
Fast simulation of animal locomotion: lamprey
swimming

Matthew Beauregard, Paul J. Kennedy, and John Debenham

Faculty of IT, University of Technology, Sydney, PO Box 123, Broadway, NSW 2007,
AUSTRALIA,

paulk@it.uts.edu.au

Abstract. Biologically realistic computer simulation of vertebrate lo-
comotion is an interesting and challenging problem with applications in
computer graphics and robotics. One current approach simulates a rel-
atively simple vertebrate, the lamprey, using recurrent neural networks
for the spine and a physical model for the body. The model is realized
as a system of differential equations. The drawback with this approach
is the slow speed of simulation. This paper describes two approaches to
speeding up simulation of lamprey locomotion without sacrificing too
much biological realism: (i) use of superior numerical integration algo-
rithms and (ii) simplifications to the neural architecture of the lamprey.

1 Introduction

Vertebrate locomotion – walking, swimming, crawling, hopping – is a complex
process that is difficult to imitate in simulated environments. Arms, legs, and
spinal columns have many degrees of freedom that must be controlled in a
coordinated way for stable locomotion to occur. This complexity has limited
the use of biologically realistic locomotion in computer graphics and robotics,
despite its considerable advantages.

Some characteristics common to locomotion in all vertebrates suggest a fruit-
ful approach. The key to vertebrate locomotion is not the brain but the spinal
cord, which contains all the structures necessary for coordinated movement. All
types of motion, whether by legs or slithering muscles, on land or through wa-
ter, are driven by oscillations between the left and right sides of small segments
in the spinal cord. This suggests that an approach to the problem is to study
a simple vertebrate and design a simulation that successfully imitates it. The
findings will illuminate locomotion in higher vertebrates.

Let us introduce that simplest vertebrate. The lamprey is a jawless eel-
shaped fish. Primitive in an evolutionary sense, its major distinguishing fea-
ture is a large rounded sucker surrounding the mouth [1]. Its spinal cord is
a continuous column of neurons made up of around 100 clusters. Each cluster
projects motoneurons to the surrounding muscles [2]. Lampreys swim by propa-
gating a wave along the body from head to tail by phased muscular contraction.
Normally the wavelength of this traveling wave is constant and approximately
corresponds to body length; its frequency determines the speed of swimming.

2 Matthew Beauregard, Paul J. Kennedy, and John Debenham

The lamprey has been studied thoroughly over several decades. See [3] for a
clear introduction to some of the modeling and other papers in the same volume
(e.g. [4]) for further details. A variety of simulations has been implemented (see
Section 2) but in the pursuit of absolute faithfulness to biology they run very
slowly, which is a hindrance to their practical use in computer graphics.

In this paper we develop an understanding of the neural structure, demon-
strate an implementation of swimming, and introduce a simplification resulting
in reduced execution time while retaining biological realism. Sections 2 and
3 describe our model and the implementation and numerical strategies for in-
creasing simulation speed. In section 4 we describe typical behavior of the model
and, in section 5, give results for increasing simulation speed by simplifying the
neural structure. Finally, section 6 gives a conclusion.

2 Model

Ijspeert [2] groups neural models of the lamprey into three classes: biophysical,
connectionist and mathematical. Biophysical models most closely replicate the
biological systems of the lamprey. Their main intent is to investigate whether
enough is understood of lamprey neurobiology to produce models whose results
agree with physiological observations. Connectionist models are less realistic
and seek to capture only the main feature of biological neurons: a changing
frequency of action potential spikes according to input. The main interest here
is in connections between neurons. Mathematical models are more abstracted
again and view the neural controller as a chain of oscillators, the focus being on
examining the couplings between them. Connectionist models are very similar
to dynamical recurrent neural networks. They compute the mean firing rate of
biological neurons depending on input and time constants. They can be discrete
in time or continuous using leaky integrators. Ekeberg presents a sophisticated
connectionist model that formed the basis for our work [5] as well as that of [2].

The model presented here simulates both the lamprey’s neural activity and
the results of that activity when applied to a physical body in water. In contrast
to previous work, the neural and physical aspects of simulation are combined
into a single model, rather than two separate but interacting models.

