
Summary  
 

Cost-utility analyses (CUA) are increasingly common in Australia. The EQ-5D is one of the 

most widely used generic preference-based instruments for measuring health-related quality 

of life for the estimation of quality-adjusted life years within CUA. There is evidence that 

valuations of health states vary across countries, but Australian weights have not previously 

been developed.  Conventionally, weights are derived by applying the Time Trade-Off 

elicitation method to a sub-set of the EQ-5D health states. Using a larger set of directly 

valued health states than in previous studies, Time Trade-Off valuations  were collected from 

a representative sample of the Australian general population (n=417). A range of models 

were estimated and compared as a basis for generating an Australian algorithm. The 

Australia-specific EQ-5D values generated were similar to those previously produced for a 

range of other countries, but the number of directly valued states allowed inclusion of more 

interaction effects which increased the divergence between Australia’s algorithm and other 

algorithms in the literature. This new algorithm will enable Australian community values to 

be reflected in future economic evaluations. 



1  Introduction 

 

Economic evaluation of health interventions is integral to the decision-making process in 

many countries, particularly for government reimbursement decisions. The tools used in the 

construction of such analyses are, therefore, of increasing importance. Cost-utility analysis 

(CUA) is the preferred approach in many countries, including Australia. An increasing focus 

on health-related quality of life has seen the development of standardised descriptive quality 

of life instruments that allow for direct measurement of the quality of life of patients in 

clinical settings, trials and observational studies, and valuation via a single index derived 

from a population-based preference elicitation study.  These instruments (termed multi-

attribute utility instruments) describe health in terms of a set of dimensions and items, and 

include an algorithm that assigns an index number to each health state (defined as a specific 

profile of attribute items representing alternative levels of the different dimensions) 

represented by the instrument space on a scale with 1 representing full health and 0 

representing death. Attaching a value greater than 0 to a health state implies it is better than 

dead, while a negative value represents a state worse than dead. Existing instruments include 

the EQ-5D [1], the SF-6D [2], the Health Utilities Index [3, 4] and AQoL [5].  

 

Australia is an unusual case. While CUA has become the preferred approach for the 

evaluation of pharmaceuticals [6], Australian general population specific weights exist for 

only one of the more common multi-attribute utility instruments (the AQoL). Therefore, 

Australian CUAs performed using EQ-5D or SF-6D data have relied on weights from other 

countries, particularly those from the United Kingdom [1, 2].  

 



Multi-attribute utility instruments have been compared and their role in the economic 

evaluation of health technologies has been discussed widely in the literature [5, 7]. In this 

paper, the focus is on the EQ-5D, as it represents the most commonly used generic quality of 

life descriptive system. The primary aim of this study was to develop Australian based 

weights for the EQ-5D descriptive system, based on data collected from a sample 

representative of the Australian general population and using methods that are largely 

comparable to those used previously to develop weights for other countries.   

 

A secondary aim was to explore methodological issues in the derivation of weights for the 

EQ-5D, particularly in relation to the choice of health states to be directly valued, and the 

impact of this choice on the weights derived. In this study the choice of health states was 

informed by undertaking a simulation study. Several different methods were used to define 

subsets of health states to be directly valued, and simulation data were generated. The results 

from each of these subsets were analysed separately and the resulting utility weights were 

compared for all health states defined by the EQ-5D descriptive system to determine a 

preferred set of health states to be directly valued. This set was then used for the data 

collection for the Australian valuation study.  

 

Section 2 of the paper briefly describes the EQ-5D and its development, including the 

methods that underlie the existing algorithms, and in particular the selection of health states 

for direct valuation. This section motivates the simulation approach used in this study, and 

provides a rationale for it. Section 3 describes the methods for the simulation study, and for 

the data collection and analysis for development of the Australian algorithm. Section 4 

presents the results, and Section 5 discusses the choice of algorithm.  

 



2 Overview of the EQ-5D and valuation studies to date 

 

The EQ-5D was originally developed by a European team of researchers. The Measurement 

and Valuation of Health (MVH) study based at the University of York produced the United 

Kingdom algorithm [8]. The EQ-5D has five dimensions (Mobility, Self Care, Usual 

Activities, Pain/Discomfort, and Anxiety/Depression). Each dimension has three levels 

corresponding to no problems, some problems and severe problems. Consequently there are 

243 (35) possible health states. 

 

Valuation algorithms exist for a variety of countries, including Spain, the United Kingdom, 

Zimbabwe, the Netherlands, the USA, Japan, Denmark, and New Zealand [1, 9-14]. Most of 

these used the Time Trade-Off (TTO) to value individual states, although a Visual Analogue 

Scale was used in New Zealand [15]. Further, all used direct valuation of a sample of health 

states, with regression analysis used to develop a linear additive model to predict the values 

of all other health states. One advantage of the use of a common method for development of 

algorithms across countries is that it allows comparison between national attitudes to ill-

health [9, 16]. Recent evidence suggests that characteristics of the population may drive 

health state valuations, and that differences in valuations between countries are due to 

differences in national attitudes to ill health, rather than being artefacts of variations in 

valuation methods [17]. 

 

Relative to other generic health-related quality of life tools, the number of health states in the 

EQ-5D is small. The SF-6D contains 18,000 health states, and the AQoL allows for more 

than one billion. Tsuchiya et al. [13] discuss issues relating to the number of unique health 

states. First, there is a trade-off between the richer descriptive system permissible under those 



instruments with more health states, and the ease of use associated with tools such as the EQ-

5D. In trial-based evaluation of health technologies, it is preferable to not overburden patients 

with self-complete questionnaires. The brevity of the EQ-5D is an advantage in this regard. 

