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Abstract
Quantum fidelities are cornerstone metrics in quantum sciences, widely used

to quantify the similarity of quantum states. Despite its prominence and age, sev-

eral of its properties remain unexplored. This thesis advances our understanding

of fidelities and its generalizations by addressing open problems and introducing

novel frameworks rooted in quantum information theory and Riemannian geom-

etry.

This thesis focuses mainly on three of problems. In the first part, we re-

solve the problem of maximizing average fidelity over finite ensembles of quan-

tum states. By constructing a semidefinite program to compute the maximum

average fidelity and deriving scalable fixed-point algorithms, we demonstrate sig-

nificant improvements in computational runtime. We also derive novel bounds

and expressions for near-optimal states, which are exact in special cases, such as

when the ensemble consists of commuting states. These results provide new tools

for applications, including Bayesian quantum tomography, where they address

outstanding challenges.

In the second part, we extend the concept of fidelity by introducing a family of

generalized fidelities based on the Riemannian geometry of the Bures–Wasserstein

manifold. This framework unifies and generalizes several existing quantum fideli-

ties, including Uhlmann-, Holevo-, and Matsumoto-fidelity, and preserves their

celebrated properties. Through a rigorous mathematical treatment, we estab-

lish invariance and covariance properties, derive an Uhlmann-like theorem, and

discuss some possible generalizations of quantum Rényi divergences.

In the third part, we study the problem of projecting positive matrices to

certain convex and compact sets with respect to Bures distance (or equivalently

Uhlmann fidelity). These convex and compact sets are defined by quantum chan-

nels, and for certain channels, most importantly partial trace, we derive a closed-

form for the projection.

Using the closed form for partial-trace projection we demonstrate various

applications for our results including quantum process tomography and random

state generation. Moreover, these results also endow the pretty good measurement

and Petz recovery map with novel geometric and operational interpretations.

The existence of closed-form for specific channels is related to the saturation

of the data processing inequality (DPI) for fidelity. Thus our results also provide

explicit examples for the saturation of DPI for fidelity.

Together, these contributions provide a comprehensive study of quantum fi-

delities bridging foundational theory and practical applications.

x



Chapter 1

Introduction

1.1 Overview

Quantum computing is a fundamentally different paradigm of computing that

leverages the quantum properties of the physical world. By harnessing the expo-

nential difficulty in the classical simulation of quantum mechanical objects, we

aim to construct algorithms whose performance surpasses that of algorithms run

on classical computers.

This view was succinctly, albeit slightly crudely, described by Richard Feyn-

man when he said “Nature is not classical, dammit, and if you want to make

a simulation of nature, you’d better make it quantum mechanical, and by golly

it’s a wonderful problem, because it does not look so easy” [Fey82]. Thus the

field of quantum computing was born, with the ultimate aim of creating quantum

computers that can harness the quantum mechanical powers of nature to solve

problems that are intractable for classical computers. The poster child for such

a super-classical algorithm that runs on a quantum computer is Shor’s factoring

algorithm [Sho94].

Unlike classical computers which use classical resources like bits and classi-

cal gates, quantum computers use quantum resources qubits (quantum bits) and

quantum gates. This crossover to the quantum side comes with its mathematical

challenges. States of quantum bits are described by complex vectors and matrices,

quantum gates, which manipulate the states of these quantum bits are described

by complex matrices, and the outcomes of quantum computations are probabilis-

tically determined via quantum measurements, which are modeled using special

kinds of matrices. Thus the study of quantum information necessitates delving

deeper into our collective mathematical toolbox which has led to the formation

of a rich tapestry of mathematical results.

More formally, the states of quantum systems are described by density ma-
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trices, which can be seen as the non-commutative (matrix) generalizations of

probability vectors which describe states of classical systems in classical informa-

tion theory. A fundamental problem in information theory involves comparing

two states. Since (finite-dimensional) classical states can be described by (prob-

ability) vectors, this problem can be translated to the comparison of vectors.

Such comparisons are formalized by functions that take in two probability

vectors and return a (typically nonnegative) real number. This class of functions

will be collectively called comparators or figures of merit. Standard examples

of comparators include distance functions such as Euclidean distance, Hellinger

distance [Hel09], and total variation distance [LPW09], as well as divergences

such as Kullback-Leibler divergence [KL51], Rényi divergences [Rén61], and f-

divergences [Mor63; AS66; Csi67], to name a few. Each of the above comparators

comes with its information-theoretic and/or geometric interpretation, and there-

fore the choice of the comparator depends on the context of the problem.

As one might expect, defining analogous figures of merit for quantum states—

which are described by density matrices—requires the construction of more intri-

cate functions, which are quantizations of these classical comparators. Quantiza-

tion refers to the requirement that if the two (input) density matrices commute,

then the output of the quantum comparator must equal the output of the corre-

sponding classical comparator with inputs being the vector of eigenvalues of the

commuting states. More formally, if fC : Rd
+×Rd

+ → R+ is a classical comparator,

a necessary condition for fQ : Hd ×Hd → R+ to be a quantization of fC is

[P,Q] = 0 =⇒ fQ(P,Q) = fC(λ(P ), λ(Q)), (1.1)

where λ(P ) denotes the vector of eigenvalues of P .

An implication of the non-commutative nature of quantum information is that

quantizations of classical comparators are often not unique—there exist multiple,

often infinite, quantizations of the same classical comparators. Perhaps the most

famous such instance involves Rényi divergences, which has multiple families of

quantum generalizations [WWY14; Mül+13; AD13; Tom15; Dup+14], each with

interesting mathematical properties and operational interpretations [LMW13].

A popular comparator for classical distributions is the classical fidelity or

Bhattacharyya coefficient [Bha43]. For positive vectors p, q ∈ Rd
+, it is defined as

FCl(p, q) :=
〈
p

1
2 , q

1
2

〉
=

d∑
i=1

√
piqi, (1.2)

where square roots of nonnegative vectors are defined elementwise:
[
p

1
2

]
i

:=

2



[p]
1
2
i . Classical fidelity is not a distance measure, but a similarity measure. For

probability vectors, classical fidelity satisfies the following bounds:

p, q ∈ ∆d ⇒ 0 ≤ FCl(p, q) ≤ 1, (1.3)

with the lower bound being saturated if the two vectors are orthogonal (p ⊥ q)

and the upper bounds being saturated if the two vectors are equal. For arbitrary

positive vectors, the upper bound is to be replaced with
√∑d

i=1 pi
∑d

i=1 qi.

Though classical fidelity is a similarity measure, it features prominently in the

definition of a bona fide distance called the Hellinger distance:

h(p, q) :=
∥∥∥p 1

2 − q
1
2

∥∥∥
2

=

√√√√ d∑
i=1

(pi + qi) − 2
√
piqi. (1.4)

Often we will be interested not in distances, but in squared distances as

they show nicer mathematical properties. Some examples include the fact that

Pythagorean theorem involves squared Euclidean distance and the Euclidean

mean of a distribution minimizes the average squared distance over the distri-

bution and not the average distance. Another manifestation of this statement

is that divergences are typically analogous to squared distances, with squared

Euclidean distance being a (Bregman) divergence.

Thus we will be typically interested in the squared Hellinger distance: H(p, q) ≡
h(p, q)2 =

∥∥∥p 1
2 − q

1
2

∥∥∥2
2
, for any pair p, q ∈ Rd

+. Observe that the squared Hellinger

distance can be thought of as the difference between the (sum of) arithmetic and

geometric means of two vectors. More formally, respectively define the arithmetic

mean and geometric mean of two positive vectors p, q ∈ Rd
+ as

A(p, q) :=
p+ q

2
and G(p, q) := p

1
2 ⊙ q

1
2 , (1.5)

where u ⊙ v denotes the Hadamard (entrywise) product (also known as Schur

product) of two vectors: [u⊙ v]i = [u]i · [v]i. This implies

1

2
H(p, q) :=

d∑
i=1

[A(p, q)]i − [G(p, q)]i. (1.6)

While generalizing from positive vectors to positive semidefinite matrices, the

(sum of) arithmetic mean part generalizes in an unambiguous manner: A(P,Q) :=
1
2

Tr[P + Q]. However, there is no unique way to generalize the geometric mean

part. Or equivalently, there is no unique quantization of classical fidelity. This

leads to a panoply of quantum fidelities, which we now discuss.

3



Perhaps the most straightforward way of quantizing classical fidelity leads to

Holevo fidelity [Kho72; Wil18]:

FH(P,Q) :=
〈
P

1
2 , Q

1
2

〉
= Tr

[
P

1
2Q

1
2

]
. (1.7)

Indeed we simply replace the Euclidean inner product of the positive vectors

p
1
2 , q

1
2 with the Hilbert–Schmidt inner product of the positive semidefinite matri-

ces P
1
2 , Q

1
2 . The Holevo fidelity has been studied under many names like quantum

affinity [LZ04] and pretty good fidelity [IRS17]. An operational interpretation of

Holevo fidelity is that it is the overlap between the canonical purifications of P

and Q.

Another quantization is obtained via taking geometric mean part literally,

which leads to the Matsumoto fidelity [Mat10]:

FM(P,Q) := Tr[P#Q] := Tr

[
P

1
2

√
P− 1

2QP− 1
2P

1
2

]
, (1.8)

where P#Q := P
1
2

√
P− 1

2QP− 1
2P

1
2 denotes the matrix geometric mean of two

positive definite matrices [KA80]. See Section 2.1.5 for further properties of the

matrix geometric mean. We refer to [Mat10; Mat14; CS20] for operational and

geometric interpretations of the Matsumoto fidelity.

However the most popular quantum fidelity is the Uhlmann fidelity [Uhl76;

Joz94]:1

FU(P,Q) :=
∥∥∥P 1

2Q
1
2

∥∥∥
1

= Tr

[√
Q

1
2PQ

1
2

]
. (1.9)

The ubiquity and usefulness of Uhlmann fidelity is exemplified by the fact that it is

often referred to as simply fidelity. Operationally it is the largest absolute overlap

attainable over all purifications of P and Q. It also has geometric relevance as it

features in the definition of the Bures distance, which is the natural distance of the

Bures manifold of positive definite matrices, which is a Riemannian manifold. We

refer to Bengtsson and Życzkowski [BŻ17] for further geometric interpretations

of Uhlmann fidelity.

Note that all the above three fidelities are valid quantizations of classical

fidelity: if [P,Q] = 0, then they all reduce to the classical fidelity between the

spectra of P and Q. One can construct a Hellinger-like quantity from each of

these fidelities:

H(P,Q) := Tr[P +Q] − 2 F(P,Q), (1.10)

where F(·, ·) denotes either of the three fidelities. For Holevo fidelity and Uhlmann

1Uhlmann originally defined the square of this quantity as transition probability.
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fidelity, the corresponding Hellinger quantities define squares of bona fide dis-

tances called matrix Hellinger distance and Bures distance respectively. However,

for Matsumoto fidelity, the corresponding Hellinger quantity is not a squared dis-

tance, but a divergence as it does not satisfy triangle inequality [BGJ19].

This thesis focuses on three problems related to quantum fidelities. We first

look at the problem of finding the state that maximizes average Uhlmann fidelity

over probability distribution supported on a finite set of quantum states. For-

mally, let R := {ρ1, . . . , ρn} be an ensemble of quantum states and let w ∈ ∆n be

probability vectors encoding associated weights. We are interested in the problem

σ♯ := argmax
σ∈Dd

n∑
i=1

wi FU(ρi, σ). (1.11)

The state σ♯ is called optimal average state (with respect to Uhlmann fidelity) or

(Uhlmann) fidelity barycenter. We phrase this problem as a semidefinite program

(SDP) and show that it exhibits complementary slackness if all the states in the

ensemble are full-rank.

From complementary slackness relations, we derive a fixed-point equation sat-

isfied uniquely by the optimal state. This leads to two fixed-point algorithms

that exhibit superior numerical performance—in terms of runtime—compared to

solving the SDP using standard numerical solvers (see Figure 3.2). We then

discuss how one of the fixed-point algorithms can be interpreted as a Projected

Riemannian Gradient Descent on the Bures–Wasserstein manifold. The Bures–

Wasserstein manifold (often shortened to Bures manifold) is the Riemannian

manifold of positive definite matrices whose natural distance is the Bures dis-

tance. We also derive tight and easily computable upper- and lower-bounds for

the average fidelity achieved by the optimal average state and discuss applications

in quantum tomography and connection to other results in quantum information.

In the second problem, we zoom out a bit to consider all the three previously

discussed fidelities. In particular, we define and study generalized fidelity (and

an associated generalized Bures distance). These objects naturally arise from the

Riemannian geometry of the Bures–Wasserstein manifold. Generalized fidelity

is parametrized by a positive definite matrix we call the base of the generalized

fidelity. More formally, we define the generalized fidelity between P and Q at a

base R as

FR(P,Q) := Tr

[√
R

1
2PR

1
2R−1

√
R

1
2QR

1
2

]
. (1.12)

For specific values of the base, the generalized fidelity recovers all three of the

5



previously mentioned fidelities, which we collectively call the named fidelities. In

particular, choosing R ∈ P, I, P−1 recovers the Uhlmann, Holevo, and Matsumoto

fidelities, respectively. Remarkably, generalized fidelity displays various geometric

properties such as invariance and covariance as the base moves along certain

geodesic-related paths on the manifold of positive definite matrices. We also study

other properties and characterizations of generalized fidelity including a block-

matrix characterization (which is related to the SDP for average fidelity defined in

the previous problem) and an Uhlmann-like theorem for generalized fidelity which

characterizes generalized fidelity based on purifications of the states involved. We

then conclude the work with open problems and potential applications.

The third and final work explores the projection with respect to the Bures

distance (or equivalently Uhlmann fidelity). Projections are a crucial component

in optimization problems [Bub15]. Formally, a projection of a point x to a set C

is the closest point y ∈ C to x with respect to some distance or divergence:

ΠC[x] := argmin
y∈C

D(y, x), (1.13)

where D represents a squared distance or a divergence. Typically projections

are done with respect to the Euclidean distance [Bub15] or Bregman divergences

like relative entropy (a.k.a. Kullback–Leibler divergence) [NY83; HSF24; YCL22;

YFT19].

However, Euclidean distance is often not the ideal distance to consider in

quantum information as the projection could map density matrices (or positive

semidefinite matrices) out of the positive semidefinite cone. Moreover, it also does

not satisfy the data processing inequality (DPI) [Oza00]. Thus it is important to

find projections that are more suitable to the geometry of quantum states, and

Bures distance is often an ideal metric for this purpose [BŻ17].

To elaborate, we consider the projection of an arbitrary positive definite

matrix to the convex and compact set formed by the intersection of the pos-

itive semidefinite cone and an affine subspace of the vector space of Hermi-

tian matrices—a spectrahedron [RG95; Vin14; Chi23]. The sets we consider

are formed by positive semidefinite matrices which are mapped to a given (con-

straint) matrix under a given quantum channel (linear completely positive and

trace-preserving (CPT) map).

Formally, let P ∈ PH, Λ ∈ CPT(H,K), and C ∈ PK. We are interested in the

6



optimization problem

ΠΛ,C [P ] := argmin
Q:Λ(Q)=C

B(P,Q), (1.14)

where B(P,Q) := Tr[P +Q] − 2 FU(P,Q) is the squared Bures distance.

We present a closed form function we call the Gamma map which can be

constructed for any constraint pair (Λ, C). For certain channels, the Gamma map

serve as the closed-form for Bures projection. These channels include partial trace

(including trace), pinching channel (including the completely dephasing map),

and projective measurements with mutually orthogonal projectors. Whether the

Gamma map works for a certain channel is closely related to the saturation of

the DPI for fidelity [LRD17; CS22b]. Thus our results also provide non-trivial

examples of saturation of DPI for fidelity.

For example, given an arbitrary bipartite positive definite matrix P , we find

the projection of P to the set of (bipartite positive definite) matrices with a

fixed marginal on either space. In particular, if this marginal is chosen to be the

identity matrix, this gives a closed-form solution for the Bures projection to the

set of Choi matrices of quantum channels, which finds applications in quantum

process tomography.

Apart from such practical results, our closed-form projection also gives a novel

geometric and operational interpretation to the pretty good measurement [Bel75;

HW94] as the closest measurement to a given ensemble of positive matrices

with respect to total squared Bures distance (or equivalently Uhlmann fidelity).

The closed form also endows a geometric interpretation to the Petz recovery

map [Pet86b; Pet88]. Considering the wide applicability of this projection closed-

form, we expect it to be useful in further optimization problems in quantum

sciences.

We conclude this section by noting that all three problems are intimately

connected to the geometry of the Bures–Wasserstein manifold. Common threads

connecting each of the above three chapters are seen throughout and are discussed

in Chapter 6, thereby providing a unified ending to the results discussed in this

thesis. Finally, we conclude in Chapter 7, where we discuss the results, open

questions, and further research directions.

1.2 Articles related to this thesis

1. Afham, Kueng, and Ferrie [AKF22]. Quantum mean states are nicer than

you think: fast algorithms to compute states maximizing average fidelity;

arXiv:2206.08183. Discussed in Chapter 3.
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2. Afham and Ferrie [AF24]. Riemannian-geometric generalizations of quan-

tum fidelities and Bures–Wasserstein distance; arXiv:2410.04937 (submit-

ted to Journal of Mathematical Physics). Discussed in Chapter 4.

1.3 Thesis organization

The contents of this thesis is organized as follows.

In Chapter 2 we introduce and summarize the mathematical preliminaries

required for rest of the thesis. We first review necessary concepts from linear

algebra, convex optimization, quantum information, and finally Riemannian ge-

ometry.

In Chapter 3 we look at the first set of results of this thesis. Here we deal

with the problem of finding the states that maximizes average Uhlmann fidelity

over a given distribution of density matrices. The results include semidefinite

programs which find the solutions and fixed-point algorithms that converge to

the optimal state. These fixed-point algorithms are seen to perform numerically

better than the semidefinite programs (solved via standard numerical solvers).

We discuss how one of the fixed-point iterative algorithms can be seen as a pro-

jected Riemannian gradient descent on the Bures manifold. We also provide tight

upper bounds and lower bounds that are easier to compute and conclude with a

discussion of applications including in Bayesian quantum tomography.

Next, in Chapter 4 we introduce and study generalized fidelity and general-

ized Bures distance. These generalizations are based on the Riemannian geome-

try of the Bures–Wasserstein manifold. The generalization depends on a (third)

positive definite matrix called the base and after reviewing basic properties of gen-

eralized fidelity and generalized Bures distance, we show remarkable geometric

properties of these quantities. These include invariance and covariance proper-

ties as the base traverses along certain geodesic-related paths over the manifold of

positive definite matrices. We then study various characterizations of generalized

fidelity such as block-matrix characterization and purification-based character-

ization. We also introduce an analogous generalization to certain families of

quantum Rényi divergences and finally conclude the chapter with a discussion

of potential applications in (quantum and classical) machine learning and open

problems.

In Chapter 5 we study the problem of projecting an arbitrary positive

semidefinite matrix to certain convex subsets of the positive semidefinite cone.

We present a function we call the Γ map and provide sufficient conditions for it

to serve as the closed-form for projection. We discuss the channels for which the

closed-form holds and provide explicit formulae for these channels. We then dis-
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cuss the applications which include quantum process tomography, random quan-

tum state and ensemble generation, and projection for optimization problems.

Using these results, we also give a geometric/operational interpretation to the

pretty good measurement and the Petz recovery map.

In Chapter 6 we show how the results discussed in the previous three chapters

share interesting mathematical and geometric relations. Finally we conclude with

Chapter 7 with a discussion of the results in the thesis, open problems, and

future directions.
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Notations

Acronyms

BW Bures–Wasserstein

CP Completely positive

CPT Completely positive and trace-preserving

CPU Completely positive and unital

DPI Data processing inequality

FP Fixed-point

HS Hilbert–Schmidt

FoM(s) Figure(s) of merit

PGM Pretty good measurement

POVM Positive operator-valued measure

PSD Positive semidefinite

QSD Quantum state discrimination

RGD Riemannian gradient descent

SDP Semidefinite program
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Sets and Vector Spaces

N,R,C Natural, real, and complex numbers.

Rd,Cd d-dimensional real and complex vectors.

A,B,C Denote sets.

X,Y,Z Denote complex vector spaces (Cd for some d ∈ N).

[n] The index set {1, 2, . . . , n} for n ∈ N.

Md,MX d× d (square) matrices (acting on the space X).

Hd,HX d× d Hermitian matrices (acting on the space X).

Pd,PX d× d PSD matrices (acting on the space X).

P+
d ,P

+
X d× d positive definite matrices (acting on the space X).

Ud,UX d× d unitary matrices (acting on the space X).

Dd,DX d× d density matrices (acting on the space X).

MX,Y Matrices corresponding to linear maps from X to Y.

LM(X,Y) linear maps from MX to MY.

CP(X,Y) completely positive maps from MX to MY.

CPT(X,Y) quantum channels (CPT maps) from MX to MY.

CPU(X,Y) CP and unital (CPU maps) from MX to MY.

JCP(X,Y) Choi matrices of completely positive maps CP(X,Y).

JCPT(X,Y) Choi matrices of CPT(X,Y).

JCPU(X,Y) Choi matrices of CPU(X,Y).

∆d Probability vectors of length d.

f−1[b] {a : f(a) = b}. The preimage of a function f : A → B

for any b ∈ B.

If the symbol for any matrix class is used without a subscript indicating dimension

or vector space, it denotes the set of all matrices of that type (the union over all

dimensions d). For example, M ≡
⋃

d∈N Md.
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Inner products, norms and distances

⟨u, v⟩, ⟨u|v⟩
∑d

i=1 ūivi. Standard inner product on Cd

⟨A,B⟩ Tr[A∗B]. Hilbert–Schmidt inner product between A,B ∈
Md .

∥u∥, ∥u∥2 Euclidean norm of a vector u.

∥A∥1 Trace norm of a matrix A ∈ M.

∥A∥2
√

⟨A,A⟩. Frobenius norm of a matrix A ∈ M.

∥A∥∞, ∥A∥ Spectral norm of a matrix A ∈ M.

F(P,Q),FU(P,Q) Uhlmann fidelity between P,Q ∈ Pd.

FH(P,Q) Holevo fidelity between P and Q ∈ Pd.

FM(P,Q) Matsumoto fidelity between P and Q ∈ Pd.

FR(P,Q) Generalized fidelity between P and Q ∈ Pd at R ∈ P+
d .

B(P,Q) Squared Bures distance between P and Q.

BR(P,Q) Sq. generalized Bures distance between P and Q at R.

g Symbol to denote a metric tensor.

gp(u, v), ⟨u, v⟩gp Inner product between tangent vectors u, v ∈ TpM at p

on a Riemannian manifold (M, g).

⟨·, ·⟩Bu
P The Bures–Wasserstein metric tensor at P ∈ P+

d .

Π Projection (typically with respect to Bures distance).

ΠΛ,C Bures projection onto the set Λ−1[C].

Π̂X,C Bures projection onto the set of PSD matrices with X-

marginal being C.
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Miscellaneous

A⊺, Ā The transpose and conjugate of a matrix A ∈ M.

A∗ Ā⊺. The adjoint (conjugate transpose) of A ∈ M.

⊺ Transpose (⊺(A) ≡ A⊺).

P
1
2 ,
√
P Equivalent notations for the PSD square root of P ∈ P.

|A|
√
A∗A. Modulus of a matrix A ∈ M.

Pol (A) A|A|−1. Unitary factor of the polar decomposition of invertible

A ∈ M.

P,Q,R Variables to denote positive semidefinite matrices.

ρ, σ Variables to denote density matrices.

Φ,Ψ Variables to denote linear maps between matrices.

Φ∗ The adjoint of a linear map Φ.

Φ̃ρ The Petz recovery map of the channel-state pair (Φ, ρ).

Φ⊺ ⊺ ◦ Φ ◦ ⊺. The transpose twirl of a linear map Φ.

|ψ⟩, |ϕ⟩ Variables to denotes statevectors.

Id, IX The d× d Identity matrix (acting on the space X)

|ω⟩
∑d

i=1 |i⟩|i⟩. Unnormalized canonical Bell state.

Ω |ω⟩⟨ω|. Density matrix of the unnormalized canonical Bell state.

M Symbol to denote a manifold.

(M, g) Riemannian manifold M and metric tensor g.

TxM The tangent space at x ∈ M.

P ⋆ Q Q
1
2PQ

1
2 . Star product for P,Q ∈ Pd.

P
Q

Q− 1
2PQ− 1

2 . Symmetrized division for P ∈ Pd and Q ∈ P+
d .

[A,B] AB − BA. The commutator of A,B ∈ Md.

Tr,TrX The trace and partial trace (over X) maps.

TrZ\X The partial trace over every subsystem of Z except X.

[Z]X, ZX The X-marginal of a square matrix Z.

IdX The identity superoperator acting on MX.

LP (V ) Solution to matrix Lyapunov equation satisfying PLP (V ) +

LP (V )P = V .

L−1
P (Q) QP + PQ. Inverse to the matrix Lyapunov operator.
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Chapter 2

Mathematical Preliminaries

In this chapter, we provide a brief discussion of the mathematical prerequisites

needed for this thesis. For a detailed understanding of the mathematics discussed

in most of this section, see Watrous [Wat18, Mathematical Preliminaries].

2.1 Linear algebra

The mathematical description of quantum systems involves vectors, matrices, and

other tools from linear algebra and matrix analysis. In this section, we give a

summary of relevant concepts from linear algebra. Throughout this thesis, we

will reserve d ∈ N to denote the dimension (length) of a vector or the length of

each axis of a square matrix.

2.1.1 Some classes of matrices

We now look at some classes of matrices that we will use frequently.

� Complex square matrices. The set of all d× d complex square matrices

is denoted by Md. The set of all complex square matrices is denoted by M.

� Hermitian matrices. H ∈ M is Hermitian if H = H∗. The set of d × d

Hermitian matrices is denoted by Hd.

� Unitary matrices. U ∈ M is unitary if its adjoint (conjugate-transpose)

equals its inverse: U∗ = U−1. The set of d× d unitary matrices is denoted

by Ud.

� Positive semidefinite matrices. A matrix P is positive semidefinite

(a.k.a. positive) if it is Hermitian and has every eigenvalue to be nonnega-

tive. The set of d × d positive semidefinite matrices is denoted by Pd. An

alternate notation for positive semidefinite matrices we will use is P ≥ 0.
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� Positive definite matrices. A matrix P is positive definite if it is Her-

mitian and has every eigenvalue to be strictly positive. The set of d × d

positive definite matrices is denoted by P+
d . An alternate notation for pos-

itive definite matrices we will use is P > 0.

� Density matrices. A matrix ρ is a density matrix if it is a positive semidef-

inite matrix of unit trace: ρ ≥ 0 and Tr[ρ] = 1. The set of d × d density

matrices is denoted by Dd.

If two complex spaces X and Y are of the same dimension, that is X = Cd

and Y = Cd, then they are isomorphic and we will denote this equivalence as

X ∼= Y. For a vector space X = Cd, we denote MX to denote the set of all square

matrices acting on X. Indeed, by the fact that X = Cd, the sets MX and Md are

isomorphic and thus will be treated the same. Essentially we refer to it as MX

(Md) if labeling the space as X ∼= Cd is (not) important.

The trace of a matrix is defined as the sum of its diagonal entries. It is

denoted as Tr and it is a linear map from square matrices to C.

2.1.2 Inner products, norms, and distances

We now discuss the related concepts of inner products, norms, and distances

defined on vector spaces. For the rest of this subsection, let V be vector space

over the base field C. This can be the vector space of vectors or matrices, as the

analysis requires no such distinction.

Inner products

An (complex) inner product over V is a complex-valued binary operation ⟨·, ·⟩ :

V× V → C satisfying

1. Linearity in second argument: ⟨u, αv1 + v2⟩ = α⟨u, v1⟩ + ⟨u, v2⟩.

2. Conjugate symmetry: ⟨u, v⟩ = ⟨v, u⟩.

3. Positive definiteness: ⟨u, u⟩ ≥ 0 with equality if and only if u = 0.

Note that (1) and (2) implies conjugate linearity in the first argument: ⟨αu1 +

u2, v⟩ = α⟨u1, v⟩ + ⟨u2, v⟩. Various inner products exist on the space of vectors

and matrices. The dot product over vectors is perhaps the most common inner

product, and over matrices, we have the Hilbert–Schmidt (a.k.a. Frobenius) inner

product defined as

⟨A,B⟩HS ≡ ⟨A,B⟩ := Tr[A∗B], (2.1)

for matrices A and B of compatible shape. One can define a real inner product

similarly.

15



Norms

A norm ∥·∥ on a vector space V is a function of the form ∥·∥ : V → R+ satisfying

the following properties [Wat18]. Here A,B ∈ V are chosen arbitrarily.

1. Positive definiteness: ∥A∥ ≥ 0, with ∥A∥ = 0 if and only if A = 0.

2. Homogeneity: ∥αA∥ = |α|∥A∥ for all α ∈ C.

3. Triangle inequality: ∥A+B∥ ≤ ∥A∥ + ∥B∥.

Every inner product on V induces a norm of the form ∥A∥ =
√

⟨A,A⟩ for any

A ∈ V. However, the converse is not true—not every norm on V is induced by an

inner product. Throughout the thesis, we will utilize various matrix norms, with

an important family of norms being Schatten-p norms. The Schatten p-norm of

a matrix A is defined as

∥A∥p := Tr [|A|p]
1
p , (2.2)

where |A| =
√
A∗A. The Schatten norm recovers three important norms of

specific values of p.

1. Trace norm (p = 1): ∥A∥1 := Tr [|A|] is the sum of singular values of A.

2. Hilbert–Schmidt norm (p = 2): ∥A∥2 :=
√

Tr [|A|2] =
√

⟨A,A⟩ is the

norm induced by the HS inner product.

3. Spectral norm (p → ∞): ∥A∥∞ = maxu∈X:∥u∥2=1 ∥Au∥2 coincides with

the largest singular value of A.

In the last line, we used ∥u∥ to denote the Euclidean norm of vectors. We now

discuss a variational expression for trace norm which turns out to be useful later

on [Wat18; NC01].

Proposition 2.1.1 (Variational characterization of trace norm). For any

A ∈ Md, it holds that

∥A∥1 = max
U :∥U∥∞≤1

|⟨U,A⟩| = max
U :∥U∥∞≤1

Re⟨U,A⟩. (2.3)

If A is full-rank, the optimal U is unique and equal to the unitary factor

appearing in the polar decomposition of A. See Section 2.1.4 for proof and further

details regarding polar decomposition.
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Distances

A distance function or a metric on a set X is a function of the form d : X×X → R+

such that for all x, y, z ∈ X we have

1. Non-negativity : d(x, y) ≥ 0 with equality if and only if x = y.

2. Symmetry : d(x, y) = d(y, x).

3. Triangle inequality : d(x, z) ≤ d(x, y) + d(y, z).

Unlike for inner products and norms, we do not require the underlying set to be

a vector space for distances.

Every norm ∥ · ∥ induces a distance by the relation d(x, y) := ∥x− y∥. Trace

distance and Hilbert–Schmidt distance, the distances induced by trace norm and

Hilbert–Schmidt norm respectively, are important in quantum information.

However, not every distance metric needs to be induced by a norm. One such

distance metric, which is of great importance for this thesis, is the Bures distance

which is defined on the set of positive semidefinite matrices as

b(P,Q) :=

√
Tr[P +Q] − 2

∥∥∥P 1
2Q

1
2

∥∥∥
1
. (2.4)

Though it is not induced by an inner product, it is a distance metric on a Rie-

mannian manifold, thus it is induced by a metric tensor—a family of (real) inner

products. These concepts are further elaborated in Section 2.4.

2.1.3 Linear maps over matrices

Let X = Cd and Y = Cd′ be complex Euclidean spaces. A linear map Φ from MX

to MY is a map such that

Φ(αX1 + βX2) = αΦ(X1) + βΦ(X2) ∈ MY, (2.5)

for all X1, X2 ∈ MX and α, β ∈ C. The set of all such linear maps from MX to MY

is denoted by LM(X,Y). We will use linear map in an unqualified fashion to refer

to linear maps between square matrices. Indeed matrices are linear maps between

vectors, but for such linear maps we already have a well-defined name—matrices.

To each Φ ∈ LM(X,Y), we may uniquely associate a linear map Φ∗ ∈ LM(Y,X)

such

⟨Y,Φ(X)⟩ = ⟨Φ∗(Y ), X⟩, (2.6)

for all X ∈ MX and Y ∈ MY, where ⟨·, ·⟩ denotes the HS inner product. Such a

map Φ∗ is called the adjoint map of Φ. Linear maps are of particular importance

17



in quantum information. Two important linear maps are the trace map and its

generalization, the partial trace map, which we discuss next. A more detailed

discussion of specific kinds of linear maps is deferred to Section 2.3.2.

Trace and partial trace

Let X be a complex Euclidean space. The trace map is a linear map of the form

Tr : MX → C, whose action on a square matrix is obtained by summing along its

diagonal. The trace functional is invariant with respect to the choice of basis. The

adjoint map of trace is given by multiplying the identity matrix: Tr∗(α) = αIX,

for any α ∈ C. Let Y be another complex Euclidean space. One can then consider

the linear map Tr⊗IdY : MX⊗Y → MY whose action is defined as

(Tr⊗IdY)(X ⊗ Y ) = Tr[X] · Y, (2.7)

for any pair X ∈ MX, Y ∈ MY. This map is called the partial trace (over X) as

it traces out the component associated with X. Hence, assuming the input space

has been labeled properly, we will denote this map as TrX, with the subscript

indicating the space that is traced out. The adjoint of the partial trace is given

by tensoring the identity matrix (of the traced-out space): Tr∗X(Y ) = IX ⊗ Y for

any Y ∈ MY. It follows that Tr[X ⊗ Y ] = Tr[X] Tr[Y ].

Indeed this can be generalized to multipartite spaces as well. Let Z = X1 ⊗
· · · ⊗ Xn with Xi = Cdi for i ∈ [n]. Then TrXk

: MZ → MZ\Xk
is the map that

traces out the Xk-component, where Z\Xk ≡ X1 ⊗ · · · ⊗Xk−1 ⊗Xk+1 ⊗ · · · ⊗Xn.

The adjoint map is given by an appropriate tensoring of IXk
. Analogously, the

partial trace map that traces out every space other than Xk is denoted as TrZ\Xk
:

MZ → MXk
. Its action on Z := X1 ⊗ · · · ⊗Xn ∈ MZ is defined as

TrZ\Xk
[Z] = TrZ\Xk

[X1 ⊗ · · · ⊗Xk ⊗ · · · ⊗Xn] =
n∏

i=1,i ̸=k

Tr[Xi]Xk. (2.8)

Such an operation will also be called marginalization of Z over all space except Xk

or computing the Xk-marginal of Z. Here too the adjoint is given by an appropri-

ate tensoring of the identity matrices associated with the traced-out spaces. We

will also use the alternate notation TrZ\Xk
[Z] ≡ [Z]Xk

or ZXk
when unambiguous.

For a bipartite matrix Z ∈ MZ with Z = X⊗ Y, this would read

TrX[Z] ≡ [Z]Y and TrY[Z] ≡ [Z]X. (2.9)

Finally, we remark that by linearity we can extend all the above concepts to

matrices that are not in a tensor product form. We once again refer to [Wat18,
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Mathematical prelimiaries] for further details.

2.1.4 Polar decomposition

Polar decomposition allows us to write an arbitrary matrix as the product of a

unitary and a positive semidefinite matrix. Let A ∈ Md be an arbitrary square

matrix. Then the right and left polar decompositions of A are given by

A = U |A| and |A∗|U, (2.10)

respectively. Here U ∈ Ud is a unitary matrix and |A| =
√
A∗A ∈ Pd is positive

semidefinite. Note that the unitary U in the left and right decompositions, which

is referred to as the unitary factor, can be chosen to be the same. If A is full

rank, then U is unique, and |A| (and hence |A∗|) is positive definite. The unique

unitary factor U will be denoted as U = Pol (A). Thus, for full rank matrices, we

have

U ≡ Pol (A) := A|A|−1 ⇐⇒ U∗ = U−1 = |A|A−1. (2.11)

As discussed in Section 2.1.2, the trace-norm of a matrix is defined as ∥A∥1 =

Tr[|A|]. Let A be full-rank and let U = Pol (A). Observe that

⟨U,A⟩ = Tr[U∗A] = Tr[U−1A] = Tr[|A|A−1A] = Tr[|A|] = ∥A∥1, (2.12)

which shows that the unitary that achieves the optimal value in the variational

expression for trace-norm is indeed the polar factor of A.

The polar decomposition plays an important role in the definition of trace

norm, and thereby in the definitions of trace distance and (Uhlmann) fidelity. It

also plays crucial roles in the results discussed in Chapters 3 and 4.

2.1.5 Matrix geometric mean

We now discuss some basic properties of the geometric mean of two positive

definite matrices [KA80]. For an excellent treatment of this topic, see [Bha09].

See [Liu+24] for quantum algorithms for matrix geometric means, along with a

discussion on the role of matrix geometric means in various quantum informa-

tion problems. [CS20] also discusses matrix geometric means in the context of

quantum information.
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Definition 2.1.2 (Geometric mean). Let A,B ∈ P+
d be positive definite

matrices. The geometric mean between A and B is defined as

A#B := A
1
2

√
A− 1

2BA− 1
2A

1
2 . (2.13)

The geometric mean is symmetric: A#B = B#A, and it reduces to A#B =

A
1
2B

1
2 =

√
AB if A and B commute. If A,B are singular positive semidefinite

matrices, then their geometric mean can be defined by a limiting procedure:

A#B := lim
ϵ→0

(A+ ϵId)#(B + ϵId). (2.14)

However, in this thesis, we typically deal with the geometric means of positive

definite matrices. The geometric mean also enjoys various other properties, some

of which we list here.

