

1 **Cross-generational impact of maternal exposure to low level of PM2.5 on kidney health**

2
3 Hui Chen¹, Long the Nguyen², Min Feng^{1,3}, Baoming Wang¹, Bai Xu^{1,3}, Rochelle A. Yarak¹, Yik Lung Chan¹,
4 Seethalakshmi Viswanathan⁴, Muralikrishna Gangadharan Komala⁵, Carol A Pollock², Brian G Oliver^{1,3},
5 Sonia Saad²

6
7 1. School of Life Sciences, Faculty of Science, University of Technology Sydney, NSW 2007, Australia
8

9 2. Kolling Institute of Medical Research, Royal North Shore Hospital, The University of Sydney, Sydney,
NSW 2065, Australia

10 3. Respiratory Cellular and Molecular Biology, Woolcock Institute of Medical Research, Macquarie
11 University, NSW 2109, Australia

12 4. Clinical Pathology and Medical Research, Westmead Hospital, University of Sydney, Westmead,
13 NSW 2145, Australia

14 5. University of Sydney, Nepean Hospital, Kingswood, NSW 2750, Australia

15
16 **Corresponding author**
17 Associate Professor Sonia Saad
18 Renal group Kolling Institute, Royal North Shore Hospital, the University of Sydney
19 Sydney, NSW, Australia.
20 Tel: +61-2-9926-4782;
21 Fax: +61-2-9926-5715; E-mail: sonia.saad@sydney.edu.au

22 **Abstract**

23 Inhaled fine and ultrafine particulate matter may affect organs other than the lung, including the
24 kidney. Recent studies have consistently shown the possibility of air pollution in highly polluted
25 countries to be nephrotoxic. However, in countries like Australia, where air quality generally adheres
26 to or remains below the WHO standards, the subtle yet consequential impacts of chronic exposure to
27 seemingly safe levels of traffic PM_{2.5}, are a subject of increasing significance. However, how such
28 exposures in the peri-pregnancy period affect kidney health in mothers and the offspring is unclear,
29 which formed the aims of this study. Female Balb/c mice were exposed to PM_{2.5} (5 µg/day) delivered
30 nasally for 6 weeks prior to mating, during gestation and lactation (PM group). In a sub-group,
31 PM_{2.5} was switched to saline from mating until offspring were weaned to model mothers moving to
32 areas with clean air. Kidneys were analysed in dams and adult offspring at 13 weeks of age. PM_{2.5}
33 induced oxidative stress without histological changes in the dam's kidney. However, male PM
34 offspring displayed in-utero underdevelopment, characterised by reduced body weight and kidney-
35 to-body weight at birth compared to control offspring, and lower glomerular numbers, with a marked
36 increase in albuminuria, glomerulosclerosis, inflammation, oxidative stress, and mitochondrial injury.
37 Female PM offspring had delayed postnatal development, lower glomerular numbers, increased
38 glomerulosclerosis and oxidative stress injury markers. Removal of PM_{2.5} from conception was
39 overall protective to the offspring. In conclusion, there is no safe level of ambient PM_{2.5} for kidney
40 health when exposed in-utero. Maternal PM_{2.5} exposure equally impacts the kidney health of male
41 and female offspring.

42

43 **Keywords:** fetal programming, traffic-derived PM, oxidative stress, mitochondria, CKD

44 **1. Introduction**

45 Air pollution is a pervasive global concern, as over 90% of the world's population lives in areas with
46 polluted air. Epidemiological and experimental studies have well characterised the close association
47 between exposure to high levels of airborne particulate matter (PM) and adverse health outcomes in
48 the respiratory and cardiovascular systems (World Health Organisation, 2018). PM_{2.5} is the most
49 hazardous component of air pollutants due to its small diameter. PM_{2.5} is 2.5 micrometres or less and
50 is, therefore, capable of crossing tissue barriers in the distal airway and alveoli, through which it can
51 rapidly reach distal organs (Chen et al., 2021).

52 The kidney is one of the recently identified extrapulmonary targets of PM_{2.5}. Although experimental
53 findings for PM_{2.5} exposure-related renal injury are scarce, studies have consistently shown
54 nephrotoxic effects of urban air pollution where PM_{2.5} levels are several times above the WHO
55 standards (Bowe et al., 2018; Chan et al., 2019b; Nemmar et al., 2009; Nemmar et al., 2016). Chronic
56 exposure to PM has been associated with reduced kidney function among adults in several
57 populations (Bowe et al., 2019; Chan et al., 2018; Ran et al., 2020; Yang et al., 2017; Zhao et al.,
58 2020). As mentioned above, these studies have predominantly focused on regions with highly
59 polluted air, where PM_{2.5} concentrations surpass the WHO's recommended standard levels. However,
60 in countries like Australia, where air quality generally adheres to or remains below the WHO
61 guidelines, the subtle yet consequential impacts of chronic exposure to seemingly safe levels of PM_{2.5},
62 especially those derived from vehicles along busy roads, have become a subject of increasing
63 significance.

64 Notably, our previous investigations using mouse models have unveiled concerning findings
65 regarding the effects of exposure to low levels of PM_{2.5}, even within the presumed safe range in both
66 the short and long term (Chan et al., 2019a; Wang et al., 2021). Specifically, we observed lung
67 emphysema-like changes in response to chronic exposure, highlighting the potential implications of
68 seemingly innocuous air pollution levels (Wang et al., 2021). In addition, embryonic and fetal
69 development is most sensitive to changes in the in-utero environment, e.g. environmental toxins,
70 which can delay and impair the development of vital organs and increase the susceptibility to chronic
71 diseases after birth (Chen et al., 2021; Chen et al., 2022a; Chen et al., 2022b; Wang et al., 2021).
72 Indeed, we found an increased risk of asthma and liver dysfunction by in-utero exposure to a "safe
73 level" of PM_{2.5} (Wang et al., 2021). This discovery raises a significant research question regarding
74 whether chronic exposure to low-level PM_{2.5}, either direct or in-utero, can induce detrimental effects
75 in the other vital organs, such as the kidneys. Given the size of PM_{2.5}, systemic absorption is likely,
76 which places fetuses at risk of systemic exposure.

77 Heavy metals (e.g. lead, cadmium, and arsenic) contained in PM_{2.5} have been associated with renal
78 tubular and interstitial damage (Kim, 2017; Möhner, Pohrt and Gellissen, 2017). Transition metals
79 can attach to glycated proteins, enhancing free radical reactions and exacerbating oxidative stress
80 (Shah et al., 2007). Acute exposure to environmental toxins causes direct renal injury to proximal
81 tubules, while persistent or chronic exposure may result in hypertension, interstitial nephritis, and
82 renal fibrosis (Kim, 2017; Navarro-Moreno et al., 2009; Soderland et al., 2010). Short-term exposure
83 to traffic PM induces acute renal failure via oxidative stress (Waly, Ali and Nemmar, 2013). In rats
84 with pre-existing renal injury, a single high dose (1 mg/kg) of diesel exhaust PM aggravated oxidative
85 stress while reducing SOD activity in the renal cortex (Nemmar et al., 2010). Chronic PM_{2.5} exposure
86 also increases the risk of CKD (Bowe et al., 2017; Bowe et al., 2018). In particular, exposure to
87 PM_{2.5} significantly correlates with the progression to end-stage kidney disease and increased
88 mortality due to renal failure (Bowe et al., 2019; Ran et al., 2020). These studies suggest exposure to
89 ambient PM_{2.5} as a possible risk factor for kidney diseases; however, the nephrotoxic effects,
90 especially in the context of prenatal exposure, remain a knowledge gap. A poor intrauterine
91 environment, such as sub-optimal nutritional status and environmental toxins inhaled by pregnant
92 mothers like cigarette smoke and heavily polluted air, correlates with low birth weight (LBW) in the
93 offspring (Rich et al., 2015; Wang et al., 2002; Wang et al., 2018), while individuals born with LBW
94 had a 70% increased risk of CKD (White et al., 2009). We have shown that maternal smoking during

98 pregnancy caused low nephron number and progressive renal injury in mouse offspring in conjunction
99 with LBW (Nguyen et al., 2015; Stangenberg et al., 2015a). Mitochondria are particularly susceptible
100 to PM_{2.5}-induced ROS and oxidative stress (Stangenberg et al., 2015a). Aberrant fetal programming
101 of the kidney could be due to abnormal mitochondrial (mt)DNA (Nguyen et al., 2015). Hence, in-
102 utero PM_{2.5} exposure could provoke adverse mitochondrial biogenesis, resulting in impaired
103 mitochondrial functional units (Chen et al., 2021; Nguyen et al., 2015).

