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Abstract: This research develops a data-driven metho-
dology for structural instability problems with highly non-
linear, difficult, noisy, and small data. A fast analysis and
prediction (FAP) approach for instability problems of thin
shells is first proposed. This approach contains two phases:
the fast numerical analysis and the pure prediction utilizing
artificial neural networks (ANNs) incorporated with the
Bayesian regularization (B-R) algorithm as follows: (1) in
Phase 1 (the fast numerical analysis), post-buckling analysis
is conducted utilizing a minor amount of load steps. The
load—displacement relation achieved from Phase 1 is not
exact because of the small number of load steps utilized;
(2) in Phase 2 (the prediction), the loads and deflections
achieved from Phase 1 were employed as the data for
training ANNs. The trained networks, including the load
and displacement networks, were employed to fast predict
loads and deflections at any step of the post-buckling ana-
lysis. After utilizing Phase 2, a smooth, complete and exact
load—displacement curve was achieved. In Phase 1, the avail-
able formulation for post-buckling analysis of thin shells in
the literature was utilized. Five popular types of instabilities
chosen to confirm the effectiveness and exactness of the FAP
were snap-through, snap-back, softening—hardening, kink
instabilities, and delamination buckling and post-buckling
of composites. The high exactness and effectiveness of the
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FAP were confirmed in the numerical verification section.
The present approach saves a huge computation compared
to the other ones. It was found that ANNs incorporated with
the B-R algorithm have notable advantages compared to
numerous neural networks. The proposed approach is applic-
able to simulations or experiments where data are “expen-
sive”, highly nonlinear, difficult, and limited. Utilizing the
proposed approach for these fields can dramatically save
time and money.

Keywords: fast analysis, post-buckling, Bayesian regulari-
zation, artificial neural network, small data

1 Introduction

A structure under a compressive load can present an
instability phenomenon. When the compressive load is
large enough or reaches the buckling load, the structure
can reduce its stiffness, experience a notable change in
geometry, and become unstable. When instability occurs,
the structure can reduce its load-carrying capacity and is
incapable of maintaining a stable equilibrium configura-
tion. Investigations into structural instability and post-
buckling behavior are necessary and play an important
role in structural engineering, especially when post-buck-
ling behavior is unpredictable. Load-displacement equilibrium
paths are usually employed to evaluate structural instability.
Several approaches, such as an analytical approach, a semi-ana-
Iytical approach, and a numerical approach, can be employed to
obtain those equilibrium paths. The numerical approach is con-
venient and powerful. It is applicable to problems with complex
loading, boundaries, and geometries. Therefore, it is popularly
employed in both academic and industrial problems. Utilizing
the numerical approach for solving an instability problem
needs a complete combination of an appropriate formula-
tion, a numerical technique, and a nonlinear solver. One of
the difficulties of solving instability problems utilizing the
numerical approach is high time-consuming bhecause of a
huge computation and numerous computational iterations.
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This reality is clearly seen in large-scale problems utilizing
thousands or millions degrees of freedom. Another difficulty
in solving instability problems is divergent in some cases,
especially when the equilibrium path passes the limit or
special points, the inflection points. To overcome the afore-
mentioned difficulties, a lot of approaches, nonlinear sol-
vers, and techniques were proposed to decrease the number
of computational iterations and to successfully pass limit
or special points on the equilibrium paths including the
Newton—-Raphson (N-R) technique [1], the modified N-R
[2], the modified Riks (M-R) technique [3], the iterative
techniques upon an optimization technique [4] and upon
residual areas [5], the Koiter (K) technique [6], the accel-
erated K technique [7], the Koiter-Newton (K-N) technique
[8,9], a new technique upon the discretization of gov-
erning equations [10], a general path-following metho-
dology [11], the methodology that improves effectiveness
of the Newton technique [12], the dynamic relaxation
techniques [13,14], a technique without utilizing the pre-
dictor [15], and the multi-point techniques [16]. Although
numerous nonlinear solvers, approaches, and techniques
have been developed and proposed, high time-consuming
is still a difficulty in solving instability problems utilizing
the numerical approach. To completely overcome this dis-
advantage, the FAP for instability problems of thin shells
is proposed in this work. The present approach includes
two phases: the fast analysis utilizing pure isogeometric
analysis (IGA) and the prediction utilizing ANNs. In Phase 1,
a post-buckling analysis is conducted utilizing a minor
amount of load steps. In Phase 2, the obtained data from
Phase 1 are utilized to train ANNs to fast and completely
predict post-buckling behavior of the structure for many
load steps. Interestingly, the computational cost of the FAP
is dramatically lower than that of other ones.