However, the simplicity of the descriptive system may make it insensitive to changes in 

health status, and, therefore, to the relative impact of different interventions on health-related 

quality of life. Further, in valuation tasks, there may be considerable variability among 

respondents in their interpretation of a particular descriptor (particularly the distinction 

between moderate and severe levels). A five level descriptive system has been introduced and 

is likely to represent an improvement in terms of descriptive ability [18, 19], but no scoring 

algorithm has yet been developed and the three level descriptive system remains widely used 

[20]. 

 

A second issue arises from the number of states that require direct valuation. For any given 

descriptive system, the higher the proportion of states that are directly valued, the less 

restrictions are placed on the functional form of the algorithm (for example, allowing 

estimation of interactions between dimensions).With instruments such as the AQoL, HUI3 

and SF-6D that incorporate several thousand separate health states, any valuation study is 

necessarily limited in the proportion of health states that can be directly valued. In the case of 

the AQoL and HUI3, the developers of the instrument assume a priori a multiplicative 

functional form, which then limits the number of distinct states that need to be valued. In the 

case of the SF-6D, the functional form is assumed to be additive, but even a relatively large 

valuation study can only include a small proportion of the total number of health states, 

which in effect limits the investigation to a linear additive functional form without 

interactions.   

 



Tsuchiya notes that a larger number of directly valued states makes the evaluation exercise 

more onerous. Dolan [8], in the original valuation study included 43 states in the valuation 

sample, but Tsuchiya et al. have argued that a subset of 17 states is appropriate. [13]. While 

there is a potential trade-off between valuation of a larger proportion of states and the burden 

of data collection, electronic methods of data collection can reduce the marginal cost of data 

collection, thus allowing a larger number of respondents for the same data collection 

resources. For example, use of an on-line panel or computer-assisted telephone interview 

(CATI) techniques can reduce recruitment and interview costs. Electronic methods for data 

collection allow more respondents to be questioned, thus either reducing the number of states 

each respondent has to face, and/or increasing the proportion of states that can be directly 

valued (rather than estimated through the subsequent algorithm). 

 

A third issue, related to but distinct from the number of health states that need to be directly 

valued, is the selection of the particular health states that are to be valued.  For example, for 

the EQ-5D it is unreasonable to ask a single respondent to value more than a small subset of 

the total 243 health states within a TTO framework. Two major approaches have been taken 

to constructing this subset; the 43 state approach used in the UK valuation survey (of which a 

subset of 13 of the 43 health states was valued by each respondent), and the 17 state approach 

(of which all 17 were valued by each respondent) used in the Japanese valuation survey [1, 

13]. The approach to selection of health states used by Dolan et al. was based on classifying 

health states as very mild, mild, moderate and severe (based on the levels of each dimension) 

and then selecting a subset (n=43) that included full health, the worst health state in the EQ-

5D, and health states from each of these severity groups. While the basis of selection is not 

described in the papers reporting the study, the approach ensures that each dimension is 

represented at the no problems, some problems and severe problems levels. It also excluded 



‘implausible’ health states, defined as combinations of level 1 on usual activities (“No 

problems with performing one’s usual activities”) with level 3 on mobility (“Confined to 

bed”) or level 3 on self-care (“Unable to wash or dress oneself”) [8]. 

 

Tsuchiya et al. use a subset of 17 of the original Dolan set of 43, described as ‘the minimum 

set of health states required to estimate the value set’, although it is not clear from the paper 

on which criteria this statement is made. In neither case is it clear that experimental design 

principles underlie the choice of health states to be valued. It is noteworthy that the states 

selected under both the Dolan approach and the Tsuchiya approach have a relatively higher 

proportion of dimensions at Level 1 (i.e. No Problems) and a high co-occurrence of Level 1 

in multiple dimensions. The implication of this is that the point precision will differ between 

directly valued states, and the uncertainty around the extrapolated values will be greater in 

those health states with relatively more Level 2 and 3 attributes. A recent study has directly 

valued 101 of the states, but this has not yet been replicated elsewhere [21]. 

 

Given the relatively small number of health states in the EQ-5D, it is feasible to value all 

states directly. This has the advantages of reducing the need to extrapolate between directly 

valued states, and allowing for estimation of a wider range of interaction effects. Given that 

some health states are implausible, it may not be appropriate to value all states, because the 

cognitive task of requiring respondents to imagine an implausible health state may be 

unreasonable in a valuation task. Overall there has been relatively little empirical exploration 

of the impact of selection of health states on the valuation algorithm. Tsuchiya et al. found 

that the performance of the 17 state approach was very similar to the 43 state approach used 

by Dolan et al. In both cases, there were no significant interaction terms apart from the N3 

term (a dummy variable defined as equal to one when any dimension is at the worst level 



which, although not an interaction term in a statistical sense, functions like one in the 

algorithm). However, it is not clear which interaction terms can be modelled using direct 

valuation of either the 43 or 17 states given above because of the lack of information about 

the orthogonality of domains in the subset of health states included.  In this study, we used a 

Monte Carlo simulation study to investigate whether two different assumed underlying utility 

functions can be recovered given direct evaluations of specific subsets of EQ-5D health 

states. We then used the results of the simulation study to inform the selection of the health 

states for our main data collection; the approach to this is described below. 

 

3 Methods 

 

Monte Carlo simulation study 

The aim of the Monte Carlo study was to test whether the selection of health states included 

in a valuation study impacts on the extent to which the parameters of an underlying utility 

function can be investigated. Clearly, this is not a question suited to investigation through 

empirical means; rather, the use of simulated data is necessary to explore these issues. 