104 Few studies have investigated the effects of maternal PM exposure on the offspring and whether
105 living in an environment with continuous low-level PM_{2.5} exposure (akin to being close to a busy
106 road) during pregnancy affects the offspring. This research aims to address this gap by investigating
107 the relationship between maternal exposure to a low level of PM_{2.5} and the subsequent renal health
108 of offspring.

110 **2. Materials and Methods**

111 **2.1 Animal model**

112 The animal study was approved by the Animal Care and Ethics Committee at the University of
113 Technology Sydney (ETH17-1998) and followed the Australian National Health and Medical
114 Research Council Guide for the care and use of laboratory animals. Female Balb/c mice (8 weeks,
115 Animal Resource Centre, WA, Australia) were divided into 3 groups. Animals were exposed to
116 roadside PM_{2.5} (5µg suspended in 40µl saline, delivered nasally (Chan et al., 2019a) or to saline (40µl
117 of saline, delivered nasally) once per day for 6 weeks before mating and continued during gestation
118 and lactation as we have previously published (Wang et al., 2021). The dose was determined
119 following our previous studies (Chan et al., 2019a; Oliver et al., 2024). A subgroup of PM_{2.5}-exposed
120 mice was switched to saline during pregnancy and lactation (Pre-exposure group). The litter size was
121 not significantly different among groups, as we published previously (Wang et al., 2021). The dams
122 were harvested when the pups were weaned, and the pups were not subjected to direct PM_{2.5} exposure.
123 Birth weight and kidney weight were measured in the newborn. Kidneys from the dams and from
124 offspring at 13 weeks of age (representing adulthood) and spot urine samples from adult offspring
125 were analysed.

126 **2.2 ELISA**

127 Spot urine samples were used to calculate the albumin:creatinine ratio (UACR) as a measure of
128 glomeruli function. A mouse albumin ELISA kit (Crystal Chem, IL, United States) was used to
129 determine the urine concentrations of albumin. Creatinine levels were determined using a
130 colourimetric assay kit for creatinine (Cayman Chemical, MI, United States) as previously described
131 (Larkin et al., 2021).

132 **2.3 Histology and immunohistochemistry**

133 Kidneys from the dams and adult offspring were fixed in neutral buffered formalin (10%), embedded
134 in paraffin and sectioned. The kidney structures were examined using hematoxylin and eosin (H&E).
135 Periodic acid-Schiff (PAS) was used to detect polysaccharides suggestive of fibrotic changes in the
136 kidney section (Hui et al., 2017). Paraffin-embedded sections were incubated in 1% w/v periodic acid
137 (15 minutes), followed by Schiff's reagent (15 minutes), Mayer's haematoxylin (2 minutes), and
138 finally Scott's blue (1 minute), with washes between each incubation. Then, the sections were
139 dehydrated in increasing grades of ethanol (1x 95%, 2x 100%) for 3 minutes each, and xylene (2x 3
140 minutes) and then cover-slipped. The sections were analysed and quantified with ImageJ (National
141 Institutes of Health, MD, USA).

142 For IHC staining, formalin-fixed paraffin-embedded sections were de-paraffinised and boiled for
143 20 min in 10 mM citrate buffer (pH 6.0) for epitope retrieval. Sections were washed in TBST buffer
144 and exposed to 0.3% H₂O₂ for 5 min to quench endogenous peroxidases, then blocked with Dako
145 protein block (Dako, Carpinteria, CA, USA) for 10 min and incubated with a rabbit polyclonal
146 antibody against 8-OHdG (1:100, BIOSS, Woburn, MA, USA) overnight as we have previously
147 described (Stangenberg et al., 2015b). The tissues were then incubated with polymer secondary anti-
148 rabbit antibodies (Dako Ref K4003), horseradish peroxidase enzyme, and DAB+ (liquid
149 rabbit anti-mouse IgG, Dako, Carpinteria, CA, USA) for 30 min. Finally, the sections were
150 counterstained with Mayer's haematoxylin (2 minutes) and then cover-slipped.

152 DAB+substrate chromogen system, Dako Ref K3468). The sections were counterstained with
153 haematoxylin. Negative controls were prepared by replacing the primary antibodies with rabbit IgG.
154 Quantitation of the positive signals in the images was performed using Image J software (Image J,
155 NIH, USA).

156 The glomerular number was estimated by counting the developed glomeruli in 8–10 different fields
157 for the same kidney section and then averaged as we have previously demonstrated (Al-Odat et al.,
158 2014). One section was used from each kidney (4-6 randomly selected mice from each group). The
159 glomerular size was measured by assessing the glomerular perimeter using Image J (Image J, NIH,
160 USA) in 8–10 non-overlapping images for the same kidney section and then averaged. Glomerular
161 and tubular structure, in addition to glomerular number and size, were additionally assessed by an
162 independent pathologist in a blinded manner for confirmation.

163 164 **2.4 Real-time PCR**

165 Total mRNA was extracted from frozen kidney tissue with TriZol reagent (Life Technologies, CA,
166 USA), and the first strand cDNA was generated using M-MLV Reverse Transcriptase, RNase H,
167 Point Mutant Kit (Promega, WI, USA).

168 Target gene expression was quantified with SYBR® primers (TNF α , Forward-
169 GGTGCCTATGTCTCAGCCTCTT, Reverse- GCCATAGAACTGATGAGAGGGAG; CD68,
170 Forward GGCGGTGGAATACAATGTGTCC, Reverse AGCAGGTCAAGGTGAACAGCTG.
171 Sigma-Aldrich, St. Louis, MO, US) and standardised to housekeeping 18s RNA (Forward
172 GAATAATGGAATAGGACCGCGG, Reverse GGAACCTACGACGGTATCTGATC. Sigma-
173 Aldrich). The probes of the target genes and 18s RNA were labelled with FAM® or SYBR®, using
174 SensiFAST™ SYBR® Hi-ROX Kit (Bioline, NSW 2015). The average of the SHAM group was
175 assigned the calibrator against which all other results were expressed as fold changes.

176 177 **2.5 Western blot**

178 Frozen kidney tissue was homogenised in cell lysis buffer in the Mitochondria Isolation Kit (Thermo
179 Fisher Scientific. Cytosolic and mitochondrial fractions were separated following the manufacturer's
180 protocol. Protein concentration was measured by Pierce™ BCA Protein Assay Kit (Thermo Fisher
181 Scientific) and stored at -80°C for further analysis. The same amount of protein was loaded on SDS-
182 PAGE electrophoresis gels (8-13%) and electroblotted to Hybond nitrocellulose membranes
183 (Amersham Pharmacia Biotech). Membranes were incubated with primary antibodies against β -actin
184 (Santa Cruz Biotechnology), Manganese Superoxide Dismutase (MnSOD) (1:2000. Millipore),
185 translocase of the outer membrane 20 (1:2000, TOM20; Abcam), COXIV (1:4000, Cell Signalling),
186 and OXPHOS complex I–V (1:4000, Abcam), followed by washing and incubation with secondary
187 antibody. After washing the membrane, immunoblots were developed using Clarity ECL Substrates
188 (Bio-rad) and visualised on ImageQuant LAS 4000 (Fujifilm, Tokyo, Japan). Membranes were
189 restored by stripping buffer (Thermo Scientific) if necessary. ImageJ (National Institutes of Health)
190 was used for densitometry, and β -actin was used as the housekeeping protein.

191 192 **2.6 Statistical methods**

193 Results are expressed as mean \pm SEM. Normality was tested. If the data were not normally distributed,
194 then they were log-transformed. The results of the dam, male and female offspring were analysed
195 independently, using one-way ANOVA, followed by Turkey post hoc tests (GraphPad Prism 10,
196 GraphPad, CA, USA). P< 0.05 was considered significant.

197 198 **3. Results**

199 **3.1 The effects of maternal PM exposure on anthropometric measurements and UACR**

200 201 Dams exposed to PM showed significant reductions in body weight (P< 0.05) and kidney weight (P<
0.05), which were normalised by PM_{2.5} cessation since mating (body weight P< 0.01 PM_{2.5} vs Pre-

202 exposure, Table 1). Kidney to body weight ratio was similar among the three groups. Maternal
203 PM_{2.5} exposure prior to mating for 6 weeks, during gestation and lactation induced reductions in body
204 weight ($P < 0.05$), kidney weight ($P < 0.01$), and kidney/body weight ratio in male offspring at
205 postnatal day 1. Such changes in kidney weight and kidney/body weight ratio were prevented if
206 PM_{2.5} exposure had been removed just before gestation ($P < 0.05$, Table 1). In sharp contrast to male
207 offspring, female offspring showed no difference in body weight, kidney weight or kidney/body
208 weight ratio at day 1; however, their body weight and kidney weight were significantly lower than
209 the SHAM in adulthood ($P < 0.05$, Table 1). At week 13, male offspring showed no significant
210 differences in anthropometric measurements. However, there was a significant increase in UACR in
211 the PM group ($P < 0.05$), which was significantly attenuated in the Pre-exposure group ($P < 0.01$). In
212 female offspring, there was also a trend of increased UACR, although this did not reach significance
213 (Table 1).