ANNs are computing systems simulated according to
the operation of biological neurons in the human brain. An
ANN is a group of connected neurons. An ANN can mimic a
human brain to fast and simply resolve complex problems
that possess nonlinear relationships [17]. Up to now, ANNs
have been successfully used in many areas, including
bridge deck structure [18], optimal material structure
[19], aircraft design [20], prediction of the fracture energy
of concrete [21], buckling capacity assessment of steel
structures [22], compressive strength prediction of cement
[23], an optimization for hydrogen purification perfor-
mance [24], an optimization for fatigue prediction [25],
structural damage identification [26], and damage detec-
tion [27]. For nonlinear problems utilizing the numerical
methodology, ANNs were employed to improve an algo-
rithm for nonlinear dynamic analysis [28] and the Newton
iterative technique [29]. Recently, the FAP for nonlinear
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bending analysis of structures was proposed [30], in which,
N-R technique was applied to solve the nonlinear equation
system in Phase 1. In the study by Nguyen et al. [30], the
approach was proposed and investigated for pure bending
problems of plates/shells. As known, loads are priorly
known in the bending problems, while displacements are
unknown. Thus, ANNs incorporated with the B-R algorithm
were only employed to predict series of displacements in
Phase 2 in the study by Nguyen et al. [30]. In this study, the
FAP is proposed for instability problems of thin shells. As
known, solving instability problems is much difficult than
solving nonlinear bending problems because the equili-
brium path can pass the limit or special points, the inflec-
tion points. Solving instability problems can be divergent
in some cases. Thus, in this study, a powerful nonlinear
solver named the modified Riks technique is applied to solve
the nonlinear equation system in Phase 1. Besides different
from the nonlinear bending problems, loads and displace-
ments are both unknown in the instability problems. Thus,
ANNs incorporated with the B-R algorithm are employed to
predict the series of displacements and loads in Phase 2. It is
emphasized that the present approach employs a minor
amount of data points in the training phase. Thus, the
time for training a network is very small and can be
neglected in evaluating the effectiveness of the proposed
approach. The idea of this work is simple in its implementa-
tion and can dramatically save computation compared to
the another approach. The size of the dataset in this work
is relatively small. Both deep neural networks (DNNs)
including multiple hidden layers and artificial neural net-
works (ANNs) including one hidden layer can be used for
training. However, we chose ANNs combined with Bayesian
regularization back-propagation (BPP) algorithm because of
their computational efficiency compared to DNNs. Training
a DNN is usually longer than an ANN. This can be explained
as follows. DNNs use multiple hidden layers and many neu-
rons on each layer. Thus, there are many computations in
each layer, and the weight optimization is more complex
and longer. Inversely, ANNs use only one hidden layer,
and so time for training is shorter than that for DNNs. How-
ever, we recommend using DNNs if the size of dataset is
large, for example, 10,000 data points or more. For such
big data, DNNs are more accurate than ANNs in predictions.
Structure of this article is organized as follows. The next
section shows post-buckling analysis of isotropic thin shells
utilizing the first-order shear deformation shell theory
(FSDT). Section 3 presents the isotropic shell formulation
for post-buckling analysis utilizing FSDT and IGA. The FAP
for instability problems of thin shells is presented in Section
4. The numerical verification is shown in Section 5. Finally,
several notable conclusions are drawn.
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2 Post-buckling analysis of
isotropic shells utilizing FSDT

The aim of this article is to propose a fast analysis and
prediction (FAP) approach for instability problems.
Without losing the generality of the proposed approach,
shell instabilities were chosen to confirm the effectiveness
and exactness of the approach. For the analysis employed
in Phase 1, the current formulation was reemployed from
a published article on post-buckling analysis of shells.
Therefore, a brief formulation of the analysis is presented
in this article. The nonlinearity of the shell formulation is
established upon the von Karman hypothesis. We now con-
sider an isotropic shell depicted in Figure 1. The shell strain
vectors upon the FSDT are

e={ex &y yXy}T = g + ZKy,

@
y= {sz Vyz}T =&

where
w
Uo,x ?0 1 Wo,x*
go=¢& + &y, & = ; ey = —{wo,’t;
0=& T &N, & voy)NZO,y,
Upy + Vox ZWO’XY @
ﬁx,x Ug
8 —g Wt B
Kp =1Fy,y , & = 8 s
Wy t+
ﬁx,y + ﬁy,x 4 y

gy is defined as the nonlinear strain vector and can be
rewritten as

wox O
_10 =l o . _ |Wox 3
ey = EAB’ and A = Woyl, 0= o, | 3
WO,y WO,x
y

Figure 1: Panel subjected to a radial pressure.
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where Q is the initial shell configuration. In the total
Lagrangian methodology, the virtual work equation is
expressed as

[s7s200 = [surtac, @
Q Q

where f; = {f, f, f,}" is the external load vector. The
vector @ = {u, u, u,}, while u, = wy and wy is the radial
displacement. If an isotropic shell is only under a radial
load f, = Af;, the virtual work equation is re-expressed as

[s762d0 = A s, fyde. ©)
Q Q

A is known as the load factor. 6 is known as the stress
resultant vector determined as

6={0, o o, (6)

where the in-plane stress vector is

hj2 T
6= N Ny ={[ o tpizf. O
-h/2

The bending and shear stress vectors, respectively, are

h/2 T
o, ={M, M, Mgy} = I (0 0y Tyzdzy, @)
~h/2
h/2 T
gs = {Q, Qy}T = I (T Ty)dzy ©)

~h/2

For isotropic shells, the generalized strain vector & is
related to the stress resultant vector 6 through Hooke’s law
as

D?P 0 0
6=D& D=0 D" o0
S
0 0D (10)
L8 &N
& =1Kp + 0’,
& 0
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where k = 5/6 is the shear correction factor, h is the thick-
ness, E is Young’s modulus, and v is Poisson’s ratio of shells.

3 Isotropic shell formulation for
post-buckling analysis utilizing
FSDT and IGA

This part briefly presents the post-buckling analysis of
isotropic shells upon FSDT and IGA. As introduced earlier,
the detailed formulation can be found in the study for the
post-buckling analysis of functionally graded carbon
nanotube-reinforced composite (FG-CNTRC) shells uti-
lizing FSDT and IGA. As known, an isotropic shell is a sepa-
rate case of an FG-CNTRC shell. Therefore, the formulation
for isotropic shells is the same as for FG-CNTRC shells,
except there is a small difference in determining the
matrices for material presented in Eqs (10)-(12). At the
mth load increment and the ith iteration, the system of
linear incremental equations is

KT(qm)Aiqm = iFext,m - iFint,m’ 13)
where the tangent stiffness matrix is
L T L
Bi| (BY]|[D? o o]||Bi| [BY
KT=IB’;,+ 0f[|0 D’ ofiB%i+]0 (lde
o||By) LOJJLO 0 DYl (0] a4
Ny N,
gN\T Yine
+ i(BA) N, N, Pie.
and the load vector
iFeXt,mz(iAm"'AiAm)J-f(‘){O 0 ]VA 0 O}ng
Q 15)

