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Abstract

Stroke affects millions worldwide, leading to severe motor and cognitive impairments. Effective
rehabilitation is essential but labor-intensive. Robotic exoskeletons integrated with Brain-
Computer Interfaces (BCIs) using Electroencephalography (EEG) enable user-driven rehabili-
tation, reducing therapist workload. However, real-time EEG classification remains challenging

due to signal complexity.

This thesis develops EEG_GLT-Net, a spectral Graph Neural Network (GNN) for real-time

classification of EEG Motor Imagery (MI) signals at single time points (1%0 s). It introduces
the EEG Graph Lottery Ticket (EEG_GLT) method, which dynamically constructs adjacency
matrices without prior knowledge of EEG channel relationships, improving accuracy and ef-
ficiency. Evaluation on PhysioNet shows superior performance over state-of-the-art (SOTA)

methods.

Beyond stroke rehabilitation, EEG_GLT is applied to economic forecasting, demonstrating
its adaptability. Additionally, EEG Synergistic Gated Network (EEG_SGNet), a CNN-GNN
hybrid, enhances window-based EEG classification, validated on BCIC _iv-2a and HGD datasets.
Lastly, EEG_RL-Net, a reinforcement learning model, optimises classification by selectively

skipping uncertain time points, improving computational efficiency.

These contributions advance EEG-based rehabilitation, enabling intelligent, adaptive systems

that enhance stroke recovery and broader neurorehabilitation applications.
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Chapter 1
Introduction

Stroke attacks a human control centre which is the brain that can change one’s life instantly.
Stroke is a classically characterised as a neurological deficit attributed to the Central Nervous
System (CNS) due to vascular cause including intracerebral haemorrhage (ICH), cerebral in-
fraction and subarachnoid haemorrhage (SAH) [1]. In simple terms, human brain cells die when
there is a lack of nutrients and oxygen that are normally carried by arteries via blood. Blocked
or busting of arteries causes stroke that kills human brain cells at a rate of 1.9 million every 60
seconds [2]. Depending on the location of the brain strikes and the severity, every stroke differs.
When a stroke happens, it damages the human body functions such as sensations and move-
ment, cognitive ability, eating and swallowing, speech, perception of surroundings, emotional

control, and sexual ability [3].

Stroke impacts on day-to-day activities of humans. Therefore, the increment of developing
better quality and quantity of rehabilitation is imperative for stroke patients. Clinical treatment
only is not enough to restore a stroke patient’s physical, psychological and neurological abilities.
Thus, rehabilitation is required to complement the clinical treatment in the restoration of stroke

patients’ abilities [4].

The rehabilitation treatment is a labour-intensive task, especially for the lower limb recovery
treatment that requires a minimum of three therapists to manually support a patient’s legs
and torso to do the training [5]. An exoskeleton is a mechanical wearable device that produces
torque by actuators and is transferred to the human body to assist in the user’s movement
intention. Thus, it reduces the amount of therapist involvement in training. Per [6], a robotic
exoskeleton can be divided into categories based on their serving purposes like enhancing human
mechanical performances, assisting people with movement disorders and rehabilitating stroke
patients. Also, based on the part of the human body involved, the exoskeleton can be divided
into three based on the part of the human body involved such as an upper limb, a lower limb

and specific joints like the elbow, knee, ankle joints, shoulder, etc [6].

A Brain-computer Interface (BCI) is a system that is able to acquire brain signals and analyse



them. Then, the analysed signals are converted into commands which are relayed to output
devices to perform desired actions [7]. In the BCI system, the acquired brain signals are trained
using machine learning algorithms with quality labels for desired actions. Machine learning is
a subset of Artificial Intelligence (AI), which imitates the way humans learn via the use of data

and algorithms without being explicitly programmed [8], [9].

It’s important to focus on the development of state-of-the-art control system techniques and
algorithms of exoskeletons to improve the accuracy and performance for users. Human electro-
physiological signals measured from the human body can control the exoskeleton robots using
the user’s motion intention [10]. Electroencephalography (EEG) is one of the most popular
methods to acquire brain signals from human scalps via electrodes to analyse some brain dis-
eases because the method is non-invasive and convenient [11]. It can also be used in controlling
exoskeleton robots.

1.1 Research Hypothesis
This thesis is based on the hypothesis that:

Advancing EEG-based stroke rehabilitation through optimised graph learning, par-
allel deep learning architectures, and reinforcement learning can enhance motor
imagery and movement classification accuracy while reducing computational com-

plexity, enabling real-time and adaptive rehabilitation strategies.
To validate this hypothesis, the following chapter-specific hypotheses are proposed:

e An optimised adjacency matrix for EEG-based graph learning can improve motor imagery
classification accuracy while reducing computational requirements, enabling real-time ap-

plications in stroke rehabilitation.

e The EEG_GLT-based adjacency matrix construction method can generalise beyond EEG

applications, improving the prediction accuracy of economic forecasting models.

e A parallel deep learning framework combining convolutional and graph-based learning
with EEG_GLT-based adjacency matrix construction method improves EEG-based motor
imagery and movement classification, contributing to more effective stroke rehabilitation

strategies.

e Reinforcement learning-based decision-making in EEG signal decoding can improve clas-
sification accuracy and response efficiency, enhancing real-time adaptability for stroke
rehabilitation.



1.2 Aims and Scope of Thesis

The primary focus of this PhD study is to develop effective and efficient predictive models for

classifying EEG signals based on user intentions, with potential applications in rehabilitation

facilities. The following aims are set to be accomplished by the end of this PhD study:

To develop a Graph Neural Network (GNN) based model for classifying real-time EEG
Motor Imagery (MI) signals, enhancing the accuracy of user intention detection.
To evaluate the performance of the model using single time-point EEG MI signals (ﬁ

seconds) from publicly available datasets.

To design an algorithm for constructing adjacency matrices tailored to individual subjects
and model settings, without requiring prior knowledge of relationships between EEG

channels, thereby improving both performance accuracy and computational efficiency.

To create a parallel architecture combining Convolutional Neural Network (CNN) and
GNN models to classify window-based EEG signals, where temporal information is criti-

cal.

To develop a Reinforcement Learning (RL) based model for classifying real-time EEG MI
signals, where the RL agent can decide whether to classify or skip a time point to achieve

higher performance accuracy.

To investigate optimal reward settings for the RL agent to achieve high classification

accuracy with fast inference speeds.

To evaluate the performance of the models using publicly available datasets, including
both an EEG MI dataset and an EEG High-Gamma movement (HGD) dataset.

During the fulfillment of the above aims, the following research questions were raised:

What is the influence of the spectral GNN filter order on the accuracy of EEG MI time-

point classification?

How can adjacency matrices be constructed to minimise computational requirements with-

out compromising performance accuracy?

What are the effects of different adjacency matrix construction methods, under the same

model settings, on performance accuracy and computational efficiency?
What are the optimal adjacency matrix densities for each subject?

What features are extracted from window-based EEG signals for the CNN and GNN

pathways in the parallel model architecture?

How does the importance coefficient of the pathway («) influence performance in the

parallel model architecture?



How does increasing the reward magnitude for correct decisions made by the RL agent

affect overall performance accuracy and inference speed?

How does increasing the penalty magnitude for incorrect decisions made by the RL agent

affect overall performance accuracy and inference speed?

What is the optimal number of time points per episode for the RL agent to achieve

optimal performance?

What are the optimal reward settings and model configurations for the RL agent to

achieve the best performance?

1.3 Novelty, Contribution, and Significance

This PhD research proposes novel methods and models to estimate user movement intentions

via motor imagery and physical movement based on EEG signals, with the goal of improving

BCI human-machine interactions. These advancements focus on enhancing both performance

accuracy and computational efficiency for applications such as rehabilitation robot control. The

key novel aspects and significant contributions of this research are as follows:

A.

Development of a spectral GNNN-based model for real-time EEG MI signal

classification:

e Proposed the EEG_GLT-Net, a spectral GNN-based model capable of classifying

EEG MI signals at single time points <F10 seconds).

e Designed optimal EEG_GLT-Net configurations for individual subjects, including
the number of GNN layers, model parameters, and GNN filter orders.

Introduction of a state-of-the-art adjacency matrix construction method:

e Proposed the EEG_GLT method, an innovative approach for constructing adjacency

matrices without requiring prior knowledge of relationships between EEG channels.

e Demonstrated the method’s effectiveness in improving performance accuracy and

computational efficiency when integrated with GNN-based models.

Creation of a parallel CNN and GNN-based model for window-based EEG

MI and movement signal classification:

e Proposed the EEG_SGNet, a novel model combining the strengths of CNN and GNN
architectures to classify window-based EEG MI and movement signals, achieving

enhanced performance accuracy.
Development of an RL-based model for real-time EEG MI signal classification:

e Proposed the EEG_RL-Net, a novel framework where an RL agent classifies single
time-point EEG MI signals based on extracted graph features and has the ability to



skip classification when sufficient confidence is not reached.

e Demonstrated the effectiveness of the EEG_RL-Net in achieving high accuracy and
efficiency by optimising reward settings to enable the RL agent to make correct

decisions within minimal time.

By integrating high performance, computational efficiency, and versatility, this research ad-
dresses critical challenges in EEG signal processing and graph-based learning. It demonstrates
significant advancements in real-time EEG classification, enabling precise time-point-level anal-
ysis for applications like rehabilitation robotics. The domain-agnostic adjacency matrix con-
struction method further enhances adaptability, paving the way for scalable graph-based sys-
tems. These contributions not only advance neurorehabilitation technologies but also open new
research directions in dynamic graph learning, time-sensitive signal classification, multimodal
physiological data integration, and domain-agnostic applications in areas such as economic fore-
casting, climate modeling, and network optimisation. This work establishes a foundation for

innovation across healthcare, engineering, and beyond.

1.4 Thesis Overview

Chapter 2 provides a comprehensive literature review, outlining the key interdisciplinary areas
relevant to this study. It begins with an overview of stroke, highlighting its global prevalence,
associated risk factors, and the challenges faced in rehabilitation. The fundamentals of EEG are
then introduced, covering its role in capturing brain activity, the principles of EEG acquisition,
and commonly used signal processing techniques. The chapter also examines BCIs, empha-
sising their significance in enabling communication between the brain and external devices,
particularly in rehabilitation contexts. A review of advancements in rehabilitation robotics
follows, with a focus on the integration of BCIs and EEG-driven systems to support patients
with motor impairments. Additionally, machine learning approaches such as CNNs, GNNs,

and RL are discussed as the methodological foundation for this research.

Chapter 3 introduces the EEG_GLT-Net model, designed to classify real-time EEG MI signals.
This model is based on a spectral GNN and can classify EEG MI signals at a single time point
of Téo seconds. EEG_GLT-Net has potential applications in rehabilitation facilities, where real-
time classification of EEG MI signals is essential. As part of this project, an innovative method
for constructing adjacency matrices, termed EEG_GLT, will be presented. This method does
not rely on prior knowledge of the relationships between EEG channels and dynamically opti-
mises these relationships, making it adaptable to both subject-specific data and GNN models.
The publicly available PhysioNet EEG MI dataset will be used for evaluation, focusing on data
from 20 subjects. The EEG_GLT method will be compared against other adjacency matrix
construction approaches, including the Geodesic method and the Pearson Correlation Coeffi-
cient (PCC). Additionally, six model frameworks, varying in the number of GCN filters, filter

polynomial orders, and fully connected (FC) hidden nodes, will be evaluated. Finally, the
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performance of EEG_GLT-Net will be benchmarked against seven state-of-the-art methods.
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Figure 1.1: Thesis Overview

The EEG_GLT adjacency matrix construction method is not limited to EEG MI signal classi-
fication; it also has applications in economic forecasting. Chapter 4 explores its use in a GNN
framework to forecast eight economic variables without requiring prior knowledge of their inter-
relationships. These variables include the consumer price index (CPI), wage index, short-term
interest rate, long-term interest rate, domestic bond index, international bond index, unem-
ployment rate, and housing price index, based on 20 years of data spanning from June 2000 to
July 2020. The model predicts the next quarter’s values for all variables using data from the
previous three quarters while simultaneously determining the optimal relationships between the
variables. Finally, the predictions for each variable are compared in detail with the outputs of

the state-of-the-art SUPA model, which was developed using industry expertise.

Chapter 5 introduces EEG_SGNet, a novel framework for classifying EEG signals. Unlike the
previously introduced models, EEG_SGNet is designed to classify window-based EEG signals,
where temporal information plays a critical role. The framework consists of parallel CNN and
GNN pathways. Various configurations, including the number and sizes of filters, as well as the
number of CNN and GNN layers, are explored to achieve optimal results. The project utilises
two datasets: the BCIC_iv-2a dataset, an EEG MI dataset, and the HGD dataset, an EEG
movement dataset. This dual-dataset approach demonstrates that EEG_SGNet is effective for
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both motor imagery and movement datasets, highlighting its versatility. Furthermore, it shows
the model’s potential applicability in rehabilitation robotics, where high classification accuracy
is essential. Finally, EEG_SGNet’s performance is benchmarked against ten state-of-the-art
models for the BCIC_iv-2a dataset and eight state-of-the-art models for the HGD dataset.

Chapter 6 introduces the EEG_RL-Net model, a novel framework for classifying EEG MI sig-
nals. The model integrates a GNN module to extract graph features from single time points and
a DQN-based RL framework for classification. By enabling the RL agent to skip classification
at uncertain time points, the model enhances both accuracy and efficiency. Various config-
urations, such as reward strategies and episode lengths, are tested to optimise performance
for each subject. The model’s evaluation is conducted using the publicly available PhysioNet
and HGD dataset, and its performance is benchmarked against state-of-the-art models, includ-
ing EEG_GLT-Net and EEG_SGNet, demonstrating its advancements in real-time EEG signal

classification.



Chapter 2

Literature Review

2.1 Stroke

Stroke is one of the most common diseases that about every one in four persons is affected
over their lifetimes. Also, it is the third leading cause of disability and the second cause of
death globally [12]. Internal carotid arteries and vertebral arteries are two sources that are
supplying blood to the brain. The anterior and middle cerebral arteries are two major branches
of internal carotid arteries [13]. Fundamentally, two types of strokes are Ischaemic stroke and

Haemorrhagic stroke.

Figure 2.1: Ischaemic Stroke [14]

An Ischaemic stroke happens when there is a blockage anywhere along the arteries to the
brain. The latter type, Haemorrhagic stroke is due to the breaks or bursts in the brain.
Ischaemic stroke is more common than Haemorrhagic stroke which accounts for about 60 -
90% of the stroke. Only 10 - 40% of strokes are Haemorrhagic stroke type [15], [16]. Since
the management of Ischaemic stroke is different from Haemorrhage, reliable differentiation
of the type of stroke is imperative. The clinical symptoms and signs are not sufficient to

reliably distinguish stroke subtype and mechanism. Thus, brain scanning technologies such
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as Computerised Tomography (CT), Magnetic Resonance Imaging (MRI), etc. are crucial to

complement the clinical examination [17].

Figure 2.2: Haemorrhagic Stroke [14]

2.2 Risk Factors for Stroke

Stroke is becoming an increasingly common problem because of people’s lifestyles (high-fat diet,
lack of exercise, etc.). Per the National Health Survey (NHS) data [18], six risk factors asso-
ciated with strokes are high cholesterol, overweight and obesity, smoking, high blood pressure,
atrial fibrillation, and physical inactivity. The limit of high cholesterol is 5.5 mmol/L. Similarly,
when a person’s blood pressure exceeds 140/90 mmHg, the person has high blood pressure. If a
person’s Body Mass Index is between 25 and 30, the person is overweight. However, the person
is obese once the BMI level exceeds 30. The factor of physical inactivity is that there was no

physical activity in the week before having a stroke.

The report of the World Stroke Organisation (WSO) stated that 89% of global stroke deaths
and disabilities resided in the low-to-middle-income countries [19]. In Australia, the native
Aboriginals and Torres Strait Islanders are 1.7 times more probable to be hospitalised due
to stroke than other ethnicities [20]. These are due to the higher rate of smoking, physical
inactivity, and obesity compared to non-Aboriginal and Torres Strait Islander counterparts. In
the rate of mortality due to stroke, per AIHW, Aboriginal and Torres Strait Islanders have a

greater risk of about 1.3 times compared to non-Aboriginal and Torres Strait Islanders [21].

Public health initiatives aim to address these risk factors through education, screening, and
lifestyle interventions. However, despite these efforts, the global incidence of stroke continues
to rise [22]. While preventive measures are crucial, they have not been universally effective
in reducing the overall burden of stroke. This highlights the importance of post-stroke reha-
bilitation as a complementary approach to addressing the long-term impacts of the disease.
Rehabilitation efforts, such as those explored in this thesis, are particularly critical for im-
proving recovery outcomes after stroke. By focusing on rehabilitation using EEG systems for

both motor imagery and motor movement, this research aims to enhance survivors’ recovery



potential, helping them regain functional independence. These innovations are not only vital
for individuals but also play a role in alleviating the broader societal and economic burdens

associated with stroke.

2.3 Burden of Stroke

Stroke imposes a significant burden on individuals, families, and healthcare systems worldwide.
In Australia, over 445,087 people were living with stroke in 2020, with 27,428 new cases reported
that year—equivalent to one stroke every 19 minutes [23]. Globally, there were 12.2 million
new cases in 2019, equating to one stroke every 3 seconds, with 101 million people living with
the effects of stroke—nearly double the 1990 figure of 54.7 million [19].

Stroke mortality remains high, with 8 703 deaths in Australia in 2020 and a projected 2.5-fold
increase by 2050 [3], [23]. Worldwide, stroke claims 6.5 million lives annually and accounts
for the loss of over 143 million Disability-adjusted Life Years (DALYs) each year. Beyond its
health impact, stroke has immense economic consequences. The global cost of stroke in 2017
was estimated at USD 451 billion (0.36% of global GDP), while the Australian economic cost
of stroke in 2020 was $6.2 billion, including $2.9 billion in productivity losses, $1.3 billion in

healthcare costs, and $0.7 billion in caregiving expenses [3], [19].

In 2020, the federal government bore 40% of stroke-related costs, with individuals contributing
24%, followed by society (16%), employers (7%), and state governments (6%) [3]. The burden is
expected to rise by 45.7% by 2050, increasing stroke incidence to one every 10 minutes. Welfare
payments, including Carer Allowance and Disability Support Pension (accounting for 85% of
welfare payments), highlight the societal cost, with $120.8 million allocated to support 6,595
Australians affected by stroke [24].

Given these challenges, improving stroke rehabilitation is critical. Enhancing recovery efficiency
could significantly reduce disability, cut lifetime management costs, and alleviate strain on
caregivers and public resources. Even a 10% improvement in rehabilitation efficiency could save
over $600 million in Australia and billions globally. This thesis contributes by developing EEG-
based rehabilitation systems to optimise recovery pathways, offering the potential to enhance
survivors’ quality of life, reduce societal costs, and enable more effective allocation of healthcare

resources.

2.4 Rehabilitation for Stroke Patients

When a stroke happens, it damages the human body functions such as sensations and move-
ment, cognitive ability, eating and swallowing, speech, perception of surroundings, emotional
control, and sexual ability [3]. [25] suggested that better results in the chronic stages of recov-
ery can be expected if recovery takes place early during the acute stage. Stroke rehabilitation

involves therapies and activities to assist the human brain to relearn the skills that are affected
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by stroke. The rehabilitation trainings are to restore dysfunctional neural pathways or create
new brain pathways to perform the same tasks before the stroke using different parts of the
brain [26].

Figure 2.3: Lower Limb Exoskeleton Robot [27]

Usually, the task of motor rehabilitation is practiced manually by therapists at rehabilitation
centers or hospitals. Those tasks demand intensive work, especially for lower limb treatment.
It requires three therapists’ inputs to manually support the patient’s torso and legs to perform
training [5]. The experience of therapists also plays a crucial role in traditional manual reha-
bilitation, as it would require more resources in repetitive and high-intensity training. Since
the last decade, wearable robots (exoskeleton robotic devices) have been developed to assist in

labour-intensive rehabilitation systems.

The robotic exoskeleton can be fundamentally divided into three types based on their serving
purpose [6]. The first type of exoskeleton robot is to enhance human mechanical performances
such as lifting and handling heavy items that are physically challenging for humans. They are
mainly used in areas such as manufacturing industries, military applications, or development
sites. The second category of exoskeleton robots is to assist people with movement disorders
because of muscle weakness, stroke, or injury. The third one is therapeutic exoskeletons which

are primarily used in the area of rehabilitation.
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Figure 2.4: Upper Limb Exoskeleton Robot [28]

Based on the part of the human body to cater for, the exoskeleton robot can be classified into
three that are upper limb exoskeleton robot, lower limb exoskeleton robot, and specific joint
exoskeleton robots such as the knee, ankle, elbow, shoulder, etc. In the upper limb exoskeleton
robot, it can be further classified into two categories such as exoskeletons and prostheses [6].
The former type, exoskeletons or orthoses are the orthopaedic equipment to assist the person
with disabilities and recover the functions of the affected limb. The latter type, prostheses are
to replace a missing human body part. The lower limb exoskeleton robots are mechatronic
system devices to assist in the recovery of standing or walking. The lower limb exoskeletons
can be further classified into two groups. The first group of devices is to serve as human gait
trainers to recover the human walking pattern. The second group is the signal joint exoskeleton

robot.
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Figure 2.5: General Concept of Controlling Lower Limb Assistive Devices using EEG [29]
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Alongside the advanced exoskeleton robot development, it’s important to focus on the develop-
ment of state-of-the-art control system techniques and algorithms of exoskeletons to improve
the accuracy and performance for exoskeleton robot users. The development of a sophisticated
interface between the human and wearable robot is also imperative as the result of the esti-
mation of the user’s movement intention mainly depends on it. Based on the human-robot
interaction method, many types of control strategies have been developed. The electrophysio-
logical signal is a physiological signal measured from the human body via an exoskeleton that
shows the user’s motion intention [10]. In addition, it greatly influences exoskeleton assistive

improvement.

Among electrophysiological signals, electromyography (EMG) has been one of the most promi-
nent types used in exoskeleton control as it can make a measurement that directly reflects a
human movement and muscular actions. Also, electroencephalography (EEG) is another con-
trol technique that is non-invasive and convenient [11]. A Brain-computer Interface (BCI) is
a system that is able to acquire brain signals and analyse them. Then, the analysed signals
are converted into commands which are relayed to output devices to perform desired actions
[7]. Thus, the acquired EEG signals are trained in the BCI system to translate desired actions

using machine learning algorithms.
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2.5 Human Brain System

In the human body, brain is the most important part as it plays a significant role in everyday life.
It controls all parts of human body. It is a collection of neural networks that are interconnected
with each other to decide the human behaviours. Generally, in the perspective of radiologists
and medical doctors, the right side of the human body is controlled by the left side of human
brain. Similarly, the left side of human body is associated with the right side of human brain
[30], [31].
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Figure 2.6: Dorsal View of Human Brain [32]

The human brain can be generally divided into the left and right hemispheres [33]. The left
and right hemispheres are symmetrical in shape, and they can be further divided into four
lobes that are temporal lobe, frontal lobe, occipital lobe, and parietal lobe. The frontal lobe is
the largest lobe among the four lobes. It is located at the back of the forehead. It is mainly
responsible for language and speech. Also, problem-solving, memory, decision-making, and
other behaviours and emotions are concerned with the frontal lobe. The frontal lobe should

not be injured/damaged as it has a big impact on human memory, emotions, and languages

[34]-[36].
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The temporal lobe is situated on the sides of the human brain hemispheres behind the frontal
lobe and under the parietal lobe. The temporal lobe is mainly responsible for various aspects
of speech and hearing. Damaging the temporal lobe can be impairment of language, hearing,
and sensory problems or loss permanently if the temporal lobe is seriously damaged. Another
important lobe of the brain is the occipital lobe, which is located at the back of the human head.
It is mainly responsible for the perception and processing of human visual information. Thus,
damaging the occipital lobe can lead to visual and perception defects and loss of them if the
injury is severe. The parietal lobe is located behind the frontal lobe of the human brain. The
parietal lobe is located behind the frontal lobe of the human brain. The parietal lobe integrates
different types of sensory information from different parts of the human body. Damaging or
injuring the parietal lobe of the human brain can loss of the ability to locate parts of the human
body [38], [39].

A particular part of the human brain (cranial nerve) controls the specific action and activities
of the human body. The human eye moment function is controlled by oculomotor, trochlear,
and abducens nerve while the human vision system is controlled by optic cranial nerves. The
olfactory cranial nerve controls the function of the smell sensor. The tongue movement is
responsible for hypoglossal cranial nerves while the hypoglossal cranial nerve controls the tongue
movement [30]. The facial sensation is responsible for the trigeminal cranial nerve. Meanwhile,
the facial cranial nerve controls human facial movement. Vagus cranial nerve controls the
involuntary muscles of the human body while the accessory cranial nerve controls the voluntary
neck muscle. Finally, the hearing and balancing of the human body are controlled by the
vestibulocochlear cranial nerve. Therefore, understanding the cranial nerve and its associated

function in the human body is important as it is helpful to place the EEG electrodes position.
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2.6 EEG Signals

Today, EEG recording is one of the most common methods to acquire brain signals to analyse
some brain diseases such as Alzheimer’s, autism, and epilepsy. The method is non-evasive to
the human body and has no side effects on patients [40]-[42]. The electric potential produced
by brain sources can be recorded by an EEG device via electrodes on human scalps. An
EEG device consists of electrodes, ADC (Analog to Digital Converter), conductive gel, and
amplifiers to amplify the EEG signals. EEG electrodes can be made from different metals
such as stainless steel, gold-plated silver, pure gold, tin, and Ag/AgCl. However, it should
not mix EEG electrodes made from different metals in EEG recording because using two or
more different types of electrodes will result in a high dc offset potential [43]. Among them,
Ag/AgCl EEG electrode is the most common type because it maintains stable electrochemical
potentials against biological tissues. Also, it has outstanding long-term electrical stability, has

low dc offset variability and is free from potential allergenic compounds.

EELr eleciroies 1 ¥ . . . 2 =

Figure 2.8: Measuring EEG Signals on Human Scalp [44]

A reusable disk is a type of EEG electrode that is placed on the scalp of the human head via
a small amount of Ag-Cl conductive gel [45]. The cost of this type of electrode is low, and
the life span of the electrode depends on the type of metal composition and the insulating
materials. Another type of electrode is the EEG cap. Unlike the normal disk-type electrodes,
the EEG cap has fewer chances of artifacts as the normal electrodes are easier to be fallen
off from the human head scalp. The number of electrodes for the EEG cap and the material
type can be chosen to suit for application. It’s preferable to utilise in the application where
multi-channel recording is required because individual electrode placing methods would not be
practical at the exact placement of large quantities. The cap is made of fabric that has fixed
electrode holders; so, placing electrodes does not require position measurements. However, it
is important to note that troubleshooting of EEG cap is more difficult as tracing the faulty
electrode is more difficult than the counterpart. It usually ends up in changing the whole cap
[46].
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2.7 EEG Electrodes Positioning

Electrodes should be placed systematically in EEG signals acquisition. Firstly, regions where
electrodes on the lobes of the brain are differentiated with their initials. For instance, the
electrodes to be placed on the temporal lobe region of the brain are started with "T". Similarly,
the electrodes acquiring a signal from the Frontal lobe shall be labelled with 'F’. The electrodes
placed on the Occipital lobe region are to be labelled with 'O’, and the central lobe region of
the brain should be ’C’. Finally, the midline region electrode is labelled with 'z’ [46].