2.1 Neural model

While biologically the spinal cord is a continuous column of neurons without
clear boundaries, it can be considered as roughly 100 discrete but intercon-
nected oscillators (or segmental networks). The combined assembly is known
as a central pattern generator (CPG). The main types of neuron involved in
the process are: motoneurons (MN) projecting to muscles, excitatory interneu-
rons (EIN) projecting to ipsilateral neurons (ie. those on the same side of the
segment), lateral inhibitory interneurons (LIN) projecting to ipsilateral neu-
rons, contralateral inhibitory interneurons (CIN) projecting to contralateral

Faster simulation of animal locomotion 3

neurons (ie. the other side of the segment) and excitatory brain stem (BS) that
project from the brain. The controller consists of 100 segmental networks. Each
model neuron represents a population of functionally similar neurons. Actual
connections between segments are not well known. Ekeberg chose a simplified,
symmetric coupling (except for connections from the CINs which are longer tail-
ward). Parameters for both inter– and intrasegmental connections and extents
are given in Table 1. In order to limit output from neurons and to compensate
neurons in segments near ends of the body (and have fewer intersegmental in-
puts), synaptic weights are scaled by dividing by the number of input segments.

Ekeberg [5] advocated supplying extra excitation to the first few segments of
the spinal column to help generate a phase–lagged oscillation down the spine.
However, we found in our simulations that this is not necessary to generate
phase–lagged oscillation and actually impaired the speed of the lamprey. Ar-
rangement of segmental coupling is sufficient to cause a traveling wave towards
the tail. Accordingly, extra excitation was not applied.

Table 1. Neural connection configuration. From [2] with additions from [5] and
separately–controllable left– and right–side excitation. Negative weights indicate in-
hibitory connections. Extents of connections to neighbor segments are given in brack-
ets (headward and tailward, respectively).

To ↓ From: EINL CINL LINL EINR CINR LINR BSL BSR

EINL 0.4 [2, 2] - - - -2 [1, 10] - 2 0
CINL 3 [2, 2] - -1 [5, 5] - -2 [1, 10] - 7 0
LINL 13 [5, 5] - - - -1 [1, 10] - 5 0
MNL 1 [5, 5] - - - -2 [5, 5] - 5 0
EINR - -2 [1, 10] - 0.4 [2, 2] - - 0 2
CINR - -2 [1, 10] - 3 [2, 2] - -1 [5, 5] 0 7
LINR - -1 [1, 10] - 13 [5, 5] - - 0 5
MNR - -2 [5, 5] - 1 [5, 5] - - 0 5

Each neuron is modeled as a leaky integrator with a saturating transfer
function. u is the mean firing frequency of the population of neurons:

ξ̇+ =
1
τD

 ∑
i∈ψ+

uiwi − ξ+


ξ̇− =

1
τD

 ∑
i∈ψ−

uiwi − ξ−


ϑ̇ =

1
τA

(u− ϑ)

u = 1− e(Θ−ξ+)Γ − ξ− − µϑ if positive
0, otherwise, (1)

4 Matthew Beauregard, Paul J. Kennedy, and John Debenham

where ξ+ and ξ− are the delayed ‘reactions’ to excitatory and inhibitory input
and ϑ represents the frequency adaptation (decrease in firing rate over time
given a constant input) observed in some real neurons. w are the synaptic
weights of excitatory and inhibitory presynaptic neuron groups ψ+ and ψ−, τD
is the time constant of the dendritic sums, τA the time constant of frequency
adaptation, µ a frequency adaptation constant, Θ the threshold and Γ the gain.
The parameters for the constants given in Table 2 are hand-tuned to produce
output that matches physiological observations.

Table 2. Neuron parameters. From [5]. See text for an explanation of symbols.

Neuron type Θ Γ τD µ τA

EIN -0.2 1.8 30ms 0.3 400ms
CIN 0.5 1.0 20ms 0.3 200ms
LIN 8.0 0.5 50ms 0.0 -
MN 0.1 0.3 20ms 0.0 -