Proposition 2.1.3 (Properties of Geometric mean). Let A,B ∈ P+
d and

A#B be their geometric mean. The following statements hold true.

1. (A#B)−1 = A−1#B−1.

2. (ZAZ∗)#(ZBZ∗) = Z(A#B)Z∗ for any invertible Z.

3. X = A#B is the unique positive definite solution to the matrix Riccati

equation

B = XA−1X. (2.15)

The proofs are available in [Bha09].

2.1.6 Star product

We now discuss the star product, which is a non-commutative and non-associative

product over positive semidefinite matrices [LS13] defined as follows.

Definition 2.1.4 (Star product). Let P,Q ∈ Pd. The star-product between

P and Q is defined as

P ⋆ Q := Q
1
2PQ

1
2 . (2.16)

The star product turns out to be convenient while working with positive

semidefinite matrices, and specifically the Bures manifold as it compactifies var-

ious expressions of interest. We collect some elementary properties of the star

product in the following proposition.
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Proposition 2.1.5. The following statements regarding the star product

hold true for positive semidefinite matrices.

1. P,Q ≥ 0 ⇒ P ⋆ Q ≥ 0.

2. (P ⋆ Q) ⋆ Q−1 = P if Q is invertible.

3. (P ⋆ Q)⊺ = P ⊺ ⋆ Q⊺.

Proof. The first two statements follow directly from the definition. For the last

one, observe that

(P ⋆ Q)⊺ =
(
Q

1
2PQ

1
2

)⊺
=
√
Q

⊺
P ⊺
√
Q

⊺
=
√
Q⊺P ⊺

√
Q⊺ = P ⊺ ⋆ Q⊺. (2.17)

Here we have used the fact that
√
Q⊺ =

√
Q

⊺
. To see this, observe that Q⊺ =

(
√
Q
√
Q)⊺ =

√
Q

⊺√
Q

⊺
. Since positive semidefinite matrices have unique positive

semidefinite square roots, we have
√
Q

⊺
=

√
Q⊺.

When multiple star-products are chained without parentheses, we evaluate

from left to right:

A ⋆ B ⋆ C ≡ (A ⋆ B) ⋆ C := C
1
2

(
B

1
2AB

1
2

)
C

1
2 . (2.18)

Observe that for {Pi}i∈[n] ⊂ Pd, we have P1 ⋆ P2 ⋆ · · · ⋆ Pn = Z∗Z where Z =

P
1
2
1 P

1
2
2 · · ·P

1
2
n . Frequently we take the star product of A,B ∈ PX⊗Y where the

second argument is a tensor product of the form B = X ⊗ IY or B = IX ⊗ Y . In

this case, we use the shorthands

A ⋆
X
X := A ⋆ (X ⊗ IY) and A ⋆

Y
Y := A ⋆ (IX ⊗ Y ). (2.19)

Indeed this can be generalized to multipartite systems. Let Z := X1 ⊗ · · · ⊗ Xn,

A ∈ PZ, and X ∈ PXk
for some k ∈ [n]. Then we denote

A ⋆Xk
X = A ⋆ (IX1⊗···⊗Xk−1

⊗X ⊗ IXk+1⊗···⊗Xn). (2.20)

Essentially we star X to the part of A in the component space Xk alone. Recall

the shorthand we introduced for marginals: for A ∈ PX1⊗···⊗Xn , we use [A]Xk
or

AXk
to denote the marginal of A on the space Xk, which is obtained by tracing

out every other subsystem. Indeed it follows that

[A ⋆Xk
X]Xk

= [A]Xk
⋆ X, (2.21)
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for any k ∈ [n] and X ∈ Xk. For bipartite systems, this can be made explicit as

[A ⋆
X
X]X := TrY[A ⋆

X
X] = TrY[A] ⋆ X = AX ⋆X

X

[A ⋆
Y
Y ]Y := TrX[A ⋆

Y
Y ] = TrX[A] ⋆ Y = AY ⋆Y

Y.
(2.22)

The star product allows us a convenient shorthand for matrix geometric mean.

Recall that for A,B,C ∈ P+
d , we have B = CAC ⇐⇒ C = A−1#B, which can

be rewritten as

B = A ⋆ C2 ⇐⇒ C = A−1#B. (2.23)

Equivalently, for any pair A,B ∈ P+
d , it holds that

A ⋆ (A−1#B)2 = B and B ⋆ (B−1#A)2 = A. (2.24)

We now summarize relevant concepts from convex optimization.
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2.2 Convex optimization and semidefinite pro-

grams

Convex optimization plays a central role in modern optimization theory. R.T.

Rockafellar, one of the leading scholars in optimization theory, said that “the great

watershed in optimization isn’t between linearity and nonlinearity, but convexity

and nonconvexity” [Roc93].

In some sense, convex problems are easy to solve and analyze. Fast algorithms

for solving convex problems are at the heart of advancements in optimization and

machine learning. Convex problems feature prominently in this thesis, and thus

we now review the basics of convex optimization.

2.2.1 Convexity

The authoritative sources for convex analysis and optimization are Rockafellar

[Roc70], Boyd and Vandenberghe [BV04], and Bubeck [Bub15]. See Watrous

[Wat18, Mathematical Preliminaries] for an introduction to convexity in the con-

text of quantum information.

Let X := Cd. A set C ⊆ X is convex if for all t ∈ [0, 1] we have

(1 − t)x+ ty ∈ C for all x, y ∈ C. (2.25)

Geometrically, this is equivalent to requiring that the line segment between any

two points in the set lies entirely within the set. A function f : C → R is called

convex if

f((1 − t)x+ ty) ≤ (1 − t)f(x) + tf(y) (2.26)

for all x, y ∈ C and t ∈ [0, 1]. If the inequality holds strictly whenever x ̸= y and

t ∈ (0, 1), then we say that the function is strictly convex. We say function g :

C → R is (strictly) concave if and only if −g is (strictly) convex. A (differentiable)

function f : C → R is called strongly convex with parameter m > 0 if

f(y) − f(x) − Df(x)(y − x) ≥ m

2
∥y − x∥22, (2.27)

for all x, y ∈ C. Here Df(x) is the total derivative of f at x (see Section 2.4.5

for further details on total derivatives). Strictly (and therefore strongly) convex

functions have a unique minimum. Optimization algorithms, such as gradient

descent, have provable convergence guarantees for strong convex functions.

Having defined convex sets and functions, we can define a convex optimization

problem. At its simplest, a convex (optimization) problem involves minimizing a
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convex function f over a convex set C:

minimize : f(x),

subject to : x ∈ C.
(2.28)

An important subclass of convex optimization problems are semidefinite pro-

grams which feature prominently in this thesis, and thus we discuss it next.

2.2.2 Semidefinite programs

Semidefinite programming is a field of convex optimization where we are con-

cerned with optimizing a linear function (recall, all linear functions are convex)

over the intersection of the cone of positive semidefinite matrices with an affine

space. Such a set is called a spectrahedron [RG95; Vin14]. See Chiribella [Chi23]

for a study of various spectrahedra of importance in quantum information.

Let us now formalize the notion of semidefinite programs. Let X,Y be com-

plex Euclidean spaces. A semidefinite program (SDP) can specified by a triple

(Φ, A,B) [Wat18] where Φ : MX → MY is a Hermitian preserving linear map,

A ∈ HX and B ∈ HY are Hermitian matrices. We adopt the SDP formalism

outlined by Watrous [Wat18].

Given a triple (Φ, A,B) of the above form, we may associate two optimization

problems with it, which we call the primal and dual problems.

Primal problem Dual problem

maximize : ⟨A,X⟩ minimize : ⟨B, Y ⟩

subject to : Φ(X) = B, subject to : Φ∗(Y ) ≥ A.

X ∈ PX. Y ∈ HY.

(2.29)

The sets of all operators that satisfy the respective constraints are called primal

feasible set A and dual feasible set B:

A = {X ∈ PX : Φ(X) = B} ,

B = {Y ∈ HY : Φ∗(Y) ≥ A}.
(2.30)

The primal optimum α and dual optimum β are then defined as

α := sup
X∈A

⟨A,X⟩ and β := inf
Y ∈B

⟨B, Y ⟩. (2.31)

In the case that A = ∅ or B = ∅, we set α := −∞ or β := ∞ respectively.

With semidefinite programs, there exist certain notions of duality. The first

notion has already manifested in the form of the dual problem above. Another
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set of manifestations is weak duality and strong duality. The property of weak

duality, which holds for all semidefinite programs, is that the primal optimum is

always bounded above by the dual optimum: α ≤ β. Strong duality describes

the situation where the inequality is saturated, which as one might expect, is not

exhibited by all SDPs. Slater’s conditions are two sufficient conditions for strong

duality.

Theorem 2.2.1 (Slater’s theorem for semidefinite programs [Wat18]). Let

Φ : MX → MY be a Hermitian-preserving map, and let A ∈ HX and B ∈ HY

be Hermitian matrices. Letting A,B, α, and β be defined as above for the

semidefinite program (Φ, A,B), the following two statements hold true:

1. If A ̸= ∅ and there exists a Hermitian operator Y ∈ HY such that

Φ∗(Y ) > A, then α = β, and moreover there exists a primal-feasible

operator X ∈ A such that ⟨A,X⟩ = α.

2. If B ̸= ∅ and there exists a positive definite operator X ∈ P+
X such

that Φ(X) = B, then α = β, and moreover there exists a dual-feasible

operator Y ∈ B such that ⟨B, Y ⟩ = β.

The satisfaction of either of the above two statements implies strong duality,

α = β. If strong duality holds and there exist primal and dual feasible operators

X ∈ A and Y ∈ B achieving equality

⟨A,X⟩ = α = β = ⟨B, Y ⟩, (2.32)

then a certain relation between these two operators, namely complementary slack-

ness, exists.

Theorem 2.2.2 (Complementary slackness for semidefinite programs [Wat18]).

Let Φ : MX → MY be a Hermitian-preserving map, and let A ∈ HX and B ∈ HY

be Hermitian matrices. Let A and B be the primal-feasible and dual-feasible sets

associated with the semidefinite program (Φ, A,B), and suppose that X ∈ A and

Y ∈ B are operators satisfying ⟨A,X⟩ = ⟨B, Y ⟩. It holds that

Φ∗(Y )X = AX. (2.33)

Having summarized the prerequisites from linear algebra and convex opti-

mization, we now discuss quantum information preliminaries.

25



2.3 Quantum information preliminaries

In this section, we discuss the prerequisites from quantum information. The

classic textbook for quantum information is Nielsen and Chuang [NC10]. For a

treatment whose tenor is followed by this thesis, see Watrous [Wat18]. Other ex-

cellent textbooks for this topic are Wilde [Wil13] and Tomamichel [Tom15]. For a

detailed exposition of the geometric aspects of quantum information, see Bengts-

son and Życzkowski [BŻ17].

This section begins by discussing quantum states and density matrices, the

mathematical representations of states in finite-dimensional quantum systems.

We then discuss quantum channels, the mathematical representation of the most

general physical processes governing quantum systems. We will then discuss

a particular representation of quantum channels, called Choi matrices. Subse-

quently, we discuss the different figures of merit or distance measures used in

quantum information, with the most important of them, to this thesis, being

quantum fidelities.

2.3.1 Quantum states

Throughout this thesis, we will consider only finite-dimensional quantum systems.

The state of a quantum system is mathematically described by a density matrix,

which is a positive semidefinite matrix of unit trace. We use Dd to denote the set

of all d× d density matrices.

A pure state is a density matrix of rank one, and they form the extreme points

of the convex set of quantum states. Any pure state can be written in the form

ρ = |ψ⟩⟨ψ| for a unit complex vector |ψ⟩ ∈ Cd. Thus we usually denote pure

states by just the state vector |ψ⟩.

Remark 2.3.1. Typically in quantum information, we use the term state to refer

to density matrices (or unit vectors). However, in this thesis, we will use the word

state to refer to positive semidefinite matrices that are not necessarily unit trace.

One can implicitly view these as weighted density matrices, with the weight given

by the trace of the positive semidefinite matrix.

We now discuss the notion of a purification of a state.

Definition 2.3.2. Let X,Y be complex spaces and let P ∈ PX. A vector

|u⟩ ∈ X⊗ Y is called a purification of P if

P = [|u⟩⟨u|]X ≡ TrY[|u⟩⟨u|]. (2.34)
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The space Y is called the auxiliary space and for a purification to exist, a

necessary and sufficient condition is dim(Y) ≥ rank(P ). We will typically choose

Y ∼= X.

Purifications are not unique, and we denote the set of purifications of a state

P ∈ Pd as Pur(P ). Moreover, there exists a unitary equivalence between purifi-

cations of the same state. That is, if u, v ∈ X ⊗ Y are purifications of P then

there exists a unitary U ∈ UY such that

|u⟩ = (IX ⊗ U)|v⟩. (2.35)

Given the eigendecomposition P =
∑d

i=1 λi |ui⟩⟨ui|, the vector |u⟩ :=
∑n

i=1

√
λi|ui⟩|ui⟩

∈ X ⊗ Y is a purification of P (for Y ∼= X). For proofs and further details, we

refer to [Wat18; Wil13].

2.3.2 Quantum channels

The most general way of describing the evolution of a quantum system is via linear

maps that are Completely Positive and Trace-preserving. Such maps are called

CPT maps or quantum channels. We now discuss some important subclasses of

linear maps between matrices. See Watrous [Wat18] for detailed descriptions and

proofs of the following statements.

Let X = Cd and Y = Cd′ and LM(X,Y) denote the set of all linear maps from

MX to MY and let Φ ∈ LM(X,Y).

1. Φ is called Hermitian preserving if Φ(H) ∈ HY for all H ∈ HX.

2. Φ is called positive if Φ(P ) ∈ PY for all P ∈ PX.

3. Φ is called completely positive if for an auxiliary space Z = Ck of any finite

dimension k ∈ N, the map Φ ⊗ IdZ is positive:

(Φ ⊗ IdZ)(P ) ∈ PY⊗Z for all P ∈ PX⊗Z. (2.36)

Here IdZ : MZ → MZ is the identity superoperator whose action is defined

as IdZ(Z) := Z for any Z ∈ MZ.

4. Φ is called trace-preserving if for all X ∈ MX

Tr[Φ(X)] = Tr[X]. (2.37)

5. Φ is called unital if it maps identity to matrix: Φ(IX) = IY.
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Thus a quantum channel is a linear map that satisfies both Eq. (2.36) and

Eq. (2.37) simultaneously. The set of all CP, CPU, and CPT maps from MX

to MY are denoted by CP(X,Y),CPU(X,Y), and CPT(X,Y) respectively.

The adjoint of any linear map Φ ∈ LM(X,Y) is the unique linear map Φ∗ ∈
LM(Y,X) such that

⟨Y,Φ(X)⟩ = ⟨Φ∗(Y ), X⟩ (2.38)

for all X ∈ MX and Y ∈ MY. A linear map is completely positive if and only

if its adjoint is completely positive and it is trace-preserving if and only if its

adjoint is unital. A linear map that is both trace-preserving and unital is called

bistochastic.

In the above form, a linear map is a rather abstract object. There are other,

more concrete ways, of representing quantum channels such as Kraus opera-

tors [HK69; Kra71], Choi matrix [Cho75; Jam72], and Stinespring representa-

tion [Sti55]. See Watrous [Wat18], Wilde [Wil13], and Tomamichel [Tom15] for

detailed expositions.

Choi matrices play a central role in Chapter 5, where optimizations and pro-

jections on channels and maps are carried out through their Choi representations.

We now explore their key properties. The Choi-Jamio lkowski isomorphism bi-

jectively relates linear maps in LM(X,Y) to bipartite matrices in MX⊗Y. More

specifically, the Choi matrix of a linear map Φ ∈ LM(X,Y) is defined as

J(Φ) :=
d∑

i,j=1

|i⟩⟨j| ⊗ Φ(|i⟩⟨j|) = (IdX ⊗ Φ)(Ω) ∈ MX⊗Y, (2.39)

where {|i⟩}i∈[d] are the computational (standard) basis vectors which span X = Cd

and Ω = |ω⟩⟨ω| for the unnormalized maximally entangled state |ω⟩ =
∑d

i=1 |i⟩|i⟩
(in the basis used to define the Choi matrix). Conversely, for any X ∈ MX, one

can obtain Φ(X) from the Choi matrix J(Φ) as

Φ(X) = TrX[J(Φ) · (X⊺ ⊗ IY)] ≡ [J(Φ) · (X⊺ ⊗ IY)]Y. (2.40)

where the transpose is taken in the basis used to define the Choi matrix, which

we will always take as the computational basis. Some important facts regarding

the Choi-Jamio lkowski isomorphism follows.

1. A linear map is Hermitian-preserving if and only if its Choi matrix is Her-

mitian.

2. A linear map is completely positive if and only if its Choi matrix is positive

semidefinite.
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3. A linear map is trace-preserving if and only if the input-marginal of its Choi

matrix is the identity matrix: [J(Φ)]X = IX.

4. A linear map is unital if and only if its output-marginal is the identity

matrix: [J(Φ)]Y = IY.

Thus a linear map Φ ∈ M(X,Y) is a quantum channel if and only if its Choi

matrix is positive semidefinite and has X-marginal to be identity:

Φ ∈ CPT(X,Y) ⇐⇒ J(Φ) ∈ PX⊗Y and TrY[J(Φ)] = IX. (2.41)

The set of Choi matrices corresponding to the quantum channels (CPT maps)

and CPU maps will be denoted by JCPT(X,Y), JCPU(X,Y) ⊂ PX⊗Y respectively.

Typically we would be interested in the application of a completely positive

map Φ ∈ CP(X,Y) on a positive semidefinite input state P ∈ Pd. In such a

scenario, one can use the star product to compactify Eq. (2.40) as follows.

Φ(P ) = [J(Φ) · (P ⊺ ⊗ IY)]Y = [J(Φ) ⋆
X
P ⊺]Y. (2.42)

The RHS succinctly describes how to get the action of the channel from its Choi

matrix—star the input state on the input space and then consider only the output

space (by discarding the input space).

Transposition and Choi matrices

We now discuss some ideas about the transposition of Choi matrices of lin-

ear maps. Some of the following ideas have been explored in Bengtsson and

Życzkowski [BŻ17, Chapter 11]. Recall that both transpose operation and def-

inition of Choi matrices are basis dependent. Whenever a transpose operation

and a Choi matrix appear together, the basis used to define the Choi matrix and

transpose map must agree. In this section, without loss of generality, we assume

the basis to be the standard (computational) basis.

For an arbitrary linear map Φ ∈ LM(X,Y), define the transpose twirl of Φ as

Φ⊺ ≡ ⊺ ◦ Φ ◦ ⊺ ∈ LM(X,Y), (2.43)

where ⊺ denotes the transpose map with respect to the standard basis. Note that

in the RHS of Eq. (2.43), the right-most transpose is to be taken with respect to

the standard basis of X and the left-most transpose is to be taken with respect

to the standard basis of Y.

Observe that for any X ∈ MX we have Φ⊺(X) = Φ(X⊺)⊺. We now show that

the Choi matrices of Φ and Φ⊺ are mutual transposes, which justifies the notation.
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Proposition 2.3.3. Let Φ ∈ LM(X,Y) be an arbitrary map and denote

Φ⊺ ≡ ⊺ ◦ Φ ◦ ⊺ ∈ LM(X,Y). It then holds

J(Φ)⊺ = J(Φ⊺). (2.44)

Proof. The Choi matrix J(Φ⊺) can be written as

J(Φ⊺) :=
d∑

i,j=1

|i⟩⟨j| ⊗ Φ⊺(|i⟩⟨j|) =
d∑

i,j=1

|i⟩⟨j| ⊗ Φ(|j⟩⟨i|)⊺, (2.45)

where in the last equality we have used the fact that Φ⊺ = ⊺ ◦ Φ ◦ ⊺. Take

transpose across to get

J(Φ⊺)⊺ =
d∑

i,j=1

|j⟩⟨i| ⊗ Φ(|j⟩⟨i|) = J(Φ). (2.46)

which is equivalent to J(Φ⊺) = J(Φ)⊺ as required.

It is this transpose relation between the channels that motivates the notation

Φ⊺. We call a map Φ transpose-preserving if Φ(X⊺) = Φ(X)⊺ for all X ∈ MX.

We now show that a map is transpose-preserving if and only if its Choi matrix is

symmetric: J(Φ)⊺ = J(Φ).

Theorem 2.3.4. Let Φ ∈ LM(X,Y). Then Φ is transpose-preserving if and

only if its Choi matrix is symmetric:

Φ(X⊺) = Φ(X)⊺ for all X ∈ MX ⇐⇒ J(Φ)⊺ = J(Φ). (2.47)

Proof. Towards proving the forward direction, assume Φ is transpose-preserving.

We then have

J(Φ) :=
n∑

i,j=1

|i⟩⟨j| ⊗ Φ(|i⟩⟨j|) =
n∑

i,j=1

|i⟩⟨j| ⊗ Φ(|j⟩⟨i|)⊺. (2.48)

Take transpose across to get

J(Φ)⊺ =
n∑

i,j=1

|j⟩⟨i| ⊗ Φ(|j⟩⟨i|) = J(Φ), (2.49)

which proves the forward direction. For the reverse direction, assume J(Φ)⊺ =
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J(Φ). For any X ∈ MX, we then have

Φ(X⊺) = [J(Φ) ·
X

(X⊺)⊺]Y = [J(Φ)⊺ ·
X

(X⊺)⊺]Y

= [(J(Φ) ·
X
X⊺)⊺]Y = [J(Φ) ·

X
X⊺]⊺Y = Φ(X)⊺.

(2.50)

Here we have used the shorthand A ·
X
X ≡ A · (X ⊗ IY) for A ∈ MX⊗Y, X ∈ MX,

and Y ∈ MY. In the second equality, we have used the assumption J(Φ)⊺ = J(Φ),

in the third equality we have used (A⊺B⊺) = (BA)⊺ followed by cyclic property of

partial trace, and in the fourth equality we have used the fact that partial tracing

commutes with transpose: TrX[(X ⊗ Y )⊺] = TrX[X⊺ ⊗ Y ⊺] = Tr[X]Y ⊺, which is

extended linearly to arbitrary arguments. Having proven the reverse direction,

we conclude the proof.

We now discuss some properties of the transpose twirl of a map.

Proposition 2.3.5. Let Φ ∈ LM(X,Y). It holds that

1. Φ is Hermitian preserving if and only if Φ⊺ is Hermitian preserving.

2. Φ is completely positive if and only if Φ⊺ is completely positive.

3. Φ is trace-preserving if and only if Φ⊺ is trace-preserving.

Proof. We will use properties of the Choi matrices J(Φ) and J(Φ⊺). For the first

statement, observe that

Φ is HP ⇐⇒ J(Φ) ∈ HX⊗Y ⇐⇒ J(Φ)⊺ = J(Φ⊺) ∈ HX⊗Y ⇐⇒ Φ⊺ is HP.

(2.51)

Similarly, we have

Φ is CP ⇐⇒ J(Φ) ∈ PX⊗Y ⇐⇒ J(Φ)⊺ = J(Φ⊺) ∈ PX⊗Y ⇐⇒ Φ⊺ is CP.

(2.52)

For the final statement, observe that

Φ is TP ⇐⇒ [J(Φ)]X = IX ⇐⇒ [J(Φ⊺)]X = IX ⇐⇒ Φ⊺ is TP. (2.53)

The second bidirectional implication follows from the fact that J(Φ⊺) = J(Φ)⊺ and

transpose map commutes with partial trace, which implies [J(Φ⊺)]X = [J(Φ)]⊺X =

IX.

An immediate corollary is that the transpose twirl of a quantum channel is a

quantum channel. Furthermore, the transpose twirl commutes with the adjoint

operation, as shown in the following proposition.
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Proposition 2.3.6. For any linear map Φ ∈ LM(X,Y) it holds that

(Φ⊺)∗ = (Φ∗)⊺. (2.54)

Proof. The proof easily follows from observing that for arbitrary (compatible)

maps Ψ1 and Ψ2, we have (Ψ1 ◦ Ψ2)
∗ = Ψ∗

2 ◦ Ψ∗
1. We then have

Φ⊺∗ = (⊺ ◦ Φ ◦ ⊺)∗ = ⊺ ◦ Φ∗ ◦ ⊺ = Φ∗⊺. (2.55)

In the second equality, we have noted that the transpose map is self-adjoint.

Recall that, by Choi-Jamio lkowski isomorphism, every bipartite matrix C ∈
MX⊗Y defines a linear map from MX to MY. Indeed, by symmetry, it must also

define a linear map from MY to MX. The action of these maps can be written as

follows.

X 7→ [C · (X⊺ ⊗ IY)]Y and Y 7→ [C · (IX ⊗ Y ⊺)]X. (2.56)

Denote these maps as ΦC ∈ LM(X,Y) and ΨC ∈ LM(Y,X) respectively. Note

that in the second case, we have multiplied the input Y ⊺ in the second space to

maintain compatibility. By Proposition 2.3.3, we have

Φ⊺
C = ΦC⊺ and Ψ⊺

C = ΨC⊺ . (2.57)

Furthermore, as we show in the following proposition, ΦC = Ψ∗
C⊺ for Hermitian

preserving maps. That is, the HP map from MX to MY associated with any

C ∈ HX⊗Y is the adjoint of the HP map HY to MX associated with C⊺.

Proposition 2.3.7. Let Φ ∈ LM(X,Y) be a Hermitian preserving map and

let J(Φ) ∈ HX⊗Y be its Choi matrix. It then holds

J(Φ)⊺ = J(Φ∗). (2.58)

where Φ∗ ∈ LM(Y,X) is the adjoint map of Φ.

Proof. Let J(Φ)⊺ ∈ HX⊗Y define the linear map Ψ from MY to MX with the action:

Ψ(Y ) := [J(Φ)⊺(IX ⊗ Y ⊺)]X, (2.59)

for any Y ∈ MY. We aim to show that Ψ(Y ) = Φ∗(Y ), which is equivalent to

showing that ⟨Y,Φ(X)⟩ = ⟨Ψ(Y ), X⟩, for all X ∈ MX and Y ∈ MY. Observe that
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⟨X,Ψ(Y )⟩ = Tr [X∗Ψ(Y )]

= Tr [[J(Φ)⊺(IX ⊗ Y ⊺)]XX
∗] definition of Ψ(Y )

= Tr [J(Φ)⊺(IX ⊗ Y ⊺)(X∗ ⊗ IY)] adjoint of TrY

= Tr [J(Φ)⊺(X∗ ⊗ Y ⊺)]

= Tr
[
J(Φ)(X ⊗ Y )

]
Tr[A⊺] = Tr[A] for any A

= Tr
[
J(Φ)(X ⊗ IY)(IX ⊗ Y )

]
= Tr

[
[J(Φ)(X ⊗ IY)]YY

]
adjoint of tensoring IX

= Tr [[J(Φ)((X∗)⊺ ⊗ IY)]YY ]

= Tr[Φ(X∗)Y ]

= Tr[Φ(X)∗Y ] Φ is Hermitian-preserving

= ⟨Φ(X), Y ⟩,

(2.60)

for any X ∈ MX and Y ∈ MY, which implies Ψ = Φ∗. Thus, for any HP map Φ,

we have J(Φ)⊺ = J(Φ∗) as claimed.

Thus, for a Hermitian preserving map Φ ∈ LM(X,Y), we have the following

equalities:

J(Φ)⊺ = J(Φ⊺) = J(Φ∗) = J(Φ⊺∗)⊺ (2.61)

Some examples of transpose-preserving maps include the trace map, the partial

trace map, and the depolarizing channel.

2.3.3 Metrics and figures of merit

To make quantitative statements about a quantum system, we must be able to

compare two quantum states. More formally, we need functions that take in

two quantum states and return real numbers which can be used to quantify the

closeness of these quantum states. Formally such a function is called a figure

of merit (FoM). We now briefly discuss some popular figures of merit used in

quantum information. We begin with quantum fidelities, a class of figures of

merit with attractive properties, which form the basis of much of this thesis. We

will then briefly discuss other figures of merit for the sake of completeness.

Quantum fidelities

Quantum fidelities are the non-commutative generalizations (a.k.a. quantiza-

tions) of classical fidelity, which is more commonly known as the Bhattacharyya

coefficient. The classical fidelity between two positive vectors p, q ∈ Rd
+ is defined
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as

FCl(p, q) :=
〈
p

1
2 , q

1
2

〉
=

d∑
i=1

√
piqi, (2.62)

where square roots of vectors are defined elementwise:
[
p

1
2

]
i

:= [p]
1
2
i . Observe

that the classical fidelity can be seen as the sum of the geometric mean of the

two positive vectors p and q.

There is no unique way to quantize classical fidelity. We now discuss three

well-studied quantizations of classical fidelity. These are Holevo fidelity, Uhlmann

fidelity, and Matsumoto fidelity.

Holevo fidelity

Holevo fidelity [Kho72] is perhaps the most straightforward way to quantize clas-

sical fidelity:

FCl(p, q) :=
〈
p

1
2 , q

1
2

〉
7→
〈
P

1
2 , Q

1
2

〉
= Tr

[
P

1
2Q

1
2

]
=: FH(P,Q). (2.63)

That is, we simply promote the Euclidean inner product of positive vectors to

the Euclidean (a.k.a. Hilbert–Schmidt) inner product of positive semidefinite

matrices.

Matsumoto fidelity

The Matsumoto fidelity [Mat10; Mat14; CS20] is obtained by taking the geometric

mean part literally, which leads to the following definition:

FM(P,Q) := Tr[P#Q] := Tr

[
P

1
2

√
P− 1

2QP− 1
2P

1
2

]
, (2.64)

where P#Q is the matrix geometric mean between P and Q.

Uhlmann fidelity

However the most popular quantum fidelity is the Uhlmann fidelity [Uhl76; Joz94]:

FU(P,Q) :=
∥∥∥P 1

2Q
1
2

∥∥∥
1

= Tr

[√
Q

1
2PQ

1
2

]
. (2.65)

The popularity of Uhlmann fidelity is exemplified by the fact that it is often

referred to as simply fidelity. We collect some important properties of Uhlmann

fidelity in the following proposition.
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Proposition 2.3.8. The Uhlmann fidelity satisfies the following properties.

1. Joint concavity [Wil13, Property 9.2.2] and [Wat18, Corollary 3.26].

For any P0, P1, Q0, Q1 ∈ Pd, and any λ ∈ [0, 1], we have

FU((1−λ)P0+λP1, (1−λ)Q0+λQ1) ≥ λFU(P0, Q0)+(1−λ) FU(P1, Q1).

(2.66)

2. Strict concavity in either variable [BJL19; BJL18]. For any

P,Q0, Q1 ∈ P+
d such that Q0 ̸= Q1 and λ ∈ (0, 1), it holds that

FU(P, λQ0 + (1 − λ)Q1) > λFU(P,Q0) + (1 − λ) FU(P,Q1). (2.67)

3. The gradient of fidelity is given by [BJL19; BJL18; BŻ17]

∇Q FU(P,Q) ≡ ∇FP (Q) =
1

2
Q−1#P, (2.68)

where we denoted FP (Q) ≡ FU(P,Q) to be the Uhlmann fidelity of

Q > 0 with a fixed state P > 0.

For any P,Q ∈ Pd, it holds that [Mat10; CS20]

FM(P,Q) ≤ FH(P,Q) ≤ FU(P,Q). (2.69)

Hilbert–Schmidt distance

The Hilbert–Schmidt distance between two matrices A and B is defined as

∥A− B∥2 :=
√
⟨A− B,A− B⟩ =

√
Tr[(A− B)∗(A− B)], (2.70)

where ⟨X, Y ⟩ := Tr[X∗Y ] is the Hilbert–Schmidt (Euclidean) inner product on

the space Md. The main benefit of the Hilbert–Schmidt distance is the mathemat-

ical ease of handling. It is also the natural distance of the Riemannian manifold

of Hermitian matrices once equipped with the Euclidean metric.

2.3.4 Data processing inequality

In the previous section, we discussed various figures of merits used in quantum

information. However, not all FoMs are created equal, with some being more

equal1 than others. Essentially, not every FoM is useful for data processing tasks.

1or inequal, as the title suggests.
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The guiding principle for choosing a FoM is as follows.

Data subjected noise should not become more distinguishable.

Since FoMs can characterize distinguishability and noise is modeled through chan-

nels in quantum information, the above statement can be mathematically sum-

marized via the data processing inequality (DPI):

D(ρ, σ) ≥ D(Λ(ρ),Λ(σ)), (2.71)

where ρ, σ are quantum states, Λ is a quantum channel, and D is a figure of merit.

Indeed when it comes to certain quantum information tasks such as quantum

communication, we need FoMs that obey the above inequality for any triple

(Λ, ρ, σ).

Some examples of FoMs that obey DPI include the three fidelities mentioned

in the previous section, trace distance [NC01, Theorem 9.2], Umegaki relative

entropy [Ume62; Lin75; Uhl77]. An important non-example is the HS distance,

which does not obey DPI [Oza00].

Suppose D is an FoM that obeys DPI. We say a triple (Λ, ρ, σ) saturates DPI

for D if

D(ρ, σ) = D(Λ(ρ),Λ(σ)). (2.72)

Finding conditions for exact [Pet86b; Pet88; Hay+04; LRD17] and approxi-

mate [FR15; Jun+18; Wil15; STH16; CS22a] saturation forms a crucial research

direction in quantum information theory.

Uhlmann fidelity and quantum relative entropy are two figures of merit for

which saturation of DPI is important in the context of this thesis. Petz showed

[Pet86b; Pet88] that saturation of DPI for Umegaki relative entropy is equivalent

to the existence of the so-called Petz recovery map, whose geometric interpreta-

tion is studied in Chapter 5. The saturation of DPI for Uhlmann fidelity (more

generally, α-sandwiched Rényi divergences) was studied in [LRD17] and the alge-

braic condition for saturation of DPI derived therein forms a central piece of the

closed-forms for projections with respect to Bures distance, which are introduced

and studied in Chapter 5.
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2.4 Riemannian geometry

Certain results discussed in this thesis rely on the Riemannian geometry of the

Bures–Wasserstein manifold. Thus we briefly (and slightly informally) discuss

necessary concepts from Riemannian geometry, while pointing to Lee [Lee18]

and Do Carmo and Flaherty Francis [DF92] for a more thorough and rigorous

treatment. See Boumal [Bou23] for an excellent treatment of optimization on

manifolds.

In this thesis, we will be mostly interested in the Bures manifold (a.k.a

Bures–Wasserstein manifold) of positive definite matrices. However, a more fa-

miliar manifold is the manifold of Hermitian matrices equipped with the Hilbert–

Schmidt metric, whose geometry is analogous to the familiar geometry of Eu-

clidean vector spaces like Rd. Thus each concept we discuss here would be ex-

emplified by instances from the Euclidean manifold (of Hermitian matrices) and

the Bures manifold. We will use ‘Bures’ and ‘Bures–Wasserstein’ (abbreviated

as BW) interchangeably in this chapter and the rest of this thesis. The name

‘Wasserstein’ comes from the fact that the 2-Wasserstein distance between cen-

tered Gaussian probability measures is equal to the Bures distance between their

covariance matrices. See [BJL19] for details of this connection.

2.4.1 Riemannian manifolds

Informally, a manifold is a set that looks flat when zoomed in sufficiently. The

notions of looks flat and zoomed in are formalized using a set (called atlas) of

homeomorphisms (called charts) from the manifold to open subsets Rm of appro-

priate dimension m.

However, for our purposes, a discussion on charts, atlases, and other funda-

mental concepts would be an overkill. Instead, we reason that the set of Hermitian

matrices and positive definite matrices are smooth manifolds (see [Lee12] for a

precise definition) based on the two following facts.

1. A finite-dimensional vector space is a smooth manifold (see [Lee12, Exam-

ples 1.5, 1.6, 1.7] and [AMS08, Sec. 3.1.4, 3.1.5]).

2. Any open subset of a smooth manifold is a smooth manifold (called an open

submanifold) [Lee12, Example 1.8].

Recall that the set of Hermitian matrices Hd is a real vector space of dimension

d2, which makes Hd a smooth manifold. Moreover, the set of positive definite

matrices P+
d is an open subset of Hd. Thus we have P+

d to be a smooth manifold.
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A Riemannian manifold is a smooth manifold M equipped with a metric

tensor g, which endows the tangent space at every point p ∈ M with a real inner

product gp. The metric tensor can be used to measure angles between curves on

a manifold. The concepts of tangent space and metric tensors are detailed next.

2.4.2 Tangent space

We now discuss the tangent space at a point on a smooth manifold M. While the

formal definition requires concepts from differential geometry, for our purposes

the following would suffice.

For a point p ∈ M, the tangent space TpM is the vector space of all tangent

vectors at a given point p ∈ M. One can visualize a tangent vector v ∈ TpM as

an initial velocity vector of a smooth curve starting at p, tracing out a path that

stays in M, at least infinitesimally.