The second letter of electrodes indicates hemispherical side of the human brain. The even
numbers are reserved for the electrodes to be placed on the right hemisphere of the human
brain. Similarly, the odd numbers are reserved for the left hemisphere of the human brain. For
instance, the C3 electrode identifies the electrode on the left hemisphere of the human brain at
the Central lobe. In order to record special properties such as eye movements, respiration rate,

skin conductance and heart rate, additional sensors are to be utilised [47].

In the positioning of electrodes, four anatomical essential landmarks are used. The first land-
mark is the nasion, which is located at the midline bony depression between the eyes. The
second landmark is the inion. The third landmark is at the point 10% distance from the nasion
toward inion. The final landmark is at the point that is 10% distance from the inion toward
nasion. The traditional international 10-20 EEG electrode placement method is proposed by

[48] to describe the location of scalp electrodes.
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Figure 2.9: 10-20 EEG Electrodes Positioning System [49]

In the 10-20 system, the adjacent electrode distances are either 10% or 20% of the total distance
between nasion and inion. The number of scalp positions is only up to 21. A 10-10 system is
another EEG placement system proposed by [50] in 1985 to increase the number of electrode
positions. In the 10-10 system, the number of electrode positions is increased to 74 locations.
Then, the 10-5 system was introduced by [51] in which the number of electrode positions

is increased up to 345 locations. The circumference of a standard human adult head is 58
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cm. Thus, the typical inter-electrode distance in 10-20 system is between 53 mm and 74 mm.
Similarly, the inter-electrode distance is between 28 mm and 38 mm in the 10-10 system, and

between 22 mm and 31 mm in the 10-5 system.

Figure 2.10: 10-10 EEG Electrodes Positioning System [52]

The electrode Cz, C3, and C4 mainly acquire the sensory and motor function of humans.
Meanwhile, T4 and T6 acquire the emotional memory of humans. Verbal memory function
signals are acquired at the other side of the hemisphere via T3 and T5 electrodes. The signals
concerned with human cognitive function can be recorded at the Parietal lobe via Pz, P3 and P4.
The O1, O2 and Oz electrodes can record the signal associated with visual processing stimuli.
By using FP1, FP2 and, FPz electrodes, judgement and attention impulses can be obtained.
Similarly, F3 and F4 electrodes are to acquire motor planning activities. The verbal and
emotional expressions of a human signal can be obtained from the F7 and F8 EEG electrodes.

The Fz electrode is positioned close to the motivational and intentional centres [47].

2.8 EEG Signal Amplification

The quality of the EEG amplifier plays an important role in EEG signal research because
it’s the location where the EEG signals are amplified while reducing or attenuating undesired
components of the signals. Typically, there are three different types of signal components

included in the EEG signals. They are biological signals, mains noise signals and electrode
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offset signals. Among them, only biological signal is the only desired signal. The EEG biological
signals are measured at the scalp electrode to record cortical and subcortical activity. Some
artifacts are included in the biological signal which are endogenous artifacts and exogenous
artifacts caused by sweat and scalp potentials, eye movement, etc. The amplitude of the
biosignals can range from -2 mV to +2 mV. The dc offset of EEG signals result from the metallic
type of EEG electrodes. The amount of dc offset can be varied several hundred millivolts [43].
Among them, Ag/AgCl is the most favoured due to the low offset value which is less than 100
mV and high temporal dc offset stability.

Figure 2.11: Ag/AgCl EEG Electrodes [53]

The mains noise is another undesired signal in the EEG recording. It is a sinusoidal artifact at
the mains frequency is 50 Hz or 60 Hz. It is mainly due to the electrical devices powered by
utility mains in the area of EEG recording. The magnitude of the mains noise depends on the
type of mains-powered devices, particularly devices with a motor such as pumps, hair dryers,
razors, etc. Standard procedures are followed in the EEG recording to reduce the presence of
mains noise. One of the methods is bundling EEG electrodes or in a ribbon that greatly reduces
the mains noise. In addition, rechargeable batteries are used in the EEG amplifier to further
reduce the noise. Also, active shielding is simple and effective to achieve the amplifier’s optimal
Signal to Noise Ratio (SNR). Modern EEG amplifiers adopt a multichannel instrumentation
method that is designed to amplify only the biological signal portion in the recording while the

dc offset signal is unamplified and removes the mains noise [43].

........

Figure 2.12: 32 Channels EEG Cap with Amplifier [54]

The amplifier setting in the EEG signals recording is imperative to obtain quality data. The
main parameters are sample rate, the gain, and characteristics of the low pass filter, high pass

filter and notch filter. As per the signal sampling theorem, the sampling rate should be more
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than two times higher than the highest frequency of interest. There is a trade-off between the
sampling rate and the file size of the data. The gain of the amplifier is to be chosen as high as
possible without reaching the saturation of the amplifier. The setting of highpass and lowpass
filters depends on the frequency band of the spectral content of interest. The notch filter is a

very steep special filter to filter out the narrow frequency band around the mains frequency.

2.9 EEG Signal Classification

EEG signal processing is critical for neurorehabilitation and brain-computer interface (BCI)
systems, where high accuracy and the ability to process shorter time windows are key to
practical and effective solutions. EEG signals are inherently noisy and dynamic, requiring
algorithms capable of handling their complexity while delivering reliable and timely results.

The desirable features of an effective algorithm include:

High Accuracy: Ensure reliable classification across diverse subjects and conditions to

support clinical applications.

e Short Time Window Classification: Enable accurate interpretation of data within

shorter time windows, facilitating faster decision-making and real-time use.

e Noise Robustness: Handle artifacts such as eye movements (EOG), muscle activity

(EMG), and environmental noise effectively to maintain signal integrity.

e Temporal and Spatial Sensitivity: Accurately capture dynamic changes over time

and across electrode locations to enhance signal analysis.

e Scalability and Efficiency: Ensure generalisation across datasets and subjects, with

computational efficiency suitable for real-time applications.

Modern EEG signal processing methods can be broadly categorised into three groups: tradi-
tional statistical methods, feature-based machine learning, and deep learning models which are
summarised in Table 2.1.
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Table 2.1: Generalised EEG Signal Processing Methods

(e.g., CNNs,
GNNs, etc.)

Method Accuracy Advantages Disadvantages

Statistical Moderate Simple, interpretable; Limited ability to capture

Approaches effective for basic noise complex, nonlinear;
filtering. lower accuracy in dynamic

tasks.

Feature-Based | High (with Incorporates domain Performance depends on

Machine optimised knowledge; enables quality of feature

Learning features) targeted feature extraction | engineering; time-intensive
(e.g., CSP, PSD). feature selection.

Deep Learning | Very High Learns complex spatial and | Computationally expensive;

temporal patterns
automatically; high

classification accuracy.

requires large datasets and
careful hyperparameter

tuning.

2.9.1 Convolutional Neural Network

Convolutional Neural Networks (CNNs) are a subset of Artificial Neural Networks (ANNs) de-

signed to process structured data, such as images and sequential signals, by leveraging spatial

hierarchies through convolutional layers. Inspired by the human visual cortex’s role in object

recognition, CNNs were initially developed for computer vision tasks [55]. However, their ver-

satility has been demonstrated across various domains, including biomedical signal processing.

CNNs excel at learning features directly from raw data, eliminating the need for extensive

manual feature engineering [56].

Feature maps

Convolutions

Subsampling

Convolutions

Subsampling Fully connected

Figure 2.13: Typical CNN Architecture on Image Classification [57]

The success of CNNs in biomedical signal processing is well-documented, particularly for their

ability to capture spatial and temporal patterns in high-dimensional and noisy data, such as
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electrocardiogram (ECG) and EEG signals [58]. Their application in EEG signal classification
has yielded significant advancements in BCI applications, sleep stage analysis [59]-[61], seizure
detection [62]-[64], and emotion recognition [65]-[68]. In this study, CNNs are employed as
one of the parallel branches in the EEG_SGNet model for classifying motor imagery and motor

movement tasks, as detailed in Chapter 5.
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2.9.2 Graph Convolutional Neural Network

Graph Neural Networks (GNNs) are a class of deep learning models specifically designed to
perform convolutional operations on graph-structured data by leveraging the relationships be-
tween nodes. Unlike traditional deep learning methods, such as CNNs, which operate on
fixed-dimensional data, GNNs can generalise to irregular domains, including social networks,
molecular structures, and traffic networks. GNNs effectively learn meaningful representations
of graph data, capturing both local and global graph properties. This makes them well-suited
for EEG signal classification, as they can model spatial relationships between EEG signals in

a graph structure, enabling multi-channel spatial analysis.

Data Pre-processing Graph Construction

Brain EEG Correlation matrix Input graph

R
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LGCN Fully conection Softmax

Figure 2.14: Typical GNN Architecture on EEG-based Seizure Detection [69]

In EEG applications, each channel can be represented as a node, while the relationships between
channels are encoded as edges, which can be defined based on spatial proximity, functional con-
nectivity, or physiological metrics such as phase-locking value (PLV) or Pearson correlation
coefficient (PCC). GNNs have demonstrated success in numerous EEG signal classification
tasks, including motor imagery, emotion recognition [70]—[72], seizure detection [73], [74], and
neurological disorder diagnosis [75]. Despite their potential, selecting an optimal graph con-
struction method remains a significant challenge and an active area of research. In Chapter 3,

we propose a novel method for constructing an optimal graph, referred to as EEG_GLT.
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2.9.3 Reinforcement Learning

Reinforcement Learning (RL) is a machine learning paradigm where an agent learns to make
sequential decisions by interacting with its environment to maximise cumulative rewards. The
agent takes actions, observes the effects through state transitions, and receives feedback in
the form of rewards or penalties [76]. By balancing exploration (trying new actions) and
exploitation (leveraging learned strategies), the agent iteratively refines its policy to achieve
an optimal strategy. Unlike supervised learning, which relies on labeled datasets, RL enables
autonomous learning through direct interaction with the environment, making it particularly

suitable for complex and dynamic systems.

RL has been successfully applied in diverse domains, including healthcare, gaming, finance and
trading, and robotics. In robotics, RL empowers robots to learn from environmental feedback
and adapt to complex, varying conditions. One notable application is in rehabilitation robotics
[77], where RL has had a significant impact by enabling robots to assist patients in regaining
functionality and mobility after injuries, strokes, or surgeries. Rehabilitation robots can be
personalised to address individual patient needs, abilities, and progress. For instance, a RL-
driven robot can dynamically adjust the intensity of rehabilitation exercises based on a patient’s

feedback and performance during therapy sessions [78].

Environment

Observation
(next state)

t+1

T~ _(, -- \ I -
Reward -/
signal t+1

Figure 2.15: Interaction of RL Agent to its Environment [79]

The integration of RL and EEG signal classification further advances rehabilitation robotics
through Brain-Robot Interfaces (BRIs). BRIs enable the decoding of motor intentions from a
user’s EEG signals, allowing direct brain control of robotic devices [80]. RL plays a critical role
in BRIs by learning to interpret EEG signals in real time and making context-aware decisions.
For example, an RL-based rehabilitation robot can optimise the therapeutic process by deter-
mining when to assist a patient with movements, when to pause for rest, and when to apply
resistance for strength training [81]. By incorporating appropriate reward and penalty struc-
tures, RL allows robots to prioritise rehabilitation goals, such as minimising fatigue, maximising

range of motion, and ensuring patient safety.
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Despite these advancements, defining effective reward and penalty structures for RL remains
a significant challenge, as they must balance therapeutic objectives with practical constraints.
Furthermore, RL systems in rehabilitation robotics must address issues such as sample efficiency
and safety during exploration, given the limited interaction opportunities with patients [82].
In this study, we propose EEG_RL-Net, a novel framework that leverages RL based on graph-
based EEG features to decode EEG motor imagery (MI) signals in real time. The detailed
methodologies, including graph-based EEG signal representation, reward design, and training

strategies, are discussed in Chapter 6.
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Chapter 3

EEG_GLT-Net: Optimising EEG
Graphs for Real-time Motor Imagery

Signals Classification

3.1 Introduction

Brain Computer Interfaces (BClIs) form an interdisciplinary bridge between engineering and
neuroscience, enabling direct communication between the human brain and control devices.
Originally designed to aid those with motor impairments [7], BCIs have expanded their appli-
cations to neurofeedback, gaming, and rehabilitation. Essentially, BCIs convert neural signals
into actionable commands. The primary means of brain signal acquisition include electrocor-
ticography (ECoG) and electroencephalography (EEG). Although ECoG boasts superior spatial
resolution due to directly placing electrodes on the cortex, its invasive native limits its appli-
cations [83]. In contrast, EEG uses scalp placed electrodes to capture brain activity, making
it more popular due to non-invasiveness and portability. This method captures various brain

signals, from event-related to spontaneous and stimulus-evoked [84].

Motor Imagery (MI) pertains to the mental simulation of motor actions, such as moving one’s
hands or feet, without performing the actual movement [85], [86]. As highlighted by [87],
action execution and its imagination share neural pathways. MI has prominent applications in
rehabilitation and neuroscience. When paired with EEG, it captures neural signals generated
from the intention to move. Integrating this with BCIs allows decoding EEG MI signals to
control external devices such as a robotic exoskeleton. This technology is pivotal for those
with motor impairments, especially stroke survivors, with the potential to restore quality of
life and ability to perform daily activities. By accurately decoding EEG MI signals, BCIs
can provide real-time feedback and communicate with assistive devices, to facilitate patient-

intended movements [88].
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Convolutional Neural Networks (CNNs) have consistently showcased superior results in com-
puter vision tasks [89]-[91]. However, their effectiveness is largely constrained to regular Eu-
clidean data, such as 2-dimensional grids and 1-dimensional sequences [91]. A drop in capability
is experienced with non-Euclidean data, primarily because CNN cannot accurately capture the
intrinsic structure and connectivity of this data. Graphs serve as powerful tools for representing
relationships among entities, and are employed in diverse application areas including traffic sys-
tems, social networks, e-commerce platforms, biological structures, and trade networks. These
graphs can highlight complex structures and be variable in nature such as being might be homo-
geneous or heterogeneous, having weight or not, and being signed or unsigned [92]. The Graph
Convolutional Neural Network (GCN) is an adaptation of CNN operations that is, tailored for
graphs. GCN excel in managing non-Euclidean data, incorporating topological relationships

during convolution.

With the help of GCNs, the inherent connections among electrodes can be integrated through
the adjacency matrix, a capability beyond the reach of traditional CNNs. Establishing rela-
tionships between nodes is essential before deploying the GCN method. Studies [93]-[95] have
utilised Geodesic distances between electrodes to form the adjacency matrix, while others [96]—
[100] have employed the Pearson coefficient correlation (PCC) to assess correlations between
EEG channels. Additionally, [101] have utilised the phase lag index (PLI) in the adjacency
matrix construction in their CSGNN model. Notably, [102] and [96] explored optimal adja-
cency matrices in EEG classification through a trainable matrix. [103] introduced a unified
GNN sparsification technique (UGS), giving rise to a Graph Lottery Ticket (GLT) by pruning
both the original adjacency matrix and GNN weights. This method decreases the Multiply

Accumulate (MAC) inference, thus reducing computational overhead.

Existing methods for constructing adjacency matrices in EEG signal classification rely on prior
knowledge of inter-channel relationships, which can be a limitation. This dependency is espe-

cially challenging for single time point classification of EEG motor imagery (MI) signals, where

L
160

proposes EEG_GLT which is a novel method for constructing adjacency matrices for GCNs

rapid signal interpretation at intervals as brief as —=s is critical. To address this, our study

specifically for EEG MI single time point classification, without requiring predefined inter-

channel knowledge while enhancing both classification accuracy and computational efficiency.

3.2 Related Work

Traditional EEG MI classifiers typically rely on machine learning techniques that classify signals
based on manually crafted features, such as wavelet transforms or analytic intrinsic mode
functions [104], [105]. One widely used method is the filter bank common spatial pattern
(FBCSP) [106], which applies common spatial patterns (CSP) across various frequency bands

in EEG signals to extract discriminative features.

Deep neural networks (DNNs) have advanced EEG motor imagery (MI) classification by lever-

27



aging end-to-end architectures that combine feature extraction with classifier learning, elimi-
nating the need for manual feature engineering. CNN-based models, such as those proposed
by [107], [108], excel at extracting temporal features from 1D and 2D Euclidean data, achiev-
ing high accuracy. Further refinements, as seen in [109], [110], incorporate long short-term
memory (LSTM) blocks to capture temporal dependencies effectively in EEG signals. The
EEGProgress model [111] adopts a unique approach by applying CNN operations to individual
brain regions for EEG MI signal classification, focusing on regional processing rather than all
channels simultaneously. The ConTraNet model [112] combines Transformer and CNN blocks
to capture both long- and short-term dependencies, fixed spatial patterns, and applies attention
to non-stationary, time-varying inputs, resulting in improved performance for EEG-based emo-
tion recognition. However, a common limitation of the methods discussed above is that they are

applicable only to window-based EEG classification and not to single time-point classification.

GCNs have become increasingly popular in EEG signal classification due to their ability to
encode non-Euclidean data, offering flexibility in analysing graph-structured information [92],

[113]. GCNs can be applied across various graph analysis tasks:

e Node-Level Tasks: Predicting properties of individual nodes, used for both regression

and classification.
e Edge-Level Tasks: Predicting edge properties, mainly for classification.
e Graph-Level Tasks: Classifying entire graphs based on their structure and properties.

Two main categories of GCNs are the spectral method [114]-[116] and the spatial method
[117]-[120]. Studies [96] and [121] indicate challenges associated with the spatial method, par-
ticularly for matching local neighborhoods. GCNs have an important application in classifying
EEG signals at the graph level, where EEG readings from individual electrodes are treated as
node attributes. EEG feature extraction is broadly categorised into time and frequency domain
features. Building on the work of [122], time-domain metrics such as Root Mean Square, skew-
ness, minmax, variance, kurtosis, Hurst Exponent, Higuchi, and Petrosian fractal dimensions
are derived within predefined time windows by [98]. Within the frequency domain, emphasis is
placed on power spectral density (PSD) and power ratio (PR) across specific frequency bands:
0[0.5 - 4Hz|, ][4 - 8Hz|, a8 - 13Hz|, 5[13 - 30Hz|, and (30 - 110Hz|. This is supplemented by
other metrics such as total power, spectral entropy, and peak frequency, all captured within

chosen time windows.

The DG-HAM [123] and EEG-ARNN [124] models classify EEG tasks using raw EEG signals
within a specified window length, without extracting graph-based features, such as time-domain
or frequency-domain features. In contrast, [100] introduced the state-of-the-art GCNs-Net for
time-point classification, which treats each time point as an independent feature, enabling a
more detailed time-resolved analysis of EEG MI signals. Although GCNs-Net performs well
in classifying EEG MI single time points, it only considers the functional connectivity of EEG

channels during GNN operations, which can limit its accuracy. Additionally, its fully dense
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adjacency matrix requires high MAC operations, making it less efficient for single time-point
EEG classification.

While dynamic graph models such as TodyNet [125] and SDGL [126] have demonstrated strong
performance in multivariate time series tasks by learning evolving graph structures, they are
primarily designed for window-based or sequential inputs. These methods are not suited for
real-time EEG decoding, especially for single-time-point signals classification, where the model
must operate without temporal context. This remains an open challenge in EEG research that

calls for alternative approaches to graph construction and model design.

In this chapter, we propose the EEG_GLT method for adjacency matrix construction, integrated
with a spectral GNN-based EEG_GLT-Net architecture, to classify EEG MI at the single-time-
point level. Using the raw EEG MI single-time-point signals from the time-resolved PhysioNet

dataset. The primary contributions of this study can be summarised as:

e EEG Graph Lottery Ticket (EEG_GLT): We present a novel method to construct
an optimal adjacency matrix for EEG MI signal classification. Achieved through the
iterative pruning of relationships among EEG channels, the EEG_GLT introduces a new

direction in EEG adjacency matrix design.

e Channel Relationship Optimisation: Our approach reveals the most advantageous
relationship between EEG channels. It is tailored for catering to individual subjects and
the architecture of GCN models, eliminating the need for prior knowledge about the

inter-relationships among EEG channels.

e Computational Efficiency: Recognising the computational intensity of classifying EEG
at single time points, our strategy mitigates the high demand for computational resources,

proving especially beneficial for real-time applications.

e Performance Validation: We benchmark the accuracy of our EEG_GLT method against
two well-established techniques: the Geodesic method and the leading PCC method em-
ployed in the state-of-the-art GCNs-Net. This evaluation spans across six distinct spectral
GCN models. Each model is distinguished by its unique specifications, including varia-
tions in GCN layer structures, polynomial degrees of filters, numbers of Fully Connected
(FC) layers, and the amount of hidden nodes. Additionally, we compare the performance

of our model with seven other state-of-the-art models to demonstrate its effectiveness.
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3.3 Methodology

3.3.1 Overview
As shown in Figure 3.1, the project framework was as follows:

e EEG signals from 64 channels were captured at each time point 1555 and used as input
features for the EEG_GLT-Net.

e Additionally, the EEG_GLT-Net accepted the graph representation as another form of
input. This representation included the graph Laplacian, derived using three different
methods: PCC between EEG channels, Geodesic distance between EEG electrodes, and
our newly proposed EEG Graph Lottery Ticket Adjacency Matrix Mask (mgec.crr)-

e The EEG_GLT-Net processed these inputs to decode the EEG MI time point signal, which

was then categorised into one of the four MI types.
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Figure 3.1: EEG_GLT-Net Model: (a) Overall architecture (classifying EEG MI of one time

point 1605 of signals from 64 EEG electrodes). Note that EEG Graph adjacency matrix can be
AGeodeszc APCC or AEEG,GLT (b)

Components inside the spectral graph convolution block, (c)

Chebyshev spectral graph convolution

3.3.2 Dataset Description

This chapter utilised the PhysioNet EEG MI dataset [127] encompassing over 1,500 EEG record-
ings sourced from 109 participants. The recordings were captured using 64 EEG electrodes,
consistent with the international 10-10 system, with the exclusion of F9, Nz, F10, FT9, FT10,
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Al, A2, TP9, TP10, P9, and P10 channels. Channel Iz is retained as the sole outermost sen-
sor due to its minimal contamination from ocular and muscle artifacts and its proven utility
in preserving relevant motor imagery information with high signal quality. Each participant

executed 84 trials, broken down into 3 runs with, 7 trials per run, spanning 4 distinct tasks.
The tasks included:

e Task 1: Imagining the act of opening and closing the left fist.

e Task 2: Imagining the act of opening and closing the right fist.

e Task 3: Imagining the act of opening and closing both fists simultaneously.
e Task 4: Imagining the act of opening and closing both feet.

Recordings in the dataset were originally sampled at 160 Hz and each recording had a duration
of 4 seconds. Our study employed time point samples for classification, and our analysis was
strictly conducted at the subject level. Although the original dataset comprised 109 partici-
pants, our study focused solely on 20 subjects, labelled S; to Sa.

3.3.3 Data Pre-processing and Feature Extraction

In the initial pre-processing phase, raw signals underwent only a notch filter at the 50 Hz
power line frequency, foregoing typical filtering or denoising steps to maximise data integrity.
Although each task lasted for a 4-second duration, only the time period from ¢ = 1s to t =
3s was considered in our experiments. This is because subjects typically exhibited greater
readiness post t = 1s. All 64 EEG channels were incorporated into our model. We utilised
the signal values from each EEG channel at each time point as feature for each node. The
construction methods of the adjacency matrix, which captures brain connectivity, are elaborated
in Sections 3.3.4. The training data underwent normalisation, ensuring a mean p = 0 and a
standard deviation ¢ = 1 for each channel. Following this, both the test and validation sets
were adjusted in alignment with the normalisation parameters established from the training
data.

3.3.4 Graph Preliminary
Graph Representation

Consider a directed weighted graph represented as G = {V, E}. Here, |V| = N denoted the
number of nodes and |FE| was the count of edges connecting the nodes. The node set was
defined as V = {vy,v9,...,v,}. The node feature matrix of the entire graph was represented
by X € RV*F where F, the number of features, was equal to 1. The adjacency matrix, denoted
as A € RV*N captured the graph’s overall topology. Specifically, if an edge existed between
nodes v; and v; (i.e., (v;,v;) € E), then A[i, j] # 0. Otherwise, Az, j] = 0.