214 **3.2 The effects of maternal PM exposure on glomerular histology**

215 Dams exposed to PM_{2.5} showed similar number and size of glomeruli (Figure 1A and 1B). Conversely,
216 glomerular numbers in both male and female offspring were significantly reduced by maternal
217 PM_{2.5} exposure (both sex $P < 0.05$ vs SHAM), although kidney weights were normal at 13 weeks
218 (Figure 1C and 1E), which were not reversed by the removal of PM_{2.5} (male $P < 0.05$ Pre-exposure vs
219 SHAM). Glomerular size was not different among any offspring. With reduced glomerular number,
220 maternal PM_{2.5} exposure also led to significant increases in markers of glomerulosclerosis in both
221 male and female offspring ($P = 0.07$ male PM_{2.5} vs SHAM; $P < 0.05$ female PM_{2.5} vs SHAM, Figure 2).
222 The removal of PM_{2.5} exposure at conception reversed glomerulosclerosis to the control levels in both
223 male and female offspring (Figure 2).

224 **3.3. The effects of maternal PM exposure on kidney inflammation**

225 PM_{2.5} exposure in the dams did not significantly increase inflammatory markers, including TNF α and
226 macrophage marker CD68 mRNA expression (Figure 3A, D). At week 13, PM male offspring showed
227 significantly increased TNF α and CD68 expression compared to the SHAM offspring (both $P < 0.05$
228 vs SHAM, Figure 3B, E). Maternal PM removal reduced TNF α expression and CD68 (TNF α $P < 0.05$
229 Pre-exposure vs PM_{2.5}, Figure 3B, E). In PM female offspring, both TNF α and CD68 expression was
230 suppressed (CD68 $P < 0.05$ vs SHAM, Figure 3C, F). In the female Pre-exposure group, both TNF α
231 and CD68 levels were reversed to surpass the SHAM group levels (CD68 $P < 0.01$ vs PM_{2.5}, Figure
232 3C, F).

233 **3.4. The effects of maternal PM exposure on kidney oxidative stress markers and mitochondrial 234 functional markers**

235 To examine oxidative stress in the kidney, we measured the protein levels of MnSOD in both the
236 cytosolic and mitochondrial fractions. As shown in Figure 4, in the dams, MnSOD was significantly
237 reduced by PM_{2.5} exposure in the cytosolic and mitochondrial fractions in the kidneys (both $P < 0.05$
238 vs SHAM, Figure 4A, B); while PM removal only normalised cytosolic MnSOD level ($P < 0.05$ vs
239 PM_{2.5}, Figure 4A). In line with this, the oxidative stress marker 8-OHdG was also increased in both
240 PM and Pre-exposure dams ($P < 0.05$, Pre-exposure vs SHAM, Figure 4C). In the PM male offspring,
241 MnSOD was reduced in the cytosolic fraction ($P < 0.01$ vs SHAM), but increased in the mitochondrial
242 fraction ($P < 0.01$ vs SHAM), which was not affected by maternal PM removal at conception
243 ($P < 0.05$ and $P < 0.01$ PM_{2.5} vs SHAM for cytosolic and mitochondrial fractions, respectively, Figure
244 4A, B). The level of 8-OHdG was also increased in male PM offspring, which was normalised in the
245 Pre-exposure group ($P < 0.05$ PM_{2.5} vs SHAM, Figure 4C). In the PM female offspring, MnSOD levels
246 in both cytosolic and mitochondrial fractions were similar among groups (Figure 4A, B). However,
247 8-OHdG level was significantly increased in the female PM offspring and normalised in the Pre-
248 exposure group ($P < 0.05$ PM_{2.5} vs SHAM, $P < 0.01$ Pre-exposure vs PM_{2.5}, Figure 4C).

249 Mitochondria are highly susceptible to oxidative stress. Mitochondrial dysfunction is one of the key
250 mechanisms in developmental programming. In the dams, kidney COXIV (Cytochrome c oxidase)
251 and substrate transporter TOM20 were not affected by PM_{2.5} exposure for any duration (Figure 5).

256 However, COXIV was reduced in both male and female PM offspring (male $P<0.05$ PM_{2.5} vs SHAM;
257 female $P=0.25$ PM_{2.5} vs SHAM), and only COXIV in female kidneys was reversed in the Pre-
258 exposure group ($P<0.01$ vs SHAM, $P<0.001$ vs PM_{2.5} Figure 5). TOM20 level was only reduced in
259 male PM mice ($P<0.05$ vs SHAM), which was not affected by maternal PM removal since conception
260 ($P=0.05$ vs SHAM, Figure 5).

261 To further examine mitochondrial functional units, we assessed the protein of mitochondrial oxidative
262 phosphorylation complexes (OXPHOS). In the dams, PM exposure led to a significant reduction of
263 complex I level ($P<0.05$ vs SHAM, Figure 6A), without any effects on the other four complexes. In
264 male PM offspring, only complex IV was significantly reduced ($P<0.05$ vs SHAM, Figure 6B), which
265 was not normalised in the Pre-exposure males; However, complex I level was doubled in the Pre-
266 exposure group compared with the SHAM group ($P<0.05$, Figure 6B). In female offspring, OXPHOS
267 complexes were all at similar levels among experimental groups (Figure 6C).

269

270 4. Discussion

271 Kidneys are vulnerable to both acute and chronic injury upon exposure to environmental toxins (Feng
272 et al., 2023; Kim, 2017; Navarro-Moreno et al., 2009; Soderland et al., 2010). Low levels of PM have
273 not previously been considered a concern with respect to kidney health. Here, we observed the impact
274 of low-level PM_{2.5} exposure on oxidative stress in the dams' kidneys without changes in
275 inflammatory and histological markers. Strikingly, such a "mild" environmental factor has shown
276 long-lasting adverse impacts on the offspring's kidneys. We also observed maternal PM_{2.5} exposure
277 induced in-utero underdevelopment in the male offspring but not female offspring. Interestingly,
278 reduced glomerular numbers were observed in both male and female PM offspring, along with
279 induced oxidative stress and mitochondrial injury in adulthood.

280 The advantage of using an animal model is that we can exclude the potential confounder of postnatal
281 direct PM_{2.5} exposure in the offspring and the genetic variations observed in the general population.
282 As such, any effects observed in the offspring are mostly attributed to maternal effects. Dams exposed
283 to PM_{2.5} only during the preconception period (pre-exposure group) showed significant DNA
284 oxidation in the kidneys, reflected by the increased 8-OHdG levels. There was also a trend of an
285 increase in renal 8-OHdG levels in the dams when they were exposed to PM_{2.5} during the gestation
286 period. This was associated with a significant reduction in mitochondrial levels of the antioxidant
287 marker MnSOD, suggesting increased renal oxidative stress. PM_{2.5} exposure to dams during the
288 preconception or the gestation period significantly reduced mitochondrial OXPHOS complex 1 levels.
289 OXPHOS has a critical role in maintaining cellular homeostasis and is also known to support
290 differentiation processes during embryonic development (Fernández-Vizarría et al., 2022). Although
291 OXPHOS complex 1 was significantly regulated, other complexes, as well as the levels of COX4 and
292 TOM20, were not altered in the dams, suggesting that mitochondrial function was not compromised.
293 Although oxidative stress was increased in the dams, PM_{2.5} exposure did not induce renal
294 inflammation and histological changes. This can potentially be due to the placental ability to
295 synthesise melatonin, which has antioxidant and anti-inflammatory effects, necessary to ensure a
296 stable environment for both the mother and foetus (Joseph et al., 2024). The dams may also have
297 other adaptive mechanisms and the mature kidneys are less vulnerable to oxidative stress than
298 youngsters.

299

300 Maternal PM_{2.5} exposure significantly reduced the offspring's birth weight in the male offspring only.
301 A similar effect was observed in male offspring exposed to maternal cigarette smoke during gestation
302 (Sukjamnong et al., 2017). Kidney-to-body weight was also significantly decreased in the male
303 offspring at birth following exposure to PM_{2.5} during gestation, and this was associated with a
304 significant reduction of glomerular number and albuminuria. Removing PM_{2.5} exposure during
305 gestation prevented the development of albuminuria in male offspring, suggesting a protective effect
306 on kidneys.