= (A, + AA,)F,,

where F, is the referenced load vector, and N, is the non-
uniform rational B-spline basic function. Besides, the internal
force vector can be computed as

iFint,m = iKmiqm, (16)
where
L u L
, Bil [BY]|[D? 0 o]|Ba BY
K= J|{B41+10 (|| 0 D o0 |[B4}+ 05 o flao. €7

S
°||B, 0 OODqu 0

In this article, the modified Riks technique [3] is employed
to solve the system of linear incremental equations. With an
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arbitrary load increment, an iterative process is performed
until the following convergence criterion is satisfied as

o = WAnFo = Fingmll a8
(A + Aol '

Once the incremental solutions are achieved from Eq.
(13), the load factor A and the displacement vector  of the
iteration are updated as [3]

i = A + Ay,
", ='q,, + 4'q,,
A'q,, = Ay, + A

19

where g ,, is the displacement produced by the reference
force. A'q r.m 1S another displacement produced by the resi-
dual load determined as

Ay, = [Re(@) T (Ao = Fin ),

(20)
qr = [Kr(q,)] ' Fo.

4 FAP approach for instabilities of
thin shells

4.1 Brief introduction to ANNs

ANNS s are systems simulated according to the operation of
biological neurons in the human brain [21,31]. An ANN is a
group of connected nodes as depicted in Figure 2(a). In this
network, signals are spread from these neurons to those
neurons via connections. Each neuron in the network has a
weight adjusted during the learning process. The weight
may decrease and increase the signal strength at the con-
nection. During the learning process, the signals are trans-
mitted from the first layer to the last layer numerous times
until optimization of all the weights is achieved. The neu-
ron’s output is computed via the function (f), which is sum
of the neuron’s input, bias, and weight, as depicted in
Figure 2(b). The formula is [21]

n
zWiXi +b

i=1

y=f @)

il

where w; and x;, respectively, are the weight and input of
the ith neuron connected to the considered one and b is
a bias.

ANNs are established upon the feed-forward BPP algo-
rithm. In application, the input data together with the
desired output data are first provided for ANNs. Then,
the neuron’s weight and bias are modified (once or many
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Figure 2: Typical architecture and output calculation of an ANN: (a)
architecture of a typical ANN and (b) calculating output for a neuron with
three inputs.

times) to decrease the distinction between the actual and
desired outputs of the network. The target of training ANNs
is to minimize network error (the distinction between the
actual output and the desired output of the network) or
optimize the performance of the networks in predictions.
The training process can end when the stopping criterion
upon the mean square error (MSE) is met. The MSE is
calculated as [21,31]

N

MSE = lZ(ei)2 =

N i=1 @)

1 N

— (=3
N5 l
where N is known as the number of samples. For the ith
sample, y; is the predicted value (the output of the net-
work) and ¢; is the target value. In this article, networks
are trained utilizing two layers, which are the hidden layer
and the output layer. The activation functions f are the
PURELIN function for the output layer, while the TANSIG
function for the hidden one. These activation functions are

written as follows [21,31]:

f = tansig(x) = 17 o

f =purelin(x) = x.

(23)

Several optimization techniques can be employed to
speed up the convergence of the BPP algorithm including
the scaled conjugate gradient (SCG) technique, the B-R tech-
nique, and the Levenberg—Marquardt (L-M) technique. The
details of these optimization techniques can be found in
previous studies [21,31]. For all the networks in this article,
the B-R technique is utilized.
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4.2 B-R BPP algorithm

The objective function of ANNs utilizing B-R is written
as [32]

F= ﬁED + aEy, 24)

where Ej is the sum of squared errors, while Ey, is the sum
of squared weights. a and S are known as the parameters
of the objective function. The network weights are the
random variables when the B-R is employed. After collecting
data, the density function for the weights is computed as

P(D|w, B, M)P(w|a, M)
P(D\a, B, M) ’

P(w|D, a, B, M) = (25)
where w is the weight vector, M is the employed model while
D represents the dataset. P(w|a, M) is the prior density, and
P(D|w, B, M) is the likelihood function. P(D|a, 8, M) is the
normalization factor that ensures that the total probability
is one. If we assume that both the noise in the training data
and the noise in the prior distribution for the weights are
Gaussian, the probability densities are written as

1
P(Dlw) ﬁ: M) = ZD(B) exp(_ﬁED)’ (26)

P(wla, M) = exp(-aEy),

Zy/(a)

where Zp(B) = (1/B)V/? and Zy(a) = (n/a)N/2. Substituting
Eq. (26) into Eq. (25), we achieve

P(w|D, a, B, M) = exp(-F(w)). 27)

1

ZF (a’ ﬁ )
In the B-R BPP algorithm, the optimal weights are found
when the posterior probability P(w|D, a, f, M) is maximized.
Maximizing the posterior probability P(w|D, a, B, M) is equiva-
lent to minimizing the objective function F = BEp + aEy,. Now,
we apply Bayes’ rule to optimize the parameters a and f of the
objective function. We have

P(Dla, B, M)P(a, BIM)
P(DIM)

P(a, BID, M) = (28)
We assume that the prior density P(a, f|[M) is uniform
for the parameters a and S of the objective function.
Maximizing the posterior probability can be achieved by
maximizing the likelihood function P(D|a, 5, M). As seen,
the likelihood function is the normalization factor in Eq.
(25). The normalization factor is calculated from Eq. (25) as

P(D|w, B, M)P(w|a, M)

P(Dla, B, M) = P(w|D, a, B, M)

(29)

Note that all the probabilities have a Gaussian form. Thus,
Eq. (29) can be re-expressed as
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ZF(ar ﬁ)
Zp(B)Zw(a)’
where Zp(f) and Zy(a) are the constants and defined

before. Zr(a, B) can be computed utilizing a Taylor series
expansion as

P(Dla, B, M) = (30)

Ze = m)N/(det((H)™)V/2 exp(-F(w)). 31

H = BV2Ep + aV%Ey, is known as the Hessian matrix. Placing

the aforementioned result in Eq. (30), we obtain the optimal

values for a and f as

_N-vy
2Ep(w)’

Y

“ W w)

B (32)
where y = N - 2atr(H)™ is the effective number of para-
meters, while N is the total number of parameters in the
network. Finally, optimization of the parameters a and f is
performed through some of the following steps [32]:

* (0) Initialize the weights w, the parameters a and S.