The adjacency matrix for the PCC method, AP¢¢ € RV*N was defined in Equation 3.1, where

31



I was the identity matrix and |P| was the absolute PCC matrix of dimension of N x N. Each
element P;; of P was calculated using Equation 3.2. The absolute PCC matrix |P| captured

the linear correlations between EEG channel signals, with its elements satisfied 0 < |Bj| <1:

APCC =Pl -1 (3.1)
where
P, - cov(xi,:cj)‘ (3.2)
0;03;

For the Geodesic-distance adjacency matrix method, the configuration of 64 electrodes into a
unit sphere acted as a stand-in for spatial brain connectivity. This allowed the computation
of geodesic distances between the electrodes placed on a sphere of radius r. If two electrodes
have Cartesian coordinates (z;, y;, %) and (z;, y;, 2;), the geodesic distance for the adjacency

matrix was calculated using Equation 3.3:

(i xj+y; y; + 2 25)
2

Geodesic

) (3.3)

= arccos(

These distances were standardised into the [0, 1] range. The degree matrix, D, was a diagonal
representation of A, where the i diagonal element of D was computed as D;; = Zjvzl Aij.
The combinatorial Laplacian matrix, L € R¥*¥ was described as L = D — A. A normalised

version of this combinatorial Laplacian can be obtained with L = Iy — D~Y/24AD~1/2,

Spectral Graph Filtering

The eigenvectors of the graph Laplacian matrix can be expressed as graph Fourier modes, with
{u};Y;' € RY. The diagonal matrix of these Fourier frequencies, A = diag[\o, ..., Av_1] €
RV*N We defined the Fourier basis, U = [ug, ..., ux_1] € R¥*¥  which allows for the decom-
position of the Laplacian matrix, L, into L = UAU?. The signal x can be transformed by
graph Fourier into & € RY using & = U”z, while the inverse graph Fourier transform is given

by x = Uz. The convolution operation on graph G is defined as:

rxqg=U(U"2)® (U"g)) (3.4)

where g represents the convolutional filter and ® denotes the Hadamard product. Given that
go(N) = diag(8), where § € RY represents the vector of Fourier coefficients, the Graph convo-

lution operation can be implemented as follows:

T *q g9 = go(UAUT )z = Uge(A)U Tz (3.5)

where gy is a non-parametric filter, and polynomial approximation is employed to mitigate the

excessive computational complexity. Chebyshev graph convolution, a specific instance of graph
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convolution, utilises Chebyshev polynomials for filter approximation [115]. The approximation
of go(A) under the K™ order Chebyshev polynomial framework is given by:

K-1 A
go(A) = > OTh(A) (3.6)
k=0
where
N 2A

In the above Equation 3.6, Tk(A) € R¥ is the k" order Chebyshev polynomial evaluated using
Equation 3.7. Then, the signal x is convolved with the defined filter gy using the following

equation:

K-1
rxagy=UY OT(AU "z =Y 6,Ti(L)x (3.8)
k=0

Normalising A can be achieved by using Equation 3.7, where A,,,, denotes the largest entry in
the diagonal of A, and Iy represents the diagonal matrix of the scaled eigenvalues. In the above

Equation 3.8, Ti(L) is the Chebyshev polynomial of order k evaluated at the scaled Laplacian,
L which is defined in the Equation 3.9 as:

~ 2L
L=

Iy (3.9)

)\max

Let 7, = Ty(L)z € RN, where a recursive relation is used to compute Zj using Equation 3.10
with xp = x and z; = Lz. One key advantage of using the Chebyshev polynomial to approx-
imate convolutional filters is that it inherently avoids the need to compute the graph Fourier

basis. The recursive relation is given by:

Ty = 2LTy 1 — Thoo (3.10)
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Figure 3.2: EEG graph (m,) pruning using Algorithm 1: At each N, iteration, the bottom
pg% are pruned, reducing density from 100% until the lowest density s,%. Solid lines indicate

remaining edges, while red-dashed lines depict removed edges

3.3.5 EEG Graph Lottery Ticket (EEG_GLT)

In the process of executing a forward pass with the spectral GNN function, denoted as f(., ©),
and given a graph denoted as G = {A, X}, the method presented in [103] searches for an
adjacency matrix mask m, € {0,1}. The goal is to maximise sparsity while maintaining
the highest prediction accuracy. In our model, the original matrix Ayiginai; = {0,if @ =
J; 1, otherwise} in the shape of |V| x |V| was not trainable. The adjacency matrix mask in our

model m, € RIVIXIVI was trainable:

A= Aom’ginal O] my (311>

Once the model had undergone N epochs, the lowest p,% (p, = 10%) of the values in the
trained my at highest accuracy of the validation dataset were pruned. These values were set to
0, while the remaining values were set to 1 as shown in Figure 3.2. Concurrently, the spectral
filter weights, represented as ©, were reset to their initial state, ©y. The trained mg, that
yielded the highest accuracy of the validation set within the span of N epochs was designated
as the GLT and duly noted. This process continued, and a GLT was recorded for each level
of graph sparsity until the sparsity of m, fell below the pre-determined final sparsity level,
sg. The EEG_GLT was ultimately identified as the GLT that achieves the highest accuracy
alongside the highest level of graph sparsity. Moreover, it delineated the optimal adjacency

matrix capable of producing the highest accuracy.

3.3.6 General Model Architecture

A GOCN structure was designed to classify EEG MI signals. This architecture comprised three
primary blocks: the GCN block, the Global Mean Pooling Block, and the Fully Connected
Block. In the GCN Block, generalised graph features for each EEG electrode were extracted.
Subsequently, the features from all 64 channels were consolidated using a mean in the Global

Mean Pooling Block. The Fully Connected Block was employed for the final prediction. A
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Algorithm 1 : EEG_GLT - Finding Optimal EEG Adjacency Matrix
Input: Graph G = {4, X}, GNN f(G,©), GNN initialisation ©,
Aoriginaiij = {0,if i = j;1,otherwise}, initial Adjacency Matrix Mask

mg = Aoriginal, learning rate n = 0.01, pruning rate p, = 10%, pre-defined lowest

Graph Density Level s, = 13.39%.
Output: EEG Graph Lottery Ticket (my pre.crr) — m;’i at the highest accuracy with the

highest sparsity possible.

1: while "0 > 5 do

2 for for iteration ¢ =0, 1,2, ..., N, do

3 Forward f(.,0;) with G5 = {m;’i ® Aoriginals X } to compute Cross-Entropy Loss, L
4: Backpropagate and update, ©; and m;’i using Adam Optimiser

5 end for

6 Record mz’i with the highest accuracy in validation set during the N, iteration

7 Set py = 10% of the lowest absolute magnitude values in mj to 0 and the others to 1,

s+1,0

then obtain a new mg

8: end while

detailed representation of this model architecture is provided in Figure 3.1 and Table 3.1.
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Table 3.1: Generalised Architecture of EEG_GLT-Net Model

Input  Polynomial

Layer Type
v P Size Order

Weights Bias  Output Activation

Input Input N x1 - - - - i,

Block A - GCN Block

C1 Graph Convolution N x1 Kl 1 x Fl X Kl N x Fl N x Fl -

BNC1 Batch Normalisation N x Fj - F F N x I} ReLU
C2 Graph Convolution N x Fj K, FixFx Ky, NxF, NxZFE -
BNC2 Batch Normalisation N x F, - F, F, N x Fy,  ReLU
C3 Graph Convolution N x Fj K Fyx I3 x K3 N x Fy; N x Fy -
BNC3 Batch Normalisation N x Fj - F; F; N x F3  ReLU
C4 Graph Convolution N X Fj3 K, Fsx FyxKy NxF, NxF, -
BNC4 Batch Normalisation N x Fj - F Fy N x Fy ReLU
Ch Graph Convolution N x Fj K FyxFsx Ks N xFs; N xF; -
BNC5 Batch Normalisation N x Fjx - Ey Ey N x Fy  ReLU
C6 Graph Convolution N X Fy K Fy x Fgx Kg N xFg N x Fg -
BNC6 Batch Normalisation N x Fj - Es Fs N x Fg  ReLU
Block B - Global Mean Pooling Block
P Global Mean Pool N x Fjy - - - Iy -
Block C - Fully Connected Block

FC1 Fully Connected Fy - Fs x Hy H, H, -
BNFC1 Batch Normalisation H, - H, H, H, ReLU
FC2 Fully Connected H, - H, x Hy Ho H, -
BNFC2 Batch Normalisation H, - H, H, H, ReLU
FC3 Fully Connected Hy x O - Hy x O @) @) -
Softmax
S Classification © ) ) ) © ]

N = Number of EEG Channels (i.e. 64); O = Number of EEG MI Classes (i.e. 4)

3.3.7 Model Setting

Let F; represent the number of filters at each GCN level, given by F; € [Fy, Fy, F3, Fy, F, Fg).
Similarly, K; denotes the polynomial order of the filter for each i’* layer, and is defined as
K; € [Ky, Ky, K3, Ky, K5, Kg]. O indicates the number of MI classes for prediction. Due to
the large volume of instances in the training set, we employed a mini-batch size B of 1024.
A batch normalisation (BN) layer was incorporated after both the spectral GCN and Fully
Connected layers. This BN layer re-scales and re-centers normalised signals to match the
original distribution within the mini-batch, addressing the internal covariate shift issue and
helping to mitigate the gradient vanishing/exploding problem. Additionally, 50% dropout
layers were integrated after the ReLU layers (Equation 3.12) within the Fully Connected Block
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for regularisation. The details of the model settings can be found in Table 3.2, while the

hyperparameter settings are provided in Table 3.3.

The ReLU activation function is defined as:

ReLU(z) = max(0, x) (3.12)
The softmax function is given by
Softmax(ji) = — (3.13)
oftmax(y;) = —— )
! Z?:1 evs

where g; represent the predicted probability of an instance for each class, ranging over y; €
[U1, ..., yo]. O denotes the total number of classes. The loss function employed was the cross-

entropy loss, defined as:

B O
1
Loss = 1B Z Z Ypi- log(Softmax(ys,;)) (3.14)
b=1

=1

Table 3.2: Model Settings of EEG_GLT-Net

GCN VFilter
Number of GCN ) Number of FC
Model Model Framework ) Polynomial _
Filters Ord Hidden Nodes
rder

(C—BNC)x6—P—(FC— 16,32, 64, 128,

A 55,55 5, 5 1024, 2048, 4
BNFC)x2—FC -8 256, 512 R ’ ’
(C—BNC)x6—P—(FC— 16, 32, 64, 128,
B 2,2,2,2,2,2 1024, 2048, 4
BNFC) x2—FC— 8 256, 512
16, 32, 64, 128,
C  (C—BNC)x5—P—(FC-S) - 5,5,5,5,5 4
16, 32, 64, 128,
D (C—BNC)x5—P—(FC-5) - 2,2,2, 2,2 4
(C—BNC)x5—P—(FC— 64, 128, 256, 512,
E 55,555 512, 128, 4
BNFC) x2—FC— 8 1024
(C—BNC)x5—P—(FC— 64, 128, 256, 512,
2,2,2, 2,2 512, 128, 4
BNFC) x2—FC — 8 1024
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Figure 3.3: Geodesic Distance Adjacency Matrix (A%eodesic)

Table 3.3: Hyperparameter Settings for Training EEG_GLT-Net

Hyperparameter Value
Training Epochs (N.,) 1000
Batch Size (B) 1024
Dropout Rate 0.5
Optimizer Adam
Initial Learning Rate (7) 0.01

Both accuracy and F1 score evaluation metrics were employed to assess the performance of

models. The accuracy is defined as:

TP+ TN

A = 1
Y = TP T FP+ TN + FN (3.15)
The recall is given by:
TP
l=——-— 1
Reca TPLFN (3.16)
The precision is defined as:
TP
Precision = ———— 1
recision = - PP (3.17)

The F'1 score is given by:

2 x Precision x Recall
F1S = 3.18
core Precision + Recall ( )
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Figure 3.4: PCC Adjacency Matrix (APCY) of Subject Sg and Sy
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Table 3.4: Accuracy Comparison of Different Adjacency Matrix Construction Methods for

Subjects S; to Sig

Accuracy (Mean+Std)

F1 Score (Mean+Std)

Subj
EEG_GLT EEG_GLT
Geodesic PCC (our Geodesic PCC (our

method) method)

s, 66.19% + 76.47% + 98.51% +  66.53% + 76.91% + 98.53% +
4.17% 9.94% 0.77% 4.36% 9.78% 0.78%

s, 46.53% + 69.13% + 76.18% +  46.47% £ 69.34% £+ 76.19% +
1.33% 7.05% 5.53% 1.46% 7.37% 5.52%

s, 76.18% + 87.28% + 99.17% +  76.12% + 87.43% £ 99.19% +
4.98% 9.19% 0.32% 5.00% 8.97% 0.31%

s, 96.41% + 99.13% + 99.97% +  96.44% + 99.10% + 99.97% +
1.97% 1.01% 0.06% 1.98% 1.12% 0.05%

s, 37.05% + 43.19% + 50.95% +  36.66% + 43.28% + 50.86% =+
1.04% 3.03% 3.80% 0.97% 2.73% 3.85%

S, 44.37% + 58.23% + 69.60% +  44.29% + 58.25% + 69.50% +
1.59% 5.19% 5.67% 1.65% 5.49% 5.70%

s, 40.44% + 50.98% + 59.45% +  40.30% + 51.10% + 59.34% +
1.19% 3.80% 3.00% 1.23% 3.49% 2.99%

s, 89.03% + 95.06% + 99.95% +  88.84% + 95.14% + 99.96% +
7.04% 5.96% 0.07% 6.88% 5.81% 0.07%

S, 87.26% + 97.64% + 99.95% +  87.41% + 97.70% + 99.95% +
14.26% 3.33% 0.08% 14.49% 3.78% 0.08%

i 98.26% + 99.24% + 99.99% +  98.25% + 99.25% + 99.99% +
0.31% 0.19% 0.01% 0.32% 0.20% 0.01%

3.4 Results and Discussion

3.4.1 Geodesic vs PCC Adjacency Matrix Construction Method

The Table 3.6 presents the mean performance accuracy and F1 score across various models for
different adjacency matrix construction methods, including Geodesic, PCC, and EEG_GLT, for
each subject. Among the existing methods (PCC and Geodesic), the PCC adjacency method
consistently outperformed the Geodesic method, enhancing the accuracy by 0.98% - 22.60%
and the F1 score by 0.99% - 22.86%. Table V and Figure 6 detail the mean accuracies and
F1 scores for 20 subjects (S; - Sg9) across different matrix construction methods for each
model setting. Notably, the PCC method outperformed the Geodesic method across all model
settings, improving accuracy by 9.76% and the F1 score by 9.63%. The superiority of the PCC

method in EEG MI adjacency matrix construction over the Geodesic method stems a major
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Table 3.5: Accuracy Comparison of Different Adjacency Matrix Construction Methods for
Subjects S11 to Sog

Accuracy (Mean+Std)

F1 Score (Mean+Std)

Subj
EEG_GLT EEG_GLT
Geodesic PCC (our Geodesic PCC (our
method) method)
S, 97.18% + 99.48% + 99.99% +  97.18% £+ 99.49% + 99.99% +
1.12% 0.70% 0.01% 1.13% 0.74% 0.01%
s, 71.54% +  78.07% + 99.69% +  71.40% + 77.94% + 99.70% +
3.44% 8.95% 0.32% 3.37% 8.76% 0.31%
S, 36.52% + 41.35% + 44.50% +  36.49% + 41.01% + 44.47% +
0.32% 1.23% 2.23% 0.45% 1.34% 2.23%
S., 40.21% +  55.97% + 72.39% +  40.10% £ 56.05% £ T72.71% +
1.80% 6.47% 6.43% 1.88% 6.57% 6.13%
S, 46.16% + 52.11% + 67.55% +  45.92% + 52.20% + 67.52% +
1.28% 3.96% 9.26% 1.93% 3.66% 9.27%
i 95.62% + 96.75% + 99.98% +  94.94% + 96.72% + 99.98% +
3.87% 5.00% 0.03% 5.25% 5.07% 0.03%
S, 92.07% + 98.83% + 99.98% +  91.95% + 98.66% + 99.98% +
8.10% 2.33% 0.03% 8.31% 2.76% 0.03%
i 71.24% +  86.19% + 99.92% +  73.28% + 85.98% + 99.93% +
5.96% 10.95% 0.12% 3.28% 11.10% 0.13%
i 33.18% + 38.38% + 41.41% +  32.85% + 38.35% + 41.27% +
0.40% 2.27% 1.44% 0.32% 2.32% 1.34%
Sy 93.77% + 98.44% + 99.94% +  93.76% + 98.45% + 99.95% +
2.08% 0.68% 0.11% 2.06% 0.72% 0.12%
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limitation in the latter: it considers only the geodesic distance between EEG electrodes, leading
to identical adjacency matrices for all 20 subjects (Figure 3.3). In contrast, the PCC method
produces unique matrices for each subject, offering tailored matrices that are better suited for
subject-based EEG MI classification (Figure 3.4).

Our experiment revealed that using the relative physical distance between EEG electrodes was
suboptimal due to limited accuracy. Since EEG electrodes do not have direct connections
to brain tissue, electrical signals produced by large neuron groups that fire simultaneously or
synchronously need to traverse multiple tissue layers such as the cerebral cortex, cerebrospinal
fluid, skull, and scalp before detected by EEG electrodes. Given that the skull attenuates
these signals, and causes a smearing effect [128], coupled with individual differences in skull
thickness, scalp conductivity, and MI task approach, it was the most logical to use unique

adjacency matrices for each individual.

In the A%eedesic adjacency matrix construction, we adopted a unit sphere assumption because
the PhysioNet dataset lacks data on individual head shapes. Given natural variations in head

structure, A“e°si yalues could potentially differ for each subject.

Table 3.6: Accuracy Comparison Across Different Methods of Adjacency Matrix Construction
for Each Model

Model Adj Method Avg. Accuracy Avg. F1 Score

Geodesic 70.70% 70.14%
Model A PCC 79.82% 79.77%
EEG_GLT 85.90% 85.89%
Geodesic 70.70% 70.65%
Model B pPCC 78.69% 78.32%
EEG_GLT 83.84% 83.80%
Geodesic 65.49% 65.43%
Model C PCC 74.13% 74.41%
EEG_GLT 83.27% 83.28%
Geodesic 62.97% 63.08%
Model D pPCC 68.13% 68.05%
EEG_GLT 81.52% 81.48%
Geodesic 69.20% 69.16%
Model E pPCC 78.90% 78.88%
EEG_GLT 85.91% 85.88%
Geodesic 69.34% 69.28%
Model F PCC 76.89% 77.26%
EEG_GLT 83.26% 83.36%
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3.4.2 EEG_GLT Method vs PCC Method in Adjacency Matrix Con-

struction

Our EEG_GLT method consistently surpassed the PCC method in both accuracy and F1 score.
As shown in Table 3.4 and 3.5, EEG_GLT demonstrated substantial increase in accuracy and F1
score compared to the PCC method, by 0.52% - 22.04% and 0.50% - 21.76%, respectively. Unlike
the PCC method, our EEG_GLT adjacency matrix is dynamic with the ability to adapt to both
the individual subject and the model settings of GCNs (Table 3.2), as shown in Figure 3.5.

According to Table 3.6 and Figure 3.6, our EEG_GLT method improved the mean accuracies
and F1 scores for 20 subjects by 13.39% and 13.43%, respectively compared to the PCC method.
This underscores the necessity of model-specific adjustments, in addition to subject-based tai-
loring in the adjacency matrix construction, to attain the best possible outcomes. Distinctly,
our EEG_GLT matrix is asymmetrical due to the iterative pruning process detailed in Algo-
rithm 1, which refines the matrix until the optimal EEG Graph Lottery Ticket is identified.

Figures 3.7, 3.8, 3.9, 3.10, 3.11, 3.12 present the classification accuracy across various adjacency
matrix densities for Subjects Sy, S3, Sg, S12, S14 and Si5. The data indicates an upward trend in
classification accuracy with iterative pruning. Most importantly, the accuracy is notably lower
at an adjacency matrix density of 100% in comparison to other densities. This observation
suggests that some initial connections between EEG electrodes might be unnecessary, or even
counterproductive, for achieving optimal classification. Removing these redundant links may
boost the classification accuracy. Hence, a fully connected model between EEG channels may

not be the most effective approach.

Table 3.6 displays the optimal EEG_GLT adjacency matrix (m, gpe.qrr) density for each
subject. The transformation of the adjacency matrix mask mg, for the subjects Sg and Si4 at
different densities is shown in Figure 3.13 and Figure 3.14 respectively. For subjects S5, S7,
S13, and Shg, their optimal m, ppe.crr were identified early at a 100% density. In contrast,
other subjects attained their best results at densities below 22.53% for 2"¢ order models. When
considering 5 order models, such as Model B, Model D, and Model F, the optimal EEG_GLTs

emerged at densities of 59.00% or lower.

While our approach enhanced the accuracy for subjects S5, S7, Si3, and Sig, the results for
both accuracy and F1 score lingered below 60.00%. A potential explanation is that relying on
a single time point feature from EEG channels might not be adequate for MI tasks in these
subjects, since there is inherent variability in the time required (or temporal dynamics) to
execute the MI task among different individuals, as referenced in [129]. This variability might
also explain why eliminating edges between EEG channels does not necessarily lead to improved

performance accuracy for those subjects.
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Table 3.7: Optimal EEG_GLT Adjacency Matrix (my_gpe.crr) Density of Each Subject Across

Models

Subject Model A Model B

Model C

Model D

Model E Model F

S1
S
S3
Sy

18.43%

16.57%

18.43%

13.39%
100.00%
13.39%
100.00%
20.49%

13.39%

13.39%

13.39%

14.91%

80.98%

13.39%

14.91%

14.91%

14.91%

14.91%

100.00%
25.32%

13.39%
13.39%
25.32%
13.39%
31.30%
20.49%
28.15%
18.43%
16.57%
13.39%
13.39%
13.39%
34.80%
13.39%
13.39%
13.39%
13.39%
13.39%
59.00%
22.77%

31.30%
13.39%
34.80%
14.91%
100.00%
100.00%
100.00%
13.39%
16.57%
22.77%
16.57%
34.80%
100.00%
18.43%
28.15%
20.49%
20.49%
28.15%
100.00%
34.80%

28.15%
28.15%
31.30%
20.49%
100.00%
14.91%
31.30%
14.91%
14.91%
20.49%
13.39%
28.15%
20.49%
13.39%
13.39%
18.43%
22.77%
20.49%
22.77%
16.57%

18.43%
18.43%
25.32%
14.91%
100.00%
14.91%
100.00%
31.30%
13.39%
13.39%
13.39%
16.57%
100.00%
13.39%
22.77%
13.39%
13.39%
22.77%
100.00%
20.49%

13.39%
25.32%
20.49%
13.39%
100.00%
20.49%
59.00%
14.91%
13.39%
13.39%
13.39%
13.39%
22.77%
22.77%
14.91%
13.39%
13.39%
31.30%
31.30%
34.80%
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3.4.3 Model Setting vs Adjacency Matrix Construction Methods

Based on Table 3.6, for the Geodesic method, 2"¢ order GCN filters classify with higher average
accuracy and F1 score than 5" order filters. However, for the PCC and EEG GLT methods,
5" order GCN filters perform better. As highlighted in Section 3.4.2, our EEG_GLT method
consistently achieves better accuracy than both the PCC and Geodesic methods. This remains
the case even when the EEG_GLT adjacency matrix is paired with Model D, characterised by

27 order filters and

its minimal complexity, encompassing just five spectral GCN layers with
a singular FC layer. These findings suggest that optimising the adjacency matrix is more im-

portance than refining the GCN architecture when aiming for enhanced performance accuracy.

3.4.4 MACGCs Saving using EEG_GLT Method

The MACs inference for classifying a single-time-point EEG MI signal is influenced by several
model settings, including the model framework, the number and polynomial order of GCN
filters, and the specifications of FC layers as the number of layers and the node count. Among
these, the count and polynomial orders of GCN filters at the GCN layers are the primary
determinants of the MACs requirement. Both A%e°desic and APCC maintain 100% densities in
their adjacency matrices. Consequently, the MACs inference for a single-time-point EEG MI
signal, when using models A to F, are as follows: 81.89M, 42.26M, 22.64M, 11.32M, 291.62M,
and 146.10M, respectively.

Our EEG_GLT method presents varied AFFE-GLT densities due to the pruning employed by
Algorithm 1. As elaborated in Section 3.4.2, the EEG_GLT approach enhances classification
accuracy through pruning, which in turn decreases the MACs. Table 3.8 illustrates the percent-
age of MACs savings for each subject, comparing the top accuracy value from the PCC method

to the EEG_GLT accuracies from models with adjacency matrix densities slightly exceeding
PCC’s best.

For performance equivalent to or surpassing PCC’s optimal accuracy, only Models D and B
with the sparsest adjacency matrix density (13.39%) are necessary. The PCC method requires
between 42.26M to 291.62M for one-time-point inference across 20 subjects to reach peak
accuracy. In contrast, our EEG_GLT approach needs only 8.76M to 80.67M to achieve equal
or better accuracy, translating to savings in MACs of up to 97.00%.

3.4.5 Comparison with Current State-of-the-Art Models

In this paper, we compare our proposed method, EEG_GLT-Net, with seven other state-of-the-
art (SOTA) models listed in Table 3.9, including FBCSP [106], EEGNet [108], CasCNN [109],
DG-HAM [123], EEG-ARNN [124], SSDA [110], and GCNs-Net [100]. Our comparisons begin
with the traditional FBCSP approach, which leverages CSP to extract features across multiple
frequency bands and utilises SVM for classification. We then compare with EEGNet, a widely
used model based solely on a CNN structure. Further, we assess CasCNN and SSDA, both of
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Table 3.8: MACs Savings (%) for Each Subject: PCC’s Best Model Accuracy vs. EEG_GLT
Accuracy from Models with Adjacency Matrix Densities Just Surpassing PCC’s Best Accuracy

, PCC EEG_GLT MACs
Subj
Model .
Model Acc. MACs . Acc. MACs  Saving
(Adj%)
Sp A 87.66%  81.89M D (13.39%) 97.04% 8.76M  89.30%
Sy B 75.43%  42.26M B (13.39%) 78.09% 36.97M  12.52%
Ss A 94.89%  81.89M D (13.39%) 98.22%  8.76M  89.30%
Sy A 99.88%  81.89M B (13.39%) 99.98% 36.97TM  54.85%
Ss B 46.90%  42.26M B (13.39%) 48.73% 36.97TM  12.52%
Se E 62.92% 291.62M B (13.39%) 70.17% 36.97TM  87.32%
Sy E 55.04%  291.62M B (13.39%) 57.68% 36.97M  87.32%
Ss B 98.71%  42.26M D (13.39%) 99.78%  8.76M  79.27%
So A 99.86%  81.89M B (13.39%) 99.98% 36.97TM  54.85%
S1o E 99.44%  291.62M D (13.39%) 99.97% 8.76M  97.00%
S11 E 99.90% 291.62M D (13.39%) 99.98%  8.76M  97.00%
Sio A 86.76%  81.89M D (13.39%) 99.05%  8.76M  89.30%
Sis A 42.79%  81.89M B (13.39%) 43.57% 36.97TM  54.85%
St4 B 63.58%  42.26M D (13.39%) 66.25%  8.76M  79.29%
Sis E 57.01% 291.62M D (13.39%) 57.72%  8.76M  97.00%
S B 99.80%  42.26M D (13.39%) 99.85%  8.76M  79.27%
Stz A 99.98%  81.89M B (13.39%) 100.00% 36.97M  44.93%
St A 96.05%  81.89M D (16.57%) 99.58%  8.76M  76.14%
Sig A 41.62%  81.89M A (89.98%) 41.78% 80.67TM  1.49%
S20 B 99.17%  42.26M D (13.39%) 99.68%  8.76M  79.27%
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Figure 3.7: Performance Accuracy Across Different m, Densities Using Different Models for

Subject S;
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Figure 3.8: Performance Accuracy Across Different m, Densities Using Different Models for
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Figure 3.13: EEG_GLT Adjacency matrix mask (m,) of Subject Sg at different densities using
Model A. The m, density at 20.49% produces the highest accuracy of 78.13%
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Model A. The m, density at 13.39% produces the highest accuracy of 79.06%
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which combine CNN and LSTM networks. Finally, we evaluate our method against DG-HAM,
EEG-ARNN, and GCNs-Net, which are GNN-based networks.