 

The broad approach was to assume a specific functional form and set of coefficients to 

represent the systematic component of the utility function defined over EQ-5D space, 

generate simulated data based on each of these functional forms, and then test whether the 

parameters of the utility function could be estimated from these simulated data. Two different 

underlying models of utility were specified - a main effects only model and a model with 

main effects and interactions. The two models are described in more detail below We used 

five different design approaches to select the health states for which data would be simulated, 

and generated the simulated data for each design approach and each assumed utility function 



(thus, ten simulation valuation sets for each combination of design strategy and underlying 

models of utility). The design approaches are described in detail below.  To generate the data 

for each health state included in the simulation valuation sets, we calculated the systematic 

component of the utility function based on the assumed coefficients (see Table 1 for details), 

and added a standard normal error term (zero mean and variance of one) 

, to give the total random utility for each simulated observation. We did this for a simulated 

sample of 300 respondents each valuing 15 health states (therefore the total number of 

observations in each simulation was the same). We repeated this process 100 times, thus the 

simulation valuation data sets comprised 100 independent simulated samples of 300 

respondents for each of the five designs paired with each of the two functional forms. The 

designs provided the X-matrix of the simulated samples. These simulated data were then used 

to estimate the parameters for different models to determine if the original utility function 

from which the data were generated could be recovered given the design approach and the 

selection of health states directly valued. 

 

Designs 

Five approaches to selection of health states were considered in the simulation study. The 

first two replicated the Dolan (43 states) and Tsuchiya (17 states) designs. The third used an 

orthogonal main effects plan (OMEP) in which each pair of levels of particular dimensions 

appears with equal frequency allowing independent estimation of the main effects. [22] For a 

35 design, an 18 state OMEP was identified; this was a fractional factorial which permitted 

the estimation of all main effects while maintaining orthogonality and (usually) balance. Full 

health was one of the states within the OMEP; therefore, the design included 17 states and 

thus was similar to the Tsuchiya approach with the key difference being the use of an OMEP 

to derive the health states. The fourth design was an exhaustive design in which all states 



were directly valued (albeit by a smaller number of respondents in order to keep the total 

sample size constant between designs). This will be called the full factorial (FF). The fifth 

design was the exhaustive design with implausible states removed, or the plausible full 

factorial (FFP). Our main concern with implausible states was that respondents were likely to 

provide unreliable responses to health states which did not correspond to something they 

could imagine, However, this could not be identified in simulated data but we nevertheless 

included this design because it allowed us to investigate the size and direction of potential 

bias that might arise statistically from excluding such a systematic subset of the 243 possible 

EQ-5D health states. 

 

The definition of implausible states for this study differs slightly from that used by Dolan et 

al. (1997). A state was excluded as implausible if it combined level 3 on mobility with either 

level 1 on usual activities or level 1 on self-care (“No problems with self-care”). This 

removes 45 states from the EQ-5D. 

 

Econometric Models for the simulation study 

Two econometric models were estimated for each design. The first was a linear additive main 

effects model including a coefficient for each level of each dimension plus the N3 term 

included in most previous EQ-5D algorithms (a dummy equal to one if at least one dimension 

is at the worst level). This model has been assumed predominantly in the existing country 

specific algorithms (e.g. [8, 9]). The second was a linear additive main effects model that 

included a parameter for each main effect as before but replacing the N3 term with every two 

factor interaction between the two less than full health levels of the five dimensions (e.g. 

Mobility 3 x Pain/Discomfort 2). 

 



Generalised Least Squares (GLS) was used to estimate the parameters in each of the two 

models, and for each of the 100 simulated samples for each design. In terms of selecting a 

preferred design, we were interested in three major outcomes: the ability of the model to 

recover two-factor interaction terms rather than simply the more blunt N3 term, the precision 

with which the design could recover a set of assumed coefficients, and finally the plausibility 

of the valued states. The first two criteria can be tested empirically in the simulation study, 

the third requires a judgment. The decision regarding design attempted to balance these 

concerns. 

 

General population valuation task 

The TTO task was run through an online interface, and was designed such that each 

respondent valued 11 randomly selected health states from the selected design, as well as the 

pits state (33333). For each state, the individual was asked if ten years in that state followed 

by death was preferable to immediate death. For states considered better than immediate 

death, a ‘ping pong’ approach was taken, aiming to identify a period of time x such that the 

respondent was indifferent between x years in full health, and ten years in the state being 

valued , with the smallest gap between observable x’s being 0.05. If an individual failed to 

identify a point of indifference, a score midway between values of x was assigned. The score 

assigned to the state was x/10. If immediate death was preferable to ten years in the state 

followed by death, the task was amended to a choice between a) immediate death, and b) x 

years in the health state, followed by (10-x) years in full health, followed by death. As with 

states better than immediate death, a ‘ping pong’ approach was used. When the value of x 

was adjusted until the individual was indifferent between the options, the health state was 

valued as (x/10)-1. Thus, the boundaries of valuation are -1 and 1. The reasons for doing so 

have been widely discussed elsewhere, including a recent review article [23]. 



 

Recruitment and Data Collection 

 

Recruitment and data collection for the main study was undertaken by a market research 

company, who had received training in the administration of the on-line task. The study was 

approved by the institutional Human Research Ethics Committee.  The sample frame 

comprised individuals who had consented to be on the market research company data base, a 

large existing panel. Respondents were recruited by telephone, and invited to attend the 

interview in four locations, specifically metropolitan Sydney, Sydney suburbs (Parramatta), 

metropolitan Melbourne and rural New South Wales (Orange). Respondents were randomly 

recruited to defined sample characteristics to match the Australian age and gender split. 