2.2 Physical model

We model the body similarly to [5] and [2]. It is represented by ten links (so ten
neural segments act on one body segment) and nine joints between them with
one degree of freedom. Each link is modeled as a right elliptic cylinder with the
major axes of the ellipses aligned vertically. All links have length l of 30 mm and
are 30 mm high. Their width is a maximum of 20 mm, decreasing towards the
tail. Muscles appear on both sides of the body, attached to the centers of each
segment. They are modeled with a spring–and–damper arrangement, where
the force exerted by the muscle is set using the spring constant. Thus the local
body curvature varies linearly with muscle length. Body and neural network are
linked by having motoneuron excitation drive the muscular spring constants.
For the purposes of modeling, the body is represented in two dimensions as
rectangles with joints at the midpoints of their sides. The position of a link
i can be described by (xi, yi, ϕi), where xi and yi are the coordinates of the
rectangle centre and ϕi is the angle of a line through the centre and the joint
with respect to the x–axis (see Fig. 1). This simulation strategy gives a maximal
representation of the body position, so constraint forces are used to keep links
together. Physical parameter values of the links are the same as those of [2].

Body movement is a result of three forces: torques T generated by the mus-
cles, forces Wi from the water and constraint forces Fi and Fi−1. These forces
determine the acceleration of the links according to Newton’s law of motion.
Change in position for links i ∈ {1, . . . , N} is determined by integration.

miẍi = Wi,x + Fi,x − Fi−1,x

miÿi = Wi,y + Fi,y − Fi−1,y

Faster simulation of animal locomotion 5

yi

xi

Tail

Head

y

x

ϕi

Fig. 1. Co-ordinates describing the position of a link. From [5].

Iiϕ̈i = Ti − Ti−1 − (Fi−1,x + Fi,x)
li
2

sinϕi

+(Fi−1,y + Fi,y)
li
2

cosϕi (2)

Muscles are modeled as springs directly connected to the sides of the links. In
an adaptation of Hooke’s law, the force exerted by each spring on its associated
joint is determined not only by the local curvature of the body but also linearly
by the output of the motoneurons in the associated segments. As in [5], torque
is defined as

Ti = α (ML −MR) + β (ML +MR + γ) (ϕi+1 − ϕi) + δ (ϕ̇i+1 − ϕ̇i)

where ML and MR are left and right motoneuron activity and the parameters
α (=3N mm), β (=0.3 N mm), γ (=10) and δ (=30N mm ms) are set as in [5].

Speed of motion through water in our case is sufficiently high that we only
account for inertial water force which is proportional to the square of the speed:

W = ρv2A

2
C

where ρ is the fluid density, v object speed, A area parallel to movement and
C drag coefficient. The abbreviation λ = ρA2 C is made in [5], together with the
simplification W = W⊥+W‖ = v2

⊥λ⊥+ v2
‖λ‖ and values of λ⊥ and λ‖ for links.

Body segments are constrained such that for adjacent segments, joints for
the facing sides must be in the same position (ie., the links stay joined together).
Joint position is expressed in terms of xi, yi and ϕi for i ∈ {1, . . . , n− 1}, so

xi +
li
2

cosϕi = xi+1 −
li+1

2
cosϕi+1

yi +
li
2

sinϕi = yi+1 −
li+1

2
sinϕi+1 (3)

Equations (2) and (3) form a differential–algebraic equation (DE) system [5]
typical of non–minimal coordinate systems that can be numerically integrated.

6 Matthew Beauregard, Paul J. Kennedy, and John Debenham

3 Implementation

The neural and physical models described above were implemented in C++.
The numerical solver collection from the GNU Scientific Library [6] integrated
the DEs. A rendering program, to represent output of the simulation graphi-
cally, was implemented in Python using PyOpenGL [7]. The program accepted
an output logfile generated by the simulation containing system state at 5ms
intervals, and rendered this state both to a monitor window and to file. The
files were later combined into a video using mencoder [8]. While the simulator
and renderer can be run without the intermediate step of a logfile, keeping a
permanent record of simulations is advantageous, as are the abilities to run the
simulation without rendering overhead and to re–render simulations.

Embedded 8th order Runge–Kutta Prince–Dormand method with 9th order
error estimate (rk8pd) was selected as the numerical solver for the DE system.
Also, rather than selecting a fixed step size an adaptive solving controller was
used, that takes a variable number of smaller substeps, with backtracking, to
keep solution error under a set maximum error limit. We set the error limit to
10−3, which is the largest error rate resulting in acceptable precision for simula-
tions of 100000 ms. This error limit should be decreased for longer simulations.