Table 3.9: Performance Comparisons with State-of-the-Art Models

Method Avg. Accuracy Avg. F1 Score
FBCSP [106] 59.56% 60.04%
EEGNet [108] 72.20% 72.10%
CasCNN [109] 63.30% 63.18%
DG-HAM [123] 76.15% 76.08%
EEG-ARNN [124] 82.39% 82.17%
SSDA [110] 83.73% 83.24%
GCNs-Net [100] 80.16% 80.05%
Proposed EEG_GLT-Net 86.43% 86.23%

The traditional FBCSP method achieves 59.56%), the lowest accuracy among the SOTAs, likely
due to its reliance on SVM as the classifier. The popular EEGNet achieves 72.20% accuracy,
outperforming the CasCNN model, which achieves only 63.30%. Within the CNN-based SOTA
models, SSDA reaches the highest accuracy at 83.73%. Among the GNN-based SOTA models,
EEG-ARNN achieves the highest accuracy at 82.39%, followed by GCNs-Net and DG-HAM
with accuracies of 80.16% and 76.15%, respectively.

From the perspective of adjacency matrix construction methods, the trainable adjacency matrix
in EEG-ARNN outperforms the geodesic-based DG-HAM and PCC-based GCNs-Net. Our
proposed EEG_GLT-Net, using single time-point classification at intervals of (%)s, achieves
the highest overall accuracy of 86.43% among all SOTAs. Notably, GCNs-Net is the only
other model employing single time-point classification; however, while the GCNs-Net accuracy
falls short of our EEG_GLT-Net using the EEG_GLT adjacency matrix, it surpasses our model
when using a PCC-based adjacency matrix, reaching 79.82% which may be attributed to the

application of pooling layer after every GNN layer within GCNs-Net.

3.5 Limitations and Future Works

We introduced a novel method for constructing an adjacency matrix in GNNs to classify single
time-point EEG MI signals. The EEG_GLT-Net demonstrated high classification performance
within a single-subject paradigm, where models are trained and tested on the same individual.
This approach effectively captures subject-specific neural patterns, optimising classification
accuracy by leveraging the unique signal characteristics of each participant. While this design
enhances model precision for individualised EEG decoding, EEG signals naturally exhibit inter-
subject variability due to anatomical, physiological, and cognitive differences. Exploring cross-

subject settings in future work would provide further insights into the model’s adaptability
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across diverse users.

The EEG_GLT-Net architecture has shown strong performance in single time-point classifi-

L
160

PhysioNet dataset. However, for MI tasks with more subtle and overlapping patterns, as seen

cation at (3=s), particularly for MI tasks with distinct neural patterns, such as those in the
in datasets like BCIC_iv-2a, the model’s effectiveness is reduced due to the inherent temporal
dependencies in the data. In such cases, longer signal segments—typically exceeding one sec-
ond—along with feature extraction techniques are essential to capture the meaningful temporal

and spatial relationships required for accurate classification.

Nonetheless, the proposed EEG_GLT adjacency matrix construction method is not restricted
to single time-point classification. A natural extension of this work is to apply EEG_GLT to
additional EEG MI datasets, such as BCIC_iv-2a, and EEG movement datasets, including the
High-Gamma dataset. Future adaptations will focus on integrating temporal embeddings to
accommodate datasets that require sequential information while preserving the computational
efficiency of the graph-based approach. Additionally, evaluating the method on large-scale
multi-subject datasets will further establish its robustness, ensuring broader applicability across

real-world neurorehabilitation and BCI systems.

3.6 Conclusion

Our EEG_GLT approach, developed for optimal adjacency matrix construction in EEG MI
time-point signal classification, consistently outperforms both the Geodesic and PCC methods
in accuracy and F1 score. It is important to note that the PCC method is currently em-
ployed in the state-of-the-art EEG time-point classification model, GCNs-Net. Specifically, our
EEG_GLT method enhances accuracy and F1 score by margins ranging from 0.52% to 22.04%
and 0.50% to 21.76%, respectively, compared to PCC. Furthermore, it improves the average
accuracy across 20 subjects by 13.39%. With this method, optimal outcomes emerge when
the adjacency matrix densities remain below 22.53%. Our study emphasises the pivotal role
played by the configuration of the adjacency matrix in performance accuracy, overshadowing
even model settings. In addition, our EEG_GLT approach has much higher computational
efficiency, demanding between 8.76M and 80.67M MACs, which is significantly less than the
42.26M to 291.62M required by the PCC method for comparable or superior results.

While this research primarily focuses on identifying the optimal adjacency matrix, with pruning
confined to the adjacency matrix, upcoming studies will explore pruning GNN and FC layers
weights to further streamline computational costs. Additionally, we plan to expand the number
of time points used for feature extraction, especially for subjects S5, S7, Si3, and Sig. In future
work, we will refine Algorithm 1 to seamlessly integrate pooling layers within the GCN blocks
under the EEG_GLT method, to further optimise computational efficiency. To achieve a more
generalised understanding of the inter-relationships between EEG channels, it is essential to

incorporate a broader range of tasks into models.
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3.7 Significance and Novelty

This chapter introduces EEG_GLT-Net, a spectral Graph Neural Network (GNN) model for
real-time classification of single time point EEG motor imagery (MI) signals. The significance
of this work lies in its focus on addressing the computational and accuracy challenges inher-
ent in real-time neurorehabilitation. By dynamically constructing adjacency matrices through
the EEG Graph Lottery Ticket (EEG_GLT) method, the model identifies key inter-channel
relationships without prior assumptions, enabling efficient and adaptive processing of EEG
data. This approach demonstrates superior classification performance on benchmark datasets,

making it a valuable contribution to personalised rehabilitation systems.

The novelty of EEG_GLT-Net lies in its integration of graph-based learning with a lottery ticket
mechanism to enhance both interpretability and computational efficiency. Unlike traditional
EEG models, which rely on static or predefined relationships, EEG_GLT-Net offers a flexible
framework that adapts to individual datasets and subjects. This innovation sets a new bench-
mark for EEG analysis, paving the way for advanced neuroengineering applications in real-time

contexts.
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Chapter 4

Economic Graph Lottery Ticket: A

GNN based Economic Forecasting
Model

4.1 Introduction

The field of econometrics is constantly evolving due to on-going improvements in statistical
methods, burgeoning data availability, and lately from rapid advances of machine learning
techniques. The primary goal is to develop models that reveal the complex relationships among

various economic variables, and enhance our understanding of the economic system.

Economic systems can be viewed as complex networks of interdependent relationships between
variables or indicators such as inflation, wage price index, and equity returns. Simplifying these
relationships between key economic variables can help create a logical network that facilitates

a more intuitive understanding of the economic system.

The Wilkie Investment Model [130], a cascading stochastic economic model first developed in
the actuary domain, has been extended to incorporate more economic variables, such as the
SUPA model [131], [132] which is used for projecting accumulation and decumulation phases
within the Australian superannuation system. However, the Wilkie model’s assumptions of
normally distributed asset returns and stationarity of economic variables may not always align
with the real-world financial market dynamics [133]. Recently, there has been a shift towards
using machine learning methods in economic modelling. For example, Scheidegger’s framework
combines Gaussian process regression with the active subspace method to address dynamic
stochastic models [134].

The need to model non-linear relationships and to manage high-dimensional data has led to
exploring the potential of Neural Networks in economic forecasting [135]. Despite criticism

surrounding interpretability, these neural networks do have the potential to capture informa-
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tion hidden in large datasets. However, standard implementation of Neural Networks does not
provide the mechanism to account for inherent structure and connectivity in economic data
and therefore cannot encapsulate complex interactions between these input economic variables.
Addressing this limitation, Graph Neural Networks (GNNs) have been developed [136]. By
incorporating data structure into their learning process, GNNs excel at uncovering complex
patterns in structured data, such as networks of economic variables. Traditionally, these inter-
relationships need to be delineated via an adjacency matrix before applying GNNs. However,
establishing the adjacency matrix requires prior knowledge of the unknown relationships be-
tween the economic variables, the challenge is to utilise the delineation process to establish the
complex relationship between the key economic variables without any preconceived knowledge
about the relationship [113].

In this paper, we propose the Economic Graph Lottery Ticket (EGLT) algorithm, which is a
novel GNN-based method that, without the prior knowledge of the inter-relationships between
the economic variables, we can generate the optimal adjacency matrix as a by-product of the
GNN training process from historical data only. The trained EGLT model is proven to provide
more accurate economic forecasting. Compared with the SUPA model, the prediction RMSE
reduced significantly for eight major Australian economic variables, highlighting the efficacy of

EGLT in economic prediction.

4.2 Economic Graph Lottery Ticket Algorithm

In the proposed EGLT approach, the key difference is that we introduce a trainable adjacency
matrix mask into the forward pass of the GNN. This would enable the adjacency matrix to
be adaptively optimised. Such flexibility ensures that the model captures the most significant
relationships without being constrained by preconceived notions. The EGLT algorithm also
integrates the structure of economic data into the learning process, allowing for more accurate

predictions.

The use of the adjacency matrix in GNNs is crucial for accurately modelling the relationships
between nodes. By dynamically adjusting this matrix, the EGLT algorithm can better capture
the complexities of economic interactions. This adaptability is particularly important in eco-
nomic forecasting, where relationships between variables can change over time due to various

factors such as policy changes, and market conditions or events.

More details of the EGLT approach are as follows. In the analysis, the forward pass of the
Graph Neural Network (GNN) function f(.,©) was performed on a given graph G = {A, X'},
where A represents the overall adjacency matrix, as defined in Equation 4.1:

A= Aoriginal O] my (41)

The original adjacency matrix Agpigina € 11V*IVI remained fixed as a unit matrix and was not
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subject to training. To modify the graph structure, a trainable adjacency matrix mask, denoted
as my, € RIVIXIVI was introduced. At the start of Algorithm 2, the initial adjacency matrix

mask is defined as mg = Aoriginal-

The GNN forward pass trained variables my, O and ©@ across N, epochs for each adjacency
matrix mask density during the training process. The lowest parts of m,’s absolute values at
st" density were pruned, leaving the rest set to 1, guided by the minimal MSE loss from the
validation set. This cycle persisted until the m, density fell below a pre-set minimum, K,
with all edges in the m, at this lowest density deemed essential. The adjacency matrix density

at the s pruned level, x*® is given by

s lmgllo

— Tgllo (4.2)
’ |Aom’ginal ‘ ’0

where mj represents the trainable adjacency matrix mask at the s pruned level. The state
of m, producing the smallest validation set MSE loss at the i" iteration and lowest adjacency
mask s density level during the GNN forward pass was defined as the Economic Graph Lottery
Ticket (EGLT), with ties resolved by selecting the lower m, density state.

The flowchart of a multiple layer GNN is shown in Figure 4.1. While the number of layers
increases, the computational cost and complexity of the algorithm increases. Further details
on the training EGLT algorithm are in Algorithm 2. All edges in the m, pgrr Were necessary

for the best predictions.

V4
X GNNIayer1 GNNIayer2 """ GNNIayerN Y

Figure 4.1: Flowchart of a multiple layer EGLT approach
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Algorithm 2 Finding Economic Graph Lottery Ticket
Input: Graph G = {A, X}, GNN f(G,0), GNN initialisation @gl) and @(()2),

Aoriginal € 1IVIXIVI initial Adjacency Matrix Mask mg = Aoriginals

set learning rate 7, set pruning rate p,, pre-defined lowest Graph

Density Level k-
Output: Economic Graph Lottery Ticket (m, parr) — m;’i at the lowest MSE loss

with the highest sparsity possible.

1: while x* > k,,;, do

2 for for iteration ¢ =0, 1,2, ..., N, do

3 Forward f(.,0;) with G = {m;’i ® Aoriginal, X } to compute MSE Loss, L

4 Backpropagate to update 0,1 - ©; —nVe.L

5: Update m**" < m5" — NV s L

6 end for

7 Record mf]’i with the lowest MSE loss in validation set during the N, iteration

8 Pre set p, of the lowest absolute magnitude values in m; to 0 and the others to 1, then
obtain a new mj*"°

9: end while

4.3 Real Data Study: Implementation and Evaluation of
the EGLT Approach

The EGLT algorithm provides a novel approach to economic forecasting by optimising the adja-
cency matrix with GNNs. In this section, we will detail the implementation of the EGLT model
on real-world data, followed by an evaluation of its performance compared to the traditional
SUPA model.

We implemented the EGLT approach to a comprehensive selection of eight Australian economic
variables. These variables encompassed a wide range, including the Consumer Price Index
(CPI), Wage Price Index (Wage), Short-Term Interest Rate (r_short), Long-Term Interest Rate
(r-long), Domestic Bond Index (Dom_BI), International Bond Index (Int_BI), Unemployment
Rate (Unemploy) and House Price Index (HPI).

Our analysis utilised monthly data, transforming daily variables into monthly averages and
interpolating quarterly variables to match this frequency. Spanning 20 years (July 2000-June
2020), the dataset provided a substantial 240 months of data for exploration. The study used
these variables” monthly values as input features. Since some variables are recorded quarterly,
consecutive months weren’t used as input features. For instance, data from months like January,
April, and July 2008 were used to predict October 2008 values in our study. This approach

helps capture seasonal trends.

Given their varying value scales, these data required normalisation via z-score normalisation to
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ensure a mean of zero and a standard deviation of one. This step was crucial to prevent larger-
scale features from dominating the learning process. We divided the dataset into a training
set that includes data from July 2000 to December 2017, and a testing set that includes data
from January 2018 to June 2020. Ten percent of the data in the training set was reserved for

continuous performance monitoring as a validation set.

4.3.1 Model Initialisation and Hyper-parameter Settings

Our study employed a two-layer GNN model to optimise graph characteristics, as shown in Fig-
ure 4.2. The node features are represented by F;, € R3 and the number of GNN hidden nodes,
M = 128. We aimed to predict a single output month, thus F,,, € R*. Our research considered
various scenarios, encompassing different input month and GNN weight combinations. The
implementation details are listed in Table 4.1.

Zl E R8X128 R
X € R®<3 GNNjayers GNNiayer2 Y € R¥!

A c R¥8 A e R¥®

Figure 4.2: The implemented two-layer EGLT model for eight economic variables

Table 4.1: Implementation Details of the 2-layer EGLT Model

) . Number of
Layer Type Input Size Weight Output
parameters
Input graph
Tnput DU SFap V| x Fy, - . .
features
First h
H1 et Brap V| x Fn  OWeRFM V| x M Fy % M
convolution layer
Second graph ) M E
H2 V| x M 0®) ¢ RMxFou (V| X Eu M % Foy,

convolution layer
Y Predicted Output V| X Fou - - }

We used the PyTorch deep learning package to construct the two-layer GNN, with the training
process running over 500 epochs (Ne,) and including a 0.5 dropout rate to reduce overfitting.
The model was optimised using the Adam optimiser with a learning rate (n) of 0.01. The
adjacency matrix mask m, was set to prune at a rate (p,) of 10% at each m, density, down
to a minimum density of 10.71%. The average MSE metric was used to assess the model’s

regression problem performance.
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4.3.2 EGLT Model Implementation

Using the Algorithm 2, the RMSE losses corresponding to different adjacency matrix densities,
k°, were obtained as shown in Figure 4.3. The optimal adjacency matrix, my pgrr, was found
at a density of 21.88%, as it yielded the lowest RMSE loss. Figure 4.4 (top) shows the heat map
illustrating the interrelationships among the variables. Figure 4.4 (bottom) presents the nodes-
edges graph, providing a visual understanding of how these economic factors are interconnected
and their potential impact on the overall economic system. For example, the Unemployment
Rate (Unemploy) directly affects the Wage Price Index (Wage) and House Price Index (HPI).
This relationship aligns with economic observations where a high unemployment rate impacts

the affordability of mortgages, hence influencing house prices.

0.24

0.23

0.22

0.21

RMSE Loss

0.20

0.19 -

0.18

O L ® 5.9 O 9,9 A0 2.9 O 9 Mol O

0 60 00 P WO X A AT VYT PN 077 0,07

DA AT FTRT DT ARV DTN NPT AT O
Adjacency Matrix Density Percent (k™s)

Figure 4.3: RMSE losses at different adjacency matrix densities, k*

In addition to the direct relationships, the heat map and nodes-edges graph reveal some indirect
connections. For instance, the Domestic Bond Index (Dom_BI) shows interrelation with both
short-term (r_short) and long-term interest rates (r_long). This reflects the real-world scenario
where bond prices are sensitive to changes in interest rates. Similarly, the Consumer Price
Index (CPI) and International Bond Index (Int_BI) have connections, indicating the influence

of international economic conditions on domestic inflation.

The graphical representation of the adjacency matrix (Figure 4.4 Bottom) not only provides a
clear depiction of the essential connections but also highlights the complexity of the economic

network.
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CPI - 0 0 0 0 0 0.017 0 0.03

0.04
Wage- 0 0 0 0 0 0.013 0 0
r short - 0 0 0 0 0 -0.02
r_long - 0 0 0 0 0
-0.00
Int_Bl- 0.015 0.019 0 0 0 -—0.02
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(a) Adjacency Matrix in Heatmap

(b) Directed Nodes-Edges Graph of Adjacency Matrix

Figure 4.4: The optimal adjacency matrix of the EGLT model, my pgrr, is found at 21.88%
density with Necessary Edges only. (a) Heatmap of the Adjacency Matrix. (b) Directed Nodes-
Edges Graph representation of the Adjacency Matrix.
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4.3.3 Prediction Analysis

The graphical representation of the optimised adjacency matrix shows the necessary connec-

tions between the provided economic variables. The EGLT algorithm identifies these critical

relationships without prior knowledge. Such direct and indirect interactions can be crucial for

accurate predictions. The performance of the trained EGLT model is validated against the

current state-of-the-art SUPA model using data from January 2018 to June 2020, evaluated in

terms of RMSE values. Table 4.2 lists the comparison across multiple variables. The average
RMSE loss of the EGLT model is 0.1778, which is about 40% lower than the RMSE loss of the

SUPA model.

Table 4.2: Comparison of the RMSE losses for the SUPA and the EGLT algorithm across

various economic variables.

Variable SUPA EGLT
CPI 0.0204 0.0186
Wage 0.0186 0.0361
r_short 0.6170 0.0962
r_long 0.5303 0.3420
Dom_BI 0.1433 0.0795
Int_BI 0.5579 0.5536
Unemploy 0.3319 0.2108
HPI 0.0869 0.0852
Overall 0.2883 0.1778

We also show all variables’ prediction results in more details as time series in Figures 4.5, 4.6,
4.7, 4.8, 4.9, 4.10, 4.11 and 4.12. In each figure, the green line represents the real value, the

orange line the EGLT model prediction, and the blue line the SUPA model prediction.
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Figure 4.5: CPI Prediction Result
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Figure 4.6: Wage Prediction Result

For the Consumer Price Index (CPI) and Wage Price Index (Figure 4.5 and 4.6), both datasets
are linear and monotonically increasing. Here, the SUPA model predictions are better than
the EGLT model results. The SUPA model closely follows the actual values, indicating its

effectiveness in handling straightforward, linear trends.
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Figure 4.7: Short-term Interest Rate Prediction Result
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Prediction vs Actual for r_long
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Figure 4.8: Long-term Interest Rate Prediction Result

In Figure 4.7 and 4.8, the Short-Term Interest Rate (r_short) and Long-Term Interest Rate
(r_long) prediction results are depicted. The EGLT model outperforms the SUPA model, es-
pecially in capturing the rapid fluctuations in r_short. The SUPA model shows significant lag
in adjusting to these changes, while EGLT adapts more quickly, highlighting its suitability for
volatile datasets.
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Figure 4.9: Domestic Bond Index Prediction Result
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Prediction vs Actual for Int Bl

1350

1300

1250

1200

1150

1100

1050

1000 -

Figure 4.10: International Bond Index Prediction Result

Figure 4.9 and 4.10 shows the Domestic Bond Index (Dom_BI) and International Bond Index
(Int_BI) prediction results. The EGLT model again provides better predictions, particularly for
Dom_BI. The EGLT model captures both minor and major fluctuations more accurately than

the SUPA model, demonstrating its robustness in dealing with the non-linear relationship.

Prediction vs Actual for Unemploy

5.6

5.41

5.2

5.01

4.8 1

4.6

Figure 4.11: Unemployment Rate Prediction Result
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Prediction vs Actual for HPI
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Figure 4.12: Housing Price Index Prediction Result

The Unemployment Rate (Unemploy) and House Price Index (HPI) prediction results are
shown in Figure 4.11 and 4.12. The EGLT model significantly outperforms the SUPA model
in predicting the Unemployment Rate. For the HPI, both models perform similarly, but EGLT

has a slight edge in following the upward trends more closely.

Given the current small datasets, all the EGLT models are tested on single-step forecasting.
Later on, when there are larger datasets covering longer time periods, the EGLT model can
also be trained and evaluated for multiple-step long-term forecasting as well. The flexibility of
the EGLT algorithm will allow it to adapt to different data conditions, making it a versatile

tool for economic forecasting.

The EGLT algorithm can be readily applied to the task of identifying inter-dependency rela-
tionship structure of large number of time-series variables. We have used the EGLT algorithm
to generate inter-dependency structure for eight major economic variables in Australia. For
future work, an interesting test case would be for using the EGLT algorithm to quantify and

reveal the complex inter-dependency relationship network among major commodity prices.

4.4 Conclusion

In this paper, within a GNN framework, we have presented the EGLT algorithm as more accu-
rate method for economic forecasting. The EGLT algorithm automatically generates an optimal
adjacency matrix without requiring prior knowledge of existing economic relationships. The
EGLT algorithm can iteratively converge and reveal the most parsimonious inter-connecting re-
lationships by minimising the Root Mean Square Error for the dataset and therefore improving

the forecasting accuracy.

The forecasting accuracy of the EGLT model was compared directly with the state-of-the-art

cascading SUPA model for eight major economic variables in Australia from January 2018 to
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June 2020. The comparison shows that the EGLT model consistently outperforms the SUPA
model across these economic variables, with a reduction in RMSE. Specifically, the EGLT
model’s average RMSE is 40% lower than that of the SUPA model.

In this paper, our study has focused on single-step forecasting. However, for applications in
major decision making under uncertainty such as climate uncertainty, long-term multiple-step
forecasting is required. In our subsequent study on EGLT algorithm, focus will be on extending

the algorithm to the generation of uncertainty estimate for long-term forecasting.

The EGLT algorithm can be readily applied to the task of identifying inter-dependency rela-
tionship structure of large number of time-series variables. In this paper, we have used the
EGLT algorithm to generate inter-dependency structure for eight major economic variables
in Australia. For future work, an interesting test case would be for using the EGLT algo-
rithm to quantify and reveal the complex inter-dependency relationship network among major

commodity prices.

Although economic data is generally rich, the monthly resolution used in this study reduces the
temporal density available for graph learning. In such settings, purely data-driven adjacency
construction may overlook stable economic relationships. Incorporating domain knowledge

could improve interpretability and model reliability in low-frequency forecasting tasks.

4.5 Significance and Novelty

This chapter extends the EEG_GLT framework to economic forecasting, introducing the Eco-
nomic Graph Lottery Ticket (EGLT) model. The significance of this work lies in its ability to
uncover complex relationships between economic variables, such as stock indices, commodity
prices, and interest rates, using a graph-based representation. By improving prediction accu-
racy and providing actionable insights into variable interdependencies, EGLT offers a robust
alternative to traditional econometric models, addressing key limitations in economic forecast-

ing.

The novelty of this chapter is its application of GNNs to economic datasets, demonstrating
the versatility of graph learning in non-biological domains. The dynamic construction of ad-
jacency matrices through the lottery ticket framework ensures computational efficiency while
maintaining high accuracy, even with large and complex datasets. This work highlights the
transformative potential of graph-based methodologies in advancing economic modeling and

decision-making tools.
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Chapter 5

EEG _SGNet: A Parallel Architecture
for Advanced EEG Signal Decoding

5.1 Introduction

Brain-Computer Interfaces (BCIs) bridge neuroscience and engineering, enabling direct com-
munication between the human brain and external devices. Initially developed for individu-
als with motor impairments [7], BCIs now extend to diverse applications, including gaming
[137], neurorehabilitation [138], smart homes [139], etc. The primary function of BCIs is to
translate neural signals into actionable commands. Brain activity is typically measured using
four modalities: magnetic, optical, metabolic, and electrical [140]. Popular methods include
magnetoencephalography (MEG), functional magnetic resonance imaging (fMRI), functional
near-infrared spectroscopy (fNIRS), electroencephalography (EEG), and electrocorticography
(ECoG). The choice of modality depends on the application and associated costs.

Among these, ECoG and EEG are electrical-based methods for measuring brain activity. ECoG
offers superior spatial resolution compared to EEG but requires invasive surgery to place elec-
trodes directly on the cortex [83]. This invasiveness makes ECoG costly and less accessible.
Conversely, EEG captures brain signals through electrodes placed on the scalp, making it
non-invasive, portable, and cost-effective. These characteristics have contributed to EEG’s
widespread adoption. EEG can record various types of brain activity, including event-related,

spontaneous, and stimulus-evoked signals [84].

Motor Imagery (MI) involves the mental simulation of body movements, such as imagining
moving a hand or leg, without actual physical movement [85], [86]. When paired with EEG,
MI captures neural signals generated by the intention to move. Integrating EEG-based MI
with BCIs enables these signals to be decoded into commands for controlling external devices,
such as robotic exoskeletons. This capability is particularly significant for stroke survivors,

offering the potential to restore quality of life and support daily activities. Accurate decoding
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of EEG MI signals is essential for facilitating patient-intended movements, necessitating robust

machine learning models as a core component of BCls.

Traditional EEG MI classifiers often rely on machine learning techniques that use manually
engineered features, such as wavelet transforms or analytic intrinsic mode functions [104], [105].
A widely adopted method is the Filter Bank Common Spatial Pattern (FBCSP), which applies
common spatial patterns (CSP) across various frequency bands in EEG signals to extract

discriminative features.

Deep learning, a subset of machine learning, leverages multilayered neural networks to pro-
cess diverse data types. Convolutional Neural Networks (CNNs), a prominent deep learning
architecture, mimic the human visual system’s neural image recognition processes [89]-[91].
A key element of CNNs is the convolutional layer, which uses filters to scan input data and
extract meaningful features, enabling the network to learn complex patterns and representa-
tions. CNNs are particularly effective for processing Fuclidean data, such as one-dimensional
sequences and two-dimensional grids [91]. Beyond their widespread use in image recognition
[90], CNNs have demonstrated success in speech recognition [141], natural language processing
[142], drug to drug interaction [143], and physiological signal classification [107], [108], often

eliminating the need for manual feature extraction.

