable.

Given the set of GP G = {g1, ..., gn } and the gloss fea-
ture f in a specific sample, we select the corresponding item
with the matched label (i.e., the pseudo label from the CTC)
as a positive reference g, and the rest in G as negative
references. Similar to (He et al. 2020), we consider the In-
foNCE (Oord, Li, and Vinyals 2018), as a form of the con-
trastive loss function, in this paper:

Lo= log exp(f-g+)

>y exp(f - gn)

With the help of GP, this contrastive learning constrain

helps our model be more distinguishable in gloss feature

representation (i.e., less intra-class gloss variations and more
inter-class gloss distances).

3

Auxiliary Similarity Fusion Strategy

To bring the benefits of the great representation capability
from gloss prototype into predictions and achieve more com-
prehensive recognition clue distillation, we propose to solve
the temporal classification in two aspects and fuse their re-
sults together: intra-sentence recognition clues and cross-
sentence prototype-assisted recognition clues.

In spite of training a CTC classifier, i.e., a fully connected
layer that can handle gloss recognition within individual sen-
tences (i.e., Prntra in Fig. 2), we propose an auxiliary simi-
larity fusion strategy to tackle the gloss recognition in the
aspect of gloss-to-prototype similarity by existing statistics
of GP.

Prototype-Assisted Similarity Classifier. To exploit
GP’s great capability in representative modeling and bridge
the gloss-to-prototype correlations, we propose an auxiliary
similarity measurement. It is a pure statistic approach mea-
suring the distance between a specific gloss sample with cur-
rent GP state without learnable parameters. Specifically, co-
sine distances are calculated to estimate the similarity be-
tween a given sample feature and all items in GP:

Dy ={dfn:0<n<N}, 4
f'gn

dyn = yIn) = T 5

fn = 52 0n) = [rpTlTgnT] ©)

where Dy € R™ containing the similarity information be-
tween the given gloss feature f and current snapshopt of GP.

We obtain the corss-sentence prototype-assisted similar-
ity probability pcress(f) by normalizing Dy with a softmax
function:

dsn ;
_PUrn) g o< N0<n<N).
Yoisiexp(dy;)
6)

Intra-and-Cross Sentence Gloss Probability Fusion.
The initial intra-sentence probability is obtained from a
learnable FC classifier:

PCross (f)

pIntra(.f) = LinearCﬁN(f)a @)
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where the linear function is implemented as a fully-
connected layer. It is noted that the traditional FC classifier
provide recognition clues within individual sentences, while
our prototype-assited similarity classifier provide recogni-
tion clues across different sentences in a global (dataset)
scope. Therefore, based on the two probabilities from the
scope of intra-sentence and cross-sentence, we fuse them
to obtain a more accurate probability as output. Regarding
to the fusing way, we devise the following two feasible ap-
proaches:

(1) Sum. We fuse the two stream probabilities by sum-
ming:

po(f) = SOftmaX(pCross(f) + aplntra(f))a (8)

where « is a scaling factor.
(ii) Product. We fuse the two stream probabilities by pro-
duction:

po(.f) = SOftmaX(pCrosS (f) ' pIntra(.f))' 9

The output probability attends to the temporal classifica-
tion and is supervised by a CTC (Graves et al. 2006) loss.
We denote it as an auxiliary similarity fusion loss:

L; = CTC(p,). (10)

Objective Function

To supervise the training of our CSGC framework, we devise
the objective function as a combination of four losses: a CTC
loss (Graves et al. 2006) Ls.q for sequence classification,
an visual enhancement loss Lyg (proposed in (Min et al.
2021)), and a gloss contrastive loss L. (Eq. 3), an auxiliary
similarity fusion loss L (Eq. 10). We combine these losses
as our objective function:

EZﬁSeq+£VE+71£c+72£f~ (11)

where 1 and - are both scaling factors. Since the scaling
factor of Lgeq and Ly is verifiedas 1 : 1in VAC (Min et al.
2021), we directly utilize this proportion in our experiments.

