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Abstract

Stroke affects millions worldwide, leading to severe motor and cognitive impairments. Effective

rehabilitation is essential but labor-intensive. Robotic exoskeletons integrated with Brain-

Computer Interfaces (BCIs) using Electroencephalography (EEG) enable user-driven rehabili-

tation, reducing therapist workload. However, real-time EEG classification remains challenging

due to signal complexity.

This thesis develops EEG GLT-Net, a spectral Graph Neural Network (GNN) for real-time

classification of EEG Motor Imagery (MI) signals at single time points ( 1
160

s). It introduces

the EEG Graph Lottery Ticket (EEG GLT) method, which dynamically constructs adjacency

matrices without prior knowledge of EEG channel relationships, improving accuracy and ef-

ficiency. Evaluation on PhysioNet shows superior performance over state-of-the-art (SOTA)

methods.

Beyond stroke rehabilitation, EEG GLT is applied to economic forecasting, demonstrating

its adaptability. Additionally, EEG Synergistic Gated Network (EEG SGNet), a CNN-GNN

hybrid, enhances window-based EEG classification, validated on BCIC iv-2a and HGD datasets.

Lastly, EEG RL-Net, a reinforcement learning model, optimises classification by selectively

skipping uncertain time points, improving computational efficiency.

These contributions advance EEG-based rehabilitation, enabling intelligent, adaptive systems

that enhance stroke recovery and broader neurorehabilitation applications.
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Chapter 1

Introduction

Stroke attacks a human control centre which is the brain that can change one’s life instantly.

Stroke is a classically characterised as a neurological deficit attributed to the Central Nervous

System (CNS) due to vascular cause including intracerebral haemorrhage (ICH), cerebral in-

fraction and subarachnoid haemorrhage (SAH) [1]. In simple terms, human brain cells die when

there is a lack of nutrients and oxygen that are normally carried by arteries via blood. Blocked

or busting of arteries causes stroke that kills human brain cells at a rate of 1.9 million every 60

seconds [2]. Depending on the location of the brain strikes and the severity, every stroke differs.

When a stroke happens, it damages the human body functions such as sensations and move-

ment, cognitive ability, eating and swallowing, speech, perception of surroundings, emotional

control, and sexual ability [3].

Stroke impacts on day-to-day activities of humans. Therefore, the increment of developing

better quality and quantity of rehabilitation is imperative for stroke patients. Clinical treatment

only is not enough to restore a stroke patient’s physical, psychological and neurological abilities.

Thus, rehabilitation is required to complement the clinical treatment in the restoration of stroke

patients’ abilities [4].

The rehabilitation treatment is a labour-intensive task, especially for the lower limb recovery

treatment that requires a minimum of three therapists to manually support a patient’s legs

and torso to do the training [5]. An exoskeleton is a mechanical wearable device that produces

torque by actuators and is transferred to the human body to assist in the user’s movement

intention. Thus, it reduces the amount of therapist involvement in training. Per [6], a robotic

exoskeleton can be divided into categories based on their serving purposes like enhancing human

mechanical performances, assisting people with movement disorders and rehabilitating stroke

patients. Also, based on the part of the human body involved, the exoskeleton can be divided

into three based on the part of the human body involved such as an upper limb, a lower limb

and specific joints like the elbow, knee, ankle joints, shoulder, etc [6].

A Brain-computer Interface (BCI) is a system that is able to acquire brain signals and analyse
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them. Then, the analysed signals are converted into commands which are relayed to output

devices to perform desired actions [7]. In the BCI system, the acquired brain signals are trained

using machine learning algorithms with quality labels for desired actions. Machine learning is

a subset of Artificial Intelligence (AI), which imitates the way humans learn via the use of data

and algorithms without being explicitly programmed [8], [9].

It’s important to focus on the development of state-of-the-art control system techniques and

algorithms of exoskeletons to improve the accuracy and performance for users. Human electro-

physiological signals measured from the human body can control the exoskeleton robots using

the user’s motion intention [10]. Electroencephalography (EEG) is one of the most popular

methods to acquire brain signals from human scalps via electrodes to analyse some brain dis-

eases because the method is non-invasive and convenient [11]. It can also be used in controlling

exoskeleton robots.

1.1 Research Hypothesis

This thesis is based on the hypothesis that:

Advancing EEG-based stroke rehabilitation through optimised graph learning, par-

allel deep learning architectures, and reinforcement learning can enhance motor

imagery and movement classification accuracy while reducing computational com-

plexity, enabling real-time and adaptive rehabilitation strategies.

To validate this hypothesis, the following chapter-specific hypotheses are proposed:

• An optimised adjacency matrix for EEG-based graph learning can improve motor imagery

classification accuracy while reducing computational requirements, enabling real-time ap-

plications in stroke rehabilitation.

• The EEG GLT-based adjacency matrix construction method can generalise beyond EEG

applications, improving the prediction accuracy of economic forecasting models.

• A parallel deep learning framework combining convolutional and graph-based learning

with EEG GLT-based adjacency matrix construction method improves EEG-based motor

imagery and movement classification, contributing to more effective stroke rehabilitation

strategies.

• Reinforcement learning-based decision-making in EEG signal decoding can improve clas-

sification accuracy and response efficiency, enhancing real-time adaptability for stroke

rehabilitation.
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1.2 Aims and Scope of Thesis

The primary focus of this PhD study is to develop effective and efficient predictive models for

classifying EEG signals based on user intentions, with potential applications in rehabilitation

facilities. The following aims are set to be accomplished by the end of this PhD study:

• To develop a Graph Neural Network (GNN) based model for classifying real-time EEG

Motor Imagery (MI) signals, enhancing the accuracy of user intention detection.

• To evaluate the performance of the model using single time-point EEG MI signals ( 1
160

seconds) from publicly available datasets.

• To design an algorithm for constructing adjacency matrices tailored to individual subjects

and model settings, without requiring prior knowledge of relationships between EEG

channels, thereby improving both performance accuracy and computational efficiency.

• To create a parallel architecture combining Convolutional Neural Network (CNN) and

GNN models to classify window-based EEG signals, where temporal information is criti-

cal.

• To develop a Reinforcement Learning (RL) based model for classifying real-time EEG MI

signals, where the RL agent can decide whether to classify or skip a time point to achieve

higher performance accuracy.

• To investigate optimal reward settings for the RL agent to achieve high classification

accuracy with fast inference speeds.

• To evaluate the performance of the models using publicly available datasets, including

both an EEG MI dataset and an EEG High-Gamma movement (HGD) dataset.

During the fulfillment of the above aims, the following research questions were raised:

• What is the influence of the spectral GNN filter order on the accuracy of EEG MI time-

point classification?

• How can adjacency matrices be constructed to minimise computational requirements with-

out compromising performance accuracy?

• What are the effects of different adjacency matrix construction methods, under the same

model settings, on performance accuracy and computational efficiency?

• What are the optimal adjacency matrix densities for each subject?

• What features are extracted from window-based EEG signals for the CNN and GNN

pathways in the parallel model architecture?

• How does the importance coefficient of the pathway (α) influence performance in the

parallel model architecture?
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• How does increasing the reward magnitude for correct decisions made by the RL agent

affect overall performance accuracy and inference speed?

• How does increasing the penalty magnitude for incorrect decisions made by the RL agent

affect overall performance accuracy and inference speed?

• What is the optimal number of time points per episode for the RL agent to achieve

optimal performance?

• What are the optimal reward settings and model configurations for the RL agent to

achieve the best performance?

1.3 Novelty, Contribution, and Significance

This PhD research proposes novel methods and models to estimate user movement intentions

via motor imagery and physical movement based on EEG signals, with the goal of improving

BCI human-machine interactions. These advancements focus on enhancing both performance

accuracy and computational efficiency for applications such as rehabilitation robot control. The

key novel aspects and significant contributions of this research are as follows:

A. Development of a spectral GNN-based model for real-time EEG MI signal

classification:

• Proposed the EEG GLT-Net, a spectral GNN-based model capable of classifying

EEG MI signals at single time points ( 1
160

seconds).

• Designed optimal EEG GLT-Net configurations for individual subjects, including

the number of GNN layers, model parameters, and GNN filter orders.

B. Introduction of a state-of-the-art adjacency matrix construction method:

• Proposed the EEG GLT method, an innovative approach for constructing adjacency

matrices without requiring prior knowledge of relationships between EEG channels.

• Demonstrated the method’s effectiveness in improving performance accuracy and

computational efficiency when integrated with GNN-based models.

C. Creation of a parallel CNN and GNN-based model for window-based EEG

MI and movement signal classification:

• Proposed the EEG SGNet, a novel model combining the strengths of CNN and GNN

architectures to classify window-based EEG MI and movement signals, achieving

enhanced performance accuracy.

D. Development of an RL-based model for real-time EEG MI signal classification:

• Proposed the EEG RL-Net, a novel framework where an RL agent classifies single

time-point EEG MI signals based on extracted graph features and has the ability to
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skip classification when sufficient confidence is not reached.

• Demonstrated the effectiveness of the EEG RL-Net in achieving high accuracy and

efficiency by optimising reward settings to enable the RL agent to make correct

decisions within minimal time.

By integrating high performance, computational efficiency, and versatility, this research ad-

dresses critical challenges in EEG signal processing and graph-based learning. It demonstrates

significant advancements in real-time EEG classification, enabling precise time-point-level anal-

ysis for applications like rehabilitation robotics. The domain-agnostic adjacency matrix con-

struction method further enhances adaptability, paving the way for scalable graph-based sys-

tems. These contributions not only advance neurorehabilitation technologies but also open new

research directions in dynamic graph learning, time-sensitive signal classification, multimodal

physiological data integration, and domain-agnostic applications in areas such as economic fore-

casting, climate modeling, and network optimisation. This work establishes a foundation for

innovation across healthcare, engineering, and beyond.

1.4 Thesis Overview

Chapter 2 provides a comprehensive literature review, outlining the key interdisciplinary areas

relevant to this study. It begins with an overview of stroke, highlighting its global prevalence,

associated risk factors, and the challenges faced in rehabilitation. The fundamentals of EEG are

then introduced, covering its role in capturing brain activity, the principles of EEG acquisition,

and commonly used signal processing techniques. The chapter also examines BCIs, empha-

sising their significance in enabling communication between the brain and external devices,

particularly in rehabilitation contexts. A review of advancements in rehabilitation robotics

follows, with a focus on the integration of BCIs and EEG-driven systems to support patients

with motor impairments. Additionally, machine learning approaches such as CNNs, GNNs,

and RL are discussed as the methodological foundation for this research.

Chapter 3 introduces the EEG GLT-Net model, designed to classify real-time EEG MI signals.

This model is based on a spectral GNN and can classify EEG MI signals at a single time point

of 1
160

seconds. EEG GLT-Net has potential applications in rehabilitation facilities, where real-

time classification of EEG MI signals is essential. As part of this project, an innovative method

for constructing adjacency matrices, termed EEG GLT, will be presented. This method does

not rely on prior knowledge of the relationships between EEG channels and dynamically opti-

mises these relationships, making it adaptable to both subject-specific data and GNN models.

The publicly available PhysioNet EEG MI dataset will be used for evaluation, focusing on data

from 20 subjects. The EEG GLT method will be compared against other adjacency matrix

construction approaches, including the Geodesic method and the Pearson Correlation Coeffi-

cient (PCC). Additionally, six model frameworks, varying in the number of GCN filters, filter

polynomial orders, and fully connected (FC) hidden nodes, will be evaluated. Finally, the
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performance of EEG GLT-Net will be benchmarked against seven state-of-the-art methods.

Chapter 1
Introduction

Chapter 2
Literature Review

Chapter 3
EEG_GLT-Net

Time Point EEG MI
Classification

Chapter 4
EGLT

Economic Forecasting

Chapter 5
EEG_SGNet

Window-based EEG MI and
Movement Classification

Chapter 6
EEG_RL-Net

Real-time EEG MI and
Movement Classification

Chapter 7
Conclusions and

Future Work

Application of GLT Adjacency Matrix Construction
Method in Economics Forecasting 

Figure 1.1: Thesis Overview

The EEG GLT adjacency matrix construction method is not limited to EEG MI signal classi-

fication; it also has applications in economic forecasting. Chapter 4 explores its use in a GNN

framework to forecast eight economic variables without requiring prior knowledge of their inter-

relationships. These variables include the consumer price index (CPI), wage index, short-term

interest rate, long-term interest rate, domestic bond index, international bond index, unem-

ployment rate, and housing price index, based on 20 years of data spanning from June 2000 to

July 2020. The model predicts the next quarter’s values for all variables using data from the

previous three quarters while simultaneously determining the optimal relationships between the

variables. Finally, the predictions for each variable are compared in detail with the outputs of

the state-of-the-art SUPA model, which was developed using industry expertise.

Chapter 5 introduces EEG SGNet, a novel framework for classifying EEG signals. Unlike the

previously introduced models, EEG SGNet is designed to classify window-based EEG signals,

where temporal information plays a critical role. The framework consists of parallel CNN and

GNN pathways. Various configurations, including the number and sizes of filters, as well as the

number of CNN and GNN layers, are explored to achieve optimal results. The project utilises

two datasets: the BCIC iv-2a dataset, an EEG MI dataset, and the HGD dataset, an EEG

movement dataset. This dual-dataset approach demonstrates that EEG SGNet is effective for
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both motor imagery and movement datasets, highlighting its versatility. Furthermore, it shows

the model’s potential applicability in rehabilitation robotics, where high classification accuracy

is essential. Finally, EEG SGNet’s performance is benchmarked against ten state-of-the-art

models for the BCIC iv-2a dataset and eight state-of-the-art models for the HGD dataset.

Chapter 6 introduces the EEG RL-Net model, a novel framework for classifying EEG MI sig-

nals. The model integrates a GNN module to extract graph features from single time points and

a DQN-based RL framework for classification. By enabling the RL agent to skip classification

at uncertain time points, the model enhances both accuracy and efficiency. Various config-

urations, such as reward strategies and episode lengths, are tested to optimise performance

for each subject. The model’s evaluation is conducted using the publicly available PhysioNet

and HGD dataset, and its performance is benchmarked against state-of-the-art models, includ-

ing EEG GLT-Net and EEG SGNet, demonstrating its advancements in real-time EEG signal

classification.
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Chapter 2

Literature Review

2.1 Stroke

Stroke is one of the most common diseases that about every one in four persons is affected

over their lifetimes. Also, it is the third leading cause of disability and the second cause of

death globally [12]. Internal carotid arteries and vertebral arteries are two sources that are

supplying blood to the brain. The anterior and middle cerebral arteries are two major branches

of internal carotid arteries [13]. Fundamentally, two types of strokes are Ischaemic stroke and

Haemorrhagic stroke.

Figure 2.1: Ischaemic Stroke [14]

An Ischaemic stroke happens when there is a blockage anywhere along the arteries to the

brain. The latter type, Haemorrhagic stroke is due to the breaks or bursts in the brain.

Ischaemic stroke is more common than Haemorrhagic stroke which accounts for about 60 -

90% of the stroke. Only 10 - 40% of strokes are Haemorrhagic stroke type [15], [16]. Since

the management of Ischaemic stroke is different from Haemorrhage, reliable differentiation

of the type of stroke is imperative. The clinical symptoms and signs are not sufficient to

reliably distinguish stroke subtype and mechanism. Thus, brain scanning technologies such
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as Computerised Tomography (CT), Magnetic Resonance Imaging (MRI), etc. are crucial to

complement the clinical examination [17].

Figure 2.2: Haemorrhagic Stroke [14]

2.2 Risk Factors for Stroke

Stroke is becoming an increasingly common problem because of people’s lifestyles (high-fat diet,

lack of exercise, etc.). Per the National Health Survey (NHS) data [18], six risk factors asso-

ciated with strokes are high cholesterol, overweight and obesity, smoking, high blood pressure,

atrial fibrillation, and physical inactivity. The limit of high cholesterol is 5.5 mmol/L. Similarly,

when a person’s blood pressure exceeds 140/90 mmHg, the person has high blood pressure. If a

person’s Body Mass Index is between 25 and 30, the person is overweight. However, the person

is obese once the BMI level exceeds 30. The factor of physical inactivity is that there was no

physical activity in the week before having a stroke.

The report of the World Stroke Organisation (WSO) stated that 89% of global stroke deaths

and disabilities resided in the low-to-middle-income countries [19]. In Australia, the native

Aboriginals and Torres Strait Islanders are 1.7 times more probable to be hospitalised due

to stroke than other ethnicities [20]. These are due to the higher rate of smoking, physical

inactivity, and obesity compared to non-Aboriginal and Torres Strait Islander counterparts. In

the rate of mortality due to stroke, per AIHW, Aboriginal and Torres Strait Islanders have a

greater risk of about 1.3 times compared to non-Aboriginal and Torres Strait Islanders [21].

Public health initiatives aim to address these risk factors through education, screening, and

lifestyle interventions. However, despite these efforts, the global incidence of stroke continues

to rise [22]. While preventive measures are crucial, they have not been universally effective

in reducing the overall burden of stroke. This highlights the importance of post-stroke reha-

bilitation as a complementary approach to addressing the long-term impacts of the disease.

Rehabilitation efforts, such as those explored in this thesis, are particularly critical for im-

proving recovery outcomes after stroke. By focusing on rehabilitation using EEG systems for

both motor imagery and motor movement, this research aims to enhance survivors’ recovery
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potential, helping them regain functional independence. These innovations are not only vital

for individuals but also play a role in alleviating the broader societal and economic burdens

associated with stroke.

2.3 Burden of Stroke

Stroke imposes a significant burden on individuals, families, and healthcare systems worldwide.

In Australia, over 445,087 people were living with stroke in 2020, with 27,428 new cases reported

that year—equivalent to one stroke every 19 minutes [23]. Globally, there were 12.2 million

new cases in 2019, equating to one stroke every 3 seconds, with 101 million people living with

the effects of stroke—nearly double the 1990 figure of 54.7 million [19].

Stroke mortality remains high, with 8,703 deaths in Australia in 2020 and a projected 2.5-fold

increase by 2050 [3], [23]. Worldwide, stroke claims 6.5 million lives annually and accounts

for the loss of over 143 million Disability-adjusted Life Years (DALYs) each year. Beyond its

health impact, stroke has immense economic consequences. The global cost of stroke in 2017

was estimated at USD 451 billion (0.36% of global GDP), while the Australian economic cost

of stroke in 2020 was $6.2 billion, including $2.9 billion in productivity losses, $1.3 billion in

healthcare costs, and $0.7 billion in caregiving expenses [3], [19].

In 2020, the federal government bore 40% of stroke-related costs, with individuals contributing

24%, followed by society (16%), employers (7%), and state governments (6%) [3]. The burden is

expected to rise by 45.7% by 2050, increasing stroke incidence to one every 10 minutes. Welfare

payments, including Carer Allowance and Disability Support Pension (accounting for 85% of

welfare payments), highlight the societal cost, with $120.8 million allocated to support 6,595

Australians affected by stroke [24].

Given these challenges, improving stroke rehabilitation is critical. Enhancing recovery efficiency

could significantly reduce disability, cut lifetime management costs, and alleviate strain on

caregivers and public resources. Even a 10% improvement in rehabilitation efficiency could save

over $600 million in Australia and billions globally. This thesis contributes by developing EEG-

based rehabilitation systems to optimise recovery pathways, offering the potential to enhance

survivors’ quality of life, reduce societal costs, and enable more effective allocation of healthcare

resources.

2.4 Rehabilitation for Stroke Patients

When a stroke happens, it damages the human body functions such as sensations and move-

ment, cognitive ability, eating and swallowing, speech, perception of surroundings, emotional

control, and sexual ability [3]. [25] suggested that better results in the chronic stages of recov-

ery can be expected if recovery takes place early during the acute stage. Stroke rehabilitation

involves therapies and activities to assist the human brain to relearn the skills that are affected
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by stroke. The rehabilitation trainings are to restore dysfunctional neural pathways or create

new brain pathways to perform the same tasks before the stroke using different parts of the

brain [26].

Figure 2.3: Lower Limb Exoskeleton Robot [27]

Usually, the task of motor rehabilitation is practiced manually by therapists at rehabilitation

centers or hospitals. Those tasks demand intensive work, especially for lower limb treatment.

It requires three therapists’ inputs to manually support the patient’s torso and legs to perform

training [5]. The experience of therapists also plays a crucial role in traditional manual reha-

bilitation, as it would require more resources in repetitive and high-intensity training. Since

the last decade, wearable robots (exoskeleton robotic devices) have been developed to assist in

labour-intensive rehabilitation systems.

The robotic exoskeleton can be fundamentally divided into three types based on their serving

purpose [6]. The first type of exoskeleton robot is to enhance human mechanical performances

such as lifting and handling heavy items that are physically challenging for humans. They are

mainly used in areas such as manufacturing industries, military applications, or development

sites. The second category of exoskeleton robots is to assist people with movement disorders

because of muscle weakness, stroke, or injury. The third one is therapeutic exoskeletons which

are primarily used in the area of rehabilitation.
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Figure 2.4: Upper Limb Exoskeleton Robot [28]

Based on the part of the human body to cater for, the exoskeleton robot can be classified into

three that are upper limb exoskeleton robot, lower limb exoskeleton robot, and specific joint

exoskeleton robots such as the knee, ankle, elbow, shoulder, etc. In the upper limb exoskeleton

robot, it can be further classified into two categories such as exoskeletons and prostheses [6].

The former type, exoskeletons or orthoses are the orthopaedic equipment to assist the person

with disabilities and recover the functions of the affected limb. The latter type, prostheses are

to replace a missing human body part. The lower limb exoskeleton robots are mechatronic

system devices to assist in the recovery of standing or walking. The lower limb exoskeletons

can be further classified into two groups. The first group of devices is to serve as human gait

trainers to recover the human walking pattern. The second group is the signal joint exoskeleton

robot.

Figure 2.5: General Concept of Controlling Lower Limb Assistive Devices using EEG [29]
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Alongside the advanced exoskeleton robot development, it’s important to focus on the develop-

ment of state-of-the-art control system techniques and algorithms of exoskeletons to improve

the accuracy and performance for exoskeleton robot users. The development of a sophisticated

interface between the human and wearable robot is also imperative as the result of the esti-

mation of the user’s movement intention mainly depends on it. Based on the human-robot

interaction method, many types of control strategies have been developed. The electrophysio-

logical signal is a physiological signal measured from the human body via an exoskeleton that

shows the user’s motion intention [10]. In addition, it greatly influences exoskeleton assistive

improvement.

Among electrophysiological signals, electromyography (EMG) has been one of the most promi-

nent types used in exoskeleton control as it can make a measurement that directly reflects a

human movement and muscular actions. Also, electroencephalography (EEG) is another con-

trol technique that is non-invasive and convenient [11]. A Brain-computer Interface (BCI) is

a system that is able to acquire brain signals and analyse them. Then, the analysed signals

are converted into commands which are relayed to output devices to perform desired actions

[7]. Thus, the acquired EEG signals are trained in the BCI system to translate desired actions

using machine learning algorithms.

13



2.5 Human Brain System

In the human body, brain is the most important part as it plays a significant role in everyday life.

It controls all parts of human body. It is a collection of neural networks that are interconnected

with each other to decide the human behaviours. Generally, in the perspective of radiologists

and medical doctors, the right side of the human body is controlled by the left side of human

brain. Similarly, the left side of human body is associated with the right side of human brain

[30], [31].

Figure 2.6: Dorsal View of Human Brain [32]

The human brain can be generally divided into the left and right hemispheres [33]. The left

and right hemispheres are symmetrical in shape, and they can be further divided into four

lobes that are temporal lobe, frontal lobe, occipital lobe, and parietal lobe. The frontal lobe is

the largest lobe among the four lobes. It is located at the back of the forehead. It is mainly

responsible for language and speech. Also, problem-solving, memory, decision-making, and

other behaviours and emotions are concerned with the frontal lobe. The frontal lobe should

not be injured/damaged as it has a big impact on human memory, emotions, and languages

[34]–[36].

Figure 2.7: Sectional View of Human Brain [37]
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The temporal lobe is situated on the sides of the human brain hemispheres behind the frontal

lobe and under the parietal lobe. The temporal lobe is mainly responsible for various aspects

of speech and hearing. Damaging the temporal lobe can be impairment of language, hearing,

and sensory problems or loss permanently if the temporal lobe is seriously damaged. Another

important lobe of the brain is the occipital lobe, which is located at the back of the human head.

It is mainly responsible for the perception and processing of human visual information. Thus,

damaging the occipital lobe can lead to visual and perception defects and loss of them if the

injury is severe. The parietal lobe is located behind the frontal lobe of the human brain. The

parietal lobe is located behind the frontal lobe of the human brain. The parietal lobe integrates

different types of sensory information from different parts of the human body. Damaging or

injuring the parietal lobe of the human brain can loss of the ability to locate parts of the human

body [38], [39].

A particular part of the human brain (cranial nerve) controls the specific action and activities

of the human body. The human eye moment function is controlled by oculomotor, trochlear,

and abducens nerve while the human vision system is controlled by optic cranial nerves. The

olfactory cranial nerve controls the function of the smell sensor. The tongue movement is

responsible for hypoglossal cranial nerves while the hypoglossal cranial nerve controls the tongue

movement [30]. The facial sensation is responsible for the trigeminal cranial nerve. Meanwhile,

the facial cranial nerve controls human facial movement. Vagus cranial nerve controls the

involuntary muscles of the human body while the accessory cranial nerve controls the voluntary

neck muscle. Finally, the hearing and balancing of the human body are controlled by the

vestibulocochlear cranial nerve. Therefore, understanding the cranial nerve and its associated

function in the human body is important as it is helpful to place the EEG electrodes position.
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2.6 EEG Signals

Today, EEG recording is one of the most common methods to acquire brain signals to analyse

some brain diseases such as Alzheimer’s, autism, and epilepsy. The method is non-evasive to

the human body and has no side effects on patients [40]–[42]. The electric potential produced

by brain sources can be recorded by an EEG device via electrodes on human scalps. An

EEG device consists of electrodes, ADC (Analog to Digital Converter), conductive gel, and

amplifiers to amplify the EEG signals. EEG electrodes can be made from different metals

such as stainless steel, gold-plated silver, pure gold, tin, and Ag/AgCl. However, it should

not mix EEG electrodes made from different metals in EEG recording because using two or

more different types of electrodes will result in a high dc offset potential [43]. Among them,

Ag/AgCl EEG electrode is the most common type because it maintains stable electrochemical

potentials against biological tissues. Also, it has outstanding long-term electrical stability, has

low dc offset variability and is free from potential allergenic compounds.