Respondents attended an organised session, and interviewed in groups of four with a trained 

interviewer available to assist. After the task began, there was no interaction between the four 

respondents, and the trained interviewer was instructed to only assist with matters of 

interpretation of the question, and any IT issues. The reason for using this electronic approach 

relative to a straightforward online survey was that recent evidence has suggested that results 

generated using that latter approach may produce large numbers of health state valuations 

clustered around -1, 0 and 1 [24]. Each respondent was paid $60 for completion of the 

survey. Data were automatically captured in a computer-based central database of results. 

After an introduction to the task provided by the interviewer, each respondent completed the 

EQ-5D to familiarise them with the instrument. They then valued 12 states using a Time 

Trade-Off (11 and the pits state), assisted through the task by the interviewer.  

 

Analysis 



A number of linear additive specifications were proposed in order to test for interactions. The 

range of utility functions used in the regression analysis is given in Table 1. 

Table 1 here 

Model 1 consisted of a main effect for each movement away from full health. Therefore, a 

move from Level 1 to Level 3 in a particular dimension (for example mobility) was 

represented by the sum of the co-efficient moving from Level 1 to Level 2 (named MO2) and 

from Level 2 to Level 3 (MO3). Therefore, the value y placed on a health state was as 

follows: 

εβα ++= dldl xy ''  

where β′ is a vector of co-efficients and x′ is a vector of dummy variables for dimension d at 

level l. Model 1(b) repeated Model 1, but constrained α to be 1 to represent full health. 

Model 2 (and 2(b)) repeated these specifications, but included a simple interaction term N3, 

which is a dummy variable equal to 1 if and only if at least one dimension is at the worst 

level.  

εγβα +++= 3'' Nxy dldl   

Model 4 (and 4(b)) accounted for the more exhaustive nature of the states directly valued, 

repeating Models 1 and 1b but considering each pairwise interaction term.  

εββα +++= dldldl xxy ''''   

Finally, Models 3 and 3b replicated Models 4 and 4b, but included only interactions between 

dimensions at level 3. 

 

To reflect the panel nature of the data, all specifications adopted a random effects 

Generalised Least Squares model (estimated with xtreg in STATA 10.1). Thus, the error term 

was decomposed into a conventional error term for each observation (assumed to be normally 



distributed with mean equal to zero), and an individual-specific error term representing the 

extent to which the intercept of an individual differs fromα . 

 

In terms of identifying a preferred algorithm for use in Australian cost-utility analyses, 

evaluation of models was based on consistency of signs and orderings of co-efficients (as the 

EQ-5D is monotonic), model fit and logical orderings of predicted health state values. With 

regard to model fit, we examined the log-likelihoods using the Akaike and Bayesian 

Information Criteria (AIC and BIC). The advantage of AIC and BIC is that they consider 

both the number of constraints and the predictive value of the algorithm [25, 26]  

 

Results 

 

Simulation study 

Table 2 presents the simulation study results for the main effect model. The second column is 

the coefficient that was assumed (and from which the simulated data were generated). The 

remaining columns show the means and standard deviations for the coefficients which were 

estimated based on data simulated using each of the five design approaches. If the assumed 

underlying utility function included only main effects, all design approaches performed 

relatively well. The means and standard deviations across all simulations are shown in Table 

1. Under these assumptions, the best performing designs in terms of the size of the standard 

deviations are the OMEP, the full factorial (FF) and the full factorial with only plausible 

health states (FFP). 

Table 2 here 

 



When two-factor interactions were included in the assumed utility function, the only design 

approaches which allow estimation of all two-factor interaction terms are the FF and the FFP. 

The number of two factor interactions which could not be estimated was higher for the 

OMEP and the Tsuchiya approach than for the Dolan approach. While the FF produces the 

least bias and the best precision, the FFP approach performs almost as well when interactions 

are included in the assumed utility function. As the effect of asking respondents to value 

implausible states cannot be captured in a simulation study, it is not possible to determine the 

trade-off between error that would be introduced by high variance in valuations of 

implausible states compared with the error introduced by excluding these states from the 

design. The results of the simulation study suggest that a less restrictive experimental design 

such as FF or FFP would allow for the possibility of estimating interaction effects whereas 

existing experimental design strategies do not. It was decided that the FFP represented the 

most appropriate design approach, allowing for estimation of interactions, without 

introducing the possibly unreasonable cognitive task of valuation of implausible states. This 

design comprises 198 health states, i.e. the entire EQ-5D set of health states minus those 

combining Mobility 3 with either Self-Care 1 or Usual Activities 1.  

 

Time Trade-Off 

 

417 respondents undertook the task, with 101-108 completing in each location.  The 

demographic characteristics of the sample are compared with those of the Australian 

population in Table 3. In general, the age and gender distribution of the sample was similar to 

that of the Australian population, although older Australians were under-represented. As all 

respondents provided a complete set of valuations, it was not necessary to exclude any from 

the analysis. 



Table 3 here 

Five of the responders gave the same value for every health state they saw, of which two 

were conventional non-traders valuing all health states at one as they were unwilling to 

sacrifice any life expectancy for improved quality of life. 

Table 4 here 

The results from the eight specifications are given in Table 4. A variety of models were run in 

which the effect of interview location was investigated, but these were not generally 

statistically significant. Therefore, all results are based on the pooled sample. 

 

In the simple main effect models (1 and 1(b)), and in those which include the N3 term (2 and 

2(b)), all coefficients  are negative, and all level 3 coefficients have a larger absolute value 

than their respective level 2 coefficient. This is as expected and reflects the monotonic nature 

of the levels of each dimension in the EQ-5D. All coefficients are highly statistically 

significant (p<0.01). In addition, including a constant term improved model fit across all 

specifications. Of the two-way interactions included in models 3 and 3b, significance at the 

5% level is only met by 4 of the 38 interactions. However, those that remain significant in 

both models are interactions of the worst levels of the dimensions Mobility, Pain / 

Discomfort and Anxiety / Depression. This suggests that these interactions are potentially 

important in obtaining accurate utility estimates for very poor health states.  