For any finite-dimensional vector space V, the tangent space TvV at any v ∈ V

is isomorphic to V itself: TvV ∼= V [Lee12, Proposition 3.8]. Thus for any H ∈ Hd,

we have THHd
∼= Hd. If U is an open subset of V, then U is also a smooth manifold,

with TuU ∼= TuV ∼= V [Lee12, Propositions 3.6 and 3.7]. Thus for any P ∈ P+
d ,

the tangent space TPP+
d
∼= TPHd

∼= Hd.

Essentially the above two sections have been to establish that P+
d and Hd are

smooth manifolds and the tangent space at any point in the above manifolds is

isomorphic to Hd. These facts have been summarized in [CS22b, Section 2]. Also

see [Jen03; httb]. The disjoint union of the tangent spaces is called the tangent

bundle:

TM :=
⊔
p∈M

TpM. (2.73)

2.4.3 Metric tensor

Recall that the tangent space is a vector space. If the underlying manifold is

modeled after real vector spaces (which is indeed the case for all Riemannian

manifolds), then one can endow the tangent space with a real inner product (cf.

Section 2.1.2) to turn each tangent space into a real inner product space. This

is exactly what a Riemannian metric does. A Riemannian metric g associates a

smoothly varying real inner product to each tangent space TpM. More formally

p 7→ g(p) ≡ gp ≡ ⟨·, ·⟩p, (2.74)

where gp(·, ·) ≡ ⟨·, ·⟩p is a real inner product on the tangent space TpM.

By endowing the manifold with a metric tensor, we can perform various ge-

ometric operations on the manifold such as measuring the length of curves and
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angles between curves. Moreover, the geometry of the manifold changes as we

change the metric tensor. For the subsequent parts of this section, we discuss two

metrics—the HS metric and the Bures metric. The HS metric can be thought of

as the generalization of the flat Euclidean metric on Rn to Hd. To understand

the geometry of the Bures manifold (the manifold of positive definite matrices

equipped with the Bures metric tensor), we refer to [BŻ17]. For further details

of some of the concepts discussed in this section, we refer to [BJL19; MMP18;

Han+21].

The standard choice of metric tensor over the vector space of Hermitian ma-

trices is the Hilbert–Schmidt inner product:

gHS
H (U, V ) = ⟨U, V ⟩ := Tr[UV ], (2.75)

for all H ∈ Hd and U, V ∈ THHd
∼= Hd.

Another important metric is the Bures metric defined over the manifold of

positive definite matrices P+
d , which is an open subset of Hermitian matrices Hd.

The Bures metric tensor is defined as (see [BJL19, Eq. 29])

gBu
P (U, V ) ≡ ⟨U, V ⟩Bu

P := Re Tr[LP (U)PLP (V )]

=
1

2
Tr[LP (U)V ] =

1

2
Tr[LP (V )U ],

(2.76)

where, for P > 0, LP (U) is the (linear) Lyapunov operator which is implicitly

defined as the unique Hermitian solution to the matrix Lyapunov equation U =

PLP (U) + LP (U)P [Syl84; BR97]. We refer to [MMP18; Bha09] for further

properties of the Lyapunov operator. For completeness, we derive the above

form of the metric tensor of the Bures manifold starting from the infinitesimal

form [Ben98, Eq. 9.43]

B(P, P + dP ) =
1

2
Tr[dPLP (dP )] (2.77)

(a.k.a square of line element) in Appendix A.1. This expression gives the squared

Bures distance between P and P + dP , where dP is interpreted as a tangent

vector and P + dP is to be interpreted as an infinitesimally close point to P .

As one would expect, the Hilbert–Schmidt metric tensor leads to the Hilbert–

Schmidt distance over Hermitian matrices, and the Bures metric leads to the

Bures distance over positive matrices.
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2.4.4 Geodesics and distances

We content ourselves with informal descriptions of geodesics in general followed

by explicit definitions of geodesics of interest to us. For the formal and rigorous

definition of geodesics, we refer to Lee [Lee18] and Vishnoi [Vis18].

Let p, q ∈ M. Informally, any smooth length-minimizing curve2 between p and

q is a geodesic [Lee12, Theorem 6.6]. The converse is true only locally. If p and q

are sufficiently close, then the geodesic is the curve of the minimal length [Lee12,

Theorem 6.12].

The explicit forms of the geodesics with respect to the HS metric on Hd and

Bures metric on P+
d are given as

γEucHK(t) := (1 − t)H + tK for all H,K ∈ Hd, (2.78)

and
γBu
PQ(t) := [(1 − t)I + tP−1#Q]P [(1 − t)I + tP−1#Q]

= P ⋆ [(1 − t)I + tP−1#Q]2, for all P,Q ∈ P+
d ,

(2.79)

where t ∈ [0, 1]. See Vishnoi [Vis18] and Lee [Lee18] for the Euclidean geodesic

definition and Bhatia, Jain, and Lim [BJL19, Eq. 39] for the definition of the

Bures geodesic. It is easy to see that the endpoints are given at t = 0 and t = 1

respectively. The Euclidean geodesic can be extended over the whole real interval

(as opposed to just t ∈ [0, 1]) while still staying in Hd. This is however not the

case with the Bures geodesic. There exists t ∈ R such that γBu
PQ(t) is singular,

thus not positive definite. To see this, choose t = 1
1−λ

where λ is any eigenvalue

of P−1#Q.

The distance between two points is given by the infimum of the length of all

smooth curves connecting the points. Indeed the HS distance and Bures distance

are given by

dHS(H,K) = ∥H −K∥2 and dBu(P,Q) =

√
Tr[P +Q] − 2 FU(P,Q), (2.80)

for any H,K ∈ Hd and P,Q ∈ Pd.

2.4.5 Total derivative, gradient, and Riemannian gradient

We begin with a short digression on finite-dimensional inner product spaces and

their duals. Let (V, ⟨·, ·⟩) be a finite-dimensional real (or complex) inner product

space. Any linear functional on V can be uniquely identified with a dual vector

(a.k.a. covector) by Riesz representation theorem. The dual space of V is a vector

2Additional qualifiers exist. See [Lee18].
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space consisting of all linear functionals on elements of V, denoted by V∗. These

spaces are isomorphic and the identifications are made via the inner product:

gu ∈ V∗ is dual of u ∈ V if and only if gu(v) = ⟨u, v⟩ for all v ∈ V. (2.81)

The spaces V and V∗ are mutual duals with (V∗)∗ = V. The dual of a ket vector

|v⟩ ∈ V is typically denoted by its bra vector ⟨v| ∈ V∗.

Total derivative

We now discuss the Fréchet derivative (a.k.a. total derivative) of real-valued

functions over Hermitian matrices. See Bhatia [Bha13, Appendix] for a review of

derivatives of functions over matrices.

Let X ⊆ V for a real inner product3 space V and let f : X → R be a real-

valued function. f is said to be differentiable at x ∈ X if there exists a linear

map Z : X → R such that

lim
∥v∥→0

∥f(x+ v) − f(x) − Zv∥
∥v∥

= 0 (2.82)

for all v ∈ V. Such a Z is called the Fréchet derivative or total derivative of f

at x and is denoted as Df(x). If f is differentiable at every point in its domain,

we say it is differentiable. The action of Df(x) on an element v can be explicitly

computed as

Df(x)(v) :=
d

dt

∣∣∣∣∣
t=0

f(x+ tv) (2.83)

Observe that Df(x) : X → R is a linear functional for every x ∈ X. Or equiva-

lently, Df : X → V∗. If f is a linear function, then Df(x) = f for all x ∈ X. We

also use the equivalent notation Dfx ≡ Df(x) for the total derivative.

Gradient

The gradient of f at x is the dual of its derivative at x. That is, for any point

x ∈ X, we have the gradient ∇f(x) to be the unique vector in X such that

Df(x)(v) = ⟨∇f(x), v⟩ for all v ∈ X. (2.84)

One may then denote ∇f : X → V to be the function that assigns the vector

∇f(x) to each x ∈ X.

3For our purposes it suffices to consider real inner product spaces.
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Riemannian gradient

Observe that the gradient is obtained by taking the dual of the derivative with

respect to the Euclidean inner product. The Riemannian gradient of a function

f : M → R defined on a Riemannian manifold (M, g) is the tangent vector

∇f(x) ∈ TxM defined as

Df(x)(v) =
〈
∇f(x), v

〉
x

(2.85)

for each v ∈ TxM. Here the tangent space inner product ⟨·, ·⟩x ≡ gx(·, ·) is defined

via the Riemannian metric tensor g.

Let g and h be two different Riemannian metrics on a smooth manifold M.

Due to the metric independence of the total derivative, we can write the following

for a function f : M → R differentiable at x ∈ M:

Df(x)(v) = ⟨∇gf(x), v⟩gx = ⟨∇hf(x), v⟩hx. (2.86)

Consider the manifold P+
d . Choose one of the metrics to be the Hilbert–

Schmidt metric and the other to be the Bures metric. We then have

Df(P )(V ) = ⟨∇f(P ), V ⟩ = ⟨∇f(P ), V ⟩Bu
P , (2.87)

where we have used ∇f to denote the (Euclidean) gradient and ∇f to denote the

Bures gradient. This relation allows one to explicitly compute the Bures gradient,

as follows (see also [Han+21; MMP18]).

Proposition 2.4.1. Let f : P+
d → R be a differentiable function, ∇f denote

the Euclidean gradient, and ∇f denote the Bures gradient. Then we have

∇f(P ) =
1

2
LP

(
∇f(P )

)
(2.88)

and equivalently

∇f(P ) = 2L−1
P (∇f(P )) = 2[∇f(P )P + P∇f(P )]. (2.89)

Proof. We begin with Eq. (2.87), which states that the Bures gradient and Eu-

clidean gradient must be related via the relation ⟨∇f(P ), V ⟩ = ⟨∇f(P ), V ⟩P for

all V ∈ TPP+
d
∼= Hd. By Eq. (2.76), this is equivalent to the requirement

⟨∇f(P ), V ⟩P :=
1

2
Tr[LP (∇f(P ))V ] = Tr[∇f(P )V ] =: ⟨∇f(P ), V ⟩, (2.90)

for all Hermitian V , which implies ∇f(P ) = 1
2
LP (∇f(P )) as claimed. Inverting
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the equation, we get the second relation.

2.4.6 Riemannian exponential and logarithmic maps

We now discuss the exponential and logarithmic maps on a Riemannian manifold.

Informally, the exponential map maps tangent vectors to points on the manifold,

while its inverse, the logarithmic map, maps points on the manifold to the tangent

space. We discuss these concepts in detail.

Riemannian exponential map

Recall that geodesics can be (locally) uniquely defined by the initial position

x ∈ M and an initial velocity (which is a tangent vector) v ∈ TpM. Such a

geodesic is denoted as

γx,v : [0, 1] → M, (2.91)

where the input parameter t ∈ [0, 1] can be thought of as the time. The Rieman-

nian exponential map at x maps the pair v to γx,v(1):

Definition 2.4.2 (Riemannian exponential). Let x ∈ M. The Riemannian

exponential map at x is defined as

Expx[v] := γx,v(1), (2.92)

where v ∈ dom(Expx) ⊆ TxM.

Informally, the exponential map takes in a tangent vector v ∈ TxM and maps

it to the point where one would reach if one starts at x ∈ M and travels for a

unit time along the direction specified by v.

We strengthen our intuition by studying the Euclidean exponential map. Re-

call that for a Euclidean space X = Rd, the tangent space at every point is

isomorphic to X. Thus one can freely add a tangent vector to a point on the

manifold as both are elements of the vector space X. The Euclidean exponential

map is defined as

ExpEuc
x [v] := x+ v. (2.93)

Indeed the form is familiar to us from elementary vector calculus. We now

look at the definition of the exponential map for the Bures–Wasserstein man-

ifold [MMP18; Han+21].
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Definition 2.4.3 (Bures exp. map). The exponential map at P for the

Bures manifold is defined as

ExpBu
P [V ] := P ⋆ [I + LP (V )]2 = [I + LP (V )] · P · [I + LP (V )], (2.94)

where P ∈ P+
d and V ∈ dom(ExpBu

P ) ⊂ TPP+
d
∼= Hd.

For any P ∈ P+
d , we have dom(ExpP ) = {V : I+LP (V ) ∈ P+

d } ⊂ TPP+
d
∼= Hd.

See [MMP18, Prop. 9] for details. As we will see in Section 2.4.7, the exponential

map plays a crucial role in gradient descent over Riemannian manifolds.

Riemannian logarithmic map

The inverse of the Riemannian exponential map, as the name indicates, is the

Riemannian logarithmic map. The two maps are diffeomorphic to each other.

The logarithmic map at x takes in another point y ∈ M and maps it to a tangent

vector in TxM. The Euclidean logarithmic map is given as

Logx[y] := y − x. (2.95)

Recall that this is familiar from vector calculus as the vector whose tip points

at y with its tail at x. We now look at the Riemannian log map for the Bures

manifold [MMP18, Prop. 9].

Definition 2.4.4 (Bures log. map). Let P ∈ P+
d . The logarithmic map at

P , LogP : P+
d → TPP+

d , for the Bures manifold is defined as

LogBu
P [Q] := L−1

P (P−1#Q− I)

= P · [P−1#Q− I] + [P−1#Q− I] · P

=
√
PQ+

√
QP − 2P,

(2.96)

for any Q ∈ P+
d , and we used the fact that L−1

P (X) = XP + PX.

It is easy to see that for any Q ∈ P+
d , we have

ExpBu
P

[
LogBu

P [Q]
]

= P ⋆ [I + LP (L−1
P (P−1#Q− I))]2

= P ⋆ (P−1#Q)2 = Q,
(2.97)
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and for any V ∈ dom(ExpBu
P ) (which implies I + LP (V ) ∈ P+

d ) we have

LogBu
P

[
ExpBu

P [V ]
]

= L−1
P (P−1#ExpBu

P [V ] − I)

= L−1
P ((I + LP (V )) − I) = V,

(2.98)

where we used the fact that

ExpBu
P [V ] := P ⋆ [I + LP (V )]2 =⇒ I + LP (V ) = P−1#ExpBu

P [V ], (2.99)

which follows from the uniqueness of the positive definite solution to the matrix

Riccati equation (Proposition 2.1.3).

Having summarized the Riemannian exponential and logarithmic maps, we

now look at them in action in Riemannian Gradient Descent.

2.4.7 Riemannian gradient descent

In this section, we briefly summarize gradient descent (GD), the workhorse of

modern optimization algorithms and then discuss Riemannian gradient descent

(RGD)—the generalization of GD to non-Euclidean manifolds.

Let us first recall gradient descent informally. Let f be a real-valued differen-

tiable function. A point x ∈ dom(f) is said to be stationary if the derivative of

f at x is zero. Our goal is to find such a stationary point. Gradient descent is

an iterative method that moves in the direction of steepest descent, as indicated

by the negative gradient of the function. With a suitably chosen step size and

after a sufficient number of iterations, the algorithm yields (a sufficiently good

approximation of) a stationary point.

The process of choosing the next point is governed by the update rule. Gra-

dient descent starts from an initial point—often chosen randomly or based on

prior knowledge—and generates a sequence of points that (under suitable con-

ditions) converges to a stationary point of the function. For convex functions,

every stationary point is also a global minimum.

Formally, let X = Cd and f : X → R be a differentiable function. The update

rule of gradient descent for f is defined as follows.
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Definition 2.4.5 (GD update rule). Let f : X → R be differentiable and

let xt be the current point. Then the update rule is

xt+1 := xt − ηt∇f(xt), (2.100)

where ηt ∈ R+ is the step size or learning rate at round t and ∇f : X → X

is the gradient of f .

Let us analyze the update rule. Recall that, formally, ∇f(xt) belongs to the

tangent space of xt:

∇f(xt) ∈ TxtX
∼= X. (2.101)

Thus, at round t, we are taking a step of size ηt in the direction dictated by the

negative gradient. Indeed the above expression can be equivalently written as

xt+1 = ExpEuc
xt

[−ηt∇f(xt)]. (2.102)

where ExpEuc
x : TxX → X is the Euclidean exponential map at x ∈ X. The update

rule for gradient descent on a general Riemannian manifold is obtained by the

appropriate generalization of Eq. (2.102).

Definition 2.4.6 (RGD update rule). Let (M, g) be a Riemannian mani-

fold, f : M → R be differentiable and let xt be the current point. The update

rule for RGD is

xt+1 := Expg
xt

[
−ηt∇f(xt)

]
, (2.103)

where ηt ∈ R+ is the step size at round t, Expg
xt

is the Riemannian ex-

ponential map at xt, and ∇f(xt) ∈ TxtM is the Riemannian gradient of

f .

In this thesis, we are interested in Riemannian gradient descent over the Bures

manifold. Thus we shall now summarize the relevant formulae pertaining to this

manifold.
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Proposition 2.4.7 (RGD update rule for Bures manifold.). Let (M, gBu)

be the Bures manifold and f : M → R be a differentiable function. For a

step size ηt ∈ R+, the update rule for Riemannian gradient descent over the

Bures manifold is

Pt+1 := ExpBu
Pt

[
−ηt∇f(Pt)

]
= [I− 2ηt∇f(Pt)] · Pt · [I− 2ηt∇f(Pt)]

≡ Pt ⋆ [I− 2ηt∇f(Pt)]
2,

(2.104)

provided ηt∇f(Pt) ∈ dom(ExpBu
Pt

).

Proof. We aim to show that ExpBu
Pt

[
−ηt∇f(Pt)

]
= Pt ⋆ [I− 2ηt∇f(Pt)]

2. To this

end, first recall the form of the Bures exponential map as defined in Eq. (2.94):

ExpBu
P (V ) = P ⋆ [I + LP (V )]2 (2.105)

for a tangent vector V ∈ TPM. Choose P = Pt to be the current iterate and

V = −ηt∇f(Pt) to be the (scaled) Bures gradient of f at Pt. By Eq. (2.89), we

have ∇f(Pt) = 2L−1
P (∇f(Pt)). Substituting, we get

ExpBu
Pt

[−ηt∇f(Pt)] = Pt ⋆ [I + LPt(−ηt∇f(Pt))]
2

= Pt ⋆ [I− ηtLPt(2L
−1
Pt
∇f(Pt))]

2

= Pt ⋆ [I− 2ηt∇f(Pt)]
2,

(2.106)

where we have used the fact that LP is a linear operator for any P . This concludes

the proof.
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Chapter 3

Averaging fidelities

In this chapter, we discuss the first set of results with this thesis. This problem

concerns finding the state that maximizes average Uhlmann fidelity over a given

collection of states. We first present the problem statement. This is followed by

a detailed statement of results, and then we look at how the results are derived.

An illustration of the summary of the results is given in Figure 3.1.

Average fidelity

Semidefinite program

Complementary 
slackness

Fixed point equation

Fixed point method 
for optimal state

Upper and lower bounds 
for optimal average fidelity

Figure 3.1: The problem of finding the state that maximizes the average fidelity
is framed as a semidefinite program that exhibits complementary slackness
relations. These relations lead to a fixed-point equation satisfied by the optimal
state from which we construct a fixed-point iteration algorithm for the optimal
state and heuristic near-optimal estimator which is optimal when all the states
commute. Finally, we present upper bounds for optimal average fidelity
achieved by any state.
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3.1 Problem statement

We begin by stating the main problem of interest. Let R := {ρ1, . . . , ρn} ⊂
Dd be a collection of density matrices and let w1, . . . , wn ≥ 0 with

∑n
i=1wi =

1 be associated probability weights, or equivalently, w := (w1, . . . , wn) ∈ ∆n

be a probability vector. We shall denote this distribution as (R, w). We are

then interested in finding the density matrix σ♯ ∈ Dd which maximizes average

Uhlmann fidelity over R:

σ♯ := argmax
σ∈Dd

f(σ) := argmax
σ∈Dd

n∑
i=1

wi FU(ρi, σ), (3.1)

where FU(P,Q) := ∥P 1
2Q

1
2∥1 denotes the Uhlmann fidelity between P,Q ∈ Pd

and f(σ) denotes the average Uhlmann fidelity of σ over the distribution R.

Because we almost exclusively deal with the Uhlmann fidelity in this chapter, we

will suppress the ‘Uhlmann’ part and refer to the function as just fidelity and will

drop the superscript: FU ≡ F. If all the states in the ensemble are full-rank, by

the strict concavity of fidelity (see Proposition 2.3.8), the average fidelity function

is also strictly concave and thus admits a unique maximizer.

As noted earlier, we will study the situation where R is a collection of density

matrices, the weights w form a probability vector, and the optimal state σ♯ is a

density matrix as this is typically the scenario of interest in quantum informa-

tion. We note that most of the results in this chapter, especially the semidefinite

program, fixed-point equation, and algorithms, extend to the case where the fol-

lowing relaxations are made.

1. The ensemble R is allowed to have positive semidefinite matrices as elements

instead of just density matrices. The weight vector w is allowed to be an

arbitrary positive vector: w ∈ Rn
+.

2. The optimal state σ♯ is allowed to be of arbitrary (but fixed) trace, instead

of unit trace.

3.2 Informal statement of results

We now informally state the results, after which we will study each result in de-

tail. We first present a semidefinite program (SDP) which solves Problem 3.1 in

Section 3.3. The SDP exhibits strong duality and, when all the states in the en-

semble are full rank, it exhibits complementary slackness. However, numerically

solving SDPs can quickly grow intractable, especially since the SDP involves op-

timizing over matrices of dimension (n+ 1)d. This difficulty can be circumvented
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by the following observation. Complementary slackness of the SDP implies a

fixed-point equation that is uniquely satisfied by the optimal state:1

σ♯ =
1

f(σ♯)

n∑
i=1

wi

√
σ

1
2
♯ ρiσ

1
2
♯ . (3.2)

We use this to develop two fixed-point iteration algorithms that converge to the

optimal state for any full-rank starting point. The two algorithms are defined by

the two fixed-point iteration maps Λ and Ω of the form

Λ(σ) := Π

[
n∑

i=1

wi

√
σ

1
2ρiσ

1
2

]
,

Ω(σ) := Π

σ− 1
2

(
n∑

i=1

wi

√
σ

1
2ρiσ

1
2

)2

σ− 1
2

 , (3.3)

where Π[A] := A/Tr[A] is used to normalize (nonzero) positive semidefinite ma-

trices to density matrices. The notation Π is indicative of the fact that the

operation A 7→ A/Tr[A] is bona-fide projection with respect to Bures distance

(or equivalently fidelity). To elaborate, for a given P ∈ Pd the minimization

problem

minimize : B(P, σ)

subject to : σ ∈ Dd,
(3.4)

is is solved at at σ = P/Tr[P ]. Here B(P,Q) := Tr[P + Q] − 2 F(P,Q) is

the squared Bures distance between P,Q ∈ Pd. Thus the projection of an ar-

bitrary positive semidefinite matrix to the set of density matrices is given by

trace-normalization. This result (see Corollary 5.2.6) and its generalizations are

discussed in Chapter 5. A comparison of the numerical performances of these

algorithms (standard numerical solvers for SDP and fixed-point) is presented in

Figure 3.2.

The sequence of states {Λk(σ)}∞k=0 and {Ωk(σ)}∞k=0 is seen to converge to the

optimal state σ♯ for any full-rank initial state σ ∈ Dd. Here we define Λ0(σ) := σ

and Λk(σ) := Λ
(
Λk−1(σ)

)
for all integers k ≥ 1. Similar notation is followed for

the map Ω. We observe that the fixed-point method works when all the states in

the ensemble are full-rank. If one is interested in optimizing over rank-deficient

states, first depolarize the states by a small factor to obtain full-rank states and

then use the fixed-point algorithms. Alternatively, we may simply use the SDP

1Note that there is a different (and arguably shorter) way to derive the above fixed-point
equation by directly applying the Karush-Kuhn-Tucker (KKT) conditions [BV04] to the opti-
mization problem maxσ≥0,Tr[σ]=1 f(σ). However, one has to separately show that the optimum
is achieved at a full-rank state.
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Figure 3.2: Performance comparison of SDP and FP algorithm for finding the
state maximizing average fidelity. Runtime plotted as a function of number of
states for original SDP Eq. (3.10), alternate SDP Eq. (B.1), and fixed-point
iteration algorithm Eq. (3.37) for two different dimensions. For 1-qubit states
(d = 2), we plot the runtime of all three methods. For 5-qubit states (d = 32),
we omit the original SDP and plot the alternate SDP only up to n = 8 due to
computational intractability. Each marker is the median of 50 iterations and
shaded regions correspond to interquartile regions. The dashed line (for
alternate SDP 5-qubit) represents extrapolation from numerical data.

which yields the optimum even when the states are rank-deficient.

If all the states in the ensemble R commute pairwise—i.e., [ρi, ρj] = 0 for any

pair i, j ∈ [n]—then a simple analytic expression exists for the optimal state σ�:

σ� = σ′ := Π



(

n∑
i=1

wiρ
1
2
i

)2

 . (3.5)

Essentially, the square root of the optimal state in this scenario is equal to the

weighted average of the square roots of the matrices supporting the distribu-

tion. The state σ′, called the Commuting estimator, can also serve as an easy-to-

compute near-optimal heuristic approximation even in cases where the ensemble

does not commute. One can show that [FB16; BJL19], σ′ is the optimal state for

arbitrary (not necessarily commuting) distributions if we replace the Uhlmann

fidelity with Holevo fidelity FH(P,Q) = Tr
[
P

1
2Q

1
2

]
in the optimization problem

of interest to get

f ′(σ) :=
n∑

i=1

wi F
H(ρi, σ) =

n∑
i=1

wi Tr
[
ρ

1
2
i σ

1
2

]
. (3.6)
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Numerically we see σ′ to be a good approximation to σ♯. In particular, it is better

than the mean estimator (defined as σM :=
∑n

i=1wiρi). The superiority of the

Commuting estimator over the mean estimator is seen especially when the states

are close to each other, which is the case in Bayesian tomography–a proposed

application for the results of this chapter.

We also present analytic upper bounds for the maximum value of the average

fidelity f(σ) for any state σ ∈ D(H):

f(σ) ≤

√√√√ n∑
i,j=1

wiwj F(ρi, ρj) ≤
√
f(σM). (3.7)

We call these bounds Product bound and Average bound respectively.

Note that the average fidelity f(σ′) of the Commuting estimator σ′ is a lower

bound on the maximum average fidelity. Bringing the Product bound into the

picture, we have lower and upper bounds for optimal average fidelity f(σ♯):

f(σ′) ≤ f(σ♯) ≤

√√√√ n∑
i,j=1

wiwj F(ρi, ρj). (3.8)

These bounds are tight as both the upper and lower bounds coincide with optimal

average fidelity f(σ), i.e., the inequalities become equalities when all the states

in the ensemble commute pairwise:

[ρi, ρj] = 0 for all i, j ∈ [n] =⇒ f(σ′) = f(σ♯) =

√√√√ n∑
i,j=1

wiwj F(ρi, ρj). (3.9)

3.3 SDP for optimal average fidelity

The semidefinite program for optimal average fidelity can be seen as a generaliza-

tion of Watrous’s SDP for fidelity [Wat18]. We begin with formally defining the

SDP whose primal optimum is the optimal average fidelity Eq. (3.1). Moreover,

this SDP also provides the optimal state.

Definition 3.3.1 (SDP for optimal average fidelity). Let H = Cd and

R = {ρ1, . . . , ρn} ⊂ DH be a collection of quantum states and w ∈ ∆n be a

probability vector. Let X =
⊕n+1

i=1 H and Y =
⊕n

i=1 H⊕C be Hilbert spaces

with dimensions (n+ 1)d and nd+ 1 respectively.
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Define the semidefinite program (Φ, A,B) as

A =
1

2


0 · · · 0 w1IH
...

. . .
...

...

0 · · · 0 wnIH
w1IH · · · wnIH 0

 ∈ HX, B =


ρ1 0 · · · 0

0
. . .

...
... ρn 0

0 · · · 0 1

 ∈ HY,

(3.10)

and the Hermitian preserving map Φ : MX → MY which acts as

Φ


P1 · · · · ·

· . . .
...

... Pn ·
· · · · · Q

 =


P1 0 · · · 0

0
. . .

...
... Pn 0

0 · · · 0 Tr(Q)

 . (3.11)

The map Φ acts like the identity on the d × d principal block diagonal sub-

matrices, except the last d × d submatrix which is traced. Every other element

is zeroed out. That is

Φ

(
n+1∑
i,j=1

|i⟩⟨j| ⊗ Rij

)
=

(
n∑

i=1

|i⟩⟨i| ⊗ Rii

)
⊕ Tr[Rn+1,n+1], (3.12)

for Ri,j ∈ MH. The corresponding adjoint map Φ∗ : MY → MX has the action

Φ∗


ρ1 · · · · ·

· . . .
...

... ρn ·
· · · · · q

 =


ρ1 0 · · · 0

0
. . .

...
... ρn 0

0 · · · 0 qIH

 , (3.13)

where q ∈ C. We now discuss how the optimal average fidelity maxσ∈Dd
f(σ) is

an upper bound for the primal objective function ⟨A,X⟩ of the above SDP.

Lemma 3.3.2. The primal objective function of the semidefinite program

(Φ, A,B) from Definition 3.3.1 is bounded above by the optimal average

fidelity maxσ∈Dd
f(σ).

Proof. Under the constraint Φ(X) = B, any primal feasible X ∈ A must have the
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form

X =



ρ1 R12 · · · R1n X1

R∗
12 ρ2 · · · R2n X2

...
...

. . .
...

...

R∗
1n R∗

2n · · · ρn Xn

X∗
1 X∗

2 · · · X∗
n σ


≥ 0. (3.14)

Here, each of the block submatrices ρi, σ,Xi, and Rij ∈ Md are square matrices,

with ρi and σ being positive semidefinite as well, for all i, j ∈ [n]. Let us briefly

note what these square matrices are.

The collection {ρi} are the fixed density matrices in the ensemble R and

σ ∈ DH is the actual objective matrix which is varied over the set of all d-

dimensional quantum states Dd. The specific form of Rijs will be discussed later

and the form of the matrices Xis are discussed next.

The positivity of X necessarily implies the positivity of each principal subma-

trix. In particular,

Mi :=

(
ρi Xi

X∗
i σ

)
≥ 0 for all i = 1, . . . , n. (3.15)

By [Wat18, Lemma 3.18], we have Mi ≥ 0 if and only if Xi = ρ
1
2
i Uiσ

1
2 for some Ui

with ∥Ui∥ ≤ 1. Hence, by the variational property of the trace norm (see Propo-

sition 2.1.1), we have that Mi ≥ 0 necessarily implies Re(Tr(Xi)) ≤ F(ρi, σ).

Therefore for any primal feasible point X, we have the following chain of inequal-

ities involving the objective function ⟨A,X⟩:

⟨A,X⟩ =
n∑

i=1

wi Re(Tr(Xi)) ≤
n∑

i=1

wi F(ρi, σ) ≤ max
σ∈Dd

f(σ) =: f(σ♯), (3.16)

where σ♯ is the optimal state. That is the value of the objective function ⟨A,X⟩
is bounded above by the optimal average fidelity.

Essentially, the maximization occurs at two levels: at the first level, each

Xi is varied to maximize the real part of its trace, constrained by the value σ

(along with each fixed ρi). The degree of freedom we allow σ—to vary all over

Dd—defines the second level of maximization.

We now prove, in two different ways, that the inequality Eq. (3.16) is satu-

rated. The first proof, which makes use of the form of X and the fact that we

are optimizing over the closed and bounded set of density matrices, culminates

in the following theorem.
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Theorem 3.3.3. For any ensemble R, all the inequalities in Eq. (3.16) are

saturated by the semidefinite program (Φ, A,B).

Proof. We first establish that for any state σ ∈ Dd, there exists a primal feasible

point X(σ) ≥ 0 such that ⟨A,X(σ)⟩ = f(σ). To see this, fix σ ∈ Dd arbitrary and

consider the (n+ 1)d× d matrix Z ≡ Z(σ) of the form

Z =



ρ
1
2
1U1

ρ
1
2
2U2

...

ρ
1
2
nUn

σ
1
2


. (3.17)

Here, each Ui = Pol
(
ρ

1
2
i σ

1
2

)
is the optimal unitary such that Re Tr

[
ρ

1
2
i Uiσ

1
2

]
=

Tr
[
ρ

1
2
i Uiσ

1
2

]
= F(ρi, σ). Now consider

X(σ) := ZZ∗ =



ρ1 ρ
1
2
1U1U

∗
2ρ

1
2
2 · · · ρ

1
2
1U1U

∗
nρ

1
2
n ρ

1
2
1U1σ

1
2

ρ
1
2
2U2U

∗
1ρ

1
2
1 ρ2 · · · ρ

1
2
2U2U

∗
nρ

1
2
n ρ

1
2
2U2σ

1
2

...
...

. . .
...

...

ρ
1
2
nUnU

∗
1ρ

1
2
1 ρ

1
2
nUnU

∗
2ρ

1
2
2 · · · ρn ρ

1
2
nUnσ

1
2

σ
1
2U∗

1ρ
1
2
1 σ

1
2U∗

2ρ
1
2
2 · · · σ

1
2U∗

nρ
1
2
n σ


. (3.18)

We see that X(σ) ≥ 0 for any state σ and it follows that for such a choice of

X(σ), we have ⟨A,X(σ)⟩ = f(σ).

Since Dd is closed and bounded, the continuous function f(σ) attains its maxi-

mum on Dd. Therefore there exists an optimal σ♯ ∈ Dd achieving the optimal aver-

age fidelity. The optimal primal feasible point X(σ♯) such that ⟨A,X(σ♯)⟩ = f(σ♯)

can be then constructed using Eq. (3.18).

The second proof makes use of Slater’s condition. As we show in Theorem

3.3.4, the SDP (Φ, A,B) always satisfies the first of Slater’s conditions, thereby

ensuring strong duality and the existence of a primal feasible point that achieves

optimal value. Moreover, when Slater’s conditions are satisfied—which occurs

when all the states in the ensemble are full rank—the complementary slackness

relations hold.

We formulate the satisfaction of Slater’s conditions by the SDP (Φ, A,B)

as a separate theorem which also accounts for complementary slackness. The

following theorem shows that the above SDP exhibits strong duality and, if all

the states in R are full rank, complementary slackness. The fixed-point equation,
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and thereby the fixed-point algorithm for the optimal state, will then arise from

complementary slackness.

Theorem 3.3.4. The semidefinite program (Φ, A,B) exhibits strong dual-

ity. Moreover, complementary slackness holds if all the states in R are full

rank.

Proof. Recall that the first Slater’s condition requires the primal constraint to be

satisfied (A ̸= ∅) and the dual constraint to be strictly satisfied (Φ∗(Y) > A).

Note that for any quantum state ρ ∈ Dd, the matrix

X =


ρ1 0 · · · 0

0
. . .

...
... ρn 0

0 · · · 0 ρ

 ∈ PH, (3.19)

is a primal feasible point as it satisfies Φ(X) = B, thereby ensuring A ̸= ∅. For

the second part, choose Y to be the identity matrix Y := IY =
⊕n

i=1 IH ⊕ 1 and

observe that

Φ∗(Y) − A =


IH 0 · · · −1

2
w1IH

0
. . .

...
... IH −1

2
wnIH

−1
2
w1IH · · · −1

2
wnIH IH

 > 0. (3.20)

This is by [HJ85, Theorem 6.1.10], which states that if a Hermitian matrix M with

strictly positive diagonal entries is strictly diagonally dominant i.e., |M(i, i)| >∑
j ̸=i |M(i, j)| for all rows i, then M is positive definite. Since wi < 1 for any

i ∈ [n], we see that Φ∗(Y) − A satisfies this criterion and therefore is positive

definite.

Of course, there could be the case where all weights except a particular weight

wi are 0. However, in such a case the optimization problem is trivially solved by

choosing the optimal state to be σ♯ = ρi. We do not consider such a deterministic

scenario.

Hence, the semidefinite program (Φ, A,B) satisfies the first Slater condition

which in turn ensures strong duality. Moreover, this optimum α is always achieved

for some X♯ ∈ A. The second condition, in contrast, need not always hold. One

sees that if any state ρi is not full rank, then there exists no X ∈ PX satisfying

Φ(X) = B, as B itself is rank deficient and therefore complementary slackness will

not hold. However, for the case where all states in the ensemble R are full rank,
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then the second condition is also satisfied which in turn leads to complementary

slackness. To show that B is non-empty, we may use the same Y as above and

X as defined above satisfies Φ(X) = B while being positive definite for any full

rank quantum state ρ.

Therefore, if all the states {ρi} are full rank, there exist primal and dual

optimal operators X♯ ∈ A and Y♯ ∈ B such that

⟨A,X♯⟩ = α = β = ⟨B,Y♯⟩. (3.21)

Such a condition implies complementary slackness between primal and dual op-

timal points which manifests as

Φ∗(Y♯)X♯ = AX♯. (3.22)

This concludes the proof.

The second proof of the saturation of inequality Eq. (3.16) follows from the

fact that the semidefinite program (Φ, A,B) exhibits strong duality. We now

focus on Eq. (3.22), which allows us to infer insights about the properties of the

optimal state σ♯, including that it satisfies a fixed-point equation. This is formally

discussed in the next theorem.