In EEG signal classification, CNNs typically represent EEG data as two-dimensional inputs,
with channels and time points forming the dimensions. This enables CNNs to effectively capture
both spatial and temporal dependencies in brain signals, facilitating applications such as motor
imagery classification, epileptic seizure detection, and motor movement classification. Several
CNN-based models, such as ShallowNet [107] and EEGNet [108], excel at extracting temporal
features from one-dimensional and two-dimensional Euclidean data, achieving high classifica-
tion accuracy. Further advancements were made by incorporating Long Short-Term Memory
(LSTM) blocks, as demonstrated in [109], [110]. Additionally, [32] proposed the ConTraNet
model [112], which combines Transformer and CNN blocks, resulting in improved performance
in EEG-based emotion recognition. The EEGProgress model [111] adopts a unique approach by
applying CNN operations to individual brain regions for EEG MI signal classification, focusing

on regional processing rather than all channels simultaneously.

Graph Convolutional Neural Networks (GNNs) represent another branch of deep learning,
specifically designed for graph-structured data [92], [113]. Unlike CNNs, which are limited to
Euclidean data, GNNs can process non-Euclidean data by incorporating topological relation-
ships during convolutional operations. GNNs can operate on various graph types, including
homogeneous or heterogeneous, weighted or unweighted, and signed or unsigned graphs, which
are typically represented by adjacency matrices. GNNs are used in three main tasks: node-
level, edge-level, and graph-level classifications. At the node level, GNNs predict properties
of individual nodes, while edge-level tasks involve predicting edge attributes, and graph-level
tasks classify entire graphs based on their structure and features. GNNs are broadly cate-
gorised into spatial [117]-[120] and spectral [114]-[116] methods, though spatial methods often
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face challenges in matching local neighborhood structures [96] and [121].

In EEG applications, both time-domain and frequency-domain features are extracted as graph
features for use in GNN operations. Time-domain features include root mean square (RMS),
skewness, variance, min-max values, zero crossings, Petrosian fractal dimension, Higuchi fractal
dimension, and Hurst exponent [98], [122]. Frequency-domain features, such as power spectral
density (PSD) and power ratio (PR), are computed within specific frequency bands, including
0 (0.5-4 Hz), 6 (4-8 Hz),  (8-13 Hz), $ (13-30 Hz), and ~ (30-110 Hz).

Constructing the adjacency matrix is critical for GNN performance, particularly in EEG appli-
cations. In this context, EEG electrodes serve as nodes, and the relationships among them are
represented in the adjacency matrix, enabling GNNs to capture connectivity patterns beyond
the capabilities of traditional CNNs. Various methods have been proposed for constructing
adjacency matrices in EEG-based applications. For example, Geodesic distances between elec-
trodes have been used to define connections [93]-[95], while other studies, such as [101], have
utilised the Phase Lag Index (PLI) in their CSGNN model. Pearson Correlation Coefficients
(PCC) have also been employed to evaluate inter-channel relationships [96]-[100], and [102]

introduced a trainable adjacency matrix for EEG classification tasks.

Aung et al. [144] proposed the EEG_GLT method for adjacency matrix construction in their
EEG_GLT-Net model, which was specifically designed for single time point EEG MI classifica-
tion. This method demonstrated superior performance accuracy and computational efficiency
compared to Geodesic and PCC-based methods under various model configurations. However,
EEG_GLT was applied in single time point signal classification, making it unsuitable for tasks

requiring longer temporal features, such as EEG movement classification.

Other models, such as DG-HAM [123] and EEG-ARNN [124], classify EEG signals within pre-
defined window lengths without extracting graph-based features like time-domain or frequency-
domain metrics. In contrast, [100] introduced GCNs-Net for time-point classification, treating
each time point as an independent feature, enabling detailed time-resolved EEG MI analysis.
While GCNs-Net achieves strong performance in single-time-point classification, its reliance on

functional connectivity alone during GNN operations limits its overall accuracy.

In this chapter, we propose EEG Synergistic Gated Network (EEG_SGNet), a novel architecture
designed to address existing limitations in EEG signal classification by employing window-based
analysis. The model integrates parallel branches of CNNs and GNNs, utilising the EEG_GLT
method for adjacency matrix construction. This innovative approach captures both spatial and
temporal features, enabling more comprehensive EEG signal classification and expanding the
potential applications in EEG analysis. The primary contributions of this study are summarised

as follows:

¢ EEG_SGNet Architecture: We introduce a novel method that optimally combines
CNNs and GNNs with the EEG_GLT adjacency matrix for window-based EEG signal

classification.
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e Optimal Parallel Branches of CNNs and GNNs: We thoroughly investigated
EEG_SGNet across nine model configurations, varying the number of GNN and CNN
filters, to determine the optimal settings for each subject, ensuring tailored and effective

performance.

e Performance Validation: The proposed EEG_SGNet model was rigorously evaluated
using two EEG datasets: the BCIC_iv-2a EEG Motor Imagery (MI) dataset [145] and
the High-Gamma (HGD) EEG movement dataset [58]. These evaluations validated the
model’s reliability and robustness. Furthermore, we compared EEG_SGNet against eight
state-of-the-art models for each dataset, demonstrating its superior performance and ef-

fectiveness.

5.2 Methodology

5.2.1 Overview

The EEG_SGNet is composed of two parallel branches, GNN branch and CNN branch. The
window size of 4 seconds which has 1000 time points. In the CNN path, the input signal of
EEG signal is first pass through the CNN temporal filter block which extract temporal features
using 25 filters at each EEG channel. Then, it goes through the CNN block 1 which extract
the spatial relationship between EEG channels, which is followed by Max pooling layer. The
signals have undertaken of CNN and max pooling until Block N. Then, signals CNN convoluted

features are then flattened to become 1D array, Xoyy € RM.

On the other branch in the GNN branch, the signal is pass through Feature Extractor Block
which extract graph features of the signal manually in both time-domain and frequency-domain,
wavelet transform, which are detailed in the Section 5.2.4, in total of 29 features for BCIC_iv-2a
dataset and 31 features for HGD dataset. Then, the extracted features are passing through
GNN blocks where graph convolution operation was undertaken using the defined EEG Graph
which is represented with adjacency matrix. After undertaken of N** GNN operation, it is then

flatted to become 1D array, Xqony € R,
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5.2.2 Dataset Description

Two EEG datasets are used in the EEG_SGNet model. The first dataset is the BCIC_iv-2a
dataset [145], which is widely used in BCI research, particularly for motor imagery (MI) studies.
This dataset was organised by the Graz University of Technology. EEG signals were recorded
from nine subjects, each of whom participated in two sessions on separate days. Each session
included six runs, with a total of 288 trials of 4-second EEG MI per subject, resulting in
576 trials per subject across both sessions. EEG signals were captured using 22 EEG channels,
alongside three monopolar EOG channels as shown in the Figure 5.2. The signals were sampled
at 250 Hz and filtered with a bandpass filter of 0.5 Hz to 100 Hz, as well as a notch filter at

the power line frequency of 50 Hz. The dataset contains four distinct motor imagery tasks:
e Class 1: Left hand MI
e (lass 2: Right hand MI
e (lass 3: Both feet MI

e Class 4: Tongue MI
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Figure 5.2: Electrode positions of BCIC_iv-2a dataset[145]. Left: Electrode montage corre-
sponding to the international 10-20 system. Right: Electrode montage of the three monopolar
EOG channels

The second dataset is the High-Gamma Dataset (HGD) [58], which consists of EEG recordings
from 14 healthy subjects, with an average age of 27.2 years, including six female participants.
Each subject performed 1000 trials of 4-second duration. Unlike the BCIC_iv-2a dataset, the
High-Gamma EEG signals were recorded during motor execution tasks using 128 EEG channels,

and were also sampled at 250 Hz. This dataset includes four motor movement tasks:
e Class 1: Left hand movement
e (lass 2: Right hand movement
e (lass 3: Both feet movement

e Class 4: Rest

73



5.2.3 Dataset Preprocessing

In the BCIC_iv-2a dataset, all 22 EEG channels are utilised in this project. For the HGD
dataset, however, only 44 out of the original 128 channels are selected, specifically those covering
the motor cortex, excluding the Cz channel. Given that the BCIC_iv-2a dataset pertains
to motor imagery (MI), only EEG signals below 40 Hz are relevant. Although the original
recordings underwent filtering between 0.5 Hz and 100 Hz, we further preprocess by first scaling
the signals by 10° to convert the unit from V to uV. The data is then bandpass-filtered within
the range of 4-38 Hz. For the HGD dataset, which involves motor execution tasks, a broader
range is retained due to the importance of gamma band () frequencies in movement-related

EEG activity. Accordingly, we apply a bandpass filter from 4 Hz to 123 Hz.

Following bandpass filtering, we standardise the data within each trial using a channel-wise
moving mean and variance, dynamically adjusting to local trends in each trial. Let x; represent
the original EEG signal at time ¢, and x} denote the standardised signal. The standardised

signal z; is calculated as follows:

(5.1)

where p; and ¢ are the moving mean and variance at time ¢, respectively. To calculate these,
we use a decay factor of 0.999 to balance immediate and historical data, ensuring that the
standardisation remains responsive to new values while preserving stability across the trial.

The moving mean p; and variance o2 are updated with the following recursive formulas:

o2 = 0.001(z; — 1)* +0.99907 | (5.3)

Here, the decay factor allows each new value to contribute 0.1% to the updated mean and vari-
ance, while the previous values retain 99.9% of the weight. This method provides a continuous
standardisation that adapts to changes in the signal over time, improving the robustness of the

feature extraction and classification stages.
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5.2.4 Feature Extraction

In this project, we use a window-based approach to classify EEG signals, extracting a compre-
hensive set of features specifically for the GNN pathway. These features include time-domain
features, frequency-domain features, wavelet transform coefficients, and band-specific power

ratios.

For the GNN pathway, time-domain features capture fundamental statistical characteristics
of the EEG signal within each window. Calculated features include the mean and standard
deviation to provide an overall measure of the signal level and variability. Root mean square
(RMS) represents signal power, which is especially relevant for analysing the energy content in
EEG data. Additionally, skewness and kurtosis are computed to characterise the asymmetry
and "tailedness” of the signal distribution, allowing us to identify any significant deviations or
outliers. Zero-crossing rate (ZCR) measures the frequency content of the signal by counting
the number of times it crosses the zero axis. Peak-to-peak amplitude captures the full range of
signal fluctuations, and entropy serves as a measure of the signal’s randomness or complexity,

which can help differentiate structured brainwave activity from less predictable patterns.

The frequency-domain features are obtained by calculating the power spectral density (PSD)
of the signal using Welch’s method, providing a detailed breakdown of signal power across
different frequency components. Band-specific power is calculated within key EEG frequency
bands - 0 (4-8 Hz), a (8-13 Hz), 8 (13-30 Hz), and « (30-38 Hz) by integrating the PSD across
each band’s range, allowing us to capture cognitive-state-specific activities associated with
these bands. Additional frequency-domain features include mean frequency, which indicates
the central tendency of the frequency distribution by weighting each frequency by its power,
and median frequency, which divides the power spectrum into two equal halves, indicating
energy concentration. Spectral entropy measures the complexity of the frequency distribution
by calculating the entropy of normalised PSD values. Hjorth mobility and Hjorth complexity
are also computed, assessing the rate of change and complexity of the frequency components,

respectively.

To capture transient features in the signal, wavelet transform coefficients are extracted using the
Discrete Wavelet Transform (DWT), which decomposes the signal into various frequency bands.
For each level of decomposition, the mean and standard deviation of the wavelet coefficients
are calculated, offering a refined view of signal changes over time. This approach is beneficial

for identifying non-stationary events in the EEG, which are common in brain activity.

Band-specific power ratios are also calculated to reveal the relative power contributions of
different frequency bands, providing insights into the EEG’s dynamic state. Ratios such as the
beta-to-alpha ratio serve as indicators of cognitive load and alertness, while the gamma-to-theta
ratio can reflect high-frequency engagement relative to slower theta activity. The alpha-to-theta

ratio offers insights into relaxation versus alertness states.

Together, this feature extraction pipeline yields a total of 29 features for the BCIC_iv-2a dataset.
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For the HGD dataset, additional gamma sub-bands are included - 7,0,y (30-60 Hz), Ypmiq (60-90
Hz) and vpign (90-123 Hz) resulting in a total of 31 features.

In contrast, the CNN pathway requires no manual feature extraction. Temporal features
within each EEG window are automatically extracted using a temporal convolution layer
(Temp_Conv), where 25 filters are applied to each EEG channel to capture temporal patterns.
This is followed by spatial feature extraction across EEG channels using another set of 25 fil-
ters, capturing inter-channel relationships. This end-to-end CNN approach enables automatic
learning of complex temporal and spatial patterns in the EEG data, which can significantly

enhance classification accuracy.

5.2.5 Graph Preliminary
Graph Representation

Consider a directed weighted graph represented as G = {V, E}. Here, |V| = N denoted the
number of nodes and |E| was the count of edges connecting the nodes. The node set was
defined as V = {vy,v9,...,v,}. The node feature matrix of the entire graph was represented
by X € R¥*F where F, the number of features, is equal to 1. The adjacency matrix, denoted
as A € RV*N captured the graph’s overall topology. Specifically, if an edge existed between
nodes v; and v; (i.e., (v;,v;) € E), then A[i, j] # 0. Otherwise, A[s, j] = 0.

The adjacency matrix for the PCC method, AP¢¢ € RV*N was defined in Equation 5.5, where
I was the identity matrix and |P| was the absolute PCC matrix of dimension of N x N. Each

element Pj; of P was calculated using Equation 5.4 as follows:

P, - cov(z;, x;) (5.4)

0,035

The absolute PCC matrix |P| captured the linear correlations between EEG channel signals,

APCC

with its elements satisfied 0 < |P;;| < 1. The adjacency matrix is given by:

APCC —|p| -1 (5.5)

The degree matrix, D, was a diagonal representation of A, where the i diagonal element of
D was computed as Dj; = Zjvzl A;j. The combinatorial Laplacian matrix, L € RV was
described as L = D — A. A normalised version of this combinatorial Laplacian can be obtained
with L = Iy — D~Y2AD~1/2,

Spectral Graph Filtering

The eigenvectors of the graph Laplacian matrix can be expressed as graph Fourier modes, with

{u};y" € RY. The diagonal matrix of these Fourier frequencies, A = diag[\o, ..., Av_1] €
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RM*N_We defined the Fourier basis, U = [ug, ..., uy_1] € R¥*¥ which allows for the decom-
position of the Laplacian matrix, L, into L = UAUT. The signal x can be transformed by
graph Fourier into & € RY using # = U”z, while the inverse graph Fourier transform is given

by x = Uz. The convolution operation on graph G is defined as:

6 9=U((U"2) @ (Ug)) (5.6)

where g represents the convolutional filter and ® denotes the Hadamard product. Given that
go(N) = diag(0), where 0 € RY represents the vector of Fourier coefficients, the Graph convo-

lution operation can be implemented as follows:

T xq go = go(UANUT )z = Ugy(AN) U 2 (5.7)

where gy is a non-parametric filter, and polynomial approximation is employed to mitigate the
excessive computational complexity. Chebyshev graph convolution, a specific instance of graph
convolution, utilises Chebyshev polynomials for filter approximation [115]. The approximation

of go(A) under the K™ order Chebyshev polynomial framework is given by:

K—1
k=0
where
n 2A
A= 7 .

In the above Equation 5.8, Tk(A) € R is the k™" order Chebyshev polynomial evaluated using
Equation 5.9. Then, the signal z is convolved with the defined filter gy using the following

equation:

K—-1 K-1
vacgo=U» OT(MU =Y 0T (L) (5.10)
k=0 k=0

Normalising A can be achieved by using Equation 5.9, where A,,,, denotes the largest entry
in the diagonal of A, and Iy represents the diagonal matrix of the scaled eigenvalues. In the

above Equation 5.10, Ty(L) is the Chebyshev polynomial of order k evaluated at the scaled
Laplacian, L which is defined in the Equation 5.11 as:

~ 2L
I =

— Iy (5.11)

)\max

77



Let 7, = T},(L)z € RY, where a recursive relation is used to compute 7 using Equation 5.12
with Zo = z and #; = Lx. One key advantage of using the Chebyshev polynomial to approx-
imate convolutional filters is that it inherently avoids the need to compute the graph Fourier

basis. The recursive relation is given by:
Tp = 20Ty — Tpo (5.12)

5.2.6 Model Setting

The EEG signal X € RM*1900 s processed through two distinct pathways: a CNN pathway
and a GNN pathway. Here, N represents the number of EEG channels, with 22 channels in the
BCIC_iv-2a dataset and 44 channels in the HGD dataset.

In the GNN pathway, X first passes through the Feature Extractor block, where node features
for the GNN are extracted, as detailed in Section 5.2.4. The number of extracted features,
denoted by Fjp, is 29 for the BCIC_iv-2a dataset and 31 for the HGD dataset. Subsequently,
the signal progresses through a series of GNN layers, reaching the GN layer, where it takes the
shape N x Fiy (with Fy equal to 64 for the BCIC_iv-2a dataset and 32 for the HGD dataset).
Within the GNN block, an activation layer employing the Exponential Linear Unit (ELU)
is applied, as shown in Equation 5.13, where (3, a hyperparameter controlling saturation for
negative inputs, is set to 0.1 in this project. Each GNN layer is followed by a batch normalisation
(BN) layer, which rescale and recenter the signals to match their original distribution within a
mini-batch (set to 64 in our project). This normalisation helps address internal covariate shift
and mitigates potential gradient vanishing or exploding issues. Finally, after the GNN layers,

the signal is flattened to 1408 dimensions.

The ELU activation function is defined as:

x ifz>0
ELU(z) = (5.13)
ple*—1) ifx <0

In parallel, the EEG signal X € R¥*1000 j5 processed through the CNN pathway. This pathway
begins with the Temp_Conv block, designed to extract temporal features from the EEG signal.
Each EEG channel has M, filters, resulting in a total of My x N filters in this block, producing
an output with shape My x N x 991. The signal then proceeds through the spatial CNN
block, denoted C', containing M; 2D filters that extract spatial features from the EEG signal,
resulting in an output shape of M; x 991. Each CNN operation is followed by a max pooling
layer, along with an ELU activation layer and a BN layer. After passing through the final CNN
block, the signal is flattened to 1400 dimensions.

The outputs from the GNN and CNN pathways are then concatenated, resulting in a combined
dimension of 2808, which is fed into the Fully Connected (FC) blocks. Three FC layers are
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applied, with dimensions H;, Hs, and finally O, where O represents the number of classes (4 for
both the BCIC_iv-2a and HGD datasets). Following the FC layers, a softmax layer is applied,
as shown in Equation 5.14, to obtain the predicted probability for each class. The loss function

used is cross-entropy loss, detailed in Equation 5.15. The softmax function is defined as:

Zj:l evs
The cross-entropy loss is given by:
| B.O
Loss = T Z Z Yp,i- log(Softmax (7)) (5.15)
b=1 i=1

A general overview of the model is provided in Figure 5.1 and Table 5.1. The model settings and
hyperparameters are further detailed in Tables 5.2 and Table 5.3, respectively. Both accuracy
and F1 score evaluation metrics were employed to assess the performance of models. The

accuracy is defined as:

TP+ TN
A = 1
Y = TP FP+ TN+ FN (5.16)
The recall is given by:
TP
l=——— 1
Reca TPLFN (5.17)
The precision is defined as:
TP
Precision = ———— 5.18
recision = s (5.18)

The F'1 score is given by:

Precision x Recall
F1 =2 1
Score % Precision + Recall (5.19)
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Table 5.1: Generalised Architecture of EEG_SGNet Model

Layer Type Input Size Weights Output Size Activation
Input Input N x 1000 - - -
GNN Pathway

FE Feature Extractor N x 1000 - N x Iy -

Gl1 Graph Convolution N x Fy Iy x Iy N x Fy ELU

G2 Graph Convolution N x Fy Fy x Iy N x F, ELU
GN Graph Convolution N x F, F x Fy N x Fy ELU
Flat Flatten N x Fy - 1408 -

CNN Pathway

Temp  ConvlD, (M, x N) filters,
N %1000 (My#N)x 10 Myx N x 991 ELU

Conv 10-kernel, stride 1
Conv2D, M, filters,
C1 ) Myx N x991 M; x1x991  M; x 991 ELU
(N x 1) kernel, stride 1 x 1
MaxPoollD, 3-kernel,
CP1 ) M; x 991 - M; x 330 -
stride 3
Conv1D, M, filters,
C2 _ M; x 330 My x 3 My x 107 ELU
10-kernel, stride 3
MaxPool1D, 10-kernel,
CP2 . M, x 321 ; M, x 25 ]
stride 4
Flat Flatten My x 25 - 1400 -
Feature Combination
Concat Concatenation 1400 & 1408 - 2808 -
Fully Connected Block
FC1 Fully Connected 2808 2808 x H; H; ELU
FC2 Fully Connected H, H, x Hy H, ELU
FC3 Fully Connected H, Hy, x O O -
S Softmax @) - @] -
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Table 5.2: Model Settings of EEG_SGNet

Number of
Number of Number of ]
Model Model Framework i ) FC Hidden
GCN Filters CNN Filters
odes
G —-—BN)x2—-P|//[TC - (C —
A )% /71 ( 512, 64 25 56 2808, 256, 4
BN —-CP)x2]—(FC—-BN)x2-S
[(G—BN)x3-P]//[TC - (C -
B 512, 256, 64 25, 56 2808, 256, 4
BN —-CP)x2]—(FC—BN)x2-S
G —BN)x4—-P|//|TC - (C - 512, 256, 128
C I ) % /1 ( ’ ’ ’ 25, 56 2808, 256, 4
BN —-CP)x2]—(FC—BN)x2-S 64
[(G—BN)x2-P]//][TC— (C -
D 512, 64 25, 50, 50 2808, 256, 4
BN —-CP)x3]—(FC—-BN)x2-S
[(G—BN)x3-P]//[TC— (C -
E 512, 256, 64 25, 50, 50 2808, 256, 4
BN —-CP)x3]—(FC—-BN)x2-S
[(G—BN)x4—-P]//[TC - (C— 512,256, 128,
F 25, 50, 50 2808, 256, 4
BN —-CP)x3]—(FC—-BN)x2-S 64
G —-BN)x2-P|//[TC - (C — 25, 50, 100
G I )% /71 ( 512, 64 T " 2808, 256, 4
BN —-CP)x4]—(FC—-BN)x2-S 200
[(G—BN)x3-P]//[TC—(C - 25, 50, 100,
H 512, 256, 64 2808, 256, 4
BN —CP)x4]—(FC—-BN)x2-S 200
[(G—BN)x4—P]//[TC - (C— 512,256, 128, 25, 50, 100,
| 2808, 256, 4
BN —CP)x4]—(FC—-BN)x2-S 64 200

Table 5.3: Hyperparameter Settings for Training EEG_SGNet

Hyperparameter Value
Training Epochs (N.,) 500
Batch Size (B) 64

Optimizer Adam

Initial Learning Rate (n) 0.001

L2 Regularisation Rate (A\)  0.0005
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Table 5.4: Maximum Accuracy Achieved by Various Methods for Each Subject on the BCIC _iv-
2a Dataset

PCC PCC (alpha) EEG_GLT EEG_GLT (alpha)
Acc F1 Acc F1 Acc F1 Acc F1
S 80.34%  80.29% 80.35%  80.32% 86.13%  86.10%  89.02% 88.92%
S 63.06% 62.88%  64.16% 64.35%  58.96%  58.65% 59.54%  59.94%
Ss 84.39%  84.23% 85.55%  85.45% 90.76%  90.72%  93.07% 93.06%
Sy 80.35%  80.49%  82.08% 82.21%  79.77%  79.76% 80.35%  80.32%
Ss 61.27%  61.25% 63.01%  63.20% 64.16%  63.96%  66.47% 66.32%
Se 71.10%  71.01% 73.41%  72.98% 74.94%  74.25%  75.14% 75.22%
S7; 91.36%  91.22% 92.49%  92.52% 94.22%  94.25%  95.38% 95.39%
Ss 85.17%  85.18% 86.49%  86.38% 88.44%  88.37%  93.64% 93.65%
S 82.02%  82.01% 83.02%  83.01% 84.97%  84.86%  87.86% 87.81%

Subj

5.3 Results and Discussion

5.3.1 PCC vs EEG_GLT Adjacency Construction Method

The EEG_SGNet model integrates parallel CNN and GNN pathways. Within the GNN path-
way, two adjacency construction methods were employed: Pearson Correlation Coefficient
(PCC) and the proposed EEG_GLT, introduced in Section 3.3.4 and Section 3.3.5 respectively.
For the BCIC_iv-2a dataset, the average accuracy and F1 score achieved using EEG_GLT were
consistently higher than those obtained with PCC across all model configurations (Models A
to I). This demonstrates the superiority of EEG_GLT over PCC, regardless of the model ar-

chitecture. On average, the EEG_GLT adjacency construction method improved accuracy by

3%.

When using the same model settings, the EEG_GLT method with the inclusion of an o param-
eter achieved the highest average accuracy across all configurations, except for Models B and
C. Even in these exceptions, the highest average accuracy was achieved by EEG_GLT without
the o parameter, as shown in Tables 5.6 and 5.7. Specifically, EEG_GLT with « achieved an
average accuracy of 80.93% and an F1 score of 80.79%. Without o, EEG_GLT achieved an
average accuracy of 79.42% and an F1 score of 79.24%. In comparison, PCC with « achieved
an average accuracy and F1 score of 78.74% and 78.45%, respectively, while PCC without «
achieved 78.74% and 78.69%.

In subject-specific performance, EEG_GLT, both with and without « values, consistently out-
performed PCC in most subjects, except for S and Sy where PCC demonstrated better per-
formance, as shown in Table 5.4. Notably, EEG_GLT improved accuracy by 8.68% for S; and
Ss3, and by 8.47% for Ss.

For the HGD dataset, the average accuracy across 14 subjects showed no significant differences
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Figure 5.3: Boxplot of Average Accuracy Across Subjects for Different Adjacency Construction
Methods Across Model Settings on the BCIC_iv-2a Dataset

100 A PCC

PCC (alpha)
mm EEG_GLT
Bmm EEG_GLT (alpha)

S5

Figure 5.4: Maximum Accuracy Achieved with Each Adjacency Construction Method Across
Different Model Settings for Subjects S; to S5 on the BCIC _iv-2a Dataset
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Figure 5.5: Maximum Accuracy Achieved with Each Adjacency Construction Method Across
Different Model Settings for Subjects Sg to Sg on the BCIC_iv-2a Dataset

between adjacency construction methods for each model, as presented in Tables 5.8 and 5.9.
This lack of differentiation may be due to the higher signal clarity and distinguishability in
the HGD dataset compared to the BCIC_iv-2a dataset. Nevertheless, the EEG_GLT meth-
ods consistently outperformed PCC in terms of average accuracy and F1 scores. The overall
model performance, depicted in Figure 5.6, indicates that EEG_GLT had narrower interquartile
ranges (IQRs), reflecting more consistent accuracy compared to PCC and PCC with « values.
Regarding outliers, all methods exhibited results below 90%; however, PCC showed more ex-
treme outliers. In contrast, EEG_GLT had fewer and less extreme outliers, suggesting greater

reliability under varying parameter settings and model architectures.