Figure 2.8: Measuring EEG Signals on Human Scalp [44]

A reusable disk is a type of EEG electrode that is placed on the scalp of the human head via

a small amount of Ag-Cl conductive gel [45]. The cost of this type of electrode is low, and

the life span of the electrode depends on the type of metal composition and the insulating

materials. Another type of electrode is the EEG cap. Unlike the normal disk-type electrodes,

the EEG cap has fewer chances of artifacts as the normal electrodes are easier to be fallen

off from the human head scalp. The number of electrodes for the EEG cap and the material

type can be chosen to suit for application. It’s preferable to utilise in the application where

multi-channel recording is required because individual electrode placing methods would not be

practical at the exact placement of large quantities. The cap is made of fabric that has fixed

electrode holders; so, placing electrodes does not require position measurements. However, it

is important to note that troubleshooting of EEG cap is more difficult as tracing the faulty

electrode is more difficult than the counterpart. It usually ends up in changing the whole cap

[46].
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2.7 EEG Electrodes Positioning

Electrodes should be placed systematically in EEG signals acquisition. Firstly, regions where

electrodes on the lobes of the brain are differentiated with their initials. For instance, the

electrodes to be placed on the temporal lobe region of the brain are started with ’T’. Similarly,

the electrodes acquiring a signal from the Frontal lobe shall be labelled with ’F’. The electrodes

placed on the Occipital lobe region are to be labelled with ’O’, and the central lobe region of

the brain should be ’C’. Finally, the midline region electrode is labelled with ’z’ [46].

The second letter of electrodes indicates hemispherical side of the human brain. The even

numbers are reserved for the electrodes to be placed on the right hemisphere of the human

brain. Similarly, the odd numbers are reserved for the left hemisphere of the human brain. For

instance, the C3 electrode identifies the electrode on the left hemisphere of the human brain at

the Central lobe. In order to record special properties such as eye movements, respiration rate,

skin conductance and heart rate, additional sensors are to be utilised [47].

In the positioning of electrodes, four anatomical essential landmarks are used. The first land-

mark is the nasion, which is located at the midline bony depression between the eyes. The

second landmark is the inion. The third landmark is at the point 10% distance from the nasion

toward inion. The final landmark is at the point that is 10% distance from the inion toward

nasion. The traditional international 10-20 EEG electrode placement method is proposed by

[48] to describe the location of scalp electrodes.

Cz T4C4C3T3

Pz

Fz

T6

O2

T5

F7 F8

O1

Fp1 Fp2

F4F3

P3 P4

A1 A2
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Figure 2.9: 10-20 EEG Electrodes Positioning System [49]

In the 10-20 system, the adjacent electrode distances are either 10% or 20% of the total distance

between nasion and inion. The number of scalp positions is only up to 21. A 10-10 system is

another EEG placement system proposed by [50] in 1985 to increase the number of electrode

positions. In the 10-10 system, the number of electrode positions is increased to 74 locations.

Then, the 10-5 system was introduced by [51] in which the number of electrode positions

is increased up to 345 locations. The circumference of a standard human adult head is 58
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cm. Thus, the typical inter-electrode distance in 10-20 system is between 53 mm and 74 mm.

Similarly, the inter-electrode distance is between 28 mm and 38 mm in the 10-10 system, and

between 22 mm and 31 mm in the 10-5 system.

Figure 2.10: 10-10 EEG Electrodes Positioning System [52]

The electrode Cz, C3, and C4 mainly acquire the sensory and motor function of humans.

Meanwhile, T4 and T6 acquire the emotional memory of humans. Verbal memory function

signals are acquired at the other side of the hemisphere via T3 and T5 electrodes. The signals

concerned with human cognitive function can be recorded at the Parietal lobe via Pz, P3 and P4.

The O1, O2 and Oz electrodes can record the signal associated with visual processing stimuli.

By using FP1, FP2 and, FPz electrodes, judgement and attention impulses can be obtained.

Similarly, F3 and F4 electrodes are to acquire motor planning activities. The verbal and

emotional expressions of a human signal can be obtained from the F7 and F8 EEG electrodes.

The Fz electrode is positioned close to the motivational and intentional centres [47].

2.8 EEG Signal Amplification

The quality of the EEG amplifier plays an important role in EEG signal research because

it’s the location where the EEG signals are amplified while reducing or attenuating undesired

components of the signals. Typically, there are three different types of signal components

included in the EEG signals. They are biological signals, mains noise signals and electrode
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offset signals. Among them, only biological signal is the only desired signal. The EEG biological

signals are measured at the scalp electrode to record cortical and subcortical activity. Some

artifacts are included in the biological signal which are endogenous artifacts and exogenous

artifacts caused by sweat and scalp potentials, eye movement, etc. The amplitude of the

biosignals can range from -2 mV to +2 mV. The dc offset of EEG signals result from the metallic

type of EEG electrodes. The amount of dc offset can be varied several hundred millivolts [43].

Among them, Ag/AgCl is the most favoured due to the low offset value which is less than 100

mV and high temporal dc offset stability.

Figure 2.11: Ag/AgCl EEG Electrodes [53]

The mains noise is another undesired signal in the EEG recording. It is a sinusoidal artifact at

the mains frequency is 50 Hz or 60 Hz. It is mainly due to the electrical devices powered by

utility mains in the area of EEG recording. The magnitude of the mains noise depends on the

type of mains-powered devices, particularly devices with a motor such as pumps, hair dryers,

razors, etc. Standard procedures are followed in the EEG recording to reduce the presence of

mains noise. One of the methods is bundling EEG electrodes or in a ribbon that greatly reduces

the mains noise. In addition, rechargeable batteries are used in the EEG amplifier to further

reduce the noise. Also, active shielding is simple and effective to achieve the amplifier’s optimal

Signal to Noise Ratio (SNR). Modern EEG amplifiers adopt a multichannel instrumentation

method that is designed to amplify only the biological signal portion in the recording while the

dc offset signal is unamplified and removes the mains noise [43].

Figure 2.12: 32 Channels EEG Cap with Amplifier [54]

The amplifier setting in the EEG signals recording is imperative to obtain quality data. The

main parameters are sample rate, the gain, and characteristics of the low pass filter, high pass

filter and notch filter. As per the signal sampling theorem, the sampling rate should be more
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than two times higher than the highest frequency of interest. There is a trade-off between the

sampling rate and the file size of the data. The gain of the amplifier is to be chosen as high as

possible without reaching the saturation of the amplifier. The setting of highpass and lowpass

filters depends on the frequency band of the spectral content of interest. The notch filter is a

very steep special filter to filter out the narrow frequency band around the mains frequency.

2.9 EEG Signal Classification

EEG signal processing is critical for neurorehabilitation and brain-computer interface (BCI)

systems, where high accuracy and the ability to process shorter time windows are key to

practical and effective solutions. EEG signals are inherently noisy and dynamic, requiring

algorithms capable of handling their complexity while delivering reliable and timely results.

The desirable features of an effective algorithm include:

• High Accuracy: Ensure reliable classification across diverse subjects and conditions to

support clinical applications.

• Short Time Window Classification: Enable accurate interpretation of data within

shorter time windows, facilitating faster decision-making and real-time use.

• Noise Robustness: Handle artifacts such as eye movements (EOG), muscle activity

(EMG), and environmental noise effectively to maintain signal integrity.

• Temporal and Spatial Sensitivity: Accurately capture dynamic changes over time

and across electrode locations to enhance signal analysis.

• Scalability and Efficiency: Ensure generalisation across datasets and subjects, with

computational efficiency suitable for real-time applications.

Modern EEG signal processing methods can be broadly categorised into three groups: tradi-

tional statistical methods, feature-based machine learning, and deep learning models which are

summarised in Table 2.1.
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Table 2.1: Generalised EEG Signal Processing Methods

Method Accuracy Advantages Disadvantages

Statistical

Approaches

Moderate Simple, interpretable;

effective for basic noise

filtering.

Limited ability to capture

complex, nonlinear;

lower accuracy in dynamic

tasks.

Feature-Based

Machine

Learning

High (with

optimised

features)

Incorporates domain

knowledge; enables

targeted feature extraction

(e.g., CSP, PSD).

Performance depends on

quality of feature

engineering; time-intensive

feature selection.

Deep Learning

(e.g., CNNs,

GNNs, etc.)

Very High Learns complex spatial and

temporal patterns

automatically; high

classification accuracy.

Computationally expensive;

requires large datasets and

careful hyperparameter

tuning.

2.9.1 Convolutional Neural Network

Convolutional Neural Networks (CNNs) are a subset of Artificial Neural Networks (ANNs) de-

signed to process structured data, such as images and sequential signals, by leveraging spatial

hierarchies through convolutional layers. Inspired by the human visual cortex’s role in object

recognition, CNNs were initially developed for computer vision tasks [55]. However, their ver-

satility has been demonstrated across various domains, including biomedical signal processing.

CNNs excel at learning features directly from raw data, eliminating the need for extensive

manual feature engineering [56].

Figure 2.13: Typical CNN Architecture on Image Classification [57]

The success of CNNs in biomedical signal processing is well-documented, particularly for their

ability to capture spatial and temporal patterns in high-dimensional and noisy data, such as
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electrocardiogram (ECG) and EEG signals [58]. Their application in EEG signal classification

has yielded significant advancements in BCI applications, sleep stage analysis [59]–[61], seizure

detection [62]–[64], and emotion recognition [65]–[68]. In this study, CNNs are employed as

one of the parallel branches in the EEG SGNet model for classifying motor imagery and motor

movement tasks, as detailed in Chapter 5.
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2.9.2 Graph Convolutional Neural Network

Graph Neural Networks (GNNs) are a class of deep learning models specifically designed to

perform convolutional operations on graph-structured data by leveraging the relationships be-

tween nodes. Unlike traditional deep learning methods, such as CNNs, which operate on

fixed-dimensional data, GNNs can generalise to irregular domains, including social networks,

molecular structures, and traffic networks. GNNs effectively learn meaningful representations

of graph data, capturing both local and global graph properties. This makes them well-suited

for EEG signal classification, as they can model spatial relationships between EEG signals in

a graph structure, enabling multi-channel spatial analysis.

Figure 2.14: Typical GNN Architecture on EEG-based Seizure Detection [69]

In EEG applications, each channel can be represented as a node, while the relationships between

channels are encoded as edges, which can be defined based on spatial proximity, functional con-

nectivity, or physiological metrics such as phase-locking value (PLV) or Pearson correlation

coefficient (PCC). GNNs have demonstrated success in numerous EEG signal classification

tasks, including motor imagery, emotion recognition [70]–[72], seizure detection [73], [74], and

neurological disorder diagnosis [75]. Despite their potential, selecting an optimal graph con-

struction method remains a significant challenge and an active area of research. In Chapter 3,

we propose a novel method for constructing an optimal graph, referred to as EEG GLT.
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2.9.3 Reinforcement Learning

Reinforcement Learning (RL) is a machine learning paradigm where an agent learns to make

sequential decisions by interacting with its environment to maximise cumulative rewards. The

agent takes actions, observes the effects through state transitions, and receives feedback in

the form of rewards or penalties [76]. By balancing exploration (trying new actions) and

exploitation (leveraging learned strategies), the agent iteratively refines its policy to achieve

an optimal strategy. Unlike supervised learning, which relies on labeled datasets, RL enables

autonomous learning through direct interaction with the environment, making it particularly

suitable for complex and dynamic systems.

RL has been successfully applied in diverse domains, including healthcare, gaming, finance and

trading, and robotics. In robotics, RL empowers robots to learn from environmental feedback

and adapt to complex, varying conditions. One notable application is in rehabilitation robotics

[77], where RL has had a significant impact by enabling robots to assist patients in regaining

functionality and mobility after injuries, strokes, or surgeries. Rehabilitation robots can be

personalised to address individual patient needs, abilities, and progress. For instance, a RL-

driven robot can dynamically adjust the intensity of rehabilitation exercises based on a patient’s

feedback and performance during therapy sessions [78].

Figure 2.15: Interaction of RL Agent to its Environment [79]

The integration of RL and EEG signal classification further advances rehabilitation robotics

through Brain-Robot Interfaces (BRIs). BRIs enable the decoding of motor intentions from a

user’s EEG signals, allowing direct brain control of robotic devices [80]. RL plays a critical role

in BRIs by learning to interpret EEG signals in real time and making context-aware decisions.

For example, an RL-based rehabilitation robot can optimise the therapeutic process by deter-

mining when to assist a patient with movements, when to pause for rest, and when to apply

resistance for strength training [81]. By incorporating appropriate reward and penalty struc-

tures, RL allows robots to prioritise rehabilitation goals, such as minimising fatigue, maximising

range of motion, and ensuring patient safety.
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Despite these advancements, defining effective reward and penalty structures for RL remains

a significant challenge, as they must balance therapeutic objectives with practical constraints.

Furthermore, RL systems in rehabilitation robotics must address issues such as sample efficiency

and safety during exploration, given the limited interaction opportunities with patients [82].

In this study, we propose EEG RL-Net, a novel framework that leverages RL based on graph-

based EEG features to decode EEG motor imagery (MI) signals in real time. The detailed

methodologies, including graph-based EEG signal representation, reward design, and training

strategies, are discussed in Chapter 6.
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Chapter 3

EEG GLT-Net: Optimising EEG

Graphs for Real-time Motor Imagery

Signals Classification

3.1 Introduction

Brain Computer Interfaces (BCIs) form an interdisciplinary bridge between engineering and

neuroscience, enabling direct communication between the human brain and control devices.

Originally designed to aid those with motor impairments [7], BCIs have expanded their appli-

cations to neurofeedback, gaming, and rehabilitation. Essentially, BCIs convert neural signals

into actionable commands. The primary means of brain signal acquisition include electrocor-

ticography (ECoG) and electroencephalography (EEG). Although ECoG boasts superior spatial

resolution due to directly placing electrodes on the cortex, its invasive native limits its appli-

cations [83]. In contrast, EEG uses scalp placed electrodes to capture brain activity, making

it more popular due to non-invasiveness and portability. This method captures various brain

signals, from event-related to spontaneous and stimulus-evoked [84].

Motor Imagery (MI) pertains to the mental simulation of motor actions, such as moving one’s

hands or feet, without performing the actual movement [85], [86]. As highlighted by [87],

action execution and its imagination share neural pathways. MI has prominent applications in

rehabilitation and neuroscience. When paired with EEG, it captures neural signals generated

from the intention to move. Integrating this with BCIs allows decoding EEG MI signals to

control external devices such as a robotic exoskeleton. This technology is pivotal for those

with motor impairments, especially stroke survivors, with the potential to restore quality of

life and ability to perform daily activities. By accurately decoding EEG MI signals, BCIs

can provide real-time feedback and communicate with assistive devices, to facilitate patient-

intended movements [88].
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Convolutional Neural Networks (CNNs) have consistently showcased superior results in com-

puter vision tasks [89]–[91]. However, their effectiveness is largely constrained to regular Eu-

clidean data, such as 2-dimensional grids and 1-dimensional sequences [91]. A drop in capability

is experienced with non-Euclidean data, primarily because CNN cannot accurately capture the

intrinsic structure and connectivity of this data. Graphs serve as powerful tools for representing

relationships among entities, and are employed in diverse application areas including traffic sys-

tems, social networks, e-commerce platforms, biological structures, and trade networks. These

graphs can highlight complex structures and be variable in nature such as being might be homo-

geneous or heterogeneous, having weight or not, and being signed or unsigned [92]. The Graph

Convolutional Neural Network (GCN) is an adaptation of CNN operations that is, tailored for

graphs. GCN excel in managing non-Euclidean data, incorporating topological relationships

during convolution.

With the help of GCNs, the inherent connections among electrodes can be integrated through

the adjacency matrix, a capability beyond the reach of traditional CNNs. Establishing rela-

tionships between nodes is essential before deploying the GCN method. Studies [93]–[95] have

utilised Geodesic distances between electrodes to form the adjacency matrix, while others [96]–

[100] have employed the Pearson coefficient correlation (PCC) to assess correlations between

EEG channels. Additionally, [101] have utilised the phase lag index (PLI) in the adjacency

matrix construction in their CSGNN model. Notably, [102] and [96] explored optimal adja-

cency matrices in EEG classification through a trainable matrix. [103] introduced a unified

GNN sparsification technique (UGS), giving rise to a Graph Lottery Ticket (GLT) by pruning

both the original adjacency matrix and GNN weights. This method decreases the Multiply

Accumulate (MAC) inference, thus reducing computational overhead.

Existing methods for constructing adjacency matrices in EEG signal classification rely on prior

knowledge of inter-channel relationships, which can be a limitation. This dependency is espe-

cially challenging for single time point classification of EEG motor imagery (MI) signals, where

rapid signal interpretation at intervals as brief as 1
160

s is critical. To address this, our study

proposes EEG GLT which is a novel method for constructing adjacency matrices for GCNs

specifically for EEG MI single time point classification, without requiring predefined inter-

channel knowledge while enhancing both classification accuracy and computational efficiency.

3.2 Related Work

Traditional EEGMI classifiers typically rely on machine learning techniques that classify signals

based on manually crafted features, such as wavelet transforms or analytic intrinsic mode

functions [104], [105]. One widely used method is the filter bank common spatial pattern

(FBCSP) [106], which applies common spatial patterns (CSP) across various frequency bands

in EEG signals to extract discriminative features.

Deep neural networks (DNNs) have advanced EEG motor imagery (MI) classification by lever-
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aging end-to-end architectures that combine feature extraction with classifier learning, elimi-

nating the need for manual feature engineering. CNN-based models, such as those proposed

by [107], [108], excel at extracting temporal features from 1D and 2D Euclidean data, achiev-

ing high accuracy. Further refinements, as seen in [109], [110], incorporate long short-term

memory (LSTM) blocks to capture temporal dependencies effectively in EEG signals. The

EEGProgress model [111] adopts a unique approach by applying CNN operations to individual

brain regions for EEG MI signal classification, focusing on regional processing rather than all

channels simultaneously. The ConTraNet model [112] combines Transformer and CNN blocks

to capture both long- and short-term dependencies, fixed spatial patterns, and applies attention

to non-stationary, time-varying inputs, resulting in improved performance for EEG-based emo-

tion recognition. However, a common limitation of the methods discussed above is that they are

applicable only to window-based EEG classification and not to single time-point classification.

GCNs have become increasingly popular in EEG signal classification due to their ability to

encode non-Euclidean data, offering flexibility in analysing graph-structured information [92],

[113]. GCNs can be applied across various graph analysis tasks:

• Node-Level Tasks: Predicting properties of individual nodes, used for both regression

and classification.

• Edge-Level Tasks: Predicting edge properties, mainly for classification.

• Graph-Level Tasks: Classifying entire graphs based on their structure and properties.

Two main categories of GCNs are the spectral method [114]–[116] and the spatial method

[117]–[120]. Studies [96] and [121] indicate challenges associated with the spatial method, par-

ticularly for matching local neighborhoods. GCNs have an important application in classifying

EEG signals at the graph level, where EEG readings from individual electrodes are treated as

node attributes. EEG feature extraction is broadly categorised into time and frequency domain

features. Building on the work of [122], time-domain metrics such as Root Mean Square, skew-

ness, minmax, variance, kurtosis, Hurst Exponent, Higuchi, and Petrosian fractal dimensions

are derived within predefined time windows by [98]. Within the frequency domain, emphasis is

placed on power spectral density (PSD) and power ratio (PR) across specific frequency bands:

δ[0.5 - 4Hz], θ[4 - 8Hz], α[8 - 13Hz], β[13 - 30Hz], and γ[30 - 110Hz]. This is supplemented by

other metrics such as total power, spectral entropy, and peak frequency, all captured within

chosen time windows.

The DG-HAM [123] and EEG-ARNN [124] models classify EEG tasks using raw EEG signals

within a specified window length, without extracting graph-based features, such as time-domain

or frequency-domain features. In contrast, [100] introduced the state-of-the-art GCNs-Net for

time-point classification, which treats each time point as an independent feature, enabling a

more detailed time-resolved analysis of EEG MI signals. Although GCNs-Net performs well

in classifying EEG MI single time points, it only considers the functional connectivity of EEG

channels during GNN operations, which can limit its accuracy. Additionally, its fully dense
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adjacency matrix requires high MAC operations, making it less efficient for single time-point

EEG classification.

While dynamic graph models such as TodyNet [125] and SDGL [126] have demonstrated strong

performance in multivariate time series tasks by learning evolving graph structures, they are

primarily designed for window-based or sequential inputs. These methods are not suited for

real-time EEG decoding, especially for single-time-point signals classification, where the model

must operate without temporal context. This remains an open challenge in EEG research that

calls for alternative approaches to graph construction and model design.

In this chapter, we propose the EEG GLT method for adjacency matrix construction, integrated

with a spectral GNN-based EEG GLT-Net architecture, to classify EEG MI at the single-time-

point level. Using the raw EEG MI single-time-point signals from the time-resolved PhysioNet

dataset. The primary contributions of this study can be summarised as:

• EEG Graph Lottery Ticket (EEG GLT): We present a novel method to construct

an optimal adjacency matrix for EEG MI signal classification. Achieved through the

iterative pruning of relationships among EEG channels, the EEG GLT introduces a new

direction in EEG adjacency matrix design.

• Channel Relationship Optimisation: Our approach reveals the most advantageous

relationship between EEG channels. It is tailored for catering to individual subjects and

the architecture of GCN models, eliminating the need for prior knowledge about the

inter-relationships among EEG channels.

• Computational Efficiency: Recognising the computational intensity of classifying EEG

at single time points, our strategy mitigates the high demand for computational resources,

proving especially beneficial for real-time applications.

• Performance Validation: We benchmark the accuracy of our EEG GLTmethod against

two well-established techniques: the Geodesic method and the leading PCC method em-

ployed in the state-of-the-art GCNs-Net. This evaluation spans across six distinct spectral

GCN models. Each model is distinguished by its unique specifications, including varia-

tions in GCN layer structures, polynomial degrees of filters, numbers of Fully Connected

(FC) layers, and the amount of hidden nodes. Additionally, we compare the performance

of our model with seven other state-of-the-art models to demonstrate its effectiveness.

29



3.3 Methodology

3.3.1 Overview

As shown in Figure 3.1, the project framework was as follows:

• EEG signals from 64 channels were captured at each time point 1
160

s and used as input

features for the EEG GLT-Net.

• Additionally, the EEG GLT-Net accepted the graph representation as another form of

input. This representation included the graph Laplacian, derived using three different

methods: PCC between EEG channels, Geodesic distance between EEG electrodes, and

our newly proposed EEG Graph Lottery Ticket Adjacency Matrix Mask (mEEG GLT ).

• The EEG GLT-Net processed these inputs to decode the EEGMI time point signal, which

was then categorised into one of the four MI types.

160

Figure 3.1: EEG GLT-Net Model: (a) Overall architecture (classifying EEG MI of one time

point 1 s of signals from 64 EEG electrodes). Note that EEG Graph adjacency matrix can be

AGeodesic, APCC or AEEG GLT , (b) Components inside the spectral graph convolution block, (c)

Chebyshev spectral graph convolution

3.3.2 Dataset Description

This chapter utilised the PhysioNet EEGMI dataset [127] encompassing over 1,500 EEG record-

ings sourced from 109 participants. The recordings were captured using 64 EEG electrodes,

consistent with the international 10-10 system, with the exclusion of F9, Nz, F10, FT9, FT10,
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A1, A2, TP9, TP10, P9, and P10 channels. Channel Iz is retained as the sole outermost sen-

sor due to its minimal contamination from ocular and muscle artifacts and its proven utility

in preserving relevant motor imagery information with high signal quality. Each participant

executed 84 trials, broken down into 3 runs with, 7 trials per run, spanning 4 distinct tasks.

The tasks included:

• Task 1: Imagining the act of opening and closing the left fist.

• Task 2: Imagining the act of opening and closing the right fist.

• Task 3: Imagining the act of opening and closing both fists simultaneously.

• Task 4: Imagining the act of opening and closing both feet.

Recordings in the dataset were originally sampled at 160 Hz and each recording had a duration

of 4 seconds. Our study employed time point samples for classification, and our analysis was

strictly conducted at the subject level. Although the original dataset comprised 109 partici-

pants, our study focused solely on 20 subjects, labelled S1 to S20.

3.3.3 Data Pre-processing and Feature Extraction

In the initial pre-processing phase, raw signals underwent only a notch filter at the 50 Hz

power line frequency, foregoing typical filtering or denoising steps to maximise data integrity.

Although each task lasted for a 4-second duration, only the time period from t = 1s to t =

3s was considered in our experiments. This is because subjects typically exhibited greater

readiness post t = 1s. All 64 EEG channels were incorporated into our model. We utilised

the signal values from each EEG channel at each time point as feature for each node. The

construction methods of the adjacency matrix, which captures brain connectivity, are elaborated

in Sections 3.3.4. The training data underwent normalisation, ensuring a mean µ = 0 and a

standard deviation σ = 1 for each channel. Following this, both the test and validation sets

were adjusted in alignment with the normalisation parameters established from the training

data.

3.3.4 Graph Preliminary

Graph Representation

Consider a directed weighted graph represented as G = {V,E}. Here, |V | = N denoted the

number of nodes and |E| was the count of edges connecting the nodes. The node set was

defined as V = {v1, v2, . . . , vn}. The node feature matrix of the entire graph was represented

by X ∈ RN×F , where F , the number of features, was equal to 1. The adjacency matrix, denoted

as A ∈ RN×N , captured the graph’s overall topology. Specifically, if an edge existed between

nodes vi and vj (i.e., (vi, vj) ∈ E), then A[i, j] ̸= 0. Otherwise, A[i, j] = 0.

The adjacency matrix for the PCC method, APCC ∈ RN×N was defined in Equation 3.1, where
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I was the identity matrix and |P | was the absolute PCC matrix of dimension of N ×N . Each

element Pij of P was calculated using Equation 3.2. The absolute PCC matrix |P | captured
the linear correlations between EEG channel signals, with its elements satisfied 0 ≤ |Pij| ≤ 1:

APCC = |P | − I (3.1)

where

Pij =
cov(xi, xj)

σiσj

. (3.2)

For the Geodesic-distance adjacency matrix method, the configuration of 64 electrodes into a

unit sphere acted as a stand-in for spatial brain connectivity. This allowed the computation

of geodesic distances between the electrodes placed on a sphere of radius r. If two electrodes

have Cartesian coordinates (xi, yi, zi) and (xj, yj, zj), the geodesic distance for the adjacency

matrix was calculated using Equation 3.3:

AGeodesic
ij = arccos(

(xi xj + yi yj + zi zj)

r2
) (3.3)

These distances were standardised into the [0, 1] range. The degree matrix, D, was a diagonal

representation of A, where the ith diagonal element of D was computed as Dii =
∑N

j=1 Aij.

The combinatorial Laplacian matrix, L ∈ RN×N , was described as L = D − A. A normalised

version of this combinatorial Laplacian can be obtained with L = IN −D−1/2AD−1/2.