Theorem 3.3.5 (Fixed point equation for optimal state). If all the states

in R are full rank, the following equation holds:

σ♯ =
1

f(σ♯)

n∑
i=1

wiρ
1
2
i Uiσ

1
2
♯ =

1

f(σ♯)

n∑
i=1

wiσ
1
2
♯ ρ

1
2
i Ui,=

1

f(σ♯)

n∑
i=1

wi

√
σ

1
2
♯ ρiσ

1
2
♯

(3.23)

for unitaries Ui = Pol
(
ρ

1
2
i σ

1
2
♯

)
∈ Ud and the optimal state σ♯. This, in turn,

implies

σ♯ = Π

(
n∑

i=1

wi

√
σ

1
2
♯ ρiσ

1
2
♯

)
, (3.24)

where Π is the trace normalization map defined as Π(A) := A/Tr(A)

Proof. Let X♯ ∈ PX and Y♯ ∈ HY be the optimal primal and dual points satisfying

⟨A,X♯⟩ = α = β = ⟨B,Y♯⟩ = f(σ♯). (3.25)
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Decompose X♯ and Φ∗(Y♯) as

X♯ =



ρ1 R12 · · · R1n X1

R21 ρ2 · · · R2n X2

...
...

. . .
...

...

Rn1 Rn2 · · · ρn Xn

X∗
1 X∗

2 · · · X∗
n σ♯


,Φ∗(Y♯) =



Y1 0 · · · 0 0

0 Y2 · · · 0 0
...

...
. . .

...
...

0 0 · · · Yn 0

0 0 · · · 0 z1H


, (3.26)

where Rij = R∗
ji. By complementary slackness, we have Φ∗(Y♯)X♯ = AX♯, which

is equivalent to

Y1ρ1 Y1R12 · · · Y1R1n Y1X1

Y2R21 Y2ρ2 · · · Y2R2n Y2X2

...
...

. . .
...

...

YnRn1 YnRn2 · · · Ynρn YnXn

zX∗
1 zX∗

2 · · · zX∗
n zσ♯


=

1

2



w1X
∗
1 w1X

∗
2 · · · w1X

∗
n w1σ♯

w2X
∗
1 w2X

∗
2 · · · w2X

∗
n w2σ♯

...
...

. . .
...

...

wnX
∗
1 wnX

∗
2 · · · wnX

∗
n wnσ♯

S1 S2 · · · Sn X̄


(3.27)

where Si := wiρi +
∑n

j=1,j ̸=iwjRji and X̄ :=
∑n

i=1wiXi

Let us now deduce the forms of Xi, Yi, and Rij. The invertibility of ρi and

Yi implies that Xi, Rij and σ♯ are also full-rank. Putting together Eq. (3.15) and

Eq. (3.17), we deduce that

Xi = ρ
1
2
i Uiσ

1
2
♯ =

√
ρiσ♯ = ρi#σ

−1
♯ · σ♯. (3.28)

where Ui = Pol
(
ρ

1
2
i σ

1
2

)
. See Appendix A.2.1 for the proof regarding the last two

equalities. From the form of Xi and the fact that YiXi = 1
2
wiσ♯ we can deduce

that Yi = 1
2
wiρ

−1
i #σ♯. The relations necessarily implies Rij = ρ

1
2
i UiU

∗
j ρ

1
2
j , which is

in agreement with the forms for Rij (as defined in Eq. (3.14)) we got in Eq. (3.18).

The last block matrix equality from Eq. (3.27) is of particular importance, which

can be rewritten as

2zσ♯ =
n∑

i=1

wiXi =
n∑

i=1

wiρ
1
2
i Uiσ

1
2
♯ =

n∑
i=1

wiρi#σ
−1
♯ · σ♯. (3.29)

We will later on derive the fixed-point algorithm from this relation. It follows

that Tr(Xi) = F(ρi, σ♯), and tracing both sides, we obtain 2z = f(σ♯), Hence we
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have

f(σ♯)σ♯ =
n∑

i=1

wiρi#σ
−1
♯ · σ♯ =

n∑
i=1

wi

(
σ
−1/2
♯

√
σ
1/2
♯ ρiσ

1/2
♯ σ

−1/2
♯

)
· σ♯

=
n∑

i=1

wiσ
−1/2
♯

√
σ
1/2
♯ ρiσ

1/2
♯ σ

1/2
♯ ,

(3.30)

where in the second equality we used the definition of matrix geometric mean

A#B := A
1
2

√
A− 1

2BA− 1
2A

1
2 (see Proposition 2.1.3 for further details). Left and

right multiply σ
1
2
♯ and σ

− 1
2

♯ respectively, and rearrange to get

σ♯ =
1

f(σ♯)

n∑
i=1

wi

√
σ

1
2
♯ ρiσ

1
2
♯ . (3.31)

Equivalently, one may write

σ♯ = Π

(
n∑

i=1

wi

√
σ

1
2
♯ ρiσ

1
2
♯

)
= Π

(
n∑

i=1

wi

∣∣∣ρ 1
2
i σ

1
2
♯

∣∣∣) , (3.32)

where Π[A] := A/Tr[A]. This concludes the proof.

We can now use expression Eq. (3.32) to construct an iterative fixed-point

algorithm to obtain the optimal state. This expression has the property that

after each iteration, we have a convex combination of positive definite operators

which is then normalized to a density matrix. Therefore, we never leave the set

of density matrices during the iteration process.

3.4 Iterative algorithms for optimal fidelity es-

timator

One may construct a fixed-point iterative algorithm from Eq. (3.32) as follows.

σ(k) = Λ
(
σ(k−1)

)
:= Π

(
n∑

i=1

wi

√
σ

1
2

(k−1)ρiσ
1
2

(k−1)

)
, (3.33)

where Π(A) = A/Tr(A). We define the repeated action of Λ recursively as

Λk(ρ) = Λ(Λk−1(ρ)). This algorithm is numerically seen to converge to the op-

timal state σ♯ for all choices of full-rank initial states σ(0) and is much more

tractable than solving the semidefinite program (Φ, A,B) numerically as we avoid

optimizing over complex matrices of dimension (n+ 1)d. Though the fixed-point

algorithm is numerically seen to always converge to the optimal state for random
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initializations, a well-motivated ansatz is the Commuting estimator σ′ Eq. (3.39)

which is studied in the next subsection.

We now construct a second fixed-point algorithm based on a simple extension

of a fixed-point algorithm developed in [Álv+16]. This algorithm was developed

in the context of finding Wasserstein barycenter [AC11] over Gaussian probabil-

ity measures with respect to the 2-Wasserstein distance [Mon81; Kan42; Vil+09;

PZ19]. Bhatia, Jain, and Lim [BJL19] provide an excellent study of the connec-

tion between the 2-Wasserstein distance between Gaussian probability measures

and the Bures distance between positive semidefinite matrices.

We also note that Zemel and Panaretos [ZP19] identified this fixed-point al-

gorithm as a Riemannian gradient descent algorithm (with unit step size) on the

Wasserstein manifold. The discussion in Section 3.5 is based on this identification.

Let us return to the construction of the second fixed-point algorithm. Bhatia,

Jain, and Lim [BJL19] study the problem of minimizing average squared Bures

distance B(P,Q) := Tr(P +Q)− 2 F(P,Q). That is, given a collection of positive

definite matrices P := {P1, . . . , Pn} ⊂ P+
d and a probability vector w ∈ ∆n over

it, they find the solution to the optimization problem

argmin
Q∈Pd

n∑
i=1

wiB(Pi, Q) = argmin
Q∈Pd

n∑
i=1

wi [Tr[Pi +Q] − 2 F(Pi, Q)] . (3.34)

Such a point is called the Bures–Wasserstein barycenter of the distribution (w,P).

The solution Q♯ to this problem satisfies a similar fixed-point equation to ours:

Q♯ =
n∑

i=1

wi

√
Q

1
2
♯ PiQ

1
2
♯ . (3.35)

The fixed-point algorithm, which provably converges to Q♯, is of the form

Q(k+1) = K
(
Q(k)

)
= Q

− 1
2

(k)

(
n∑

i=1

wi

√
Q

1
2

(k)PiQ
1
2

(k)

)2

Q
− 1

2

(k) , (3.36)

which reduces to Eq. (3.35) at the fixed point Q♯. We can modify this algorithm to

obtain a second fixed-point algorithm which we describe formally in the following

theorem.
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Theorem 3.4.1 (Convergence of Ω fixed-point algorithm). Let R =

{ρ1, . . . , ρn} ∈ P+
d be a collection of full-rank states and w ∈ ∆n be a prob-

ability vector. Consider the map Ω : P+
d → Dd of the form

Ω(σ) := Π(K(σ)) = Π

σ− 1
2

(
n∑

i=1

wi

√
σ

1
2ρiσ

1
2

)2

σ− 1
2

 , (3.37)

where Π(A) := A/Tr(A). Then the collection of states {Ωk(σ)}k=1, where

we define Ωk+1(σ) := Ω(Ωk(σ)), converges to the optimal state σ♯ for any

full-rank initial state σ ∈ Dd.

Proof. The proof is a simple extension of [BJL19, Theorem 11], which proves

that the fixed-point algorithm K (Eq. (3.36)) converges to Eq. (3.35). By noting

that Π is a continuous function (as it is division by a non-zero positive scalar), it

follows that the fixed-point algorithm Ω converges to σ♯.

Numerical results indicate that both fixed-point algorithms have comparable

performance in terms of total runtime. We also note that [Che+20] establishes

a linear rate of convergence for the fixed-point algorithm discussed in [BJL19;

Álv+16]. Also see [BRT23] for a proof establishing linear convergence for a gen-

eralization of the average fidelity maximization problem. Since the convergence

of Ω fixed-point algorithm can be proven theoretically, we prefer it over Λ fixed-

point algorithm. In the following sections, when we refer to simply ‘fixed-point

algorithm’, we mean the Ω fixed-point algorithm.

3.4.1 Heuristic approximations of optimal fidelity

estimators

If all the states in R commute pairwise i.e., [ρi, ρj] = 0 for all i, j ∈ [n],

then there exists a simple analytic expression for the optimal state σ♯. We begin

with noting that when all the states commute pairwise, the problem reduces to

a classical problem, as the problem can be considered in the common eigenbasis

where we are now dealing with a collection of probability vectors. Hence we may

take that the optimal solution is also a probability vector, or that the optimal

state commutes with all ρi ∈ R. We then have

f(σ♯) · σ♯ =
n∑

i=1

wi

√
σ

1
2
♯ ρiσ

1
2
♯ =

n∑
i=1

wiρ
1
2
i σ

1
2
♯ (3.38)
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Multiply both sides by σ
− 1

2
♯ and squaring, we obtain

σ♯ = σ′ := Π

( n∑
i=1

wiρ
1
2
i

)2
 , (3.39)

which we call the Commuting estimator σ′. This expression is consistent with

the results of [FB16], which address the problem of finding optimal states for

fidelity restricted to commuting states. The expression Eq. (3.39) also serves as

a heuristic approximation in the general case. To see this, recall that f(σ♯) · σ♯ =∑n
i=1wiρ

1
2
i Uiσ

1
2
♯ . Since Uj = exp(iHj) for some Hermitian Hj ∈ HH, we may

write

f(σ♯) · σ♯ =
n∑

j=1

wjρ
1
2
j

(
IH + iHj +

1

2
(iHj)

2 + · · ·
)
σ

1
2
♯ . (3.40)

Taking a 0th order approximation by ignoring all terms expect IH, we obtain σ′.

This approximation would make sense when all the states ρi ∈ R are ‘close by’,

which is the case for Bayesian state estimation which is the proposed application

of these results.

3.4.2 Upper and lower bounds on optimal average fidelity

We now present two different upper bounds on the maximum average fidelity

achievable by any state for an arbitrary ensemble (R, p) (that may include rank-

deficient states). We call these bounds the Average bound and the Product bound,

respectively. The Average bound states that the square root of average fidelity

of the Mean estimator σM =
∑n

i=1wiρi bounds the average fidelity obtained by

state σ from above:

f(σ) =
n∑

i=1

wi F(ρi, σ) ≤
√
f(σM). (3.41)

The Product bound states that for any state σ,

f(σ) ≤

√√√√ n∑
i,j=1

wiwj F(ρi, ρj). (3.42)

The Product bound is tighter than the Average bound. These statements are for-

malized below. We first prove the following lemma which deals with the scenario

where all the states in the ensemble are full-rank.
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Lemma 3.4.2. Let R = {ρ1, . . . , ρn} ⊂ Dd be a collection of full-rank states

and w ∈ ∆n be a probability vector. Then for any state σ ∈ Dd, it holds

that

f(σ) ≤

√√√√ n∑
i=1

wiwj F(ρi, ρj). (3.43)

When all the states in the ensemble commute pairwise, the inequality is

saturated.

Proof. By Eq. (3.23), we have

f(σ♯) · σ♯ =
n∑

i=1

wi

√
σ

1
2
♯ ρiσ

1
2
♯ =

n∑
i=1

wiσ
1
2
♯ ρ

1
2
i Ui. (3.44)

Squaring and then left and right multiplying by σ
− 1

2
♯ , we have

f(σ♯)
2 · σ♯ = σ

− 1
2

♯

(
n∑

i,j=1

wiwjσ
1
2
♯ ρ

1
2
i UiU

∗
j ρ

1
2
j σ

1
2
♯

)
σ
− 1

2
♯

=
n∑

i,j=1

wiwjρ
1
2
i UiU

∗
j ρ

1
2
j .

(3.45)

Tracing both sides, we have

f(σ♯)
2 = Tr

[
n∑

i,j=1

wiwjρ
1
2
i UiU

∗
j ρ

1
2
j

]
=

n∑
i,j=1

wiwj Re Tr
[
ρ

1
2
i UiU

∗
j ρ

1
2
j

]
. (3.46)

Noting that Re Tr
[
ρ

1
2
i V ρ

1
2
j

]
≤ F(ρi, ρj) for any unitary V ∈ U(H), we have

f(σ♯)
2 ≤

n∑
i,j=1

wiwj F(ρi, ρj). (3.47)

Taking square root over both sides, we obtain Eq. (3.43).

To see that the inequality is saturated in the commuting case, note that if ρi

and σ♯ commute, we have Ui = IH. Hence Eq. (3.45) reduces to

f(σ♯)
2 = Tr

[
n∑

i,j=1

wiwjρ
1
2
i ρ

1
2
j

]
=

n∑
i,j=1

wiwjTr
[
ρ

1
2
i ρ

1
2
j

]
=

n∑
i,j=1

wiwj F(ρi, ρj), (3.48)

where, for commuting states ρi and ρj, we have F(ρi, ρj) = Tr
[
ρ

1
2
i ρ

1
2
j

]
. Taking

square root across, inequality saturation of Eq. (3.43) follows.
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Lemma 3.4.2 bounds optimal average fidelity in the case where all the states

in the ensemble are full rank. This can be extended to ensembles with arbitrary

(such as rank-deficient) states by continuity, which brings us to the Product

bound for arbitrary ensemble.

Theorem 3.4.3 (Product bound). Let R = {ρ1, . . . , ρn} ∈ Dd be an arbi-

trary collection of quantum states and let w ∈ ∆n be a probability vector.

Then for any state σ ∈ Dd, it holds that

f(σ) ≤

√√√√ n∑
i,j=1

wiwj F(ρi, ρj). (3.49)

Proof. Let Rϵ denote the ensemble obtained by depolarizing all the states in R

by a factor of ϵ ∈ [0, 1]:

Rϵ := {ρ′i(ϵ) = (1 − ε)ρi + εIH/d : ρi ∈ R}. (3.50)

Let J(ϵ) denote the gap of the Product bound when the ensemble is depolarized

by a factor of ϵ:

J(ϵ) =

√√√√ n∑
i,j=1

wiwj F
(
ρ′i, ρ

′
j

)
−

n∑
i=1

F(ρ′i, σ♯), (3.51)

where σ♯ is the optimal state over the ensemble Rϵ and we have dropped the ϵ

while writing ρ′i for brevity.

For any ϵ ∈ (0, 1], all of the states in Rϵ are full rank and thereby J(ϵ) ≥ 0 (as

the Product bound holds for full-rank states by Lemma 3.4.2). We are interested

in the case where ϵ = 0, which implies Rϵ = R, thereby the ensemble can now

contain rank-deficient states.

Note that both the terms in RHS of Eq. (3.51) are continuous functions of ϵ

(for ϵ ∈ [0, 1]) as they’re both compositions of continuous functions (ρ′i is contin-

uous in ϵ and fidelity is continuous in its arguments). Hence we have J(ϵ) to be

continuous in ϵ. By noting that J(ϵ) is continuous in ϵ along with the fact that

J(ϵ) ≥ 0 for ϵ ∈ (0, 1], we conclude that J(ϵ = 0) ≥ 0. Equivalently, Product

bound holds for arbitrary ensembles (that may include rank-deficient states).

Remark 3.4.4. For an ensemble (R, p), the average fidelity of the Commuting

estimator σ′ Eq. (3.39) and the Product bound Eq. (3.49) are lower and upper
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bounds to optimal average fidelity respectively:

f(σ′) ≤ f(σ♯) ≤

√√√√ n∑
i,j=1

wiwj F(ρi, ρj). (3.52)

Moreover, these bounds coincide when all the states in the ensemble R commute

pairwise.

We now derive the average bound, which is a consequence of joint concavity

of fidelity.

Theorem 3.4.5. Let R = {ρ1, . . . , ρn} ∈ Dd be an arbitrary collection of

quantum states, w ∈ ∆n be a probability vector, and σM =
∑n

i=1wiρi be the

Mean estimator. Then for any state σ ∈ Dd, it holds that

f(σ) ≤

√√√√ n∑
i,j=1

wiwj F(ρi, ρj) ≤
√
f(σM). (3.53)

Proof. We have

f(σM) :=
n∑

i=1

wi F(ρi, σM) =
n∑

i=1

wi F

(
ρi,

n∑
j=1

wjρj

)
≥

n∑
i,j=1

wiwj F(ρi, ρj),

(3.54)

where the inequality comes from the concavity of fidelity (see Proposition 2.3.8).

Combining Eq. (3.49) and Eq. (3.54) and taking square root across, and noting

that f(σ) ≤ f(σ♯) for any state σ ∈ Dd, we obtain Eq. (3.53).

3.5 Ω Fixed-point algorithm as projected Rie-

mannian gradient descent

As discussed in Chapter 2, Riemannian gradient descent generalizes gradient

descent (on the Euclidean manifold) to Riemannian manifolds. RGD has found

applications in various optimization problems, including in classical and quantum

information theory [Wan+24; Hsu+24; VNM24].

We now show that the fixed-point algorithm Ω = Π◦K defined in Eq. (3.37) is

can be seen an instance of projected Riemannian gradient descent on the Bures–

Wasserstein manifold. This is based on the two following facts.

1. Each step of the K algorithm (Eq. (3.36)) can be seen as a single step

of gradient descent on the Bures–Wasserstein manifold, a fact first noted
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in [ZP19], and has since been studied in more detail in various works in-

cluding [Che+20; Alt+21; Alt+23; KSS21].

2. As mentioned previously, the trace-normalization operation Π can be seen

a Bures projection onto the set of density matrices.

The rest of this section is devoted to proving the above two facts.

Recall that the update rule of a general gradient descent algorithm on a Rie-

mannian manifold (M, g) can be written as

xt+1 = Expg
xt

[ηt∇f(xt)], (3.55)

where f : M → R is the function we are trying to minimize, xt is iterate and ηt is

the learning rate at the current (tth) step. Here the Riemannian gradient ∇f(x)

is the dual of the total derivative Df(x) with respect to the tangent space inner

product gx at x. That is, for each x ∈ M, the Riemannian gradient ∇f(x) ∈ TxM

is the unique tangent vector satisfying

⟨∇f(x), v⟩x = Df(x)(v), (3.56)

for all tangent vectors v ∈ TxM, with ⟨·, ·⟩gx ≡ gx(·, ·), and Expg
x : TxM → M is

the Riemannian exponential map at x. See Section 2.4.7 for further details. If the

gradient descent is used for a constrained optimization problem over a feasible

set C ⊂ M, then a projected gradient descent performs a projection after each

step of the above form Eq. (3.55). The projection is to be with respect to the

natural distance of the manifold (M, g):

ΠC[x] = argmin
y∈C

d2
g(y, x). (3.57)

Thus a single step of a projected RGD can be written as

xt+1 = (ΠC ◦ Expg
xt

)(ηt∇f(xt)). (3.58)

Here the manifold of interest is the Bures manifold and the feasible set is C = Dd.

As mentioned before (see Eq. (3.4)) and proved in 5.2.6, the projection with

respect to Bures distance onto the set of density matrices is given by trace-

normalization: ΠDd
[P ] = P/Tr[P ]. Thus the trace-normalization we apply after

each iteration of Ω = Π ◦ K fixed-point algorithm is in fact the Bures projection

onto the set of density matrices.

We next show that the map K is the application of a single step of the Rie-

mannian gradient descent for unit step-size on the Bures manifold of the average
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squared Bures distance function.

b(σ) :=
1

2

n∑
i=1

wiB(ρi, σ) =
1

2

n∑
i=1

wi[Tr[ρi] + Tr[σ] − 2 F(ρi, σ)]

=
1

2

n∑
i=1

Tr[wiρi] + Tr[σ] − 2f(σ).

(3.59)

An inspection reveals that the minimization of the function b is equivalent to

the maximization of f , provided the argument is constrained to be in Dd. A

straightforward computation reveals the form of the gradient of b:

∇b(σ) =
I− 2∇f(σ)

2
. (3.60)

The gradient of the average fidelity function f can be computed as

∇f(σ) = ∇σ

(
n∑

i=1

wi F(ρi, σ)

)
=

(
n∑

i=1

wi∇σ F(ρi, σ)

)
=

1

2

n∑
i=1

wiσ
−1#ρi,

(3.61)

where we have used the fact (see Proposition 2.3.8) that ∇P F(P,Q) = 1
2
P−1#Q

for P,Q > 0.

We now show that the fixed-point algorithm K is an instance of RGD on the

Bures manifold. By Proposition 2.4.7, we can write the update rule for RGD on

the Bures manifold for a differentiable function g : P+
d → R as

Qt+1 := ExpBu
Qt

[−ηt∇g(Qt)] = Qt ⋆ [I− 2ηt∇g(Qt)]
2, (3.62)

where ∇g denotes the Riemannian gradient of the function g with respect to the

Bures metric (see Section 2.4.5 for details). Choosing g = b to be the average

squared Bures distance function and current iterate as σt, we get

σt+1 := ExpBu
σt

[
−ηt∇b(σt)

]
= σt ⋆ [I− 2ηt∇b(σt)]2

= σt ⋆ [I− ηt(I− 2∇f(σt)]
2

= σt ⋆

[
(1 − ηt)I + ηt

n∑
i=1

wiσ
−1
t #ρi

]2
.

(3.63)
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On choosing step size ηt = 1, we get

σt+1 = σt ⋆ [2∇f(σt)]
2 = σt ⋆

[
n∑

i=1

wiσ
−1
t #ρi

]2

= σ
− 1

2
t

(
n∑

i=1

wi

√
σ

1
2
t ρiσ

1
2
t

)2

σ
− 1

2
t = K(σt),

(3.64)

which is exactly the update rule for the K fixed-point algorithm (Eq. (3.36)).

By Corollary 5.2.6 we know that trace normalization is the projection (with

respect to Bures distance) onto the set of density matrices, which means the Ω

fixed-point algorithm can be written as

σt+1 := Ω(σt) ≡ Π[K(σt)] = Π
[
ExpBu

σt

[
−∇b(σt)

]]
. (3.65)

Thus the fixed-point algorithm of interest can be seen as an instance of a projected

Riemannian gradient descent on the Bures manifold.

The identification also allows us to readily adapt the convergence guarantees

for the Ω FP algorithm. Recall in Theorem 3.4.1 we only showed asymptotic con-

vergence of Ω by adapting the proof of asymptotic convergence of K from [BJL19].

However, by identifying the connection to RGD on Bures manifold, one could now

extend more quantitative convergence guarantees thanks to the extensive work

on this field in the optimal transport literature [Che+20; Alt+21; Alt+23].

We now show two other fixed-point algorithms can be interpreted as RGD on

the Bures manifold.

3.6 Other fixed-point algorithms as Riemannian

gradient descent

In the previous section, we showed that each iterate fixed-point algorithm K,

can be written as (proportional to) ∇f(σt)σt∇f(σt). We then went on to show

that this is equivalent to GD on the Bures manifold with respect to the average

squared Bures distance function. Indeed on could have also defined the function

b′(σ) := 1
2

Tr[σ]−f(σ), which is an equivalent problem as they share the optimum,

provided we restrict σ to be a density matrix. One can also see that plugging

it into the RGD update rule (Eq. (3.62)) would give the same K FP algorithm,

which in turn yields Ω FP algorithm once we perform the projection as well.

This section aims to show that there exist other protocols that are well known

in quantum information which are demonstrably RGD on the Bures manifold.

These are the RρR algorithm for state tomography [Hra97; Řeh+07] and the FP
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algorithm for the matrix projection problem [BRT23].

3.6.1 RρR algorithm as projected Riemannian gradient

descent

Let us first formally state the problem of maximum likelihood quantum state

tomography [Hra97; Řeh+07; RHJ01; Blu10b; LCL21; LC19]. Let H = Cd and

let E = {Ei}i∈[n] be a POVM associated with H. Suppose we have measurement

data in the form D = (mi)i∈[n]. That is, we have prepared and measured the

system a total of m times and we observed the outcome i a total of mi times

(with
∑n

i=1mi = m).

We want to find the state ρ ∈ Dd which maximizes the likelihood of being the

true state. This is formalized using the likelihood function, which is defined as

L(ρ) ≡ L(ρ|D) = Pr[D|ρ] :=
m!∏n

i=1mi!

n∏
k=1

⟨Ei, ρ⟩mi . (3.66)

It is easier to work with the log of this function, as it is more numerically stable,

and thus we may write

logL(ρ) := c+
n∑

k=1

mi log⟨Ei, ρ⟩, (3.67)

where c is the constant term stemming from the log of the combinatorial fac-

tor, which may be ignored. One may divide throughout by m to normalize the

frequencies zi := mi/m, and we arrive at the objective function of interest:

ℓ(ρ) :=
n∑

k=1

zi log⟨Ei, ρ⟩. (3.68)

The maximum likelihood estimator is the maximizer of this function over DH:

σMLE := argmax
ρ∈DH

ℓ(ρ). (3.69)

σMLE is then reported as an estimate for the underlying true quantum state.

In the RρR algorithm, the Eq. (3.68) is extremized to show that the optimal

state would satisfy the fixed-point equation ρ = RρR where

R ≡ R(ρ) := ∇ℓ(ρ) =
n∑

i=1

zi
⟨Ei, ρ⟩

Ei (3.70)

is the gradient of the objective function. We see that if there exists a ρ which is
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consistent at the measurement data, then R(ρ) = Id. The RρR algorithm, as the

name suggests, proceeds in an iterative manner as follows

ρt+1 = Π[R(ρt)ρtR(ρt)] = Π[∇ℓ(ρt)ρt∇ℓ(ρt)], (3.71)

which is reminiscent of the form we had for K FP algorithm. To view the RρR

algorithm as an instance of the RGD algorithm, consider the augmented objective

function of the form ℓ̂(ρ) := 1
2
[Tr[ρ] − ℓ(ρ)], whose gradient is given by ∇ℓ̂(ρ) =

1
2
[I−∇ℓ(ρ)]. Observe that any minimizer of the convex function ℓ̂ is a maximizer

of the concave function ℓ and vice versa. Plug this into the update rule for

RGD Eq. (3.62) and we have

ExpBu
ρt

[
−ηt∇ℓ̂(ρt)

]
= ρt ⋆

[
I− 2ηt∇ℓ̂(ρt)

]2
= ρt ⋆ [(1 − ηt)I + ηt∇ℓ(ρt)]2

= ρt ⋆ [(1 − ηt)I + ηtR(ρt)]
2.

(3.72)

On choosing ηt = 1, we get the RHS to be of the RρR form.

The RρR typically converges to optimum, but it is possible to construct

datasets where it can get stuck in loops [Řeh+07]. A simple fix suggested

in [Řeh+07] is to dilute the R operator at every step:

ρt+1 := Π

[
I + ϵR(ρt)

1 + ϵ
ρt
I + ϵR(ρt)

1 + ϵ

]
, (3.73)

for a small positive ϵ ≪ 1. One can immediately see that this corresponds to a

projected RGD with step size ηt = ϵ
1+ϵ

.

Thus we have shown that the the RρR and its diluted version can be inter-

preted as (projected) Riemannian gradient descent on the Bures manifold. To

the best of our knowledge, this is the first time this identification has been made.

3.6.2 Fixed point algorithm for matrix projection as Rie-

mannian Gradient Descent

In this section, we show that the FP algorithm for the matrix projection problem

as studied in Brahmachari, Rubboli, and Tomamichel [BRT23] is also an instance

of RGD on the Bures manifold. We first briefly describe the problem setting.

Let G be a finite group G with a projective unitary representation U :=

{Ug}g∈G ⊂ Ud. The commutant of U is defined as

comm(U) := {X ∈ Md : XUg = UgX for all Ug ∈ U}. (3.74)

The commutant of any subset of Md is a unital subalgebra of Md; i.e., a subset of
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Md that is closed under scalar multiplication, addition, and operator composition,

and that contains the identity element. See Watrous [Wat18, Section 1.1] for

further details.

The intersections H ≡ Hd ∩ comm(U) and P ≡ Pd ∩ comm(U) are called

invariant Hermitian matrices and invariant positive matrices respectively. Given

a positive definite matrix P ∈ P+
d , the optimization problem of interest in [BRT23]

is :
minimize : B(P,Q)

subject to : Q ∈ P.
(3.75)

In words, we want to project P to P with respect to Bures distance. The twirling

map Φ : Hd → H is defined as

Φ(H) :=
1

|G|
∑
g∈G

UgHU
∗
g . (3.76)

Indeed we also have that Φ(P ) ∈ P for any P ∈ Pd.

The FP algorithm to solve the optimization problem in Eq. (3.75) has the

update rule

Qt+1 = Q
− 1

2
t

(
Φ

(√
Q

1
2
t PQ

1
2
t

))2

Q
− 1

2
t , (3.77)

which is based on the fact that optimal state Q♯ ∈ P satisfies the fixed-point

equation

Q♯ = Q
− 1

2
♯

(
Φ

(√
Q

1
2
♯ PQ

1
2
♯

))2

Q
− 1

2
♯ . (3.78)

We now show that the update rule can be seen as RGD on the Bures manifold

with unit step size. Observe that Problem (3.75) is equivalent to the following

optimization problem:

minimize : B(P,Φ(Q))

subject to : Q ∈ Pd,
(3.79)

as every invariant positive matrix in P can be written as Φ(Q) for some Q ∈ Pd.

For a fixed P ∈ P+
d , define the functions b, b′ : Pd → R as

b(Q) :=
1

2
B(P,Q) and b′(Q) :=

1

2
B(P,Φ(Q)), (3.80)

which allows us to write b′ = b◦Φ. Let us now compute the gradient. Begin with

the total derivative and use the chain rule to conclude that

Db′Q = DbΦ(Q) ◦ DΦQ = DbΦ(Q) ◦ Φ, (3.81)
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where we have used the fact that DΦQ = Φ as Φ is a linear map. Moreover, for

any R ∈ P+
d , we have

DbR(Z) =
1

2
Tr[(I−R−1#P )Z], (3.82)

for any Z ∈ TRP+
d
∼= Hd. Thus we have

Db′Q(Z) = DbΦ(Q)(Φ(Z)) =
1

2
Tr[(I− Φ(Q)−1#P )Φ(Z)]. (3.83)

For the fixed-point algorithm, we will be interested in the cases where Q ∈ P,

which implies Φ(Q) = Q. The fact that Φ is self-adjoint (with respect to HS

inner product), allows us to write the gradient as

∇b′(Q) =
I− Φ(Q−1#P )

2
. (3.84)

We now have all the ingredients to show that the update rule Eq. (3.77) is an

instance of Riemannian gradient descent. Let Qt ∈ P be the current iterate and

ηt ∈ [0, 1] be the step size. Using Proposition 2.4.7, we have

Qt+1 = ExpBu
Qt

[−ηt∇b′(Qt)] = Qt ⋆ [I− 2ηt∇b′(Qt)]
2

= Qt ⋆

[
I− 2ηt

1

2

(
I− Φ(Q−1

t #P )
)]2

= Qt ⋆ [(1 − ηt)I + ηtΦ(Q−1
t #P )]2.

(3.85)

Choosing a unit step size (ηt = 1), we have

Qt+1 = Qt ⋆ [Φ(Q−1
t #P )]2 = Qt ⋆

[
Q

− 1
2

t Φ

(√
Q

1
2
t PQ

1
2
t

)
Q

− 1
2

t

]2
= Q

− 1
2

t

(
Φ
(√

QtPQt

))2
Q

− 1
2

t ,

(3.86)

where, in the second equality, we have used the fact that

Φ(Q−1
t #P ) = Φ

(
Q

− 1
2

t

√
Q

1
2
t PQ

1
2
t Q

− 1
2

t

)
= Q

− 1
2

t Φ

(√
Q

1
2
t PQ

1
2
t

)
Q

− 1
2

t (3.87)

as Qt ∈ P commutes with every Ug ∈ U.

We have recovered the update rule Eq. (3.77), thereby showing that the FP

algorithm for the matrix projection problem studied in [BRT23] is an instance of

RGD on the Bures manifold.
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3.7 On generalizations of the Λ fixed-point al-

gorithm

Let us go back to the Λ FP algorithm (Eq. (3.33)). We are now at a position to

identify it to be of the form

Λ(σ) = Π

[
n∑

i=1

wi

√
σ

1
2ρiσ

1
2

]
= Π

[
σ

1
2∇f(σ)σ

1
2

]
, (3.88)

where the second equality comes from the fact that ∇f(σ) =
∑n

i=1wiσ
−1#ρi.

It is not known whether this algorithm can be given an interpretation of

gradient descent. However, we now identify that such root-gradient-root fixed-

point algorithms have been studied in other instances as well. In You, Cheng,

and Li [YCL22, Eq. 13], the authors are interested in minimizing the average

divergence functions

gPR(σ) =
n∑

i=1

wiD
PR
α (ρi∥σ) and gS(σ) =

n∑
i=1

wiD
S
α(ρi∥σ), (3.89)

where DPR
α (ρ∥σ) := 1

α−1
log Tr[ρασ1−α] is the Petz-Rényi divergence [Pet86a]

and DS
α(ρ∥σ) := 1

α−1
log Tr

[(
σ

1−α
2α ρσ

1−α
2α

)α]
is the sandwiched Rényi divergence

[Mül+13; WWY14]. The main result of the paper is a mirror descent algorithm

with Polyak step size.

Additionally, they briefly discuss a fixed-point algorithm which is of the form

σt+1 = Π
[
−σ

1
2
t ∇g(σt)σ

1
2
t

]
(see [YCL22, Eq. (13)]), which, they say to be a

non-commutative generalization of an FP algorithm proposed in [Nak19] for the

classical variant of the problem.

Indeed this FP algorithm can be easily converted to the form of Eq. (3.88) by

an appropriate change of sign of the objective function. Thus it appears that FP

algorithms of the form Eq. (3.88) have wider applicability than just in maximizing

average fidelity.

It would be interesting to unify these methods and see if they can also be

interpreted as a type of gradient descent. One could ask similar questions for other

fixed-point algorithms of interest in quantum information[LCL21]. Additionally

one could ask if projected GD on the Bures manifold is applicable for the functions

gPR and gS. We leave these as open problems.

3.8 Applications

We now discuss some applications of the main results.
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3.8.1 Bayesian quantum state tomography

In quantum tomography, we aim to reconstruct the state of a quantum system

from measurement outcomes. There exists a multitude of different tomography

methods such as linear inversion [DP07], projected least square [Guţ+20], maxi-

mum likelihood estimation [Hra97; RHJ01], hedged maximum likelihood estima-

tion [Blu10a], compressed sensing tomography [Gro+10; Fla+12; Kli+16], and

Bayesian quantum tomography [Blu10c; HH12; GCC16]. We now discuss how

our results find application in Bayesian quantum tomography.

In tomography or state estimation, we are presented with measurement data

D = (mi)
n
i=1, where mi is the number of times we see Ei, which is an element of the

n-outcome POVM E and m =
∑

imi denotes the total number of measurements

done. The likelihood of obtaining the data D given any true state ρ is then

computed as

L(ρ) = Pr(D|ρ) =
m!∏
i(mi!)

∏
i

Tr(Eiρ)mi . (3.90)

As previously discussed, in maximum likelihood estimation, we are concerned

with finding the state that maximizes this likelihood function:

σMLE = argmax
σ∈Dd

L(σ). (3.91)

In practical Bayesian state estimation [Gra+17], we instead begin with a collec-

tion of states R = {ρi}ni=1 called particles and a prior distribution u ∈ ∆n over

them. Usually the prior is taken to be as uniform as possible, but our results

work for arbitrary distributions so this is not a concern here. Using Bayes’ rule

we then compute the posterior distribution w ∈ ∆n as

wi ∝ uiL(ρi), (3.92)

with the probabilities wi being normalized afterwards. Once we have the posterior

distribution, the Bayes estimator is the state that maximizes the posterior average

fidelity over the ensemble (R, p).

The Bayes estimator is then reported as an estimate for the true state which

generated the measurement data. The main results of this work tell us, given the

posterior distribution, how to compute the Bayes estimator for fidelity, heuristic

approximations for it, and bounds for the maximum average fidelity.
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3.8.2 Secrecy measure in quantum key distribution and

success probability of quantum interactive proof

Konig, Renner, and Schaffner [KRS09] provide direct operational interpretations

to (conditional) min- and max-entropies. They also introduce a related secrecy

measure for quantum key distribution protocols defined as follows.

psec(R, w) := max
σ∈D

n∑
i=1

√
wi F(ρi, σ), (3.93)

where R = (ρ1, . . . , ρn) is an ensemble of states and w ∈ ∆n is a probability

vector. Observe this is exactly the optimization problem we study, with weights

corresponding to square-root probabilities. Indeed, our fixed-point algorithm can

be extended to consider arbitrary positive weights, so it works for this problem

as well.