In terms of subject-specific performance, adjacency methods incorporating « values did not
consistently outperform their counterparts, as shown in Table 5.5. However, the proposed
EEG_GLT methods achieved higher accuracy than PCC for most subjects, except for S3 and
Si3. For some subjects (S, So, Si4), all methods achieved identical results, with perfect
accuracy (100%).

5.3.2 Impact of CNNs and GNNs Layers

This project evaluates nine combinations of GNN and CNN pathways, as detailed in Table 5.2.
Models A, B, and C use a fixed two-layer CNN while varying the number of GNN layers from
two to four. Similarly, Models D, E, and F employ a fixed three-layer CNN with two to four
GNN layers, and Models G, H, and I utilise a fixed four-layer CNN with the same variation in
GNN layers. For the BCIC_iv-2a dataset, the lowest accuracy was observed in Models A, B,
and C, which use two CNN layers, as shown in Tables 5.6 and 5.7.

The highest performance accuracy was achieved with three CNN layers. However, increasing
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Table 5.5: Maximum Accuracy Achieved by Various Methods for Each Subject on the HGD

Dataset
Subj PCC PCC (alpha) EEG_GLT EEG_GLT (alpha)
Acc F1 Acc F1 Acc F1 Acc F1
St 98.61%  98.60% 97.92%  97.93%  100.00% 100.00%  99.31%  99.31%
S5 92.12%  92.09% 92.81%  92.80% 92.12%  92.10% 93.49% 93.49%
S 97.28%  97.28% 97.44% 97.44% 97.12%  97.11% 97.12%  97.12%
Sy 100.00% 100.00%  99.84%  99.84%  100.00% 100.00% 100.00% 100.00%
S5 99.62%  99.62% 99.81%  99.81% 99.81%  99.81% 100.00% 100.00%
S 98.08%  98.08% 98.08%  99.08% 98.72%  98.72% 99.36% 99.36%
Sy 92.95%  92.97% 93.27%  93.30% 93.91% 93.93% 93.27%  93.27%
Sg 97.14%  97.14% 97.55%  97.55% 98.37% 98.37% 97.96%  97.96%
Sy 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%
S0 98.72% 98.72% 98.40%  98.40% 98.72% 98.72%  98.72% 98.72%
St 99.68%  99.68% 99.68%  99.68%  100.00% 100.00% 100.00% 100.00%
S12 99.68%  99.68% 99.68%  99.68%  100.00% 100.00% 100.00% 100.00%
Sz 98.61% 98.61% 97.57%  97.57% 98.26%  98.26% 97.92%  97.92%
S14 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%
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Figure 5.6: Boxplot of Average Accuracy Across Subjects for Different Adjacency Construction

Methods Across Model Settings on the HGD Dataset
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Figure 5.7: Maximum Accuracy Achieved with Each Adjacency Construction Method Across
Different Model Settings for Subjects S; to S7 on the HGD Dataset
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Figure 5.8: Maximum Accuracy Achieved with Each Adjacency Construction Method Across
Different Model Settings for Subjects Sg to S14 on the HGD Dataset
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Table 5.6: Average Accuracy and F1 Score Across Subjects for Models A to E with Different
Adjacency Matrix Construction Methods on the BCIC_iv-2a Dataset

Model

Method

Accuracy
(Mean £ Std)

F1 Score
(Mean £ Std)

Model A

PCC
PCC (alpha)
EEG_GLT
EEG_GLT (alpha)

68.46% + 16.34%

69.04% + 15.28%

70.33% + 13.85%
72.77% + 13.55%

68.36% + 16.34%

68.98% + 15.50%

70.04% + 14.03%
72.79% + 13.41%

Model B

PCC
PCC (alpha)
EEG_GLT
EEG_GLT (alpha)

68.40% + 13.90%
68.85% + 15.69%
70.71% + 13.70%
69.62% + 17.47%

68.31% + 13.76%
68.78% =+ 15.62%
70.70% + 13.67%
69.51% + 17.59%

Model C

PCC
PCC (alpha)
EEG_GLT
EEG_GLT (alpha)

68.59% + 15.76%
67.12% + 16.77%
70.01% + 15.04%
69.81% + 16.18%

68.36% + 15.81%
66.99% + 16.77%
69.89% + 15.12%
69.59% + 16.37%

Model D

PCC
PCC (alpha)
EEG_GLT
EEG_GLT (alpha)

77.58% £ 12.41%

78.45% 4+ 13.26%

79.42% + 11.24%
80.92% + 14.09%

77.47% £ 12.48%

78.49% + 13.14%

79.24% + 11.52%
80.94% + 14.01%

Model E

PCC
PCC (alpha)
EEG_GLT
EEG_GLT (alpha)

77.83% + 13.26%

78.74% + 10.65%

79.00% + 12.26%
80.93% + 12.44%

77.69% + 13.14%

78.69% + 10.77 %

78.88% + 12.35%
80.79% + 12.54%
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Table 5.7: Average Accuracy and F1 Score Across Subjects for Models F to I with Different

Adjacency Matrix Construction Methods on the BCIC_iv-2a Dataset

Model

Method

Accuracy
(Mean £ Std)

F1 Score
(Mean £ Std)

Model F

PCC
PCC (alpha)
EEG_GLT
EEG_GLT (alpha)

77.93% + 12.29%

78.45% + 11.65%

79.10% + 13.76%
80.15% + 12.81%

77.83% + 12.32%

78.49% + 11.59%

70.03% + 13.88%
80.11% + 12.73%

Model G

PCC
PCC (alpha)
EEG_GLT
EEG_GLT (alpha)

68.59% + 16.95%
68.21% + 17.78%
69.62% + 16.98%
71.48% + 18.94%

68.42% + 17.10%
68.03% + 17.54%
69.47% + 17.00%
71.27% + 19.13%

Model H

PCC
PCC (alpha)
EEG_GLT
EEG_GLT (alpha)

69.78% + 16.28%
68.66% =+ 18.21%
70.52% 4+ 16.67%
71.80% + 18.28%

69.72% + 16.20%

68.43% + 18.09%

70.44% =+ 16.53%
71.63% + 18.41%

Model 1

PCC
PCC (alpha)
EEG_GLT
EEG_GLT (alpha)

68.68% + 18.70%
68.14% + 16.66%
70.91% + 16.30%
71.93% + 18.21%

68.40% + 18.98%
67.98% + 16.54%
70.80% + 16.33%
71.82% + 18.11%
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Table 5.8: Average Accuracy and F1 Score Across Subjects for Models A to E with Different
Adjacency Matrix Construction Methods on the HGD Dataset

Accuracy F1 Score
Model Method
(Mean £ Std) (Mean £ Std)
PCC 95.23% 4+ 5.07% 95.23% + 5.05%
PCC (alpha) 04.75% & 4.63% 94.36% + 5.29%
Model A
EEG_GLT 95.57% 4+ 4.57% 95.57% £ 4.56%
EEG_GLT (alpha)  95.84% + 4.62% 95.85% + 4.59%
PCC 94.62% =+ 5.70% 94.62% =+ 5.70%
PCC (alpha) 94.19% =+ 5.90% 94.17% =+ 5.90%
Model B
EEG_GLT 95.25% + 4.86% 95.25% + 4.86%
EEG_GLT (alpha) 95.23% + 5.18% 95.25% + 5.12%
PCC 94.98% 4+ 4.97% 94.98% + 4.96%
Vodel ¢ PCC (alpha) 95.19% + 5.12% 95.17% + 5.16%
0ce EEG_GLT 95.39% + 4.73% 95.38% + 4.75%
EEG_GLT (alpha) 95.51% + 4.89% 95.48% + 4.98%
PCC 97.47% £+ 3.04% 97.46% =+ 3.05%
PCC (alpha) 97.44% + 2.74% 97.44% + 2.74%
Model D
EEG_GLT 97.98% + 2.49% 97.98% =+ 2.49%
EEG_GLT (alpha) 97.71% =+ 2.76% 97.70% + 2.77%
PCC 97.36% £ 2.57% 97.37% £ 2.57%
PCC (alpha) 97.33% £ 2.97% 97.33% 4+ 2.96 %
Model E
EEG_GLT 97.90% =+ 2.64% 98.01% =+ 2.61%

EEG_GLT (alpha)

98.18% + 2.24%

98.18% + 2.25%

the number of CNN layers to four resulted in a slight drop in accuracy, though it remained
higher than the accuracy achieved with two-layer CNNs. Thus, the optimal number of CNN
layers for the BCIC _iv-2a dataset is three. A similar trend was observed for the HGD dataset,
where the best performance was also achieved with three CNN layers, as shown in Tables 5.8
and 5.9.

In contrast, the number of GNN layers did not have a significant impact on performance
accuracy. However, this does not imply that GNNs are unimportant in the architecture. The
results demonstrate that the choice of adjacency matrix construction method plays a crucial
role in model performance. This is likely because the BCIC_iv-2a dataset contains only 22
nodes, and the HGD dataset contains 44 nodes. With just two hops of graph embedding, the
features of all associated nodes are already embedded within the graph, reducing the marginal
benefit of additional GNN layers.
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Table 5.9: Average Accuracy and F1 Score Across Subjects for Models F to I with Different
Adjacency Matrix Construction Methods on the HGD Dataset

Model

Method

Accuracy
(Mean £ Std)

F1 Score
(Mean £ Std)

Model F

PCC
PCC (alpha)
EEG_GLT
EEG_GLT (alpha)

97.58% + 2.70%
97.29% =+ 2.86%
97.86% + 2.62%
98.07% + 2.40%

97.58% + 2.70%

97.29% + 2.85%

97.86% + 2.61%
98.07% + 2.39%

Model G

PCC
PCC (alpha)
EEG_GLT
EEG_GLT (alpha)

96.40% + 4.27%
96.48% =+ 3.86%
96.95% =+ 3.66%
96.78% + 4.14%

96.40% + 4.27%

96.47% =+ 3.88%

96.96% =+ 3.64%
96.78% + 4.15%

Model H

PCC
PCC (alpha)
EEG_GLT
EEG_GLT (alpha)

96.46% + 4.05%
96.19% + 3.96%
97.03% + 3.64%
96.68% + 4.22%

96.47% + 4.04%
96.19% + 3.96%
97.03% + 3.65%
96.67% + 4.24%

Model 1

PCC
PCC (alpha)
EEG_GLT
EEG_GLT (alpha)

96.53% + 4.13%
95.83% =+ 4.04%
97.14% =+ 3.47%
96.79% + 4.29%

96.52% + 4.14%
95.84% + 4.03%
97.12% =+ 3.50%
96.79% + 4.31%
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Table 5.10: Performance Comparison of EEG_SGNet Model with State-of-the-Art Models on
BCIC_iv-2a Dataset

Method Avg. Accuracy Avg. F1 Score
ShallowNet [58] 72.05% 71.93%
FBCSP+CNN [146] 74.46% 74.38%
WaSFNet [147] 68.18% 68.04%
EEGNet [108] 72.40% 72.15%
EEG-Conformer [150] 74.56% 74.38%
EEG-TCNet [148] 77.35% 77.18%
ADDFM+3M3DCNN [149] 80.04% 79.95%
SSDA [110] 61.56% 59.84%
DG-HAM [123] 76.36% 76.56%
GSAN [151] 77.15% 77.08%
Proposed EEG_SGNet 82.98% 82.88%

5.3.3 Comparison with Current State-of-the-Art Models

For the BCIC_iv-2a dataset, we compare our proposed EEG_SGNet with ten state-of-the-
art (SOTA) models, as summarised in Table 5.10. These models include ShallowNet [58],
FBCSP+CNN [146], WaSFNet [147], EEGNet [108], EEG-TCNet [148], 4ADDFM+3M3DCNN
[149], SSDA [110], DG-HAM [123], EEG-Conformer [150], and GSAN [151]. Among these,
SSDA, which employs a columnar spatio-temporal auto-encoder with CNN and LSTM layers
in both the encoder and decoder, achieves the lowest average accuracy at 61.56%. This per-
formance is lower than that of ShallowNet, a simple two-layer CNN model, which achieves
72.05%, and FBCSP+CNN, which combines Filter Bank Common Spatial Pattern (FBCSP)
with CNNs to achieve a slightly higher accuracy of 74.46%.

WaSFNet, incorporating a time-frequency convolution layer and a spatial convolution layer,
achieves an average accuracy of 68.18%. EEGNet, a compact 2D CNN architecture, achieves a
slightly better accuracy of 72.4%. EEG-Conformer, which combines CNNs and Transformers,
outperforms EEGNet with an accuracy of 74.56%. EEG-TCNet, which introduces a residual
block on EEGNet, further improves the accuracy to 77.35%. Similarly, GSAN, a subdomain
adversarial network utilising EEG graph data, achieves a high accuracy of 77.15%. The highest
accuracy among the existing SOTA models is achieved by 4ADDFM+3M3DCNN, which combines
a 4D Dipole Feature Matrix with 3D CNNs, reaching 80.04%. In comparison, our EEG_SGNet,
a parallel architecture of CNNs and GNNs, surpasses all these models with an average accuracy

of 82.98%.

For the HGD dataset, we compare EEG_SGNet with eight SOTA models, as detailed in Ta-
ble 5.11. These include ShallowNet [58], EEGNet [108], EEG-ITNet [152], CRGNet [153],
EEG-Conformer [150], LMDA-Net [154], IFNet [155], and GCNs-Net [100]. The HGD dataset,
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Table 5.11: Performance Comparison of EEG_SGNet Model with State-of-the-Art Models on
HGD Dataset

Method Avg. Accuracy Avg. F1 Score
ShallowNet [58] 93.04% 92.87%
EEGNet [108] 87.99% 87.85%

EEG-ITNet [152] 84.87% 84.74%
CRGNet [153] 94.33% 94.28%
EEG-Conformer [150] 93.48% 93.32%
LMDA-Net [154] 87.68% 87.49%
IFNet [155] 93.62% 93.28%
GCNs-Net [100] 96.24% 96.18%
Proposed EEG_SGNet 98.56% 98.56%

which comprises EEG signals of motor movements, has more distinguishable class signals com-
pared to motor imagery datasets like BCIC_iv-2a. As a result, most SOTA models achieve over
90% accuracy, except for EEG-ITNet (84.87%), EEGNet (87.99%), and LMDA-Net (87.68%).
EEG-ITNet, a CNN-based model that includes inception and temporal convolution (TC) blocks,
underperforms compared to the simpler two-layer CNN model ShallowNet, which achieves
93.04%.

EEG-Conformer performs slightly better than ShallowNet, while [FNet, a model employing
1D CNN operations for low- and high-frequency EEG bands with cross-frequency integration,
achieves an accuracy of 93.62%. CRGNet, which incorporates Riemannian manifold embedding
after CNN operations, achieves the second-highest accuracy among SOTA models at 94.33%.
The highest accuracy among the existing SOTA models is achieved by GCNs-Net, a spectral
GNN approach using PCC for adjacency matrix construction, with 96.24%. In comparison, our
proposed EEG_SGNet outperforms all existing SOTA models, achieving the highest accuracy
of 98.56%.

5.4 Limitations and Future Works

EEG_SGNet has demonstrated strong performance in EEG-based MI and movement classifi-
cation by integrating CNN and GNN with EEG_GLT adjacency matrix construction method.
The single-subject paradigm used in this study allows for a highly personalised model that
captures individual-specific neural patterns effectively. This approach optimises classification
accuracy by leveraging subject-specific signal characteristics. However, EEG signals naturally
vary across individuals due to anatomical, physiological, and cognitive differences, which are
important factors to consider when extending the model to broader user populations. While
EEG_SGNet is designed to extract meaningful spatial-temporal features, further evaluations in

cross-subject settings would provide valuable insights into its adaptability.
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The computational efficiency of EEG_SGNet has been significantly improved through the incor-
poration of the EEG_GLT method for adjacency matrix construction, which reduces complexity
in the GNN pathway. However, for real-time rehabilitation applications, further optimisations
like lightweight model compression techniques. Future research could also focus on improving
model adaptability for multiple users through adaptive calibration or transfer learning, ensuring

that EEG_SGNet remains robust and scalable for practical neurorehabilitation settings.

5.5 Conclusion

The EEG_SGNet architecture represents a significant advancement in EEG signal classification,
particularly for datasets with inherent temporal information. By utilising a parallel architecture
of CNN and GNN pathways, our model effectively extracts valuable features from EEG signals.
The CNN pathway captures both spatial and temporal features through the application of
optimised filters, while the GNN pathway extracts a diverse set of features, including time-
domain and frequency-domain characteristics, wavelet transform coefficients, and band-specific

power ratios within each window.

To further enhance the model’s performance, the EEG_GLT method was employed for con-
structing the adjacency matrix in the GNN pathway. This approach improved both perfor-
mance accuracy and computational efficiency compared to traditional PCC-based methods.
Consequently, EEG_SGNet outperformed state-of-the-art models, achieving an average accu-
racy improvement of 2.95% on the BCIC_iv-2a dataset (EEG motor imagery classification) and
2.32% on the HGD dataset (EEG movement classification).

While this study focuses on window-based classification, it underscores EEG_SGNet’s ability
to leverage temporal information for robust and reliable performance. Although a four-second
window was used in this study, future research will aim to optimise EEG_SGNet for shorter
window sizes, such as 500 ms, making it better suited for real-time applications and expanding

its applicability to a broader range of EEG analysis tasks.

5.6 Significance and Novelty

This chapter introduces EEG_SGNet, a parallel deep learning architecture that combines Con-
volutional Neural Networks (CNNs) and Graph Neural Networks (GNNs) for EEG signal de-
coding. The significance of EEG_SGNet lies in its ability to address both temporal and spatial
complexities of EEG data. By leveraging the CNN pathway for temporal feature extraction and
the GNN pathway for spatial dependencies, the model achieves state-of-the-art performance on
motor imagery and movement-related datasets, making it highly relevant for applications in

rehabilitation robotics and brain-computer interfaces (BCls).

The novelty of this work lies in its unified parallel architecture, which integrates spatial and

temporal analyses in a single framework. Unlike existing approaches that prioritise one type of
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feature extraction over the other, EEG_SGNet balances both, resulting in superior classification
accuracy and adaptability to diverse EEG datasets. This innovation sets a precedent for more

holistic and effective EEG analysis techniques.
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Chapter 6

A Real-time Framework for EEG
Signal Decoding with Graph Neural

Networks and Reinforcement Learning

6.1 Introduction

Brain-Computer Interfaces (BCIs) establish a connection between the brain and external control
devices. Originally developed to assist individuals with motor impairments [7], BCIs translate
brain signals acquired through measurements such as electrocorticography (ECoG) and elec-
troencephalogram (EEG) into actionable commands for electronic control devices including
wheelchairs and exoskeleton robots. Although ECoG offers superior signal quality over EEG,
its application in BCls is limited due to invasive route of acquisition, requiring the placement of
electrodes directly on the cerebral cortex [83]. Meanwhile, EEG is a much more accessible and
hence popular signal acquisition method as it involves non-invasive placement of electrodes on
the scalp. EEG is widely used to record various types of brain signals, from spontaneous and
stimulus-evoked signals to event-related potentials [84]. Its clinically relevant applications ex-
tend to dementia classification [156], depression state assessment [157], seizure detection [158],
and the classification of cognitive and motor tasks [159], including motor imagery (MI) tasks
[100], [157], [160].

MI involves the mental simulation of motor actions, such as movements of the hands, feet,
or tongue, without performing the physical movements [85], [86]. This technique is crucial in
neuroscience and rehabilitation, with real-world relevance especially for individuals with motor
impairments, such as stroke survivors. Through integration with an external control device,
MI enables the physically impaired to perform daily activities that are not otherwise possible,
leading to potentially life-changing benefits by improving quality of life and reducing the level
of chronic care. By integrating MI and BCIs, EEG based MI signals can be decoded and

used to control external devices, enabling real-time feedback and facilitating patient-intended
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movements through accurate signal interpretation [88].

Deep learning, a subset of machine learning, utilises multiple layers of neural networks to
process a variety of data forms. Convolutional Neural Networks (CNNs), which mimic natural
image recognition in the human visual system, are part of the deep learning family and excel in
computer vision tasks [89]-[91]. However, their application is restricted to Euclidean data, such
as 1-dimensional sequences and 2-dimensional grids [91]. CNNs struggle with non-Euclidean

data, failing to accurately capture the intrinsic structure and connectivity of the data.

Graph Convolutional Networks (GCNs) have been developed to perform convolutional opera-
tions on graphs, which can handle non-Euclidean data due to incorporating topological rela-
tionships during convolution. GCNs can represent complex structures and variations in these
structures, which may be heterogeneous or homogeneous, weighted or unweighted, signed or
unsigned [92]. They support various types of graph analyses, including node-level, edge-level,
and graph-level tasks [92], [113]. GCNs are particularly effective at classifying EEG signals as
a graph-level task [100], [144]. For this application, EEG signal readings from each channel are
treated as node attributes, and the relationships between EEG electrodes are represented by

an adjacency matrix, hence surpassing the capabilities of traditional CNNs.

There are two primary categories of GCNs: spatial [117]-[120] and spectral methods [114]-[116].
Some challenges are encountered with the spatial method [96], [121] especially in matching local
neighbourhoods. Both time domain and frequency domain features can be extracted from EEG
signals to perform GCN operations [98], [122], [156], [161]. Frequency domain features include
Power Spectral Density (PSD) and Power Ratio (PR) for various bands, such as § (0.5-4Hz),
0 (4-8Hz), o (8-13Hz), B (13-30Hz), and ~ (30-110Hz) within specified time windows. Time
domain features, such as Root Mean Square (RMS), skewness, minmax, variance, number
of zero crosses, Hurst Exponent, Petrosian fractal, and Higuchi, are also extracted for GCN
operations during specific time windows. These features are integral to window-based GCN
methods.

In the GCNs-Net [100], individual time point signals at each channel are treated as distinct

features. This method is designed for real-time EEG MI signal classification, focusing on —=s

1
160
time point signals. The constructing of an effective adjacency matrix is crucial for GCN opera-
tions, and different methods have been explored in various studies, including: Geodesic method,
which relies on geodesic distances between EEG channels [93]-[95], [160]; using Pearson coef-
ficient correlation (PCC) to evaluate interchannel correlations [96]-[100] ; and experimenting

with a trainable matrix approach [96], [102].

In the EEG_GLT-Net [144], a sophisticated algorithm known as the EEG Graph Lottery Ticket
(EEG_GLT) is used to optimise the adjacency matrix by exploring various density levels, in-
spired from the unified GNN sparsification technique (UGS) [103]. This method represents the
current state-of-the-art in adjacency matrix construction, significantly enhancing accuracy, F1

score, and computational efficiency on the EEG MI PhysioNet dataset [127] compared to the
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PCC and Geodesic methods. However, despite the overall superiority of this method, it remains
challenging to classify the EEG MI time points remains challenging for some subjects due to
signal ambiguity among different MI tasks at specific time points. Consequently, supervised

learning on these subjects involves training that forces classification of all the time points.

Reinforcement Learning (RL), another subset of machine learning, enables an RL agent to
learn sequential decision-making in dynamic environments to maximise cumulative rewards
[76]. RL has been primarily applied in robotics and autonomous systems, which require complex
sequential decision-making. Deep RL principles have been applied to optimise feature selection
for the Classification with Costly Features (CwCF') problem [162], across various public datasets
including miniboone [163], forest [164], cifar [165], wine [166], and mnist [90]. Others [167] have
trained an RL agent to minimise feature extraction costs in classifying electromyography (EMG)

signals [168], although this reduction in features compromised accuracy.

In this paper, we introduce EEG_RL-Net as a new algorithm, with more advanced capability
than existing methods for classifying EEG MI time point signals by combining GNNs and RL.
Initially, optimal graph features of EEG MI time point signals are extracted using the best
weights and adjacency matrix from an EEG_GCN block, refined to 13.39% density using the
EEG_GLT algorithm. Subsequently, the RL agent makes sequential decisions within an episode
of pre-defined horizon length to accurately classify the EEG MI signals. The main contributions
of this study are:

e EEG _RL-Net: A new approach for classifying EEG MI time point signals, using a
trained RL agent that determines whether to classify or skip each time point based on
GNN features. This method greatly enhances performance accuracy by achieving classi-

fication as swiftly as possible within predefined episode lengths.

¢ Optimal Reward and Max Episode Length Setting: We evaluated the accuracy and
classification speed under various reward settings and maximum episode lengths for each
subject, identifying the optimal combinations for simultaneously achieving high accuracy

and efficiency.

e Performance Validation: We evaluated the performance of each subject under optimal
settings against the state-of-the-art EEG_GLT-Net with my g7 matrix and PCC adja-
cency matrix. Our results showed significant enhancement of accuracy and efficiency on
the PhysioNet dataset.

6.2 Methodology

6.2.1 Overview

The EEG_RL-Net is comprised of two distinct parts. The overview of the EEG_RL-Net can be
seen in the Figure. The first part is training the EEG_GLT-Net to obtain the trained EEG_GCN
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block across different adjacency matrix density levels (100% - 13.39%) using Algorithm 1. The
main purpose of the EEG_GCN block was to extract EEG MI time points graph signal features.
This phase of training spanned from ¢ = 1s to t = 3s. Then, the optimal adjacency matrix
and GNN weights at the 13.39% of the adjacency matrix density was selected for the purpose

of the extracting graph features to save computation efficiency.

(a) EEG_GCN Block

-~

\

X Zy Zy Global Zpool 0€R* 0
GCN GCN poo
bt ’ Block 1 > oo Block N ’ RilEEm >
(X) € R64x1 € R64%F1 € RE4XFN Pooling € RIXFN Softmax
L
@ EEG Graph (Adjacency
Matrix A € R®4%6%) J
EEG_GCN Block
(b) Pre-trained Weights and Locked
. N
Input X GeN X GCN Zn Global s ERFN EEG_RL Qe R®
(X) Block 1 oo Block N Me?n Block
€ R64%1 € RO**F1 € RO**FN Pooling
I
@ Adjacency Matrix
A € R¥6% at 13,399 density /
Figure 6.1: ( ) EEG_GLT-Net model [144]: Overall architecture (classifying EEG MI of one

time point 155 of signals from 64 EEG clectrodes), (b) EEG_RL-Net model (our proposed):
Incorporation of an optimal pre-trained EEG_GCN Block at a 13.39% m, density from the
EEG_GLT-Net [144], coupled with an EEG_RL Block

The Multilayer Perceptron (MLP) part within the EEG_GLT-Net is replaced with RL block
resulting in the EEG_RL-Net as shown in the Figure 6.1. In this part, all time points from
t = 0s to t = 4s were utilised, with these points organised into groups spanning a horizon of 20
states, where each point represented a single state. The RL agent performed action at every
state within each episode’s horizon based on the graph features generated by the EEG_GCN
segment. The agent has five option of actions involving classifying the state such as classifying
actions (Task 1 through to Task 4) or skipping action (Task 0) if the agent determined that the
current state is not suitable to classify based on the graph features generated by the EEG_GCN

segment.