307

308

309 Previous studies have established sex bias in disease susceptibility, with females less likely to develop
310 certain diseases in contrast to males. This has often been explained by the anti-inflammatory effects
311 of estrogen as a defence mechanism (Chan et al., 2016a). In the kidney, epidemiological findings also
312 support the male sex as a risk factor for the development of kidney diseases in adulthood (Li et al.,
313 2008). A study showed significantly higher levels of renal profibrotic markers in male offspring in
314 response to maternal high fat diet consumption (Nguyen et al., 2017). Our own study on maternal
315 cigarette smoke exposure also showed a male-prominent risk of renal disorders in the offspring (Al-
316 Odat et al., 2014; Chan et al., 2017; Chan et al., 2016a; Chan et al., 2016b). However, maternal
317 exposure to a low level of PM_{2.5} before pregnancy or during gestation seems to affect both sexes,
318 although the changes in renal pathology and renal dysfunction are different between male and female
319 offspring. Both male and female PM offspring displayed smaller glomerular numbers in adulthood;
320 however, only males had in-utero renal underdevelopment, demonstrated by the reduced weight and
321 kidney-to-body weight at birth. Normally, an increased glomerular perimeter is expected when the
322 glomerular number is reduced to compensate for the filtration. However, this was not observed in PM
323 offspring, suggesting impaired renal development without sex discrimination.
324

325 Although the urinary albumin to creatinine ratio was not statistically significant in females, the
326 physiological impact can be significant. This can result from glomerular endothelial dysfunction
327 (Satoh, 2012; Strutz, 2009), where proteins are filtered out and reabsorbed in the proximal tubules,
328 causing tubular toxicity (Strutz, 2009). In animal models of high levels of PM exposure, sub-chronic
329 exposure can impair renal function and structure, such as loss of glomerular integrity, glomerular
330 atrophy, loss of epithelial cells, increased Bowman's space, oedema, and tubular dilation and
331 vacuolation (Al Suleimani et al., 2017; Wardoyo, Juswono and Noor, 2018). This can also cause
332 altered renal haemodynamics, haematuria, and albuminuria (Tavera Busso et al., 2018); while long-
333 term PM exposure leads to increased renal inflammation, oxidative stress and DNA damage (Nemmar
334 et al., 2016). PM and related toxicity can induce the release of cytokines and chemokines, contributing
335 to the influx of mononuclear cells, e.g. macrophages (Strutz, 2009), which produce profibrotic
336 cytokines that promote the accumulation of interstitial fibrosis (Black, Lever and Agarwal, 2019;
337 Strutz, 2009). In the long term, this can lead to fibrotic scarring and irreversible chronic kidney
338 disease (Chen et al., 2022a). However, the inflammatory response was only significant in the male
339 offspring. Previous studies have demonstrated that the epigenetic effect of maternal cigarette smoking
340 during gestation is more pronounced in males compared to females. Males are also more susceptible
341 to environmental toxins and more vulnerable to abnormal methylation than females (Murphy et al.,
342 2012). Such differences, as well as differences in early adaptation in males and females, can be
343 responsible for the differences in inflammatory response observed in males and females in our study.
344 Sexual dimorphism in adulthood is explained by either the effect of sex hormones, e.g. the potent
345 anti-inflammatory effects of oestrogen in females, or epigenetic regulation that determines stronger
346 anti-infection capacity of female immune cells (Camporez et al., 2019; Gal-Oz et al., 2019; Shepherd
347 et al., 2021).

348 The composition of PM_{2.5} includes different types and amounts of heavy metals such as iron (which
349 is mostly abundant), copper, potassium, calcium, zinc, nickel, sodium, manganese, magnesium,
350 chromium and cadmium (Kim et al., 2010). Previous studies have demonstrated the role of fine heavy
351 metal particulates in inducing oxidative stress, DNA damage and inflammatory responses (Karlsson et
352 al., 2006; Karlsson, Nilsson and Möller, 2005; Seaton et al., 2005). Here, we showed increased
353 oxidative stress / oxidative damage in both male and female offspring.

354 PM_{2.5} has been shown to demonstrate a strong oxidative potency that reaches the fetal circulation
355 (Bové et al., 2019; Leni, Künzi and Geiser, 2020; Li, Xia and Nel, 2008). Intracellular ROS are by-
356 products of ATP synthesis (Nguyen et al., 2015), which are normally scavenged by the endogenous
357 antioxidant system, such as MnSOD, to maintain a balance between antioxidants and prooxidants
358 (Che et al., 2014; Daenen et al., 2019). MnSOD is one of the key antioxidative enzymes involved in
359 oxidative stress in CKD (Nguyen et al., AJP, 2015). Male PM offspring displayed reduced cytosolic
360 MnSOD but increased mitochondrial MnSOD and oxidative stress injury marker 8-OHdG, suggesting

361 an overall reduction in antioxidant capacity and an adaptive/stress response in the mitochondria. The
362 Tom20 and OXPHOS complex IV were also reduced in male kidneys, suggestive of reduced substrate
363 transportation into mitochondria for ATP synthesis. This may explain the increased mitochondrial
364 MnSOD that normally scavenges ROS that are generated during ATP production mediated by
365 COXIV that was also reduced in male offspring. At the same time, reduced cytosolic MnSOD may
366 suggest oxidative stress induced by unknown mechanisms, such as protein misfolding observed in
367 other organs (Onoda et al., 2020), which is beyond the scope of the current study and requires further
368 investigation. The fact that increased 8-OHdG was observed in female PM offspring despite
369 unchanged levels of MnSOD suggests that other elements of the antioxidant defence may be impaired.
370 Further studies are needed to confirm this hypothesis. Moreover, increased proinflammatory
371 cytokines and oxidative stress are critical contributors to renal diseases (Mihai et al., 2018).
372 Therefore, maternal PM_{2.5} exposure-induced inflammation and oxidative stress may also be
373 accountable for the profibrotic changes in the offspring's kidney, reflected by PAS staining.

374 The mitochondrion is the powerhouse of the cell, the principal site for ATP synthesis via the
375 OXPHOS complexes, ensuring sufficient vitality to cells and tissues throughout the body. Prolonged
376 PM_{2.5} exposure-associated ROS overproduction can cause mitochondrial depolarisation (Yang et al.,
377 2018). Similar to MnSOD, other mitochondrial markers, COXIV and TOM20, were most affected in
378 the male offspring. These two proteins were still suppressed in the male pre-exposure groups,
379 suggesting permanent impacts of maternal PM_{2.5} exposure on mitochondrial functional units. Such
380 an effect may affect cellular energy suppliers in the offspring, as discussed above. Interestingly,
381 COXIV expression was markedly upregulated in the female pre-exposure group, likely due to an
382 adaptive response. It is unclear if such adaptation would affect the cellular function when the
383 offspring age. As such, it would be interesting to follow these offspring to aged stages. Overall,
384 mitochondrial OXPHOS complexes in male and female offspring, were relatively stable among the
385 three groups.

386 Although PM_{2.5} exposure during the pre-gestation period did not improve MnSOD levels in the males
387 and induced macrophage infiltration in the females, it mitigated DNA oxidation, kidney function and
388 pathology in both offspring. This study hence demonstrated that continuous exposure to low level of
389 PM_{2.5} from the pre-gestation period and during gestation has detrimental effects on the offspring's
390 kidney but this can be reversed if PM_{2.5} exposure ceased during gestation. Metals present in polluted
391 air or PM can cross the placental membrane and directly affect the foetus (Liu et al., 2021; Reichrtová,
392 Dorociak and Palkovicová, 1998), which might explain the reason for the adverse effect of low
393 PM_{2.5} levels. Additional studies are required to confirm this.

394

395

396

397 Conclusion

398 Low levels of PM_{2.5} exposure had a marginal impact on the dams' kidney health, albeit with some
399 increase in inflammatory markers. However, such a "mild" environmental factor exerted long-lasting
400 adverse impacts on the kidney histological integrity in both male and female offspring if exposure
401 occurs in their dams.

402

403 Funding

404 The study was supported by a project grant (APP1158186) by the National Health and Medical
405 Research Council Australia awarded to Brian G Oliver and Hui Chen. Min Feng, Bai Xu, and Meng
406 Wang are supported by China Scholarship Council. Rochelle A. Yarak is supported by an Australian
407 Government Research Training Program scholarship.

408

409 References

410 Al-Odat, I., et al., 2014. The impact of maternal cigarette smoke exposure in a rodent model on renal
411 development in the offspring. PLoS One. 9, e103443.

412 Al Suleimani, Y. M., et al., 2017. Effect of diesel exhaust particles on renal vascular responses in rats with
413 chronic kidney disease. *Environ Toxicol.* 32, 541-549.

414 Black, L. M., Lever, J. M., Agarwal, A., 2019. Renal Inflammation and Fibrosis: A Double-edged Sword. *J*
415 *Histochem Cytochem.* 67, 663-681.

416 Bové, H., et al., 2019. Ambient black carbon particles reach the fetal side of human placenta. *Nature*
417 *Communications.* 10, 3866.

418 Bowe, B., et al., 2017. Associations of ambient coarse particulate matter, nitrogen dioxide, and carbon
419 monoxide with the risk of kidney disease: a cohort study. *Lancet Planet Health.* 1, e267-e276.