Spectral Graph Filtering

The eigenvectors of the graph Laplacian matrix can be expressed as graph Fourier modes, with

{ul}N−1
l=0 ∈ RN . The diagonal matrix of these Fourier frequencies, Λ = diag[λ0, ..., λN−1] ∈

RN×N . We defined the Fourier basis, U = [u0, ..., uN−1] ∈ RN×N , which allows for the decom-

position of the Laplacian matrix, L, into L = UΛUT . The signal x can be transformed by

graph Fourier into x̂ ∈ RN using x̂ = UTx, while the inverse graph Fourier transform is given

by x = Ux̂. The convolution operation on graph G is defined as:

x ∗G g = U((UTx)⊙ (UT g)) (3.4)

where g represents the convolutional filter and ⊙ denotes the Hadamard product. Given that

gθ(Λ) = diag(θ), where θ ∈ RN represents the vector of Fourier coefficients, the Graph convo-

lution operation can be implemented as follows:

x ∗G gθ = gθ(UΛUT )x = Ugθ(Λ)U
Tx (3.5)

where gθ is a non-parametric filter, and polynomial approximation is employed to mitigate the

excessive computational complexity. Chebyshev graph convolution, a specific instance of graph
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convolution, utilises Chebyshev polynomials for filter approximation [115]. The approximation

of gθ(Λ) under the Kth order Chebyshev polynomial framework is given by:

gθ(Λ) =
K−1∑
k=0

θkTk(Λ̂) (3.6)

where

Λ̂ =
2Λ

Λmax

− IN (3.7)

In the above Equation 3.6, Tk(Λ̂) ∈ RK is the kth order Chebyshev polynomial evaluated using

Equation 3.7. Then, the signal x is convolved with the defined filter gθ using the following

equation:

x ∗G gθ = U
K−1∑
k=0

θkTk(Λ̂)U
Tx =

K−1∑
k=0

θkTk(L̃)x (3.8)

Normalising Λ can be achieved by using Equation 3.7, where Λmax denotes the largest entry in

the diagonal of Λ, and IN represents the diagonal matrix of the scaled eigenvalues. In the above

Equation 3.8, Tk(L̃) is the Chebyshev polynomial of order k evaluated at the scaled Laplacian,

L̃ which is defined in the Equation 3.9 as:

L̃ =
2L

λmax

− IN (3.9)

Let x̄k = Tk(L̃)x ∈ RN , where a recursive relation is used to compute x̄k using Equation 3.10

with x̄0 = x and x̄1 = L̃x. One key advantage of using the Chebyshev polynomial to approx-

imate convolutional filters is that it inherently avoids the need to compute the graph Fourier

basis. The recursive relation is given by:

x̄k = 2L̃x̄k−1 − x̄k−2 (3.10)
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Figure 3.2: EEG graph (mg) pruning using Algorithm 1: At each Nep iteration, the bottom

pg% are pruned, reducing density from 100% until the lowest density sg%. Solid lines indicate

remaining edges, while red-dashed lines depict removed edges

3.3.5 EEG Graph Lottery Ticket (EEG GLT)

In the process of executing a forward pass with the spectral GNN function, denoted as f(.,Θ),

and given a graph denoted as G = {A,X}, the method presented in [103] searches for an

adjacency matrix mask mg ∈ {0, 1}. The goal is to maximise sparsity while maintaining

the highest prediction accuracy. In our model, the original matrix Aoriginal ij = {0, if i =

j; 1, otherwise} in the shape of |V | × |V | was not trainable. The adjacency matrix mask in our

model mg ∈ R|V |×|V | was trainable:

A = Aoriginal ⊙mg (3.11)

Once the model had undergone N epochs, the lowest pg% (pg = 10%) of the values in the

trained mg at highest accuracy of the validation dataset were pruned. These values were set to

0, while the remaining values were set to 1 as shown in Figure 3.2. Concurrently, the spectral

filter weights, represented as Θ, were reset to their initial state, Θ0. The trained mg that

yielded the highest accuracy of the validation set within the span of N epochs was designated

as the GLT and duly noted. This process continued, and a GLT was recorded for each level

of graph sparsity until the sparsity of mg fell below the pre-determined final sparsity level,

sg. The EEG GLT was ultimately identified as the GLT that achieves the highest accuracy

alongside the highest level of graph sparsity. Moreover, it delineated the optimal adjacency

matrix capable of producing the highest accuracy.

3.3.6 General Model Architecture

A GCN structure was designed to classify EEG MI signals. This architecture comprised three

primary blocks: the GCN block, the Global Mean Pooling Block, and the Fully Connected

Block. In the GCN Block, generalised graph features for each EEG electrode were extracted.

Subsequently, the features from all 64 channels were consolidated using a mean in the Global

Mean Pooling Block. The Fully Connected Block was employed for the final prediction. A
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Algorithm 1 : EEG GLT - Finding Optimal EEG Adjacency Matrix

Input: Graph G = {A,X}, GNN f(G,Θ), GNN initialisation Θ0,

Aoriginal ij = {0, if i = j; 1, otherwise}, initial Adjacency Matrix Mask

m0
g = Aoriginal, learning rate η = 0.01, pruning rate pg = 10%, pre-defined lowest

Graph Density Level sg = 13.39%.

Output: EEG Graph Lottery Ticket (mg EEG GLT )−ms,i
g at the highest accuracy with the

highest sparsity possible.

1: while
||ms

g ||0
||Aoriginal||0

≥ sg do

2: for for iteration i = 0, 1, 2, ..., Nep do

3: Forward f(.,Θi) with Gs = {ms,i
g ⊙ Aoriginal, X} to compute Cross-Entropy Loss, L

4: Backpropagate and update, Θi and ms,i
g using Adam Optimiser

5: end for

6: Record ms,i
g with the highest accuracy in validation set during the Nep iteration

7: Set pg = 10% of the lowest absolute magnitude values in ms
g to 0 and the others to 1,

then obtain a new ms+1,0
g

8: end while

detailed representation of this model architecture is provided in Figure 3.1 and Table 3.1.
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Table 3.1: Generalised Architecture of EEG GLT-Net Model

Layer Type
Input

Size

Polynomial

Order
Weights Bias Output Activation

Input Input N × 1 - - - - -

Block A - GCN Block

C1 Graph Convolution N × 1 K1 1× F1 ×K1 N × F1 N × F1 -

BNC1 Batch Normalisation N × F1 - F1 F1 N × F1 ReLU

C2 Graph Convolution N × F1 K2 F1 × F2 ×K2 N × F2 N × F2 -

BNC2 Batch Normalisation N × F2 - F2 F2 N × F2 ReLU

C3 Graph Convolution N × F2 K3 F2 × F3 ×K3 N × F3 N × F3 -

BNC3 Batch Normalisation N × F3 - F3 F3 N × F3 ReLU

C4 Graph Convolution N × F3 K4 F3 × F4 ×K4 N × F4 N × F4 -

BNC4 Batch Normalisation N × F4 - F4 F4 N × F4 ReLU

C5 Graph Convolution N × F4 K5 F4 × F5 ×K5 N × F5 N × F5 -

BNC5 Batch Normalisation N × F5 - F5 F5 N × F5 ReLU

C6 Graph Convolution N × F5 K6 F5 × F6 ×K6 N × F6 N × F6 -

BNC6 Batch Normalisation N × F6 - F6 F6 N × F6 ReLU

Block B - Global Mean Pooling Block

P Global Mean Pool N × F6 - - - F6 -

Block C - Fully Connected Block

FC1 Fully Connected F6 - F6 ×H1 H1 H1 -

BNFC1 Batch Normalisation H1 - H1 H1 H1 ReLU

FC2 Fully Connected H1 - H1 ×H2 H2 H2 -

BNFC2 Batch Normalisation H2 - H2 H2 H2 ReLU

FC3 Fully Connected H2 ×O - H2 ×O O O -

S
Softmax

Classification
O - - - O -

N = Number of EEG Channels (i.e. 64); O = Number of EEG MI Classes (i.e. 4)

3.3.7 Model Setting

Let Fi represent the number of filters at each GCN level, given by Fi ∈ [F1, F2, F3, F4, F5, F6].

Similarly, Ki denotes the polynomial order of the filter for each ith layer, and is defined as

Ki ∈ [K1, K2, K3, K4, K5, K6]. O indicates the number of MI classes for prediction. Due to

the large volume of instances in the training set, we employed a mini-batch size B of 1024.

A batch normalisation (BN) layer was incorporated after both the spectral GCN and Fully

Connected layers. This BN layer re-scales and re-centers normalised signals to match the

original distribution within the mini-batch, addressing the internal covariate shift issue and

helping to mitigate the gradient vanishing/exploding problem. Additionally, 50% dropout

layers were integrated after the ReLU layers (Equation 3.12) within the Fully Connected Block

36



for regularisation. The details of the model settings can be found in Table 3.2, while the

hyperparameter settings are provided in Table 3.3.

The ReLU activation function is defined as:

ReLU(x) = max(0, x) (3.12)

The softmax function is given by

Softmax(ŷi) =
eŷi∑O
j=1 e

ŷj
(3.13)

where ŷi represent the predicted probability of an instance for each class, ranging over ŷi ∈
[ŷ1, ..., ŷO]. O denotes the total number of classes. The loss function employed was the cross-

entropy loss, defined as:

Loss = − 1

|B|

B∑
b=1

O∑
i=1

yb,i. log(Softmax(ŷb,i)) (3.14)

Table 3.2: Model Settings of EEG GLT-Net

Model Model Framework
Number of GCN

Filters

GCN Filter

Polynomial

Order

Number of FC

Hidden Nodes

A
(C−BNC)×6−P − (FC−

BNFC)× 2− FC − S

16, 32, 64, 128,

256, 512
5, 5, 5, 5, 5, 5 1024, 2048, 4

B
(C−BNC)×6−P − (FC−

BNFC)× 2− FC − S

16, 32, 64, 128,

256, 512
2, 2, 2, 2, 2, 2 1024, 2048, 4

C (C−BNC)×5−P−(FC−S)
16, 32, 64, 128,

256
5, 5, 5, 5, 5 4

D (C−BNC)×5−P−(FC−S)
16, 32, 64, 128,

256
2, 2, 2, 2, 2 4

E
(C−BNC)×5−P − (FC−

BNFC)× 2− FC − S

64, 128, 256, 512,

1024
5, 5, 5, 5, 5 512, 128, 4

F
(C−BNC)×5−P − (FC−

BNFC)× 2− FC − S

64, 128, 256, 512,

1024
2, 2, 2, 2, 2 512, 128, 4
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Figure 3.3: Geodesic Distance Adjacency Matrix (AGeodesic)

Table 3.3: Hyperparameter Settings for Training EEG GLT-Net

Hyperparameter Value

Training Epochs (Nep) 1000

Batch Size (B) 1024

Dropout Rate 0.5

Optimizer Adam

Initial Learning Rate (η) 0.01

Both accuracy and F1 score evaluation metrics were employed to assess the performance of

models. The accuracy is defined as:

Accuracy =
TP + TN

TP + FP + TN + FN
(3.15)

The recall is given by:

Recall =
TP

TP + FN
(3.16)

The precision is defined as:

Precision =
TP

TP + FP
(3.17)

The F1 score is given by:

F1 Score =
2× Precision× Recall

Precision + Recall
(3.18)
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(a) Subject S6 (b) Subject S14

Figure 3.4: PCC Adjacency Matrix (APCC) of Subject S6 and S14

(a) Adjacency Matrix (mg EEG GLT ) - Sub-

ject S6, 13.39% Density, Model A (Accuracy:

78.13%)

(b) Graph of mg EEG GLT - S6, 13.39% Den-

sity, Model A

(c) Adjacency Matrix (mg EEG GLT ) - Sub-

ject S6, 13.39% Density, Model E (Accuracy:

73.55%)

(d) Graph of mg EEG GLT - S6, 13.39% Den-

sity, Model E

Figure 3.5: Representations of mg EEG GLT for Subject S6 at 13.39% Density. (a) Adjacency

Matrix - Model A (Accuracy: 78.13%) (b) Graph - Model A (c) Adjacency Matrix - Model E

(Accuracy: 73.55%) (d) Graph - Model E
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Table 3.4: Accuracy Comparison of Different Adjacency Matrix Construction Methods for

Subjects S1 to S10

Subj
Accuracy (Mean±Std) F1 Score (Mean±Std)

Geodesic PCC

EEG GLT

(our

method)

Geodesic PCC

EEG GLT

(our

method)

S1

66.19% ±
4.17%

76.47% ±
9.94%

98.51% ±
0.77%

66.53% ±
4.36%

76.91% ±
9.78%

98.53% ±
0.78%

S2

46.53% ±
1.33%

69.13% ±
7.05%

76.18% ±
5.53%

46.47% ±
1.46%

69.34% ±
7.37%

76.19% ±
5.52%

S3

76.18% ±
4.98%

87.28% ±
9.19%

99.17% ±
0.32%

76.12% ±
5.00%

87.43% ±
8.97%

99.19% ±
0.31%

S4

96.41% ±
1.97%

99.13% ±
1.01%

99.97% ±
0.06%

96.44% ±
1.98%

99.10% ±
1.12%

99.97% ±
0.05%

S5

37.05% ±
1.04%

43.19% ±
3.03%

50.95% ±
3.80%

36.66% ±
0.97%

43.28% ±
2.73%

50.86% ±
3.85%

S6

44.37% ±
1.59%

58.23% ±
5.19%

69.60% ±
5.67%

44.29% ±
1.65%

58.25% ±
5.49%

69.50% ±
5.70%

S7

40.44% ±
1.19%

50.98% ±
3.80%

59.45% ±
3.00%

40.30% ±
1.23%

51.10% ±
3.49%

59.34% ±
2.99%

S8

89.03% ±
7.04%

95.06% ±
5.96%

99.95% ±
0.07%

88.84% ±
6.88%

95.14% ±
5.81%

99.96% ±
0.07%

S9

87.26% ±
14.26%

97.64% ±
3.33%

99.95% ±
0.08%

87.41% ±
14.49%

97.70% ±
3.78%

99.95% ±
0.08%

S10

98.26% ±
0.31%

99.24% ±
0.19%

99.99% ±
0.01%

98.25% ±
0.32%

99.25% ±
0.20%

99.99% ±
0.01%

3.4 Results and Discussion

3.4.1 Geodesic vs PCC Adjacency Matrix Construction Method

The Table 3.6 presents the mean performance accuracy and F1 score across various models for

different adjacency matrix construction methods, including Geodesic, PCC, and EEG GLT, for

each subject. Among the existing methods (PCC and Geodesic), the PCC adjacency method

consistently outperformed the Geodesic method, enhancing the accuracy by 0.98% - 22.60%

and the F1 score by 0.99% - 22.86%. Table V and Figure 6 detail the mean accuracies and

F1 scores for 20 subjects (S1 - S20) across different matrix construction methods for each

model setting. Notably, the PCC method outperformed the Geodesic method across all model

settings, improving accuracy by 9.76% and the F1 score by 9.63%. The superiority of the PCC

method in EEG MI adjacency matrix construction over the Geodesic method stems a major

40



Table 3.5: Accuracy Comparison of Different Adjacency Matrix Construction Methods for

Subjects S11 to S20

Subj
Accuracy (Mean±Std) F1 Score (Mean±Std)

Geodesic PCC

EEG GLT

(our

method)

Geodesic PCC

EEG GLT

(our

method)

S11

97.18% ±
1.12%

99.48% ±
0.70%

99.99% ±
0.01%

97.18% ±
1.13%

99.49% ±
0.74%

99.99% ±
0.01%

S12

71.54% ±
3.44%

78.07% ±
8.95%

99.69% ±
0.32%

71.40% ±
3.37%

77.94% ±
8.76%

99.70% ±
0.31%

S13

36.52% ±
0.32%

41.35% ±
1.23%

44.50% ±
2.23%

36.49% ±
0.45%

41.01% ±
1.34%

44.47% ±
2.23%

S14

40.21% ±
1.80%

55.97% ±
6.47%

72.39% ±
6.43%

40.10% ±
1.88%

56.05% ±
6.57%

72.71% ±
6.13%

S15

46.16% ±
1.28%

52.11% ±
3.96%

67.55% ±
9.26%

45.92% ±
1.93%

52.20% ±
3.66%

67.52% ±
9.27%

S16

95.62% ±
3.87%

96.75% ±
5.00%

99.98% ±
0.03%

94.94% ±
5.25%

96.72% ±
5.07%

99.98% ±
0.03%

S17

92.07% ±
8.10%

98.83% ±
2.33%

99.98% ±
0.03%

91.95% ±
8.31%

98.66% ±
2.76%

99.98% ±
0.03%

S18

71.24% ±
5.96%

86.19% ±
10.95%

99.92% ±
0.12%

73.28% ±
3.28%

85.98% ±
11.10%

99.93% ±
0.13%

S19

33.18% ±
0.40%

38.38% ±
2.27%

41.41% ±
1.44%

32.85% ±
0.32%

38.35% ±
2.32%

41.27% ±
1.34%

S20

93.77% ±
2.08%

98.44% ±
0.68%

99.94% ±
0.11%

93.76% ±
2.06%

98.45% ±
0.72%

99.95% ±
0.12%
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limitation in the latter: it considers only the geodesic distance between EEG electrodes, leading

to identical adjacency matrices for all 20 subjects (Figure 3.3). In contrast, the PCC method

produces unique matrices for each subject, offering tailored matrices that are better suited for

subject-based EEG MI classification (Figure 3.4).

Our experiment revealed that using the relative physical distance between EEG electrodes was

suboptimal due to limited accuracy. Since EEG electrodes do not have direct connections

to brain tissue, electrical signals produced by large neuron groups that fire simultaneously or

synchronously need to traverse multiple tissue layers such as the cerebral cortex, cerebrospinal

fluid, skull, and scalp before detected by EEG electrodes. Given that the skull attenuates

these signals, and causes a smearing effect [128], coupled with individual differences in skull

thickness, scalp conductivity, and MI task approach, it was the most logical to use unique

adjacency matrices for each individual.

In the AGeodesic adjacency matrix construction, we adopted a unit sphere assumption because

the PhysioNet dataset lacks data on individual head shapes. Given natural variations in head

structure, AGeodesic values could potentially differ for each subject.

Table 3.6: Accuracy Comparison Across Different Methods of Adjacency Matrix Construction

for Each Model

Model Adj Method Avg. Accuracy Avg. F1 Score

Model A

Geodesic 70.70% 70.14%

PCC 79.82% 79.77%

EEG GLT 85.90% 85.89%

Model B

Geodesic 70.70% 70.65%

PCC 78.69% 78.32%

EEG GLT 83.84% 83.80%

Model C

Geodesic 65.49% 65.43%

PCC 74.13% 74.41%

EEG GLT 83.27% 83.28%

Model D

Geodesic 62.97% 63.08%

PCC 68.13% 68.05%

EEG GLT 81.52% 81.48%

Model E

Geodesic 69.20% 69.16%

PCC 78.90% 78.88%

EEG GLT 85.91% 85.88%

Model F

Geodesic 69.34% 69.28%

PCC 76.89% 77.26%

EEG GLT 83.26% 83.36%
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Figure 3.6: Comparison of Model Accuracy Across Different Adjacency Matrix Construction

Methods
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3.4.2 EEG GLT Method vs PCC Method in Adjacency Matrix Con-

struction

Our EEG GLT method consistently surpassed the PCC method in both accuracy and F1 score.

As shown in Table 3.4 and 3.5, EEG GLT demonstrated substantial increase in accuracy and F1

score compared to the PCCmethod, by 0.52% - 22.04% and 0.50% - 21.76%, respectively. Unlike

the PCC method, our EEG GLT adjacency matrix is dynamic with the ability to adapt to both

the individual subject and the model settings of GCNs (Table 3.2), as shown in Figure 3.5.

According to Table 3.6 and Figure 3.6, our EEG GLT method improved the mean accuracies

and F1 scores for 20 subjects by 13.39% and 13.43%, respectively compared to the PCC method.

This underscores the necessity of model-specific adjustments, in addition to subject-based tai-

loring in the adjacency matrix construction, to attain the best possible outcomes. Distinctly,

our EEG GLT matrix is asymmetrical due to the iterative pruning process detailed in Algo-

rithm 1, which refines the matrix until the optimal EEG Graph Lottery Ticket is identified.

Figures 3.7, 3.8, 3.9, 3.10, 3.11, 3.12 present the classification accuracy across various adjacency

matrix densities for Subjects S1, S3, S6, S12, S14 and S15. The data indicates an upward trend in

classification accuracy with iterative pruning. Most importantly, the accuracy is notably lower

at an adjacency matrix density of 100% in comparison to other densities. This observation

suggests that some initial connections between EEG electrodes might be unnecessary, or even

counterproductive, for achieving optimal classification. Removing these redundant links may

boost the classification accuracy. Hence, a fully connected model between EEG channels may

not be the most effective approach.

Table 3.6 displays the optimal EEG GLT adjacency matrix (mg EEG GLT ) density for each

subject. The transformation of the adjacency matrix mask mg for the subjects S6 and S14 at

different densities is shown in Figure 3.13 and Figure 3.14 respectively. For subjects S5, S7,

S13, and S19, their optimal mg EEG GLT were identified early at a 100% density. In contrast,

other subjects attained their best results at densities below 22.53% for 2nd order models. When

considering 5th order models, such as Model B, Model D, and Model F, the optimal EEG GLTs

emerged at densities of 59.00% or lower.

While our approach enhanced the accuracy for subjects S5, S7, S13, and S19, the results for

both accuracy and F1 score lingered below 60.00%. A potential explanation is that relying on

a single time point feature from EEG channels might not be adequate for MI tasks in these

subjects, since there is inherent variability in the time required (or temporal dynamics) to

execute the MI task among different individuals, as referenced in [129]. This variability might

also explain why eliminating edges between EEG channels does not necessarily lead to improved

performance accuracy for those subjects.
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Table 3.7: Optimal EEG GLT Adjacency Matrix (mg EEG GLT ) Density of Each Subject Across

Models

Subject Model A Model B Model C Model D Model E Model F

S1 18.43% 13.39% 31.30% 28.15% 18.43% 13.39%

S2 16.57% 13.39% 13.39% 28.15% 18.43% 25.32%

S3 18.43% 25.32% 34.80% 31.30% 25.32% 20.49%

S4 13.39% 13.39% 14.91% 20.49% 14.91% 13.39%

S5 100.00% 31.30% 100.00% 100.00% 100.00% 100.00%

S6 13.39% 20.49% 100.00% 14.91% 14.91% 20.49%

S7 100.00% 28.15% 100.00% 31.30% 100.00% 59.00%

S8 20.49% 18.43% 13.39% 14.91% 31.30% 14.91%

S9 13.39% 16.57% 16.57% 14.91% 13.39% 13.39%

S10 13.39% 13.39% 22.77% 20.49% 13.39% 13.39%

S11 13.39% 13.39% 16.57% 13.39% 13.39% 13.39%

S12 14.91% 13.39% 34.80% 28.15% 16.57% 13.39%

S13 80.98% 34.80% 100.00% 20.49% 100.00% 22.77%

S14 13.39% 13.39% 18.43% 13.39% 13.39% 22.77%

S15 14.91% 13.39% 28.15% 13.39% 22.77% 14.91%

S16 14.91% 13.39% 20.49% 18.43% 13.39% 13.39%

S17 14.91% 13.39% 20.49% 22.77% 13.39% 13.39%

S18 14.91% 13.39% 28.15% 20.49% 22.77% 31.30%

S19 100.00% 59.00% 100.00% 22.77% 100.00% 31.30%

S20 25.32% 22.77% 34.80% 16.57% 20.49% 34.80%
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3.4.3 Model Setting vs Adjacency Matrix Construction Methods

Based on Table 3.6, for the Geodesic method, 2nd order GCN filters classify with higher average

accuracy and F1 score than 5th order filters. However, for the PCC and EEG GLT methods,

5th order GCN filters perform better. As highlighted in Section 3.4.2, our EEG GLT method

consistently achieves better accuracy than both the PCC and Geodesic methods. This remains

the case even when the EEG GLT adjacency matrix is paired with Model D, characterised by

its minimal complexity, encompassing just five spectral GCN layers with 2nd order filters and

a singular FC layer. These findings suggest that optimising the adjacency matrix is more im-

portance than refining the GCN architecture when aiming for enhanced performance accuracy.

3.4.4 MACs Saving using EEG GLT Method

The MACs inference for classifying a single-time-point EEG MI signal is influenced by several

model settings, including the model framework, the number and polynomial order of GCN

filters, and the specifications of FC layers as the number of layers and the node count. Among

these, the count and polynomial orders of GCN filters at the GCN layers are the primary

determinants of the MACs requirement. Both AGeodesic and APCC maintain 100% densities in

their adjacency matrices. Consequently, the MACs inference for a single-time-point EEG MI

signal, when using models A to F, are as follows: 81.89M, 42.26M, 22.64M, 11.32M, 291.62M,

and 146.10M, respectively.

Our EEG GLT method presents varied AEEG GLT densities due to the pruning employed by

Algorithm 1. As elaborated in Section 3.4.2, the EEG GLT approach enhances classification

accuracy through pruning, which in turn decreases the MACs. Table 3.8 illustrates the percent-

age of MACs savings for each subject, comparing the top accuracy value from the PCC method

to the EEG GLT accuracies from models with adjacency matrix densities slightly exceeding

PCC’s best.

For performance equivalent to or surpassing PCC’s optimal accuracy, only Models D and B

with the sparsest adjacency matrix density (13.39%) are necessary. The PCC method requires

between 42.26M to 291.62M for one-time-point inference across 20 subjects to reach peak

accuracy. In contrast, our EEG GLT approach needs only 8.76M to 80.67M to achieve equal

or better accuracy, translating to savings in MACs of up to 97.00%.

3.4.5 Comparison with Current State-of-the-Art Models

In this paper, we compare our proposed method, EEG GLT-Net, with seven other state-of-the-

art (SOTA) models listed in Table 3.9, including FBCSP [106], EEGNet [108], CasCNN [109],

DG-HAM [123], EEG-ARNN [124], SSDA [110], and GCNs-Net [100]. Our comparisons begin

with the traditional FBCSP approach, which leverages CSP to extract features across multiple

frequency bands and utilises SVM for classification. We then compare with EEGNet, a widely

used model based solely on a CNN structure. Further, we assess CasCNN and SSDA, both of
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Table 3.8: MACs Savings (%) for Each Subject: PCC’s Best Model Accuracy vs. EEG GLT

Accuracy from Models with Adjacency Matrix Densities Just Surpassing PCC’s Best Accuracy

Subj
PCC EEG GLT MACs

Model Acc. MACs
Model

(Adj%)
Acc. MACs Saving

S1 A 87.66% 81.89M D (13.39%) 97.04% 8.76M 89.30%

S2 B 75.43% 42.26M B (13.39%) 78.09% 36.97M 12.52%

S3 A 94.89% 81.89M D (13.39%) 98.22% 8.76M 89.30%

S4 A 99.88% 81.89M B (13.39%) 99.98% 36.97M 54.85%

S5 B 46.90% 42.26M B (13.39%) 48.73% 36.97M 12.52%

S6 E 62.92% 291.62M B (13.39%) 70.17% 36.97M 87.32%

S7 E 55.04% 291.62M B (13.39%) 57.68% 36.97M 87.32%

S8 B 98.71% 42.26M D (13.39%) 99.78% 8.76M 79.27%

S9 A 99.86% 81.89M B (13.39%) 99.98% 36.97M 54.85%

S10 E 99.44% 291.62M D (13.39%) 99.97% 8.76M 97.00%

S11 E 99.90% 291.62M D (13.39%) 99.98% 8.76M 97.00%

S12 A 86.76% 81.89M D (13.39%) 99.05% 8.76M 89.30%

S13 A 42.79% 81.89M B (13.39%) 43.57% 36.97M 54.85%

S14 B 63.58% 42.26M D (13.39%) 66.25% 8.76M 79.29%

S15 E 57.01% 291.62M D (13.39%) 57.72% 8.76M 97.00%

S16 B 99.80% 42.26M D (13.39%) 99.85% 8.76M 79.27%

S17 A 99.98% 81.89M B (13.39%) 100.00% 36.97M 44.93%

S18 A 96.05% 81.89M D (16.57%) 99.58% 8.76M 76.14%

S19 A 41.62% 81.89M A (89.98%) 41.78% 80.67M 1.49%

S20 B 99.17% 42.26M D (13.39%) 99.68% 8.76M 79.27%
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Figure 3.7: Performance Accuracy Across Different mg Densities Using Different Models for

Subject S1

Figure 3.8: Performance Accuracy Across Different mg Densities Using Different Models for

Subject S3

48



Figure 3.9: Performance Accuracy Across Different mg Densities Using Different Models for

Subject S6

Figure 3.10: Performance Accuracy Across Different mg Densities Using Different Models for

Subject S12
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Figure 3.11: Performance Accuracy Across Different mg Densities Using Different Models for

Subject S14

Figure 3.12: Performance Accuracy Across Different mg Densities Using Different Models for

Subject S15
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Figure 3.13: EEG GLT Adjacency matrix mask (mg) of Subject S6 at different densities using

Model A. The mg density at 20.49% produces the highest accuracy of 78.13%
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Figure 3.14: EEG GLT Adjacency matrix mask (mg) of Subject S14 at different densities using

Model A. The mg density at 13.39% produces the highest accuracy of 79.06%
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which combine CNN and LSTM networks. Finally, we evaluate our method against DG-HAM,

EEG-ARNN, and GCNs-Net, which are GNN-based networks.