Rethinasamy, Agarwal, Sharma, and Wilde [Ret+23] shows that the square

of this quantity corresponds to the maximum success probability with which a

prover can pass a test for an ensemble of states being similar in a quantum

interactive proof.

Hence our results can provide numerical solutions for the optimal solution σ♯,

approximately optimal solution σ′, and tight bounds in these scenarios.

3.9 Numerical experiments

We consider four different numerical experiments in this work. First, we look

at the performance (runtime) of the different methods to obtain the optimal

state over random distributions of full-rank states (Fig. 3.2). We then simulate

Bayesian tomography and showcase how our results can improve on state-of-

the-art methods (Fig. 3.3). Finally, we numerically demonstrate the relative

tightness of the bounds we derived (Fig. 3.4). In Appendix B.2, we compare the

performance of two fixed-point methods Λ and Ω (Fig. B.1).

We consider the fixed-point methods to have converged (i.e., the stopping

condition) if the spectral norm of the difference between two consecutive itera-

tions is less than some tolerance ϵ. In Fig. 3.2, we choose ϵ = 10−4. We use

CVXPY [DB16; Agr+18] to solve SDPs numerically. The numerics were done

on Google Colab (single-core CPU at 2.3 GHz and approximately 12 GB RAM).

The code is available on GitHub [Afh22].
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3.9.1 Comparing performance of SDP and Omega FP al-

gorithm for optimal average fidelity

The semidefinite program as defined in Definition 3.3.1 can be solved numerically

using standard convex optimization libraries. However, owing to the size of the

matrices over which we optimize—positive semidefinite matrices of size (n+1)d×
(n+1)d—the process is quite intractable for even moderately large n and d. This

intractability can be partially resolved by defining an alternate SDP for optimal

average fidelity which reformulates the problem into solving n SDPs over matrices

of size 2d× 2d (see Appendix B.1 for definition and details). The alternate SDP

provides a more favorable scaling as the number of states n in the ensemble

increases. Moreover, the runtime scales (roughly) linear in the number of states

as compared to superlinear for the original SDP.

As seen in Fig. 3.2, the Ω fixed-point method vastly outperforms both SDPs

in terms of runtime. Though both the alternate SDP and FP methods scale

linearly in n, The FP method is orders of magnitude faster. In particular, for 5

qubit states (d = 32), the FP method was faster than alternate SDP by a factor

of 68 on average. The plots also show that the time taken for the FP method to

obtain a solution in the 5-qubit scenario is comparable to the time it takes the

alternate SDP to solve the 1-qubit case. The figure also shows how intractable

solving the original SDP can be. For even just 1 qubit (d = 2) and n = 20 states,

it takes more time than the FP method takes for 5 qubits and n = 20. Moreover,

the FP method can be easily parallelized at each iteration, as the n different

terms (see Eq. (3.37)) in the sum can be computed in parallel, thereby further

boosting performance.

3.9.2 Simulating Bayesian tomography

In the second set of experiments, we simulate Bayesian tomography. The results

are presented in Fig. 3.3. Since simulating measurement and computing the

posterior distribution is expensive and outside the scope of this paper, we assign

posterior weights as follows. We begin with a randomly generated true state

ρT. In Bayesian state estimation, we begin with a set of hypothesis states and

an associated distribution. The posterior distribution would be peaked near the

true state and as we increase the number of measurements, the peak sharpens.

To simulate this behavior, we introduce a parameter λ ∈ [0, 1], and then for

randomly generated {ρ′i}ni=1, we choose our particles as ρi = λρT + (1 − λ)ρ′i. As

λ → 1, the particles {ρ′i}ni=1 are closer to the true state ρT. The unnormalized

weights are then chosen as F(ρi, ρT), which is then normalized to serve as the
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Figure 3.3: Infidelity with true state as a function of λ for various dimensions
(n = 20) plotted in log scale. λ ∈ [0, 1] is a parameter to simulate measurement
counts with λ = 0 indicating 0 measurements and λ = 1 indicating infinitely
many measurements. Each point is the median of 50 iterations. Interquartile
regions are shaded. As seen in the inset plots, the Commuting estimator can
serve as a high-quality proxy (better than the Mean estimator) to the Bayes
estimator while being inexpensive to compute.

weights wi:

wi ∝ F(ρi, ρT),
n∑

i=1

wi = 1. (3.94)

This allows the assignment of higher weights to ρis that are closer to the true

state ρT. We then compute the Mean estimator σM =
∑n

i=1 wiρi, the Commuting

estimator σ′ = Π

((∑n
i=1 wiρ

1/2
i

)2
)
and the Bayes estimator (optimal estimator)

σ�. In tomography, one is usually interested in the behavior of infidelity with the

true state as a function of the number of measurements. To simulate this, we

vary λ from 0 to 1, as λ = 0 would correspond to the hypothesis states being

randomly initialized states (zero measurements) and λ = 1 would correspond to

all the particles being equal to the true state (infinitely many measurements).

Fig. 3.3 plots the infidelity of the Bayes estimator, Commuting estimator, and

Mean estimator with the true state for various dimensions and n = 20. For higher

dimensions, we drop the Bayes estimator due to the computational costs while

noting that the Commuting estimator σ′ remains a good alternative while being

inexpensive to compute.
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3.9.3 Tightness of bounds and other estimators with op-

timum

Figure 3.4: Tightness of quantities of interest with optimal average fidelity as a
function of (a) number of states n and (b) number of qubits (log2(d)). We plot
the absolute difference with the optimal average fidelity of (i) Average
bound Eq. (3.53), (ii) Product bound Eq. (3.49), (iii) average fidelity of
Commuting estimator Eq. (3.39), and (iv) average fidelity of Mean estimator
σM =

∑n
i=1 wiρi. Note that the Average bound and Product bound are upper

bounds and the average fidelities of the Mean estimator and Commuting
estimator are lower bounds. Each data point is the median of 50 iterations and
ticks correspond to interquartile regions. See Eq. (3.95) for details on the
quantities being plotted.

In Fig. 3.4, we numerically demonstrate the tightness of the two upper bounds

and the fidelity achieved by the Commuting estimator and Mean estimator with

the maximum average fidelity for randomly generated ensembles for various di-

mensions and number of states. More formally, for randomly generated ensembles

(R, p), we plot the quantity |f(σ�)− g|, where

g =




√
f(σM) (Average bound),

√∑n
i=1 wiwj F(ρi, ρj) (Product bound),

f(σ′) (Commuting estimator),

f(σM) (Mean estimator).

(3.95)

Note that the first two are upper bounds while the last two are lower bounds on

optimal average fidelity f(σ�). Since the average fidelity of the Mean estimator

and Product bounds are different kinds of bounds (lower and upper respectively),

their crossing is not unexpected, and it simply means that the lower bound gets

closer to the optimum than the upper bound. As the plots show, the Product
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bound and average fidelity of the Commuting estimator are quite close to the

optimal average fidelity.

3.10 Conclusion

In this work, we present algorithms for identifying states that maximize average

fidelity over arbitrary finite ensembles of quantum states. We have constructed

semidefinite programs that solve this problem, from which we derive faster fixed-

point algorithms for the scenario where all the states in the ensemble are full rank.

The fixed-point methods are orders of magnitude faster than the semidefinite

programs. We also derive heuristic approximations for the optimal state which

are exact when the states in the ensemble commute pairwise. Furthermore, we

derive novel upper and lower bounds for maximum average fidelity achievable by

any quantum state, which are saturated when all the states commute pairwise.

Finally, we present numerical experiments to complement our theoretical findings.

These results solve open problems in Bayesian quantum tomography and are of

independent theoretical interest.

An interesting question to ask is if the Λ FP algorithm can be endowed with an

interpretation of gradient descent. Indeed, as we showed in Section 3.7, the same

root-gradient-root approach has been studied elsewhere, and thus a unification

might exist. A second problem we as is whether there exists other fixed-point

algorithms of interest in quantum information that can be interpreted as Rie-

mannian gradient descent. We have shown that the RρR algorithm falls into this

category, and we plan to study other similar iterative algorithms.
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Chapter 4

Generalizing fidelities

In this chapter, we discuss the second set of results of this thesis, where we propose

a family of fidelities we term generalized fidelity. Generalized fidelity is motivated

by the geometry of the Bures–Wasserstein manifold and has the special property

that it can recover various existing quantum fidelities like Uhlmann, Holevo, and

Matsumoto fidelities. We will use ‘Bures’ and ‘Bures–Wasserstein’ (abbreviated

as BW) interchangeably in the chapter.

The generalized fidelity between two positive matrices P andQ is parametrized

by a third positive (definite) matrix R called the base. See Fig. 4.1 for visual-

ization of the generalized fidelity between rebit states as a function of the base.

Surprisingly, the generalized fidelity between two positive semidefinite matrices

can be negative—or, more generally, complex.

The generalized fidelity between fixed P and Q shows remarkable geometric

properties as we vary the base. We also show that convex combinations of gen-

eralized fidelities over different bases also define valid quantizations of classical

fidelity and that generalized fidelities can be thought of as extreme points of this

class of (further generalized) quantum fidelities. Based on this notion, we define

polar fidelity which is a family of fidelities, parametrized by a single real number,

that can recover Uhlmann-, Holevo-, and Matsumoto-fidelity. To our knowledge,

this is the first such generalization. Other results we explore in this chapter

include

1. A block-matrix characterization of generalized fidelity.

2. An ‘Uhlmann-like’ theorem for generalized fidelity which relates the gener-

alized fidelity to specific purifications of the states involved.

3. Potential applications of generalized fidelity.

This chapter is structured as follows. We first begin with the definitions of

generalized fidelity and generalized Bures distance. We then discuss some basic
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Figure 4.1: Contour plots of the generalized fidelity FR(P,Q) as a function of the
base R. Each point indicates the generalized fidelity between P and Q at R, where R
is the rebit state with Bloch vector (〈R,X〉, 0, 〈R,Z〉). The first subfigure shows that
the generalized fidelity between two commuting quantum states can be unequal to the
Bhattacharyya coefficient (classical fidelity) for general bases. The second subfigure
shows that the generalized fidelity between two states can be negative (generally
complex-valued) and that the generalized fidelity attains its maximum value if the
base is any point along the Bures–Wasserstein geodesic (white curve) between P and
Q. Along this geodesic, the value of generalized fidelity FR(P,Q) is equal to the
Uhlmann fidelity FU(P,Q). Code to generate plots is available at [Afh24].

properties of generalized fidelity and then move on to some basic properties and

geometric motivation for generalized Bures distance. We then study the geomet-

ric properties of generalized fidelity, which include various invariance and covari-

ance behavior as a function of the base. We then discuss the above-mentioned

additional results.

4.1 Generalized fidelity and generalized Bures

distance

We now formally introduce generalized fidelity and generalized Bures distance.

We begin with the definition and some basic properties of generalized fidelity. We

then do the same for generalized Bures distance and finally conclude the section

with the Riemannian-geometric motivation for the definition.

4.1.1 Generalized fidelity

Let us now define generalized fidelity.
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Definition 4.1.1. Let P,Q,R ∈ P+
d be positive definite matrices. The

generalized fidelity between P and Q at R is defined as

FR(P,Q) := Tr

[√
R

1
2PR

1
2R−1

√
R

1
2QR

1
2

]
(4.1)

Here and henceforth, R is referred to as the base of the generalized fidelity

between P and Q. Throughout the analysis, we require the base R to be positive

definite while P and Q can be rank-deficient. However, for most of our analysis,

we consider P and Q to be invertible as well. The first thing to notice is that the

matrix inside the trace is not necessarily Hermitian. Thus, generalized fidelity

is complex-valued in general. Let us list some basic properties of generalized

fidelity. Proofs are provided in Appendix C.1.

1. Quantization of classical fidelity. The generalized fidelity FR(P,Q) is a

quantization of classical fidelity for any triple P,Q,R ∈ P+
d . That is, if P,Q,

and R mutually commute, the generalized fidelity reduces to the classical

fidelity (Bhattacharyya coefficient) between P and Q.

2. Conjugate symmetry. Generalized fidelity is generally complex-valued

and conjugate symmetric:

FR(P,Q) ∈ C and FR(P,Q) = FR(Q,P )∗ . (4.2)

Moreover, FR(P, P ) = Tr[P ] for any P,R ∈ P+
d . It follows that the gener-

alized fidelity of a normalized state with itself is 1 at any base.

3. Equivalent forms. The generalized fidelity has the following equivalent

forms.

FR(P,Q) : = Tr

[√
R

1
2PR

1
2R−1

√
R

1
2QR

1
2

]
= Tr

[
Q

1
2UQU

∗
PP

1
2

]
= Tr

[
(R−1#Q)R(R−1#P )

]
,

(4.3)

where UP := Pol
(
P

1
2R

1
2

)
, UQ := Pol

(
Q

1
2R

1
2

)
.

4. Pure state simplification. If both P = |ψ⟩⟨ψ| and Q = |ϕ⟩⟨ϕ| are pure

states, then

FR(P,Q) = FR(|ψ⟩⟨ψ| , |ϕ⟩⟨ϕ|) =
⟨ψ, ϕ⟩⟨ϕ,Rψ⟩

FU(P,R) FU(Q,R)
. (4.4)
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5. Commutation with base implies positivity. If the base R commutes

with P or Q, then FR(P,Q) ≥ 0.

6. Multiplicativity. Let P1, Q1, R1 ∈ P+
d1

and P2, Q2, R2 ∈ P+
d2

. Then

FR1⊗R2(P1 ⊗ P2, Q1 ⊗Q2) = FR1(P1, Q1) · FR2(P2, Q2) . (4.5)

7. Additivity. Let P1, Q1, R1 ∈ P+
d1

and P2, Q2, R2 ∈ P+
d2

. Then

FR1⊕R2(P1 ⊕ P2, Q1 ⊕Q2) = FR1(P1, Q1) + FR2(P2, Q2) . (4.6)

8. Unitary invariance. For any triple P,Q,R ∈ Pd and any unitary U ∈ Ud,

FR(P,Q) = FURU∗(UPU∗, UQU∗) . (4.7)

9. Unitary contravariance. For any triple P,Q,R ∈ P+
d and any unitary

U ∈ Ud,

FURU∗(P,Q) = FR(U∗PU,U∗QU) . (4.8)

10. Scaling. For positive scalars p, q, r ∈ R+,

FrR(pP, qQ) =
√
pq FR(P,Q). (4.9)

Since the generalized fidelity is invariant with respect to any scaling of the

base R, one can always choose the base to be a density matrix without loss

of generality.

11. Absolute value is bounded above by Uhlmann fidelity. For any

triple P,Q,R ∈ P+
d ,

|FR(P,Q)| ≤ FU(P,Q) . (4.10)

This relation implies the nonnegativity of generalized Bures distance.

12. Orthogonal support implies 0. If any two matrices from P,Q,R have

orthogonal support, then FR(P,Q) = 0.

13. Reduction to other fidelities. For specific choices of the base R, one

can recover various named fidelities from generalized fidelity.

� Uhlmann fidelity: If (but not only if) R = P or R = Q,

FR(P,Q) = FU(P,Q) := Tr

[√
P

1
2QP

1
2

]
. (4.11)
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� Holevo fidelity: If R = I,

FR(P,Q) = FH(P,Q) := Tr
[
P

1
2Q

1
2

]
. (4.12)

� Matsumoto fidelity: If (but not only if) R = P−1 or R = Q−1,

FR(P,Q) = FM(P,Q) := Tr[P#Q] = Tr

[
P

1
2

√
P− 1

2QP− 1
2P

1
2

]
.

(4.13)

We note that these are not the only cases where generalized fidelity reduces

to the above-mentioned fidelities. Other scenarios where this happens are

discussed in Section 4.2.

Next, we define the generalized Bures distance and discuss some basic prop-

erties and the geometric motivation behind the definition. We also see how gen-

eralized fidelity naturally appears in this geometric motivation.

4.1.2 Generalized Bures distance

Having defined generalized fidelity, we are in a position to define the generalized

Bures distance. After defining it, we will show how it can be naturally derived

from the geometry of the Bures–Wasserstein manifold.

Definition 4.1.2. Let P,Q,R ∈ P+
d be positive definite matrices. The

squared generalized Bures(-Wasserstein) distance between P and Q at R is

defined as

BR(P,Q) := Tr[P +Q] − 2 Re FR(P,Q). (4.14)

We use uppercase B to denote squared distance and lowercase b to denote

distances. For example, we will henceforth use

bU(P,Q) ≡
√

BU(P,Q) =

√
Tr[P +Q] − 2 FU(P,Q) (4.15)

to denote Bures distance. The superscript indicates the specific type of fidelity

used. Similarly, we denote the generalized Bures distance as

bR(P,Q) ≡
√

BR(P,Q) =
√

Tr[P +Q] − 2 Re FR(P,Q). (4.16)

Essentially, the relation between generalized Bures distance and generalized fi-

delity is analogous to the relation between Bures distance and Uhlmann fidelity.

We now show that this definition is geometrically motivated. As mentioned

before, the generalized Bures distance between P and Q at R is the distance
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between P and Q if we flatten the Bures–Wasserstein manifold at R. This is

formalized in the next section.

Geometric motivation for generalized Bures distance

We now provide a (Riemannian-)geometrically motivated derivation of the gen-

eralized Bures distance. Since the generalized fidelity features in the definition of

the generalized Bures distance, this also provides a geometric interpretation for

generalized fidelity.

Let (M, g) be a Riemannian manifold. It is a defining property of Riemannian

manifolds [DF92] that for any x ∈ M, there is a neighborhood Nx ⊆ M such that

for any y ∈ Nx, we have the natural distance between the points to be

d2(x, y) = ||Logx[y]||2x, (4.17)

where Logx[y] ∈ TxM and where the norm is taken with respect to the inner

product gx on the tangent space TxM. It turns out that for the Bures–Wasserstein

manifold, NP = P+
d for any P ∈ P+

d . Thus, we can write

bU(P,Q) = ∥LogP [Q]∥P = ∥LogQ[P ]∥Q, (4.18)

for any P,Q ∈ P+
d where the norm is taken with respect to the Bures metric

tensor in the corresponding tangent space.

One can visualize this process as follows. We linearize the curved Bures man-

ifold P+
d about the point P . This is equivalent to replacing every point S ∈ P+

d

with its image under the Riemannian log map LogP [S] ∈ TPP+
d . Thanks to the

metric tensor, the tangent space has a natural distance between two tangent vec-

tors X, Y ∈ TPP+
d as ∥X − Y ∥2P . Therefore the squared distance between the

tangent vectors LogP [P ] and LogP [Q] is given by

∥LogP [P ] − LogP [Q]∥2P = ∥LogP [Q]∥2P = BU(P,Q), (4.19)

where we note that LogS[S] = 0 for any S ∈ P+
d .

To obtain generalized Bures distance and thereby generalized fidelity, we flat-

ten our manifold not at P or Q, but at an arbitrary third point R ∈ P+
d . That is,

we map the points P,Q ∈ P+
d to the tangent space TRP+

d via the LogR map. We

then compute the natural distance between these tangent vectors, which turns out

to be exactly the generalized Bures distance between P and Q at R, as formalized

in the following theorem.
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Theorem 4.1.3. Let P,Q,R ∈ P+
d be chosen arbitrarily. Then

BR(P,Q) = ∥LogR[P ] − LogR[Q]∥2R. (4.20)

Proof. We will show that the RHS evaluates to the definition of the squared

generalized Bures distance. For brevity, we will use the shorthand PR ≡ LogR[P ]

and QR ≡ LogR[Q]. Expanding the RHS, we have

∥PR −QR∥2R = ⟨PR −QR, PR −QR⟩R
= ⟨PR, PR⟩R + ⟨QR, QR⟩R − ⟨PR, QR⟩R − ⟨QR, PR⟩R,

(4.21)

where we used the bilinearity of the inner product to get the second line. Let

us now analyze a single term, namely ⟨PR, QR⟩R, of the second line. By the

definition of the Bures–Wasserstein metric (Eq. (2.76)), we have

⟨PR, QR⟩R := Re Tr [LR(PR) ·R · LR(QR)]

= Re Tr[LR(LogR[P ]) ·R · LR(LogR[Q])].
(4.22)

Now recall that the definition of the BW LogR map is LogR[Q] := L−1
R (P−1#Q−

I), and thus we have

⟨PR, QR⟩R = Re Tr
[
LR(L−1

R (R−1#P − I)) ·R · LR(L−1
R (R−1#Q− I))

]
= Re Tr[(R−1#P − I)R(R−1#Q− I)]

= Re Tr[(R−1#P )R(R−1#Q)] − Tr[(R−1#P )R] − Tr[(R−1#Q)R] + Tr[R]

= Re FR(Q,P ) − FU(P,R) − FU(Q,R) + Tr[R],

(4.23)

where we used the fact that Tr[A(A−1#B)] = Tr
[√

A
1
2BA

1
2

]
= FU(A,B). We

thus have
∥PR∥2R = Tr[P +R] − 2 FU(P,R) = BU(P,R),

∥QR∥2R = Tr[Q+R] − 2 FU(Q,R) = BU(Q,R).
(4.24)

Substituting all of these in Eq. (4.21), we get

∥PR −QR∥2R = BU(P,R) + BU(Q,R) − 2
(
Tr[R] − FU(P,R) − FU(Q,R) + Re FR(P,Q)

)
= Tr[P +Q] − 2 Re FR(P,Q) =: BR(P,Q).

(4.25)

This concludes the proof.

Thus, the geometric interpretation of generalized Bures distance is clear. It

is the distance between the points P and Q if we linearize the manifold at R.

Analogously, the generalized fidelity is the fidelity part of the generalized Bures
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distance in this scenario. Thus, the various named fidelities have the following

geometric interpretations.

� Uhlmann fidelity is the generalized fidelity if we linearize the manifold at

P or Q (among other points).

� Holevo fidelity is the generalized fidelity if we linearize the manifold at I.

� Matsumoto fidelity is the generalized fidelity if we linearize the manifold at

P−1 or Q−1 (among other points).

The other points are discussed in Section 4.2. We now discuss some other prop-

erties of the generalized Bures distance.

Further properties of generalized Bures distance

We begin with an alternative form of generalized Bures distance.

Proposition 4.1.4. Let P,Q,R ∈ P+
d . Then, the squared generalized Bures

distance has the form

BR(P,Q) =
∥∥∥U∗

PP
1
2 − U∗

QQ
1
2

∥∥∥2
2

=
∥∥∥P 1

2UP −Q
1
2UQ

∥∥∥2
2
, (4.26)

where UP := Pol
(
P

1
2R

1
2

)
, UQ := Pol

(
Q

1
2R

1
2

)
, and ∥A∥2 :=

√
Tr[A∗A]

denotes the Frobenius norm of a matrix A.

Proof. We have∥∥∥U∗
PP

1
2 − U∗

QQ
1
2

∥∥∥2
2

= Tr
[
(U∗

PP
1
2 − U∗

QQ
1
2 )∗(UPP

1
2 − UQQ

1
2 )
]

= Tr
[
P +Q− P

1
2UPU

∗
QQ

1
2 +Q

1
2UQU

∗
PP

1
2

]
= Tr[P +Q] − 2 Re FR(P,Q) =: BR(P,Q).

(4.27)

The second inequality of Eq. (4.26) follows from the adjoint invariance of the

Frobenius norm. This concludes the proof.

We now show that generalized Bures distance is a bona fide distance. A

distance function d must satisfy three properties: symmetry, nonnegativity, and

triangle inequality. See Section 2.1.2 for the definition of these properties. We

now show that the generalized Bures distance satisfies the above three properties.
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Theorem 4.1.5. The generalized Bures distance bR(·, ·) at any R ∈ P+
d

satisfies

1. Symmetry: bR(P,Q) = bR(Q,P ),

2. Nonnegativity: bR(P,Q) ≥ 0 with equality if and only if P = Q.

3. Triangle inequality: For any triple P,Q, S ∈ P+
d , we have

bR(P,Q) ≤ bR(P, S) + bR(S,Q). (4.28)

Proof. The symmetry part follows directly from the definition. For the nonneg-

ativity part, either observe that the generalized Bures distance is a norm in the

tangent space TRP+
d or observe that by Proposition 4.1.4, we have

bR(P,Q) =
∥∥∥U∗

PP
1
2 − U∗

QQ
1
2

∥∥∥
2
≥ 0, (4.29)

where UP := Pol
(
P

1
2R

1
2

)
and UQ := Pol

(
Q

1
2R

1
2

)
. We now show that equality

is achieved if and only if P = Q. The direction P = Q =⇒ bR(P,Q) = 0 follows

trivially. In the other direction, we want to prove

bR(P,Q) = 0 =⇒ P = Q. (4.30)

To this end, observe that

bR(P,Q) =
∥∥∥U∗

PP
1
2 − U∗

QQ
1
2

∥∥∥
2

= 0 =⇒ U∗
PP

1
2 = U∗

QQ
1
2 . (4.31)

Right multiply both sides by R
1
2 to obtain

U∗
PP

1
2R

1
2 = U∗

QQ
1
2R

1
2 . (4.32)

By Lemma A.2.1, we have that the above equality is the same as√
R

1
2PR

1
2 =

√
R

1
2QR

1
2 . (4.33)

Squaring both sides and right-left multiplying by R− 1
2 , we get P = Q.

To prove that the generalized Bures distance satisfies the triangle inequality,
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choose arbitrary P,Q,R, S ∈ P+
d . We then have,

bR(P,Q) =
∥∥∥U∗

PP
1
2 − U∗

QQ
1
2

∥∥∥
2

=
∥∥∥U∗

PP
1
2 − U∗

SS
1
2 + U∗

SS
1
2 + U∗

QQ
1
2

∥∥∥
2

≤
∥∥∥U∗

PP
1
2 − U∗

SS
1
2

∥∥∥
2

+
∥∥∥U∗

SS
1
2 − U∗

QQ
1
2

∥∥∥
2

= bR(P, S) + bR(S,Q).

(4.34)

Here US := Pol
(
R

1
2S

1
2

)
and we have used triangle inequality for the Frobenius

norm.

We now mention a different way of showing triangle inequality and the satura-

tion of the nonnegativity by invoking the tangent space TRP+
d . By Theorem 4.1.3,

we have

bR(P,Q) = ∥LogR[P ] − LogR[Q]∥R = 0 =⇒ LogR[P ] = LogR[Q]. (4.35)

Now recall that the map LogR is a diffeomorphism from M to its image and, there-

fore, is invertible, which necessarily means P = Q. For the triangle inequality we

have that for any quadruple P,Q,R, S ∈ P+
d , we have

bR(P,Q) = ∥LogR[P ] − LogR[Q]∥R
= ∥LogR[P ] − LogR[S] + LogR[S] − LogR[Q]∥R
≤ ∥LogR[P ] − LogR[S]∥R + ∥LogR[S] − LogR[Q]∥R
= bR(P, S) + bR(Q,S),

(4.36)

where the inequality comes from the fact that the tangent space is an inner-

product space, and therefore, triangle inequality holds.

4.2 Geometric properties of generalized fidelity

We now arrive at the central geometric results of this chapter. We discuss the

geometric properties of the generalized fidelity FR(P,Q) for fixed P,Q ∈ P+
d and

variable R. In particular, we study the change (or lack thereof) in generalized

fidelity FR(P,Q) as R varies along certain curves. Each curve discussed is visu-

alized in Figure 4.2. In all the below cases, we choose t ∈ [0, 1]. The curves we

discuss in P+
d are related to three Riemannian metrics: Bures–Wasserstein, Affine-

invariant, and Euclidean. We concisely list important aspects of each metric in

Table 4.1.

Each path we study falls into two categories: geodesic paths (represented as

straight lines in Figure 4.2) and inverse of geodesic paths (represented as curved
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2

FU(P,Q)

1

4 73 8

5 6

9
FM(P,Q)

10

11

Q−1 P−1

QP

I
FH(P,Q)

Figure 4.2: Generalized fidelity FR(P,Q) at different base points R ∈ Pd for
fixed P,Q ∈ Pd. Red, yellow, and blue curves indicate that the associated metric
is Bures–Wasserstein (BW), Affine-invariant (AI), and Euclidean, respectively.
Straight and curved paths indicate that R and R−1 are elements of geodesics in
their respective metrics. Solid lines indicate that the generalized fidelity is
real-valued along these paths, while non-solid lines indicate complex values.
Arrows on paths 5 and 6 indicate a conjectured monotonic decrease in FR(P,Q)
as R moves in the direction of the arrow. Details discussed in Section 4.2.

lines in Figure 4.2). By ‘inverse of geodesic paths’ we mean that the inverse R−1

of the base R moves along some geodesic path. We now discuss the properties

of generalized fidelity as the base R moves along each specified path, grouped

by the metric to which each path is related. For better readability, we defer all

proofs of this section to Appendix C.3.

We represent a geodesic path with respect to the Riemannian metric ‘RM’

between points A,B ∈ P+
d as

γRM
AB : [0, 1] → P+

d , (4.37)

with γRM
AB (0).2 = A and γRM

AB (1) = B.

4.2.1 Bures–Wasserstein (red) paths

We first discuss the paths that are related to the BW metric, which are colored

red in Figure 4.2. We consider six paths related to this metric. One defining

property of the base R as it travels along these paths is that either R or R−1 is

an element of a particular BW geodesic. Recall that the BW geodesic between
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Object BW metric AI metric Euc. metric

Inner product:
⟨X,Y ⟩P

ReTr[LP (X)PLP (Y )] Tr
[
P−1XP−1Y

]
Tr[XY ]

Exp. map: ExpP [X] P ⋆ (I+ LP (X))2 P
1
2 exp

(
X

P

)
P

1
2 P +X

Log map: LogP [Q] L−1
P ((P−1#Q)− I) P

1
2 log

(
Q

P

)
P

1
2 Q− P

Geodesic: γPQ(t) P ⋆ [(1− t)I+ tS]2 P
1
2

(
Q

P

)t

P
1
2 (1− t)P + tQ

Squared distance:
dist2(P,Q)

Tr[P +Q]− 2FU(P,Q)

∥∥∥∥log(P

Q

)∥∥∥∥2
2

∥P −Q∥22

Table 4.1: Different Riemannian metrics on P+
d and associated objects. Here

S := P−1 #Q, LP (X) is the unique solution to the equation
LP (X)P + PLP (X) = X and L−1

P (Y ) := Y P + PY . The star product is defined

as A ⋆ B := B
1
2AB

1
2 for A,B ≥ 0.

Path Path definition Property of generalized fidelity FR(P,Q)

1 R =
[
γBW
P−1Q−1(t)

]−1

Invariant. FR(P,Q) = FU(P,Q) for all t ∈ [0, 1].

2 R = γBW
PQ (t) Invariant. FR(P,Q) = FU(P,Q) for all t ∈ [0, 1].

3 R =
[
γBW
P−1Q(t)

]−1

Complex-valued and covaries with Path 8.

4 R = γBW
PQ−1(t) Complex-valued and covaries with Path 7.

5 R = γAI
PP−1(t) Recovers Uhlmann-, Holevo-, and Matsumoto-fidelity.

6 R = γAI
QQ−1(t) Recovers Uhlmann-, Holevo-, and Matsumoto-fidelity.

7 R = γBW
QP−1(t) Complex-valued and covaries with Path 4.

8 R =
[
γBW
Q−1P (t)

]−1

Complex-valued and covaries with Path 3.

9 R = γAI
P−1Q−1(t) Invariant. FR(P,Q) = FM(P,Q) for all t ∈ [0, 1].

10 R = γEuc
P−1Q−1(t) Invariant. FR(P,Q) = FM(P,Q) for all t ∈ [0, 1].

11 R =
[
γEuc
PQ (t)

]−1
Invariant. FR(P,Q) = FM(P,Q) for all t ∈ [0, 1].

Figure 4.3: Definitions and properties of the paths discussed in Figure 4.2.

A,B ∈ P+
d has the form

C ≡ γBW
AB (t) = [(1 − t)I + tA−1#B]A[(1 − t)I + tA−1#B]. (4.38)
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Moreover, being an element of the BW geodesic (at time t) is equivalent to being

the BW barycenter of a 2-point distribution with weights (1 − t, t). As such, it

uniquely satisfies the following fixed-point equation.

C = (1 − t)
√
C

1
2AC

1
2 + t

√
B

1
2AB

1
2 . (4.39)

These two properties will be exploited in the proofs.

Path 2: R = γBW
PQ (t)

Here the base R moves along the BW geodesic path between P and Q:

R = γBW
PQ (t) = [(1 − t)I + tS]P [(1 − t)I + tS] , for t ∈ [0, 1], (4.40)

where S = P−1#Q. As shown in the following theorem, FR(P,Q) is constant

and equal to Uhlmann fidelity along this curve.

Theorem 4.2.1. Let P,Q ∈ P+
d be fixed. Let the base R = γBW

PQ (t) for any

t ∈ [0, 1]. Then

FR(P,Q) = FU(P,Q). (4.41)

Proof. See Theorem C.3.1.

Thus, as the base R varies along the BW geodesic γBW
PQ between P and Q,

the generalized fidelity is invariant and equal to the Uhlmann fidelity between P

and Q. This is the first example where the generalized fidelity is real-valued for

a non-trivial base (R /∈ {P x, Qy}). We next look at another path that exhibits

the same property.

Path 1: R = [γBW
P−1Q−1(t)]−1

Each point on this path is the inverse of a point on the BW geodesic between

P−1 and Q−1:

R = [γBW
P−1Q−1(t)]−1 = [(1 − t)I + tS]−1 P [(1 − t)I + tS]−1 , for any t ∈ [0, 1],

(4.42)

where S = Q−1#P . As elaborated in the following theorem, the generalized

fidelity FR(P,Q) is constant and equal to Uhlmann fidelity along this curve.
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Theorem 4.2.2. Let P,Q ∈ P+
d be fixed. Let the base R be any point along

the curve [γBW
P−1Q−1(t)]−1. Then

FR(P,Q) = FU(P,Q). (4.43)

Proof. See Theorem C.3.2.

Paths 4 and 7: R1 = γBW
PQ−1(t) and R2 = γBW

QP−1(t)

These are the BW geodesic paths from P to Q−1 and from Q to P−1:

R1 = γBW
PQ−1(t) =

[
(1 − t)I + tP−1#Q−1

]
P
[
(1 − t)I + tP−1#Q−1

]
, (4.44)

and

R2 = γBW
QP−1(t) =

[
(1 − t)I + tP−1#Q−1

]
Q
[
(1 − t)I + tP−1#Q−1

]
, (4.45)

The generalized fidelity along these paths is complex-valued. We currently do not

know any special closed-form for FR(P,Q) when the base moves along either of

the paths. However, we can show that the generalized fidelity varies in a covariant

manner across the two paths.

Theorem 4.2.3. Let P,Q ∈ Pd be fixed. For any fixed t ∈ [0, 1], let

R1 := γBW
PQ−1(t) and R2 := γBW

QP−1(t). (4.46)

Then FR1(P,Q) = FR2(P,Q).

Proof. See Theorem C.3.3 for proof.

Paths 3 and 8: R1 = [γBW
P−1Q(t)]−1 and R2 = [γBW

Q−1P (t)]−1

These paths correspond to the inverse of the BW geodesics from P−1 to Q and

Q−1 to P :

R1 = [γBW
P−1Q(t)]−1 and R2 = [γBW

Q−1P (t)]−1. (4.47)

Similar to the previous result, generalized fidelity covaries along these paths. This

is formalized in the following theorem.

93



Theorem 4.2.4. Let P,Q ∈ P+
d be fixed. For any fixed t ∈ [0, 1], let

R1 := [γBW
P−1Q(t)]−1 and R2 := [γBW

Q−1P (t)]−1. (4.48)

Then FR1(P,Q) = FR2(P,Q).

Proof. See Theorem C.3.4 for proof.

4.2.2 Affine-invariant (yellow) paths

We now discuss the geometric properties of generalized fidelity as the base moves

along geodesic paths related to the Affine-invariant metric. Recall that the AI

geodesic path between A,B ∈ P+
d is defined as

γAI
AB(t) = A

1
2

(
B

A

)t

A
1
2 . (4.49)

We now discuss the geodesic properties of generalized fidelity FR(P,Q) as the

base R moves along three geodesic paths related to this metric.

Path 9: R = γAI
P−1Q−1(t) =

[
γAI
PQ(t)

]−1
.

Here the base R moves along the AI-geodesic path between P−1 and Q−1. A

point R on this curve has the form

R = γAI
P−1Q−1(t) := P− 1

2

(
P

1
2Q−1P

1
2

)t
P− 1

2 . (4.50)

Observe that for t ∈ [0, 1], we haveγAI
P−1Q−1(t) = [γAI

PQ(t)]−1. For t = 1
2
, we have

R = P−1#Q−1 = (P#Q)−1. We first provide a short proof for the claim that

when R is the midpoint (t = 1
2
) of the geodesic, the generalized fidelity equals

the Matsumoto fidelity FM(P,Q). Subsequently, we also show that for any point

on the AI geodesic between P−1 and Q−1, the generalized fidelity is constantly

equal to the Matsumoto fidelity.