6.2.2 Dataset Description and Pre-processing

Following the approach of papers [100] and [144], this study employed the PhysioNet EEG MI
dataset [127], which comprises EEG recordings from 109 subjects acquired using the interna-
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tional 10-10 system with 64 EEG channels. The dataset is structured around four distinct EEG
MI tasks, which involve the subject imagining the actions of:

e Task 1: Opening and closing the left fist.
e Task 2: Opening and closing the right fist.
e Task 3: Opening and closing both fists simultaneously.

e Task 4: Opening and closing both feet.

Figure 6.2: Electrode positions of PhysioNet dataset[127]

Each participant completed 84 trials, divided into 3 runs with 7 trials per run for each task
type. The duration of each trial’s recording was 4s, sampled at 160 Hz. In our study analyses
were specifically conducted on a subset of 20 subjects, labelled S; to So. Initially, the raw
signals were processed solely through a notch filter at the 50Hz power line frequency to eliminate
electrical interference, deliberately avoiding other common filtering or denoising techniques to
preserve data integrity. Signals from all 64 channels were utilised, with each channel treated
as a node and the signal at each time point considered as the node’s feature. Additionally, the
signals at each channel were normalised to achieve a mean (u) of 0 and a standard deviation
(0) of 1.

The second dataset used in this study is the High-Gamma Dataset (HGD) [58], which contains
EEG recordings from 14 healthy subjects with an average age of 27.2 years, including six

females. Each subject participated in 1000 trials, each lasting 4s. The HGD signals were
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recorded during motor execution tasks using 128 EEG channels and sampled at 250 Hz. This

dataset encompasses four motor movement tasks:
e Task 1: Left hand movement
e Task 2: Right hand movement
e Task 3: Both feet movement
e Task 4: Rest

Only 44 channels covering the motor cortex were selected from the original 128 channels, ex-
cluding the Cz channel. Similar to the PhysioNet dataset, the raw EEG signals were processed
with a notch filter at the 50 Hz power line frequency. A bandpass filter was then applied to
retain a broad frequency range of 4-123 Hz, which is suitable for motor execution tasks. Fol-
lowing the filtering, the signals for each trial were standardised using a channel-wise moving

mean and variance to dynamically adjust for local trends within each trial.

6.2.3 Graph Feature Extraction
Graph Representation

In a directed graph, G = {V, E} where V' = {vy, v9, ..., uy } represents the set of nodes and |E|
signifies the total number of edges connecting these nodes. The structure of the graph can be
illustrated using an adjacency matrix A € R¥*¥. Every node within the graph is associated
with Fy features, and the matrix encapsulating these node features is expressed as X € RV~
A normalised combinatorial Laplacian matrix is L = Iy — D~Y2AD~/2. This involves the use

of the degree matrix of A, symbolised as D, which is calculated using D;; = Zjvzl Aij.

Spectral Graph Filtering

The eigenvectors of the graph Laplacian matrix can be expressed as graph Fourier modes, with
{u};' € RN, The diagonal matrix of these Fourier frequencies, A = diag[Xo, ..., \v_1] €
RM*N_We defined the Fourier basis, U = [ug, ..., uy_1] € RV*¥ which allows for the decom-
position of the Laplacian matrix, L, into L = UAUT. The signal x can be transformed by
graph Fourier into & € RY using # = U”z, while the inverse graph Fourier transform is given

by x = Uz. The convolution operation on graph G is defined as:

rxqg=U(U"2)® (U"yg)) (6.1)

where g represents the convolutional filter and ® denotes the Hadamard product. Given that
go(N) = diag(0), where 0 € RY represents the vector of Fourier coefficients, the Graph convo-

lution operation can be implemented as follows:
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zxq go = go(UNUT )z = Ugeg(AN) Uz (6.2)

where gy is a non-parametric filter, and polynomial approximation is employed to mitigate the
excessive computational complexity. Chebyshev graph convolution, a specific instance of graph
convolution, utilises Chebyshev polynomials for filter approximation [115]. The approximation

of gg(A) under the K order Chebyshev polynomial framework is given by:

K-1 )
Z Ok T () (6.3)
k=0
where
« 2A
A= -1 A4

In the above Equation 6.3, Tk(A) € RE is the k™ order Chebyshev polynomial evaluated using
Equation 6.4. Then, the signal x is convolved with the defined filter gy using the following

equation:

.N

vacgo=UY OT(MU Tz =Y 0T (L) (6.5)
0

=
Il

Normalising A can be achieved by using Equation 6.4, where A,,,, denotes the largest entry in
the diagonal of A, and Iy represents the diagonal matrix of the scaled eigenvalues. In the above
Equation 6.5, Tk(z) is the Chebyshev polynomial of order k£ evaluated at the scaled Laplacian,
L which is defined in the Equation 6.6 as:

~ 2L
I =

Iy (6.6)

)\ma:r

Let 7, = Tk(z)x € RY, where a recursive relation is used to compute 7, using Equation 6.7 with
Zo = z and ¥; = Lx. One key advantage of using the Chebyshev polynomial to approximate
convolutional filters is that it inherently avoids the need to compute the graph Fourier basis.

The recursive relation is given by:

Tr = 2LTp 1 — Tp_s (6.7)



Training EEG_GLT-Net

In the EEG_GLT-Net study [144], the classification of EEG MI signals, X is facilitated through
a forward pass using the Spectral GNN function, denoted as f(.,©), with a given graph G =
{A, X}. The adjacency matrix, A, integrates A,.gina and mg as outlined in Equation 6.8. The
matrix Agpigina, defined as Aoriginai; = {0, if ¢ = j; 1, otherwise}, is fixed and not subject
to training, structured in the dimension of R%*%4  Meanwhile, the adjacency matrix mask

m, € R%*64 is designated as trainable. The combined adjacency matrix is given by:

A= Aom’ginal © My (68)

Table 6.1: Details of EEG_GLT-Net [144] Model

Polynomial

Layer Type Input Size Weights Output
Order
Input Input 64 x 1 - - -
GCN Blocks
GC1 Graph Convolution 64 x 1 5 1x16 x5 64 x 16
BNC1 Batch Normalisation 64 x 16 - 16 64 x 16
GC2 Graph Convolution 64 x 16 5 16 x 32 x5 64 x 32
BNC2 Batch Normalisation 64 x 32 - 32 64 x 32
GC3 Graph Convolution 64 x 32 5 32 x 64 x5 64 x 64
BNC3 Batch Normalisation 64 x 64 - 64 64 x 64
GC4 Graph Convolution 64 x 64 5 64 x 128 x 5 64 x 128
BNC4 Batch Normalisation 64 x 128 - 128 64 x 128
GCh Graph Convolution 64 x 128 5 128 x 256 x 5 64 x 256
BNC5 Batch Normalisation 64 x 256 - 256 64 x 256
GC6 Graph Convolution 64 x 256 5 256 x 512 x5 64 x 512
BNC6 Batch Normalisation 64 x 512 - 512 64 x 512
Global Mean Pooling Block
P Global Mean Pool 64 x 512 - - 512
Fully Connected Blocks
FC1 Fully Connected 512 - 512 x 1024 1024
BNFC1  Batch Normalisation 1024 - 1024 1024
FC2 Fully Connected 1024 - 1024 x 2048 2048
BNFC2  Batch Normalisation 2048 - 2048 2048
FC3 Fully Connected 2048 x 4 - 2048 x 4 4
S Softmax Classification 4 - - 4

EEG MI signals from individual subjects, recorded between t = 1s and ¢ = 3s, are used for

training with Algorithm 1 on PhysioNet dataset. This time window was chosen because subjects
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Table 6.2: Hyperparameter Settings for Training EEG_GLT-Net [144]

Hyperparameter Value
Training Epochs (Ne,) 1000
Batch Size (B) 1024
Dropout Rate 0.5
Optimiser Adam

Initial Learning Rate (n) 0.01

typically demonstrated greater readiness after ¢ = 1s, as highlighted in the EEG_GLT-Net study
[144]. The detailed structure of the EEG_GLT-Net is depicted in Figure 6.1 and Table 6.1,
with the specific hyperparameter configurations for the training outlined in Table 6.2. The
optimally trained GNN weights (©) and the trained adjacency matrix mask (m,) are recorded

across various adjacency matrix density levels, ranging from 100% to 13.39%.

EEG MI Time Points GNN Features

The pre-trained GNN weights and optimal adjacency matrices were evaluated across various
my densities, ranging from 100% to 13.39%, using the PhysioNet dataset. Among these, the
set with a density of 13.39% was selected for extracting graph features from EEG MI signals.
This choice was based on findings from the EEG_GLT-Net study [144], which reported optimal
performance at m, densities were found below 31.30% for most subjects. Specifically, 11 out of
20 subjects achieved their highest accuracy at a density of 13.39%. Additionally, this density
significantly reduces computational requirements, a crucial consideration given the increased

computational demands anticipated in the subsequent EEG_RL-Net stage.

GNN features were then extracted for all EEG MI time points, spanning from ¢t = Os to t = 4s
for all 84 trials of each subject, was conducted. The GNN feature corresponding to each time

point had a dimensionality of R?2,

6.2.4 Problem Redefinition

The EEG_GLT-Net underwent training for the classification of EEG MI time-point signals.
Integration the GNN and an optimally trained adjacency matrix significantly enhanced the
classification accuracy compared to traditional PCC adjacency matrix method. Nonetheless,
ambiguities in signal clarity between different classes at certain time points could adversely
affect the model accuracy. Leveraging the high efficacy of the EEG_GLT-Net model, the pre-
trained weights from the GNN and adjacency matrix components were integrated with an RL
block, resulting in the formation of the EEG_RL-Net, as depicted in Figure 6.1.

103



1
1 ENV 1 So
1 1 »
1 -
1 Ay = 0
: So | 1< —
I ! To = Tskip .
1 s : -
: ! ! 51 >
i ] — o
] a; =0
: SZ < 1
1 1 = Tski
1 1 skip
. o : » Agent
: (<] 1 o
1
| . :
1
i S17 I .
| I s¢ (Terminal) -
1 »
I 518 'A a; * 0
! I‘
: S19 : Tt = Tright O7 Twrong >
1
1

Figure 6.3: Agent interaction with the EEG_RL Environment. The agent transitions to the
next state within the current episode after performing the skipping action (a = 0), receiving
a reward of 74;,. The agent transitions to the terminal state after performing a classifying
action (a # 0), receiving a reward of 7,4, for a correct classification or ry,ng for an incorrect

classification

Algorithm 3 EEG_RL Environment

1: function STEP (s, as, v, $7)

2 if a; = 0 then

3 r, = —0.1

4 Return(s}, r¢)

5 else

. .y — Tright, €g. + 10 if a; =y
Twrong, €8. — 10 if a; # y:

7 Return (s} = Terminal, ry)

8: end if

9: end function

A reinforcement learning approach is used to train an RL agent for classifying EEG MI time-
point signals. Beyond the four initial classes, the RL agent has the capability to defer classifica-
tion of a current time point if it determines that it is not ready. In each state s;, the RL agent
can perform one of five discrete actions a; € {0,1,2,3,4} within the EEG_RL environment,

guided by the GNN features extracted from s;,. The actions a; are described as follows:
e a, = 0 : Skip the current state s,
e a;, = 1 : Classify the signal as Class 1
e a;, = 2 : Classify the signal as Class 2

e a; = 3 : Classify the signal as Class 3
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e a; = 4 : Classify the signal as Class 4

Following action a;, the RL agent is rewarded with 7, and transitions to the next state s, as
illustrated in Figure 6.3. Choosing a; = 0 indicates the agent’s hesitance to classify due to
uncertainty, leading to a decision to skip the current state with a minimal penalty until it is
deemed ready to classify or the episode ends. Upon selecting an action a; > 0, s; is marked as
Terminal, which concludes the episode and the agent receives ry, a positive reward (r,;gn;) for
correct classification or a negative reward (ryrong) for incorrect classification. The dynamics
of the EEG_RL environment are elaborated in Algorithm 3. The ultimate goal is for the RL
agent to accurately classify EEG MI signals within the designated horizon (H) of 20 (120 ms)

as swiftly as possible.

The Dueling Deep Q Network (DQN) was selected for this study due to its Advantage function,
which separates the state-value and advantage functions. This design is particularly effective
for EEG time-point signal classification, where consecutive states have minimal changes, al-
lowing the model to focus on the relative importance of actions. Unlike the standard DQN,
Dueling DQN provides better stability and performance. Additionally, it is computationally
more efficient and less sensitive to sparse rewards compared to policy-gradient methods, making

it the most suitable choice for this task.
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6.2.5 Data Preprocessing and Data Splitting

In the EEG_RL-Net, the entire duration of the EEG MI signals, spanning four seconds at a
sampling rate of 160 Hz, was included. As outlined in Section 6.2.3, GNN features of EEG MI
time points were extracted using pre-trained weights with an adjacency matrix density, m,g, of
13.39%. The GNN features of each time point were treated as states, s € R>'2. For all 82 trials,
from t = 0s to t = 4s, groups of consecutive H = 20 states were organised into episodes without
time point overlap between subsequent episodes, forming an episode set, £ = eq, ey, ..., €,, as

illustrated in Figure 6.4.

The episodes, F, were stratified split into training (Eiam, 80%), validation (FEy., 10%), and
test (Eiest, 10%) sets. The stratified split ensures class balance across all subsets. To assess
the stability and robustness of the results, the entire experiment was repeated five times using

different random seeds.
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Figure 6.4: Conversion of EEG MI time points into states using the pre-trained EEG_GCN

Block, grouped into episodes comprising 20 states each.
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6.2.6 Dueling Deep Q-Learning

The DQN method, a value-based RL approach, was employed in this study to learn an optimal
policy to enable more accurate classification of EEG MI signals. A state-action value, Q(s,a),
represents the expected discounted reward when the agent is in state s, and takes action a
according to policy w. With the optimal policy (7*), the agent aims to achieve the maximum

expected discounted reward Q*(s, a), fulfilling the Bellman equation:

Q"(s,a) = Eqe |7+ 7. maxQ"(s',a')

5, a} (6.9)

here r is the immediate reward, and v is the discount factor. The state-action value, Q(s, a),
for state s and action a can be approximated using a deep neural network parameterised by 6.

The loss function is defined as:

2

Loss(d) = (gDQN — (s, a; 9)) (6.10)

where 779" is the target value, calculated as follows:

e )
PN _ Tt A if s} is Terminal (6.11)
e+ 7. maxy Q(S;, ap; Orarger), Otherwise

The 014rger denotes the parameters of the target network, which are kept constant. The approx-
imation Q(s, a; ) shares the architecture with the target network. Our study utilises Dueling
DQN; a variant of DQN that enhances training stability and efficiency by separating the esti-

mation of Q(s,a;6) into state values V(s) and action advantages A(s, a), as follows:

Q(s, a;0) = V(s; a) + fl(s, a; 3) (6.12)

The network separately estimates the state values and action advantages, which then converge
into a single output. The parameters 0 represent the overall network parameters, with a and
[ specifically used for estimating state values and action advantages, respectively. To enhance

stability, the equation subtracts the average advantage values from Q(s, a;0):

Q(s,a;0) = V(s;a) + |A(s,a; B) — ﬁ Z A(s,a; ) (6.13)
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6.2.7 EEG_RL Algorithm

To generate training data for the EEG_RL Block, all possible actions a; = {0, 1,2, 3,4} are
executed at each state s; within an episode e; in Ey.q,, interacting with the EEG_RL environ-
ment to determine the reward r; and the subsequent state s;. Each transition records a tuple
(s,a,r,s"). This study employs the Dueling DQN method for the RL block, as illustrated in
Figure 6.5. The Dueling DQN agent undergoes training according to the procedure outlined
in Algorithm 4, utilising the Adam optimiser until convergence is achieved. The configuration
of the entire EEG_RL-Net model is outlined in Table 6.3. The parameters of the fixed target
network, 0yqrget, for the Dueling DQN network, are refreshed after every 50 batch updates of 6.

Algorithm 4 Training EEG_RL-Net’s Dueling DQN Agent
1: Initialise randomly Dueling DQN network parameter (f) and target network parameter
(Brarger).
2: Set of train episodes Ergarn € {eo,e1,...,en} where each e; has set of states, S =
{s0,51, ..., sz_1}. Each state, s, € R5!2.

3: At each state s;, simulate one step with all possible actions from action set, A € {0, 1,2, 3,4}

to observe next state, s, and reward, r;. Record all the (s, at,rs, s;) tuples to the Buffer,
B.

4: Shuffle the state transitions in the B using random seed, and group into mini-batches in
size of 64 transitions.

5. for epoch =0 to EPOCHS do

6: Compute 5”9V for each mini-batch:
e .
- JPAN _ Tt if s; is Terminal

T+ ymaxy Q(sy, aj; Orarger) Otherwise
8: Loss(0) = (PN — Q(st,at;é’))Q
9: Backpropagate to update 0 using Adam optimiser
10: Update 8;qrgec = 0 at every 50 updates of 0
11: end for

Performance evaluation of the RL agent on E,, and F,.,; is described in Algorithm 5. At every
time step, the agent selects an action based on the g-values predicted by the EEG_RL-Net.
In this study, a correct classification by the agent yields a reward 7,45, While an incorrect
classification results in 7,,0ng. The agent’s objective in each episode e; is to maximise the
cumulative reward 7, within the predefined horizon H = 20. This requires the agent to make
classifications as quickly as possible, since it incurs a penalty of »r = —0.1 for each skipped
step. However, at time t = H — 1, skipping is no longer an option, and the agent must make a

classification action.
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Algorithm 5 Evaluation of DQN Agent for a Validation or Test Episode

1: Episode, e; has horizon of H = 20
2: At e;, the set of states S = {sg, 51, ..., Si_1}, where each s, € R5!2
3: At e;, the set of labels Y = {vo, y1, ..., yg—1}, where each y; € {1,2,3,4}
4: Action o’ € {0,1,2,3,4}, and a” € {1, 2, 3,4}
5: Initialise t = 0, rgym = 0
6: while t < H do
: argmazydpon(se,a’), ift<H—1
. i argmaz,Gpon (St, "), otherwise

8: sy, = STEP (s, at, yi, S))

9: Tsum € Tsum T Tt

10: if r, = Terminate then

11: Terminate the Episode, e;
12: else

13: t+—t+1

14: end if

15: end while
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Figure 6.5: EEG_RL Block: Featuring the Dueling DQN, this component predicts the g-values

linked to various actions
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Table 6.3: Details of EEG_RIL-Net Model

Layer Type Input Size Weights Output
Input Input 64 x 1 - -
EEG_GCN Block
Graph Convolution and
EEG_GCN . 64 x 1 - 512
Global Pooling
RL Block (Dueling DQN Network)
MLP1 Fully Connected 512 512 x 1024 1024
MLP2 Fully Connected 1024 1024 x 2048 2048
MLP3 Fully Connected 2048 2048 x 64 64
MLP4 Fully Connected 64 64 x 1 1
MLP5 Fully Connected 2048 2048 x 64 64
MLP6 Fully Connected 64 64 x 5 )
Q Dueling DQN Gl & i 5
64 x 5
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6.2.8 Model Setting and Evaluation Metrics

The structure of EEG_RL-Net is defined by two principal components: the spectral EEG_GCN
block, which extracts graph features from EEG MI time point signals using pre-trained weights,
and the RL block, embodied by the Dueling DQN network. The specifics of the EEG_RL-Net’s
design are provided in Table 6.3. The RL block comprises six MLP (Multi-Layer Perceptron)
layers, or Fully Connected Layers, each followed by a Rectified Linear Unit (ReLU) layer,
as described in Equation 3.12. Information on the training hyperparameters is presented in
Table 6.4. The performance of the different methods was evaluated using both accuracy and

F1 score metrics.

Table 6.4: Hyperparameter Settings for Training EEG_RL-Net

Hyperparameter Value
Reward Right (7,ign¢) +10
Reward Wrong (7wrong) -10
Reward Skip (7sip) —0.1
Discount Factor (7) 0.99
Training Epoch (EPOCHS) 150
Batch Size 63
Target Network Update Frequency 50
Initial Learning Rate (n) 0.0001
L2 Regularisation Rate () 0.001
Optimiser Adam

The ReLLU activation function is defined as:

ReLU(z) = max(0, x) (6.14)
The accuracy is defined as:

TP+TN
TP+ FP+TN+ FN

Accuracy = (6.15)

The recall is given by:

TP
l=—— 1
Reca TPLFN (6.16)
The precision is defined as:
TP
Precision = ———— 1
recision = s (6.17)
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The F'1 score is given by:

2 x Precision x Recall
— 6.18
F1 Score Precision + Recall ( )
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6.3 Results and Discussion

6.3.1 EEG_RL-Net vs EEG_GLT-Net

Table 6.5 shows comparative analysis of mean accuracy between the EEG_GLT-Net and the
EEG_RL-Net. The EEG_GLT-Net incorporates two adjacency matrix types: the PCC and the
mg arr- The latter is identified as the most optimal adjacency matrix, after searching through
100% to 13.39% of adjacency matrix density using the EEG_GLT algorithm. According to paper
[144], employing the m, 1 r adjacency matrix yields an accuracy improvement ranging between
0.51% and 22.04% over the PCC adjacency matrix, with significant enhancements noted for
subjects S; and S, at 22.04% and 21.62% respectively. Despite seeing notable improvements
in accuracy and F'1 score with the m, ¢ matrix, certain subjects, specifically S5, Sg, S7, Si3,

Si5, and Spg, exhibited classification accuracies below 70%.

Using baseline parameters (rygne = +10, Tyrong = —10, 75 = —0.1 and H = 20), the
EEG_RL-Net framework advances the accuracy beyond the current state-of-the-art EEG_GLT-
Net employing the my g7 adjacency matrix, with improvements spanning 0.01% to 44.95%.
A total of 12 out of 20 subjects, namely S, S35, Si, Ss, So, Si0, S11, S12, S16, S17, Sis, and
So0, achieved perfect classification. The EEG_RL-Net also significantly elevated the accuracies
for Si3 and Spg to 89.45% and 79.65%, respectively. Even for subjects S;3 and Sig, who
initially demonstrated low accuracies, modest improvement in accuracy at 44.50% and 41.41%,

respectively was achieved using the EEG_GLT-Net with the m, ¢rr matrix.

100

Method
EEG_GLT-Net (PCC Adj)
EEG_GLT-Net (mg_GLT Adj)
] EEG RL- Net our method)
40 =

S10

Accuracy (%)
~ [0 O
o o o

(o2}
o

(o))
o

Subject

Figure 6.6: Performance Mean Accuracy Comparison between EEG_GLT-Net (PCC Adj),
EEG_GLT-Net (m, grr Adj) and EEG_RL-Net Methods for Subjects S} - Sio
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Figure 6.7: Performance Mean Accuracy Comparison between EEG_GLT-Net (PCC Adj),
EEG_GLT-Net (my ¢rr Adj) and EEG_RL-Net Methods for Subjects S1; - Sao
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Figure 6.8: Overall Performance Mean Accuracy Comparison between EEG_GLT-Net (PCC
Adj), EEG_GLT-Net (my ¢rr Adj) and EEG_RL-Net Methods

The EEG_GLT-Net with the my 17 matrix boosted accuracy across the 20 subjects, increasing
the average accuracy by 7.85% (from 76.10% to 83.95%). Given the inherent noise in EEG MI
time-point signals and the challenge of classifying signals representing ﬁs, the EEG_GLT-
Net showed a decline in performance accuracy due to its attempt to classify all time points.
Comparatively, the EEG_RL-Net achieved remarkable increase in average accuracy across the
20 subjects to 95.35%. This substantial improvement is the result of the RL agent’s capacity
to discern the appropriateness of the current signal for classification. The agent has been
optimised to classify signals as swiftly as possible within a 20 time-point window, averaging a
classification time of 2.91 time points in the EEG_RL-Net setup.
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Table 6.5: Accuracy Assessment: EEG_RL-Net versus EEG_GLT-Net

Accuracy (Mean+Std)

Subj EEG GLT-Net EEG GLT-Net EEG RL-Net*

(PCC Adj) (mg.crr Adj) (our method)
Sy 76.47% + 9.94%  98.51% + 0.77% 100.00% + 0.00%
Sy 69.13% + 7.05%  76.18% + 5.53%  97.73% + 0.20%
Sy 87.28% + 9.19%  99.17% + 0.32% 100.00% + 0.00%
S, 99.13% + 1.01%  99.97% + 0.06% 100.00% + 0.00%
Ss 4319% + 3.03%  50.95% + 3.80%  87.72% + 0.70%
Se 58.23% + 5.19%  69.60% + 5.67%  90.89% + 1.50%
S 50.98% + 3.80%  59.45% + 3.00%  89.24% + 2.10%
S 95.06% + 5.96%  99.95% + 0.07% 100.00% + 0.00%
Sy 07.64% + 3.33%  99.95% + 0.08% 100.00% + 0.00%
Sio 99.24% + 0.19%  99.99% + 0.01% 100.00% + 0.00%
Siy 99.48% + 0.70%  99.99% + 0.01% 100.00% + 0.00%
Sy 78.07% + 8.95%  99.69% + 0.32% 100.00% =+ 0.00%
Sis A135% + 1.23%  44.50% + 2.23%  89.45% + 0.90%
Sia 55.97% + 6.47%  72.39% + 6.43%  91.59% + 2.10%
Sis 52.11% + 3.96%  67.55% + 9.26%  80.83% + 1.50%
Sie 96.75% + 5.00%  99.98% + 0.03% 100.00% + 0.00%
Sy 08.83% + 2.33%  99.98% + 0.03% 100.00% + 0.00%
Sis 86.19% + 9.95%  99.92% + 0.12% 100.00% + 0.00%
Sio 38.38% + 2.27%  41.41% + 1.44%  79.65% + 1.40%
S0 08.44% + 0.68%  99.94% + 0.11% 100.00% + 0.00%
Overall  76.10% + 22.71%  83.95% =+ 21.43%  95.36% + 6.83%

* Tright = +107 Twrong = _107 Tskip = _0'17 H =20

6.3.2 Study of Changing r,;;;; Values

Table 6.6 demonstrates the effect of varying the 7,4, value (45,410, +15), on average accuracy
while keeping 7rony = —10 constant. The results show average accuracies of 95.57%, 95.36%,
and 94.94% for 7,4, = +5, 410, and +20, respectively. Notably, the accuracy tends to improve
when 7,ign is less than ry,0ne, but declines when 7., exceeds ry,0ng, although the level of

variance is minimal at just 0.63%.
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Table 6.6: Impact of Varying 7,4, Values on Accuracy and Classification Time

Mean Accuracy (Mean Classification Time)

Subj Tright = +9 Tright = +10 Tright = +20
Twrong = —10 Twrong = —10 Twrong = —10

Sy 99.93% (1.70)  100.00% (1.80) 100.00% (1.50)
So 97.86% (1.51) 97.73% (1.87) 97.86% (1.65)
Ss 100.00% (2.10)  100.00% (2.20) 100.00% (1.90)
Sy 100.00% (2.80)  100.00% (2.50) 100.00% (1.80)
Ss 87.65% (5.71) 87.72% (4.55) 86.14% (3.45)
Se 91.10% (3.37) 90.89% (2.80) 89.72% (2.07)
Sy 91.24% (3.64) 89.24% (3.23) 87.80% (3.66)
Sg 100.00% (2.90)  100.00% (2.80) 100.00% (2.10)
So 100.00% (3.70)  100.00% (3.00) 100.00% (2.20)
S1o 99.93% (2.40)  100.00% (2.20) 100.00% (1.80)
St 100.00% (2.00)  100.00% (1.50) 100.00% (2.30)
S12 100.00% (2.80)  100.00% (2.40) 100.00% (2.60)
Sis 89.59% (4.90) 89.45% (3.97) 88.28% (3.58)
S14 93.45% (3.75) 91.59% (3.14) 89.86% (2.81)
St 82.89% (5.23) 80.83% (4.80) 79.45% (4.51)
S1e 100.00% (2.40)  100.00% (2.70) 100.00% (2.20)
St7 100.00% (3.00)  100.00% (2.00) 100.00% (1.90)
St 100.00% (3.30)  100.00% (2.40) 100.00% (1.50)
St 77.79% (6.89) 79.65% (5.64) 79.59% (4.80)
Sao 100.00% (2.20)  100.00% (2.70) 100.00% (2.10)

Mean 95.57% (3.32) 95.36% (2.91) 94.94% (2.51)
Std + 6.72% + 6.83% + 7.32%

Tskip = —0.1 and H = 20
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On an individual basis, r.jgn = +5 yielded higher accuracies for most subjects, except for i,
S5, and Sig, where 7,45 = 410 performed marginally better. No subjects showed improved ac-
curacy when 7,45 Was greater than ry,ony. Therefore, for optimal performance, the magnitude
of 7yigne should not exceed 7,r0ng. It appears that accuracy is enhanced by a higher penalty for
incorrect classifications (7yyong) rather than a higher reward for correct ones (r,;4,:) enhances

accuracy, likely motivating the agent to avoid misclassifications more stringently.