Table 3.9: Performance Comparisons with State-of-the-Art Models

Method Avg. Accuracy Avg. F1 Score

FBCSP [106] 59.56% 60.04%

EEGNet [108] 72.20% 72.10%

CasCNN [109] 63.30% 63.18%

DG-HAM [123] 76.15% 76.08%

EEG-ARNN [124] 82.39% 82.17%

SSDA [110] 83.73% 83.24%

GCNs-Net [100] 80.16% 80.05%

Proposed EEG GLT-Net 86.43% 86.23%

The traditional FBCSP method achieves 59.56%, the lowest accuracy among the SOTAs, likely

due to its reliance on SVM as the classifier. The popular EEGNet achieves 72.20% accuracy,

outperforming the CasCNN model, which achieves only 63.30%. Within the CNN-based SOTA

models, SSDA reaches the highest accuracy at 83.73%. Among the GNN-based SOTA models,

EEG-ARNN achieves the highest accuracy at 82.39%, followed by GCNs-Net and DG-HAM

with accuracies of 80.16% and 76.15%, respectively.

From the perspective of adjacency matrix construction methods, the trainable adjacency matrix

in EEG-ARNN outperforms the geodesic-based DG-HAM and PCC-based GCNs-Net. Our

proposed EEG GLT-Net, using single time-point classification at intervals of ( 1
160

)s, achieves

the highest overall accuracy of 86.43% among all SOTAs. Notably, GCNs-Net is the only

other model employing single time-point classification; however, while the GCNs-Net accuracy

falls short of our EEG GLT-Net using the EEG GLT adjacency matrix, it surpasses our model

when using a PCC-based adjacency matrix, reaching 79.82% which may be attributed to the

application of pooling layer after every GNN layer within GCNs-Net.

3.5 Limitations and Future Works

We introduced a novel method for constructing an adjacency matrix in GNNs to classify single

time-point EEG MI signals. The EEG GLT-Net demonstrated high classification performance

within a single-subject paradigm, where models are trained and tested on the same individual.

This approach effectively captures subject-specific neural patterns, optimising classification

accuracy by leveraging the unique signal characteristics of each participant. While this design

enhances model precision for individualised EEG decoding, EEG signals naturally exhibit inter-

subject variability due to anatomical, physiological, and cognitive differences. Exploring cross-

subject settings in future work would provide further insights into the model’s adaptability
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across diverse users.

The EEG GLT-Net architecture has shown strong performance in single time-point classifi-

cation at ( 1
160

s), particularly for MI tasks with distinct neural patterns, such as those in the

PhysioNet dataset. However, for MI tasks with more subtle and overlapping patterns, as seen

in datasets like BCIC iv-2a, the model’s effectiveness is reduced due to the inherent temporal

dependencies in the data. In such cases, longer signal segments—typically exceeding one sec-

ond—along with feature extraction techniques are essential to capture the meaningful temporal

and spatial relationships required for accurate classification.

Nonetheless, the proposed EEG GLT adjacency matrix construction method is not restricted

to single time-point classification. A natural extension of this work is to apply EEG GLT to

additional EEG MI datasets, such as BCIC iv-2a, and EEG movement datasets, including the

High-Gamma dataset. Future adaptations will focus on integrating temporal embeddings to

accommodate datasets that require sequential information while preserving the computational

efficiency of the graph-based approach. Additionally, evaluating the method on large-scale

multi-subject datasets will further establish its robustness, ensuring broader applicability across

real-world neurorehabilitation and BCI systems.

3.6 Conclusion

Our EEG GLT approach, developed for optimal adjacency matrix construction in EEG MI

time-point signal classification, consistently outperforms both the Geodesic and PCC methods

in accuracy and F1 score. It is important to note that the PCC method is currently em-

ployed in the state-of-the-art EEG time-point classification model, GCNs-Net. Specifically, our

EEG GLT method enhances accuracy and F1 score by margins ranging from 0.52% to 22.04%

and 0.50% to 21.76%, respectively, compared to PCC. Furthermore, it improves the average

accuracy across 20 subjects by 13.39%. With this method, optimal outcomes emerge when

the adjacency matrix densities remain below 22.53%. Our study emphasises the pivotal role

played by the configuration of the adjacency matrix in performance accuracy, overshadowing

even model settings. In addition, our EEG GLT approach has much higher computational

efficiency, demanding between 8.76M and 80.67M MACs, which is significantly less than the

42.26M to 291.62M required by the PCC method for comparable or superior results.

While this research primarily focuses on identifying the optimal adjacency matrix, with pruning

confined to the adjacency matrix, upcoming studies will explore pruning GNN and FC layers

weights to further streamline computational costs. Additionally, we plan to expand the number

of time points used for feature extraction, especially for subjects S5, S7, S13, and S19. In future

work, we will refine Algorithm 1 to seamlessly integrate pooling layers within the GCN blocks

under the EEG GLT method, to further optimise computational efficiency. To achieve a more

generalised understanding of the inter-relationships between EEG channels, it is essential to

incorporate a broader range of tasks into models.
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3.7 Significance and Novelty

This chapter introduces EEG GLT-Net, a spectral Graph Neural Network (GNN) model for

real-time classification of single time point EEG motor imagery (MI) signals. The significance

of this work lies in its focus on addressing the computational and accuracy challenges inher-

ent in real-time neurorehabilitation. By dynamically constructing adjacency matrices through

the EEG Graph Lottery Ticket (EEG GLT) method, the model identifies key inter-channel

relationships without prior assumptions, enabling efficient and adaptive processing of EEG

data. This approach demonstrates superior classification performance on benchmark datasets,

making it a valuable contribution to personalised rehabilitation systems.

The novelty of EEG GLT-Net lies in its integration of graph-based learning with a lottery ticket

mechanism to enhance both interpretability and computational efficiency. Unlike traditional

EEG models, which rely on static or predefined relationships, EEG GLT-Net offers a flexible

framework that adapts to individual datasets and subjects. This innovation sets a new bench-

mark for EEG analysis, paving the way for advanced neuroengineering applications in real-time

contexts.
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Chapter 4

Economic Graph Lottery Ticket: A

GNN based Economic Forecasting

Model

4.1 Introduction

The field of econometrics is constantly evolving due to on-going improvements in statistical

methods, burgeoning data availability, and lately from rapid advances of machine learning

techniques. The primary goal is to develop models that reveal the complex relationships among

various economic variables, and enhance our understanding of the economic system.

Economic systems can be viewed as complex networks of interdependent relationships between

variables or indicators such as inflation, wage price index, and equity returns. Simplifying these

relationships between key economic variables can help create a logical network that facilitates

a more intuitive understanding of the economic system.

The Wilkie Investment Model [130], a cascading stochastic economic model first developed in

the actuary domain, has been extended to incorporate more economic variables, such as the

SUPA model [131], [132] which is used for projecting accumulation and decumulation phases

within the Australian superannuation system. However, the Wilkie model’s assumptions of

normally distributed asset returns and stationarity of economic variables may not always align

with the real-world financial market dynamics [133]. Recently, there has been a shift towards

using machine learning methods in economic modelling. For example, Scheidegger’s framework

combines Gaussian process regression with the active subspace method to address dynamic

stochastic models [134].

The need to model non-linear relationships and to manage high-dimensional data has led to

exploring the potential of Neural Networks in economic forecasting [135]. Despite criticism

surrounding interpretability, these neural networks do have the potential to capture informa-
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tion hidden in large datasets. However, standard implementation of Neural Networks does not

provide the mechanism to account for inherent structure and connectivity in economic data

and therefore cannot encapsulate complex interactions between these input economic variables.

Addressing this limitation, Graph Neural Networks (GNNs) have been developed [136]. By

incorporating data structure into their learning process, GNNs excel at uncovering complex

patterns in structured data, such as networks of economic variables. Traditionally, these inter-

relationships need to be delineated via an adjacency matrix before applying GNNs. However,

establishing the adjacency matrix requires prior knowledge of the unknown relationships be-

tween the economic variables, the challenge is to utilise the delineation process to establish the

complex relationship between the key economic variables without any preconceived knowledge

about the relationship [113].

In this paper, we propose the Economic Graph Lottery Ticket (EGLT) algorithm, which is a

novel GNN-based method that, without the prior knowledge of the inter-relationships between

the economic variables, we can generate the optimal adjacency matrix as a by-product of the

GNN training process from historical data only. The trained EGLT model is proven to provide

more accurate economic forecasting. Compared with the SUPA model, the prediction RMSE

reduced significantly for eight major Australian economic variables, highlighting the efficacy of

EGLT in economic prediction.

4.2 Economic Graph Lottery Ticket Algorithm

In the proposed EGLT approach, the key difference is that we introduce a trainable adjacency

matrix mask into the forward pass of the GNN. This would enable the adjacency matrix to

be adaptively optimised. Such flexibility ensures that the model captures the most significant

relationships without being constrained by preconceived notions. The EGLT algorithm also

integrates the structure of economic data into the learning process, allowing for more accurate

predictions.

The use of the adjacency matrix in GNNs is crucial for accurately modelling the relationships

between nodes. By dynamically adjusting this matrix, the EGLT algorithm can better capture

the complexities of economic interactions. This adaptability is particularly important in eco-

nomic forecasting, where relationships between variables can change over time due to various

factors such as policy changes, and market conditions or events.

More details of the EGLT approach are as follows. In the analysis, the forward pass of the

Graph Neural Network (GNN) function f(.,Θ) was performed on a given graph G = {A,X},
where A represents the overall adjacency matrix, as defined in Equation 4.1:

A = Aoriginal ⊙ mg (4.1)

The original adjacency matrix Aoriginal ∈ 1|V |×|V | remained fixed as a unit matrix and was not
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subject to training. To modify the graph structure, a trainable adjacency matrix mask, denoted

as mg ∈ R|V |×|V |, was introduced. At the start of Algorithm 2, the initial adjacency matrix

mask is defined as m0
g = Aoriginal.

The GNN forward pass trained variables mg, Θ
(1) and Θ(2) across Nep epochs for each adjacency

matrix mask density during the training process. The lowest parts of mg’s absolute values at

sth density were pruned, leaving the rest set to 1, guided by the minimal MSE loss from the

validation set. This cycle persisted until the mg density fell below a pre-set minimum, κmin,

with all edges in the mg at this lowest density deemed essential. The adjacency matrix density

at the sth pruned level, κs is given by

κs =
||ms

g||0
||Aoriginal||0

(4.2)

where ms
g represents the trainable adjacency matrix mask at the sth pruned level. The state

of mg producing the smallest validation set MSE loss at the ith iteration and lowest adjacency

mask sth density level during the GNN forward pass was defined as the Economic Graph Lottery

Ticket (EGLT), with ties resolved by selecting the lower mg density state.

The flowchart of a multiple layer GNN is shown in Figure 4.1. While the number of layers

increases, the computational cost and complexity of the algorithm increases. Further details

on the training EGLT algorithm are in Algorithm 2. All edges in the mg EGLT were necessary

for the best predictions.

X

A

Z1 GNNlayer2 YGNNlayer1 GNNlayerN

A A

Z2

Figure 4.1: Flowchart of a multiple layer EGLT approach
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Algorithm 2 Finding Economic Graph Lottery Ticket

Input: Graph G = {A,X}, GNN f(G,Θ), GNN initialisation Θ
(1)
0 and Θ

(2)
0 ,

Aoriginal ∈ 1|V |×|V |, initial Adjacency Matrix Mask m0
g = Aoriginal,

set learning rate η, set pruning rate pg, pre-defined lowest Graph

Density Level κmin.

Output: Economic Graph Lottery Ticket (mg EGLT )−ms,i
g at the lowest MSE loss

with the highest sparsity possible.

1: while κs ≥ κmin do

2: for for iteration i = 0, 1, 2, ..., Nep do

3: Forward f(.,Θi) with Gs = {ms,i
g ⊙ Aoriginal, X} to compute MSE Loss, L

4: Backpropagate to update Θi+1 ← Θi − η∇Θi
L

5: Update ms,i+1
g ← ms,i

g − η∇ms,i
g
L

6: end for

7: Record ms,i
g with the lowest MSE loss in validation set during the Nep iteration

8: Pre set pg of the lowest absolute magnitude values in ms
g to 0 and the others to 1, then

obtain a new ms+1,0
g

9: end while

4.3 Real Data Study: Implementation and Evaluation of

the EGLT Approach

The EGLT algorithm provides a novel approach to economic forecasting by optimising the adja-

cency matrix with GNNs. In this section, we will detail the implementation of the EGLT model

on real-world data, followed by an evaluation of its performance compared to the traditional

SUPA model.

We implemented the EGLT approach to a comprehensive selection of eight Australian economic

variables. These variables encompassed a wide range, including the Consumer Price Index

(CPI), Wage Price Index (Wage), Short-Term Interest Rate (r short), Long-Term Interest Rate

(r long), Domestic Bond Index (Dom BI), International Bond Index (Int BI), Unemployment

Rate (Unemploy) and House Price Index (HPI).

Our analysis utilised monthly data, transforming daily variables into monthly averages and

interpolating quarterly variables to match this frequency. Spanning 20 years (July 2000-June

2020), the dataset provided a substantial 240 months of data for exploration. The study used

these variables’ monthly values as input features. Since some variables are recorded quarterly,

consecutive months weren’t used as input features. For instance, data from months like January,

April, and July 2008 were used to predict October 2008 values in our study. This approach

helps capture seasonal trends.

Given their varying value scales, these data required normalisation via z-score normalisation to
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ensure a mean of zero and a standard deviation of one. This step was crucial to prevent larger-

scale features from dominating the learning process. We divided the dataset into a training

set that includes data from July 2000 to December 2017, and a testing set that includes data

from January 2018 to June 2020. Ten percent of the data in the training set was reserved for

continuous performance monitoring as a validation set.

4.3.1 Model Initialisation and Hyper-parameter Settings

Our study employed a two-layer GNN model to optimise graph characteristics, as shown in Fig-

ure 4.2. The node features are represented by Fin ∈ R3 and the number of GNN hidden nodes,

M = 128. We aimed to predict a single output month, thus Fout ∈ R1. Our research considered

various scenarios, encompassing different input month and GNN weight combinations. The

implementation details are listed in Table 4.1.

Figure 4.2: The implemented two-layer EGLT model for eight economic variables

Table 4.1: Implementation Details of the 2-layer EGLT Model

Layer Type Input Size Weight Output
Number of

parameters

Input
Input graph

features
|V | × Fin - - -

H1
First graph

convolution layer
|V | × Fin Θ(1) ∈ RFin×M |V | ×M Fin ∗M

H2
Second graph

convolution layer
|V | ×M Θ(2) ∈ RM×Fout |V | × Fout M ∗ Fout

Ŷ Predicted Output |V | × Fout - - -

We used the PyTorch deep learning package to construct the two-layer GNN, with the training

process running over 500 epochs (Nep) and including a 0.5 dropout rate to reduce overfitting.

The model was optimised using the Adam optimiser with a learning rate (η) of 0.01. The

adjacency matrix mask mg was set to prune at a rate (pg) of 10% at each mg density, down

to a minimum density of 10.71%. The average MSE metric was used to assess the model’s

regression problem performance.
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4.3.2 EGLT Model Implementation

Using the Algorithm 2, the RMSE losses corresponding to different adjacency matrix densities,

κs, were obtained as shown in Figure 4.3. The optimal adjacency matrix, mg EGLT , was found

at a density of 21.88%, as it yielded the lowest RMSE loss. Figure 4.4 (top) shows the heat map

illustrating the interrelationships among the variables. Figure 4.4 (bottom) presents the nodes-

edges graph, providing a visual understanding of how these economic factors are interconnected

and their potential impact on the overall economic system. For example, the Unemployment

Rate (Unemploy) directly affects the Wage Price Index (Wage) and House Price Index (HPI).

This relationship aligns with economic observations where a high unemployment rate impacts

the affordability of mortgages, hence influencing house prices.

Figure 4.3: RMSE losses at different adjacency matrix densities, κs

In addition to the direct relationships, the heat map and nodes-edges graph reveal some indirect

connections. For instance, the Domestic Bond Index (Dom BI) shows interrelation with both

short-term (r short) and long-term interest rates (r long). This reflects the real-world scenario

where bond prices are sensitive to changes in interest rates. Similarly, the Consumer Price

Index (CPI) and International Bond Index (Int BI) have connections, indicating the influence

of international economic conditions on domestic inflation.

The graphical representation of the adjacency matrix (Figure 4.4 Bottom) not only provides a

clear depiction of the essential connections but also highlights the complexity of the economic

network.
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(a) Adjacency Matrix in Heatmap

(b) Directed Nodes-Edges Graph of Adjacency Matrix

Figure 4.4: The optimal adjacency matrix of the EGLT model, mg EGLT , is found at 21.88%

density with Necessary Edges only. (a) Heatmap of the Adjacency Matrix. (b) Directed Nodes-

Edges Graph representation of the Adjacency Matrix.
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4.3.3 Prediction Analysis

The graphical representation of the optimised adjacency matrix shows the necessary connec-

tions between the provided economic variables. The EGLT algorithm identifies these critical

relationships without prior knowledge. Such direct and indirect interactions can be crucial for

accurate predictions. The performance of the trained EGLT model is validated against the

current state-of-the-art SUPA model using data from January 2018 to June 2020, evaluated in

terms of RMSE values. Table 4.2 lists the comparison across multiple variables. The average

RMSE loss of the EGLT model is 0.1778, which is about 40% lower than the RMSE loss of the

SUPA model.

Table 4.2: Comparison of the RMSE losses for the SUPA and the EGLT algorithm across

various economic variables.

Variable SUPA EGLT

CPI 0.0204 0.0186

Wage 0.0186 0.0361

r short 0.6170 0.0962

r long 0.5303 0.3420

Dom BI 0.1433 0.0795

Int BI 0.5579 0.5536

Unemploy 0.3319 0.2108

HPI 0.0869 0.0852

Overall 0.2883 0.1778

We also show all variables’ prediction results in more details as time series in Figures 4.5, 4.6,

4.7, 4.8, 4.9, 4.10, 4.11 and 4.12. In each figure, the green line represents the real value, the

orange line the EGLT model prediction, and the blue line the SUPA model prediction.

Figure 4.5: CPI Prediction Result
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Figure 4.6: Wage Prediction Result

For the Consumer Price Index (CPI) and Wage Price Index (Figure 4.5 and 4.6), both datasets

are linear and monotonically increasing. Here, the SUPA model predictions are better than

the EGLT model results. The SUPA model closely follows the actual values, indicating its

effectiveness in handling straightforward, linear trends.

Figure 4.7: Short-term Interest Rate Prediction Result
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Figure 4.8: Long-term Interest Rate Prediction Result

In Figure 4.7 and 4.8, the Short-Term Interest Rate (r short) and Long-Term Interest Rate

(r long) prediction results are depicted. The EGLT model outperforms the SUPA model, es-

pecially in capturing the rapid fluctuations in r short. The SUPA model shows significant lag

in adjusting to these changes, while EGLT adapts more quickly, highlighting its suitability for

volatile datasets.

Figure 4.9: Domestic Bond Index Prediction Result
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Figure 4.10: International Bond Index Prediction Result

Figure 4.9 and 4.10 shows the Domestic Bond Index (Dom BI) and International Bond Index

(Int BI) prediction results. The EGLT model again provides better predictions, particularly for

Dom BI. The EGLT model captures both minor and major fluctuations more accurately than

the SUPA model, demonstrating its robustness in dealing with the non-linear relationship.

Figure 4.11: Unemployment Rate Prediction Result
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Figure 4.12: Housing Price Index Prediction Result

The Unemployment Rate (Unemploy) and House Price Index (HPI) prediction results are

shown in Figure 4.11 and 4.12. The EGLT model significantly outperforms the SUPA model

in predicting the Unemployment Rate. For the HPI, both models perform similarly, but EGLT

has a slight edge in following the upward trends more closely.

Given the current small datasets, all the EGLT models are tested on single-step forecasting.

Later on, when there are larger datasets covering longer time periods, the EGLT model can

also be trained and evaluated for multiple-step long-term forecasting as well. The flexibility of

the EGLT algorithm will allow it to adapt to different data conditions, making it a versatile

tool for economic forecasting.

The EGLT algorithm can be readily applied to the task of identifying inter-dependency rela-

tionship structure of large number of time-series variables. We have used the EGLT algorithm

to generate inter-dependency structure for eight major economic variables in Australia. For

future work, an interesting test case would be for using the EGLT algorithm to quantify and

reveal the complex inter-dependency relationship network among major commodity prices.

4.4 Conclusion

In this paper, within a GNN framework, we have presented the EGLT algorithm as more accu-

rate method for economic forecasting. The EGLT algorithm automatically generates an optimal

adjacency matrix without requiring prior knowledge of existing economic relationships. The

EGLT algorithm can iteratively converge and reveal the most parsimonious inter-connecting re-

lationships by minimising the Root Mean Square Error for the dataset and therefore improving

the forecasting accuracy.

The forecasting accuracy of the EGLT model was compared directly with the state-of-the-art

cascading SUPA model for eight major economic variables in Australia from January 2018 to
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June 2020. The comparison shows that the EGLT model consistently outperforms the SUPA

model across these economic variables, with a reduction in RMSE. Specifically, the EGLT

model’s average RMSE is 40% lower than that of the SUPA model.

In this paper, our study has focused on single-step forecasting. However, for applications in

major decision making under uncertainty such as climate uncertainty, long-term multiple-step

forecasting is required. In our subsequent study on EGLT algorithm, focus will be on extending

the algorithm to the generation of uncertainty estimate for long-term forecasting.

The EGLT algorithm can be readily applied to the task of identifying inter-dependency rela-

tionship structure of large number of time-series variables. In this paper, we have used the

EGLT algorithm to generate inter-dependency structure for eight major economic variables

in Australia. For future work, an interesting test case would be for using the EGLT algo-

rithm to quantify and reveal the complex inter-dependency relationship network among major

commodity prices.

Although economic data is generally rich, the monthly resolution used in this study reduces the

temporal density available for graph learning. In such settings, purely data-driven adjacency

construction may overlook stable economic relationships. Incorporating domain knowledge

could improve interpretability and model reliability in low-frequency forecasting tasks.

4.5 Significance and Novelty

This chapter extends the EEG GLT framework to economic forecasting, introducing the Eco-

nomic Graph Lottery Ticket (EGLT) model. The significance of this work lies in its ability to

uncover complex relationships between economic variables, such as stock indices, commodity

prices, and interest rates, using a graph-based representation. By improving prediction accu-

racy and providing actionable insights into variable interdependencies, EGLT offers a robust

alternative to traditional econometric models, addressing key limitations in economic forecast-

ing.

The novelty of this chapter is its application of GNNs to economic datasets, demonstrating

the versatility of graph learning in non-biological domains. The dynamic construction of ad-

jacency matrices through the lottery ticket framework ensures computational efficiency while

maintaining high accuracy, even with large and complex datasets. This work highlights the

transformative potential of graph-based methodologies in advancing economic modeling and

decision-making tools.
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Chapter 5

EEG SGNet: A Parallel Architecture

for Advanced EEG Signal Decoding

5.1 Introduction

Brain-Computer Interfaces (BCIs) bridge neuroscience and engineering, enabling direct com-

munication between the human brain and external devices. Initially developed for individu-

als with motor impairments [7], BCIs now extend to diverse applications, including gaming

[137], neurorehabilitation [138], smart homes [139], etc. The primary function of BCIs is to

translate neural signals into actionable commands. Brain activity is typically measured using

four modalities: magnetic, optical, metabolic, and electrical [140]. Popular methods include

magnetoencephalography (MEG), functional magnetic resonance imaging (fMRI), functional

near-infrared spectroscopy (fNIRS), electroencephalography (EEG), and electrocorticography

(ECoG). The choice of modality depends on the application and associated costs.

Among these, ECoG and EEG are electrical-based methods for measuring brain activity. ECoG

offers superior spatial resolution compared to EEG but requires invasive surgery to place elec-

trodes directly on the cortex [83]. This invasiveness makes ECoG costly and less accessible.

Conversely, EEG captures brain signals through electrodes placed on the scalp, making it

non-invasive, portable, and cost-effective. These characteristics have contributed to EEG’s

widespread adoption. EEG can record various types of brain activity, including event-related,

spontaneous, and stimulus-evoked signals [84].

Motor Imagery (MI) involves the mental simulation of body movements, such as imagining

moving a hand or leg, without actual physical movement [85], [86]. When paired with EEG,

MI captures neural signals generated by the intention to move. Integrating EEG-based MI

with BCIs enables these signals to be decoded into commands for controlling external devices,

such as robotic exoskeletons. This capability is particularly significant for stroke survivors,

offering the potential to restore quality of life and support daily activities. Accurate decoding

69



of EEG MI signals is essential for facilitating patient-intended movements, necessitating robust

machine learning models as a core component of BCIs.

Traditional EEG MI classifiers often rely on machine learning techniques that use manually

engineered features, such as wavelet transforms or analytic intrinsic mode functions [104], [105].

A widely adopted method is the Filter Bank Common Spatial Pattern (FBCSP), which applies

common spatial patterns (CSP) across various frequency bands in EEG signals to extract

discriminative features.

Deep learning, a subset of machine learning, leverages multilayered neural networks to pro-

cess diverse data types. Convolutional Neural Networks (CNNs), a prominent deep learning

architecture, mimic the human visual system’s neural image recognition processes [89]–[91].