 

Model 3 and 3b included only the ten interactions between dimensions at level 3, and retained 

the four statistically significant coefficients (p<0.01) with a further three statistically 

significant at the 10% level. 

Figure 1 here 



Comparison of the valuation from different utility model specifications of the 198 plausible 

health states is given in Figure 1. There is a high degree of agreement between specifications, 

both in terms of scores and ranking. The minimum pairwise correlation co-efficient was 

0.960, and the minimum pairwise Spearman co-efficient was 0.970. However, this high level 

of agreement across the algorithm ignores an important issue at the better end of the scale 

representing typically mild health states. For the most commonly observed non-full health 

states (principally those with 4 dimensions at Level 1, and one at Level 2), the difference in 

algorithms is markedly dependent on whether the intercept is constrained to unity (which is 

investigated by some published EQ-5D algorithms, but not used in any of their recommended 

algorithms). This is of particular importance as these health states are likely to be relatively 

common when using self-assessed EQ-5D health in economic evaluation of any population 

other than very ill patient groups. 

 

Discussion 

 

The simulation approach used in this study demonstrates that previous time trade-off studies 

designed to develop EQ-5D algorithms lack sufficient coverage of the EQ-5D space to allow 

identification and estimation of interactions that may be present between dimensions and 

levels. Our data collection and comparison of models suggests that a more complex algorithm 

may be appropriate. Current models which include only the N3 term are essentially additive. 

In this study, the model that provides the best fit includes a more complex set of interactions 

of dimensions at their worst levels. The fact that these interaction terms are generally positive 

and, therefore, in the opposite direction to the main effects suggests that there is a 

multiplicative effect, that is the additional decrement in utility associated with a worsening in 

a second dimension is smaller than the decrement for the first worsening dimension.  



 

In all specifications, the constant term is significantly different from one. This is consistent 

with the findings of other studies, and suggests that it is appropriate to include an 

unconstrained constant term in the TTO algorithm. The inclusion of a constant term that is 

not constrained to unity is typically interpreted as capturing the effect of any move away 

from full health.  However, it does impact on the valuation of the milder health states, an 

impact that is particularly evident in comparison of models 1 and 1b. Anchoring prevents a 

ceiling effect which can be seen in the non-anchored algorithms. However, this ceiling may 

be justifiable in that the constant plays a role relative to dimensions at level 2 or 3 that the N3 

term plays relative to dimensions at level 3 only. 

 

The simple main effect models 1 and 1b can be rejected on model fit, with significantly 

poorer AIC/BIC values than other models. The significant interaction terms present in the 

other models suggest that neither 1 nor 1b are appropriate.  In addition, the inclusion of an 

anchoring point on these models has the largest impact on health state valuations.  

 

Model 2 is the model that is most consistent with existing studies internationally and provides 

a point of comparison between the Australian population’s preferences and those of other 

populations in other countries. This is presented in Figure 2. The N3 term is significant, and 

has a similar effect in the Australian models to that seen in other countries. This comparison 

also suggests broad consistency between Australian valuations and internationally.  

 

Models 3 and 4 take a more sophisticated approach to interactions, and both represent an 

improvement in model fit over Model 2.  Model 4 includes all interaction terms, whereas 

Model 3 includes only interactions between level 3 of dimensions. Additional combinations 



of interactions were considered (such as including only interactions involving at least one 

level 3 dimension, or limiting interactions to specific dimensions), but did not prove better 

than those reported here. In terms of AIC and BIC, Model 3 is preferred to Model 4. In both 

cases some of the interaction terms are not significantly different from zero. This is 

particularly the case in Model 4. While this may be the effect of sample size given that this 

model includes a large number of estimated coefficients, the fact that there is not a consistent 

pattern of interactions also suggests that many of these effects may not impact on the 

valuation placed on the health state beyond the main effect. As expected given the pattern of 

non-statistically significant interaction terms in Model 4, it does not provide an improvement 

over Model 3 when compared using the AIC and BIC.  

 

In Model 3 the interaction terms are more consistently significant, and typically positive. In 

particular, the interaction terms for mobility with pain/discomfort, self care with 

pain/discomfort and self care with anxiety/depression are all statistically significant and 

positive. Comparing Models 2 and 3 it can be seen that the main effect for these terms in 

Model 4 is much larger. While not all interaction terms are significant, the improvement in fit 

and the significance of interactions between the mobility, pain/discomfort, self care and 

anxiety/depression dimensions suggests that this model is to be preferred over Model 2, and 

provides a more appropriate algorithm for the Australian population. In balancing parsimony 

with predictive value, we recommend Model 3 as the preferred Australian algorithm although 

we also recommend that the effect of using alternate specifications be considered as part of 

sensitivity analysis in economic evaluation. 

 

There were 14 non-monotonic pairwise orderings of health states in the algorithm implied by 

Model 3. In these pairs, the value placed on the poorer health state exceeded the value placed 



on the better one by up to 0.079 (mean of 0.028). Because the interaction effects generally 

offset the main effect (reflecting the fact that the move to a worse level on one dimension 

depends on the levels of other dimensions, and is generally smaller when other dimensions 

are already at lower levels), it is possible for non-monotonic effects to occur.  Given the 

means and standard deviations of the estimated coefficients that generate these implausible 

orderings, it is likely that this is a result of sample size rather than valuations (that is, they are 

generally very small and may result from random error in the data).  These non-monotonic 

orderings are problematic because if used in economic evaluation they would produce 

implausible cost-effectiveness results, and, therefore, a method was proposed for removing 

these from the final algorithm implied by Model 3. 