* (1) Employ the L-M algorithm for finding the minimum of

the objective function.

Load (P)

?

Phase 2: Prediction using ANNs

(obtain a smooth and correct curve)
N ]
-
~

’ N '

P
N e
/\ ) N .
Phase 1: Fast Analysis o

! (obtain a broken line)

1

I

I
L
0 Displacement (u)

Figure 3: FAP for instability problems utilizing ANNs.

Fast analysis
(using some load steps)

. obtain
Phase 1: Fast Analysis v

Loads and displacements
(a broken load-displacement line)

using the obtained data

v
| Train ANNs for loads and for displacements |

i | Apply the trained networks |

Phase 2: Prediction .
obtain

| Predictions for loads and for displacements |

| A smooth and correct load-displacement curve |

Figure 4: Workflow of the present methodology for instability problems.
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* (2) Calculate y = N - 2atr(H)™™. Herein, utilize the Gauss-
Newton approximation for the Hessian matrix as fol-
lows: H = V2F(w) = 2B]7] + 2aly.

* (3) Compute new values of a and f utilizing Eq. (32).

* (4) Steps 1-3 are iterated until we obtain the convergence.

In Step 1, the weight is updated after each iteration of the
L-M algorithm as

Wi = wi = (7T + DY e, 33)

where I is the unit matrix, e is the error factor, and u
represents the learning parameter. The global minimum
of the objective function is reached when its value does not
dramatically change in subsequent iterations.

4.3 FAP approach for instability problems of
thin shells

Some popular types of thin shell instabilities chosen to
confirm the effectiveness and exactness of the FAP were

Free

Figure 5: Hinged-hinged panel under a point load at the center.

0.7

06 7

05 ]

04 J

03[ J

Central point load (kN)

02 7

Ocl Il Il Il Il Il
0 5 10 15 20 25 30

Central deflection (mm)

Figure 6: Analysis of the hinged-hinged panel utilizing the FAP: Phase 1
(fast analysis, 13 load steps), h = 12.7 mm.
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snap-through, snap-back, kink, and softening-hardening
instabilities. One of the great difficulties of solving structural
instability problems is highly time-consuming because of
numerous computational iterations and a huge computa-
tion. This reality is clearly seen in large-scale problems uti-
lizing thousands or millions of degrees of freedom. Another
difficulty in solving instability problems is divergence in
many cases especially when the equilibrium path passes
the limit points, the inflection points, the neighborhoods of
turning points, and bifurcations. To overcome the aforemen-
tioned difficulties, the FAP for instability problems of thin
shells is proposed in this article. It is noted that in instability
or post-buckling analysis of structures, loads and displace-
ment vectors of analysis steps are unknown. The present
methodology contains two phases: fast numerical analysis

Phase 1
Phase 2 Train network v
Input* Target
! 0.000
2 3.427
3 6.694
4 9.634
5 12.009
Training data - 6 13.716
7 14.903
8 15.818
9 16.712
10 17.852
L 11 19.521
12 21.871
Testing data { 13 24.771
14 27.977
Note:

Fast analysis using 13 load steps and then
pure prediction for 31 load steps

* . For convenience and simplicity, we
assume input data [1~14] corresponding
to 13 load steps

**: Increment: (14-1)/n = 0.419; n=31
corresponding to 31 load steps

***: Obtained from full and pure analysis
using 31 load steps
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and pure prediction utilizing ANNs as follows: (1) for Phase 1,
post-buckling analysis is conducted utilizing a minor
amount of load steps. The obtained load—displacement rela-
tion is not exact because of a minor amount of load steps
utilized; (2) for Phase 2, the loads and the deflections
obtained from Phase 1 are considered as the data for
training networks. Then, the trained networks, including
the load network and the displacement network, are utilized
to fast predict loads and deflections at any step of the post-
buckling analysis. Upon utilizing Phase 2, an exact and
smooth load-displacement curve is achieved. Figures 3
and 4, respectively present the description and the flow-
chart of the FAP. The numerical verification section demon-
strates the high exactness and effectiveness of the FAP for
instability problems. Besides, the high ability of the FAP to

Fast analysis using 13 load steps

obtain L
13 central deflections

Apply the trained network
Input** Output Target***
1.000 8.89E-05  0.000
1.419 1.450 1.429
1.839 2.882 2.839
2.258 4.289 4.227
2.677 5.665 5.582
3.097 6.997 6.895
3.516 8.268 8.150
3.935 9.458 9.330
4.355 10.550  10.416
4.774 11.529  11.395
5.194 12.388  12.257
5.613 13.129  13.003
6.032 13.761  13.644
6.452 14302 14.193
6.871 14770  14.669
7.290 15.185  15.089
7.710 15.566  15.470
8.129 15931  15.831
8.548 16.297  16.189
8.968 16.682  16.562
9.387 17.108  16.968
9.806 17.597  17.429
10.226 18.173  17.964
10.645 18.854  18.594
11.065 19.654  19.335
11.484 20.576  20.195
11.903 21.615 21172
12.323 22.756  22.256
12.742 23.983  23.427
13.161 25275  24.669
13.581 26.612  25.963
14.000 27.977  27.297

Figure 7: Data structure of the first and second phases for displacement prediction.
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detect limit and inflection points is also confirmed in the
next section.