Theorem 4.2.5. Let P,Q ∈ P+
d and choose R = P−1#Q−1. Then

FR(P,Q) = FM(P,Q).

Proof. See Theorem C.3.5 for proof.

We now show that the generalized fidelity constantly equals the Matsumoto

fidelity along any point in the path γAI
P−1Q−1(t).
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Theorem 4.2.6. Let P,Q ∈ P+
d and let R = γAI

P−1Q−1(t) for any t ∈ [0, 1].

Then

FR(P,Q) = FM(P,Q). (4.51)

Proof. See Theorem C.3.6 for proof.

Paths 5 and 6: R1γ
AI
PP−1(t) and R2 = γAI

QQ−1(t).

These are the geodesic paths from P to P−1 and Q to Q−1 with respect to the

AI metric.

R1 = γAI
PP−1(t) = P

1
2

(
P− 1

2P−1P− 1
2

)t
P

1
2 = P 1−2t ≡ P x,

R2 = γAI
QQ−1(t) = Q

1
2

(
Q− 1

2Q−1Q− 1
2

)t
Q

1
2 = Q1−2t ≡ Qx,

(4.52)

where we have denoted x ≡ 1 − 2t for convenience. As R1 and R2 move along

these geodesics, the generalized fidelity takes the form

FR1(P,Q) = Tr

[√
P

x
2PP

x
2P−x

√
P

x
2QP

x
2

]
= Tr

[
P

1−x
2

√
P

x
2QP

x
2

]
= Tr

[
P

1−x
2 #P

1+x
4 QP

1+x
4

]
.

(4.53)

A similar calculation shows

FR2(P,Q) = Tr

[
Q

1−x
2

√
Q

x
2PQ

x
2

]
= Tr

[
Q

1−x
2 #Q

1+x
4 PQ

1+x
4

]
. (4.54)

These two paths are special because we recover all the three named fidelities

along these paths:

t = 0 ⇐⇒ x = 1 =⇒ FR(P,Q) = FU(P,Q),

t = 1
2

⇐⇒ x = 0 =⇒ FR(P,Q) = FH(P,Q),

t = 1 ⇐⇒ x = −1 =⇒ FR(P,Q) = FM(P,Q).

(4.55)

Moreover, these are paths along which the generalized fidelity varies while being

real-valued throughout. Thus, we have a one parameter family of fidelities that

recover all the three named fidelities. The one-parameter nature becomes even

more apparent with the alternative form of generalized fidelity along these paths,

as described in the following theorem.

95



Theorem 4.2.7. Let P,Q ∈ P+
d and let x ∈ R. Then

FPx(P,Q) = Tr
[
P

1
2UxQ

1
2

]
and FQx(P,Q) = Tr

[
P

1
2VxQ

1
2

]
, (4.56)

where

Ux := Pol
(
P

x
2Q

1
2

)
and Vx := Pol

(
P

1
2Q

x
2

)
. (4.57)

Proof. Let Ux := Pol
(
P

x
2Q

1
2

)
, which implies U∗

x = Pol
(
Q

1
2P

x
2

)
. Thus we have

Q
1
2P

x
2 = U∗

x

√
P

x
2QP

x
2 ⇐⇒ Ux =

√
P

x
2QP

x
2P−x

2Q− 1
2 . (4.58)

It then follows that

Tr
[
P

1
2UxQ

1
2

]
= Tr

[
P

1
2

√
P

x
2QP

x
2P−x

2Q− 1
2Q

1
2

]
= Tr

[
P

1−x
2

√
P

x
2QP

x
2

]
= FPx(P,Q) ,

(4.59)

which proves the first claim. Now let Vx := Pol
(
P

1
2Q

x
2

)
, which implies V ∗

x =

Pol
(
Q

x
2P

1
2

)
. Using a similar calculation as above, we have

Vx = P− 1
2Q−x

2

√
Q

x
2PQ

x
2 , (4.60)

which implies

Tr
[
P

1
2VxQ

1
2

]
= Tr

[
P

1
2P− 1

2Q−x
2

√
Q

x
2PQ

x
2Q

1
2

]
= Tr

[√
Q

x
2PQ

x
2Q

1−x
2

]
= FQx(P,Q) ,

(4.61)

as claimed. This completes the proof.

Note that FPx(P,Q) ̸= FQx(P,Q) for general values of x, except when x ∈
{1, 0,−1}, where they are equal. In terms of the geodesic paths γAI

PP−1(t) and

γAI
QQ−1(t), this corresponds to the values of t ∈ {0, 1/2, 1} respectively. Moreover,

we see that generalized fidelity along these paths is not symmetric under the

swap of P and Q, as the bases themselves depend on P and Q. However, we can

construct a symmetrized version by taking their average for the same value of x:

Fx(P,Q) :=
FPx(P,Q) + FQx(P,Q)

2
. (4.62)
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We call this parametrized family of fidelities the x-Polar fidelities and remark

that it is a one-parameter family of fidelities that recover Uhlmann-, Holevo-, and

Matsumoto-fidelity at x = 1, 0,−1 respectively. To our knowledge, this is the first

such generalization. Further properties, including some remarkable connections

to the spectral norm unit ball and the Lie group of SU(d), are discussed in

Section 4.3.

An interesting numerical observation regarding generalized fidelity along these

paths is as follows. For x, y ∈ [0, 1] we observe that

x ≥ y =⇒

FPx(P,Q) ≥ FP y(P,Q)

FQx(P,Q) ≥ FQy(P,Q).
(4.63)

This observation is consistent with the known relations [Mat10; CS20] regard-

ing the named fidelities:

FM(P,Q) ≤ FH(P,Q) ≤ FU(P,Q), (4.64)

for any P,Q ≥ 0.

If this observation can be proven mathematically, it would imply that x-Polar

fidelity is monotonic in x ∈ [−1, 1], which would give us a monotonic family of

fidelities that recover the three named fidelities.

4.2.3 Euclidean (blue) paths

Finally, we discuss paths related to the Euclidean metric, where a geodesic is

obtained via convex combinations of the endpoints:

γEucAB (t) = (1 − t)A+ tB. (4.65)

These paths are colored blue in Figure 4.2. We now discuss generalized fidelity

along 2 paths related to this metric.

Path 10: R = γEuc
P−1Q−1(t).

We first study the Euclidean geodesic between P−1 and Q−1, which is simply the

convex combination of the end-points: γEucP−1Q−1(t) = (1 − t)P−1 + tQ−1. As the

base R moves along this path, the generalized fidelity is constant and equal to

the Matsumoto fidelity.
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Theorem 4.2.8. Let P,Q ∈ P+
d and let R = γEucP−1Q−1(t) for any t ∈ [0, 1].

Then

FR(P,Q) = FM(P,Q). (4.66)

Proof. See Appendix C.3.7 for proof.

Path 11: R = [γEuc
PQ (t)]−1

Conversely, we now consider the case where the base moves along the path defined

by the inverse of the Euclidean geodesic (straight line) between P and Q:

R =
[
γEucPQ (t)

]−1
= [(1 − t)P + tQ]−1 . (4.67)

Like in the previous case, the generalized fidelity is constant along this path and

equal to the Matsumoto fidelity.

Theorem 4.2.9. Let P,Q ∈ P+
d and let R = [γEucPQ (t)]−1 for any t ∈ [0, 1].

Then

FR(P,Q) = FM(P,Q). (4.68)

Proof. See Appendix C.3.8 for proof.

4.3 Polar fidelities and Interior fidelities

In this section, we introduce a new family of fidelities and show how general-

ized fidelities can be thought of as elements of the extreme points of this family

of fidelities. We begin with recalling one of the equivalent characterizations of

generalized fidelity. For any P,Q,R ∈ P+
d , we have

FR(P,Q) = Tr
[
Q

1
2UQU

∗
PP

1
2

]
, (4.69)

where UP := Pol
(
P

1
2R

1
2

)
and UQ := Pol

(
Q

1
2R

1
2

)
. We call the unitary UQU

∗
P

the unitary factor of the generalized fidelity FR(P,Q).

We first show that the unitary factor of any generalized fidelity has +1 deter-

minant.

Proposition 4.3.1. Let P,Q,R ∈ P+
d . Then the unitary factor UQU

∗
P of

FR(P,Q) has determinant +1. Or equivalently, UQU
∗
P ∈ SU(d).

Proof. The proof will be done in two steps. We first show that the polar factor of

any matrix that is the product of two positive definite matrices is a special unitary
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matrix. To this end, let A,B ∈ P+
d . We aim to show that U := Pol (AB) ∈ SU(d).

By definition, we have

AB = U |AB| = U
√
BA2B. (4.70)

Now take determinant across to get

det(AB) = det(U |AB|) = det(U) det(|AB|). (4.71)

The LHS equals det(A) det(B). By properties of determinant, we have

det(|AB|) = det
(√

AB2A
)

=
√

det(AB2A) =

√
det(A)2 det(B)2 = det(A) det(B).

(4.72)

Thus we have det(U) = +1, or Pol (AB) ∈ SU(d) for any A,B ∈ P+
d . Thus we

have UP , UQ ∈ SU(d), and by the group structure of special unitaries, we have

UPU
∗
Q ∈ SU(d).

Thus, the unitary factor of any generalized fidelity is a special unitary. Let

us now recall the definition of x-Polar fidelity. For P,Q ∈ P+
d , we defined

Fx(P,Q) :=
FPx(P,Q) + FQx(P,Q)

2
= Tr

[
P

1
2

(
Ux + Vx

2

)
Q

1
2

]
, (4.73)

where Ux := Pol
(
P

x
2Q

1
2

)
and Vx := Pol

(
P

1
2Q

x
2

)
. Observe that Polar fidelities

are not generalized fidelities (except in the cases of x ∈ {1, 0,−1}). In particular,

convex combinations, over bases, of generalized fidelities are not, in general, gen-

eralized fidelities. We call such convex combinations of generalized fidelities over

a distribution of bases as interior fidelities. We first formally define the notion of

interior fidelities and then show why the name is appropriate.

Definition 4.3.2. Let µ ∈ n be a probability vector, R = {R1, . . . , Rn} ⊂ P+
d

be a collection of bases, and let P,Q ∈ P+
d . Define the interior fidelity

between P and Q over (R, µ) as

F(R,µ)(P,Q) :=
n∑

i=1

µi FRi
(P,Q) =

n∑
i=1

µi Tr
[
Q

1
2ViP

1
2

]
= Tr

[
Q

1
2V P

1
2

]
,

(4.74)

where Vi is the unitary factor of FRi
(P,Q) and V :=

∑n
i=1 µiVi is the mean

of the unitary factors.

One can also construct the corresponding interior Bures distance, and geo-

metrically this would correspond to linearizing the manifold at different points
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and then taking the average distance over these different linearizations. We also

note that since any generalized fidelity reduces to classical fidelity in the commut-

ing case, so do interior fidelities. Thus, interior fidelities are valid quantizations

of classical fidelity.

We now note a different kind of geometric property of generalized fidelities and

interior fidelities. Specifically, generalized fidelities can be seen to be the extreme

points of a convex family of fidelities, whose interior points are constituted by

interior fidelities. This correspondence is easier to see once we recall that the set

of all unitaries from extreme points of the convex and compact spectral-norm unit

ball [Wat18, Theorem 1.10]:

B∞ := {K : ∥K∥∞ ≤ 1}. (4.75)

It then follows from the definition of interior fidelities that the ‘non-commutative

part’ is an interior point of B∞. However, we note that the correspondence is not

bijective as B∞ also contains unitaries that are not special unitaries, whereas the

unitary factor of any generalized fidelity is necessarily a special unitary.

Thus, we see that the x-Polar fidelity is an interior fidelity. We showed that

the unitary factor of any generalized fidelity is a special unitary. An open question

we pose is whether the converse is true. That is, for any U ∈ SU(d), does there

exist a triple P,Q,R ∈ P+
d such that U = UQU

∗
P ? In [LL08, Remark 5.2], it was

shown that SU(d) can be generated by the set of polar factors of the product of

two positive definite matrices. However, for our open question to be answered

affirmatively, we would require that any special unitary can be written by the

product of at most two polar factors of the above kind. It is unclear whether this

is true. If the question can be answered affirmatively, then it would shed light on

a new connection between polar decomposition, the Bures–Wasserstein manifold

of positive definite matrices, and the Lie group SU(d).

4.4 Block matrix characterization of generalized

fidelity

We now show that the generalized fidelity, and thereby the generalized Bures

distance, has a Block-matrix representation. This representation is intimately

related to the semidefinite program (SDP) for Uhlmann fidelity [Wat18] and its

generalization to SDP for optimal average fidelity [AKF22]. We will first discuss

the SDP for average fidelity (which, in this context, is an SDP for total fidelity)

and then show how one can recover generalized fidelity and generalized Bures

distance from it.
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Proposition 4.4.1. Let P,Q,R ∈ P+
d be arbitrarily chosen. Define the

matrices A,B as

A :=
1

2

0 0 I
0 0 I
I I 0

 ∈ H3d, B :=

P 0 0

0 Q 0

0 0 R

 ∈ P3d, (4.76)

and Φ : H3d → H3d to be the Hermitian preserving map which acts asM11 · ·
· M22 ·
· · M33

 Φ7−→

M11 0 0

0 M22 0

0 0 M33

 . (4.77)

Consider the SDP (Φ, A,B) whose primal problem is

maximize : ⟨A,X⟩,

subject to : X ≥ 0, Φ(X) = B.
(4.78)

The optimal value of this SDP is FU(P,R) + FU(Q,R), and the unique

optimal feasible point that attains this value is of the form

X⋆ :=

 P P
1
2UPU

∗
QQ

1
2 P

1
2UPR

1
2

Q
1
2UQU

∗
PP

1
2 Q Q

1
2UQR

1
2

R
1
2U∗

PP
1
2 R

1
2U∗

QQ
1
2 R

 (4.79)

where UP := Pol
(
R

1
2P

1
2

)
and UQ := Pol

(
R

1
2Q

1
2

)
.

Proof. The proof is a straightforward application of results in [Wat18] and Chap-

ter 3. The fact that the value of the objective function cannot exceed FU(P,R) +

FU(Q,R) is shown in Lemma 3.3.2. That is, for any feasible point X,

⟨A,X⟩ ≤ FU(P,R) + FU(Q,R) . (4.80)

To show that the inequality is saturated, we construct a feasible point that attains

the optimal value FU(P,R) + FU(Q,R). Later, we will show that it is also the

unique optimal feasible point. For UP := Pol
(
P

1
2R

1
2

)
and UQ := Pol

(
Q

1
2R

1
2

)
,

define the 3d× d block matrix T as follows.

T :=

P
1
2UP

Q
1
2UQ

R
1
2

 (4.81)
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Now consider X⋆ := TT ∗:

X⋆ := TT ∗ =

P
1
2UP

Q
1
2UQ

R
1
2

(U∗
PP

1
2 U∗

QQ
1
2 R

1
2

)

=

 P P
1
2UPU

∗
QQ

1
2 P

1
2UPR

1
2

Q
1
2UQU

∗
PP

1
2 Q Q

1
2UQR

1
2

R
1
2U∗

PP
1
2 R

1
2U∗

QQ
1
2 R

 ≡

 P Z YP

Z∗ Q YQ

Y ∗
P Y ∗

Q R

 ≥ 0.

(4.82)

In the last equality, we renamed some quantities for brevity. We then see that

⟨A,X⋆⟩ = Re Tr[YP ] + Re Tr[YQ] = FU(P,R) + FU(Q,R) , (4.83)

which implies that the SDP achieves optimality.

We now prove the uniqueness of the optimal feasible point. We first note that

the positivity of X⋆ necessarily implies the positivity of the principal submatrices:

MP :=

(
P YP

Y ∗
P R

)
≥ 0 and MQ :=

(
Q YQ

Y ∗
Q R

)
≥ 0. (4.84)

By [Wat18, Lemma 3.18], we have MP ≥ 0 if and only if YP = P
1
2KR

1
2 for some

contraction K : ∥K∥∞ ≤ 1. Note that Re Tr[YP ] attains the maximum necessarily

for some unitary K, which is an extreme point of the set of contractions. To see

this, observe that

Re Tr[YP ] = Re Tr
[
P

1
2KR

1
2

]
= Re Tr

[
KR

1
2P

1
2

]
≤
∥∥∥KR 1

2P
1
2

∥∥∥
1
, (4.85)

where the last equality comes from the variational characterization of trace norm.

Now note that for any contraction K we have K∗K ≤ I and thus

P
1
2R

1
2K∗KR

1
2P

1
2 ≤ P

1
2RP

1
2 , (4.86)

with equality if and only if K is a unitary. Since the operator square root function

over positive semidefinite matrices is monotonic, we have√
P

1
2R

1
2K∗KR

1
2P

1
2 ≤

√
P

1
2RP

1
2 . (4.87)

Take the trace across to obtain∥∥∥KR 1
2P

1
2

∥∥∥
1

= Tr
[√

P
1
2R

1
2K∗KR

1
2P

1
2

]
≤ Tr

[√
P

1
2RP

1
2

]
= FU(P,R). (4.88)
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Thus we see that the inequality is saturated necessarily at some unitary. The

linearity of the objective function Tr[YP ] implies that the optimum is attained

at a unique unitary. This is because if there are two distinct optimal unitaries,

by linearity of the objective function, any convex combination of these unitaries

would also attain the optimum. However, such a (non-trivial) convex combination

will not be a unitary, which would contradict the previous statement. Thus the

optimal unitary is unique.

Indeed, UP is the unique optimal feasible point that achieves this value for MP ,

and similar reasoning shows that UQ is the unique optimal unitary for MQ. Thus,

X⋆ is the unique optimal feasible point of the SDP (Φ, A,B). This concludes the

proof.

Given the above SDP for a triple P,Q,R ∈ P+
d one can extract the generalized

fidelity FR(P,Q) and the squared generalized Bures distance BR(P,Q) from the

optimal primal feasible of SDP. This is formalized in the following theorem.

Theorem 4.4.2. Define the SDP (Φ, A,B) as above for an arbitrary triple

P,Q,R ∈ P+
d . Let X⋆ be the optimal primal feasible:

⟨X⋆, A⟩ = FU(P,R) + FU(Q,R) . (4.89)

Then,

FR(P,Q) = ⟨K,X⋆⟩, Re FR(P,Q) =

〈
K +K∗

2
,X⋆

〉
, BR(P,Q) = ⟨J,X⋆⟩,

(4.90)

where

K :=

0 I 0

0 0 0

0 0 0

 , J :=

 I −I 0

−I I 0

0 0 0

 , (4.91)

Proof. From Proposition 4.4.1, we have that the optimal feasible points X⋆ is of

the form

X⋆ =

 P Z YP

Z∗ Q YQ

Y ∗
P Y ∗

Q R

 =

 P P
1
2UPU

∗
QQ

1
2 P

1
2UPR

1
2

Q
1
2UQU

∗
PP

1
2 Q Q

1
2UQR

1
2

R
1
2U∗

PP
1
2 R

1
2U∗

QQ
1
2 R

 ≥ 0. (4.92)

Taking trace-inner product of ⟨K,X⋆⟩ = Tr[K∗X⋆] then gives

Tr
[
Q

1
2UQU

∗
PP

1
2

]
= FR(P,Q). (4.93)
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A similar calculation yields

Re FR(P,Q) =

〈
K +K∗

2
,X⋆

〉
. (4.94)

Finally, we have

⟨J,X⋆⟩ = Tr[JX⋆] = Tr[P +Q] − 2 Re FR(P,Q) =: BR(P,Q). (4.95)

This concludes the proof.

Thus, we have shown a block-matrix characterization of generalized fidelity

and squared generalized Bures distance. The SDP used in the characterization

is closely related to the SDP for optimal average fidelity [AKF22], which finds

a problem that is equivalent to finding the Bures–Wasserstein barycenter of a

finite collection of states. Further implications of this relation are explored in

Chapter 6.

4.5 Uhlmann-(like) theorem for generalized fi-

delity

Recall that Uhlmann’s theorem states that the Uhlmann fidelity can be written

as the largest absolute overlap between purifications. We now show that gener-

alized fidelity can be written as the overlap of particular purifications, with the

purifications dependent on the base. See Definition 2.3.2 for the definition of

purifications of a positive semidefinite matrix.

Let P ∈ P+
d . The canonical purification of P is given by

|P ⟩ = (P
1
2 ⊗ I)|ω⟩, (4.96)

where |ω⟩ :=
∑d

i=1 |i, i⟩ is the unnormalized canonical Bell state. Since there

is a unitary degree of freedom in the auxiliary space, we may write arbitrary

purifications of P,Q ∈ P+
d as

|PU⟩ ≡
(
P

1
2 ⊗ U

)
|ω⟩ and |QV ⟩ ≡

(
Q

1
2 ⊗ V

)
|ω⟩. (4.97)

Their overlap is given by

⟨QV , PU⟩ =
〈
ω,
(
Q

1
2P

1
2 ⊗ V ∗U

)
ω
〉

= Tr
[
Q

1
2P

1
2 (V ∗U)⊺

]
= Tr

[
Q

1
2P

1
2U⊺V

]
,

(4.98)

where V denotes the complex conjugate of V . Uhlmann’s theorem states that
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the maximum (absolute-valued) overlap is achieved when U⊺V = Pol
(
P

1
2Q

1
2

)
.

This result also allows us to state an Uhlmann’s theorem for generalized fidelity.

Theorem 4.5.1. Let P,Q,R ∈ P+
d . Consider the purifications of P and Q

defined as

|PU⊺
P
⟩ :=

(
P

1
2 ⊗ U⊺

P

)
|ω⟩ and |QU⊺

Q
⟩ :=

(
Q

1
2 ⊗ U⊺

Q

)
|ω⟩, (4.99)

where UP := Pol
(
P

1
2R

1
2

)
and UQ = Pol

(
Q

1
2R

1
2

)
. Then

FR(P,Q) =
〈
PU⊺

P
, QU⊺

Q

〉
. (4.100)

Proof. Let UP := Pol
(
P

1
2R

1
2

)
and UQ := Pol

(
Q

1
2R

1
2

)
. Consider the purifica-

tions

|PU⊺
P
⟩ =

(
P

1
2 ⊗ U⊺

P

)
|ω⟩ and |QU⊺

Q
⟩ =

(
Q

1
2 ⊗ U⊺

Q

)
|ω⟩. (4.101)

Now consider the overlap

⟨PU⊺
P
, QU⊺

Q
⟩ = ⟨ω,

(
P

1
2Q

1
2 ⊗ UPU

⊺
Q

)
ω⟩ = Tr

[
P

1
2Q

1
2 ⊗

(
UPU

⊺
Q

)⊺]
= Tr

[
P

1
2Q

1
2UQU

∗
P

]
= Tr

[
Q

1
2UQU

∗
PP

1
2

]
= FR(P,Q).

(4.102)

This completes the proof.

Thus, the generalized fidelity FR(P,Q) can be seen as the overlap of a pair of

specific purifications of P and Q, with the choice of purification depending on R.

4.6 An analogous generalization of some Rényi

divergences

We now briefly extend the formalism of generalized fidelities to quantum Rényi

divergences. We refer to [AD13; Tom15; Mül+13] for a detailed treatment. We

restrict our treatment to normalized states (probability vectors and density ma-

trices), keeping in mind that generalization to non-normalized states is straight-

forward and can be seen in the previously mentioned references.

Quantum Rényi divergences are quantizations of classical Rényi divergences [Rén61;
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VH14; Tom15], which, for probability vectors p, q ∈ ∆n, are defined as

Dα(p∥q) :=
1

α− 1
log

d∑
i=1

pαi q
1−α
i , (4.103)

for α ∈ (0, 1) ∪ (1,∞). In subsequent discussions, we also restrict our attention

to the case supp P ⊂ supp Q (and thus conveniently ignore the cases where the

divergence diverges to ∞).

As with classical fidelity, there is no unique way of generalizing this to positive

semidefinite matrices. For an axiomatic approach see [AD13; Tom15; Mül+13].

Here, we will mention the definitions of various well-studied quantum Rényi diver-

gences and show how some of them can be unified by defining a quantity inspired

by generalized fidelity. Every quantum Rényi divergence we study is of the form

Dα(P∥Q) :=
1

α− 1
log fα(P,Q), (4.104)

where fα(ρ, σ) is the trace functional which can be thought of as the (asymmetric)

fidelity part of the divergence. Since the relation between Dα(P∥Q) and fα(P,Q)

follows directly, we will restrict our attention to the trace functional fα(P,Q).

The first family of divergences we discuss is the family of α-z divergences [AD13],

which is defined as

Dα,z(P∥Q) =
1

α− 1
log Tr

[(
P

α
2zQ

1−α
z P

α
2z

)z]
, (4.105)

for P ≪ Q, α ∈ R\{1} (with the limit being taken for α → 1) and z ∈ R+ (with

limit being taken for z → 0). This family unifies various various quantum Rényi

divergences. In particular, set α = z to obtain the sandwiched relative entropy of

order α:

Dα,α(P∥Q) = DS
α :=

1

α− 1
log Tr

[(
Q

1−α
2α PQ

1−α
2α

)α]
. (4.106)

Setting z = 1 recovers the Petz-Rényi divergence of order α:

Dα,1(P∥Q) = DPR
α (P∥Q) :=

1

α− 1
log Tr[PαQ1−α]. (4.107)

Setting z = 1 − α recovers the reverse sandwiched relative entropy of order α:

Dα,1−α(P∥Q) = DRS
α (P∥Q) :=

1

α− 1
log Tr

[(
P

α
2(1−α)QP

α
2(1−α)

)]
. (4.108)

From the sandwiched relative entropy, one can recover other divergences such as

the min-relative entropy, Umegaki quantum relative entropy, and the max-relative
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entropy :

D 1
2
, 1
2
(P∥Q) = Dmin(P∥Q) := −2 log FU(P,Q) ,

lim
α→1

Dα,α(P∥Q) = DUm(P∥Q) := Tr [P (logP − logQ)] ,

lim
α→∞

Dα,α(P∥Q) = Dmax(P∥Q) := inf{λ : P ≤ 2λQ}.

(4.109)

Another quantum generalization of Rényi divergence is based on the AI geodesic

between P and Q. Specifically, the α-geometric Rényi divergence [Mat15; FF21;

KW21] between P and Q is defined as

DG
α (P∥Q) =

1

α− 1
log Tr[Q#αP ] =

1

α− 1
log Tr

[
Q

1
2

(
Q− 1

2PQ− 1
2

)α
Q

1
2

]
.

(4.110)

The quantity was first introduced in [Mat15] and is the largest quantum Rényi

divergence that satisfies data processing inequality. It is also known [Mat15;

Tom15; KW21] that for P ∈ Dd and Q ∈ P+
d

lim
α→1

DG
α (P∥Q) = DBS(P∥Q) := Tr

[
P log

(
P

1
2Q−1P

1
2

)]
, (4.111)

where DBS(P∥Q) is the Belavkin-Staszewski relative entropy [BS82].

We will now define a quantity inspired by the definition of generalized fidelity,

which can recover many of the above-mentioned divergences. In particular, the

quantity we define will recover the following divergences

DS
α, D

PR
α , DRS

α , and DG
α . (4.112)

Since the sandwiched relative entropy, in turn, can recover the min-relative en-

tropy Dmin, Umegaki relative entropy DUm, and max-relative entropy Dmax and

the geometric Rényi divergence has the Belavkin-Staszewski DBS as its α → 1

limit, the quantity we define would recover these divergences too. We note that

this section is meant for introductory and illustrative purposes alone, and further

information-theoretic properties are deferred to a future article.

The key idea is to define a base-dependent quantity that generalizes the trace

functional term. Similar to generalized fidelity, this term is complex in general,

and therefore, we will only use its real part.
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Definition 4.6.1. Let P,Q,R ∈ P+
d and α ∈ (0, 1) ∪ (1,∞). Define

D̂α,R(P∥Q) =
1

α− 1
log Re Fα

R(P,Q), (4.113)

where the trace functional F α
R is defined as

Fα
R (P,Q) := Tr

[(
R

1
2PR

1
2

)α
R−1

(
R

1
2QR

1
2

)1−α
]
. (4.114)

We firstly note that in the classical scenario, where P,Q and R mutually

commute, the above quantity reduces to the (classical) Rényi divergence.

We now show how the above quantity recovers the previously mentioned di-

vergences. This is formalized in the following theorem.

Theorem 4.6.2. For P ∈ Dd and Q ∈ P+
d , define D̂α,R(P∥Q) as above.

Then we have

R = I =⇒ D̂α,R(P∥Q) = DPR
α (P∥Q) (Petz-Rényi)

(4.115)

R = Q
1−α
α =⇒ D̂α,R(P∥Q) = DS

α(P∥Q) (Sandwiched)

(4.116)

R = P
α

1−α =⇒ D̂α,R(P∥Q) = DRS
α (P∥Q) (Rev. sandwiched)

(4.117)

R = Q−1 =⇒ D̂α,R(P∥Q) = DG
α (P∥Q) (Geometric)

(4.118)

Proof. We only need to work with the trace functional Fα
R (P,Q) as its relation

to D̂α,R follows directly. Recall the form of the trace functional:

Fα
R (P,Q) := Tr

[(
R

1
2PR

1
2

)α
R−1

(
R

1
2QR

1
2

)1−α
]
. (4.119)

Choosing R = I, we easily see that

Fα
I (P,Q) = Tr[PαQ1−α], (4.120)

which leads to the Petz-Rényi divergence. For the Sandwiched Rényi relative

entropy, we choose R = Q
1−α
α . Substituting in the trace functional, we have
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Fα
R (P,Q) : = Tr

[(
R

1
2PR

1
2

)α
R−1

(
R

1
2QR

1
2

)1−α
]

= Tr

[(
Q

1−α
2α PQ

1−α
2α

)α
Q

α−1
α

(
Q

1−α
2α QQ

1−α
2α

)1−α
]

= Tr
[(
Q

1−α
2α PQ

1−α
2α

)α
Q

α−1
α Q

1−α
α

]
= Tr

[(
Q

1−α
2α PQ

1−α
2α

)α]
,

(4.121)

which corresponds to the sandwiched Rényi relative entropy. For the reverse

sandwiched Rényi relative entropy, set R = P
α

1−α , which leads to

Fα
R (P,Q) : = Tr

[(
R

1
2PR

1
2

)α
R−1

(
R

1
2QR

1
2

)1−α
]

= Tr

[(
P

α
2(1−α)PP

α
2(1−α)

)α
P

−α
1−α

(
P

α
2(1−α)QP

α
2(1−α)

)1−α
]

= Tr

[
P

α
1−αP

−α
1−α

(
P

α
2(1−α)QP

α
2(1−α)

)1−α
]

= Tr

[(
P

α
2(1−α)QP

α
2(1−α)

)1−α
]
,

(4.122)

which is the trace functional that defines the reverse sandwiched Rényi relative

entropy. Finally, choose R = Q−1 to obtain the α-geometric Rényi divergence:

Fα
Q−1 (P,Q) : = Tr

[(
Q− 1

2PQ− 1
2

)α
Q
(
Q− 1

2QQ− 1
2

)1−α
]

= Tr
[(
Q− 1

2PQ− 1
2

)α
Q · I1−α

]
= Tr

[
Q

1
2

(
Q− 1

2PQ− 1
2

)α
Q

1
2

]
= Tr [Q#αP ] ,

(4.123)

which is the trace functional in the definition of α-geometric Rényi divergence.

This concludes the proof.

4.7 Open problems

We now discuss some related open problems.

1. Data Processing Inequality. For a given pair P,Q ∈ P+
d , for what values

of the base R does the squared generalized Bures distance satisfy the data

processing inequality (DPI)? Equivalently, for what values of R does the

following inequality hold for any quantum channel Φ?

BR(P,Q)
?

≥ BΦ(R) ((Φ(P ),Φ(Q)) . (4.124)

Preliminary numerical experiments have not identified any instances that

violate DPI.
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2. Convexity. A related open question is regarding (joint) convexity of gen-

eralized Bures distance (and/or its squared version) in P,Q, and R. These

appear to be difficult problems, and perhaps it would be easier to tackle

these questions for x-Polar fidelities (for x ∈ [−1, 1]).

3. Recovering z-fidelities from generalized fidelities. Can the z-fidelities

and/or the Log-Euclidean [Nur+24; BGJ19] fidelity be written as the gener-

alized fidelity (or interior fidelity) for some choice of base (or a distribution

over bases)? An affirmative answer to the above problem might also lead

to the analogous generalization for more members of the α-z divergences.

4. Monotonicity of polar fidelities. In the discussion of Paths 5 and 6,

we remarked on the numerical observation that the generalized fidelity was

monotonic along these curves. Does this observation always hold? That is,

for any P,Q ∈ P+
d and any pair x, y ∈ [−1, 1], does the following statement

hold true?

x ≥ y =⇒

FPx(P,Q) ≥ FP y(P,Q) ,

FQx(P,Q) ≥ FQy(P,Q) .
(4.125)

An affirmative answer would also imply that the x-Polar fidelity is mono-

tonic in x in the range [−1, 1]. This numerically observed monotonic is also

in line with the known relation regarding the named fidelities:

FM(P,Q) ≤ FH(P,Q) ≤ FU(P,Q), (4.126)

for any P,Q ≥ 0. Moreover, it is also known FM is the smallest and FU

is the largest quantization of classical fidelity that satisfies DPI [Mat10].

Thus, the family of x-Polar fidelities (in the range x ∈ [−1, 1]) might be

helpful in studying fidelities that satisfy the data processing inequality.

5. Other bases for Holevo fidelity. Another open problem we pose is

whether other non-trivial bases exist where generalized fidelity recovers

Holevo fidelity. Recall that we showed that R = I implies FR(P,Q) =

FH(P,Q). In fact, this is the only choice of R where we showed this equal-

ity for a general (non-commuting) pair of states P,Q. Are there other bases

on which the generalized fidelity reduces to Holevo fidelity? To find such a

non-trivial base, it would suffice to find R ∈ P+
d such that

Pol
(
R

1
2P

1
2

)
= Pol

(
R

1
2Q

1
2

)
. (4.127)

We believe that results from [LL08] would be helpful in this endeavor.
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6. SDP representation. The next question we ask is whether (the real part

of) generalized fidelity or squared generalized Bures distance has a true

semidefinite program representation. Though we have presented a block-

matrix characterization of generalized fidelity, it is not an SDP. An SDP

formulation could be vastly beneficial in optimization problems involving

generalized Bures distance, such as in a potential formulation of metric

learning [YJ06; ZHS16].

7. Unitary factor of generalized fidelity and SU(d). The final open

problem we pose is asking whether the set of unitary factors of generalized

fidelity and the set of special unitaries are the same. We have shown that

the set of unitary factors forms a subset of SU(d), but it is unclear whether

the reverse inclusion holds. To prove this, one would have to show that any

special unitary U ∈ SU(d) has the form

U = UQU
∗
P (4.128)

for a triple P,Q,R ∈ P+
d , where UP := Pol

(
P

1
2R

1
2

)
and UQ = Pol

(
Q

1
2R

1
2

)
.

An affirmative answer would illuminate a connection between the Bures

manifold, generalized fidelity, and the Lie group SU(d). We refer the reader

to [Mod16; Uhl10] for detailed expositions of the connection between the

unitary factor, the polar decomposition, and the geometry of the Bures

manifold.

4.8 Conclusion

In this paper, we introduce a family of fidelities between positive definite matrices

that generalize and unify various existing quantum fidelities. The definition is

motivated by the Riemannian geometry of the Bures–Wasserstein manifold, and it

endows the existing fidelities with novel geometric interpretations. We also define

and study the generalization of the closely related Bures–Wasserstein distance.

After studying the basic properties of these objects, we proved several re-

markable geometric properties of generalized fidelity including invariance and

covariance properties of generalized fidelity along geodesic-related paths related

to the Bures–Wasserstein, Affine-invariant, and Euclidean Riemannian metrics

on the manifold of positive definite matrices.

We then showed how convex combinations of generalized fidelity define a new

family of fidelities. One such family, the Polar fidelity, is shown to be a family of

fidelities parametrized by a single real number that recovers Uhlmann-, Holevo-,

and Matsumoto fidelity. We then derived a block-matrix characterization of gen-
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eralized fidelity and squared generalized Bures–Wasserstein distance and showed

an interesting relation between generalized fidelity, multivariate fidelities, and

Bures–Wasserstein barycenters.

We also discussed an Uhlmann-like theorem for generalized fidelity, and finally,

we demonstrated how our formalism can also be extended to generalized certain

quantum Rényi divergences. We then discussed various open problems.

We conclude this section by discussing potential applications of generalized

Bures distance in quantum and classical machine learning. Distances are crucial

in machine learning as we often embed data points in high-dimensional metric

spaces, and often, we find that different distance metrics (and divergences) are

suitable for different tasks. In particular, consider the problem of Metric learn-

ing [YJ06; ZHS16; Kul+13; Dav+07]. The problem can be succinctly stated as

follows: find the distance metric that is best suited to represent the data. For

example, one could consider the case where we are given pairwise distances be-

tween many data points (represented by vectors in Rd), and we are interested in

finding the positive definite matrix that defines the Mahalanobis distance which

would be most consistent with the given distances [ZHS16]. Metric learning has

applications in various machine learning fields, including classification algorithms

like the K Nearest Neighbors algorithm [Pet09] and dimensionality reduction

problems [WS15; HSH17].