The physical and neural models were combined into one system of DEs
for solution, a departure from Ijspeert [2] where the systems were separate.
Ijspeert’s physical solver used a step length of 0.5ms, 1/10th that of the step
length of his neural solver, presumably because the neural system behaves in a
more regular way and is thus less subject to accumulated error, allowing larger
solving steps to be taken and thus reducing runtime. But when an adaptive
step–size controller is used this arrangement is detrimental to performance.
Input from the neural system is constant for 10 steps of the physical system, then
abruptly changes, resulting in “sawtooth” input. At every “tooth”, the adaptive
controller responds to the sudden change by backtracking and taking extremely
small solving steps. For this reason a combined system was constructed, so the
neural and physical models are solved at the same rate. This is faster, although
more steps are taken through the neural system than are perhaps required.

4 Typical model behavior

We describe a typical simulation in which left and right brainstem inputs are
set to 0.67, a suitable level for forward movement. Quantitative results vary
with excitation level but general system behavior is the same. A 10 s simulation
takes 620 s to run on an AMD 1800 CPU.

As simulation begins, both ends of the lamprey curl inward to the left
(Fig. 2). As they start to uncurl at 100 ms, a wave forms along the body and is
evident at 150 ms. This wave mirrors in place, then at 300 ms starts to propagate
down the body. For the first 750 ms the wave propagates without causing for-
ward motion, but then the lamprey begins to move and at 1000 ms has travelled

Faster simulation of animal locomotion 7

70 mm. At 2000 ms, the lamprey travels at 385 mm s−1, 80% of its steady–state
speed. It reaches 466 mm s−1 at 6000 ms and maintains this indefinitely (Fig. 3).

The body is about 1.5 wavelengths long as the initial propagation forms,
but at steady state this becomes two wavelengths as segment co–ordination
improves. Amplitude of the tailward wave peak is about three times that of
the headward, partly because of the lesser mass in the tailward segments, and
partly because they are at the end of the fish. Steady–state undulation frequency
resulting from the given brainstem excitation is just over 6 Hz. Swimming speed
and characteristics observed are similar to those observed by [2].

Fig. 2. Straight-line swimming behavior. Gridlines are 100mm apart. Lamprey is in
middle of each image with (fixed) input from left and right brainstem below. Images
taken at 10, 100, 150, 200, 300, 500ms, then every 250 ms.

8 Matthew Beauregard, Paul J. Kennedy, and John Debenham

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0 2000 4000 6000 8000 10000

sp
ee

d
(m

m
/s

)

time (ms)

Fig. 3. Straight-line swimming speed

5 Experiments in varying neural segment count

Ekeberg [5] chose 100 segments in his neural model, staying true to biology.
Selection and tuning of parameters followed from this choice. Simulation of a
100 segment neural model is slow and, given the demonstrated stability of the
model, we decided to examine whether fewer segments could produce swimming.
So, simulations were conducted to observe and measure behavior of lampreys
with spinal cords of between 90 and 10 segments, in steps of 10 to preserve
the relation between neural and physical segments. No other parameters were
modified and extents of intersegmental connection were the same in all cases.

We found that any length of spinal cord, starting with 10 segments, can
sustain oscillations and phase delay. Furthermore, all lengths can cause wave
propagation in the physical simulation, resulting in forward swimming. There
are, of course, differences in the nature and speed of the swimming produced.

As expected, the wavelength of the body does not change; however there is
a noticeable decrease in the extent of perpendicular tail motion. In the 100–
segment lamprey the amplitude of the tailward segments is around three times
that of the headward, compared with two times in the 50–segment lamprey. The
tail amplitude of the 10–segment lamprey barely exceeds that of the headward
segments. At this length propagation of a traveling wave is only just perceptible,
with most of the activity being the standing–wave inversion characteristic of the
startup behavior of the 100–segment lamprey.

Shortening the lamprey spine causes a proportional decrease in swimming
speed. Because the simulation exhibits different behaviors at startup before
reaching steady state, swimming speed was measured by recording the time

Faster simulation of animal locomotion 9

taken for the lamprey to swim 15, 30, 50, 200 and 400 mm. The 50 mm mile-
stone represents significant forward motion and can be regarded as the boundary
between initial conditions and steady state. The 400 mm milestone gives a rea-
sonable measure of steady swimming speed independent of starting conditions.