5 Numerical verification

The effectiveness and exactness of the present approach
for instability problems of thin shells are verified in this
section. Without losing the generality of the proposed approach,
four popular types of thin shell instabilities chosen to confirm
the effectiveness and exacmess of the present approach
were snap-through, snap-back, kink and softening-hardening
instabilities. For convenience and consistency, the following
parameters are fixed for the whole manuscript.

DE GRUYTER

* For the analysis in Phase 1, the computational models are
analyzed utilizing 14 x 14 cubic elements. The hinged
boundary is described as uy = vy = wg = ﬁy =0, at x =
0, aR. The clamped boundary is imposed as ug = vy =
wo = B, = B, = 0. Besides, the geometric data of shells

are provided as the thickness h, and the length L =
B =508 mm. The radius is R = 2,540 mm. Note that the
thickness h differs in the first three problems in this article.
The material properties of all shells are given as Young’s
modulus E = 3.103 kN/mm 2 and Poisson’s ratio v = 0.3.

* For the prediction packages in Phase 2, the structure of
all ANNs includes the hidden and output layers. The number
of neurons in the first and second layers is 15 and 1, respec-
tively. ANNs utilizing the B-R BPP algorithm did not require a
validation dataset to evaluate the models. The algorithm has

Phase 1 Fast analysis using 13 load steps
obtain ,L
~ 13 loads
Phase 2 Train network Apply the trained network

Input* Target Input** Output Target***

! 0.000 1.000 1.23E-07 0.000

2 0.267 1.419 0.123 0.122

3 0.439 1.839 0.230 0.227

4 0.524 2.258 0.320 0.316

5 0.530 2.677 0.393 0.389

Training data - 6 0.479 3.097 0.451 0.447

7 0.401 3.516 0.493 0.490

8 0.312 3.935 0.521 0.518

9 0.227 4.355 0.534 0.533

10 0.159 4.774 0.534 0.535

L 11 0.132 5.194 0.523 0.526

12 0.184 5.613 0.504 0.508

Testing data 413 0.346 6.032 0.477 0.483

L 14 0.636 6.452 0.446 0.453

6.871 0.412 0.420

7.290 0.375 0.384

7.710 0.338 0.348

8.129 0.301 0.311

8.548 0.265 0.275

Note: 8.968 0.230 0.240

Fast analysis using 13 load steps and then 9387 0.198 0.208

pure prediction for 31 load steps 9.806 0.170 0.179

* . For convenience and simplicity, we
assume input data [1~14] corresponding
to 13 load steps

**: Increment: (14-1)/n = 0.419; n=31
corresponding to 31 load steps

***: Obtained from full and pure analysis
using 31 load steps

10.226 0.149 0.155
10.645 0.135 0.139

11.065 0.133 0.132

11.484 0.144 0.138
11.903 0.172 0.160

12.323 0.221 0.199
12.742 0.291 0.259
13.161 0.385 0.339

13.581 0.501 0.441
14.000 0.636 0.565

Figure 8: Data structure of the first and second phases for load prediction.
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a builtin validation technique. Therefore, in the training
phase, the dataset was separated into two data groups: the
training data (85%) and the testing data (15%). Utilizing the
aforementioned parameters, we proved numerically that all
the following networks are well trained and performed in all
the problems. Notably, the cost for both training and appli-
cation of an ANN is very low because of the very small
datasets are employed together with the advantages of
ANNs. Thus, it can be neglected in the effectiveness compu-
tation of the FAP. This fact is mentioned in the first problem.

» All the networks were trained utilizing the NN-fitting
application built in MATLAB R2021a. The ANN’s para-
meters and architecture are listed in table 1 in the study
by Nguyen et al. [30].

Best Training Performance is 7.1849e-08 at epoch 443
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Figure 9: Training performance of ANNs in Phase 2: (a) for displacement
network and (b) for load network.
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For verification study, the results of the FAP are com-
pared with that of pure IGA and reference solutions. The
pure IGA is conducted utilizing the same formulation as
the FAP but needs much more load steps.

5.1 FAP approach for snap-through
instability problems of thin shells

The effectiveness and exactness of the FAP for snap-
through instability problems of shells and the performance
of ANNs incorporated with the B-R are studied in this sub-
section. We consider a hinged-hinged isotropic cylindrical
panel under a central point load, as in Figure 5. The geo-
metric data and the material properties of the panel are
provided at the beginning of this section. Note that in this
problem, the panel thickness is h = 12.7 mm. In Phase 1, we
perform a fast post-buckling analysis of the thin isotropic
panel utilizing 13 equal load steps. The obtained load-dis-
placement relation is shown in Figure 6. This relation is not
exact because of a minor amount of load steps utilized. To
achieve a smooth, complete, and correct load—displace-
ment curve, we must apply Phase 2 of the FAP utilizing
ANNs. We need to build up two ANNs in Phase 2. They
are the networks for displacement prediction and load
prediction. The central deflections and loads obtained
from Phase 1 are considered as target data for training
ANNs in Phase 2. Data structures of Phases 1 and 2 for
displacement and load predictions are, respectively, pre-
sented in Figures 7 and 8. In Phase 2, the training process
and the application of the displacement network are the
same as that of the load network. These processes are
explained in detail below.

* For the training process of the displacement network, the
data sizes of the input, output, and target are equal. The
number of load steps in Phase 1 is 13. Thirteen achieved
deflections are utilized as the target data for training the
displacement network. For training networks, we utilize
a typical input data as [1, 2, ...,14] in order that the sizes
of the input data and target data are equal as in Figure 7
(the left side). Notably, this typical input data is employed
for simplicity and convenience without losing of the gen-
erality and exactness of the FAP. After that, the displace-
ment network is trained utilizing the network parameters
provided at the beginning of Section 5.