A key element of CNNs is the convolutional layer, which uses filters to scan input data and

extract meaningful features, enabling the network to learn complex patterns and representa-

tions. CNNs are particularly effective for processing Euclidean data, such as one-dimensional

sequences and two-dimensional grids [91]. Beyond their widespread use in image recognition

[90], CNNs have demonstrated success in speech recognition [141], natural language processing

[142], drug to drug interaction [143], and physiological signal classification [107], [108], often

eliminating the need for manual feature extraction.

In EEG signal classification, CNNs typically represent EEG data as two-dimensional inputs,

with channels and time points forming the dimensions. This enables CNNs to effectively capture

both spatial and temporal dependencies in brain signals, facilitating applications such as motor

imagery classification, epileptic seizure detection, and motor movement classification. Several

CNN-based models, such as ShallowNet [107] and EEGNet [108], excel at extracting temporal

features from one-dimensional and two-dimensional Euclidean data, achieving high classifica-

tion accuracy. Further advancements were made by incorporating Long Short-Term Memory

(LSTM) blocks, as demonstrated in [109], [110]. Additionally, [32] proposed the ConTraNet

model [112], which combines Transformer and CNN blocks, resulting in improved performance

in EEG-based emotion recognition. The EEGProgress model [111] adopts a unique approach by

applying CNN operations to individual brain regions for EEG MI signal classification, focusing

on regional processing rather than all channels simultaneously.

Graph Convolutional Neural Networks (GNNs) represent another branch of deep learning,

specifically designed for graph-structured data [92], [113]. Unlike CNNs, which are limited to

Euclidean data, GNNs can process non-Euclidean data by incorporating topological relation-

ships during convolutional operations. GNNs can operate on various graph types, including

homogeneous or heterogeneous, weighted or unweighted, and signed or unsigned graphs, which

are typically represented by adjacency matrices. GNNs are used in three main tasks: node-

level, edge-level, and graph-level classifications. At the node level, GNNs predict properties

of individual nodes, while edge-level tasks involve predicting edge attributes, and graph-level

tasks classify entire graphs based on their structure and features. GNNs are broadly cate-

gorised into spatial [117]–[120] and spectral [114]–[116] methods, though spatial methods often
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face challenges in matching local neighborhood structures [96] and [121].

In EEG applications, both time-domain and frequency-domain features are extracted as graph

features for use in GNN operations. Time-domain features include root mean square (RMS),

skewness, variance, min-max values, zero crossings, Petrosian fractal dimension, Higuchi fractal

dimension, and Hurst exponent [98], [122]. Frequency-domain features, such as power spectral

density (PSD) and power ratio (PR), are computed within specific frequency bands, including

δ (0.5-4 Hz), θ (4-8 Hz), α (8-13 Hz), β (13-30 Hz), and γ (30-110 Hz).

Constructing the adjacency matrix is critical for GNN performance, particularly in EEG appli-

cations. In this context, EEG electrodes serve as nodes, and the relationships among them are

represented in the adjacency matrix, enabling GNNs to capture connectivity patterns beyond

the capabilities of traditional CNNs. Various methods have been proposed for constructing

adjacency matrices in EEG-based applications. For example, Geodesic distances between elec-

trodes have been used to define connections [93]–[95], while other studies, such as [101], have

utilised the Phase Lag Index (PLI) in their CSGNN model. Pearson Correlation Coefficients

(PCC) have also been employed to evaluate inter-channel relationships [96]–[100], and [102]

introduced a trainable adjacency matrix for EEG classification tasks.

Aung et al. [144] proposed the EEG GLT method for adjacency matrix construction in their

EEG GLT-Net model, which was specifically designed for single time point EEG MI classifica-

tion. This method demonstrated superior performance accuracy and computational efficiency

compared to Geodesic and PCC-based methods under various model configurations. However,

EEG GLT was applied in single time point signal classification, making it unsuitable for tasks

requiring longer temporal features, such as EEG movement classification.

Other models, such as DG-HAM [123] and EEG-ARNN [124], classify EEG signals within pre-

defined window lengths without extracting graph-based features like time-domain or frequency-

domain metrics. In contrast, [100] introduced GCNs-Net for time-point classification, treating

each time point as an independent feature, enabling detailed time-resolved EEG MI analysis.

While GCNs-Net achieves strong performance in single-time-point classification, its reliance on

functional connectivity alone during GNN operations limits its overall accuracy.

In this chapter, we propose EEG Synergistic Gated Network (EEG SGNet), a novel architecture

designed to address existing limitations in EEG signal classification by employing window-based

analysis. The model integrates parallel branches of CNNs and GNNs, utilising the EEG GLT

method for adjacency matrix construction. This innovative approach captures both spatial and

temporal features, enabling more comprehensive EEG signal classification and expanding the

potential applications in EEG analysis. The primary contributions of this study are summarised

as follows:

• EEG SGNet Architecture: We introduce a novel method that optimally combines

CNNs and GNNs with the EEG GLT adjacency matrix for window-based EEG signal

classification.
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• Optimal Parallel Branches of CNNs and GNNs: We thoroughly investigated

EEG SGNet across nine model configurations, varying the number of GNN and CNN

filters, to determine the optimal settings for each subject, ensuring tailored and effective

performance.

• Performance Validation: The proposed EEG SGNet model was rigorously evaluated

using two EEG datasets: the BCIC iv-2a EEG Motor Imagery (MI) dataset [145] and

the High-Gamma (HGD) EEG movement dataset [58]. These evaluations validated the

model’s reliability and robustness. Furthermore, we compared EEG SGNet against eight

state-of-the-art models for each dataset, demonstrating its superior performance and ef-

fectiveness.

5.2 Methodology

5.2.1 Overview

The EEG SGNet is composed of two parallel branches, GNN branch and CNN branch. The

window size of 4 seconds which has 1000 time points. In the CNN path, the input signal of

EEG signal is first pass through the CNN temporal filter block which extract temporal features

using 25 filters at each EEG channel. Then, it goes through the CNN block 1 which extract

the spatial relationship between EEG channels, which is followed by Max pooling layer. The

signals have undertaken of CNN and max pooling until Block N. Then, signals CNN convoluted

features are then flattened to become 1D array, XCNN ∈ R1400.

On the other branch in the GNN branch, the signal is pass through Feature Extractor Block

which extract graph features of the signal manually in both time-domain and frequency-domain,

wavelet transform, which are detailed in the Section 5.2.4, in total of 29 features for BCIC iv-2a

dataset and 31 features for HGD dataset. Then, the extracted features are passing through

GNN blocks where graph convolution operation was undertaken using the defined EEG Graph

which is represented with adjacency matrix. After undertaken of N th GNN operation, it is then

flatted to become 1D array, XGNN ∈ R1408.

Figure 5.1: Overall Architecture of EEG SGNet Model
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5.2.2 Dataset Description

Two EEG datasets are used in the EEG SGNet model. The first dataset is the BCIC iv-2a

dataset [145], which is widely used in BCI research, particularly for motor imagery (MI) studies.

This dataset was organised by the Graz University of Technology. EEG signals were recorded

from nine subjects, each of whom participated in two sessions on separate days. Each session

included six runs, with a total of 288 trials of 4-second EEG MI per subject, resulting in

576 trials per subject across both sessions. EEG signals were captured using 22 EEG channels,

alongside three monopolar EOG channels as shown in the Figure 5.2. The signals were sampled

at 250 Hz and filtered with a bandpass filter of 0.5 Hz to 100 Hz, as well as a notch filter at

the power line frequency of 50 Hz. The dataset contains four distinct motor imagery tasks:

• Class 1: Left hand MI

• Class 2: Right hand MI

• Class 3: Both feet MI

• Class 4: Tongue MI

Figure 5.2: Electrode positions of BCIC iv-2a dataset[145]. Left: Electrode montage corre-

sponding to the international 10-20 system. Right: Electrode montage of the three monopolar

EOG channels

The second dataset is the High-Gamma Dataset (HGD) [58], which consists of EEG recordings

from 14 healthy subjects, with an average age of 27.2 years, including six female participants.

Each subject performed 1000 trials of 4-second duration. Unlike the BCIC iv-2a dataset, the

High-Gamma EEG signals were recorded during motor execution tasks using 128 EEG channels,

and were also sampled at 250 Hz. This dataset includes four motor movement tasks:

• Class 1: Left hand movement

• Class 2: Right hand movement

• Class 3: Both feet movement

• Class 4: Rest
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5.2.3 Dataset Preprocessing

In the BCIC iv-2a dataset, all 22 EEG channels are utilised in this project. For the HGD

dataset, however, only 44 out of the original 128 channels are selected, specifically those covering

the motor cortex, excluding the Cz channel. Given that the BCIC iv-2a dataset pertains

to motor imagery (MI), only EEG signals below 40 Hz are relevant. Although the original

recordings underwent filtering between 0.5 Hz and 100 Hz, we further preprocess by first scaling

the signals by 106 to convert the unit from V to µV . The data is then bandpass-filtered within

the range of 4-38 Hz. For the HGD dataset, which involves motor execution tasks, a broader

range is retained due to the importance of gamma band (γ) frequencies in movement-related

EEG activity. Accordingly, we apply a bandpass filter from 4 Hz to 123 Hz.

Following bandpass filtering, we standardise the data within each trial using a channel-wise

moving mean and variance, dynamically adjusting to local trends in each trial. Let xt represent

the original EEG signal at time t, and x′
t denote the standardised signal. The standardised

signal x′
t is calculated as follows:

x′
t =

xt − µt√
σ2
t

(5.1)

where µt and σ2
t are the moving mean and variance at time t, respectively. To calculate these,

we use a decay factor of 0.999 to balance immediate and historical data, ensuring that the

standardisation remains responsive to new values while preserving stability across the trial.

The moving mean µt and variance σ2
t are updated with the following recursive formulas:

µt = 0.001xt + 0.999µt−1 (5.2)

σ2
t = 0.001(xt − µt)

2 + 0.999σ2
t−1 (5.3)

Here, the decay factor allows each new value to contribute 0.1% to the updated mean and vari-

ance, while the previous values retain 99.9% of the weight. This method provides a continuous

standardisation that adapts to changes in the signal over time, improving the robustness of the

feature extraction and classification stages.
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5.2.4 Feature Extraction

In this project, we use a window-based approach to classify EEG signals, extracting a compre-

hensive set of features specifically for the GNN pathway. These features include time-domain

features, frequency-domain features, wavelet transform coefficients, and band-specific power

ratios.

For the GNN pathway, time-domain features capture fundamental statistical characteristics

of the EEG signal within each window. Calculated features include the mean and standard

deviation to provide an overall measure of the signal level and variability. Root mean square

(RMS) represents signal power, which is especially relevant for analysing the energy content in

EEG data. Additionally, skewness and kurtosis are computed to characterise the asymmetry

and ”tailedness” of the signal distribution, allowing us to identify any significant deviations or

outliers. Zero-crossing rate (ZCR) measures the frequency content of the signal by counting

the number of times it crosses the zero axis. Peak-to-peak amplitude captures the full range of

signal fluctuations, and entropy serves as a measure of the signal’s randomness or complexity,

which can help differentiate structured brainwave activity from less predictable patterns.

The frequency-domain features are obtained by calculating the power spectral density (PSD)

of the signal using Welch’s method, providing a detailed breakdown of signal power across

different frequency components. Band-specific power is calculated within key EEG frequency

bands - θ (4-8 Hz), α (8-13 Hz), β (13-30 Hz), and γ (30-38 Hz) by integrating the PSD across

each band’s range, allowing us to capture cognitive-state-specific activities associated with

these bands. Additional frequency-domain features include mean frequency, which indicates

the central tendency of the frequency distribution by weighting each frequency by its power,

and median frequency, which divides the power spectrum into two equal halves, indicating

energy concentration. Spectral entropy measures the complexity of the frequency distribution

by calculating the entropy of normalised PSD values. Hjorth mobility and Hjorth complexity

are also computed, assessing the rate of change and complexity of the frequency components,

respectively.

To capture transient features in the signal, wavelet transform coefficients are extracted using the

Discrete Wavelet Transform (DWT), which decomposes the signal into various frequency bands.

For each level of decomposition, the mean and standard deviation of the wavelet coefficients

are calculated, offering a refined view of signal changes over time. This approach is beneficial

for identifying non-stationary events in the EEG, which are common in brain activity.

Band-specific power ratios are also calculated to reveal the relative power contributions of

different frequency bands, providing insights into the EEG’s dynamic state. Ratios such as the

beta-to-alpha ratio serve as indicators of cognitive load and alertness, while the gamma-to-theta

ratio can reflect high-frequency engagement relative to slower theta activity. The alpha-to-theta

ratio offers insights into relaxation versus alertness states.

Together, this feature extraction pipeline yields a total of 29 features for the BCIC iv-2a dataset.
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For the HGD dataset, additional gamma sub-bands are included - γlow (30-60 Hz), γmid (60-90

Hz) and γhigh (90-123 Hz) resulting in a total of 31 features.

In contrast, the CNN pathway requires no manual feature extraction. Temporal features

within each EEG window are automatically extracted using a temporal convolution layer

(Temp Conv), where 25 filters are applied to each EEG channel to capture temporal patterns.

This is followed by spatial feature extraction across EEG channels using another set of 25 fil-

ters, capturing inter-channel relationships. This end-to-end CNN approach enables automatic

learning of complex temporal and spatial patterns in the EEG data, which can significantly

enhance classification accuracy.

5.2.5 Graph Preliminary

Graph Representation

Consider a directed weighted graph represented as G = {V,E}. Here, |V | = N denoted the

number of nodes and |E| was the count of edges connecting the nodes. The node set was

defined as V = {v1, v2, . . . , vn}. The node feature matrix of the entire graph was represented

by X ∈ RN×F , where F , the number of features, is equal to 1. The adjacency matrix, denoted

as A ∈ RN×N , captured the graph’s overall topology. Specifically, if an edge existed between

nodes vi and vj (i.e., (vi, vj) ∈ E), then A[i, j] ̸= 0. Otherwise, A[i, j] = 0.

The adjacency matrix for the PCC method, APCC ∈ RN×N was defined in Equation 5.5, where

I was the identity matrix and |P | was the absolute PCC matrix of dimension of N ×N . Each

element Pij of P was calculated using Equation 5.4 as follows:

Pij =
cov(xi, xj)

σiσj

(5.4)

The absolute PCC matrix |P | captured the linear correlations between EEG channel signals,

with its elements satisfied 0 ≤ |Pij| ≤ 1. The adjacency matrix APCC is given by:

APCC = |P | − I (5.5)

The degree matrix, D, was a diagonal representation of A, where the ith diagonal element of

D was computed as Dii =
∑N

j=1 Aij. The combinatorial Laplacian matrix, L ∈ RN×N , was

described as L = D−A. A normalised version of this combinatorial Laplacian can be obtained

with L = IN −D−1/2AD−1/2.

Spectral Graph Filtering

The eigenvectors of the graph Laplacian matrix can be expressed as graph Fourier modes, with

{ul}N−1
l=0 ∈ RN . The diagonal matrix of these Fourier frequencies, Λ = diag[λ0, ..., λN−1] ∈
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RN×N . We defined the Fourier basis, U = [u0, ..., uN−1] ∈ RN×N , which allows for the decom-

position of the Laplacian matrix, L, into L = UΛUT . The signal x can be transformed by

graph Fourier into x̂ ∈ RN using x̂ = UTx, while the inverse graph Fourier transform is given

by x = Ux̂. The convolution operation on graph G is defined as:

x ∗G g = U((UTx)⊙ (UT g)) (5.6)

where g represents the convolutional filter and ⊙ denotes the Hadamard product. Given that

gθ(Λ) = diag(θ), where θ ∈ RN represents the vector of Fourier coefficients, the Graph convo-

lution operation can be implemented as follows:

x ∗G gθ = gθ(UΛUT )x = Ugθ(Λ)U
Tx (5.7)

where gθ is a non-parametric filter, and polynomial approximation is employed to mitigate the

excessive computational complexity. Chebyshev graph convolution, a specific instance of graph

convolution, utilises Chebyshev polynomials for filter approximation [115]. The approximation

of gθ(Λ) under the Kth order Chebyshev polynomial framework is given by:

gθ(Λ) =
K−1∑
k=0

θkTk(Λ̂) (5.8)

where

Λ̂ =
2Λ

Λmax

− IN (5.9)

In the above Equation 5.8, Tk(Λ̂) ∈ RK is the kth order Chebyshev polynomial evaluated using

Equation 5.9. Then, the signal x is convolved with the defined filter gθ using the following

equation:

x ∗G gθ = U

K−1∑
k=0

θkTk(Λ̂)U
Tx =

K−1∑
k=0

θkTk(L̃)x (5.10)

Normalising Λ can be achieved by using Equation 5.9, where Λmax denotes the largest entry

in the diagonal of Λ, and IN represents the diagonal matrix of the scaled eigenvalues. In the

above Equation 5.10, Tk(L̃) is the Chebyshev polynomial of order k evaluated at the scaled

Laplacian, L̃ which is defined in the Equation 5.11 as:

L̃ =
2L

λmax

− IN (5.11)
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Let x̄k = Tk(L̃)x ∈ RN , where a recursive relation is used to compute x̄k using Equation 5.12

with x̄0 = x and x̄1 = L̃x. One key advantage of using the Chebyshev polynomial to approx-

imate convolutional filters is that it inherently avoids the need to compute the graph Fourier

basis. The recursive relation is given by:

x̄k = 2L̃x̄k−1 − x̄k−2 (5.12)

5.2.6 Model Setting

The EEG signal X ∈ RN×1000 is processed through two distinct pathways: a CNN pathway

and a GNN pathway. Here, N represents the number of EEG channels, with 22 channels in the

BCIC iv-2a dataset and 44 channels in the HGD dataset.

In the GNN pathway, X first passes through the Feature Extractor block, where node features

for the GNN are extracted, as detailed in Section 5.2.4. The number of extracted features,

denoted by F0, is 29 for the BCIC iv-2a dataset and 31 for the HGD dataset. Subsequently,

the signal progresses through a series of GNN layers, reaching the GN layer, where it takes the

shape N × FN (with FN equal to 64 for the BCIC iv-2a dataset and 32 for the HGD dataset).

Within the GNN block, an activation layer employing the Exponential Linear Unit (ELU)

is applied, as shown in Equation 5.13, where β, a hyperparameter controlling saturation for

negative inputs, is set to 0.1 in this project. Each GNN layer is followed by a batch normalisation

(BN) layer, which rescale and recenter the signals to match their original distribution within a

mini-batch (set to 64 in our project). This normalisation helps address internal covariate shift

and mitigates potential gradient vanishing or exploding issues. Finally, after the GNN layers,

the signal is flattened to 1408 dimensions.

The ELU activation function is defined as:

ELU(x) =

x if x > 0

β(ex − 1) if x ≤ 0
(5.13)

In parallel, the EEG signal X ∈ RN×1000 is processed through the CNN pathway. This pathway

begins with the Temp Conv block, designed to extract temporal features from the EEG signal.

Each EEG channel has M0 filters, resulting in a total of M0×N filters in this block, producing

an output with shape M0 × N × 991. The signal then proceeds through the spatial CNN

block, denoted C1, containing M1 2D filters that extract spatial features from the EEG signal,

resulting in an output shape of M1 × 991. Each CNN operation is followed by a max pooling

layer, along with an ELU activation layer and a BN layer. After passing through the final CNN

block, the signal is flattened to 1400 dimensions.

The outputs from the GNN and CNN pathways are then concatenated, resulting in a combined

dimension of 2808, which is fed into the Fully Connected (FC) blocks. Three FC layers are
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applied, with dimensions H1, H2, and finally O, where O represents the number of classes (4 for

both the BCIC iv-2a and HGD datasets). Following the FC layers, a softmax layer is applied,

as shown in Equation 5.14, to obtain the predicted probability for each class. The loss function

used is cross-entropy loss, detailed in Equation 5.15. The softmax function is defined as:

Softmax(ŷi) =
eŷi∑O
j=1 e

ŷj
(5.14)

The cross-entropy loss is given by:

Loss = − 1

|B|

B∑
b=1

O∑
i=1

yb,i. log(Softmax(ŷb,i)) (5.15)

A general overview of the model is provided in Figure 5.1 and Table 5.1. The model settings and

hyperparameters are further detailed in Tables 5.2 and Table 5.3, respectively. Both accuracy

and F1 score evaluation metrics were employed to assess the performance of models. The

accuracy is defined as:

Accuracy =
TP + TN

TP + FP + TN + FN
(5.16)

The recall is given by:

Recall =
TP

TP + FN
(5.17)

The precision is defined as:

Precision =
TP

TP + FP
(5.18)

The F1 score is given by:

F1 Score = 2× Precision× Recall

Precision + Recall
(5.19)
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Table 5.1: Generalised Architecture of EEG SGNet Model

Layer Type Input Size Weights Output Size Activation

Input Input N × 1000 - - -

GNN Pathway

FE Feature Extractor N × 1000 - N × F0 -

G1 Graph Convolution N × F0 F0 × F1 N × F1 ELU

G2 Graph Convolution N × F1 F1 × F2 N × F2 ELU

GN Graph Convolution N × F2 F2 × FN N × FN ELU

Flat Flatten N × FN - 1408 -

CNN Pathway

Temp

Conv

Conv1D, (M0 ∗N) filters,

10-kernel, stride 1
N × 1000 (M0 ∗N)× 10 M0×N × 991 ELU

C1
Conv2D, M1 filters,

(N × 1) kernel, stride 1× 1
M0×N × 991 M1 × 1× 991 M1 × 991 ELU

CP1
MaxPool1D, 3-kernel,

stride 3
M1 × 991 - M1 × 330 -

C2
Conv1D, M2 filters,

10-kernel, stride 3
M1 × 330 M2 × 3 M2 × 107 ELU

CP2
MaxPool1D, 10-kernel,

stride 4
M2 × 321 - M2 × 25 -

Flat Flatten M2 × 25 - 1400 -

Feature Combination

Concat Concatenation 1400 & 1408 - 2808 -

Fully Connected Block

FC1 Fully Connected 2808 2808×H1 H1 ELU

FC2 Fully Connected H1 H1 ×H2 H2 ELU

FC3 Fully Connected H2 H2 ×O O -

S Softmax O - O -
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Table 5.2: Model Settings of EEG SGNet

Model Model Framework
Number of

GCN Filters

Number of

CNN Filters

Number of

FC Hidden

Nodes

A
[(G− BN)× 2− P ]//[TC − (C −

BN −CP )× 2]− (FC −BN)× 2−S
512, 64 25, 56 2808, 256, 4

B
[(G− BN)× 3− P ]//[TC − (C −

BN −CP )× 2]− (FC −BN)× 2−S
512, 256, 64 25, 56 2808, 256, 4

C
[(G− BN)× 4− P ]//[TC − (C −

BN −CP )× 2]− (FC −BN)× 2−S

512, 256, 128,

64
25, 56 2808, 256, 4

D
[(G− BN)× 2− P ]//[TC − (C −

BN −CP )× 3]− (FC −BN)× 2−S
512, 64 25, 50, 50 2808, 256, 4

E
[(G− BN)× 3− P ]//[TC − (C −

BN −CP )× 3]− (FC −BN)× 2−S
512, 256, 64 25, 50, 50 2808, 256, 4

F
[(G− BN)× 4− P ]//[TC − (C −

BN −CP )× 3]− (FC −BN)× 2−S

512, 256, 128,

64
25, 50, 50 2808, 256, 4

G
[(G− BN)× 2− P ]//[TC − (C −

BN −CP )× 4]− (FC −BN)× 2−S
512, 64

25, 50, 100,

200
2808, 256, 4

H
[(G− BN)× 3− P ]//[TC − (C −

BN −CP )× 4]− (FC −BN)× 2−S
512, 256, 64

25, 50, 100,

200
2808, 256, 4

I
[(G− BN)× 4− P ]//[TC − (C −

BN −CP )× 4]− (FC −BN)× 2−S

512, 256, 128,

64

25, 50, 100,

200
2808, 256, 4

Table 5.3: Hyperparameter Settings for Training EEG SGNet

Hyperparameter Value

Training Epochs (Nep) 500

Batch Size (B) 64

Optimizer Adam

Initial Learning Rate (η) 0.001

L2 Regularisation Rate (λ) 0.0005
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Table 5.4: Maximum Accuracy Achieved by Various Methods for Each Subject on the BCIC iv-

2a Dataset

Subj
PCC PCC (alpha) EEG GLT EEG GLT (alpha)

Acc F1 Acc F1 Acc F1 Acc F1

S1 80.34% 80.29% 80.35% 80.32% 86.13% 86.10% 89.02% 88.92%

S2 63.05% 62.88% 64.16% 64.35% 58.96% 58.65% 59.54% 59.94%

S3 84.39% 84.23% 85.55% 85.45% 90.76% 90.72% 93.07% 93.06%

S4 80.35% 80.49% 82.08% 82.21% 79.77% 79.76% 80.35% 80.32%

S5 61.27% 61.25% 63.01% 63.20% 64.16% 63.96% 66.47% 66.32%

S6 71.10% 71.01% 73.41% 72.98% 74.94% 74.25% 75.14% 75.22%

S7 91.36% 91.22% 92.49% 92.52% 94.22% 94.25% 95.38% 95.39%

S8 85.17% 85.18% 86.49% 86.38% 88.44% 88.37% 93.64% 93.65%

S9 82.02% 82.01% 83.02% 83.01% 84.97% 84.86% 87.86% 87.81%

5.3 Results and Discussion

5.3.1 PCC vs EEG GLT Adjacency Construction Method

The EEG SGNet model integrates parallel CNN and GNN pathways. Within the GNN path-

way, two adjacency construction methods were employed: Pearson Correlation Coefficient

(PCC) and the proposed EEG GLT, introduced in Section 3.3.4 and Section 3.3.5 respectively.

For the BCIC iv-2a dataset, the average accuracy and F1 score achieved using EEG GLT were

consistently higher than those obtained with PCC across all model configurations (Models A

to I). This demonstrates the superiority of EEG GLT over PCC, regardless of the model ar-

chitecture. On average, the EEG GLT adjacency construction method improved accuracy by

3%.

When using the same model settings, the EEG GLT method with the inclusion of an α param-

eter achieved the highest average accuracy across all configurations, except for Models B and

C. Even in these exceptions, the highest average accuracy was achieved by EEG GLT without

the α parameter, as shown in Tables 5.6 and 5.7. Specifically, EEG GLT with α achieved an

average accuracy of 80.93% and an F1 score of 80.79%. Without α, EEG GLT achieved an

average accuracy of 79.42% and an F1 score of 79.24%. In comparison, PCC with α achieved

an average accuracy and F1 score of 78.74% and 78.45%, respectively, while PCC without α

achieved 78.74% and 78.69%.

In subject-specific performance, EEG GLT, both with and without α values, consistently out-

performed PCC in most subjects, except for S2 and S4 where PCC demonstrated better per-

formance, as shown in Table 5.4. Notably, EEG GLT improved accuracy by 8.68% for S1 and

S3, and by 8.47% for S8.