420 Bowe, B., et al., 2018. Particulate matter air pollution and the risk of incident CKD and progression to ESRD.
421 *Journal of the American Society of Nephrology.* 29, 218-230.

422 Bowe, B., et al., 2019. Estimates of the 2016 global burden of kidney disease attributable to ambient fine
423 particulate matter air pollution. *BMJ Open.* 9, e022450.

424 Camporez, J. P., et al., 2019. Anti-inflammatory effects of oestrogen mediate the sexual dimorphic response
425 to lipid-induced insulin resistance. *J Physiol.* 597, 3885-3903.

426 Chan, T. C., et al., 2018. Long-Term Exposure to Ambient Fine Particulate Matter and Chronic Kidney
427 Disease: A Cohort Study. *Environ Health Perspect.* 126, 107002.

428 Chan, Y. L., et al., 2017. Maternal L-Carnitine supplementation improves brain health in offspring from
429 cigarette smoke exposed mothers. *Frontiers in Molecular Neuroscience.* 10, 33.

430 Chan, Y. L., et al., 2016a. Impact of maternal cigarette smoke exposure on brain and kidney health
431 outcomes in female offspring. *Clin Exp Pharmacol Physiol.* 43, 1168-1176.

432 Chan, Y. L., et al., 2016b. Impact of maternal cigarette smoke exposure on brain inflammation and oxidative
433 stress in male mice offspring. *Sci Rep.* 6, 25881.

434 Chan, Y. L., et al., 2019a. Pulmonary inflammation induced by low dose particulate matter exposure in mice.
435 *American Journal of Physiology-Lung Cellular and Molecular Physiology.* 317, L424-L430.

436 Chan, Y. L., et al., 2019b. Pulmonary inflammation induced by low-dose particulate matter exposure in
437 mice. *Am J Physiol Lung Cell Mol Physiol.* 317, L424-L430.

438 Che, R., et al., 2014. Mitochondrial dysfunction in the pathophysiology of renal diseases. *Am J Physiol Renal*
439 *Physiol.* 306, F367-78.

440 Chen, H., et al., 2021. Particulate Matter, an Intrauterine Toxin Affecting Foetal Development and Beyond.
441 *Antioxidants.* 10, 732.

442 Chen, H., et al., 2022a. Effects of air pollution on human health – Mechanistic evidence suggested by in
443 vitro and in vivo modelling. *Environmental Research.* 113378.

444 Chen, H., et al., 2022b. Sex-Dependent Responses to Maternal Exposure to PM(2.5) in the Offspring.
445 *Antioxidants (Basel).* 11.

446 Daenen, K., et al., 2019. Oxidative stress in chronic kidney disease. *Pediatr Nephrol.* 34, 975-991.

447 Feng, M., et al., 2023. Effect of E-Vaping on Kidney Health in Mice Consuming a High-Fat Diet. *Nutrients.* 15,
448 3140.

449 Fernández-Vizarra, E., et al., 2022. Editorial: Mitochondrial OXPHOS System: Emerging Concepts and
450 Technologies and Role in Disease. *Front Cell Dev Biol.* 10, 924272.

451 Gal-Oz, S. T., et al., 2019. ImmGen report: sexual dimorphism in the immune system transcriptome. *Nature*
452 *Communications.* 10, 4295.

453 Hui, H., et al., 2017. Periodic acid-Schiff staining method for function detection of liver cells is affected by
454 2% horse serum in induction medium. *Mol Med Rep.* 16, 8062-8068.

455 Joseph, T. T., et al., 2024. Melatonin: the placental antioxidant and anti-inflammatory. *Front Immunol.* 15,
456 1339304.

457 Karlsson, H. L., et al., 2006. Comparison of genotoxic and inflammatory effects of particles generated by
458 wood combustion, a road simulator and collected from street and subway. *Toxicol Lett.* 165, 203-
459 11.

460 Karlsson, H. L., Nilsson, L., Möller, L., 2005. Subway particles are more genotoxic than street particles and
461 induce oxidative stress in cultured human lung cells. *Chem Res Toxicol.* 18, 19-23.

462 Kim, C. H., et al., 2010. A study on characteristics of atmospheric heavy metals in subway station. *Toxicol*
463 *Res.* 26, 157-62.

464 Kim, E. A., 2017. Particulate Matter (Fine Particle) and Urologic Diseases. *Int Neurourol J.* 21, 155-162.

465 Larkin, B. P., et al., 2021. Novel Role of Gestational Hydralazine in Limiting Maternal and Dietary Obesity-
466 Related Chronic Kidney Disease. *Frontiers in Cell and Developmental Biology*. 9.

467 Leni, Z., Künzi, L., Geiser, M., 2020. Air pollution causing oxidative stress. *Current Opinion in Toxicology*. 20-
468 21, 1-8.

469 Li, N., Xia, T., Nel, A. E., 2008. The role of oxidative stress in ambient particulate matter-induced lung
470 diseases and its implications in the toxicity of engineered nanoparticles. *Free radical biology &*
471 *medicine*. 44, 1689-1699.

472 Li, S., et al., 2008. Low birth weight is associated with chronic kidney disease only in men. *Kidney*
473 *international*. 73, 637-642.

474 Liu, N. M., et al., 2021. Evidence for the presence of air pollution nanoparticles in placental tissue cells. *Sci*
475 *Total Environ*. 751, 142235.

476 Mihai, S., et al., 2018. Inflammation-Related Mechanisms in Chronic Kidney Disease Prediction, Progression,
477 and Outcome. *J Immunol Res*. 2018, 2180373.

478 Möhner, M., Pohrt, A., Gellissen, J., 2017. Occupational exposure to respirable crystalline silica and chronic
479 non-malignant renal disease: systematic review and meta-analysis. *Int Arch Occup Environ Health*.
480 90, 555-574.

481 Murphy, S. K., et al., 2012. Gender-specific methylation differences in relation to prenatal exposure to
482 cigarette smoke. *Gene*. 494, 36-43.

483 Navarro-Moreno, L. G., et al., 2009. Effects of lead intoxication on intercellular junctions and biochemical
484 alterations of the renal proximal tubule cells. *Toxicology in Vitro*. 23, 1298-1304.

485 Nemmar, A., et al., 2009. Diesel Exhaust Particles in the Lung Aggravate Experimental Acute Renal Failure.
486 *Toxicological Sciences*. 113, 267-277.

487 Nemmar, A., et al., 2010. Diesel exhaust particles in the lung aggravate experimental acute renal failure.
488 *Toxicol Sci*. 113, 267-77.

489 Nemmar, A., et al., 2016. Prolonged pulmonary exposure to diesel exhaust particles exacerbates renal
490 oxidative stress, inflammation and DNA damage in mice with adenine-induced chronic renal failure.
491 *Cellular Physiology and Biochemistry*. 38, 1703-1713.

492 Nguyen, L. T., et al., 2017. SIRT1 reduction is associated with sex-specific dysregulation of renal lipid
493 metabolism and stress responses in offspring by maternal high-fat diet. *Scientific Reports*. 7, 8982.

494 Nguyen, L. T., et al., 2015. L-carnitine reverses maternal cigarette smoke exposure-induced renal oxidative
495 stress and mitochondrial dysfunction in mouse offspring. *Am J Physiol Renal Physiol*. 308, F689-96.

496 Oliver, B. G., et al., 2024. Chronic maternal exposure to low-dose PM2.5 impacts cognitive outcomes in a
497 sex-dependent manner. *Environment International*. in press.

498 Onoda, A., et al., 2020. Carbon nanoparticles induce endoplasmic reticulum stress around blood vessels
499 with accumulation of misfolded proteins in the developing brain of offspring. *Scientific Reports*. 10,
500 10028.

501 Ran, J., et al., 2020. Long-Term Exposure to Ambient Fine Particulate Matter and Mortality From Renal
502 Failure: A Retrospective Cohort Study in Hong Kong, China. *Am J Epidemiol*. 189, 602-612.

503 Reichrtová, E., Dorociak, F., Palkovicová, L., 1998. Sites of lead and nickel accumulation in the placental
504 tissue. *Hum Exp Toxicol*. 17, 176-81.

505 Rich, D. Q., et al., 2015. Differences in Birth Weight Associated with the 2008 Beijing Olympics Air Pollution
506 Reduction: Results from a Natural Experiment. *Environmental Health Perspectives*. 123, 880-887.

507 Satoh, M., 2012. Endothelial dysfunction as an underlying pathophysiological condition of chronic kidney
508 disease. *Clin Exp Nephrol*. 16, 518-21.