For the application of the displacement network: if we
need to predict full deflections of 31 equal load steps
utilizing the trained ANN, the input is still from 1 to 14
but the increment in the data is (14 - 1)/n = 0.419. In
which, n = 31 corresponds to 31 load steps in order to
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the sizes of the input data, the output data, and the target Figure 9 presents the training performance of the dis-
data are equal as in Figure 7 (the right side). The placement and load networks. The training processes of the
obtained output is compared to the target achieved two networks can be, respectively, stopped after 443 and 99
from pure IGA utilizing 31 equal load steps. A satisfactory epochs because the MSEs are very small. The results of appli-
agreement is reached. cations of the trained ANNs are presented in Figure 10. The
+ The training process and the application of the load net- very good agreements are found between the obtained out-
work are the same as that of the displacement network. puts (from the networks) and the targets (from pure IGA). The
The details can be found in Figure 8. networks are well trained. Interestingly, the cost for training
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Figure 11: Central deflection of the hinged-hinged panel utilizing various
approaches, h =12.7 mm.
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Figure 12: Number of fast analysis steps affects the FAP solution for a
hinged-hinged panel, h = 12.7 mm.

and application of a network is very low (approximately 3
seconds) because the sizes of data are very small together
with the advantages of ANNs. Thus, this cost is neglected in
evaluation of the effectiveness of the FAP. Besides, Figure 11
presents the obtained results of the FAP utilizing 13 fast
analysis steps in the comparison with that of pure IGA
utilizing 31 load steps and that of Sabir and Djoudi [33]
utilizing pure finite element (FE) analysis with 31 load
steps. These results match well. A smooth, complete,
and exact curve is achieved after utilizing Phase 2. Also,
the upper and lower limit points are detected successfully

Figure 13: Analysis of the hinged-hinged panel utilizing the FAP: Phase 1
(fast analysis, seven load steps), h = 25.4 mm.
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Figure 14: Central deflection of the hinged-hinged panel utilizing various
approaches, h = 25.4 mm.

upon ANNs. The present approach saves 58% of the com-
putational effort compared to other approaches. The high
effectiveness and exactness of the present approach are
verified. Figure 12 describes the effect of the number of
fast analysis steps on the solution. The higher number of
fast analysis steps, the higher exactness of the FAP solu-
tion. Utilizing 13 analysis steps in Phase 1 can produce a
great solution that balances exactness and effectiveness.
For snap-through instability problems, we recommend to
utilize the present approach with 13 fast analysis steps to
ensure exactness and effectiveness in solutions.
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Figure 15: Number of fast analysis steps affects the FAP solution for a
hinged-hinged panel, h = 25.4 mm.
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Figure 16: Clamped-hinged panel under a central load, h = 6.35 mm.
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Figure 18: Central deflection of the clamped-hinged panel utilizing var-
ious approaches, h = 6.35 mm.

5.2 FAP approach for softening-hardening
instability problems of shells

The hinged-hinged panel under a central point load depicted in
Figure 5 is continued considering. The geometric data and the
material data of the panel are unchanged, except the panel
thickness in this problem is h = 25.4 mm. Phase 1 is conducted
utilizing seven load steps. The obtained load—displacement
relation is shown in Figure 13. As seen, this relation is incom-
plete and not smooth because of a minor amount of load
steps utilized. To achieve a smooth, complete, and correct
load—displacement response, we must apply Phase 2 of the
FAP utilizing ANNs. The result of Phase 2 is presented in
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Figure 17: Analysis of the clamped-hinged panel utilizing the FAP: Phase

1 (fast analysis, 14 load steps), h = 6.35 mm.
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Figure 19: Number of fast analysis steps affects the FAP solution for a
clamped-hinged panel, h = 6.35 mm.
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Figure 20: Applications of the networks utilizing ANNs and the L-M algorithm: (a) network for displacement (mm) prediction and (b) network for load

(kN) prediction.

Figure 14 in the comparison with that of pure IGA with 14
load steps and that of Sabir and Djoudi [33] utilizing FE
analysis with 13 load steps. These results match well. As
expected, a smooth, complete, and exact response was
achieved after utilizing Phase 2. Besides, the inflection point

is detected successfully upon ANNs. The proposed approach
can save about 50% of computational effort compared to
other ones. The high effectiveness and exactness of the
FAP was confirmed. Figure 15 shows the effect of the
number of fast analysis steps on the FAP solution. Again,
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higher number of fast analysis steps, the higher exactness of
the FAP solution. Utilizing seven fast analysis steps produces
the great solution that balances exactness and effectiveness.

For softening-hardening instability problems, we recom-
mend to utilize the FAP with seven fast analysis steps to
ensure exactness and effectiveness in solutions.
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Figure 21: Applications of the networks utilizing ANNs and the SCG algorithm: (a) network for displacement (mm) prediction and (b) network for load
(kN) prediction.
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5.3 FAP approach for snap-back instability
problems of shells