Experiments
Datasets and Metrics

We validate our proposed method on three datasets that are
widely utilized in CSLR evaluation: PHOENIX14 (Koller,
Forster, and Ney 2015), PHOENIX14-T (Camgoz et al.
2018) and CSL-Daily (Zhou et al. 2021).

PHOENIX14 (Koller, Forster, and Ney 2015) is a Ger-
man CSLR dataset. This dataset contains representative sign
videos collected from a weather TV program covering a
wide range of signs and sentences. Specifically, its vocab-
ulary covers 1295 signs. It provides 6841 video-sentence
pairs in total. Following the official split (Koller, Forster, and
Ney 2015), 5672, 540, 129 sentences are used for training,
validation (Dev) and testing (Test), respectively.

PHOENIX14-T (Camgoz et al. 2018) is another Ger-
man CSLR dataset, which is considered as an extension
of (Koller, Forster, and Ney 2015). It has a vocabulary of
1085 signs. It contains 8247 video-sentence pairs in total,
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which is divided into 7096 training instances, 519 validation
instances (Dev) and 642 testing (Test) instances.

CSL-Daily (Zhou et al. 2021) is a large-scale Chinese
CSLR dataset covering sign language scenarios in people’s
daily lives. Specifically, it has a vocabulary of 2000 signs
and 20654 video-sentence pairs. The split of the dataset for
training, validation (Dev) and testing (Test) is 18401, 1077
and 1176, respectively.

Word Error Rate (WER) is utilized as the metric to evalu-
ate CSLR performance. It is defined as the minimal number
of deletion, substitution and insertion operations on glosses
when converting output sentences to ground-truth:

_ #tdeletions + #substitutions + #insertions

WER F#glosses
(12)
It can be inferred that the lower WER indicates better CSLR
performance.

Moreover, we devise a Gloss Accuracy (GA) metric to
evaluate the model performance on specific gloss categories.
The details and related experiments are listed in the supple-
mentary materials.

Implementation Details

Visual and contextual backbone. For fair comparison, we
align the backbone settings with recent works (Niu and Mak
2020; Min et al. 2021; Hao, Min, and Chen 2021; Hu et al.
2022). Specifically, we use ResNet18 (He et al. 2016) as vi-
sual backbone. Except for the visual inputs, we do not use
other modality clues for simplicity. The short-term temporal
convolution module contains a 5-kernel size convolution, a
2-kernel size max pooling and another 5-kernel size convo-
Iution, sequentially, i.e., K5-P2-K5. In long-term sequence
modeling, we utilize a two-layer BILSTM with 1024 hidden
states.

Designs of Gloss Prototype. GP stores prototypical fea-
tures of all gloss categories. It can be initialized by empir-
ical distributions or a statistical distribution. We denote it
as G = {gn : 0 < n < N }, where g, represents the
prototypical feature of n-th gloss, N denotes the number
of gloss categories, g, € RC. We devise two empirical
distributions as the initialization, i.e., 1) zero initialization:
G ={g, =0:0 < n < N} and 2) Gaussian initial-
ization: G ~ N (u, 0?), where parameters y and o2 are the
mean and variance. We empirically set 4 = 0,0 = 1 in our
experiments.

Another initialization approach is scratching from statis-
tics. Suppose a basic CSLR model can provide a rough ref-
erence of how gloss features distribute, thus we can initialize
the GP by historical statistics. Specifically, we evaluate the
basic model on the entire dataset and average all feature rep-
resentations as gloss feature initialization, grouped by their
predicted gloss categories:

G={gn:0<n< N},
o ZUEV Z;ri":n ft
" ZUEVmU

{(", ") : 0 <t <T} = Benn(v),

; 13)
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WER (%)

Model Prototype Scope Dev  Test
baseline-VAC w/o prototype 212 223
baseline-clean w/o prototype 20.7  21.1
1-sentence 20.0 20.5

baseline-clean 4-sentence 20.0 20.7
16-sentence 19.7 205

baseline-clean |  global (GP) | 19.2 19.7

Table 1: Performance with different scopes of GP.

e WER (%)

Model Initialization Dev  Test
baseline-clean | - | 20.7 21.1
Zeros 19.7 204

GP random 19.6 20.1
statistics 19.2 19.7

Table 2: Performance with different GP initializations.

where v denotes the input video, Bonyn denotes the basic
CNN model, p* and f? are prediction and corresponding
gloss feature along the time sequence. m,, denotes the num-
ber of matched samples in a video v. V specifies the whole
video dataset. Experiments in Table 2, Sec. indicate our GP
is not very sensitive to the initialization approach, despite
the statistic initialization performs slightly better.