Fig. 4 shows the time for lampreys of different segments to reach the distance
milestones. With one exception, the swimming speed of each lamprey is reason-
ably proportional to the reduction in segments. Regarding the startup behavior
of the lampreys, it can be seen that while the 30–segment lamprey reaches the
15 mm milestone earlier than expected, and the 40– and 50–segment lampreys
reach it later, this early lead has almost vanished by 50mm.

The graph clearly shows the unexpectedly small length of time for the 20–
segment lamprey to reach steady state. It passes the 15mm and 30mm marks
ahead of the 100–segment lamprey, and reaches 50 mm in equal time. And while
it takes 2.5 times as long to pass 400 mm, this is twice as fast as we would esti-
mate from the behavior of the other lampreys. A 20–segment spine seems very
compatible with the 10–segment body, for reasons not yet fully understood. In-
vestigation of this high affinity has the potential to yield significant insight into
the relationship between the neural system and the body, and bears exploration.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 10 20 30 40 50 60 70 80 90 100

tim
e

to
 tr

av
el

 (m
s)

segments

15mm
30mm
50mm

200mm
400mm

Fig. 4. Time for 10- to 100- segment lampreys to reach distance milestones

Most of the execution time is spent in the neural simulation and is essentially
linear with the number of segments. This is because there are 24 DEs per neural

10 Matthew Beauregard, Paul J. Kennedy, and John Debenham

segment compared with 3 per body link giving a total of 24s + 3b DEs for a
lamprey with s neural segments and b body links. Thus, reducing the number
of neural segments results in a corresponding reduction in execution time. A
1000 ms simulation takes 78 CPU seconds for the 100–segment lamprey and 16 s
for the 20–segment. Execution time for the 10–segment lamprey is 13 s, allowing
us to estimate the time spent in the physical simulation as around 9 s.

The number of neural segments, and the intersegmental connectivity scheme,
in Ekeberg’s original simulation are well–chosen and result in a model that is
both similar in layout to the biological lamprey and in behavior. By reducing
the number of segments while keeping the same connection scheme and the same
physical parameters, we are simulating a shorter lamprey stretched into a longer,
more flexible body. That this arrangement can propagate a traveling wave and
generate forward motion is additional confirmation of the model stability.

6 Conclusion

We describe the design and implementation of a simulation of the neural path-
ways and physical body of a lamprey realized in a system of DEs. Two ap-
proaches for increasing simulation speed with graceful degradation of biological
realism are identified: (i) better use of numerical integration algorithms and
(ii) reduction of the number of neural segments. The latter highlighted a par-
ticularly high affinity between a 20–segment spine and the 10–link body. The
fact that a simpler neural architecture can produce acceptable behavior may
lead to more widespread use of such methods in computer graphics and robotics.

References

1. Janvier, P.: Tree of Life: Hyperoartia. URL: http://tolweb.org/tree?group=

Hyperoartia (1997)
2. Ijspeert, A.J.: Design of artificial neural oscillatory circuits for the control of

lamprey- and salamander-like locomotion using evolutionary algorithms. PhD the-
sis, Department of Artificial Intelligence, University of Edinburgh (1998)

3. Lansner, A., Ekeberg, Ö., Grillner, S.: Realistic modeling of burst generation and
swimming in lamprey. In Stein, P.S.G., Grillner, S., Selverston, A.I., Stuart, D.G.,
eds.: Neurons, Networks and Motor Behaviour. The MIT Press (1997) 165–172

4. Wallén, P.: Spinal networks and sensory feedback in the control of undulatory
swimming in lamprey. In Stein, P.S.G., Grillner, S., Selverston, A.I., Stuart, D.G.,
eds.: Neurons, Networks and Motor Behaviour. The MIT Press (1997) 75–81

5. Ekeberg, Ö.: A combined neuronal and mechanical model of fish swimming. Bio-
logical Cybernetics 69 (1993) 363–374

6. Galassi, M., Davies, J., Theiler, J., Gough, B., Jungman, G., Booth, M., Rossi, F.:
GNU Scientific Library Reference Manual. 2nd edn. Network Theory Ltd. (2003)

7. Fletcher, M.C., Liebscher, R.: PyOpenGL – the Python OpenGL binding. URL:
http://pyopengl.sourceforge.net/ (2005)

8. Bérczi, G.: Encoding with MEncoder. URL: http://www.mplayerhq.hu/DOCS/

HTML/en/mencoder.html (2005)