 

The scores for these health states were then amended by considering each illogically ordered 

pair and assigning to each the mean value of the two health states under the algorithm. This 

approach was taken as it minimised the maximum movement of a health state away from the 

state assigned through the preferred algorithm. Functionally this is equivalent to treating the 

valuations of the two health states as the same, and treating the non-monotonic effects as 

random error. In situations in which a health state is in more than one illogically ordered pair, 

the mean score which does not produce a new illogically ordered pair was selected. 

 

The updated valuation of all EQ-5D health states under Model 3 with the amendment for 

illogical pairings in given in Appendix 1. 

 

The comparability of the amended Model 3 algorithm to that produced elsewhere can be 

addressed using the graphical approach taken by Badia et al. [9]. Ranking each of the 243 

states using the Australian algorithm, each state is valued under a selection of the pre-existing 



algorithms and placed on one graph. Figure 2 compares the Australian weights with a 

selection of other studies (in this case, UK, Spain, Japan). 

 

This study provides the first Australian general population derived TTO EQ-5D weights for 

use in Australian cost-utility analysis. The broad consistency of the health state values 

predicted by Model 3 with those from other studies undertaken elsewhere using the same 

regression gives us confidence that the valuation studies are comparable. However, the more 

comprehensive approach taken in this study to both the absolute number and descriptive 

content of health states included for direct valuation within the preference elicitation study, 

suggests that a more complex scoring algorithm than traditionally applied may be more 

appropriate. Further research is required to confirm the pattern of interactions in other 

countries and settings. 

 

1. Dolan P, Gudex C, Kind P, et al. The time trade-off method: results from a general 
population study. Health Econ 1996;5:141-54. 

2. Brazier J, Roberts J, Deverill M. The estimation of a preference-based measure of 
health from the SF-36. J Health Econ 2002;21:271-92. 

3. Horsman J, Furlong W, Feeny D, et al. The Health Utilities Index (HUI): concepts, 
measurement properties and applications. Health Qual Life Outcomes 2003;1:54. 

4. Torrance GW, Furlong W, Feeny D, et al. Multi-attribute preference functions. Health 
Utilities Index. Pharmacoeconomics 1995;7:503-20. 

5. Hawthorne G, Richardson J, Day NA. A comparison of the Assessment of Quality of 
Life (AQoL) with four other generic utility instruments. Ann Med 2001;33:358-70. 

6. Department of Health and Ageing. Guidelines for preparing submissions to the 
Pharmaceutical Benefits Advisory Committee (Version 4.2) 
(http://www.health.gov.au/internet/main/publishing.nsf/Content/pbacguidelines-
index). Canberra, 2007. 

7. Brazier J, Deverill M, Green C. A review of the use of health status measures in 
economic evaluation. J Health Serv Res Policy 1999;4:174-84. 

8. Dolan P. Modelling Valuations for EuroQol Health States. Med Care 1997;35:1095-
108. 

9. Badia X, Roset M, Herdman M, et al. A comparison of United Kingdom and Spanish 
general population time trade-off values for EQ-5D health states. Med Decis Making 
2001;21:7-16. 

10. Jelsma J, Hansen K, De Weerdt W, et al. How do Zimbabweans value health states? 
Popul Health Metr 2003;1:11. 

http://www.health.gov.au/internet/main/publishing.nsf/Content/pbacguidelines-index)
http://www.health.gov.au/internet/main/publishing.nsf/Content/pbacguidelines-index)


11. Lamers LM, McDonnell J, Stalmeier PF, et al. The Dutch tariff: results and arguments 
for an effective design for national EQ-5D valuation studies. Health Econ 
2006;15:1121-32. 

12. Shaw JW, Johnson JA, Coons SJ. US valuation of the EQ-5D health states: 
development and testing of the D1 valuation model. Med Care 2005;43:203-20. 

13. Tsuchiya A, Ikeda S, Ikegami N, et al. Estimating an EQ-5D population value set: the 
case of Japan. Health Econ 2002;11:341-53. 

14. Wittrup-Jensen KU, Lauridsen JT, Gudex C, et al. Estimating Danish EQ-5D tariffs 
using the time trade-off (TTO) and visual analogue scale (VAS) methods. In: 
Norinder A, Pedersen KL, Roos P, (eds). Proceedings of the 18th Plenary Meeting of 
the EuroQol Group. Copenhagen: 2001. 

15. Devlin NJ, Hansen P, Kind P, et al. Logical inconsistencies in survey respondents' 
health state valuations -- a methodological challenge for estimating social tariffs. 
Health Econ 2003;12:529-44. 

16. Norman R, Cronin P, Viney R, et al. International Comparisons in Valuing EQ-5D 
Health States: A Review And Analysis. Value Health 2009;12:1194-200. 

17. Knies S, Evers SM, Candel MJ, et al. Utilities of the EQ-5D: Transferable or Not? 
Pharmacoeconomics 2009;27:767-79. 

18. Janssen MF, Birnie E, Haagsma JA, et al. Comparing the standard EQ-5D three-level 
system with a five-level version. Value Health 2008;11:275-84. 

19. Janssen MF, Birnie E, Bonsel GJ. Quantification of the level descriptors for the 
standard EQ-5D three-level system and a five-level version according to two methods. 
Qual Life Res 2008;17:463-73. 

20. Brazier J, Ratcliffe J, Salomon JA, et al. Measuring and valuing health benefits for 
economic evaluation Oxford: Oxford University Press, 2007. 

21. Lee YK, Nam HS, Chuang LH, et al. South Korean Time Trade-Off Values for EQ-
5D Health States: Modeling with Observed Values for 101 Health States. Value 
Health 2009. 