509 Seaton, A., et al., 2005. The London Underground: dust and hazards to health. *Occup Environ Med*. 62, 355-
510 62.

511 Shah, S. V., et al., 2007. Oxidants in chronic kidney disease. *J Am Soc Nephrol*. 18, 16-28.

512 Shepherd, R., et al., 2021. Sexual Dimorphism in Innate Immunity: The Role of Sex Hormones and
513 Epigenetics. *Frontiers in Immunology*. 11.

514 Soderland, P., et al., 2010. Chronic kidney disease associated with environmental toxins and exposures. *Adv*
515 *Chronic Kidney Dis*. 17, 254-64.

516 Stangenberg, S., et al., 2015a. Oxidative stress, mitochondrial perturbations and fetal programming of renal
517 disease induced by maternal smoking. *The international journal of biochemistry & cell biology*. 64,
518 81-90.

519 Stangenberg, S., et al., 2015b. Oxidative stress, mitochondrial perturbations and fetal programming of renal
520 disease induced by maternal smoking. *Int J Biochem Cell Biol*. 64, 81-90.

521 Strutz, F. M., 2009. EMT and proteinuria as progression factors. *Kidney Int*. 75, 475-81.

522 Sukjamnong, S., et al., 2017. Effect of long-term maternal smoking on the offspring's lung health. *American
523 Journal of Physiology - Lung Cellular and Molecular Physiology*. 313, L416-L423.

524 Tavera Busso, I., et al., 2018. Kidney damage induced by sub-chronic fine particulate matter exposure.
525 *Environment International*. 121, 635-642.

526 Waly, M. I., Ali, B. H., Nemmar, A., 2013. Acute effects of diesel exhaust particles and cisplatin on oxidative
527 stress in cultured human kidney (HEK 293) cells, and the influence of curcumin thereon. *Toxicology
528 in Vitro*. 27, 2299-2304.

529 Wang, B., et al., 2021. Maternal Particulate Matter Exposure Impairs Lung Health and Is Associated with
530 Mitochondrial Damage. *Antioxidants*. 10, 1029.

531 Wang, X., et al., 2002. Maternal cigarette smoking, metabolic gene polymorphism, and infant birth weight.
532 *JAMA*. 287, 195-202.

533 Wang, Y., et al., 2018. Association of long-term exposure to airborne particulate matter of 1 μ m or less with
534 preterm birth in china. *JAMA Pediatrics*. 172, e174872.

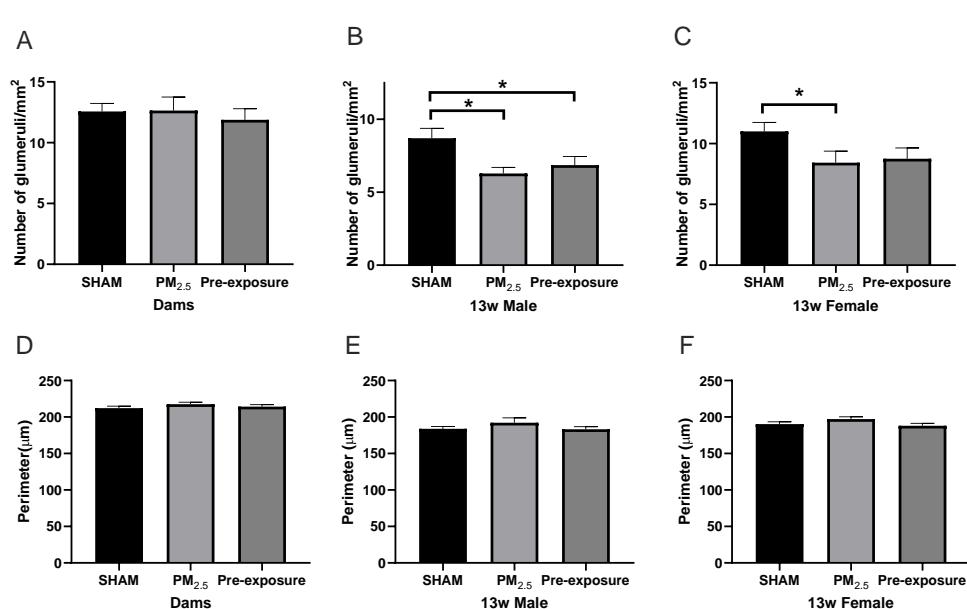
535 Wardoyo, A. Y. P., Juswono, U. P., Noor, J. A. E., 2018. Varied dose exposures to ultrafine particles in the
536 motorcycle smoke cause kidney cell damages in male mice. *Toxicology Reports*. 5, 383-389.

537 White, S. L., et al., 2009. Is low birth weight an antecedent of CKD in later life? A systematic review of
538 observational studies. *American Journal of Kidney Diseases*. 54, 248-261.

539 World Health Organisation, Ambient (outdoor) air pollution. 2018.

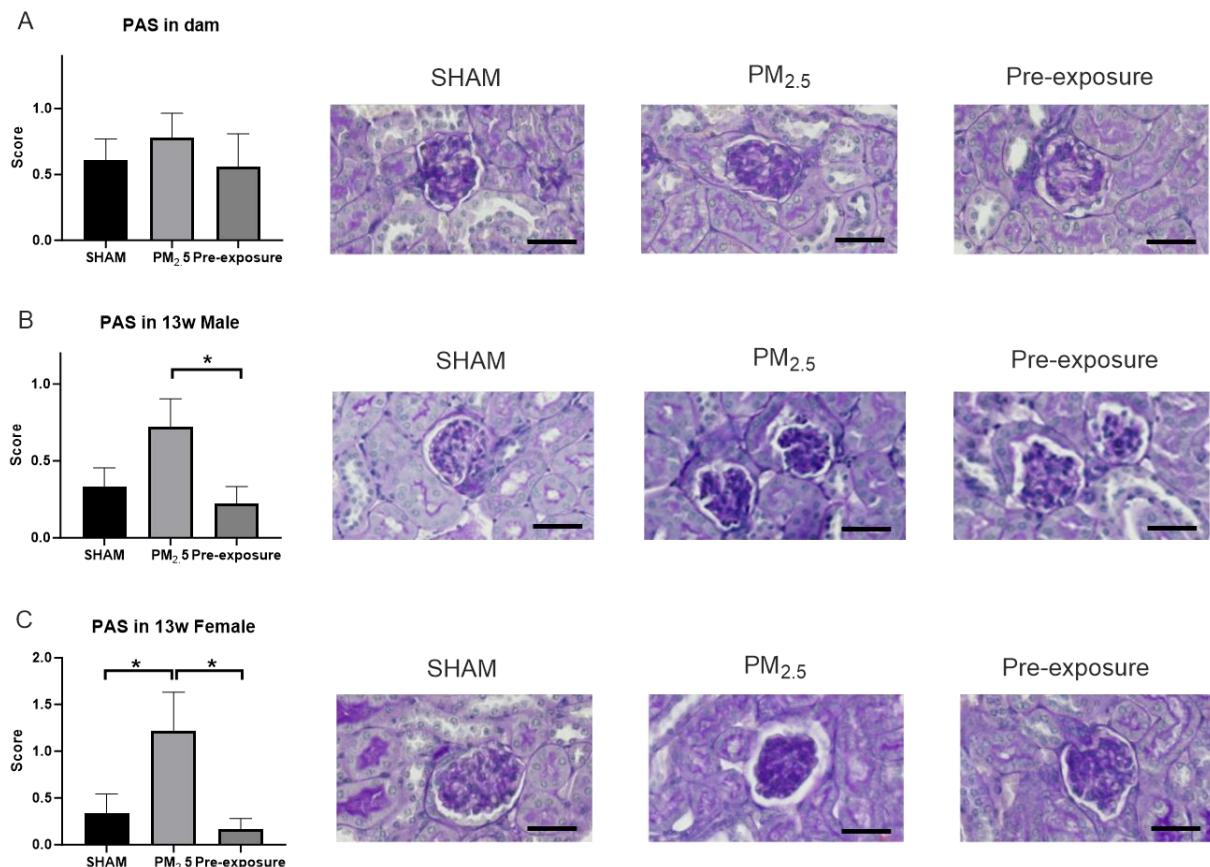
540 Yang, X., et al., 2018. Cytotoxicity induced by fine particulate matter (PM2.5) via mitochondria-mediated
541 apoptosis pathway in human cardiomyocytes. *Ecotoxicology and Environmental Safety*. 161, 198-
542 207.

543 Yang, Y. R., et al., 2017. Associations between Long-Term Particulate Matter Exposure and Adult Renal
544 Function in the Taipei Metropolis. *Environ Health Perspect*. 125, 602-607.