For the HGD dataset, the average accuracy across 14 subjects showed no significant differences
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Figure 5.3: Boxplot of Average Accuracy Across Subjects for Different Adjacency Construction

Methods Across Model Settings on the BCIC iv-2a Dataset

Figure 5.4: Maximum Accuracy Achieved with Each Adjacency Construction Method Across

Different Model Settings for Subjects S1 to S5 on the BCIC iv-2a Dataset
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Figure 5.5: Maximum Accuracy Achieved with Each Adjacency Construction Method Across

Different Model Settings for Subjects S6 to S9 on the BCIC iv-2a Dataset

between adjacency construction methods for each model, as presented in Tables 5.8 and 5.9.

This lack of differentiation may be due to the higher signal clarity and distinguishability in

the HGD dataset compared to the BCIC iv-2a dataset. Nevertheless, the EEG GLT meth-

ods consistently outperformed PCC in terms of average accuracy and F1 scores. The overall

model performance, depicted in Figure 5.6, indicates that EEG GLT had narrower interquartile

ranges (IQRs), reflecting more consistent accuracy compared to PCC and PCC with α values.

Regarding outliers, all methods exhibited results below 90%; however, PCC showed more ex-

treme outliers. In contrast, EEG GLT had fewer and less extreme outliers, suggesting greater

reliability under varying parameter settings and model architectures.

In terms of subject-specific performance, adjacency methods incorporating α values did not

consistently outperform their counterparts, as shown in Table 5.5. However, the proposed

EEG GLT methods achieved higher accuracy than PCC for most subjects, except for S3 and

S13. For some subjects (S4, S9, S14), all methods achieved identical results, with perfect

accuracy (100%).

5.3.2 Impact of CNNs and GNNs Layers

This project evaluates nine combinations of GNN and CNN pathways, as detailed in Table 5.2.

Models A, B, and C use a fixed two-layer CNN while varying the number of GNN layers from

two to four. Similarly, Models D, E, and F employ a fixed three-layer CNN with two to four

GNN layers, and Models G, H, and I utilise a fixed four-layer CNN with the same variation in

GNN layers. For the BCIC iv-2a dataset, the lowest accuracy was observed in Models A, B,

and C, which use two CNN layers, as shown in Tables 5.6 and 5.7.

The highest performance accuracy was achieved with three CNN layers. However, increasing
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Table 5.5: Maximum Accuracy Achieved by Various Methods for Each Subject on the HGD

Dataset

Subj
PCC PCC (alpha) EEG GLT EEG GLT (alpha)

Acc F1 Acc F1 Acc F1 Acc F1

S1 98.61% 98.60% 97.92% 97.93% 100.00% 100.00% 99.31% 99.31%

S2 92.12% 92.09% 92.81% 92.80% 92.12% 92.10% 93.49% 93.49%

S3 97.28% 97.28% 97.44% 97.44% 97.12% 97.11% 97.12% 97.12%

S4 100.00% 100.00% 99.84% 99.84% 100.00% 100.00% 100.00% 100.00%

S5 99.62% 99.62% 99.81% 99.81% 99.81% 99.81% 100.00% 100.00%

S6 98.08% 98.08% 98.08% 99.08% 98.72% 98.72% 99.36% 99.36%

S7 92.95% 92.97% 93.27% 93.30% 93.91% 93.93% 93.27% 93.27%

S8 97.14% 97.14% 97.55% 97.55% 98.37% 98.37% 97.96% 97.96%

S9 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%

S10 98.72% 98.72% 98.40% 98.40% 98.72% 98.72% 98.72% 98.72%

S11 99.68% 99.68% 99.68% 99.68% 100.00% 100.00% 100.00% 100.00%

S12 99.68% 99.68% 99.68% 99.68% 100.00% 100.00% 100.00% 100.00%

S13 98.61% 98.61% 97.57% 97.57% 98.26% 98.26% 97.92% 97.92%

S14 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%

Figure 5.6: Boxplot of Average Accuracy Across Subjects for Different Adjacency Construction

Methods Across Model Settings on the HGD Dataset
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Figure 5.7: Maximum Accuracy Achieved with Each Adjacency Construction Method Across

Different Model Settings for Subjects S1 to S7 on the HGD Dataset

Figure 5.8: Maximum Accuracy Achieved with Each Adjacency Construction Method Across

Different Model Settings for Subjects S8 to S14 on the HGD Dataset
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Table 5.6: Average Accuracy and F1 Score Across Subjects for Models A to E with Different

Adjacency Matrix Construction Methods on the BCIC iv-2a Dataset

Model Method
Accuracy

(Mean ± Std)

F1 Score

(Mean ± Std)

Model A

PCC 68.46% ± 16.34% 68.36% ± 16.34%

PCC (alpha) 69.04% ± 15.28% 68.98% ± 15.50%

EEG GLT 70.33% ± 13.85% 70.04% ± 14.03%

EEG GLT (alpha) 72.77% ± 13.55% 72.79% ± 13.41%

Model B

PCC 68.40% ± 13.90% 68.31% ± 13.76%

PCC (alpha) 68.85% ± 15.69% 68.78% ± 15.62%

EEG GLT 70.71% ± 13.70% 70.70% ± 13.67%

EEG GLT (alpha) 69.62% ± 17.47% 69.51% ± 17.59%

Model C

PCC 68.59% ± 15.76% 68.36% ± 15.81%

PCC (alpha) 67.12% ± 16.77% 66.99% ± 16.77%

EEG GLT 70.01% ± 15.04% 69.89% ± 15.12%

EEG GLT (alpha) 69.81% ± 16.18% 69.59% ± 16.37%

Model D

PCC 77.58% ± 12.41% 77.47% ± 12.48%

PCC (alpha) 78.45% ± 13.26% 78.49% ± 13.14%

EEG GLT 79.42% ± 11.24% 79.24% ± 11.52%

EEG GLT (alpha) 80.92% ± 14.09% 80.94% ± 14.01%

Model E

PCC 77.83% ± 13.26% 77.69% ± 13.14%

PCC (alpha) 78.74% ± 10.65% 78.69% ± 10.77 %

EEG GLT 79.00% ± 12.26% 78.88% ± 12.35%

EEG GLT (alpha) 80.93% ± 12.44% 80.79% ± 12.54%

87



Table 5.7: Average Accuracy and F1 Score Across Subjects for Models F to I with Different

Adjacency Matrix Construction Methods on the BCIC iv-2a Dataset

Model Method
Accuracy

(Mean ± Std)

F1 Score

(Mean ± Std)

Model F

PCC 77.93% ± 12.29% 77.83% ± 12.32%

PCC (alpha) 78.45% ± 11.65% 78.49% ± 11.59%

EEG GLT 79.10% ± 13.76% 70.03% ± 13.88%

EEG GLT (alpha) 80.15% ± 12.81% 80.11% ± 12.73%

Model G

PCC 68.59% ± 16.95% 68.42% ± 17.10%

PCC (alpha) 68.21% ± 17.78% 68.03% ± 17.54%

EEG GLT 69.62% ± 16.98% 69.47% ± 17.00%

EEG GLT (alpha) 71.48% ± 18.94% 71.27% ± 19.13%

Model H

PCC 69.78% ± 16.28% 69.72% ± 16.20%

PCC (alpha) 68.66% ± 18.21% 68.43% ± 18.09%

EEG GLT 70.52% ± 16.67% 70.44% ± 16.53%

EEG GLT (alpha) 71.80% ± 18.28% 71.63% ± 18.41%

Model I

PCC 68.68% ± 18.70% 68.40% ± 18.98%

PCC (alpha) 68.14% ± 16.66% 67.98% ± 16.54%

EEG GLT 70.91% ± 16.30% 70.80% ± 16.33%

EEG GLT (alpha) 71.93% ± 18.21% 71.82% ± 18.11%
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Table 5.8: Average Accuracy and F1 Score Across Subjects for Models A to E with Different

Adjacency Matrix Construction Methods on the HGD Dataset

Model Method
Accuracy

(Mean ± Std)

F1 Score

(Mean ± Std)

Model A

PCC 95.23% ± 5.07% 95.23% ± 5.05%

PCC (alpha) 94.75% ± 4.63% 94.36% ± 5.29%

EEG GLT 95.57% ± 4.57% 95.57% ± 4.56%

EEG GLT (alpha) 95.84% ± 4.62% 95.85% ± 4.59%

Model B

PCC 94.62% ± 5.70% 94.62% ± 5.70%

PCC (alpha) 94.19% ± 5.90% 94.17% ± 5.90%

EEG GLT 95.25% ± 4.86% 95.25% ± 4.86%

EEG GLT (alpha) 95.23% ± 5.18% 95.25% ± 5.12%

Model C

PCC 94.98% ± 4.97% 94.98% ± 4.96%

PCC (alpha) 95.19% ± 5.12% 95.17% ± 5.16%

EEG GLT 95.39% ± 4.73% 95.38% ± 4.75%

EEG GLT (alpha) 95.51% ± 4.89% 95.48% ± 4.98%

Model D

PCC 97.47% ± 3.04% 97.46% ± 3.05%

PCC (alpha) 97.44% ± 2.74% 97.44% ± 2.74%

EEG GLT 97.98% ± 2.49% 97.98% ± 2.49%

EEG GLT (alpha) 97.71% ± 2.76% 97.70% ± 2.77%

Model E

PCC 97.36% ± 2.57% 97.37% ± 2.57%

PCC (alpha) 97.33% ± 2.97% 97.33% ± 2.96 %

EEG GLT 97.90% ± 2.64% 98.01% ± 2.61%

EEG GLT (alpha) 98.18% ± 2.24% 98.18% ± 2.25%

the number of CNN layers to four resulted in a slight drop in accuracy, though it remained

higher than the accuracy achieved with two-layer CNNs. Thus, the optimal number of CNN

layers for the BCIC iv-2a dataset is three. A similar trend was observed for the HGD dataset,

where the best performance was also achieved with three CNN layers, as shown in Tables 5.8

and 5.9.

In contrast, the number of GNN layers did not have a significant impact on performance

accuracy. However, this does not imply that GNNs are unimportant in the architecture. The

results demonstrate that the choice of adjacency matrix construction method plays a crucial

role in model performance. This is likely because the BCIC iv-2a dataset contains only 22

nodes, and the HGD dataset contains 44 nodes. With just two hops of graph embedding, the

features of all associated nodes are already embedded within the graph, reducing the marginal

benefit of additional GNN layers.
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Table 5.9: Average Accuracy and F1 Score Across Subjects for Models F to I with Different

Adjacency Matrix Construction Methods on the HGD Dataset

Model Method
Accuracy

(Mean ± Std)

F1 Score

(Mean ± Std)

Model F

PCC 97.58% ± 2.70% 97.58% ± 2.70%

PCC (alpha) 97.29% ± 2.86% 97.29% ± 2.85%

EEG GLT 97.86% ± 2.62% 97.86% ± 2.61%

EEG GLT (alpha) 98.07% ± 2.40% 98.07% ± 2.39%

Model G

PCC 96.40% ± 4.27% 96.40% ± 4.27%

PCC (alpha) 96.48% ± 3.86% 96.47% ± 3.88%

EEG GLT 96.95% ± 3.66% 96.96% ± 3.64%

EEG GLT (alpha) 96.78% ± 4.14% 96.78% ± 4.15%

Model H

PCC 96.46% ± 4.05% 96.47% ± 4.04%

PCC (alpha) 96.19% ± 3.96% 96.19% ± 3.96%

EEG GLT 97.03% ± 3.64% 97.03% ± 3.65%

EEG GLT (alpha) 96.68% ± 4.22% 96.67% ± 4.24%

Model I

PCC 96.53% ± 4.13% 96.52% ± 4.14%

PCC (alpha) 95.83% ± 4.04% 95.84% ± 4.03%

EEG GLT 97.14% ± 3.47% 97.12% ± 3.50%

EEG GLT (alpha) 96.79% ± 4.29% 96.79% ± 4.31%
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Table 5.10: Performance Comparison of EEG SGNet Model with State-of-the-Art Models on

BCIC iv-2a Dataset

Method Avg. Accuracy Avg. F1 Score

ShallowNet [58] 72.05% 71.93%

FBCSP+CNN [146] 74.46% 74.38%

WaSFNet [147] 68.18% 68.04%

EEGNet [108] 72.40% 72.15%

EEG-Conformer [150] 74.56% 74.38%

EEG-TCNet [148] 77.35% 77.18%

4DDFM+3M3DCNN [149] 80.04% 79.95%

SSDA [110] 61.56% 59.84%

DG-HAM [123] 76.36% 76.56%

GSAN [151] 77.15% 77.08%

Proposed EEG SGNet 82.98% 82.88%

5.3.3 Comparison with Current State-of-the-Art Models

For the BCIC iv-2a dataset, we compare our proposed EEG SGNet with ten state-of-the-

art (SOTA) models, as summarised in Table 5.10. These models include ShallowNet [58],

FBCSP+CNN [146], WaSFNet [147], EEGNet [108], EEG-TCNet [148], 4DDFM+3M3DCNN

[149], SSDA [110], DG-HAM [123], EEG-Conformer [150], and GSAN [151]. Among these,

SSDA, which employs a columnar spatio-temporal auto-encoder with CNN and LSTM layers

in both the encoder and decoder, achieves the lowest average accuracy at 61.56%. This per-

formance is lower than that of ShallowNet, a simple two-layer CNN model, which achieves

72.05%, and FBCSP+CNN, which combines Filter Bank Common Spatial Pattern (FBCSP)

with CNNs to achieve a slightly higher accuracy of 74.46%.

WaSFNet, incorporating a time-frequency convolution layer and a spatial convolution layer,

achieves an average accuracy of 68.18%. EEGNet, a compact 2D CNN architecture, achieves a

slightly better accuracy of 72.4%. EEG-Conformer, which combines CNNs and Transformers,

outperforms EEGNet with an accuracy of 74.56%. EEG-TCNet, which introduces a residual

block on EEGNet, further improves the accuracy to 77.35%. Similarly, GSAN, a subdomain

adversarial network utilising EEG graph data, achieves a high accuracy of 77.15%. The highest

accuracy among the existing SOTAmodels is achieved by 4DDFM+3M3DCNN, which combines

a 4D Dipole Feature Matrix with 3D CNNs, reaching 80.04%. In comparison, our EEG SGNet,

a parallel architecture of CNNs and GNNs, surpasses all these models with an average accuracy

of 82.98%.

For the HGD dataset, we compare EEG SGNet with eight SOTA models, as detailed in Ta-

ble 5.11. These include ShallowNet [58], EEGNet [108], EEG-ITNet [152], CRGNet [153],

EEG-Conformer [150], LMDA-Net [154], IFNet [155], and GCNs-Net [100]. The HGD dataset,
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Table 5.11: Performance Comparison of EEG SGNet Model with State-of-the-Art Models on

HGD Dataset

Method Avg. Accuracy Avg. F1 Score

ShallowNet [58] 93.04% 92.87%

EEGNet [108] 87.99% 87.85%

EEG-ITNet [152] 84.87% 84.74%

CRGNet [153] 94.33% 94.28%

EEG-Conformer [150] 93.48% 93.32%

LMDA-Net [154] 87.68% 87.49%

IFNet [155] 93.62% 93.28%

GCNs-Net [100] 96.24% 96.18%

Proposed EEG SGNet 98.56% 98.56%

which comprises EEG signals of motor movements, has more distinguishable class signals com-

pared to motor imagery datasets like BCIC iv-2a. As a result, most SOTA models achieve over

90% accuracy, except for EEG-ITNet (84.87%), EEGNet (87.99%), and LMDA-Net (87.68%).

EEG-ITNet, a CNN-based model that includes inception and temporal convolution (TC) blocks,

underperforms compared to the simpler two-layer CNN model ShallowNet, which achieves

93.04%.

EEG-Conformer performs slightly better than ShallowNet, while IFNet, a model employing

1D CNN operations for low- and high-frequency EEG bands with cross-frequency integration,

achieves an accuracy of 93.62%. CRGNet, which incorporates Riemannian manifold embedding

after CNN operations, achieves the second-highest accuracy among SOTA models at 94.33%.

The highest accuracy among the existing SOTA models is achieved by GCNs-Net, a spectral

GNN approach using PCC for adjacency matrix construction, with 96.24%. In comparison, our

proposed EEG SGNet outperforms all existing SOTA models, achieving the highest accuracy

of 98.56%.

5.4 Limitations and Future Works

EEG SGNet has demonstrated strong performance in EEG-based MI and movement classifi-

cation by integrating CNN and GNN with EEG GLT adjacency matrix construction method.

The single-subject paradigm used in this study allows for a highly personalised model that

captures individual-specific neural patterns effectively. This approach optimises classification

accuracy by leveraging subject-specific signal characteristics. However, EEG signals naturally

vary across individuals due to anatomical, physiological, and cognitive differences, which are

important factors to consider when extending the model to broader user populations. While

EEG SGNet is designed to extract meaningful spatial-temporal features, further evaluations in

cross-subject settings would provide valuable insights into its adaptability.
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The computational efficiency of EEG SGNet has been significantly improved through the incor-

poration of the EEG GLT method for adjacency matrix construction, which reduces complexity

in the GNN pathway. However, for real-time rehabilitation applications, further optimisations

like lightweight model compression techniques. Future research could also focus on improving

model adaptability for multiple users through adaptive calibration or transfer learning, ensuring

that EEG SGNet remains robust and scalable for practical neurorehabilitation settings.

5.5 Conclusion

The EEG SGNet architecture represents a significant advancement in EEG signal classification,

particularly for datasets with inherent temporal information. By utilising a parallel architecture

of CNN and GNN pathways, our model effectively extracts valuable features from EEG signals.

The CNN pathway captures both spatial and temporal features through the application of

optimised filters, while the GNN pathway extracts a diverse set of features, including time-

domain and frequency-domain characteristics, wavelet transform coefficients, and band-specific

power ratios within each window.

To further enhance the model’s performance, the EEG GLT method was employed for con-

structing the adjacency matrix in the GNN pathway. This approach improved both perfor-

mance accuracy and computational efficiency compared to traditional PCC-based methods.

Consequently, EEG SGNet outperformed state-of-the-art models, achieving an average accu-

racy improvement of 2.95% on the BCIC iv-2a dataset (EEG motor imagery classification) and

2.32% on the HGD dataset (EEG movement classification).

While this study focuses on window-based classification, it underscores EEG SGNet’s ability

to leverage temporal information for robust and reliable performance. Although a four-second

window was used in this study, future research will aim to optimise EEG SGNet for shorter

window sizes, such as 500 ms, making it better suited for real-time applications and expanding

its applicability to a broader range of EEG analysis tasks.

5.6 Significance and Novelty

This chapter introduces EEG SGNet, a parallel deep learning architecture that combines Con-

volutional Neural Networks (CNNs) and Graph Neural Networks (GNNs) for EEG signal de-

coding. The significance of EEG SGNet lies in its ability to address both temporal and spatial

complexities of EEG data. By leveraging the CNN pathway for temporal feature extraction and

the GNN pathway for spatial dependencies, the model achieves state-of-the-art performance on

motor imagery and movement-related datasets, making it highly relevant for applications in

rehabilitation robotics and brain-computer interfaces (BCIs).

The novelty of this work lies in its unified parallel architecture, which integrates spatial and

temporal analyses in a single framework. Unlike existing approaches that prioritise one type of
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feature extraction over the other, EEG SGNet balances both, resulting in superior classification

accuracy and adaptability to diverse EEG datasets. This innovation sets a precedent for more

holistic and effective EEG analysis techniques.
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Chapter 6

A Real-time Framework for EEG

Signal Decoding with Graph Neural

Networks and Reinforcement Learning

6.1 Introduction

Brain-Computer Interfaces (BCIs) establish a connection between the brain and external control

devices. Originally developed to assist individuals with motor impairments [7], BCIs translate

brain signals acquired through measurements such as electrocorticography (ECoG) and elec-

troencephalogram (EEG) into actionable commands for electronic control devices including

wheelchairs and exoskeleton robots. Although ECoG offers superior signal quality over EEG,

its application in BCIs is limited due to invasive route of acquisition, requiring the placement of

electrodes directly on the cerebral cortex [83]. Meanwhile, EEG is a much more accessible and

hence popular signal acquisition method as it involves non-invasive placement of electrodes on

the scalp. EEG is widely used to record various types of brain signals, from spontaneous and

stimulus-evoked signals to event-related potentials [84]. Its clinically relevant applications ex-

tend to dementia classification [156], depression state assessment [157], seizure detection [158],

and the classification of cognitive and motor tasks [159], including motor imagery (MI) tasks

[100], [157], [160].

MI involves the mental simulation of motor actions, such as movements of the hands, feet,

or tongue, without performing the physical movements [85], [86]. This technique is crucial in

neuroscience and rehabilitation, with real-world relevance especially for individuals with motor

impairments, such as stroke survivors. Through integration with an external control device,

MI enables the physically impaired to perform daily activities that are not otherwise possible,

leading to potentially life-changing benefits by improving quality of life and reducing the level

of chronic care. By integrating MI and BCIs, EEG based MI signals can be decoded and

used to control external devices, enabling real-time feedback and facilitating patient-intended
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movements through accurate signal interpretation [88].

Deep learning, a subset of machine learning, utilises multiple layers of neural networks to

process a variety of data forms. Convolutional Neural Networks (CNNs), which mimic natural

image recognition in the human visual system, are part of the deep learning family and excel in

computer vision tasks [89]–[91]. However, their application is restricted to Euclidean data, such

as 1-dimensional sequences and 2-dimensional grids [91]. CNNs struggle with non-Euclidean

data, failing to accurately capture the intrinsic structure and connectivity of the data.

Graph Convolutional Networks (GCNs) have been developed to perform convolutional opera-

tions on graphs, which can handle non-Euclidean data due to incorporating topological rela-

tionships during convolution. GCNs can represent complex structures and variations in these

structures, which may be heterogeneous or homogeneous, weighted or unweighted, signed or

unsigned [92]. They support various types of graph analyses, including node-level, edge-level,

and graph-level tasks [92], [113]. GCNs are particularly effective at classifying EEG signals as

a graph-level task [100], [144]. For this application, EEG signal readings from each channel are

treated as node attributes, and the relationships between EEG electrodes are represented by

an adjacency matrix, hence surpassing the capabilities of traditional CNNs.

There are two primary categories of GCNs: spatial [117]–[120] and spectral methods [114]–[116].

Some challenges are encountered with the spatial method [96], [121] especially in matching local

neighbourhoods. Both time domain and frequency domain features can be extracted from EEG

signals to perform GCN operations [98], [122], [156], [161]. Frequency domain features include

Power Spectral Density (PSD) and Power Ratio (PR) for various bands, such as δ (0.5-4Hz),

θ (4-8Hz), α (8-13Hz), β (13-30Hz), and γ (30-110Hz) within specified time windows. Time

domain features, such as Root Mean Square (RMS), skewness, minmax, variance, number

of zero crosses, Hurst Exponent, Petrosian fractal, and Higuchi, are also extracted for GCN

operations during specific time windows. These features are integral to window-based GCN

methods.

In the GCNs-Net [100], individual time point signals at each channel are treated as distinct

features. This method is designed for real-time EEG MI signal classification, focusing on 1
160

s

time point signals. The constructing of an effective adjacency matrix is crucial for GCN opera-

tions, and different methods have been explored in various studies, including: Geodesic method,

which relies on geodesic distances between EEG channels [93]–[95], [160]; using Pearson coef-

ficient correlation (PCC) to evaluate interchannel correlations [96]–[100] ; and experimenting

with a trainable matrix approach [96], [102].

In the EEG GLT-Net [144], a sophisticated algorithm known as the EEG Graph Lottery Ticket

(EEG GLT) is used to optimise the adjacency matrix by exploring various density levels, in-

spired from the unified GNN sparsification technique (UGS) [103]. This method represents the

current state-of-the-art in adjacency matrix construction, significantly enhancing accuracy, F1

score, and computational efficiency on the EEG MI PhysioNet dataset [127] compared to the
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PCC and Geodesic methods. However, despite the overall superiority of this method, it remains

challenging to classify the EEG MI time points remains challenging for some subjects due to

signal ambiguity among different MI tasks at specific time points. Consequently, supervised

learning on these subjects involves training that forces classification of all the time points.

Reinforcement Learning (RL), another subset of machine learning, enables an RL agent to

learn sequential decision-making in dynamic environments to maximise cumulative rewards

[76]. RL has been primarily applied in robotics and autonomous systems, which require complex

sequential decision-making. Deep RL principles have been applied to optimise feature selection

for the Classification with Costly Features (CwCF) problem [162], across various public datasets

including miniboone [163], forest [164], cifar [165], wine [166], and mnist [90]. Others [167] have

trained an RL agent to minimise feature extraction costs in classifying electromyography (EMG)

signals [168], although this reduction in features compromised accuracy.

In this paper, we introduce EEG RL-Net as a new algorithm, with more advanced capability

than existing methods for classifying EEG MI time point signals by combining GNNs and RL.

Initially, optimal graph features of EEG MI time point signals are extracted using the best

weights and adjacency matrix from an EEG GCN block, refined to 13.39% density using the

EEG GLT algorithm. Subsequently, the RL agent makes sequential decisions within an episode

of pre-defined horizon length to accurately classify the EEG MI signals. The main contributions

of this study are:

• EEG RL-Net: A new approach for classifying EEG MI time point signals, using a

trained RL agent that determines whether to classify or skip each time point based on

GNN features. This method greatly enhances performance accuracy by achieving classi-

fication as swiftly as possible within predefined episode lengths.

• Optimal Reward and Max Episode Length Setting: We evaluated the accuracy and

classification speed under various reward settings and maximum episode lengths for each

subject, identifying the optimal combinations for simultaneously achieving high accuracy

and efficiency.

• Performance Validation: We evaluated the performance of each subject under optimal

settings against the state-of-the-art EEG GLT-Net with mg GLT matrix and PCC adja-

cency matrix. Our results showed significant enhancement of accuracy and efficiency on

the PhysioNet dataset.

6.2 Methodology

6.2.1 Overview

The EEG RL-Net is comprised of two distinct parts. The overview of the EEG RL-Net can be

seen in the Figure. The first part is training the EEG GLT-Net to obtain the trained EEG GCN
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block across different adjacency matrix density levels (100% - 13.39%) using Algorithm 1. The

main purpose of the EEG GCN block was to extract EEG MI time points graph signal features.

This phase of training spanned from t = 1s to t = 3s. Then, the optimal adjacency matrix

and GNN weights at the 13.39% of the adjacency matrix density was selected for the purpose

of the extracting graph features to save computation efficiency.

Figure 6.1: (a) EEG GLT-Net model [144]: Overall architecture (classifying EEG MI of one

time point 1
160

s of signals from 64 EEG electrodes), (b) EEG RL-Net model (our proposed):

Incorporation of an optimal pre-trained EEG GCN Block at a 13.39% mg density from the

EEG GLT-Net [144], coupled with an EEG RL Block

The Multilayer Perceptron (MLP) part within the EEG GLT-Net is replaced with RL block

resulting in the EEG RL-Net as shown in the Figure 6.1. In this part, all time points from

t = 0s to t = 4s were utilised, with these points organised into groups spanning a horizon of 20

states, where each point represented a single state. The RL agent performed action at every

state within each episode’s horizon based on the graph features generated by the EEG GCN

segment. The agent has five option of actions involving classifying the state such as classifying

actions (Task 1 through to Task 4) or skipping action (Task 0) if the agent determined that the

current state is not suitable to classify based on the graph features generated by the EEG GCN

segment.