22. Dey A. Orthogonal Fractional Factorial Designs New York: Wiley, 1985. 
23. Tilling C, Devlin N, Tsuchiya A, et al. Protocols for time tradeoff valuations of health 

states worse than dead: a literature review. Med Decis Making;30:610-9. 
24. Norman R, King M, Clarke D, et al. Does mode of administration matter? 

Comparison of on line and face-to-face administration of a time trade-off task. Qual 
Life Res 2010;19:499-508. 

25. Akaike H. A new look at the statistical model identification. IEEE Transactions on 
Automatic Control 1974;19:716-23. 

26. Schwarz GE. Estimating the dimensions of a model. Annals of Statistics 1978;6:461-
64. 

 
 



Figure 1: Comparisons of utility weights by model using Model 3 as base 
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Figure 2: Comparison of utility weights for all 243 health states based on the preferred 

Australian algorithm (Model 3) with corresponding values from existing UK, Japan and 

Spain algorithms 
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Table 1: Definition of Variables 

Variable Definition Used in 

MO2 1 if mobility is level 2; 0 otherwise All models 

MO3 1 if mobility is level 3; 0 otherwise All models 

SC2 1 if mobility is level 2; 0 otherwise All models 

SC3 1 if mobility is level 3; 0 otherwise All models 

UA2 1 if mobility is level 2; 0 otherwise All models 

UA3 1 if mobility is level 3; 0 otherwise All models 

PD2 1 if mobility is level 2; 0 otherwise All models 

PD3 1 if mobility is level 3; 0 otherwise All models 

AD2 1 if mobility is level 2; 0 otherwise All models 

AD3 1 if mobility is level 3; 0 otherwise All models 

N3 1 if any dimension is level 3; 0 otherwise Models 2/2b 

XXa x 

YYb 

1 if dimension XX is level a (where a≠1) and dimension 

YY is level b (where b≠1) and XX ≠ YY (in model 3/3b, 

b=3); 0 otherwise 

Models 

3/3b/4/4b 

 



Table 2: Simulation Results (Main Effects) 

Variable Coefficient Dolan (SD) OMEP (SD) Tsuchiya (SD) 

Full factorial 

(SD) 

Full factorial 

plausible (SD) 

Constant 0.15 0.168(0.055) 0.143(0.081) 0.149(0.043) 0.149(0.069) 0.151(0.073) 

MO2 0.1 0.042(0.052) 0.092(0.048) 0.101(0.082) 0.098(0.049) 0.108(0.041) 

MO3 0.3 0.276(0.067) 0.302(0.050) 0.318(0.086) 0.300(0.059) 0.312(0.058) 

SC2 0.1 0.084(0.055) 0.092(0.049) 0.090(0.065) 0.101(0.049) 0.097(0.053) 

SC3 0.2 0.245(0.067) 0.191(0.054) 0.200(0.080) 0.202(0.056) 0.195(0.056) 

UA2 0.1 0.113(0.063) 0.099(0.048) 0.098(0.071) 0.101(0.049) 0.098(0.050) 

UA3 0.15 0.131(0.074) 0.148(0.05) 0.137(0.087) 0.151(0.051) 0.141(0.051) 

PD2 0.2 0.203(0.052) 0.197(0.049) 0.191(0.067) 0.200(0.047) 0.200(0.047) 

PD3 0.4 0.522(0.058) 0.404(0.052) 0.394(0.072) 0.396(0.050) 0.394(0.050) 

AD2 0.15 0.083(0.054) 0.151(0.053) 0.163(0.067) 0.149(0.046) 0.151(0.044) 

AD3 0.3 0.369(0.060) 0.299(0.056) 0.304(0.072) 0.297(0.050) 0.295(0.049) 

N3 0.2 0.269(0.073) 0.197(0.075) 0.199(0.071) 0.198(0.075) 0.192(0.075) 

 



Table 3: Sample Characteristics  
 TTO Sample 

(n=417) 
Australian 
Population 

Male (%) 50.4 49.3 
18-24 9.4 6.6 
25-34 9.1 9.1 
35-44 8.6 9.4 
45-54 10.3 8.9 
55-64 8.6 7.3 
65+ 4.6 7.8 
Female (%) 49.6 50.7 
18-24 8.2 6.3 
25-34 7.9 9.0 
35-44 9.6 9.5 
45-54 12.0 9.1 
55-64 9.1 7.4 
65+ 2.9 9.4 
   
Australia born (%) 78.4 76.0 
   
Household income 
(weekly gross) (declined 
responses excluded) (%) 

  

Less than $500 21.6 23.5 
$500-$999 28.4 24.5 
$1,000-$1,999 31.2 33.3 
More than $2,000 18.8 18.7 
   
Marital status (declined 
responses excluded) (% ) 

  

Never married 36.0 34.0 
Previously married 12.6 12.7 
Married 51.5 53.3 
   
EQ-5D   
Those reporting problems 
on (%) 

  

Mobility 12.0  
Self-Care 1.0  
Usual Activities 9.4  
Pain / Discomfort 23.7  
Anxiety / Depression 24.5  
   
Attitude to task   
Difficult / very difficult 3.4  
Neither easy nor difficult 17.3  
Easy / very easy 79.4  
 



Table 4: Estimated coefficients from the alternative model specifications 

 

Coefficient 

(SE) 

Modela        

 1 1b 2 2b 3 3b 4 4b 

Constantb 0.855(0.022)**  0.910(0.022)**  0.895(0.022)**  0.848(0.038)**  

MO2 -0.076(0.014)** -0.094(0.014)** -0.071(0.014)** -0.081(0.014)** -0.068(0.014)** -0.080(0.014)** -0.033(0.037) -0.110(0.032)** 