GP is updated periodically during the training. To obtain
statistical representative features on the entire dataset, a di-
rect way is summing up all gloss features with the same pre-
diction and then averaging them. However, this approach
yields performance degradation (as illustrated in Table 3,
Sec. ). We reckon it is due to the fact that less-discriminated
features in early stages count the same as well-discriminated
features in late stages during the whole training, thus pro-
ducing less representative statistics. To alleviate this phe-
nomenon, we propose to repressively refine the GP by the
momentum update (Sec. ).

To ensure the reproducibility of our work, detailed train-
ing and inference settings are included in the supplementary
materials.

Ablation Studies

To demonstrate the effectiveness of our CSGC framework,
we conduct ablation studies on separate model components.
For fair comparison, all experiments are conducted on the
PHOENIX14 dataset using a unified backbone ResNetl18.
We utilize an existing work VAC (Min et al. 2021) as a
strong baseline.

An optimized strong baseline. On the basis of the origi-
nal version (denoted as baseline-VAC), we make two modi-
fications to make the baseline clean and simpler. Firstly, we
remove its alignment constraint thus only keeping the visual
enhancement constraint. Secondly, we remove the last pool-
ing layer in its temporal convolution module (i.e., from K5-
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Momentum Update (5)
Method ‘ Avg. ‘ 03 05 07 09 099
WER (%) | 21.1 [ 208 205 198 192 197

Table 3: An ablation study of momentum update. (Dev set)

WER (%)
Model ‘ Dev  Test
GP (+) \ 19.2 19.7

GP (+&-) | 185 19.4

Table 4: Performance (WER) comparison between a pure
consistency learning scheme (+) and a gloss contrastive
learning scheme (+&-).

P2-K5-P2 to K5-P2-K5). We denote this modified version
baseline as baseline-clean.

Baseline-clean achieves better performance (i.e., Dev
20.7, Test 21.1 on PHOENIX14 dataset) than the original
baseline-VAC. Detailed ablations and analysis are listed in
supplementary materials.

Effectiveness of the GP. GP is proposed to improve
the gloss feature discrimination via cross-sentence gloss-
to-prototype learning. The prototype is maintained within
a specific updating scope and supervised by a gloss con-
trastive loss. To verify its effectiveness, we analyze the intu-
ition behind the GP by extending the prototype at different
scopes: without any prototype, prototype within limited sen-
tences, the global level (entire dataset) prototype (i.e., GP).
All experiments are conducted using a unified pipeline (i.e.,
backbone, TC, BiLSTM and CTC loss). As illustrated in Ta-
ble 1, comparing with a simple baseline without prototype,
models with sentence scope prototype demonstrate perfor-
mance improvements. When equipped with global scope
prototype (GP), as the last row illustrates, further perfor-
mance improvement is observed.

Impacts of GP initializations. Due to the statistical na-
ture of the prototype, the quality of initialization is critical.
We study the impacts of different approaches to initialize
GP, as shown in Table 2. We devise three approaches to ini-
tialize GP. The first approach is to initialize each category
in GP by a zero vector (GP-zeros). The second approach
is to randomly initialize each category vector in GP (GP-
random). The last approach is to initialize each category vec-
tor in GP by statistics, i.e., we utilize an off-the-shelf base-
line model (baseline-clean in Table 1), to calculate average
feature representations over the entire training set and set
them as initialization for all gloss categories. As Table 2
indicates, initializing from statistics achieves better perfor-
mance, therefore we utilize this approach as default initial-
ization of GP in following experiments.