6.2.2 Dataset Description and Pre-processing

Following the approach of papers [100] and [144], this study employed the PhysioNet EEG MI

dataset [127], which comprises EEG recordings from 109 subjects acquired using the interna-
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tional 10-10 system with 64 EEG channels. The dataset is structured around four distinct EEG

MI tasks, which involve the subject imagining the actions of:

• Task 1: Opening and closing the left fist.

• Task 2: Opening and closing the right fist.

• Task 3: Opening and closing both fists simultaneously.

• Task 4: Opening and closing both feet.
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Figure 6.2: Electrode positions of PhysioNet dataset[127]

Each participant completed 84 trials, divided into 3 runs with 7 trials per run for each task

type. The duration of each trial’s recording was 4s, sampled at 160 Hz. In our study analyses

were specifically conducted on a subset of 20 subjects, labelled S1 to S20. Initially, the raw

signals were processed solely through a notch filter at the 50Hz power line frequency to eliminate

electrical interference, deliberately avoiding other common filtering or denoising techniques to

preserve data integrity. Signals from all 64 channels were utilised, with each channel treated

as a node and the signal at each time point considered as the node’s feature. Additionally, the

signals at each channel were normalised to achieve a mean (µ) of 0 and a standard deviation

(σ) of 1.

The second dataset used in this study is the High-Gamma Dataset (HGD) [58], which contains

EEG recordings from 14 healthy subjects with an average age of 27.2 years, including six

females. Each subject participated in 1000 trials, each lasting 4s. The HGD signals were
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recorded during motor execution tasks using 128 EEG channels and sampled at 250 Hz. This

dataset encompasses four motor movement tasks:

• Task 1: Left hand movement

• Task 2: Right hand movement

• Task 3: Both feet movement

• Task 4: Rest

Only 44 channels covering the motor cortex were selected from the original 128 channels, ex-

cluding the Cz channel. Similar to the PhysioNet dataset, the raw EEG signals were processed

with a notch filter at the 50 Hz power line frequency. A bandpass filter was then applied to

retain a broad frequency range of 4-123 Hz, which is suitable for motor execution tasks. Fol-

lowing the filtering, the signals for each trial were standardised using a channel-wise moving

mean and variance to dynamically adjust for local trends within each trial.

6.2.3 Graph Feature Extraction

Graph Representation

In a directed graph, G = {V,E} where V = {v1, v2, ..., vN} represents the set of nodes and |E|
signifies the total number of edges connecting these nodes. The structure of the graph can be

illustrated using an adjacency matrix A ∈ RN×N . Every node within the graph is associated

with FN features, and the matrix encapsulating these node features is expressed as X ∈ RN×FN .

A normalised combinatorial Laplacian matrix is L = IN −D−1/2AD−1/2. This involves the use

of the degree matrix of A, symbolised as D, which is calculated using Dii =
∑N

j=1 Aij.

Spectral Graph Filtering

The eigenvectors of the graph Laplacian matrix can be expressed as graph Fourier modes, with

{ul}N−1
l=0 ∈ RN . The diagonal matrix of these Fourier frequencies, Λ = diag[λ0, ..., λN−1] ∈

RN×N . We defined the Fourier basis, U = [u0, ..., uN−1] ∈ RN×N , which allows for the decom-

position of the Laplacian matrix, L, into L = UΛUT . The signal x can be transformed by

graph Fourier into x̂ ∈ RN using x̂ = UTx, while the inverse graph Fourier transform is given

by x = Ux̂. The convolution operation on graph G is defined as:

x ∗G g = U((UTx)⊙ (UT g)) (6.1)

where g represents the convolutional filter and ⊙ denotes the Hadamard product. Given that

gθ(Λ) = diag(θ), where θ ∈ RN represents the vector of Fourier coefficients, the Graph convo-

lution operation can be implemented as follows:
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x ∗G gθ = gθ(UΛUT )x = Ugθ(Λ)U
Tx (6.2)

where gθ is a non-parametric filter, and polynomial approximation is employed to mitigate the

excessive computational complexity. Chebyshev graph convolution, a specific instance of graph

convolution, utilises Chebyshev polynomials for filter approximation [115]. The approximation

of gθ(Λ) under the Kth order Chebyshev polynomial framework is given by:

gθ(Λ) =
K−1∑
k=0

θkTk(Λ̂) (6.3)

where

Λ̂ =
2Λ

Λmax

− IN (6.4)

In the above Equation 6.3, Tk(Λ̂) ∈ RK is the kth order Chebyshev polynomial evaluated using

Equation 6.4. Then, the signal x is convolved with the defined filter gθ using the following

equation:

x ∗G gθ = U
K−1∑
k=0

θkTk(Λ̂)U
Tx =

K−1∑
k=0

θkTk(L̃)x (6.5)

Normalising Λ can be achieved by using Equation 6.4, where Λmax denotes the largest entry in

the diagonal of Λ, and IN represents the diagonal matrix of the scaled eigenvalues. In the above

Equation 6.5, Tk(L̃) is the Chebyshev polynomial of order k evaluated at the scaled Laplacian,

L̃ which is defined in the Equation 6.6 as:

L̃ =
2L

λmax

− IN (6.6)

Let x̄k = Tk(L̃)x ∈ RN , where a recursive relation is used to compute x̄k using Equation 6.7 with

x̄0 = x and x̄1 = L̃x. One key advantage of using the Chebyshev polynomial to approximate

convolutional filters is that it inherently avoids the need to compute the graph Fourier basis.

The recursive relation is given by:

x̄k = 2L̃x̄k−1 − x̄k−2 (6.7)
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Training EEG GLT-Net

In the EEG GLT-Net study [144], the classification of EEG MI signals, X is facilitated through

a forward pass using the Spectral GNN function, denoted as f(.,Θ), with a given graph G =

{A,X}. The adjacency matrix, A, integrates Aoriginal and mg as outlined in Equation 6.8. The

matrix Aoriginal, defined as Aoriginal ij = {0, if i = j; 1, otherwise}, is fixed and not subject

to training, structured in the dimension of R64×64. Meanwhile, the adjacency matrix mask

mg ∈ R64×64 is designated as trainable. The combined adjacency matrix is given by:

A = Aoriginal ⊙mg (6.8)

Table 6.1: Details of EEG GLT-Net [144] Model

Layer Type Input Size
Polynomial

Order
Weights Output

Input Input 64× 1 - - -

GCN Blocks

GC1 Graph Convolution 64× 1 5 1× 16× 5 64× 16

BNC1 Batch Normalisation 64× 16 - 16 64× 16

GC2 Graph Convolution 64× 16 5 16× 32× 5 64× 32

BNC2 Batch Normalisation 64× 32 - 32 64× 32

GC3 Graph Convolution 64× 32 5 32× 64× 5 64× 64

BNC3 Batch Normalisation 64× 64 - 64 64× 64

GC4 Graph Convolution 64× 64 5 64× 128× 5 64× 128

BNC4 Batch Normalisation 64× 128 - 128 64× 128

GC5 Graph Convolution 64× 128 5 128× 256× 5 64× 256

BNC5 Batch Normalisation 64× 256 - 256 64× 256

GC6 Graph Convolution 64× 256 5 256× 512× 5 64× 512

BNC6 Batch Normalisation 64× 512 - 512 64× 512

Global Mean Pooling Block

P Global Mean Pool 64× 512 - - 512

Fully Connected Blocks

FC1 Fully Connected 512 - 512× 1024 1024

BNFC1 Batch Normalisation 1024 - 1024 1024

FC2 Fully Connected 1024 - 1024× 2048 2048

BNFC2 Batch Normalisation 2048 - 2048 2048

FC3 Fully Connected 2048× 4 - 2048× 4 4

S Softmax Classification 4 - - 4

EEG MI signals from individual subjects, recorded between t = 1s and t = 3s, are used for

training with Algorithm 1 on PhysioNet dataset. This time window was chosen because subjects
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Table 6.2: Hyperparameter Settings for Training EEG GLT-Net [144]

Hyperparameter Value

Training Epochs (Nep) 1000

Batch Size (B) 1024

Dropout Rate 0.5

Optimiser Adam

Initial Learning Rate (η) 0.01

typically demonstrated greater readiness after t = 1s, as highlighted in the EEG GLT-Net study

[144]. The detailed structure of the EEG GLT-Net is depicted in Figure 6.1 and Table 6.1,

with the specific hyperparameter configurations for the training outlined in Table 6.2. The

optimally trained GNN weights (Θ) and the trained adjacency matrix mask (mg) are recorded

across various adjacency matrix density levels, ranging from 100% to 13.39%.

EEG MI Time Points GNN Features

The pre-trained GNN weights and optimal adjacency matrices were evaluated across various

mg densities, ranging from 100% to 13.39%, using the PhysioNet dataset. Among these, the

set with a density of 13.39% was selected for extracting graph features from EEG MI signals.

This choice was based on findings from the EEG GLT-Net study [144], which reported optimal

performance at mg densities were found below 31.30% for most subjects. Specifically, 11 out of

20 subjects achieved their highest accuracy at a density of 13.39%. Additionally, this density

significantly reduces computational requirements, a crucial consideration given the increased

computational demands anticipated in the subsequent EEG RL-Net stage.

GNN features were then extracted for all EEG MI time points, spanning from t = 0s to t = 4s

for all 84 trials of each subject, was conducted. The GNN feature corresponding to each time

point had a dimensionality of R512.

6.2.4 Problem Redefinition

The EEG GLT-Net underwent training for the classification of EEG MI time-point signals.

Integration the GNN and an optimally trained adjacency matrix significantly enhanced the

classification accuracy compared to traditional PCC adjacency matrix method. Nonetheless,

ambiguities in signal clarity between different classes at certain time points could adversely

affect the model accuracy. Leveraging the high efficacy of the EEG GLT-Net model, the pre-

trained weights from the GNN and adjacency matrix components were integrated with an RL

block, resulting in the formation of the EEG RL-Net, as depicted in Figure 6.1.
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Figure 6.3: Agent interaction with the EEG RL Environment. The agent transitions to the

next state within the current episode after performing the skipping action (a = 0), receiving

a reward of rskip. The agent transitions to the terminal state after performing a classifying

action (a ̸= 0), receiving a reward of rright for a correct classification or rwrong for an incorrect

classification

Algorithm 3 EEG RL Environment

1: function STEP(st, at, yt, s
′
t)

2:

3:

4:

5:

if at = 0 then

rt = −0.1
Return(s′t, rt)

else

6: rt =

rright, eg. + 10 if at = yt

rwrong, eg. − 10 if at ̸= yt

7: Return (s′t = Terminal, rt)

8: end if

9: end function

A reinforcement learning approach is used to train an RL agent for classifying EEG MI time-

point signals. Beyond the four initial classes, the RL agent has the capability to defer classifica-

tion of a current time point if it determines that it is not ready. In each state st, the RL agent

can perform one of five discrete actions at ∈ {0, 1, 2, 3, 4} within the EEG RL environment,

guided by the GNN features extracted from st. The actions at are described as follows:

• at = 0 : Skip the current state st

• at = 1 : Classify the signal as Class 1

• at = 2 : Classify the signal as Class 2

• at = 3 : Classify the signal as Class 3
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• at = 4 : Classify the signal as Class 4

Following action at, the RL agent is rewarded with rt and transitions to the next state s′t, as

illustrated in Figure 6.3. Choosing at = 0 indicates the agent’s hesitance to classify due to

uncertainty, leading to a decision to skip the current state with a minimal penalty until it is

deemed ready to classify or the episode ends. Upon selecting an action at > 0, s′t is marked as

Terminal, which concludes the episode and the agent receives rt, a positive reward (rright) for

correct classification or a negative reward (rwrong) for incorrect classification. The dynamics

of the EEG RL environment are elaborated in Algorithm 3. The ultimate goal is for the RL

agent to accurately classify EEG MI signals within the designated horizon (H) of 20 (120 ms)

as swiftly as possible.

The Dueling Deep Q Network (DQN) was selected for this study due to its Advantage function,

which separates the state-value and advantage functions. This design is particularly effective

for EEG time-point signal classification, where consecutive states have minimal changes, al-

lowing the model to focus on the relative importance of actions. Unlike the standard DQN,

Dueling DQN provides better stability and performance. Additionally, it is computationally

more efficient and less sensitive to sparse rewards compared to policy-gradient methods, making

it the most suitable choice for this task.

105



6.2.5 Data Preprocessing and Data Splitting

In the EEG RL-Net, the entire duration of the EEG MI signals, spanning four seconds at a

sampling rate of 160 Hz, was included. As outlined in Section 6.2.3, GNN features of EEG MI

time points were extracted using pre-trained weights with an adjacency matrix density, mg, of

13.39%. The GNN features of each time point were treated as states, s ∈ R512. For all 82 trials,

from t = 0s to t = 4s, groups of consecutive H = 20 states were organised into episodes without

time point overlap between subsequent episodes, forming an episode set, E = e0, e1, ..., en, as

illustrated in Figure 6.4.

The episodes, E, were stratified split into training (Etrain, 80%), validation (Eval, 10%), and

test (Etest, 10%) sets. The stratified split ensures class balance across all subsets. To assess

the stability and robustness of the results, the entire experiment was repeated five times using

different random seeds.

Figure 6.4: Conversion of EEG MI time points into states using the pre-trained EEG GCN

Block, grouped into episodes comprising 20 states each.
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6.2.6 Dueling Deep Q-Learning

The DQN method, a value-based RL approach, was employed in this study to learn an optimal

policy to enable more accurate classification of EEG MI signals. A state-action value, Q(s, a),

represents the expected discounted reward when the agent is in state s, and takes action a

according to policy π. With the optimal policy (π∗), the agent aims to achieve the maximum

expected discounted reward Q∗(s, a), fulfilling the Bellman equation:

Q∗(s, a) = Eπ∗

[
r + γ.max

a′
Q∗(s′, a′)

∣∣∣ s, a] (6.9)

here r is the immediate reward, and γ is the discount factor. The state-action value, Q̂(s, a),

for state s and action a can be approximated using a deep neural network parameterised by θ.

The loss function is defined as:

Loss(θ) =
(
ŷDQN − Q̂(s, a; θ)

)2

(6.10)

where ŷDQN is the target value, calculated as follows:

ŷDQN =

rt, if s′t is Terminal

rt + γ. maxa′t Q̂(s′t, a
′
t; θtarget), otherwise

(6.11)

The θtarget denotes the parameters of the target network, which are kept constant. The approx-

imation Q̂(s, a; θ) shares the architecture with the target network. Our study utilises Dueling

DQN, a variant of DQN that enhances training stability and efficiency by separating the esti-

mation of Q̂(s, a; θ) into state values V (s) and action advantages A(s, a), as follows:

Q̂(s, a; θ) = V̂ (s;α) + Â(s, a; β) (6.12)

The network separately estimates the state values and action advantages, which then converge

into a single output. The parameters θ represent the overall network parameters, with α and

β specifically used for estimating state values and action advantages, respectively. To enhance

stability, the equation subtracts the average advantage values from Q̂(s, a; θ):

Q̂(s, a; θ) = V̂ (s;α) +

[
Â(s, a; β)− 1

|A|
∑
a

Â(s, a; β)

]
(6.13)
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6.2.7 EEG RL Algorithm

To generate training data for the EEG RL Block, all possible actions at = {0, 1, 2, 3, 4} are

executed at each state st within an episode ei in Etrain, interacting with the EEG RL environ-

ment to determine the reward rt and the subsequent state s′t. Each transition records a tuple

(s, a, r, s′). This study employs the Dueling DQN method for the RL block, as illustrated in

Figure 6.5. The Dueling DQN agent undergoes training according to the procedure outlined

in Algorithm 4, utilising the Adam optimiser until convergence is achieved. The configuration

of the entire EEG RL-Net model is outlined in Table 6.3. The parameters of the fixed target

network, θtarget, for the Dueling DQN network, are refreshed after every 50 batch updates of θ.

Algorithm 4 Training EEG RL-Net’s Dueling DQN Agent

1: Initialise randomly Dueling DQN network parameter (θ) and target network parameter

(θtarget).

2: Set of train episodes ETRAIN ∈ {e0, e1, ..., eN} where each ei has set of states, S =

{s0, s1, ..., sH−1}. Each state, st ∈ R512.

3: At each state st, simulate one step with all possible actions from action set, A ∈ {0, 1, 2, 3, 4}
to observe next state, s′t and reward, rt. Record all the (st, at, rt, s

′
t) tuples to the Buffer,

B.

4: Shuffle the state transitions in the B using random seed, and group into mini-batches in

size of 64 transitions.

5: for epoch = 0 to EPOCHS do

6: Compute ŷDQN for each mini-batch:

7: ŷDQN =

rt, if s′t is Terminal

rt + γmaxa′t Q̂(s′t, a
′
t; θtarget) otherwise

8: Loss(θ) =
(
ŷDQN − Q̂(st, at; θ)

)2
9: Backpropagate to update θ using Adam optimiser

10: Update θtarget = θ at every 50 updates of θ

11: end for

Performance evaluation of the RL agent on Eval and Etest is described in Algorithm 5. At every

time step, the agent selects an action based on the q-values predicted by the EEG RL-Net.

In this study, a correct classification by the agent yields a reward rright, while an incorrect

classification results in rwrong. The agent’s objective in each episode ei is to maximise the

cumulative reward rsum within the predefined horizon H = 20. This requires the agent to make

classifications as quickly as possible, since it incurs a penalty of r = −0.1 for each skipped

step. However, at time t = H − 1, skipping is no longer an option, and the agent must make a

classification action.
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Algorithm 5 Evaluation of DQN Agent for a Validation or Test Episode

1: Episode, ei has horizon of H = 20

2: At ei, the set of states S = {s0, s1, ..., sH−1}, where each st ∈ R512

3: At ei, the set of labels Y = {y0, y1, ..., yH−1}, where each yt ∈ {1, 2, 3, 4}
4: Action a′ ∈ {0, 1, 2, 3, 4}, and a′′ ∈ {1, 2, 3, 4}
5: Initialise t = 0, rsum = 0

6: while t < H do

7: at =

argmaxa′ q̂DQN (st, a
′), if t < H − 1

argmaxa′′ q̂DQN(st, a
′′), otherwise

8: s′t, rt = STEP (st, at, yt, s
′
t)

9: rsum ← rsum + rt

10: if rt = Terminate then

11: Terminate the Episode, ei

12: else

13: t← t+ 1

14: end if

15: end while

Figure 6.5: EEG RL Block: Featuring the Dueling DQN, this component predicts the q-values

linked to various actions
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Table 6.3: Details of EEG RL-Net Model

Layer Type Input Size Weights Output

Input Input 64× 1 - -

EEG GCN Block

EEG GCN
Graph Convolution and

Global Pooling
64× 1 - 512

RL Block (Dueling DQN Network)

MLP1 Fully Connected 512 512× 1024 1024

MLP2 Fully Connected 1024 1024× 2048 2048

MLP3 Fully Connected 2048 2048× 64 64

MLP4 Fully Connected 64 64× 1 1

MLP5 Fully Connected 2048 2048× 64 64

MLP6 Fully Connected 64 64× 5 5

Q Dueling DQN
64× 1 &

64× 5
- 5
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6.2.8 Model Setting and Evaluation Metrics

The structure of EEG RL-Net is defined by two principal components: the spectral EEG GCN

block, which extracts graph features from EEG MI time point signals using pre-trained weights,

and the RL block, embodied by the Dueling DQN network. The specifics of the EEG RL-Net’s

design are provided in Table 6.3. The RL block comprises six MLP (Multi-Layer Perceptron)

layers, or Fully Connected Layers, each followed by a Rectified Linear Unit (ReLU) layer,

as described in Equation 3.12. Information on the training hyperparameters is presented in

Table 6.4. The performance of the different methods was evaluated using both accuracy and

F1 score metrics.

Table 6.4: Hyperparameter Settings for Training EEG RL-Net

Hyperparameter Value

Reward Right (rright) +10

Reward Wrong (rwrong) −10
Reward Skip (rskip) −0.1
Discount Factor (γ) 0.99

Training Epoch (EPOCHS) 150

Batch Size 63

Target Network Update Frequency 50

Initial Learning Rate (η) 0.0001

L2 Regularisation Rate (λ) 0.001

Optimiser Adam

The ReLU activation function is defined as:

ReLU(x) = max(0, x) (6.14)

The accuracy is defined as:

Accuracy =
TP + TN

TP + FP + TN + FN
(6.15)

The recall is given by:

Recall =
TP

TP + FN
(6.16)

The precision is defined as:

Precision =
TP

TP + FP
(6.17)
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The F1 score is given by:

F1 Score =
2× Precision× Recall

Precision + Recall
(6.18)
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6.3 Results and Discussion

6.3.1 EEG RL-Net vs EEG GLT-Net

Table 6.5 shows comparative analysis of mean accuracy between the EEG GLT-Net and the

EEG RL-Net. The EEG GLT-Net incorporates two adjacency matrix types: the PCC and the

mg GLT . The latter is identified as the most optimal adjacency matrix, after searching through

100% to 13.39% of adjacency matrix density using the EEG GLT algorithm. According to paper

[144], employing the mg GLT adjacency matrix yields an accuracy improvement ranging between

0.51% and 22.04% over the PCC adjacency matrix, with significant enhancements noted for

subjects S1 and S12, at 22.04% and 21.62% respectively. Despite seeing notable improvements

in accuracy and F1 score with the mg GLT matrix, certain subjects, specifically S5, S6, S7, S13,

S15, and S19, exhibited classification accuracies below 70%.

Using baseline parameters (rright = +10, rwrong = −10, rskip = −0.1 and H = 20), the

EEG RL-Net framework advances the accuracy beyond the current state-of-the-art EEG GLT-

Net employing the mg GLT adjacency matrix, with improvements spanning 0.01% to 44.95%.

A total of 12 out of 20 subjects, namely S1, S3, S4, S8, S9, S10, S11, S12, S16, S17, S18, and

S20, achieved perfect classification. The EEG RL-Net also significantly elevated the accuracies

for S13 and S19 to 89.45% and 79.65%, respectively. Even for subjects S13 and S19, who

initially demonstrated low accuracies, modest improvement in accuracy at 44.50% and 41.41%,

respectively was achieved using the EEG GLT-Net with the mg GLT matrix.
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EEG_GLT-Net (PCC Adj)
EEG_GLT-Net (mg_GLT Adj)
EEG_RL-Net (our method)

Figure 6.6: Performance Mean Accuracy Comparison between EEG GLT-Net (PCC Adj),

EEG GLT-Net (mg GLT Adj) and EEG RL-Net Methods for Subjects S1 - S10
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Figure 6.7: Performance Mean Accuracy Comparison between EEG GLT-Net (PCC Adj),

EEG GLT-Net (mg GLT Adj) and EEG RL-Net Methods for Subjects S11 - S20
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Figure 6.8: Overall Performance Mean Accuracy Comparison between EEG GLT-Net (PCC

Adj), EEG GLT-Net (mg GLT Adj) and EEG RL-Net Methods

The EEG GLT-Net with the mg GLT matrix boosted accuracy across the 20 subjects, increasing

the average accuracy by 7.85% (from 76.10% to 83.95%). Given the inherent noise in EEG MI

time-point signals and the challenge of classifying signals representing 1
160

s, the EEG GLT-

Net showed a decline in performance accuracy due to its attempt to classify all time points.

Comparatively, the EEG RL-Net achieved remarkable increase in average accuracy across the

20 subjects to 95.35%. This substantial improvement is the result of the RL agent’s capacity

to discern the appropriateness of the current signal for classification. The agent has been

optimised to classify signals as swiftly as possible within a 20 time-point window, averaging a

classification time of 2.91 time points in the EEG RL-Net setup.
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Table 6.5: Accuracy Assessment: EEG RL-Net versus EEG GLT-Net

Subj
Accuracy (Mean±Std)

EEG GLT-Net

(PCC Adj)

EEG GLT-Net

(mg GLT Adj)

EEG RL-Net*

(our method)

S1 76.47% ± 9.94% 98.51% ± 0.77% 100.00% ± 0.00%

S2 69.13% ± 7.05% 76.18% ± 5.53% 97.73% ± 0.20%

S3 87.28% ± 9.19% 99.17% ± 0.32% 100.00% ± 0.00%

S4 99.13% ± 1.01% 99.97% ± 0.06% 100.00% ± 0.00%

S5 43.19% ± 3.03% 50.95% ± 3.80% 87.72% ± 0.70%

S6 58.23% ± 5.19% 69.60% ± 5.67% 90.89% ± 1.50%

S7 50.98% ± 3.80% 59.45% ± 3.00% 89.24% ± 2.10%

S8 95.06% ± 5.96% 99.95% ± 0.07% 100.00% ± 0.00%

S9 97.64% ± 3.33% 99.95% ± 0.08% 100.00% ± 0.00%

S10 99.24% ± 0.19% 99.99% ± 0.01% 100.00% ± 0.00%

S11 99.48% ± 0.70% 99.99% ± 0.01% 100.00% ± 0.00%

S12 78.07% ± 8.95% 99.69% ± 0.32% 100.00% ± 0.00%

S13 41.35% ± 1.23% 44.50% ± 2.23% 89.45% ± 0.90%

S14 55.97% ± 6.47% 72.39% ± 6.43% 91.59% ± 2.10%

S15 52.11% ± 3.96% 67.55% ± 9.26% 80.83% ± 1.50%

S16 96.75% ± 5.00% 99.98% ± 0.03% 100.00% ± 0.00%

S17 98.83% ± 2.33% 99.98% ± 0.03% 100.00% ± 0.00%

S18 86.19% ± 9.95% 99.92% ± 0.12% 100.00% ± 0.00%

S19 38.38% ± 2.27% 41.41% ± 1.44% 79.65% ± 1.40%

S20 98.44% ± 0.68% 99.94% ± 0.11% 100.00% ± 0.00%

Overall 76.10% ± 22.71% 83.95% ± 21.43% 95.36% ± 6.83%

* rright = +10, rwrong = −10, rskip = −0.1, H = 20

6.3.2 Study of Changing rright Values

Table 6.6 demonstrates the effect of varying the rright value (+5,+10,+15), on average accuracy

while keeping rwrong = −10 constant. The results show average accuracies of 95.57%, 95.36%,

and 94.94% for rright = +5,+10, and +20, respectively. Notably, the accuracy tends to improve

when rright is less than rwrong, but declines when rright exceeds rwrong, although the level of

variance is minimal at just 0.63%.
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Figure 6.9: Performance Mean Accuracy Comparison Varying rright Values for Subjects S1 -

S10
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Figure 6.10: Performance Mean Accuracy Comparison Varying rright Values for Subjects S11 -

S20
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Figure 6.11: Overall Performance Mean Accuracy Comparison Varying rright Values

Table 6.6: Impact of Varying rright Values on Accuracy and Classification Time

Subj

Mean Accuracy (Mean Classification Time)

rright = +5

rwrong = −10

rright = +10

rwrong = −10

rright = +20

rwrong = −10

S1 99.93% (1.70) 100.00% (1.80) 100.00% (1.50)

S2 97.86% (1.51) 97.73% (1.87) 97.86% (1.65)

S3 100.00% (2.10) 100.00% (2.20) 100.00% (1.90)

S4 100.00% (2.80) 100.00% (2.50) 100.00% (1.80)

S5 87.65% (5.71) 87.72% (4.55) 86.14% (3.45)

S6 91.10% (3.37) 90.89% (2.80) 89.72% (2.07)

S7 91.24% (3.64) 89.24% (3.23) 87.80% (3.66)

S8 100.00% (2.90) 100.00% (2.80) 100.00% (2.10)

S9 100.00% (3.70) 100.00% (3.00) 100.00% (2.20)

S10 99.93% (2.40) 100.00% (2.20) 100.00% (1.80)

S11 100.00% (2.00) 100.00% (1.50) 100.00% (2.30)

S12 100.00% (2.80) 100.00% (2.40) 100.00% (2.60)

S13 89.59% (4.90) 89.45% (3.97) 88.28% (3.58)

S14 93.45% (3.75) 91.59% (3.14) 89.86% (2.81)

S15 82.89% (5.23) 80.83% (4.80) 79.45% (4.51)

S16 100.00% (2.40) 100.00% (2.70) 100.00% (2.20)

S17 100.00% (3.00) 100.00% (2.00) 100.00% (1.90)

S18 100.00% (3.30) 100.00% (2.40) 100.00% (1.50)

S19 77.79% (6.89) 79.65% (5.64) 79.59% (4.80)

S20 100.00% (2.20) 100.00% (2.70) 100.00% (2.10)

Mean 95.57% (3.32) 95.36% (2.91) 94.94% (2.51)

Std ± 6.72% ± 6.83% ± 7.32%

rskip = −0.1 and H = 20
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On an individual basis, rright = +5 yielded higher accuracies for most subjects, except for S1,

S5, and S19, where rright = +10 performed marginally better. No subjects showed improved ac-

curacy when rright was greater than rwrong. Therefore, for optimal performance, the magnitude

of rright should not exceed rwrong. It appears that accuracy is enhanced by a higher penalty for

incorrect classifications (rwrong) rather than a higher reward for correct ones (rright) enhances

accuracy, likely motivating the agent to avoid misclassifications more stringently.