MO3 -0.269(0.019)** -0.266(0.019)** -0.264(0.019)** -0.261(0.019)** -0.374(0.033)** -0.372(0.033)** -0.355(0.047)** -0.341(0.047)** 

SC2 -0.106(0.016)** -0.138(0.015)** -0.104(0.016)** -0.122(0.015)** -0.087(0.016)** -0.109(0.016)** -0.040(0.038) -0.123(0.031)** 

SC3 -0.202(0.017)** -0.228(0.017)** -0.169(0.017)** -0.181(0.017)** -0.267(0.025)** -0.291(0.025)** -0.172(0.051)** -0.236(0.048)** 

UA2 -0.082(0.016)** -0.110(0.016)** -0.048(0.017)** -0.060(0.016)** -0.053(0.017)** -0.072(0.017)** 0.002(0.041) -0.089(0.034)** 

UA3 -0.149(0.017)** -0.175(0.016)** -0.085(0.018)** -0.093(0.018)** -0.139(0.024)** -0.165(0.023)** -0.139(0.047)** -0.203(0.044)** 

PD2 -0.073(0.015)** -0.099(0.015)** -0.082(0.015)** -0.098(0.014)** -0.068(0.015)** -0.085(0.015)** -0.031(0.040) -0.118(0.033)** 

PD3 -0.308(0.015)** -0.331(0.015)** -0.268(0.016)** -0.277(0.016)** -0.449(0.022)** -0.473(0.022)** -0.437(0.042)** -0.519(0.037)** 

AD2 -0.090(0.015)** -0.120(0.015)** -0.086(0.015)** -0.103(0.014)** -0.097(0.015)** -0.118(0.015)** -0.087(0.039)* -0.179(0.032)** 

AD3 -0.259(0.015)** -0.285(0.015)** -0.214(0.016)** -0.223(0.016)** -0.397(0.023)** -0.424(0.023)** -0.394(0.042)** -0.484(0.036)** 

N3   -0.180(0.020)** -0.201(0.019)**     

MO2_SC2       0.013(0.036) 0.039(0.035) 



MO2_SC3       -0.029(0.038) -0.010(0.037) 

MO2_UA2       -0.052(0.037) -0.033(0.037) 

MO2_UA3       0.010(0.036) 0.036(0.036) 

MO2_PD2       0.002(0.036) 0.036(0.035) 

MO2_PD3       0.011(0.038) 0.043(0.037) 

MO2_AD2       -0.037(0.036) -0.003(0.035) 

MO2_AD3       -0.027(0.038) 0.007(0.037) 

MO3_SC3     0.064(0.034) 0.061(0.034) 0.050(0.043) 0.043(0.043) 

MO3_UA3     -0.025(0.034) -0.031(0.034) 0.015(0.044) 0.018(0.044) 

MO3_PD2       0.003(0.050) 0.000(0.050) 

MO3_PD3     0.092(0.033)** 0.094(0.033)** 0.107(0.048)* 0.106(0.048)* 

MO3_AD2       -0.062(0.049) -0.063(0.050) 

MO3_AD3     0.013(0.035) 0.016(0.035) -0.019(0.048) -0.015(0.048) 

SC2_UA2       -0.049(0.041) -0.019(0.04) 

SC2_UA3       -0.020(0.043) -0.002(0.043) 

SC2_PD2       -0.008(0.039) 0.030(0.038) 

SC2_PD3       -0.049(0.043) -0.018(0.042) 

SC2_AD2       -0.035(0.040) -0.002(0.039) 

SC2_AD3       -0.043(0.043) -0.015(0.043) 



SC3_UA2       -0.075(0.048) -0.047(0.047) 

SC3_UA3     -0.055(0.030) -0.050(0.030) -0.087(0.046) -0.071(0.046) 

SC3_PD2       -0.090(0.043)* -0.060(0.043) 

SC3_PD3     0.090(0.030)** 0.100(0.030)** 0.008(0.044) 0.025(0.044) 

SC3_AD2       0.019(0.044) 0.050(0.044) 

SC3_AD3     0.105(0.031)** 0.104(0.031)** 0.093(0.047)* 0.121(0.046)** 

UA2_PD2       -0.012(0.042) 0.024(0.041) 

UA2_PD3       0.014(0.045) 0.047(0.045) 

UA2_AD2       0.001(0.042) 0.046(0.040) 

UA2_AD3       0.015(0.047) 0.057(0.046) 

UA3_PD2       -0.029(0.041) -0.005(0.041) 

UA3_PD3     0.025(0.030) 0.032(0.030) 0.008(0.044) 0.037(0.043) 

UA3_AD2       0.037(0.042) 0.065(0.042) 

UA3_AD3     0.043(0.030) 0.060(0.030)* 0.059(0.045) 0.088(0.044)* 

PD2_AD2       -0.005(0.038) 0.031(0.037) 

PD2_AD3       0.027(0.040) 0.060(0.039) 

PD3_AD2       0.042(0.041) 0.078(0.040) 

PD3_AD3     0.185(0.029)** 0.186(0.029)** 0.223(0.041)** 0.258(0.040)** 

Log -3070.7 -3092.8 -3029.5 -3037.5 -2987.8 -2999.1 -2975.8 -2983.6 



likelihood 

AIC 6167.32 6209.68 6086.96 6101.05 6021.51 6042.21 6053.57 6067.13 

BIC 6252.06 6287.90 6178.21 6185.79 6171.43 6185.60 6385.99 6393.03 

* Significant at 5% level 

** Significant at 1% level 

NOTES: 

a As the final set of directly valued health states did not include any co-occurrence of MO3 with either SC1 or UA1, no interaction was fitted between MO3 and SC2, or 

between MO3 and UA2 in Models 3-4b. 

b The null hypothesis is that the constant is one rather than zero 

 