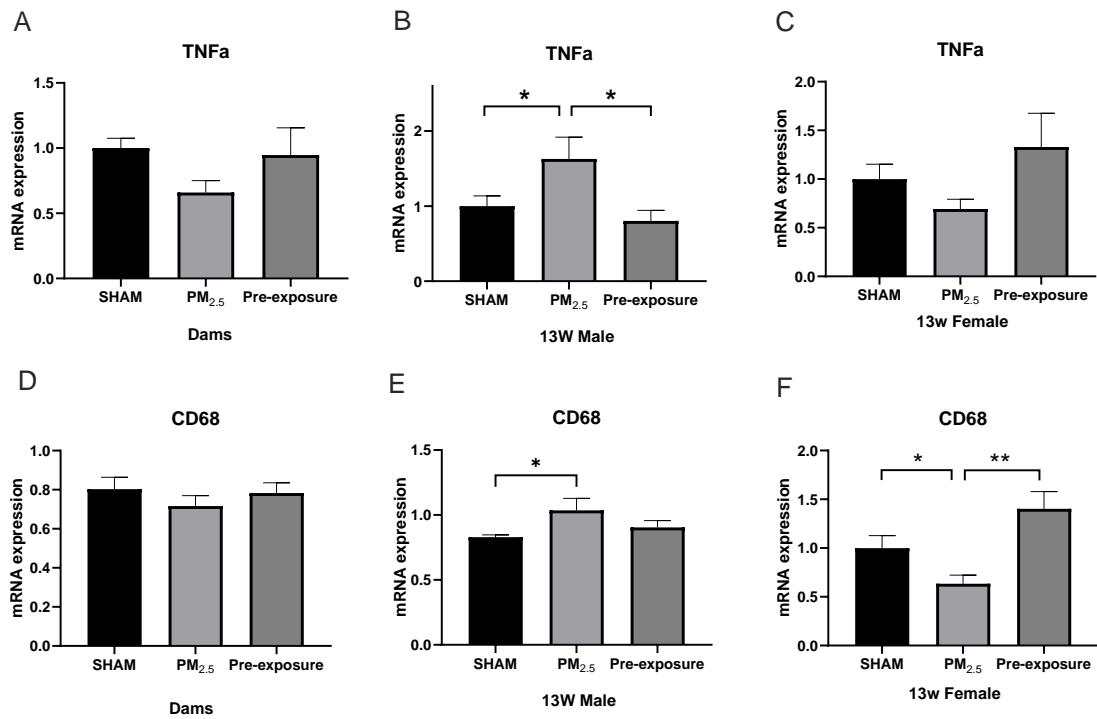

545 Zhao, Y., et al., 2020. Fine particulate matter exposure and renal function: A population-based study among
546 pregnant women in China. *Environ Int*. 141, 105805.

547

Table 1. Anthropometric parameters in the dams and offspring of both sexes

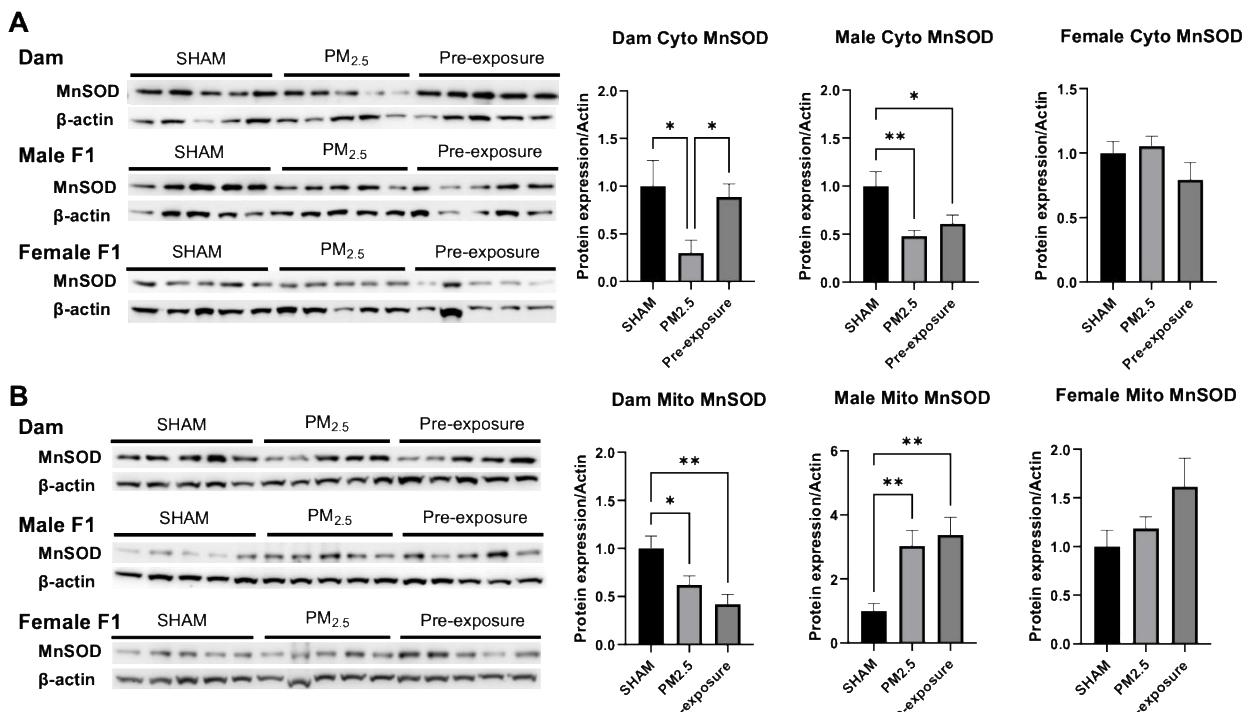

	Anthropometry	SHAM	PM _{2.5}	Pre-exposure
Dams	Body weight (g)	27.2 ± 1.44	24.9 ± 0.53*	28.2 ± 2.46##
	Kidney weight (g)	0.22 ± 0.019	0.19 ± 0.014*	0.21 ± 0.016
	Kidney weight/body weight	0.78 ± 0.05	0.78 ± 0.069	0.76 ± 0.07
Day 1 male	Body weight (g)	1.76 ± 0.226	1.55 ± 0.221*	1.56 ± 0.303*
	Kidney weight (g)	0.0104 ± 0.00057	0.0074 ± 0.00064**	0.0098 ± 0.00108#
	Kidney weight/body weight (%)	0.5929 ± 0.0318	0.4710 ± 0.0335*	0.6119 ± 0.0415#
13-week male	Body weight (g)	25.7 ± 1.23	26.6 ± 1.9	26.3 ± 1.5
	Kidney weight (g)	0.23 ± 0.005	0.23 ± 0.007	0.24 ± 0.009
	Kidney weight/body weight (%)	0.90 ± 0.02	0.88 ± 0.02	0.91 ± 0.02
	Urine albumin / creatinine (µg/mg)	23.9 ± 2.50	64.3 ± 16.7*	14.6 ± 3.9##
Day 1 female	Body weight (g)	1.55 ± 0.208	1.62 ± 0.256	1.49 ± 0.308
	Kidney weight (g)	0.0082 ± 0.00049	0.0081 ± 0.00074	0.0093 ± 0.00072
	Kidney weight/body weight (%)	0.5305 ± 0.0316	0.4957 ± 0.0427	0.6186 ± 0.0388
13-week female	Body weight (g)	21.7 ± 1.91	20.1 ± 1.88*	20.8 ± 0.593
	Kidney weight (g)	0.15 ± 0.005	0.14 ± 0.003*	0.15 ± 0.003
	Kidney weight/body weight (%)	0.707 ± 0.020	0.708 ± 0.026	0.735 ± 0.013
	Urine albumin / creatinine (µg/mg)	10 ± 3.39	16 ± 6.46	12 ± 7.02

549 Results are expressed as mean ± SEM and were analysed by one-way ANOVA followed by Turkey
 550 post hoc tests. N=9-14. *P<0.05 SHAM vs PM_{2.5}, SHAM vs Pre-exposure. #P<0.05, ##P<0.01 PM_{2.5}
 551 vs Pre-exposure. P: postnatal day. PM_{2.5}: maternal PM_{2.5} exposure prior to mating for 6 weeks, during
 552 gestation and lactation. Pre-exposure: maternal exposure to PM_{2.5} for only 6 weeks prior to mating.
 553

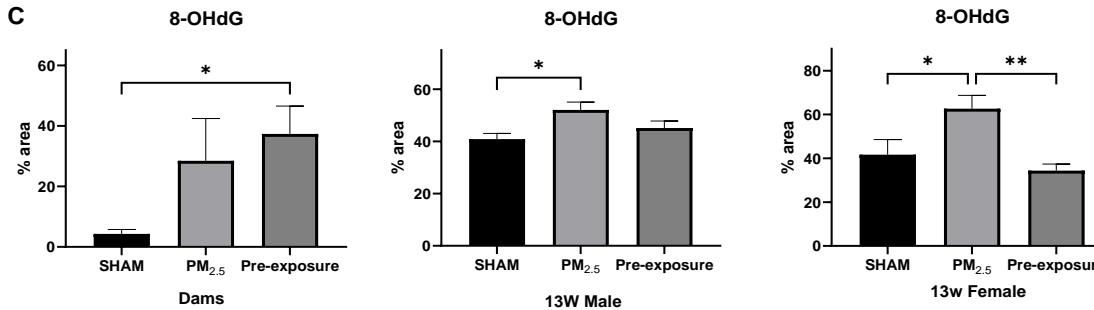


554 Figure 1. Glomerular number (A, B, C) and Glomerulus size (D, E, F) in the dams, 13 weeks old male
 555 and female offspring (n=5). Data were analysed by one-way ANOVA followed by Turkey post hoc
 556 tests. *P<0.05. PM_{2.5}: dams exposed to PM_{2.5} (5µg/day) prior to mating for 6 weeks, during
 557 gestation

558 and lactation. Pre-exposure: dams exposed to PM_{2.5} for 6 weeks prior to mating only.