In the this problem, the clamped-hinged panel under a
central point load depicted in Figure 16 is considered.
The geometric data and material data of the panel are
the same as those in the first problem, except the panel
thickness, in this case, is h = 6.35 mm. Phase 1is performed
utilizing 14 load steps. The load-displacement relation
achieved from Phase 1 is shown in Figure 17. Similar to
the previous observations in the first and second problems,
the load—displacement relation is a broken line and incom-
plete, especially in the areas around the limit points. How-
ever after application of Phase 2, the load-displacement
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Figure 22: Applications of the networks utilizing the GMDH: (a) network

for displacement (mm) prediction and (b) network for load (kN)
prediction.
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response becomes smooth, complete, and exact. This fact
can be seen in Figure 18 in a comparison of the response of
fully pure IGA with 43 load steps. It is concluded that the limit
points and the snap-back instability of the panel are detected
successfully upon ANNs. Note that to trace successfully the
snap-back response of the fully pure IGA, we need to employ
a smaller arc length compared to that in the two previous
problems. As a result, the number of load steps (43) in the
pure analysis of this problem is higher than that of the two
previous problems. Figure 19 shows the effect of the number
of fast analysis steps on the FAP solution. Utilizing 14 fast
analysis steps can produce the good solution with the balance
between exactness and effectiveness. For snap-back instability
problems, we recommend to utilize the FAP with 14 fast ana-
lysis steps to ensure exactness and effectiveness in solutions.
ANNs incorporated with the B-R algorithm recom-
mended for the FAP have some notable advantages
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Figure 23: Training performances of DNNs: (a) network for displacement
prediction and (b) network for load prediction.
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compared to numerous existing networks. To confirm this,
we solved this problem utilizing different types of NNs in
Phase 2 including ANNs incorporated with the L-M algo-
rithm [21,31], ANNs incorporated with the SCG algorithm
[21,31], DNNs [34], and the group method of data handling
(GMDH) [35]. For this problem, the data obtained in Phase 1
were re-utilized for training networks in Phase 2. Notably,
the ANN’s structure, which includes number of neurons and
layers, is unchanged. The change is the SCG algorithm, and
the L-M algorithm is utilized in this investigation. All the
ANNs were trained utilizing MATLAB R2021a as mentioned
earlier. For all types of networks in this investigation and in
this article, data splitting is performed as follows: the
training set (70%), the testing set (15%), and the validation

Ground Truth vs Predictions
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Figure 24: Applications of the trained networks utilizing the DNNSs: (a)
network for displacement (mm) prediction and (b) network for load (kN)
prediction.
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set (15%). Group method of data handling is utilized in many
fields including forecasting, optimization, and pattern recogni-
tion. In this article, a GMDH-based NN [35] includes 15 neurons
per layer and 4 hidden layers. We choose the selection pres-
sure factor a = 0.6. The DNN [34,36,37] is a network utilizing
many hidden layers. It can be employed to solve complex non-
linear problems and identify complicated nonlinear systems.
DNNs have been investigated for numerous fields including
speech recognition, translation, and computer vision. Similar
to the GMDH-based network, a DNN includes 15 neurons per
layer and 4 hidden layers. The rectified-linear unit function is
utilized as an activation function. Besides, the adaptive
moment estimation is utilized as an optimizer. MSE is chosen
as a loss function. We fix the learning rate at 0.001 and the
number of epochs at 1,000. The aforementioned optimizer and
functions are well known and presented in detail in the
study by Kim et al. [34]. Figures 20-24 present the applica-
tions of the mentioned networks. In the aforementioned
figures, the ground truth or the targets are the values
obtained from pure IGA utilizing many load steps. It is found
that utilizing ANNs incorporated with the L-M algorithm,
ANNs incorporated with the SCG algorithm, GMDH, and
DNNs produces incorrect predictions. It should be noted
that for each type of network, we need to build up and train
two networks to predict displacements and loads. Figure 25
presents the results of the present approach utilizing different
types of NNs. These results are compared to that of pure IGA
utilizing many load steps. The solution of the present
approach utilizing ANNs incorporated with B-R agrees very
well with that of the pure IGA, while the remaining solutions
are completely incorrect and unstable. It should be noted that
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Figure 25: Analysis of a clamped-hinged panel utilizing the FAP and
different NNs.



DE GRUYTER

0.14
012 1
*
~ 01F i
=z
=3
o
S o008F 1
k=
2
— 0.06[ —
[
<
S
0.04 1 *  Pure IGA 1
----- FAP using 5 neurons
FAP using 10 neurons
0.02 F FAP using 15 neurons |
---------- FAP using 20 neurons
0 . . . .
0 5 10 15 20 25
Central deflection (mm)
(a)
0.14
7
o”
012 7 i 4
i
7 *
OI‘
—~ 01Ff 2 1
p4
< .
© ‘/
/
8 oosf Y s B
= 5 /
'g J R4
L Y5 0 ]
5 006 2 3 R
= v .
) F;
© 04t ]
F/ *  PureIGA
4 —em= FAP, ratio: 65%, 35%
0.02 FAP, ratio: 75%, 25% -
FAP, ratio: 85%, 15%
0 | | | |
0 5 10 15 20 25

Central deflection (mm)

(b)
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DNNs and GMDH are the improved networks (compared to
ANNs) and structured with 15 neurons per layer and 4 hidden
layers, while ANNs contain 15 neurons and 1 hidden layer.
However, utilizing ANNs incorporated with B-R produces the
best solution, as found in Figure 25. This confirms the notable
advantages of ANNs incorporated with the B-R algorithm for
training with highly nonlinear, difficult, and small data. We
recommend to utilize ANNs incorporated with B-R in Phase 2
to achieve exact predictions. Figure 26 shows the effect of the
network’s architecture on the FAP solution. It can be con-
cluded that the more neurons, the more exact solution; the
more data, the more exact solution. To obtain exact predic-
tions, we recommend to utilize the present approach with the
network’s architecture as: at least 85% data for training and
15 neurons in the hidden layer.
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Figure 27: Analysis of the hinged-hinged composite panel with h = 6.35
mm and [0°/90°/0°] stacking sequence utilizing the FAP: (a) Phase 1 (fast
analysis) and (b) Phase 2 (prediction) and comparison.
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5.4 FAP approach for kink instability
problems of shells