Regarding the time points required to classify EEG MI signals, the configuration with rright =

+10 and rwrong = −10 averages at 2.91 time points. Increasing rright to +20 (while rwrong

remains at −10) reduces the classification time to 2.51 time points. Conversely, lowering rright

to +5 increases the average classification time to 3.32 time points, indicating a more cautious

approach by the agent, likely due to prioritising accuracy over speed by utilising the option to

skip uncertain classifications.

Figure 6.12: Overall Mean Classification Time (Time Points) Comparing Varying rright Values

6.3.3 Study of Changing rwrong Values

In this study, we examined the impact of altering the rwrong values while keeping the rright

constant at +10, as shown in Table 6.7. We observed the rwrong values at −10, −20, −30,

and −40, correlating with an average performance accuracy of 95.35%, 95.18%, 95.11%, and

94.88%, respectively. This indicates that simply increasing the negative magnitude of rwrong

beyond that of rright does not invariably lead to enhanced performance accuracy. Additionally,

we found that the time required for signal classification was directly related to the difference

in rewards.

Despite the reward configuration of {rright = +10, rwrong = −10} achieving the highest average

performance accuracy among the four settings, it does not universally outperform across all test

subjects. Specifically, this configuration was only superior for subjects S5 and S6. Conversely,

the configuration of {rright = +10, rwrong = −20} exhibited higher performance accuracy in

subjects S2, S7, S13, and S15. For subject S14, the {rright = +10, rwrong = −30} setting was

more advantageous.
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Figure 6.13: Performance Mean Accuracy Comparison Varying rwrong Values for Subjects S1 -

S10
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Figure 6.14: Performance Mean Accuracy Comparison Varying rwrong Values for Subjects S11

- S20
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Figure 6.15: Overall Performance Mean Accuracy Comparison Varying rwrong Values

Table 6.7: Impact of Varying rwrong Values on Accuracy and Classification Time

Subj

Mean Accuracy (Mean Classification Time)

rright = +10

rwrong = −10

rright = +10

rwrong = −20

rright = +10

rwrong = −30

rright = +10

rwrong = −40

S1 100.00% (1.80) 99.79% (1.60) 100.00% (2.00) 99.93% (2.00)

S2 97.73% (1.87) 98.21% (1.97) 97.93% (2.49) 97.93% (2.88)

S3 100.00% (2.20) 100.00% (1.70) 100.00% (2.70) 100.00% (2.20)

S4 100.00% (2.50) 100.00% (3.30) 100.00% (4.30) 100.00% (5.70)

S5 87.72% (4.55) 86.90% (6.26) 85.38% (6.28) 85.79% (7.31)

S6 90.89% (2.80) 90.00% (2.63) 90.90% (4.94) 90.41% (4.25)

S7 89.24% (3.23) 89.59% (5.09) 89.31% (5.20) 88.90% (6.70)

S8 100.00% (2.80) 100.00% (2.60) 100.00% (3.70) 100.00% (4.30)

S9 100.00% (3.00) 100.00% (3.30) 100.00% (5.00) 100.00% (5.30)

S10 100.00% (2.20) 99.93% (1.90) 99.86% (2.00) 99.93% (2.52)

S11 100.00% (1.50) 100.00% (2.20) 100.00% (3.00) 100.00% (3.30)

S12 100.00% (2.40) 100.00% (2.70) 100.00% (4.10) 100.00% (5.10)

S13 89.45% (3.97) 89.52% (5.33) 89.52% (6.24) 87.38% (6.07)

S14 91.59% (3.14) 91.31% (3.00) 92.14% (3.00) 90.55% (4.37)

S15 80.83% (4.80) 81.38% (4.53) 80.14% (3.48) 80.69% (4.13)

S16 100.00% (2.70) 100.00% (3.10) 100.00% (5.00) 100.00% (4.30)

S17 100.00% (2.00) 100.00% (3.70) 100.00% (3.20) 100.00% (4.60)

S18 100.00% (2.40) 100.00% (3.20) 100.00% (2.40) 100.00% (4.30)

S19 79.65% (5.64) 76.90% (7.21) 76.97% (8.22) 76.14% (9.20)

S20 100.00% (2.70) 100.00% (2.80) 100.00% (3.40) 100.00% (4.80)

Mean 95.36% (2.91) 95.18% (3.41) 95.11% (4.03) 94.88% (4.66)

Std ± 6.83% ± 7.19% ± 7.37% ± 7.57%

rskip = −0.1 and H = 20

Although a smaller magnitude of rwrong relative to rright appears beneficial, a higher rwrong
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to rright ratio does not necessarily equate to improved accuracy. As demonstrated in Ta-

ble 6.7, performance accuracy diminishes with an increasing ratio, identifying the optimal

ratio as twice the magnitude of rwrong to rright. Furthermore, comparing different of reward

configurations with equivalent magnitude ratios, such as {rright = +5, rwrong = −10} and

{rright = +10, rwrong = −20}, reveal subtle differences are noted in average performance accu-

racy and classification time. The former configuration outperforms in both average accuracy

and time efficiency for classification.

According to Table 6.7, the classification time escalates with the increases in rwrong magnitude,

where average times of 2.91, 3.41, 4.03, and 4.66 seconds were recorded for rwrong values of −10,

−20, −30, and −40, respectively. This trend suggests that as the penalty for incorrect classi-

fication outweighs the reward for correct answers, the agents proceed with increased caution,

hence extending the classification time.

Figure 6.16: Overall Mean Classification Time (Time Points) Comparing Varying rwrong Values
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6.3.4 Effects of Episode Length Variation and Optimisation on Clas-

sification Performance

In this study, we examined the mean accuracy, F1 score, and mean classification time across

various episode lengths (H), including 10, 20, 30, and 40, as presented in Table 6.8. We

observed that both accuracy and F1 scores increased with extension of the episode horizon

extends. Conversely, classification time per point increased with longer episode lengths. These

finding suggests that larger episode lengths contribute to improvements in accuracy and F1

scores.

Figure 6.17: Overall Mean Classification Time (Time Points) Comparing Varying Horizon (H)

Values

Table 6.8: Impact of Varying Episode Lengths (H) Values on Accuracy, F1 Score and Classifi-

cation Time

Horizon

(H)

Accuracy

(Mean ± Std)

F1 Score

(Mean ± Std)

Mean

Classification Time

10 94.46% ± 8.10% 94.42% ± 8.15% 2.18

20 95.14% ± 7.14% 95.10% ± 7.18% 3.76

30 95.56% ± 6.54% 95.53% ± 5.53% 5.53

40 95.82% ± 6.16% 95.79% ± 6.54% 6.54

Table 6.9 delineates the optimal configuration of reward for correct (rright) and incorrect (rwrong)

decisions, and episode horizon (H) that achieves the highest accuracy and F1 score in the

shortest classification time possible. In this optimal setting, the RL agent demonstrates superior

performance, achieving an average accuracy of 96.40% and an average classification time of less

than 25 milliseconds across all 20 subjects.
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Figure 6.18: Performance Mean Accuracy Comparison between EEG GLT-Net (PCC Adj),

EEG GLT-Net (mg GLT Adj) and EEG RL-Net Methods at Optimal Reward Settings for Sub-

jects S1 - S10
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Figure 6.19: Performance Mean Accuracy Comparison between EEG GLT-Net (PCC Adj),

EEG GLT-Net (mg GLT Adj) and EEG RL-Net Methods at Optimal Reward Settings for Sub-

jects S11 - S20
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Figure 6.20: Overall Performance Mean Accuracy Comparison between EEG GLT-Net (PCC

Adj), EEG GLT-Net (mg GLT Adj) and EEG RL-Net Methods at Optimal Reward Settings

Table 6.9: Subject-wise Classification Accuracy and Time with Optimal Reward Settings and

Episode Lengths

Subj
Mean

Accuracy

Mean F1

Score

Mean

Classification

Time

(rright,

rwrong)

Episode

Horizon

S1 100.00% 100.00% 1.45 (20, -10) 10

S2 98.65% 98.62% 2.93 (20, -30) 30

S3 100.00% 100.00% 1.13 (20, -10) 10

S4 100.00% 100.00% 1.32 (20, -30) 10

S5 90.21% 90.05% 4.85 (10, -10) 30

S6 92.06% 92.06% 4.25 (5, -10) 40

S7 92.33% 92.29% 9.94 (10, -30) 40

S8 100.00% 100.00% 1.23 (10, -10) 10

S9 100.00% 100.00% 1.27 (20, -10) 10

S10 100.00% 100.00% 1.17 (20, -10) 10

S11 100.00% 100.00% 1.11 (20, -20) 10

S12 100.00% 100.00% 1.19 (20, -10) 10

S13 93.29% 93.27% 5.95 (10, -10) 40

S14 93.70% 93.69% 4.17 (5, -10) 40

S15 85.48% 85.43% 7.51 (10, -20) 40

S16 100.00% 100.00% 1.25 (20, -10) 10

S17 100.00% 100.00% 1.28 (20, -10) 10

S18 100.00% 100.00% 1.27 (10, -10) 10

S19 82.33% 82.20% 9.69 (20, -30) 40

S20 100.00% 100.00% 1.15 (20, -10) 10

Mean 96.40% 96.38% 3.21 - -

Std ± 5.47 ± 5.50 - - -
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Our analysis, as indicated in Table 6.9 shows that the RL agent achieved accuracy exceeding

90.00% for each subject, with the exceptions of S15 and S19 whose accuracies were 85.48% and

82.33%, respectively. Subjects such as S1, S3, S4, S8, S9, S10, S11, S12, S16, S17, S18, and S20,

where the RL agent achieved perfect classification, had notably clearer EEG MI signals. For

these subjects, the agent performed consistently well across most reward and episode horizon

configurations. Classifications were achieved within an average of 2 time points, where an

optimal episode horizon of 10 and a reward configuration where rright significantly exceeded

rwrong were conducive to faster classification decisions.

Particularly noteworthy was the performance of EEG RL-Net on subject S13, where the RL

agent achieved a classification accuracy of 93.29%. This represented an exceptional improve-

ment by 48.79% over EEG GLT-Net with mg GLT , the current state-of-the-art EEG MI time

point classification method. The classification for S13 took 6 time points on average, possibly

reflecting the only subtle distinctions between EEG MI tasks for this subject.

6.3.5 Comparison with Current State-of-the-Art Models

In this paper, we compare our proposed method, EEG GLT-Net, with eight other state-of-

the-art (SOTA) models on PhysioNet dataset listed in Table 6.10, including FBCSP [106],

EEGNet [108], CasCNN [109], DG-HAM [123], EEG-ARNN [124], SSDA [110], GCNs-Net

[100], and EEG GLT-Net [144]. Our comparisons begin with the traditional FBCSP approach,

which leverages CSP to extract features across multiple frequency bands and utilises SVM for

classification. We then compare with EEGNet, a widely used model based solely on a CNN

structure. Further, we assess CasCNN and SSDA, both of which combine CNN and LSTM

networks. Finally, we evaluate our method against DG-HAM, EEG-ARNN, and GCNs-Net,

EEG GLT-Net, which are GNN-based networks.

Table 6.10: Performance Comparison of EEG RL-Net Model with State-of-the-Art Models on

PhysioNet Dataset

Method Avg. Accuracy Avg. F1 Score

FBCSP [106] 59.56% 60.04%

EEGNet [108] 72.20% 72.10%

CasCNN [109] 63.30% 63.18%

DG-HAM [123] 76.15% 76.08%

EEG-ARNN [124] 82.39% 82.17%

SSDA [110] 83.73% 83.24%

GCNs-Net [100] 80.16% 80.05%

EEG GLT-Net 86.43% 86.23%

Proposed EEG RL-Net 96.40% 96.38%
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The traditional FBCSP method achieves 59.56%, the lowest accuracy among the SOTAs, likely

due to its reliance on SVM as the classifier. The popular EEGNet achieves 72.20% accuracy,

outperforming the CasCNN model, which achieves only 63.30%. Within the CNN-based SOTA

models, SSDA reaches the highest accuracy at 83.73%. Among the GNN-based SOTA models,

EEG GLT-Net achieves the highest accuracy at 86.43% followed by EEG-ARNN, GCNs-Net,

DG-HAM with accuracies of 82.39%, 80.16% and 76.15%, respectively. Our proposed EEG RL-

Net, achieves the highest overall accuracy of 96.40% among all SOTAs.

For the HGD dataset, we compare EEG RL-Net with eight SOTA models, as detailed in Ta-

ble 6.11. These include ShallowNet [58], EEGNet [108], EEG-ITNet [155], CRGNet [169],

EEG-Conformer [170], LMDA-Net [171], IFNet [172], and GCNs-Net [100]. The HGD dataset,

which comprises EEG signals of motor movements, has more distinguishable class signals com-

pared to motor imagery datasets like PhysioNet dataset. As a result, most SOTA models

achieve over 90% accuracy, except for EEG-ITNet (84.87%), EEGNet (87.99%), and LMDA-

Net (87.68%). EEG-ITNet, a CNN-based model that includes inception and temporal convo-

lution (TC) blocks, underperforms compared to the simpler two-layer CNN model ShallowNet,

which achieves 93.04%.

Table 6.11: Performance Comparison of EEG RL-Net Model with State-of-the-Art Models on

HGD Dataset

Method Avg. Accuracy Avg. F1 Score

ShallowNet [58] 93.04% 92.87%

EEGNet [108] 87.99% 87.85%

EEG-ITNet [173] 84.87% 84.74%

CRGNet [169] 94.33% 94.28%

EEG-Conformer [170] 93.48% 93.32%

LMDA-Net [171] 87.68% 87.49%

IFNet [172] 93.62% 93.28%

GCNs-Net [100] 96.24% 96.18%

EEG SGNet 98.56% 98.56%

Proposed EEG RL-Net 99.24% 99.24%

EEG-Conformer performs slightly better than ShallowNet, while IFNet, a model employing

1D CNN operations for low- and high-frequency EEG bands with cross-frequency integration,

achieves an accuracy of 93.62%. CRGNet, which incorporates Riemannian manifold embedding

after CNN operations, achieves the second-highest accuracy among SOTA models at 94.33%.

The highest accuracy among the existing SOTA models is achieved by GCNs-Net, a spectral

GNN approach using PCC for adjacency matrix construction, with 96.24%. In comparison, our

proposed EEG RL-Net outperforms all existing SOTAs models, achieving the highest accuracy

of 99.24%.
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6.4 Limitations and Future Works

EEG RL-Net introduces reinforcement learning into EEG-based classification, providing an

adaptive decision-making framework for stroke rehabilitation applications. The single-subject

paradigm used in this study ensures that the model effectively learns individualised neural

patterns, which is particularly beneficial for fine-tuned classification. While the current train-

ing approach is focused on optimising performance within individual subjects, evaluating its

adaptability across a broader population would further validate its robustness. Given that

EEG signals exhibit natural variations across users, further assessments in diverse settings

could provide deeper insights into how EEG RL-Net generalises to new individuals.

Despite these considerations, EEG RL-Net presents a flexible and promising approach for real-

time EEG classification. Its reinforcement learning framework is well-suited to incremental

learning and adaptive policy refinement, which can support generalisation to new users with

minimal calibration. Future work could explore subject-independent training strategies or

transfer learning techniques to further improve cross-subject robustness. Additionally, optimis-

ing reinforcement learning models for computational efficiency will be essential for their real-

time deployment in portable or resource-limited rehabilitation devices. These advancements

would enhance EEG RL-Net’s scalability, making it a more practical solution for EEG-based

rehabilitation technologies.

6.5 Conclusion

Our study introduces EEG RL-Net, an innovative approach for the real-time classification

of EEG MI signals utilising RL techniques. Building on the foundation of EEG GLT-Net’s

EEG GCN block and optimising computational efficiency with an adjacency matrix density of

just 13.39%, EEG RL-Net not only achieves accurate classification of EEG MI signals but also

identifies signals that are unsuitable for classification. Remarkably, it achieved 100.00% classifi-

cation accuracy for 12 out of 20 subjects within less than 12.5 ms. For challenging subjects (S13

and S19 in this study), where previous state-of-the-art methods such as EEG GLT-Net could

classify with accuracies of only 44.50% and 41.41% respectively, EEG RL-Net achieved unprece-

dented improvement in performance, reaching classification accuracies of 93.29% and 82.33%

in less than 62.5 ms. These results underscore the robustness and efficacy of EEG RL-Net in

enhancing classification rates, filling a gap for subjects previously deemed difficult by existing

classification methods. In future work, we will further explore the integration of the optimal

adjacency matrix mg GLT for advanced graph feature extraction in the EEG GCN block, aim-

ing to unlock even greater improvements in the classification capabilities of our EEG RL-Net

system.
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6.6 Significance and Novelty

This chapter presents EEG RL-Net, a real-time framework combining Graph Neural Networks

(GNNs) with reinforcement learning (RL) to optimise EEG signal decoding. The significance

of this work lies in its innovative use of a dueling deep Q-network (DQN) that allows the model

to dynamically skip uncertain time points, focusing only on high-value segments of the signal.

This approach enhances classification accuracy while reducing computational costs, making it

well-suited for time-critical applications like neurorehabilitation and assistive technologies.

The novelty of EEG RL-Net is its seamless integration of GNN-based feature extraction and RL

for decision-making. By dynamically adapting to signal variability and selectively prioritising

key data segments, the framework offers a scalable and efficient solution for real-time EEG

classification. This chapter advances the field by providing a novel approach to balancing

speed and precision in EEG applications.
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Chapter 7

Conclusions and Future Work

7.1 Conclusion

In Chapter 3, the EEG GLT approach for constructing adjacency matrices was introduced,

demonstrating its superiority in both performance accuracy and computational efficiency. Com-

pared to existing methods like Geodesic and PCC, EEG GLT consistently outperformed in six

different EEG GLT-Net model configurations using time-point EEG MI signals from the public

PhysioNet dataset. This classification method, applicable in rehabilitation robotics, utilised

data from 20 of 109 subjects. Notably, EEG GLT enhanced accuracy and F1 scores by 0.52%

to 22.04% and 0.50% to 21.76%, respectively, surpassing the PCC method employed in the

state-of-the-art GCNs-Net model. The method also achieved a 13.39% improvement in average

accuracy across subjects while maintaining adjacency matrix densities below 22.53%. Addi-

tionally, EEG GLT required only 8.76M to 80.67M MACs, significantly lower than PCC and

Geodesic methods (42.26M to 291.62M MACs). Furthermore, EEG GLT outperformed the

state-of-the-art SSDA model, achieving 86.43% accuracy compared to SSDA’s 83.73%.

Chapter 4 extended the application of EEG GLT to economic variable forecasting. Using 20

years of Australian economic data (July 2000-June 2020) across eight variables-CPI, Wage In-

dex, short- and long-term interest rates, domestic and international bond indices, housing price

index, and unemployment rate—the method demonstrated its versatility. In a 2-layer GNN

forecasting model, EEG GLT utilised past three-quarter values to predict the next quarter.

The optimal network density was 21.88%. Compared to the SUPA model, the EEG GLT-

based model achieved a 40% lower average RMSE, underscoring its predictive accuracy.

Finally, in Chapter 5, EEG SGNet was introduced to classify window-based EEG MI and move-

ment signals, with potential applications in rehabilitation robotics. This parallel CNN-GNN

architecture utilised BCIC iv-2a and HGD public datasets. Nine model configurations were

explored, comparing PCC and EEG GLT methods in the GNN pathway. The EEG GLT-based

EEG SGNet achieved up to 4.31% and 4.43% improvements in accuracy and F1 scores on the
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BCIC iv-2a dataset, and up to 1.31% and 1.28% on the HGD dataset. Overall, EEG SGNet

achieved 82.98% accuracy and 82.88% F1 score on BCIC iv-2a, outperforming the state-of-the-

art 4DDFM+3M3DCNN model (80.04% accuracy, 79.95% F1 score). On the HGD dataset,

EEG SGNet achieved 98.56% accuracy and F1, surpassing the GCNs-Net model’s 96.24% ac-

curacy and 96.18% F1 score.

In Chapter 6, the performance of EEG time-point classification was significantly enhanced

using the EEG RL-Net model, which integrates the EEG GCN block for feature extraction

with a Dueling DQN RL agent for classification. Unlike traditional supervised learning models,

the RL agent’s ability to skip noisy time points improved robustness and accuracy. On the

PhysioNet dataset, EEG RL-Net achieved 100% accuracy for 12 out of 20 subjects within 12.5

milliseconds. For challenging cases such as S13 and S19, where EEG GLT-Net achieved only

44.50% and 41.41% accuracy, EEG RL-Net demonstrated remarkable improvements, reaching

93.29% and 82.33%, respectively, in under 62.5 milliseconds. Across all subjects, EEG RL-

Net increased the average accuracy to 96.40% and the F1 score to 96.38%, outperforming

EEG GLT-Net by approximately 10% on the PhysioNet dataset. Furthermore, on the HGD

dataset, EEG RL-Net achieved nearly perfect accuracy of 99.24%, surpassing the existing state-

of-the-art model, GCNs-Net, which achieved 96.24%.

Finally, this research makes significant contributions by addressing critical challenges in signal

processing and graph-based learning. It introduces a domain-agnostic adjacency matrix con-

struction method, enabling scalable graph-based models applicable across diverse fields. Addi-

tionally, it demonstrates real-time, time-point-level signal classification, overcoming limitations

in time-sensitive decision-making and paving the way for more efficient and adaptive systems.

These advancements enhance quality of life by improving neurorehabilitation technologies and

enabling accessible health monitoring tools. By optimising computational efficiency and re-

source utilisation, the research also reduces costs, making advanced technologies more practical

and widely adoptable. Moreover, it inspires innovation in interdisciplinary domains, driving

progress in areas such as healthcare, engineering, environmental systems, and beyond.

7.2 Future Work

This research has made significant progress in EEG signal classification, particularly for rehabil-

itation applications. The proposed models such as EEG GLT-Net, EEG SGNet, and EEG RL-

Net have advanced the state-of-the-art in decoding user intentions from EEG data, paving the

way for more effective and efficient rehabilitation systems. Building on this foundation, several

promising directions for future exploration have emerged, both within rehabilitation and in

broader domains.
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7.2.1 Rehabilitation Applications

• Integration with Robotic Exoskeletons

The integration of the proposed models with robotic exoskeletons presents an exciting

opportunity to advance real-world rehabilitation technologies. Future work should focus

on testing these models in real-time scenarios to validate their effectiveness in controlling

exoskeletons for motor recovery tasks. This step is critical for translating the research

into practical rehabilitation settings and demonstrating its potential to enhance patient

outcomes.

• Patient-Specific Model Training

While this study benchmarked the models using public datasets from healthy individuals,

the next phase involves collecting EEG data from stroke survivors. Training the models

on patient-specific data will adapt them to the unique needs of individuals undergoing

rehabilitation. This step is crucial for ensuring the models are clinically applicable and

capable of delivering personalized rehabilitation solutions.

• Multimodal Signal Integration

Incorporating additional physiological signals, such as Electromyography (EMG) or func-

tional Near-Infrared Spectroscopy (fNIRS), can further improve the accuracy and ro-

bustness of the models. By combining these multimodal signals with EEG data, future

research can achieve a deeper understanding of user intentions, enhancing the reliability

and adaptability of the systems in diverse scenarios.

• Deployment on Portable and Wearable Devices

Deploying these systems on portable and wearable devices, such as compact EEG head-

sets, is essential for making them accessible for home-based rehabilitation. While the

models are computationally efficient, developing lightweight versions optimized for mo-

bile and embedded platforms remains a key challenge. Addressing this will expand the

reach and usability of these systems, enabling broader adoption in non-clinical environ-

ments.

• Advancing Reinforcement Learning Strategies

The reinforcement learning strategies employed in EEG RL-Net can be further refined to

handle more complex and dynamic scenarios. Exploring advanced reward mechanisms,

multi-agent frameworks, or hierarchical reinforcement learning approaches could enhance

adaptability and versatility. These improvements would enable the systems to perform

effectively in a wider range of real-time applications, creating smarter and more adaptable

rehabilitation technologies that improve patients’ quality of life.
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7.2.2 Broader Applications Beyond Rehabilitation

The methodologies developed in this thesis demonstrate potential far beyond EEG classification.

Future work could explore applications such as:

• Healthcare Beyond Neurorehabilitation

Extending real-time classification to other physiological signals, such as EMG for mus-

cle analysis, ECG for cardiac monitoring, and wearable sensors for personalised health

tracking.

• Human-Computer Interaction (HCI)

Adapting these methods for brain-computer interfaces in gaming, augmented reality, or

assistive technologies for individuals with disabilities.

• Autonomous Systems

Enhancing decision-making in robotics or autonomous vehicles by integrating real-time

adaptive classification of sensor data.

• Environmental Monitoring and Financial Systems

Applying the adjacency matrix construction and classification techniques to model com-

plex relationships in climate change forecasting and economic prediction.
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