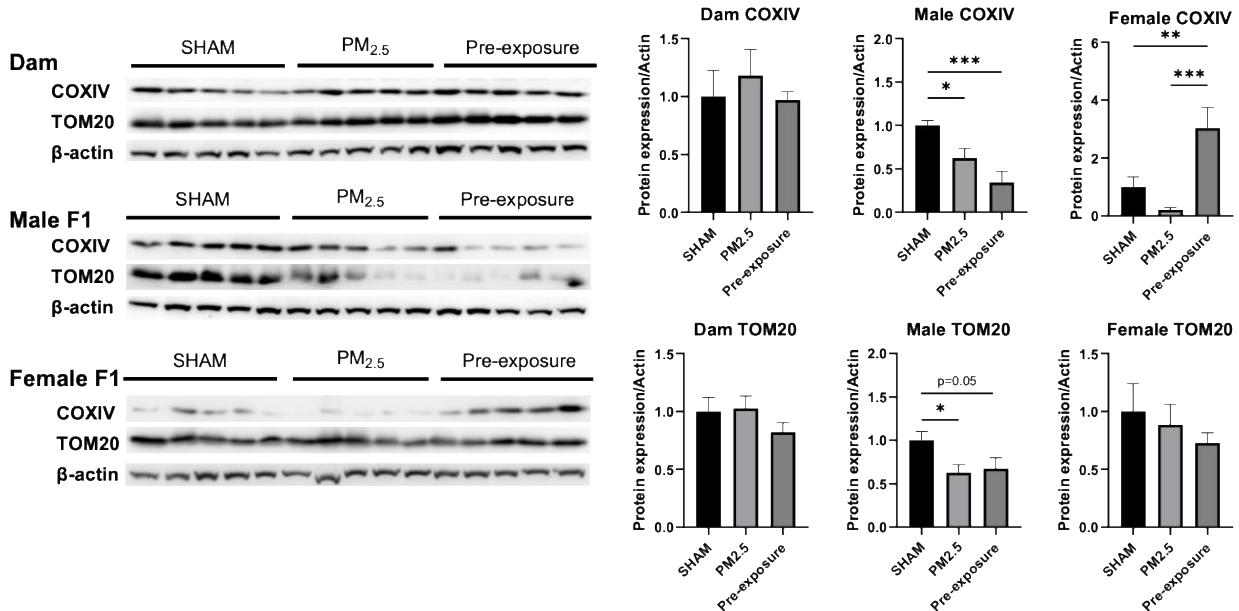
559
560 Figure 2. PAS staining of the glomeruli and representative images (mag 10x) in the dam (A), 13
561 weeks old male (B) and female (C) offspring (n=5). Data were analysed by one-way ANOVA
562 followed by Turkey post hoc tests. *P<0.05. PM_{2.5}: dams exposed to PM_{2.5} (5 μ g/day) prior to mating
563 for 6 weeks, during gestation and lactation. Pre-exposure: dams exposed to PM_{2.5} for 6 weeks prior
564 to mating only. Scale bar is equivalent to 100 μ m



565
566
567
568
569
570

Figure 3. Renal levels of TNF α mRNA (A, B, C) and CD68 mRNA (D, E, F) in dams, 13 weeks old male and female offspring (n=7-8). Data were analysed by one-way ANOVA followed by Turkey post hoc tests. *P < 0.05, **P < 0.01. PM_{2.5}: dams exposed to PM_{2.5} (5 μ g/day) prior to mating for 6 weeks, during gestation and lactation. Pre-exposure: dams exposed to PM_{2.5} for 6 weeks prior to mating only.

571


572

573

574

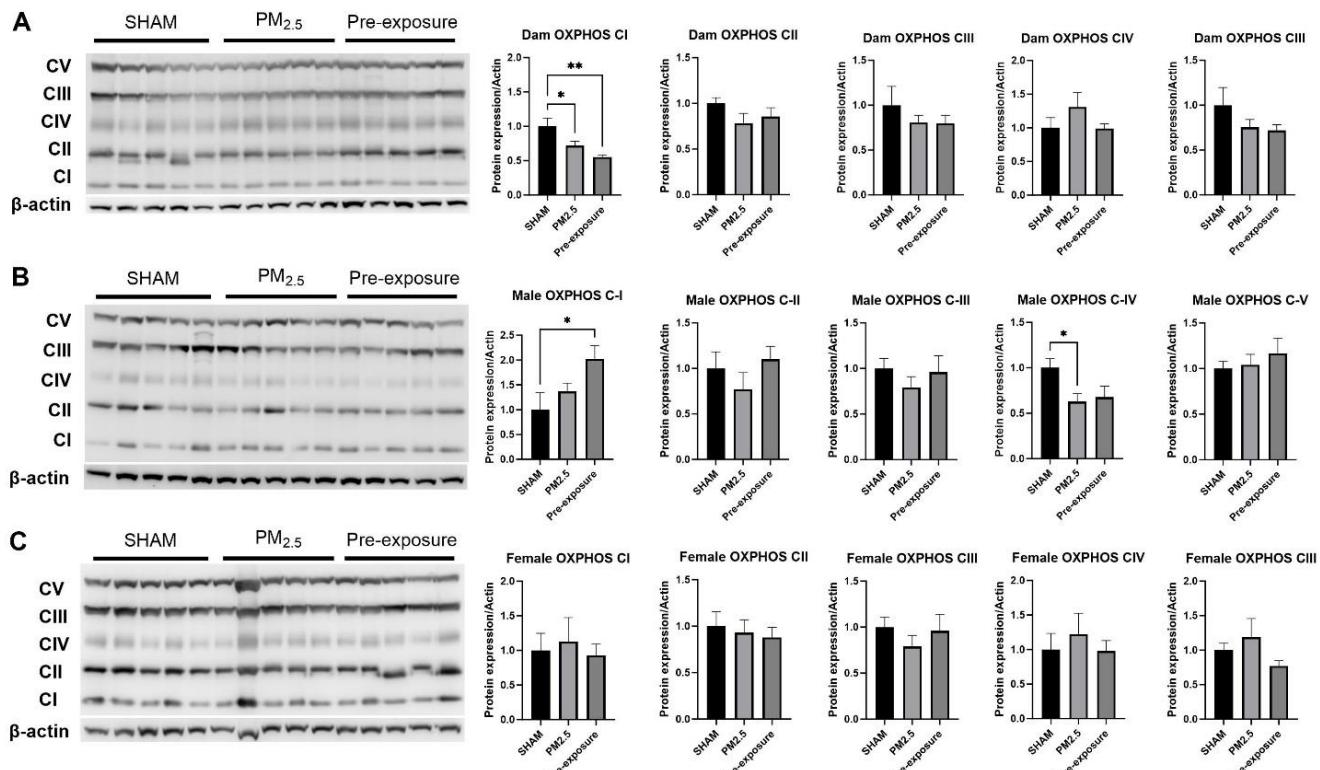

575

Figure 4. Cytosolic (A) and mitochondrial (B) MnSOD protein levels, as well as 8-OHdG staining in the kidneys in the dam, 13 weeks old male and female offspring (n=5). Data were analysed by one-way ANOVA followed by Turkey post hoc tests. *P<0.05, **P<0.01.

576

577 Figure 5. COXIV and TOM20 protein levels in the kidneys in the dam, 13 weeks old male and female
 578 offspring (n=5). Data were analysed by one-way ANOVA followed by Turkey post hoc tests. *P<0.05,
 579 **P<0.01, ***P<0.001.
 580

581 Figure 6. OXPHOS complexes I-V protein levels in the kidneys in the dam (A), 13 weeks old male
 582 (B) and female offspring (C) (n=5). Data were analysed by one-way ANOVA followed by Turkey
 583 post hoc tests. *P<0.05, **P<0.01.
 584