Generalized Bures distance could extend the problem to the setting where

the data points are positive definite matrices or quantum states. Specifically,

given a collection of states and associated data (such as pairwise distances or

labels for each state), find a suitable base for the given task. For example, this

could be a classification problem where the states are given labels indicating

membership in disjoint classes. Then, the task would be to find a base such that

the generalized Bures distance at this base increases interclass distance while

decreasing intraclass distance. Thus, metric learning based on generalized Bures

distance could benefit various classical ML problems involving the BW manifold

or even quantum variants of the aforementioned (classical) ML problems [WKS15;

BAG20; SSP14; Dua+19; Lia+20].
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Chapter 5

Bures projection

5.1 Introduction

This chapter studies the final set of results of this thesis. We are interested in

the projection problem, which can be defined as finding the closest point in a

particular set to a given point outside the set. To elaborate, we are given a set C

and a point x /∈ C. The problem is to find the closest point y ∈ C to x. Such a

y, if it exists, is called the projection of x to C.

Perhaps the earliest projection problem, and indeed something that is taught

in high school mathematics1, is the projection of a point to a line with respect

to Euclidean distance. The solution, as Pythagoras theorem would tell us, is

obtained by dropping the perpendicular from the point to the line.

More generally, we are given a set V which has a squared distance (or a

divergence) D defined on it. Then the projection of x ∈ V to a subset C ⊂ V is

the (a) solution to the optimization problem

ΠD
C [x] := argmin

y∈C
D(y;x), (5.1)

provided it exists. As one expects, the projection varies as the choice of the dis-

tance (or divergence) D changes. Typically the set C is convex, and the distance is

chosen to be the Euclidean distance. For the Euclidean setting, efficient methods

exist for the solution to the projection problem in certain scenarios.

In this chapter, in line with the general affinity to fidelity, we have in the

thesis, we are interested in projection with respect to fidelity, or more precisely,

Bures distance. That is, we are interested in projecting a given positive matrix

to certain convex and compact subsets of the positive semidefinite cone. For the

purposes of this thesis, these sets are the preimages of a given output state under

1The author still remembers learning this in high school.
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a given quantum channel.

Let us formalize these notions. Let H and K be finite-dimensional complex

Euclidean spaces and let P ∈ PH, C ∈ PK be states and Λ ∈ CPT(H,K) be a

quantum channel. For the constraint pair (Λ, C), define its feasible set as

Λ−1[C] := {Q ∈ PH : Λ(Q) = C}. (5.2)

Note that we are interested only in positive semidefinite feasible points and thus

defined the set accordingly. This set is the intersection of an affine subspace

of HH (as defined by the constraint Λ(X) = C) and the closed set of positive

semidefinite cone PH, which implies Λ−1[C] is a compact set. Such a set is called

a spectrahedron and forms the feasible region of semidefinite programs [RG95;

Vin14; Chi23].

Observe that |Λ−1[C]| equals 0, 1, or ∞. The first case is vacuous and thus

ignored. The second case can be solved via linear inversion. Thus we only consider

the third case, where the feasible set is a spectrahedron containing an infinite

number of elements.

The projection problem can be then formally stated as follows:

ΠΛ,C [P ] := argmin
Q∈Λ−1[C]

B(P,Q) = argmax
Q∈Λ−1[C]

F(P,Q), (5.3)

where, again, we have taken to Uhlmann fidelity to be the unlabeled fidelity.

We first remark that the projection problem is a textbook case of a semidefinite

program, and thus numerical solutions are easily obtained. However, in this work,

we are interested in closed-form solutions. Here ΠΛ,C [P ] is taken to be the set

of all feasible elements that attain the optimal value. Since we are minimizing a

continuous function over a compact set, the set of solutions ΠΛ,C [P ] is non-empty.

If ΠΛ,C [P ] is a singleton set then we use, via a slight abuse of notation, ΠΛ,C [P ]

to denote this unique projection.

The equivalence between minimizing Bures distance and maximizing fidelity

becomes clear by expanding the squared Bures distance and observing that the

trace terms do not play a role in the optimization, as every feasible point has the

same trace (equal to Tr[C]), owing to the fact that Λ is trace-preserving.

Remark 5.1.1 (Uniqueness of projection). We have shown that a projection al-

ways exists. The question of uniqueness is slightly trickier. A sufficient condition

for the uniqueness is if the P is full-rank and there exists a full-rank optimal fea-

sible Q ∈ ΠΛ,C [P ]. To see this, recall that fidelity FP (Q) ≡ F(P,Q) is a strictly

concave function of Q > 0 whenever P > 0, and thus any full-rank optimum is

necessarily unique.
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The rest of the chapter is structured as follows. In Section 5.2 we introduce a

function that serves as a closed-form for the projection for certain channels such as

partial trace (including trace), pinching channels (including completely dephasing

channel), and projective measurements. This closed-form is closely related to the

saturation of the data processing inequality for fidelity. Moreover, we show that

for these channels, the input and output states (of the projection problem) and

the constraint channel saturate the Data Processing Inequality for fidelity and

elaborate upon the explicit closed forms for the above-mentioned channels. In

Section 5.3 we discuss an extension of channel-state duality based on the ideas

of Chruściński and Matsuoka [CM20], Leifer [Lei06], and Leifer and Spekkens

[LS13] which turns out to be quite useful while discussing Bures projections with

respect to the partial-trace channel. We then discuss a plethora of applications

in Chapter 5.4 including:

1. A Bures projected least squares channel tomography technique.

2. A Bayesian channel tomography technique.

3. Application in generic optimization problems over certain compact sets.

4. A unified method to generate various random states and ensembles of in-

terest in quantum information.

We then show that Bures projection has manifested in various existing results and

protocols of importance in quantum information. In particular, we show that

1. Certain normalizations [AS08; Bru+09; Kuk+21; CŻ24] used to construct

CPT and CPU maps from CP maps (at the level of Choi matrices) are

actually Bures projections.

2. The pretty good measurement [Bel75; HW94; EF01] can be given novel

geometric and operational interpretations in terms of Bures projection of

ensembles.

3. A novel geometric interpretation for the Petz recovery map [Pet86b; Pet88]

in terms of Bures projection. We show that (the transpose of the Choi

matrix of) the Petz recovery map is the Bures projection of a certain joint

channel-state matrix defined by the original channel and the reference state.

4. A geometric interpretation and shorter proof for the recent result by Bai,

Buscemi, and Scarani [BBS24] on quantum minimal change principle.

Finally, we conclude with Section 5.6 where we discuss future directions and open

problems. We begin with the derivation of the closed form for projections.
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(Λ, C) ΓΛ,C [P ] Remarks

(Tr, c) c
P

Tr[P ]
c ∈ R+. c = 1 yields trace normalization.

(TrY, C) P ⋆
X

(P−1
X #C)2 P ∈ PX⊗Y. C ∈ PX. C = IX gives projection

to Choi matrices of CPT maps from X to Y.

(TrX, C) P ⋆
Y

(P−1
Y #C)2 P ∈ PX⊗Y. C ∈ PY. C = IY gives projection

to Choi matrices of CPU from X to Y.

(∆, C)
d∑

i,j=1

√
CiCj

PiiPjj

Pij |i⟩⟨j| ∆ is the completely dephasing map. C is a
diagonal positive definite matrix.

(Λ, C) P ⋆

(
n⊕

i=1

[P ]−1
i #[C]i

)2

Λ is the pinching channel. [C]i is a block di-
agonal matrix compatible with Λ. [P ]i are
the corresponding blocks of P (the form de-
scribed on the left assumes block-diagonality
in computational basis).

(ME, c) P ⋆

(
n∑

i=1

√
ci

⟨Ei, P ⟩
Ei

)2

M is a projective measurement with orthogo-
nal projectors E := {Ei}. c ∈ Rn

+ is a positive
vector.

Table 5.1: Bures projection closed-form for specific channels.

5.2 Closed-form for projections

The aim of this section is to show that for certain channels, the projection can

be given by a specific closed form. Essentially, the closed-form can be defined for

any channel, but whether it yields the projection depends on the channel and,

interestingly, is related to the saturation of the data processing inequality (DPI)

for fidelity.

We begin with two useful lemmas. The first is based on the main result of

Leditzky, Rouzé, and Datta [LRD17] (also see Cree and Sorce [CS22b]) necessary

and sufficient conditions for the saturation of DPI for fidelity. The second lemma

shows that saturation of DPI implies projection.
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Lemma 5.2.1 (Leditzky, Rouzé, and Datta [LRD17]). Let Λ ∈ CPT(H,K)

and P,Q ∈ PH such that P ̸⊥ Q. Then F(P,Q) = F(Λ(P ),Λ(Q)) if and

only if

Q
1
2

√
Q− 1

2P−1Q− 1
2Q

1
2 = Λ∗

(
Λ(Q)

1
2

√
Λ(Q)−

1
2 Λ(P )−1Λ(Q)−

1
2 Λ(Q)

1
2

)
.

(5.4)

If P,Q,Λ(P ), and Λ(Q) are invertible, this above equation is the same as

P−1#Q = Λ∗ (Λ(P )−1#Λ(Q)
)
. (5.5)

By the symmetry of fidelity, one can swap the operators P and Q to obtain

equivalent relations.

Remark. The original result from Leditzky, Rouzé, and Datta [LRD17]

derives the condition for saturation of DPI for the more general sandwiched Rényi

divergence of order α. We only require the case of α = 1/2, which is equivalent

to saturation of DPI for fidelity.

Some comments are due. Observe that the LHS and RHS of Eq. (5.4) resem-

bles the forms of the geometric mean P−1#Q and Λ(P )−1#Λ(Q) respectively.

However, the equivalence typically holds true only if they are invertible. Prop-

erties of geometric mean mentioned in Proposition 2.1.3 need not hold true in

the case P or Q are not invertible. Thus, henceforth, we will put the minimal

assumption that relevant quantities are invertible.

The next lemma states that if a triple (Λ, P,Q) saturates DPI for fidelity for

positive definite P and Q, then P is the nearest point to Q over all points P ′

with Λ(P ′) = Λ(P ) and conversely Q is the nearest point to P over all points Q′

with Λ(Q′) = Λ(Q).

Lemma 5.2.2. Let P,Q ∈ P+
H and Λ ∈ CPT(H,K). If the triple (Λ, P,Q)

saturates DPI for fidelity, then Q is the unique projection of P to the set

Λ−1[Λ(Q)] and P is the unique projection of Q to the set Λ−1[Λ(P )]:

Q = ΠΛ,Λ(Q)[P ] and P = ΠΛ,Λ(P )[Q]. (5.6)

Proof. We first show that if (Λ, P,Q) saturates DPI, then Q ∈ ΠΛ,Λ(Q)[P ]. Since

P and Q are full-rank by assumption, it would then follow that Q is the unique

projection.

Suppose (Λ, P,Q) saturates DPI: F(P,Q) = F(Λ(P ),Λ(Q)). We want to

show that for any Q′ ∈ Λ−1[Λ(Q)], it holds that F(P,Q′) ≤ F(P,Q). Towards
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contradiction, assume there exists a feasible point Q′ with strictly higher fidelity

with P . Then we have

F(P,Q′) > F(P,Q) = F(Λ(P ),Λ(Q)) = F(Λ(P ),Λ(Q′)). (5.7)

Here the first equality is by assumption and the last equality follows by the fact

that Λ(Q) = Λ(Q′) as Q′ is a feasible point. However, this implies the violation

of DPI for fidelity for the triple (Λ, P,Q′), which is impossible. Hence such a

feasible point Q′ cannot exist.

This implies F(P,Q) ≥ F(P,Q′) for all Q′ ∈ Λ−1[Λ(Q)], which implies Q

is a projection of P to this set. Since P and Q are assumed to be full-rank, it

follows from strict concavity of fidelity that it uniquely maximizes fidelity over the

convex and compact feasible set, and thus Q is the unique projection. The second

equation of Eq. (5.6) follows by swapping P and Q in the above arguments.

Having these lemmas in place, we define the Gamma map which, for certain

channels, yields the solution of Bures projection. After the definition, we study

the condition under which the Gamma map yields the projection.

Definition 5.2.3. Let (Λ, C) denote a constraint pair for C ∈ PK, and

Λ ∈ CPT(H,K). The Gamma map ΓΛ,C : PH → PK is defined as

ΓΛ,C [P ] := P ⋆ [Λ∗(Λ(P )−1#C)]2

= [Λ∗(Λ(P )−1#C)]P [Λ∗(Λ(P )−1#C)],
(5.8)

for any P ∈ PH.

A sufficient condition for Λ∗(Λ(P )−1#C) to be invertible is Λ(P ) > 0 and

C > 0. Observe that ΓΛ,C map can be defined for any projection problem

(P,Λ, C). For certain channels—such as partial trace, pinching maps, and pro-

jective measurements with orthogonal projectors—the Γ map is a closed form for

the Bures projection. See Table 5.1 for the specific forms the Γ map takes for

these channels.

We now show that a sufficient condition for the Gamma map to yield the

projection is if it yields a feasible point. For this theorem, we assume P,Λ(P ),

and C are invertible.
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Theorem 5.2.4. Let (P,Λ, C) denote a projection problem such that

P,Λ(P ), and C are positive definite matrices. Then the Gamma map yields

the unique projection if it yields a feasible point:

ΓΛ,C [P ] ∈ Λ−1[C] =⇒ ΓΛ,C [P ] = ΠΛ,C [P ]. (5.9)

Proof. Observe that

Λ(P ), C > 0 =⇒ Λ(P )−1#C > 0 =⇒ Λ∗(Λ(P )−1#C) > 0, (5.10)

where the last implication follows from the fact that unital maps are strictly

positive maps. We thus have

Q ≡ ΓΛ,C [P ] := P ⋆ (Λ∗(Λ(P )−1#C))2 > 0, (5.11)

since we have assumed P > 0. This allows us to write

P−1#Q = Λ∗(Λ(P )−1#C). (5.12)

Now let us prove the main statement. To this end, assume Q ≡ ΓΛ,C [P ] ∈ Λ−1[C],

or equivalently Λ(Q) = C. Eq. (5.12) then takes the form

P−1#Q = Λ∗(Λ(P )−1#Λ(Q)), (5.13)

which, by Lemma 5.2.1, is a necessary and sufficient condition for (Λ, P,Q) to

saturate DPI for fidelity. This further implies (by Lemma 5.2.2) Q ∈ ΠΛ,C [P ].

Since Q is full-rank, it is also the unique projection. This concludes the proof.

The above theorem has the following implications.

1. Closed-form for Bures projection for certain channels.

2. A way to verify if the closed-form works for an arbitrary channel—just

check if the function ΓΛ,C yields a feasible point.

3. Explicit examples for the saturation of DPI for fidelity—the triple (Λ, P,ΓΛ,C [P ])

saturate DPI for fidelity (and thus also for sandwiched Rényi divergence of

order α = 1/2) for any channel where the map Γ yields a feasible point.

We now show that for the channels previously mentioned (partial trace, pinch-

ing channels, and projective measurements), the Gamma map yields the projec-

tion. This is done by explicitly showing that ΓΛ,C [P ] is an element of Λ−1[C]. We

begin with Λ being the partial trace channel.
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5.2.1 Partial trace projection

We now show that when the projection problem is defined by the partial trace

channel, the Gamma map indeed yields the closed-form solution. Due to the

ubiquity of the Bures projection problem with respect to partial channel in the

rest of the paper, we reserve a separate name and call this the marginal projection

problem. Let us identify the relevant objects.

Let H = X1 ⊗ · · · ⊗ Xn and K = Xk for some k ∈ [n]. Let Λ = TrH\K ∈
CPT(H,K) be the partial trace channel that discards every subsystem except

K = Xk. Let C ∈ P+
Xk

and denote J ≡ X1 ⊗ · · · ⊗ Xk−1 and L ≡ Xk+1 ⊗ · · · ⊗ Xn

such that H = J⊗K⊗ L. We then have the following result.

Theorem 5.2.5 (Closed-form for marginal projection). Let H,K, and Λ :=

TrH\K be defined as above. Let C ∈ P+
K be chosen arbitrarily. For any

P ∈ P+
H, we have

ΓTrH\K,C [P ] = P ⋆ (IJ ⊗ [P ]−1
K #C ⊗ IL)2

= P ⋆
K

([P ]−1
K #C)2 ∈ Tr−1

H\K[C].
(5.14)

where [P ]K = [P ]Xk
≡ TrH\K[P ] is the Xk-marginal of P .

Proof. By definition, we have

ΓΛ,C [P ] := P ⋆ (Λ∗(Λ(P )−1#C))2. (5.15)

Make the identifications Λ(P ) = PK and Λ∗(P−1
K #C) = IJ⊗P−1

K #C⊗IL, whence

it follows
ΓTrH\K,C [P ] = P ⋆ (IJ ⊗ P−1

K #C ⊗ IL)2

= P ⋆
K

(P−1
K #C)2.

(5.16)

Now we must show that ΓTrH\K,C [P ] is a feasible point, or equivalently show that

TrH\K

[
ΓTrH\K,C [P ]

]
=
[
ΓTrH\K,C [P ]

]
K

?
= C. (5.17)

To see this, observe that[
ΓTrH\K,C [P ]

]
K

= [P ⋆
K

(P−1
K #C)2]K = PK ⋆ (P−1

K #C)2 = C, (5.18)

where, in the second equality, we used the property of the star product [P⋆
K
K]K =

[P ]K ⋆ K for K ∈ PK (Eq. (2.21)) and in the final equality we used the fact

that A ⋆ (A−1#B)2 = B for any A,B > 0. We have proven that ΓTrH\K,C [P ]

is a feasible point. By Theorem 5.2.4 we have that it is also the projection:
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ΓTrH\K,C [P ] = ΠTrH\K,C [P ]. This concludes the proof.

We thus have a closed form for projection with respect to the partial trace

channel (marginal projection). Due to the subsequent ubiquity of this projection,

we reserve a separate notation for it:

ΠTrH\K,C ≡ Π̂K,C . (5.19)

Essentially Π̂K,C denotes the projection to the compact set of positive semidefinite

matrices whose K-marginal is C ∈ PK. We now look at some special cases of

marginal projection, with the simplest one being the trace map.

Corollary 5.2.6 (Trace-projection). Let K = C,Λ = Tr, and c ∈ R+.

Then for any P ∈ PH the projection with respect to the trace channel is

given by

ΠTr,c[P ] = c
P

Tr[P ]
. (5.20)

On choosing c = 1, we get the Bures projection to the set of density matrices,

which is given by trace-normalization: ΠTr,1[P ] = P
Tr[P ]

Proof. Proof directly follows from Theorem 5.2.5 on using the fact that Tr∗[c] =

cIH.

Of particular importance would be marginal projection over bipartite systems,

whose closed forms are given as follows.

Proposition 5.2.7 (Marginal projection for bipartite systems). Let H =

X ⊗ Y, C ∈ P+
X , and D ∈ P+

Y . For any P ∈ PX⊗Y, the X- and Y-marginal

projections are given by

Π̂X,C [P ] = P ⋆
X

(P−1
X #C)2 and Π̂Y,D[P ] = P ⋆

Y
(P−1

Y #D)2. (5.21)

In particular, choosing C = IX and D = IY yields

Π̂X,C [P ] = P ⋆
X

[P ]−1
X and Π̂Y,D[P ] = P ⋆

Y
[P ]−1

Y , (5.22)

where we use the fact that A#I =
√
A for any A ≥ 0.

Proof. The proof follows from relevant substitutions in Theorem 5.2.5.

In later sections, we will use these marginal projections over bipartite systems

to perform projections related to quantum channels (or CP maps in more gen-

121



eral). Let us thus quickly remind ourselves of the relation between CP maps and

bipartite PSD matrices. See Section 2.3.2 for further details.

Recall that, by Choi-Jamio lkowski isomorphism, the set of bipartite PSD ma-

trices PX⊗Y is isomorphic to the set of completely positive maps CP(X,Y) from

MX to MY. Indeed it is also isomorphic to the set of completely positive maps

CP(Y,X) from MY to MX. That is, for any P ∈ PX⊗Y, one can define the CP

maps ΦP ∈ CP(X,Y) and ΨP ∈ CP(Y,X) with actions defined as

ΦP (X) := [P · (X⊺ ⊗ IY)]Y and ΨP (Y ) := [P · (IX ⊗ Y ⊺)]X, (5.23)

for any X ∈ MX and Y ∈ MY. We have the following relations as well:

[P ]X = IX ⇐⇒ ΦP ∈ CPT(X,Y) and ΨP ∈ CPU(Y,X),

[P ]Y = IY ⇐⇒ ΦP ∈ CPU(X,Y) and ΨP ∈ CPT(Y,X).
(5.24)

That is, if the marginal on the input space is identity, then the map is CP and

trace-preserving and if the marginal on the output space is identity, then the map

is CP and unital.

This brief overview of the Choi-Jamio lkowski isomorphism is to remind us of

an important application of marginal projection. Essentially Proposition 5.2.7

gives us a way to find the closest (at the level of Bures distance between Choi

matrices) trace-preserving and (separately) unital completely positive maps to a

given completely positive map. As we will discuss in Section 5.4, this result has

applications in practical quantum process tomography and also in the geometric

interpretations of various results in quantum information.

Owing to the fact that we will use these projections frequently, we will reserve

special notations for them. In the following equations, we assume the positive

matrix (to be projected) is an element of PX⊗Y.

Π̂X,IX ≡ ΠCPT(X,Y) ≡ ΠCPU(Y,X), (5.25)

where the second equivalence signifies the equivalence between the sets CPT(X,Y)

and CPU(Y,X). Similarly, we denote

Π̂Y,IY ≡ ΠCPU(X,Y) ≡ ΠCPT(Y,X), (5.26)

Remark. This is not the first time these operations have appeared in the

literature. They have been used in Audenaert and Scheel [AS08] and Bruzda,

Cappellini, Sommers, and Życzkowski [Bru+09] (where they are considered as

normalizations) to generate random Choi matrices of quantum channels and CPU
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maps. However, to the best of our knowledge, hitherto it has not been shown

that these constructions are bona fide projections with respect to Bures distance.

By recognizing these normalizations as bona fide projections, one can now rig-

orously analyze protocols involving these operations. Such protocols involving

these projections, both new and existing, are discussed in Section 5.4.

Next, we discuss the projection closed-form for a different class of channels,

namely, pinching channels [Wat18; Tom15] which also contain the completely

dephasing channel as a special case.

5.2.2 Pinching channel projection

We next discuss the closed form for projection with respect to pinching channels.

Let E := {Ei}i∈[n] be a collection of mutually orthogonal projectors summing to

unity. Then the pinching channel with respect E is given by

ΛE(P ) :=
n∑

i=1

EiPEi. (5.27)

Observe that ΛE is a self-adjoint map: Λ∗
E = ΛE. We now show that the Gamma

map yields a feasible point and thus constitutes the projection. We first prove

the case where Ei are diagonal in the computational basis as this is the more

illustrative scenario. The proof for the general case is deferred to Appendix D.1.

Theorem 5.2.8. Let E = {Ei}i∈[n] ⊂ PH be a collection of orthogonal

projectors summing to IH which are diagonal in the computational basis.

Let ΛE be the corresponding pinching channel. Let C ∈ PH be in the image

of ΛE. We then have

ΓΛE,C [P ] = P ⋆ (ΛE(ΛE(P )−1#C))2

= P ⋆

(
n⊕

i=1

[P ]−1
i #[C]i

)2

∈ Λ−1
E [C],

(5.28)

where [P ]i denotes the non-zero block of EiPEi.

Remark. In the above statement and for the rest of the proof, we assume we

are in a basis such that EiPEi can be written a d× d matrix with every element

being zero except an ri × ri principal submatrix, which we denote by [P ]i, with

ri := rank(Ei). Essentially we choose the basis which visually illustrates action
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of the pinching map. That is, the basis such that

n⊕
i=1

[P ]i =
n∑

i=1

EiPEi, (5.29)

holds for any P , where [P ]i is an ri × ri block.

Proof. By the action of the pinching channel, we have both ΛE(P ) =
⊕n

i=1[P ]i

and C = ΛE[C] ≡
⊕n

i=1[C]i to be block-diagonal in the computational basis,

where [P ]i and [C]i indicate the non-zero blocks of EiPEi and EiCEi. Indeed it

follows that

ΛE(P )−1 =
n⊕

i=1

[P ]−1
i , (5.30)

whence it follows

M ≡ ΛE(P )−1#C =
n⊕

i=1

[P ]−1
i #[C]i. (5.31)

Observe that Λ∗
E(M) = ΛE(M) = M as M is already block-diagonal (with respect

to E). We thus have

ΓΛ,C [P ] = P ⋆

(
n⊕

i=1

[P ]−1
i #[C]i

)2

(5.32)

as claimed. To see that it is a feasible element, we apply ΛE to this matrix, which

removes all the non-diagonal submatrices, which gives us

n⊕
i=1

[P ]−1
i #[C]i · Pi · [P ]−1

i #[C]i =
n⊕

i=1

[C]i = C. (5.33)

This completes the proof.

By choosing E = {|i⟩⟨i|}i∈[d] to be the rank-one projectors corresponding to the

computational basis vectors, one gets the closed-form for projection with respect

to the completely dephasing channels.

Corollary 5.2.9 (Projection with respect to completely dephasing map).

Let H = Cd and ∆ : PH → PH be the completely dephasing map. For a

diagonal positive matrix C :=
∑d

i=1Ci |i⟩⟨i| ∈ PH, the Gamma map is given

by

Γ∆,C [P ] =
d∑

i,j=1

√
CiCj

PiiPjj

Pij |i⟩⟨j| ∈ ∆−1[C], (5.34)

for any P+ ∈ PH.
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Proof. Choose Ei = |i⟩⟨i| for i ∈ [d] in Theorem 5.2.8.

This corresponds to the Bures projection onto the set of positive matrices

with a specified diagonal.

5.2.3 Projective measurement projection

The final type of channels we consider is projective measurements (viewed as

channels) (see Watrous [Wat18, Section 2.3]). Let E = {Ei}i∈[n] be a collection of

mutually orthogonal projectors that sum to identity. The associated measurement

channel ME : Hd → Rn and its adjoint M∗
E : Rn → Hd are given by

ME(H) :=
n∑

i=1

⟨Ei, H⟩ |i⟩⟨i| and M∗
E(v) =

n∑
i=1

viEi, (5.35)

for H ∈ Hd and v ∈ Rn. We now show that the corresponding Gamma map

yields a feasible state and thus also the closed-form for Bures projection.

Theorem 5.2.10. Let ME be the measurement channel associated with the

projectors E := {Ei}i∈[n] ⊂ PH. Let c ∈ Rn
+ be a positive vector. Then

ΓME,c[P ] = P ⋆

(
n∑

i=1

√
ci

⟨Ei, P ⟩
Ei

)2

∈ M−1
E [c] (5.36)

for any P ∈ P+
H.

Proof. We first show the form of ΓME,c[P ] by unpacking the definition. To this

end, observe that

ME(P )−1 =
n∑

i=1

⟨P,Ei⟩−1 |i⟩⟨i| =⇒ ME(P )−1#c =
n∑

i=1

√
ci

⟨Ei, P ⟩
|i⟩⟨i| .

(5.37)

The image under the adjoint is then obtained as M∗
E (ME(P )−1#c) =

∑n
i=1

√
ci

⟨Ei,P ⟩Ei,

which leads to the form

ΓME,c[P ] = P ⋆

(
n∑

i=1

√
ci

⟨Ei, P ⟩
Ei

)2

(5.38)

as claimed. To show that ΓME,c[P ] is a feasible point, compute

ME (ΓME,c[P ]) =
n∑

i=1

⟨Ei,ΓME,c[P ]⟩ |i⟩⟨i| =
n∑

i=1

ci |i⟩⟨i| = c. (5.39)
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The second equality follows from

⟨Ei,ΓME,c[P ]⟩ =
n∑

j,k=1

√
cjck

⟨Ej, P ⟩⟨Ek, P ⟩
Tr [EiEjPEk] =

ci
⟨Ei, P ⟩

⟨Ei, P ⟩ = ci,

(5.40)

where we have used EiEj = δijEi as E := {Ei}i∈[n] form a collection of mutu-

ally orthogonal projectors. We have thus shown ΓΛE,C [P ] ∈ M−1
E [c] which, by

Theorem 5.2.4, implies it is also the projection ΠME,c[P ]. This concludes the

proof.

5.2.4 Ensemble projection

The final type of projection we discuss is the projection of ensembles. Though this

is a special case of the partial-trace projection, it is useful to study it separately.

The setting is as follows.

Let P = (P1, . . . , Pn) be a tuple of positive definite matrices in P+
d with P :=∑n

i=1 Pi. Let Q ∈ P+
d and define

Decn(Q) :=

{
Q := (Q1, . . . , Qn) ∈ Pd

×n :
n∑

i=1

Qi = Q

}
. (5.41)

That is, Decn(Q) is the set of all n-decompositions of Q. The problem of interest

is then to project P to this compact and convex set, where the projection is

measured in terms of the sum of fidelity (or equivalently sum of Bures distance)

between respective elements. That is solve,

argmin
Q∈Decn(Q)

n∑
i=1

B(Pi, Qi) = argmax
Q∈Decn(Q)

n∑
i=1

F(Pi, Qi). (5.42)

Note that choosing Q = Id gives the projection to the set of n-outcome POVMs.

Using a direct sum construction and the closed-form for partial trace projection,

one can show that the optimal ensemble is given by

Qi := Pi ⋆ (P−1#Q)2 for each i ∈ [n]. (5.43)

Before we prove this, we first state a useful lemma.
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Lemma 5.2.11. Let X = Cn and Y = Cd and {Pi}i∈[n], {Qi}i∈[n] ⊂ PY.

Define P,Q ∈ PX⊗Y to be the block-diagonals P :=
∑n

i=1 |i⟩⟨i| ⊗ Pi and

Q :=
∑n

i=1 |i⟩⟨i| ⊗Qi. Then

F(P,Q) =
n∑

i=1

F(Pi, Qi) and B(P,Q) =
n∑

i=1

B(Pi, Qi) (5.44)

Proof. Proof directly follows from additivity of fidelity under direct sum [Wat18;

Wil13].

We will solve the problem by showing that finding the projection of the en-

semble P is equivalent to projecting the direct-sum matrix P to the feasible set

Tr−1
X [Q] (note that TrX : MX⊗Y → MY) of states of the form:

Tr−1
X [Q] := {Q ∈ PX⊗Y : TrX[Q] = Q}. (5.45)

Observe that we showed the equivalence of fidelity (and Bures distance) between

the ensemble and direct-sum matrix only for block-diagonal matrices. Although

the feasible set defined in Eq. (5.45) also contains elements that are not block-

diagonal, data processing inequality for fidelity dictates that it suffices to consider

block-diagonal matrices. To see this choose Q :=
∑n

i,j=1 |i⟩⟨j| ⊗ Qij ∈ PX⊗Y

arbitrarily and P :=
∑n

i=1 |i⟩⟨i| ⊗ Pi to be block-diagonal. Choose a pinching

channel with elements {|i⟩⟨i| ⊗ IY}i∈[n]. By DPI for fidelity, we have

F

(
n∑

i=1

|i⟩⟨i| ⊗ Pi,
n∑

i,j=1

|i⟩⟨j| ⊗Qij

)
≤ F

(
n∑

i=1

|i⟩⟨i| ⊗ Pi,
n∑

i=1

|i⟩⟨i| ⊗Qii

)
.

(5.46)

Thus, although Tr−1
X [Q] has elements that are not block-diagonal (in the sense of

P), the optimal value will be achieved at a block-diagonal matrix of compatible

structure. If P is full-rank (which is equivalent to every Pi ∈ P being full-rank),

then the optimal block-diagonal is unique (and full-rank) as well. The main result

can be formulated as follows.
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Theorem 5.2.12 (Ensemble projection). Let P = (P1, . . . , Pn) ⊂ P+
Y be

a fixed tuple of states and let Q ∈ P+
Y be a fixed matrix. Then the tuple

Q = (Q1, . . . , Qn) ⊂ P+
Y summing to Q that maximizes the total fidelity∑n

i=1 F(Pi, Qi) with P is given by

Qi = Pi ⋆ (P−1#Q)2 = (P−1#Q)Pi(P
−1#Q), (5.47)

for each i ∈ [n], where P :=
∑n

i=1 Pi.

Proof. Let P :=
∑n

i=1 |i⟩⟨i|⊗Pi ∈ PX⊗Y. Projecting P to the compact set Tr−1
X [Q],

we get

Π̂Y,Q[P] = P ⋆
Y

([P]−1
Y #Q)2

= P ⋆ (IX ⊗ (P−1#Q))2

= (IX ⊗ P−1#Q) ·

(
n∑

i=1

|i⟩⟨i| ⊗ Pi

)
· (IX ⊗ P−1#Q)

=
n∑

i=1

|i⟩⟨i| ⊗
[
Pi ⋆ (P−1#Q)2

]
,

(5.48)

where we used the fact that [P]Y = TrX[P ] =
∑n

i=1 Pi = P . Observe that even

though the feasible set contains matrices that are not block-diagonal, the optimal

feasible element is indeed block-diagonal as implied by data processing inequality.

Picking the ensemble elements as the corresponding diagonal submatrices, we

complete the proof.

The above closed-form should find applications in optimization problems in-

volving fidelity. For example, if we choose P ≡ (ρ1, . . . , ρn) to be a (possibly

weighted) ensemble of states and Q = σ to be a fixed density matrix, then the

closed-form gives the closest ensemble to P which is a decomposition of Q. By

the bijection between positive semidefinite matrices and weighted quantum states,

this optimal ensemble is equivalent to an ensemble of weighted states.

Remark. We now note an interesting observation regarding the form of

ensemble projection. Recall that the projection of the ensemble P := (Pi)i∈[n] to

the set of ensembles summing to Q is given by Q := (Qi)i∈[n] where

Qi = Pi ⋆ (P−1#Q)2 ≡ Pi

(Q−1#P )2
. (5.49)

Suppose we are in the commuting scenario and all the matrices involved commute.

Then the relation reduces to

Qi = Q · Pi

P
, (5.50)
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which is reminiscent of the scaling one does in the case of vectors, where to obtain

a vector that sums to q̄ ∈ R+ from a vector p ∈ Rd
+, one performs the scaling

p 7→ q̄
p̄
p for p̄ :=

∑d
i=1 pi.

Let us now return to the non-commutative setting and discuss a particularly

interesting choice of Q—namely Q = IY. For this choice of Q, the ensemble is

projected to the compact set of n-outcome measurements (POVMs). The closed-

form for ensemble projection then yields the familiar pretty good measurement

(PGM) as the following corollary reveals.

Corollary 5.2.13. Let P = (P1, . . . , Pn) ⊂ P+
d be an ensemble and P =∑n

i=1 Pi. The ensemble projection of P to the compact set of n-outcome

POVMs (which is equivalent to Decn(Id)) is given by

Qi = Pi ⋆ P
−1 = P− 1

2PiP
− 1

2 , (5.51)

which is the ‘pretty good measurement’ associated with the ensemble P.

Proof. The proof directly follows from Theorem 5.2.12 on setting Q = Id and

recalling that P#I =
√
P for any P ≥ 0.

As we will discuss in Section 5.4.4, this result endows the PGM with new op-

erational and geometric interpretations. We now proceed to discuss the various

applications and manifestations of the closed-form for the Bures projection. All

our examples pertain to the partial trace channel. Before diving into these exam-

ples, it is helpful to understand a certain isomorphism between bipartite states

and pairs of channels and input states, which can be viewed as an extension of

the Choi–Jamio lkowski isomorphism.

5.3 A note on Channel-state duality

Recall that the Choi–Jamio lkowski isomorphism associates to every bipartite pos-

itive semidefinite matrix P ∈ PX⊗Y a completely positive map in CP(X,Y). If the

input marginal of the bipartite PSD matrix equals the identity matrix (PX = IX),

then the associated CP map is trace-preserving as well. The aim of this section

is to demonstrate a variant of this isomorphism by associating to every bipartite

positive definite matrix2 P ∈ P+
X⊗Y not a CP map, but instead a pair (ΦP , ρP ) of

a quantum channel (CPT) map ΦP ∈ CPT(X,Y) and a (typically unnormalized)

input state ρP ∈ PX.

2The association can be extended to positive semidefinite matrices as well by appropriate
restrictions to support.
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We first note that such an association [CM20] and slight variants [Lei06; LS13]

can be derived from results in the literature. Let us now define this association.

Theorem 5.3.1. To each P ∈ P+
X⊗Y, one can bijectively associate a channel

ΦP ∈ CPT(X,Y) and a (possibly unnormalized) input state ρP ∈ P+
X such

that the following relations hold:

ρP = [P ]X, J(ΦP ) = Π̂X,IX [P ], and [P ]Y = ΦP (ρ⊺P ). (5.52)

where the transpose is taken in the basis used to define the Choi matrix.

Moreover, for any pair P,Q ∈ P+
X⊗Y, we have

P = Q if and only if ρP = ρQ and ΦP = ΦQ, (5.53)

where ρQ ∈ P+
Y and ΦQ ∈ CPT(X,Y) are defined analogously to Eq. (5.52).

Proof. First, observe that

ρP := TrY[P ] ∈ P+
X and J(ΦP ) := ΠCPT(X,Y)[P ] = P ⋆

X
[P ]−1

X ∈ JCPT(X,Y).

(5.54)

Thus (ΦP , ρP ) constitute a valid pair of channel and input state. The fact that

PY = ΦP (ρ⊺P ) immediately follows from properties of Choi states. Indeed we have

ΦP (ρ⊺P ) = [J(ΦP ) ⋆
X

(ρ⊺P )⊺]Y = [(P ⋆
X
P−1
X ) ⋆

X
PX]Y = [P ]Y, (5.55)

where the first equality is by Eq. (2.42). In the second equality, we used the

definitions of J(Φ)P and ρP .