Impacts of Momentum update. We ablate the effective-
ness of momentum update in two aspects: (i) comparing the
momentum update approach with an intuitive global aver-
aging approach and (ii) the impacts of different momentum
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Component WER (%)
FC GP AS | Dev Test
v X X | 207 21.1
o/ X | 185 194
v v v |181 19.0

Table 5: Performance (WER) comparison among different
component combinations. FC denotes the fully-connected
classifier, AS denotes the auxiliary similarity classifier.

Sum («)
1.0

19.7

Strategy Product

0.2
WER (%) | 20.4

0.5
20.1

2.0
18.9

5.0
18.8 |

18.1

Table 6: Performance (WER) comparison between different
fusion strategies (sum vs. product) on Dev set.

values (i.e., 5 in Eq. 2). As illustrated in Table 3, comparing
with an intuitive global average approach, the momentum
update approach demonstrates better performance. Particu-
larly, the momentum update approach performs reasonably
well with a proper momentum value (i.e., 3 = 0.9).

Effectiveness of the contrastive loss. The effectiveness
of GP is verified aforementioned. The performance in Ta-
ble 1-2 is limited because we utilize a pure similarity learn-
ing scheme without negative samples. For better gloss rep-
resentation learning, we further improve the scheme by in-
troducing a contrastive loss. This gloss contrastive loss not
only enhance the consistency among glosses belonging to
the same prototype (positive samples), but also enlarge the
distances with different category prototypes (negative sam-
ples). We compare the pure GP based similarity learning ap-
proach (only positive samples) with the contrastive loss ver-
sion (positive and negative samples). As Table 4 illustrates, a
performance gain is observed when utilizing the contrastive
loss.

Effectiveness of the proposed auxiliary similarity fu-
sion strategy. There are two branches to estimate gloss
probabilities in our framework, i.e., an intra-sentence FC
classifier (noted as FC, producing prna) and a cross-
sentence auxiliary similarity classifier (noted as AS, pro-
ducing pcross). ASFS fuses their recognition probabilities.
Table 5 shows the performance variations among differ-
ent branch combinations. Specifically, row 2 indicates the
overall effectiveness of GP whose inner designs (i.e., ini-
tialization, momentum update and contrastive loss) are ab-
lated aforementioned. The performance gain of fusing the
two probabilities (row 3) verifies that our proposed auxiliary
similarity fusion strategy has a positive influence.

Impacts of fusion factors. Table 6 ablates different fu-
sion factors when combining the two branch probabilities
together. Different scaling factors (o in Eq. 8) are ablated
when utilizing the sum strategy. We note that product strat-
egy demonstrates better effect.

Impacts of loss weights. There are four losses in our
model, i.e., a visual-enhancement CTC, a sequence CTC, the
proposed similarity loss and a contrastive loss. Each loss is



The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

PHOENIX14 | PHOENIX14-T | CSL-Daily
Model Backbone Dev Test Dev Test Dev  Test
SubUNets (Cihan Camgoz et al. 2017) CaffeNet 40.8  40.7 - - 414 41.0
Staged-Opt (Cui, Liu, and Zhang 2017) VGG-S 394 38.7 - - - -
Align-iOpt (Pu, Zhou, and Li 2019) 3D-ResNet | 37.1  36.7 - - - -
SFL (Niu and Mak 2020) ResNet18 262 26.8 | 25.1 26.1 - -
C+L+H (Koller et al. 2019)* GoogleNet | 26.0 26.0 | 22.1 24.1 - -
STMC (Zhou et al. 2020)* VGGI11 21.1  20.7 | 19.6 21.0 - -
DNF (Cui, Liu, and Zhang 2019)* GoogleNet | 23.8 244 - - 328 324
FCN (Cheng et al. 2020) Custom 237 239 | 233 25.1 332 325
CMA (Pu et al. 2020) GoogLeNet | 21.3 21.9 - - - -
VAC (Min et al. 2021) ResNet18 212 223 - - - -
SMKD (Hao, Min, and Chen 2021) ResNet18 20.8 21.0 20.8 22.4 - -
C?SLR (Zuo and Mak 2022) VGGI11 20.5 204 - - - -
TLP (Hu et al. 2022) ResNet18 19.7  20.8 - - - -
Joint-SLRT (Camgoz et al. 2020) Inception - - 24.6 24.5 33.1  32.0
SLT (Camgoz et al. 2018)* GoogLeNet - - 24.5 24.6 - -
LS-HAN (Huang et al. 2018) Custom - - - - 39.0 394
SignBT (Zhou et al. 2021) Transformer - - - - 33.6  33.1
Ours | ResNetl8 | 181 19.0 | 17.2 195 | 271 267