The panel in Figure 5 and Section 5.1 is continued consid-
ering. In this problem, the panel thickness is h = 6.35 mm
and the laminated composite material is employed with
[09/90°/0°] stacking sequence. The material properties
are provided as [38]: E; = 3.3 KN/mm?2, E; = 1.1 KN/mm?,
Gy = Glg = 0.66 kN/mmZ, Glz = ng, vy = 0.25. A total of
18 data points on the equilibrium path, which has a kink,
are extracted from the study by Sze et al. [38] as the result
of Phase 1. These data points are employed to train net-
works for load and displacement in Phase 2. The trained
networks are then employed to predict loads and displace-
ments for 36 steps. The results of Phases 1 and 2 are
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Figure 29: Postbuckling path for the test specimen utilizing the FAP: (a)
Phase 1 and (b) Phase 2 (prediction) and comparison.
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presented in Figure 27 in a comparison with that of Sze
et al. [38] utilizing FEM and 36 steps. A very good agree-
ment is found. It is seen that the result of Phase 1 is not
smooth and not completely exact. This is clearly seen when
displacement is from 0 to 20. However, after application of
the trained networks, the equilibrium path is smooth and
exact. Besides, the FAP saves 50% computational effort
compared to FEM.

5.5 FAP approach for an experiment

In the last problem, the FAP is applied to predict delamina-
tion buckling and post-buckling of composite laminates
utilizing data from experiment. The compression test
was conducted on HYE-3574 OH graphite/epoxy composites
with built-in delamination [39]. The material properties are
found in table 1in the study by Gu and Chattopadhyay [39].
Geometry of specimen and compression test setup are
shown in Figure 28 and Figure 4 in the study by Gu and
Chattopadhyay [39], respectively. The delamination length
is 3.0 in. The ply stacking sequence of the test specimen was
[-45%/45%ys. The delamination is near the surface and at
the distance 1.7 mm from the surface. The test specimen
was clamped at both ends. The axial displacement and
compressive load data were digitally recorded. Ten data
points on the compressive stress—axial displacement curve
are extracted from figure 5d in the study by Gu and Chat-
topadhyay [39] as the result of Phase 1. These data points
are employed to train networks for stress and displace-
ment in Phase 2. The trained networks are then employed
to predict stresses and displacements for any load steps.
The results of Phases 1 and 2 are presented in Figure 29 in a
comparison with the experimental result [39]. A very good
agreement is found. As known, the experimental data are
affected by many factors including specimen fabrication
technique, test setup, and technique of recording data.
Thus, training a network utilizing experimental data is more
difficult than that utilizing computational data. Interestingly,
the present approach is exact for both the computational and
experimental data. Although the aforementioned networks
were trained utilizing ten experimental data points, they can
be employed to predict stresses and displacements for any
load steps. This can save labor, time, and money for the
experiment.

Finally, the computational effectiveness of the FAP for
various types of instabilities of thin shells is summarized
and presented in Tables 1 and 2. It is concluded that uti-
lizing the FAP can save a huge amount of computation
compared to the other ones (fully pure isogeometric and
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Table 1: Effectiveness of the FAP according to load steps
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Instabilities Total steps per analysis Saved computation (%) compared
Pure analysis FAP approach with pure analysis approach

Snap-through 31 13 58

Softening-hardening 14 7 50

Snap-back 43 14 67

Kink 36 18 50

Experiment 19 10 47

Table 2: Effectiveness of the FAP according to computational cost

Instabilities

Total cost per analysis (s)

Saved cost (%) compared

Pure analysis

FAP approach with pure analysis approach

Snap-through 261
Softening-hardening 116
Snap-back 403

126 52
64 45
132 67

fully pure FE analyses) and the experiment. Notably, the
computational costs for problems of kink instability and
experiment were not available in the literature [38,39].
Therefore, these costs are not present in Table 2.

6 Conclusions

An FAP approach for instability problems of thin shells has

been proposed. The present approach contains two phases:

fast analysis and pure prediction. (1) for Phase 1, fast post-
buckling analysis is conducted utilizing a minor amount of
load steps. The obtained load-displacement relation from

Phase 1 is incomplete and not exact because of a minor

amount of load steps utilized; (2) for Phase 2, the loads and

the deflections obtained from Phase 1 are considered as the
data for training ANNs incorporated with Bayesian regu-
larization (B-R). After that, the trained networks, including
the load network and the displacement network, are utilized to
fast predict load and deflection at any step of the post-buckling
analysis. After utilizing Phase 2, an exact, complete, and smooth
load—displacement curve is achieved. Interestingly, the cost for
training and application of an ANN is very low (approximately

3 s) because the utilized data sizes are very small together with

the advantages of ANNs. From the numerical verification, sev-

eral notable conclusions are drawn as follows:

* Good agreement between the results of the FAP and the
reference results was found for all problems in this work.
The present approach saves a huge computation com-
pared to other ones. High effectiveness and exactness of

the proposed approach for post-buckling analysis of thin
shells were demonstrated.

» The FAP solutions for instability problems are stable and

exact. The more number of fast analysis steps, the more

exact solution but high computational cost is required.

To produce good solutions for the FAP with a balance

between exactness and effectiveness (the lowest compu-

tational cost), some conclusions are drawn as follows:

For snap-through instability problems, we recommend

to utilize the present approach with 13 load steps in

Phase 1. For softening-hardening instability problems,

we recommend to utilize the present approach with

seven load steps in Phase 1. For snap-back instability
problems, we recommend to utilize the present approach

with 14 load steps in Phase 1.

ANNs incorporated with B-R, which are recommended

for the present approach, have some notable advantages

compared to numerous existing networks. We recom-

mend to utilize ANNs incorporated with B-R in Phase 2

to achieve exact predictions. Besides, we recommend to

utilize the present approach with the network’s architec-
ture as: at least 85% data for training and 15 neurons in
the hidden layer.

* The FAP is applicable to experiments and highly non-
linear problems, which can have a kink on their equili-
brium paths. This can save labor, time, and money for
the experiments.
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