Regarding the time points required to classify EEG MI signals, the configuration with 7,40 =
+10 and 7yrong = —10 averages at 2.91 time points. Increasing 7, to +20 (while 7yong
remains at —10) reduces the classification time to 2.51 time points. Conversely, lowering ;g
to +5 increases the average classification time to 3.32 time points, indicating a more cautious
approach by the agent, likely due to prioritising accuracy over speed by utilising the option to

skip uncertain classifications.

Mean Time Points
N

2] BN T

r_right=+5, r_wrong=-10 r_right=+10, r_wrong=-10 r_right=+20, r_wrong=-10

Figure 6.12: Overall Mean Classification Time (Time Points) Comparing Varying 7, Values

6.3.3 Study of Changing r,,.,, Values

In this study, we examined the impact of altering the ry,.n, values while keeping the 7,45
constant at +10, as shown in Table 6.7. We observed the 7,0,y values at —10, —20, —30,
and —40, correlating with an average performance accuracy of 95.35%, 95.18%, 95.11%, and
94.88%, respectively. This indicates that simply increasing the negative magnitude of 7ng
beyond that of r,;4,+ does not invariably lead to enhanced performance accuracy. Additionally,
we found that the time required for signal classification was directly related to the difference

in rewards.

Despite the reward configuration of {r,;gn = +10, 7ypong = —10} achieving the highest average
performance accuracy among the four settings, it does not universally outperform across all test
subjects. Specifically, this configuration was only superior for subjects S5 and Sg. Conversely,
the configuration of {r.ine = +10,7yrong = —20} exhibited higher performance accuracy in
subjects Sa, S7, S13, and Sy5. For subject Siy, the {rygn = 410, 7yrong, = —30} setting was

more advantageous.
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Although a smaller magnitude of 7y,0ng relative to 7., appears beneficial, a higher 7y,ng
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Figure 6.15: Overall Performance Mean Accuracy Comparison Varying ry,ong Values

Table 6.7: Impact of Varying ry,ony Values on Accuracy and Classification Time

Mean Accuracy (Mean Classification Time)

Subj  Tpigne = 10 rpgne = +10 Tright = +10  7Tpigne = +10
Twrong = =10 Twrong = =20 Twrong = =30 Tyrong = —40
S, 100.00% (1.80) 99.79% (1.60) 100.00% (2.00) 99.93% (2.00)
S, 97.73% (1.87) 98.21% (1.97) 97.93% (2.49) 97.93% (2.88)
Sy 100.00% (2.20) 100.00% (1.70) 100.00% (2.70) 100.00% (2.20)
Si 100.00% (2.50) 100.00% (3.30) 100.00% (4.30) 100.00% (5.70)
S, 87.72% (455) 86.90% (6.26) 85.38% (6.28) 85.79% (7.31)
Se 90.89% (2.80) 90.00% (2.63) 90.90% (4.94) 90.41% (4.25)
S, 89.24% (3.23) 89.59% (5.09) 89.31% (5.20) 88.90% (6.70)
Se 100.00% (2.80) 100.00% (2.60) 100.00% (3.70) 100.00% (4.30)
Se 100.00% (3.00) 100.00% (3.30) 100.00% (5.00) 100.00% (5.30)
S 100.00% (2.20) 99.93% (1.90) 99.86% (2.00) 99.93% (2.52)
Sy 100.00% (1.50) 100.00% (2.20) 100.00% (3.00) 100.00% (3.30)
S 100.00% (2.40) 100.00% (2.70) 100.00% (4.10) 100.00% (5.10)
S5 89.45% (3.97) 89.52% (5.33) 89.52% (6.24) 87.38% (6.07)
Si 91.59% (3.14) 91.31% (3.00) 92.14% (3.00) 90.55% (4.37)
Sis 80.83% (4.80) 81.38% (4.53) 80.14% (3.48) 80.69% (4.13)
S 100.00% (2.70) 100.00% (3.10) 100.00% (5.00) 100.00% (4.30)
Sir 100.00% (2.00) 100.00% (3.70) 100.00% (3.20) 100.00% (4.60)
S 100.00% (2.40) 100.00% (3.20) 100.00% (2.40) 100.00% (4.30)
S 79.65% (5.64) T76.90% (7.21) T76.97% (8.22) 76.14% (9.20)
Sy 100.00% (2.70) 100.00% (2.80) 100.00% (3.40) 100.00% (4.80)
Mean  95.36% (2.91) 95.18% (3.41) 95.11% (4.03) 94.88% (4.66)
Std + 6.83% + 7.19% + 7.37% + 7.57T%

Tskip = —0.1 and H = 20



to rpigne ratio does not necessarily equate to improved accuracy. As demonstrated in Ta-
ble 6.7, performance accuracy diminishes with an increasing ratio, identifying the optimal
ratio as twice the magnitude of 7yrong t0 7pigns. Furthermore, comparing different of reward
configurations with equivalent magnitude ratios, such as {ryjn = +5,Twrong = —10} and
{rright = +10, Twrong = —20}, reveal subtle differences are noted in average performance accu-
racy and classification time. The former configuration outperforms in both average accuracy

and time efficiency for classification.

According to Table 6.7, the classification time escalates with the increases in ry,,n,y magnitude,
where average times of 2.91, 3.41, 4.03, and 4.66 seconds were recorded for 7,ong values of —10,
—20, —30, and —40, respectively. This trend suggests that as the penalty for incorrect classi-
fication outweighs the reward for correct answers, the agents proceed with increased caution,

hence extending the classification time.
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Figure 6.16: Overall Mean Classification Time (Time Points) Comparing Varying r.on, Values
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6.3.4 Effects of Episode Length Variation and Optimisation on Clas-

sification Performance

In this study, we examined the mean accuracy, F1 score, and mean classification time across
various episode lengths (H), including 10, 20, 30, and 40, as presented in Table 6.8. We
observed that both accuracy and F1 scores increased with extension of the episode horizon
extends. Conversely, classification time per point increased with longer episode lengths. These
finding suggests that larger episode lengths contribute to improvements in accuracy and F1

scores.
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Figure 6.17: Overall Mean Classification Time (Time Points) Comparing Varying Horizon (H)

Values

Table 6.8: Impact of Varying Episode Lengths (H) Values on Accuracy, F1 Score and Classifi-

cation Time

Horizon Accuracy F1 Score Mean
(H) (Mean £ Std) (Mean £ Std)  Classification Time
10 94.46% + 8.10%  94.42% + 8.15% 2.18
20 95.14% £ 7.14%  95.10% + 7.18% 3.76
30 95.56% =+ 6.54%  95.53% =+ 5.53% 5.53
40 95.82% =+ 6.16%  95.79% =+ 6.54% 6.54

Table 6.9 delineates the optimal configuration of reward for correct (r,ign¢) and incorrect (7yrong)
decisions, and episode horizon (H) that achieves the highest accuracy and F1 score in the
shortest classification time possible. In this optimal setting, the RL agent demonstrates superior
performance, achieving an average accuracy of 96.40% and an average classification time of less

than 25 milliseconds across all 20 subjects.
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Table 6.9: Subject-wise Classification Accuracy and Time with Optimal Reward Settings and
Episode Lengths

Mean )
) Mean Mean F1 ] ) (Tright Episode
Subj Classification .
Accuracy Score . Twrong) Horizon
Time
Sh 100.00% 100.00% 1.45 (20, -10) 10
S 98.65% 98.62% 2.93 (20, -30) 30
Ss3 100.00% 100.00% 1.13 (20, -10) 10
Sy 100.00% 100.00% 1.32 (20, -30) 10
Ss 90.21% 90.05% 4.85 (10, -10) 30
S 92.06% 92.06% 4.25 (5, -10) 40
S7 92.33% 92.29% 9.94 (10, -30) 40
Ss 100.00% 100.00% 1.23 (10, -10) 10
So 100.00% 100.00% 1.27 (20, -10) 10
S1o 100.00% 100.00% 1.17 (20, -10) 10
St 100.00% 100.00% 1.11 (20, -20) 10
S12 100.00% 100.00% 1.19 (20, -10) 10
S13 93.29% 93.27% 5.95 (10, -10) 40
S1a 93.70% 93.69% 4.17 (5, -10) 40
Sts 85.48% 85.43% 7.51 (10, -20) 40
S16 100.00% 100.00% 1.25 (20, -10) 10
St7 100.00% 100.00% 1.28 (20, -10) 10
Sis 100.00% 100.00% 1.27 (10, -10) 10
S1o 82.33% 82.20% 9.69 (20, -30) 40
S50 100.00% 100.00% 1.15 (20, -10) 10
Mean 96.40% 96.38% 3.21 - -

Std + 5.47 £ 5.50 - - -
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Our analysis, as indicated in Table 6.9 shows that the RL agent achieved accuracy exceeding
90.00% for each subject, with the exceptions of Si5 and S19 whose accuracies were 85.48% and
82.33%, respectively. Subjects such as Sy, Sz, S4, Ss, S, S10, S11, S12, Si6, S17, Sig, and S,
where the RL agent achieved perfect classification, had notably clearer EEG MI signals. For
these subjects, the agent performed consistently well across most reward and episode horizon
configurations. Classifications were achieved within an average of 2 time points, where an
optimal episode horizon of 10 and a reward configuration where 7,4, significantly exceeded

Twrong Were conducive to faster classification decisions.

Particularly noteworthy was the performance of EEG_RL-Net on subject Si3, where the RL
agent achieved a classification accuracy of 93.29%. This represented an exceptional improve-
ment by 48.79% over EEG_GLT-Net with m, 17, the current state-of-the-art EEG MI time
point classification method. The classification for Si3 took 6 time points on average, possibly

reflecting the only subtle distinctions between EEG MI tasks for this subject.

6.3.5 Comparison with Current State-of-the-Art Models

In this paper, we compare our proposed method, EEG_GLT-Net, with eight other state-of-
the-art (SOTA) models on PhysioNet dataset listed in Table 6.10, including FBCSP [106],
EEGNet [108], CasCNN [109], DG-HAM [123], EEG-ARNN [124], SSDA [110], GCNs-Net
[100], and EEG_GLT-Net [144]. Our comparisons begin with the traditional FBCSP approach,
which leverages CSP to extract features across multiple frequency bands and utilises SVM for
classification. We then compare with EEGNet, a widely used model based solely on a CNN
structure. Further, we assess CasCNN and SSDA, both of which combine CNN and LSTM
networks. Finally, we evaluate our method against DG-HAM, EEG-ARNN, and GCNs-Net,
EEG_GLT-Net, which are GNN-based networks.

Table 6.10: Performance Comparison of EEG_RL-Net Model with State-of-the-Art Models on
PhysioNet Dataset

Method Avg. Accuracy Avg. F1 Score
FBCSP [106] 59.56% 60.04%
EEGNet [108] 72.20% 72.10%
CasCNN [109] 63.30% 63.18%
DG-HAM [123] 76.15% 76.08%
EEG-ARNN [124] 82.39% 82.17%
SSDA [110] 83.73% 83.24%
GCNs-Net [100] 80.16% 80.05%
EEG_GLT-Net 86.43% 86.23%
Proposed EEG_RL-Net 96.40% 96.38%
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The traditional FBCSP method achieves 59.56%, the lowest accuracy among the SOTAs, likely
due to its reliance on SVM as the classifier. The popular EEGNet achieves 72.20% accuracy,
outperforming the CasCNN model, which achieves only 63.30%. Within the CNN-based SOTA
models, SSDA reaches the highest accuracy at 83.73%. Among the GNN-based SOTA models,
EEG_GLT-Net achieves the highest accuracy at 86.43% followed by EEG-ARNN, GCNs-Net,
DG-HAM with accuracies of 82.39%, 80.16% and 76.15%, respectively. Our proposed EEG_RL-
Net, achieves the highest overall accuracy of 96.40% among all SOTAs.

For the HGD dataset, we compare EEG_RL-Net with eight SOTA models, as detailed in Ta-
ble 6.11. These include ShallowNet [58], EEGNet [108], EEG-ITNet [155], CRGNet [169],
EEG-Conformer [170], LMDA-Net [171], I[FNet [172], and GCNs-Net [100]. The HGD dataset,
which comprises EEG signals of motor movements, has more distinguishable class signals com-
pared to motor imagery datasets like PhysioNet dataset. As a result, most SOTA models
achieve over 90% accuracy, except for EEG-ITNet (84.87%), EEGNet (87.99%), and LMDA-
Net (87.68%). EEG-ITNet, a CNN-based model that includes inception and temporal convo-
lution (T'C) blocks, underperforms compared to the simpler two-layer CNN model ShallowNet,
which achieves 93.04%.

Table 6.11: Performance Comparison of EEG_RL-Net Model with State-of-the-Art Models on
HGD Dataset

Method Avg. Accuracy Avg. F1 Score
ShallowNet [58] 93.04% 92.87%
EEGNet [108] 87.99% 87.85%

EEG-ITNet [173] 84.87% 84.74%
CRGNet [169] 94.33% 94.28%
EEG-Conformer [170] 93.48% 93.32%
LMDA-Net [171] 87.68% 87.49%
IFNet [172] 93.62% 93.28%
GCNs-Net [100] 96.24% 96.18%
EEG_SGNet 98.56% 98.56%
Proposed EEG_RL-Net 99.24% 99.24%

EEG-Conformer performs slightly better than ShallowNet, while [FNet, a model employing
1D CNN operations for low- and high-frequency EEG bands with cross-frequency integration,
achieves an accuracy of 93.62%. CRGNet, which incorporates Riemannian manifold embedding
after CNN operations, achieves the second-highest accuracy among SOTA models at 94.33%.
The highest accuracy among the existing SOTA models is achieved by GCNs-Net, a spectral
GNN approach using PCC for adjacency matrix construction, with 96.24%. In comparison, our
proposed EEG_RL-Net outperforms all existing SOTAs models, achieving the highest accuracy
of 99.24%.
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6.4 Limitations and Future Works

EEG_RL-Net introduces reinforcement learning into EEG-based classification, providing an
adaptive decision-making framework for stroke rehabilitation applications. The single-subject
paradigm used in this study ensures that the model effectively learns individualised neural
patterns, which is particularly beneficial for fine-tuned classification. While the current train-
ing approach is focused on optimising performance within individual subjects, evaluating its
adaptability across a broader population would further validate its robustness. Given that
EEG signals exhibit natural variations across users, further assessments in diverse settings

could provide deeper insights into how EEG_RL-Net generalises to new individuals.

Despite these considerations, EEG_RL-Net presents a flexible and promising approach for real-
time EEG classification. Its reinforcement learning framework is well-suited to incremental
learning and adaptive policy refinement, which can support generalisation to new users with
minimal calibration. Future work could explore subject-independent training strategies or
transfer learning techniques to further improve cross-subject robustness. Additionally, optimis-
ing reinforcement learning models for computational efficiency will be essential for their real-
time deployment in portable or resource-limited rehabilitation devices. These advancements
would enhance EEG_RL-Net’s scalability, making it a more practical solution for EEG-based

rehabilitation technologies.

6.5 Conclusion

Our study introduces EEG_RL-Net, an innovative approach for the real-time classification
of EEG MI signals utilising RL techniques. Building on the foundation of EEG_GLT-Net’s
EEG_GCN block and optimising computational efficiency with an adjacency matrix density of
just 13.39%, EEG_RL-Net not only achieves accurate classification of EEG MI signals but also
identifies signals that are unsuitable for classification. Remarkably, it achieved 100.00% classifi-
cation accuracy for 12 out of 20 subjects within less than 12.5 ms. For challenging subjects (S13
and Sjg in this study), where previous state-of-the-art methods such as EEG_GLT-Net could
classify with accuracies of only 44.50% and 41.41% respectively, EEG_RL-Net achieved unprece-
dented improvement in performance, reaching classification accuracies of 93.29% and 82.33%
in less than 62.5 ms. These results underscore the robustness and efficacy of EEG_RL-Net in
enhancing classification rates, filling a gap for subjects previously deemed difficult by existing
classification methods. In future work, we will further explore the integration of the optimal
adjacency matrix m, ¢rr for advanced graph feature extraction in the EEG_GCN block, aim-
ing to unlock even greater improvements in the classification capabilities of our EEG_RL-Net

system.
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6.6 Significance and Novelty

This chapter presents EEG_RL-Net, a real-time framework combining Graph Neural Networks
(GNNs) with reinforcement learning (RL) to optimise EEG signal decoding. The significance
of this work lies in its innovative use of a dueling deep Q-network (DQN) that allows the model
to dynamically skip uncertain time points, focusing only on high-value segments of the signal.
This approach enhances classification accuracy while reducing computational costs, making it

well-suited for time-critical applications like neurorehabilitation and assistive technologies.

The novelty of EEG_RL-Net is its seamless integration of GNN-based feature extraction and RL
for decision-making. By dynamically adapting to signal variability and selectively prioritising
key data segments, the framework offers a scalable and efficient solution for real-time EEG
classification. This chapter advances the field by providing a novel approach to balancing

speed and precision in EEG applications.
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Chapter 7

Conclusions and Future Work

7.1 Conclusion

In Chapter 3, the EEG_GLT approach for constructing adjacency matrices was introduced,
demonstrating its superiority in both performance accuracy and computational efficiency. Com-
pared to existing methods like Geodesic and PCC, EEG_GLT consistently outperformed in six
different EEG_GLT-Net model configurations using time-point EEG MI signals from the public
PhysioNet dataset. This classification method, applicable in rehabilitation robotics, utilised
data from 20 of 109 subjects. Notably, EEG_GLT enhanced accuracy and F1 scores by 0.52%
to 22.04% and 0.50% to 21.76%, respectively, surpassing the PCC method employed in the
state-of-the-art GCNs-Net model. The method also achieved a 13.39% improvement in average
accuracy across subjects while maintaining adjacency matrix densities below 22.53%. Addi-
tionally, EEG_GLT required only 8.76M to 80.67TM MACs, significantly lower than PCC and
Geodesic methods (42.26M to 291.62M MACs). Furthermore, EEG_GLT outperformed the
state-of-the-art SSDA model, achieving 86.43% accuracy compared to SSDA’s 83.73%.

Chapter 4 extended the application of EEG_GLT to economic variable forecasting. Using 20
years of Australian economic data (July 2000-June 2020) across eight variables-CPI, Wage In-
dex, short- and long-term interest rates, domestic and international bond indices, housing price
index, and unemployment rate—the method demonstrated its versatility. In a 2-layer GNN
forecasting model, EEG_GLT utilised past three-quarter values to predict the next quarter.
The optimal network density was 21.88%. Compared to the SUPA model, the EEG_GLT-

based model achieved a 40% lower average RMSE, underscoring its predictive accuracy.

Finally, in Chapter 5, EEG_SGNet was introduced to classify window-based EEG MI and move-
ment signals, with potential applications in rehabilitation robotics. This parallel CNN-GNN
architecture utilised BCIC_iv-2a and HGD public datasets. Nine model configurations were
explored, comparing PCC and EEG_GLT methods in the GNN pathway. The EEG_GLT-based
EEG_SGNet achieved up to 4.31% and 4.43% improvements in accuracy and F1 scores on the
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BCIC_iv-2a dataset, and up to 1.31% and 1.28% on the HGD dataset. Overall, EEG_SGNet
achieved 82.98% accuracy and 82.88% F1 score on BCIC_iv-2a, outperforming the state-of-the-
art 4ADDFM+3M3DCNN model (80.04% accuracy, 79.95% F1 score). On the HGD dataset,
EEG_SGNet achieved 98.56% accuracy and F1, surpassing the GCNs-Net model’s 96.24% ac-
curacy and 96.18% F1 score.

In Chapter 6, the performance of EEG time-point classification was significantly enhanced
using the EEG RL-Net model, which integrates the EEG GCN block for feature extraction
with a Dueling DQN RL agent for classification. Unlike traditional supervised learning models,
the RL agent’s ability to skip noisy time points improved robustness and accuracy. On the
PhysioNet dataset, EEG_RL-Net achieved 100% accuracy for 12 out of 20 subjects within 12.5
milliseconds. For challenging cases such as Si3 and S19, where EEG_GLT-Net achieved only
44.50% and 41.41% accuracy, EEG_RL-Net demonstrated remarkable improvements, reaching
93.29% and 82.33%, respectively, in under 62.5 milliseconds. Across all subjects, EEG_RL-
Net increased the average accuracy to 96.40% and the F1 score to 96.38%, outperforming
EEG_GLT-Net by approximately 10% on the PhysioNet dataset. Furthermore, on the HGD
dataset, EEG_RL-Net achieved nearly perfect accuracy of 99.24%, surpassing the existing state-
of-the-art model, GCNs-Net, which achieved 96.24%.

Finally, this research makes significant contributions by addressing critical challenges in signal
processing and graph-based learning. It introduces a domain-agnostic adjacency matrix con-
struction method, enabling scalable graph-based models applicable across diverse fields. Addi-
tionally, it demonstrates real-time, time-point-level signal classification, overcoming limitations
in time-sensitive decision-making and paving the way for more efficient and adaptive systems.
These advancements enhance quality of life by improving neurorehabilitation technologies and
enabling accessible health monitoring tools. By optimising computational efficiency and re-
source utilisation, the research also reduces costs, making advanced technologies more practical
and widely adoptable. Moreover, it inspires innovation in interdisciplinary domains, driving

progress in areas such as healthcare, engineering, environmental systems, and beyond.

7.2 Future Work

This research has made significant progress in EEG signal classification, particularly for rehabil-
itation applications. The proposed models such as EEG_GLT-Net, EEG_SGNet, and EEG_RL-
Net have advanced the state-of-the-art in decoding user intentions from EEG data, paving the
way for more effective and efficient rehabilitation systems. Building on this foundation, several
promising directions for future exploration have emerged, both within rehabilitation and in

broader domains.
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7.2.1 Rehabilitation Applications

e Integration with Robotic Exoskeletons
The integration of the proposed models with robotic exoskeletons presents an exciting
opportunity to advance real-world rehabilitation technologies. Future work should focus
on testing these models in real-time scenarios to validate their effectiveness in controlling
exoskeletons for motor recovery tasks. This step is critical for translating the research
into practical rehabilitation settings and demonstrating its potential to enhance patient

outcomes.

e Patient-Specific Model Training
While this study benchmarked the models using public datasets from healthy individuals,
the next phase involves collecting EEG data from stroke survivors. Training the models
on patient-specific data will adapt them to the unique needs of individuals undergoing
rehabilitation. This step is crucial for ensuring the models are clinically applicable and

capable of delivering personalized rehabilitation solutions.

e Multimodal Signal Integration
Incorporating additional physiological signals, such as Electromyography (EMG) or func-
tional Near-Infrared Spectroscopy (fNIRS), can further improve the accuracy and ro-
bustness of the models. By combining these multimodal signals with EEG data, future
research can achieve a deeper understanding of user intentions, enhancing the reliability

and adaptability of the systems in diverse scenarios.

¢ Deployment on Portable and Wearable Devices
Deploying these systems on portable and wearable devices, such as compact EEG head-
sets, is essential for making them accessible for home-based rehabilitation. While the
models are computationally efficient, developing lightweight versions optimized for mo-
bile and embedded platforms remains a key challenge. Addressing this will expand the
reach and usability of these systems, enabling broader adoption in non-clinical environ-

ments.

e Advancing Reinforcement Learning Strategies
The reinforcement learning strategies employed in EEG_RL-Net can be further refined to
handle more complex and dynamic scenarios. Exploring advanced reward mechanisms,
multi-agent frameworks, or hierarchical reinforcement learning approaches could enhance
adaptability and versatility. These improvements would enable the systems to perform
effectively in a wider range of real-time applications, creating smarter and more adaptable

rehabilitation technologies that improve patients’ quality of life.
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7.2.2 Broader Applications Beyond Rehabilitation

The methodologies developed in this thesis demonstrate potential far beyond EEG classification.

Future work could explore applications such as:
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e Healthcare Beyond Neurorehabilitation

Extending real-time classification to other physiological signals, such as EMG for mus-
cle analysis, ECG for cardiac monitoring, and wearable sensors for personalised health

tracking.

Human-Computer Interaction (HCI)
Adapting these methods for brain-computer interfaces in gaming, augmented reality, or

assistive technologies for individuals with disabilities.

Autonomous Systems
Enhancing decision-making in robotics or autonomous vehicles by integrating real-time

adaptive classification of sensor data.

Environmental Monitoring and Financial Systems
Applying the adjacency matrix construction and classification techniques to model com-

plex relationships in climate change forecasting and economic prediction.
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