Table 7: Quantitative evaluations on PHOENIX14 (Koller, Forster, and Ney 2015) , PHOENIX14-T (Camgoz et al. 2018) and
CSL-Daily (Zhou et al. 2021) datasets. Results are quantified by percentages (%). * indicates using extra clues (i.e., hand,

mouth or face gestures).

assigned a weight factor during optimization. We study the
impacts of the weights in supplementary materials. The re-
sults indicate that as loss proportion varies, the performance
of our CSGC model is degraded in less than 1%, which im-
plies the robustness of our gloss contrastive loss and the fu-
sion strategy. We empirically adopt the same setting in our
experiments, ie., y; = 0.3,72 = 0.1.

Comparison with State-of-the-arts

We compare our result with existing state-of-the-arts on
three benchmarks: PHOENIX14 (Koller, Forster, and Ney
2015), PHOENIX14-T (Camgoz et al. 2018) and CSL-
Daily (Zhou et al. 2021). We select a representative state-
of-the-art method VAC (Min et al. 2021) and make detailed
comparisons with it. We devise a Gloss Accuracy (GA) met-
ric to evaluate the performance on concrete gloss categories.
GA is calculated as a ratio of the correct gloss number to the
total gloss number. The GA differences on a part of gloss
categories are represented in the supplementary materials.
A meanGA comparison illustrated in supplementary materi-
als indicating a large 10.8% accuracy improvement on VAC
result. These remarkable improvements on not only the par-
ticular gloss categories but also the overall mean accuracy
indicate the effectiveness of our CSGC on gloss discrimina-
tion. Moreover, we visualize the center point t-SNE distri-
butions of our CSGC model (i.e., vectors in GP) and VAC
model (i.e., averaged features grouped by gloss categories)
in Fig. 4 in supplementary materials. This comparison indi-
cates more discriminative distributions of our GP regarding
the distributions of center points of VAC model, thanks to
the critical cross-sentence discrimination learned from our
CSGC.
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We make performance comparisons with all existing
CSLR works in Table 7, by the broadly used metric WER.
We notice that even though some works use additional in-
formation for better performance, such as face or hand ges-
tures (as * indicates), our method still surpasses all ex-
isting works by a big margin, only using visual informa-
tion. Remarkably, we improve current state-of-the-art per-
formance on the Dev sets of PHOENIX14 (Koller, Forster,
and Ney 2015), PHOENIX14-T (Camgoz et al. 2018), and
CSL-Daily (Zhou et al. 2021) by 1.6%, 2.4%, and 5.7% re-
spectively, and by 1.4%, 1.5%, 5.3% on their Test sets re-
spectively. The significant improvement to the state-of-the-
art demonstrates the effectiveness of our method.

Conclusion

In this paper, we present a cross-sentence gloss consis-
tency for CSLR. We first observe the limitation of current
representation consistency based learning within individual
sentences and present a gloss prototype, aiming at cross-
sentence gloss discrimination learning. Benefiting from our
well-distinguished gloss prototypes, our model significantly
improves the gloss discrimination with a gloss contrastive
loss and an auxiliary similarity fusion strategy, thus achiev-
ing better gloss recognition. Extensive experiments verify
the effectiveness of our proposed framework. Remarkably,
our framework extends the performance boundary on the ex-
isting three benchmarks by 1.6%, 2.4% and 5.7% large mar-
gins. We believe that our cross-sentence gloss consistency
will bring a flurry innovation to the research field and pro-
foundly contribute to the development of CSLR.
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