Let us now prove the bijection. For the forward direction, we first prove the

equality of the input states. Indeed we have

P = Q =⇒ ρP := [P ]X = [Q]X =: ρQ. (5.56)

For the equality of channels, observe that

J(ΦP ) := P ⋆
X
P−1
X = Q ⋆

X
Q−1

X =: J(ΦQ). (5.57)

Here the equality follows from the equality of corresponding terms. The reverse

direction is also straightforward as ρP = ρQ and ΦP = ΦQ implies

P = J(ΦP ) ⋆
X
ρP = J(ΦQ) ⋆

X
ρQ = Q, (5.58)

where the first and last equalities are obtained by inverting the form of Choi
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projection and the middle equality follows by assumption.

Essentially one can uniquely decompose any bipartite positive definite matrix

as the joint state of a channel and an input state, and when performing a pro-

jection of an arbitrary PSD matrix onto the set of CPT maps, one is actually

‘dividing out’ the input state.

Chruściński and Matsuoka [CM20], Leifer [Lei06], and Leifer and Spekkens

[LS13] all have remarked upon (up to slight variations) such decompositions of

bipartite matrices into channels and input states as a quantum version of the

application of a classical channel (which is a conditional distribution) on an input

probability distribution.

Our result would also provide an information-geometric underpinning to this

formalism as the operations correspond to appropriate Bures projection. The

following corollary is essentially a restatement of the previous theorem which we

write for emphasis.

Corollary 5.3.2. Any P ∈ P+
X⊗Y can be uniquely written as

P = J(ΦP ) ⋆
X
ρP , (5.59)

for a channel ΦP ∈ CPT(X,Y) and an input state ρP ∈ PX such that

J(ΦP ) = ΠCPT(X,Y)[P ], ρP = [P ]X, and ΦP [ρ⊺P ] = [P ]Y. (5.60)

Conversely, for a channel Φ ∈ CPT(X,Y) and an input state ρ ∈ PX, we

will call J(Φ) ⋆
X
ρ the joint state of the channel-state pair (Φ, ρ).

We now discuss applications of Bures projection.

5.4 Applications and manifestations of Bures pro-

jection

We now look at various applications and manifestations of the closed-form for

Bures projection. Most of the applications we discuss here pertain to marginal

projection (Bures projection with respect to the partial trace channel).

5.4.1 Projection for optimization problems

We first discuss a general application for closed forms for projections. An impor-

tant subfield of optimization is constrained optimization, where one is interested

131



in finding the optimal point satisfying some constraint [BV04]. A generic problem

of this kind can be written as

minimize : f(x)

subject to : x ∈ C.
(5.61)

where C is the feasible set of the constraint.

Semidefinite programs are constrained optimizations with a linear objective

and a spectrahedral feasible set. Quantum information often involves optimiza-

tion problems over the spectrahedral sets of quantum states or channels. While

the method of Lagrange multipliers handles certain cases, more complex prob-

lems demand other approaches. For unconstrained problems, gradient descent

iteratively updates points until a stopping condition is met, such as reaching a

maximum iteration count or a small objective difference between steps [BV04].

A key issue with vanilla gradient descent in constrained settings is that it may

generate infeasible points. For some problems, one can ensure iterates remain

within the feasible set by modifying the geometry of the problem. For example,

the RGD method discussed in Chapter 3 ensures that every iterate is positive

semidefinite, which corresponds to the feasible set. Another popular method is

mirror descent [NY83; HSF24; YCL22; YFT19], which has found success in the

quantum setting as well.

A more common fix is projected gradient descent [Bub15], where after each

step we project back to the feasible set:

xt+1 = ΠC[xt − ηt∇f(xt)], (5.62)

where the projection operation is defined as

ΠC(x) = argmin
y∈C

D(y, x), (5.63)

where D is typically a divergence or a squared distance, with squared Euclidean

distance (which is both) being a standard choice. For projected GD to be efficient,

we must be able to compute the projection efficiently, which is possible for certain

sets and distances. Of course, closed forms for such projections are of immense

use in both theory and practice.

Our results provide closed forms for Bures projections to various sets of inter-

est. The closed-form for marginal projection gives the projection to the sets of

Choi matrices of CPT maps and CPU maps, the set of multipartite states with a

given marginal, measurement ensembles, or ensembles of matrices that sum to a

fixed matrix. The closed form for pinching channels give projection to matrices
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with a given image under the pinching channel. For the completely dephasing

map, this gives the projection to the set of positive semidefinite matrices with a

given diagonal. Similarly, the closed-form for projective measurements gives pro-

jections to specific sets of interest defined by expected measurement outcomes.

As an example of marginal projection consider the following optimization

problem over Choi matrices of quantum channels [CGW21].

minimize : f(Q)

subject to : Q ∈ JCPT(X,Y),
(5.64)

for some function f . If one chooses a projected gradient descent approach to this

problem, one can use our closed form for the projection after every step. We now

turn our attention to more concrete applications.

5.4.2 Choi projection for channel tomography

The first concrete application we present is to use the closed-form for the projec-

tion of CP maps to CPT maps (at the level of Choi matrices) in the context of

tomography of quantum channels [MRL08; Sur+22; GCC16]. We now detail two

specific examples of channel tomography where Choi projection finds application.

Bures Projected Least Squares Tomography. Surawy-Stepney, Kahn,

Kueng, and Guta [Sur+22] introduce and analyze the Projected least squares

(PLS) process tomography protocol, where they estimate Choi matrix of a channel

(from experimental data) as follows.

Let X = Cd and Y = Cd′ and suppose Φ ∈ CPT(X,Y) is the channel one wants

to perform tomography over. The idea is to first construct a state that faithfully

represents the channel, and one way to obtain such a state is to act IdX ⊗ Φ on

the Bell state 1
d
Ω = 1

d
|ω⟩⟨ω| ∈ DX⊗X, to get a rescaled version of the Choi matrix:

1

d
(IdX ⊗ Φ)(Ω) =

1

d
J(Φ) ∈ DX⊗Y. (5.65)

Once we have such a state, we can perform standard state tomography to compute

a least-square estimate of this state. This constitutes the first step of the protocol.

The least-square estimate would be a Hermitian matrix ρ̂LS ∈ HX⊗Y, with the

corresponding linear map ΦLS being a Hermitian-preserving map. The idea is to

then classically obtain the ‘nearest’ Choi matrix of a CPT map from ρ̂LS.

1. Encode the channel Φ to a state ρ and perform tomography to obtain mea-

surement data. Construct the Hermitian least-squares estimate ρ̂LS ∈ HX⊗Y.

The corresponding linear map Φ̂LS = J−1(ρ̂LS) is typically neither com-

pletely positive nor trace-preserving and is only Hermitian-preserving.
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2. Euclidean-project J(Φ̂LS) to the set of positive semidefinite matrices. This

is done by a simple optimization process involving the eigenvalues of J(Φ̂LS).

We now have a Choi matrix J(Φ̂CP) ∈ PX⊗Y corresponding to a CP map,

but not trace-preserving.

3. Euclidean-project J(Φ̂CP) to the affine subspace of matrices with marginal
1
d
IX on the input space. We now have a (rescaled) trace-preserving map, but

this second projection can take the estimate out of the PSD cone, thereby

losing the CP property.

4. Repeat Steps 2 and 3 iteratively until either convergence is achieved or a

maximum step count is reached.

Step 1 is essentially a state tomography protocol [Guţ+20]. The tricky parts

are Steps 2 and 3, where we need to project onto the intersection of two con-

vex sets. This is done by projecting, in an alternating manner, onto the PSD

cone and the affine subspace of matrices whose input marginal equals 1
d
IX. The

CP projection is done via an optimization over the eigenvalues which requires

diagonalization [SGS12] of a Hermitian matrix of size dd′ × dd′, which has cost

O(d3d′3). The second projection, which corresponds to trace-preserving property,

can be done via a closed form of lesser complexity as it involves only partial trace

and tensoring with identity (apart from matrix sum).

However, one will have to do multiple iterations of the two steps, and thus

multiple eigendecompositions, each with cost O(d3d′3) ≈ O(d6), with d = 2n for

n-qubit systems. Thus the cost can get prohibitive quite fast even for moderate

system sizes.

Instead, we propose the Bures Projected Least Squares where do steps 1 and

2 as before to get a PSD estimate for the Choi matrix, which corresponds to the

Choi matrix of a CP map. The cost until now is O(d6), which corresponds to the

cost of eigendecomposition. However, we now perform a single Bures projection

ΠCPT to get a Choi state corresponding to a valid quantum channel, thereby

completing the protocol. This step involves computing the marginal, its inverse-

square root (O(d3)), followed by two matrix multiplications (O(d2d′2)). Since we

only have to perform each of these steps exactly once, this protocol would be

much faster than the (Euclidean) PLS method.

Moreover, the protocol is geometrically well-motivated. We first construct a

least-square estimate, which is Hermitian. We then project it to the set of PSD

matrices with respect to Euclidean distance, which is a natural (and Riemannian)

distance on Hermitian matrices. Once we have entered the PSD cone, we now

project with respect to Bures distance to the set of Choi matrices corresponding to
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CPT maps. This projection is also natural as we have seen that Bures distance is

often a better choice over Euclidean distance over positive semidefinite matrices.

Bayesian tomography of quantum channels. We now discuss how Choi

projection can be used for Bayesian tomography of quantum channels. This

would be an extension of results in Afham, Kueng, and Ferrie [AKF22] (the

results discussed in Chapter 3), where we studied methods to perform Bayesian

tomography of quantum states.

The problem can be formulated as follows. Let Q = {Q1, . . . , Qn} be a finite

collection of Choi matrices (corresponding to CPT maps) and w = (w1, . . . , wn)

be (probability) weights associated with the ensemble Q. We are interested in

finding

Q♯ := argmax
Q∈JCPT(X,Y)

n∑
i=1

wi F(Qi, Q) (5.66)

One can formulate this problem as a Projected Riemannian Gradient Descent

where the projection is onto the set of (Choi matrices of) quantum channels.

Indeed this can be seen as a generalization of results from Chapter 3, where we

generalize the Bures projection onto density matrices to the Bures projection onto

Choi matrices of quantum channels. Numerical experiments suggest a fixed-point

algorithm similar to the one in Chapter 3 (with an appropriate replacement of

the projection operation) would work.

5.4.3 Random state and ensemble generation

The next application we discuss is the random generation of various states and

ensembles of interest in quantum information. We first provide a short primer on

Ginibre [Gin65; AGZ10] and Wishart [Wis28] distribution.

Let N(0, 1) denote the standard normal distribution (zero mean and unit

variance). The Ginibre distribution G(d, r) is the random distribution of (d× r)

complex matrices whose entries are independently and identically sampled (i.i.d.)

from the complex standard normal distribution. That is,

G ∼ G(d× r) =⇒ Gj,k ∼ N(0, 1) + iN(0, 1), (5.67)

for each j ∈ [d] and k ∈ [r]. The Wishart distribution W(d, r) is the distribution

of d-dimensional and r-rank positive semidefinite matrices W = GG∗ where G ∼
G(d, r).

We now describe some methods of generating random matrices and ensembles

of interest in quantum information.

Random quantum state generation. In Zyczkowski and Sommers [ZS01]

(also see [Ben98]), a protocol to generate d-dimensional and r-rank quantum
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states is presented as follows.

First sample a positive semidefinite matrix W from the Wishart distribution

W(d, r). Then perform the trace-normalization W 7→ W/Tr[W ], which yields

a random density matrix of required characteristics. Al Osipov, Sommers, and

Życzkowski [ASŻ10] discusses a protocol to generate full-rank random states ac-

cording to the Bures measure by first sampling W ∼ W(d, d) and sampling a

Haar unitary U ∈ Ud, and then computing

P = (Id + U)W (Id + U∗) ∈ P+
d . (5.68)

Trace normalize P 7→ P/Tr[P ] to obtain a full-rank density matrix distributed

according to the Bures measure.

Observe that both of these methods can be seen as the construction of a ran-

dom positive matrix followed by trace-normalization, which, as we have discussed,

can be seen as the Bures projection to the set of density matrices.

Random quantum processes generation. Bruzda, Cappellini, Sommers,

and Życzkowski [Bru+09] study methods of generating Choi matrices correspond-

ing to random quantum channels. To generate a Choi matrix corresponding to

a random quantum channel, one samples W ∼ W(d, r) and normalizes it by the

operation

W 7→ W ⋆
X

[W ]−1
X . (5.69)

This operation has been used independently in [AS08] for numerical generation

of Choi matrices of random CPT maps and CPU maps, where it was termed as

a projection, although it was not proven to be a projection in the sense we use

it. Also see [Kuk+21], where the authors study multiple ways of generating ran-

dom quantum processes at the levels of Choi matrices, Kraus operators, and the

Stinespring representation and equivalence between these methods. Nechita and

Park [NP24] uses the same ‘normalization’ as an intermediate state to generate

random covariant quantum channels.

Knowing the form of the marginal projection, one can now identify these

methods as first generating a random positive semidefinite matrix followed by

marginal projection to the set of CPT maps and CPU maps.

Random POVM generation. Heinosaari, Jivulescu, and Nechita [HJN20]

define the Wishart-random POVM of parameters (d, n, r1, . . . , rn) by indepen-

dently sampling Pi ∼ W(d, ri) for i ∈ [n] and normalizing it as Pi 7→ Pi ⋆ P
−1,

where P :=
∑n

i=1 Pi. As we have seen in Corollary 5.2.13, this is equivalent to

computing the PGM associated with the ensemble P = (P1, . . . , Pn), which is
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equivalent to the ensemble projection to the set of n-outcome POVMs.

Having studied the different closed forms for Bures projection in Section 5.2,

we can now identify all the above methods as a two-step ‘generate and project ’

protocol defined as follows.

1. Generate a random PSD matrix or an ensemble of PSD matrices.

2. Perform the appropriate Bures projection.

The above protocols correspond to trace projection, marginal projection to Choi

matrices of CPT and CPU maps, and ensemble projection. One can now study the

analogous projections for the other closed forms we have described. In particular,

we can randomly generate the following objects.

1. Random states with an arbitrary fixed-marginal (using marginal projec-

tion).

2. Random ensembles that sum to a given positive matrix.

3. Random states with fixed (block) diagonals, or more generally, random

states that produce a given output under a given pinching channel.

4. Random states that with a fixed expected outcome for a projective mea-

surement.

We conclude this section with the following remark. By showing that these

‘natural’ normalizations have a valid operational interpretation as Bures projec-

tions onto the corresponding sets, our results also exemplify the importance of

Bures geometry in quantum information.

5.4.4 Pretty good measurement as Bures projection

The pretty good measurement (PGM), introduced in [Bel75] (also see [Hol78])

and named so in [HW94], is a way of constructing a POVM from an ensemble

of quantum states. It has implications in the task of quantum state discrim-

ination (QSD) [Hel69], where it performs near-optimally [BK02; Wat18]. For

certain structured instances of QSD, the PGM is optimal. This includes variants

of the hidden subgroup problem [BCD05; MR05; HKK06], port-based telepor-

tation [Led22], and state discrimination problems with a high degree of symme-

try [EMV04; Zho+25; DP15]. For a detailed understanding of the problem of

state discrimination, we refer to [BK15; BC09]. We also note the existence of
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variants of PGM, which can be seen as the PGM associated with the ensemble

Pα ≡ (Pα)i∈[n], for α ≥ 1 [Tys09a; Tys09b].

Other applications of PGM include proofs of certain PAC-learning prob-

lems [AD18] and as a decoder in quantum coding protocols [Che23; BG14].

See [Gil+22] for a quantum algorithm for PGM (and Petz recovery map). Thus it

is reasonable to say that PGM is a versatile object finding applications in various

subfields of quantum information.

We now give novel geometric and operational interpretations for the pretty

good measurement. Recall that in Corollary 5.2.13, we showed that the Bures

projection of an ensemble to the set POVMs is the PGM associated with the

ensemble. That is, if P = (P1, . . . , Pn) ⊂ PX is an ensemble with P :=
∑n

i=1 Pi,

then the closest n-outcome POVM to P is given by E := (E1, . . . , En) where

Ei = Pi ⋆ P
−1. Indeed E is the pretty good measurement associated with the

ensemble P. We now discuss some interpretations and implications of this result.

Firstly, as the corollary directly implies, the pretty good measurement is the

closest POVM to the given ensemble in terms of fidelity/squared Bures distance.

A second implication is for the quantum state discrimination problem, whose

setting we now describe. We are given a ensemble of states R := (ρ1, . . . , ρn) ⊂ DX

with associated probability weights w := (w1, . . . , wn) ∈ ∆n. Indeed this can be

seen as a weighted ensemble P := (P1, . . . , Pn) with Pi := wiρi for each i ∈ [n].

The state discrimination problem can be stated as follows:

maximize :
n∑

i=1

⟨Pi, Ei⟩

subject to : E := (E1, . . . , En) is a POVM.

(5.70)

That is, find the POVM E that aligns the most with the ensemble P, where the

alignment is measured in terms of the HS inner product. By Born’s rule, this is

equivalent to maximizing the success probability of the task where we want to

identify the label of state from the measurement outcome.

There is no known closed-form for the optimal POVM Eopt that solves the

above optimization problem except in the case of n = 2 or highly structured

ensembles [EMV04; Zho+25; DP15]. However, it can be phrased as an SDP

and thus solved numerically [YKL75; EMV03; Wat18]. Although there is no

closed-form for the optimal POVM, there is a closed-form solution for a POVM

that performs pretty good. Indeed this is the pretty good measurement EPGM

associated with the ensemble P whose performance is no-worse than the square

of the optimal POVM [BK02; Wat18]:

η2opt ≤ ηPGM ≤ ηopt, (5.71)
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where ηopt is the optimal success probability (the solution to Eq. (5.70)) and

ηPGM =
∑n

i=1⟨Pi ⋆P
−1, Pi⟩ is the success probability of the pretty good measure-

ment EPGM.

Now consider a variant of the problem where we replace the HS inner product

with fidelity:

maximize :
n∑

i=1

F(Pi, Ei)

subject to : E := (E1, . . . , En) is a POVM.

(5.72)

Indeed this is equivalent to the problem of ensemble projection, and the solution

is given by the pretty good measurement EPGM. Thus, for this fidelity-variant

of the state discrimination problem, we have the closed form for the optimal

POVM. Hence for the fidelity-based state discrimination problem, the pretty

good measurement is not just pretty good, but as good as it gets!3

Now consider the scenario where all the states in the ensemble P are pure

(rank-one). That is, Pi = |pi⟩⟨pi| for some complex vector |pi⟩ ∈ X with the asso-

ciated weight given by wi = ⟨pi, pi⟩. In this case, we have ⟨Pi, Ei⟩ = ⟨pi, Eipi⟩ =

F(Ei, Pi)
2, and thus the state discrimination task corresponds to maximizing total

square fidelity, and also that fidelity corresponds to ‘square-root’ probability.4

Hence the fidelity-based state discrimination problem (Eq. (5.72)), is opti-

mizing for the sum of the square root of probabilities, which indicates that the

PGM, which is also called square-root measurement, is optimal for the sum of

the square root of probabilities. Indeed, by invoking Uhlmann’s theorem [Uhl76;

Joz94] one can extend the above interpretation to states of arbitrary rank as

well. Uhlmann’s theorem states that for a pair of positive semidefinite matrices

P,Q ∈ PX, we have

F(P,Q) = max
|p⟩∈Pur(P )
|q⟩∈Pur(Q)

|⟨p, q⟩|, (5.73)

where Pur(P ) denotes the set of all purifications of P ∈ PX. The fidelity-based

state discrimination can then be interpreted as

maximize :
n∑

i=1

|⟨ui, vi⟩|

subject to : |ui⟩ ∈ Pur(Pi), |vi⟩ ∈ Pur(Ei),
n∑

i=1

Ei = I.

(5.74)

3the words as good as it gets is borrowed from the title of [MR05] which shows that PGM
is optimal for distinguishing conjugate hidden subgroups.

4Uhlmann originally defined fidelity as the square of the definition used in this thesis. He
identified this quantity as transition probability.
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Essentially now we are maximizing the sum of the square root of transition prob-

abilities (overlap) between the purifications of the ensemble states and measure-

ments. As we have seen, this is optimized by the PGM EPGM associated with the

ensemble P.

To conclude, we have shown that the pretty good measurement is the Bures

projection of the given ensemble of states. This also implies PGM is optimal

for a variant of state discrimination where the objective function is total fidelity.

Since fidelity corresponds to the square root of probabilities, the PGM actually

optimizes for the sum of the square root of success probabilities, whereas in the

standard state discrimination problem we are interested in maximizing the sum

of probabilities. This points to the near-yet-sub-optimality of PGM.

5.4.5 Geometric interpretation of the Petz recovery map

The Petz recovery map [Pet86b; Pet88] (of which pretty-good measurement is a

special case) is a central object in quantum information. It describes the satura-

tion of DPI for relative entropy (quantum sufficiency) [Pet86b; Pet88; Hay+04],

is seen as a quantum analog for Bayes theorem [LS13; CM20; PB23; BBS24], and

has applications in error correction [BK02; NM10], channel capacity [BDL16;

Hau+96] among others. Also see [CS22a] for results at the intersection of geom-

etry and approximate Petz recovery map.

We now give a geometric interpretation to the Petz recovery map in terms of

Bures projection. Let Φ ∈ CPT(X,Y) be a channel and ρ ∈ PX be an input state.

The Petz recovery map associated with this pair is Φ̃ρ ∈ CPT(Y,X) whose action

on Y ∈ MY is defined as

Φ̃ρ(Y ) := ρ
1
2

(
Φ∗
(

Φ(ρ)−
1
2Y Φ(ρ)−

1
2

))
ρ

1
2 =

(
Φ∗ (Y ⋆ Φ(ρ)−1

))
⋆ ρ. (5.75)

The transpose of the Choi matrix of the Petz recovery map can be derived

as [BBS24]

J(Φ̃ρ)
⊺ = J(Φ) ⋆

(
ρ⊺ ⊗ Φ(ρ)−1

)
=
(√

ρ⊺ ⊗ Φ(ρ)−
1
2

)
J(Φ)

(√
ρ⊺ ⊗ Φ(ρ)−

1
2

)
.

(5.76)

By the transpose property (A ⋆ B)⊺ = A⊺ ⋆ B⊺ of the star product (Proposi-

tion 2.1.5) we have the Choi matrix of the Petz recovery map Φ̃ρ as

J(Φ̃ρ) = J(Φ)⊺ ⋆
(
ρ⊗ (Φ(ρ)−1)

⊺)
. (5.77)
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J(Φ) J(Φ) ⋆
X
ρ⊺ J(Φ̃ρ)

⊺

J(Φ∗) J(Φ∗) ⋆
X
ρ J(Φ̃ρ)

CPT(X,Y)∋

CPU(Y,X)∋

∈CPU(X,Y)

∈CPT(Y,X)

⊺ ⊺ ⊺

Π̂X,ρ⊺ Π̂Y,Φ(ρ)

Π̂X,ρ Π̂Y,Φ(ρ)⊺

Π̂X,IX Π̂Y,IY

Π̂X,IX Π̂Y,IY

Figure 5.1: J(Φ) ∈ PX⊗Y is the Choi matrix of the channel Φ ∈ CPT(X,Y). For a
reference state ρ ∈ PX, Φ̃ρ ∈ CPT(Y,X) is the Petz recovery channel associated with
the pair (Φ, ρ). By Proposition 2.3.7, we have J(Ψ)⊺ = J(Ψ∗) = J(Ψ⊺) for any
completely positive map Ψ. The vertical bidirectional arrows indicate this relation
under transpose. Thus, the Petz recovery map Φ̃ρ can be reached from Φ via two
projections and a transpose (through multiple paths). Alternatively, it can be reached
from the joint state J(Φ) ⋆ ρ⊺ via a projection and a transpose.

One may readily verify the action as follows:

Φ̃ρ(Y ) = [J(Φ̃ρ) ⋆Y
Y ⊺]X

= [J(Φ)⊺ ⋆ (ρ⊗ Φ(ρ)−1⊺) ⋆
Y
Y ⊺]X By Eq. (5.77)

=
[
J(Φ)⊺ ⋆

Y
Φ(ρ)−1⊺ ⋆

Y
Y ⊺ ⋆

X
ρ
]
X

= [J(Φ)⊺ ⋆
Y

Φ(ρ)−1⊺ ⋆
Y
Y ⊺]X ⋆ ρ [A ⋆

X
X]X = [A]X ⋆ X

=

[
J(Φ∗) ⋆

Y

(
Y

Φ(ρ)

)⊺]
X

⋆ ρ Cyclic property of partial trace

= Φ∗
(

Y

Φ(ρ)

)
⋆ ρ

= ρ
1
2 Φ∗

(
Φ(ρ)−

1
2Y Φ(ρ)−

1
2

)
ρ

1
2 ,

(5.78)

which is exactly the action of the Petz recovery map. In the above equation, for

convenience (while taking star product), we have assumed Y ∈ PY. However, the

verification can be easily extended to arbitrary Y ∈ MY.

One can now give a geometric interpretation to (the Choi matrix of) the Petz

recovery map—it is the transpose marginal projection (to J(Y,X)) of the joint

channel-state matrix J(Φ) ⋆
X
ρ⊺.
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Theorem 5.4.1. Let Φ ∈ CPT(X,Y) and P ∈ DX. Then

ΠCPT(Y,X)[J(Φ) ⋆
X
ρ⊺] = J(Φ̃ρ)

⊺, (5.79)

where Φ̃ρ is the Petz transpose map associated with the pair (Φ, ρ).

Proof. For P ∈ P+
X⊗Y, the projection to CPT(Y,X) (which corresponds to the set

J(Y,X)) is defined as

Π̂CPT(Y,X)[P ] = P ⋆
Y
P−1
Y . (5.80)

Choose P = J(Φ) ⋆
X
ρ⊺. Observe that [P ]Y = TrX[J(Φ) ⋆

X
ρ⊺] = Φ(ρ). Then the

above equation takes the form

Π̂CPT(Y,X)[J(Φ) ⋆
X
ρ⊺] = (J(Φ) ⋆

X
ρ⊺) ⋆

Y
Φ(ρ)−1 = J(Φ) ⋆

(
ρ⊺ ⊗ Φ(ρ)−1

)
= J(Φ̃ρ)

⊺.
(5.81)

This concludes the proof.

We now discuss the geometric interpretations of the above result. As Fig-

ure 5.1 indicates, there are multiple equivalent ways of phrasing the geometric

interpretation of the Petz recovery map, all of which involve two Bures projection

and a transpose.

1. First project J(Φ) to the joint state J(Φ) ⋆
X
ρ⊺. Then project it to the set

of CPT maps from MY to MX. Take the transpose of the Choi matrix to

obtain (the Choi matrix of) the Petz recovery map Φ̃ρ.

2. Equivalently, begin with the Choi matrix of the adjoint Φ∗ of Φ. Project

it to the spectrahedron defined by X-marginal being ρ to get J(Φ∗) ⋆
X
ρ.

Project it again to the set of quantum channels from MY to MX. The result

is the (Choi matrix) of the Petz recovery map Φ̃ρ.

Essentially, up to a couple of transposes, the Petz recovery map Φ̃ρ is the

nearest (in terms of fidelity) ‘reverse’ channel to the extended joint state formed

by (Φ, ρ).

Petz Recovery maps for transpose-preserving channels

Let us consider the above results for transpose-preserving channels. Recall that

we say a channel Φ is transpose-preserving if Φ(X⊺) = Φ(X)⊺ for any X ∈ PX.

This is equivalent to Φ = Φ⊺ := ⊺ ◦ Φ ◦ ⊺, which in turn is equivalent to J(Φ) =

J(Φ)⊺, or that the Choi matrix is symmetric. See Section 2.3.2 for proofs and

further details regarding these statements.
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We now show that, if Φ is transpose-preserving, the Bures projection can be

written as a composition of two projections (sans any transpose).

Proposition 5.4.2. Let Φ ∈ CPT(X,Y) be a transpose-preserving channel

and ρ ∈ PX be an input reference state. It then holds

J(Φ̃ρ) = Π̂Y,IY ◦ Π̂X,ρ[J(Φ)] = ΠCPT(Y,X)[J(Φ) ⋆
X
ρ]. (5.82)

Proof. Let us evaluate the above expression. We have

Π̂X,ρ[J(Φ)] = J(Φ) ⋆
X
ρ. (5.83)

The Y marginal of this joint state is [J(Φ) ⋆
X
ρ]Y = Φ(ρ⊺) = Φ(ρ)⊺ where the

second equality follows from the transpose-preserving property. Now compute

the second projection.

Π̂Y,IY [J(Φ) ⋆
X
ρ] = J(Φ) ⋆

X
ρ ⋆

Y
Φ(ρ)⊺−1 = J(Φ̃ρ). (5.84)

This completes the proof.

Thus, for transpose-preserving channels, the Petz recovery map is equivalent

to two Bures projections of the original channel (at the level of Choi matrices). Or

equivalently, it is the nearest ‘reverse channel’ to the extended joint-state J(Φ)⋆
X
ρ

of the pair (Φ, ρ). Some important channels, such as partial trace, depolarizing

channel, and pinching channels (whose projectors have real representation in basis

used to take transpose) are transpose-preserving.

5.4.6 Shorter proof for and geometric interpretation of

quantum minimal change principle

The final application we discuss is a shorter proof and geometric interpretation

for the central result of [BBS24]. Let Φ ∈ CPT(X,Y) be a channel, ρ ∈ PX be a

reference input, and σ ∈ PY be a reference output. The main problem of interest

in [BBS24] is the following optimization problem.

maximize : F(J(Φ) ⋆
X
ρ⊺, (J(Ψ) ⋆

Y
σ⊺)⊺)

subject to : Ψ ∈ CPT(Y,X).
(5.85)
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They obtain a closed-form solution for the optimal channel Ψ whose Choi state

is given by

J(Ψ)⊺ = (IX ⊗ σ− 1
2 )
(√

ρ⊺ ⊗ (Φ(ρ)−1#σ)
)
J(Φ)

(√
ρ⊺ ⊗ (Φ(ρ)−1#σ)

)
(IX ⊗ σ− 1

2 )

= (J(Φ) ⋆
(
ρ⊺ ⊗ (Φ(ρ)−1#σ)2

)
⋆
Y
σ−1

= J(Φ) ⋆
X
ρ⊺ ⋆

Y
(Φ(ρ)−1#σ)2 ⋆

Y
σ−1.

(5.86)

Their proof technique involves formulating the above optimization in terms of

Lagrange multipliers to derive the closed form.

We first provide a shorter proof, using marginal projection, for their main

result followed by a geometric interpretation. By Theorem 5.3.1, we have that

every bipartite positive definite matrix is uniquely associated with a channel-state

pair, which can be written as

Q = J(Ψ)⊺ ⋆
Y
σ ⇐⇒ [Q]Y = σ and ΠCPT(Y,X)[Q] = J(Ψ)⊺, (5.87)

We can then rewrite the main optimization problem (Eq. (5.85)) as

max
Q:[Q]Y=σ

F(J(Φ) ⋆
X
ρ⊺, Q). (5.88)

This is the same as the Bures projection of the form Q = Π̂Y,σ[J(Φ) ⋆
X
ρ⊺].

Denote P ≡ J(Φ) ⋆
X
ρ⊺ for brevity. We will now use the closed form for marginal

projection to obtain the optimal Q. We have

Q = Π̂Y,σ[P ] = P ⋆
Y

([P ]−1
Y #σ)2 = P ⋆

Y
(Φ(ρ)−1#σ)2, (5.89)

where we used the fact [P ]Y = Φ(ρ). To obtain the associated channel Ψ ∈
CPT(Y,X), we now simply marginal-project Q to CPT(Y,X):

ΠCPT(Y,X)[Q] = Q ⋆Y Q
−1
Y = (P ⋆

Y
(Φ(ρ)#σ−1)2) ⋆

Y
σ−1

= J(Φ) ⋆
X
ρ⊺ ⋆

Y

(
Φ(ρ)−1#σ

)2
⋆
Y
σ−1,

(5.90)

where we have used the fact that [Q]Y = σ. This is exactly the closed-form

obtained for J(Ψ)⊺ in Eq. (5.86). We also see that if [Φ(ρ), σ] = 0, we can write

the above equation as

J(Ψ)⊺ = ΠCPT(Y,X)[Q] ≡ J(Φ) ⋆
X
ρ⊺ ⋆

Y
Φ(ρ)−1, (5.91)

which is the transpose of the Choi matrix of the Petz recovery map.

Thus, using the closed-form for marginal projection, we have a shorter proof
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for the central result of [BBS24], which originally was derived using the method

of Lagrange multipliers. Indeed this also gives their result the following geometric

interpretation. The channel of interest is the (transpose of Choi matrix of) the

nearest channel to the projection of the joint state J(Φ)⋆
X
ρ⊺ to the spectrahedron

defined by Y-marginal as the output reference state σ.

5.5 Non-contractivity of Bures projection

An important caveat, particularly in constrained optimization tasks, is that Bures

projections onto convex sets need not always be contractive. We say that a

projection is contractive if the projection brings points closer. That is, d(x, y) ≥
d(Π(x),Π(y)). The easiest way to see projections with respect to Bures distance

are not necessarily contractive is by considering trace-projection, as shown in the

following proposition theorem.

Proposition 5.5.1 (Non-contractivity of Bures projections). There exists

a convex and closed set C ⊂ Pd such that ΠC is non-contractive:

B(P,Q) < B(ΠC[P ],ΠC[Q]), (5.92)

where the projection Π is with respect to Bures distance.

Proof. The proof is by explicit example. Let C = Dd be the convex and closed

set of d× d density matrices. The projection, as we have seen, is given by trace-

normalization: ΠDd
[P ] = P/Tr[P ]. Choose P = ϵρ and Q = ϵσ where ϵ > 0 can

be thought of as a small positive scalar and ρ, σ ∈ Dd. Indeed Bures projecting to

the set of density matrices gives ΠDd
[ϵρ] = ρ and ΠDd

[ϵσ] = σ, whence it follows

B(P,Q) = B(ϵρ, ϵσ) = ϵB(ρ, σ) = ϵB(ΠDd
[P ],ΠDd

[Q]). (5.93)

On choosing any 0 < ϵ < 1, we have the required example, thereby showing that

Bures projection onto convex sets need not always be contractive.

This contrasts with the Euclidean distance, where projections onto convex

sets are always contractive, aiding in the proofs of convergence results for pro-

jected optimization algorithms. Consequently, additional effort might be required

when proving convergence results involving Bures projection. Also see [Alt+21,

Appendix B.3] for a brief discussion on how the geometry of the Bures manifold

might play a role in the non-contractivity of projections (although there they are
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concerned with projections onto geodesic convex 5 sets).

We conclude with a visualization of the non-contractivity of Bures projection.

View the set of positive semidefinite matrices as a vertically oriented cone, in

which case trace-normalization corresponds to scaling a point along a line con-

necting that point to the apex (the pointy end). The set of density matrices

can be then visualized as a horizontal slice at some height. If the pre-projection

points are ‘between’ this slice and the apex, then the scaling (Bures projection

onto density matrices) will take them further apart, thereby showing that it is

non-contractive.

5.6 Conclusion

In this chapter, we studied the problem of projecting positive matrices onto cer-

tain convex and compact subsets of positive semidefinite matrices with respect

to Bures distance. These sets are defined as the preimage of a given output state

under a given channel. Using the algebraic condition for the saturation of data

processing inequality for fidelity, we construct a function we call the Gamma map

which, for certain channels, serves as a closed-form for the projection and derive

sufficient conditions for the Gamma map to yield the projection.

We then give explicit instances for which the Gamma map serves as the projec-

tion closed-form. This includes partial trace (including trace), pinching channels

(including completely dephasing map), and projective measurements. We then

study the explicit form of the projection for these channels.

The projection with respect to the partial trace channel is of particular im-

portance. Essentially this gives the Bures projection to the set of states with a

given marginal. We then show the closed-form for this marginal projection has

multiple applications such as

1. Closed-form for projection to set of Choi matrices of channels with appli-

cations in quantum process tomography.

2. Closed-form for projecting a given ensemble to the set of ensembles that

sum to a fixed state.

3. A method for generating random matrices and ensembles with specific prop-

erties.

The same closed-form also gives the following geometric interpretations to existing

results in quantum information.

5A subset of a Riemannian manifold is geodesic convex if for any two points the geodesic
connecting them lies entirely within the set. In the Euclidean scenario, geodesic convexity
coincides with (regular) convexity.
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1. Geometric and operational interpretations for pretty good measurement.

2. A geometric interpretation for the Petz recovery map.

3. A geometric interpretation and simpler proof for the Quantum minimal

change principle.

Note that all closed-form projections also saturate the DPI for fidelity (and

thus also sandwiched Rényi divergence of order α = 1/2) thereby our results also

give explicit examples for the saturation of DPI for these figures of merit.

Our results open up new questions of interest, some of which we list below.

1. Are there other channels for which Γ map yields the closed-form for Bures

projection?

2. Are there simpler ways to characterize the conditions when the Γ map will

coincide with the projection?

3. The marginal projection has proven to be versatile with various applications

and manifestations. Are there other applications for marginal projection?

4. All of our applications pertain to the partial trace channel. Are there con-

crete applications for the other channels such as pinching maps and pro-

jective measurement? For example, does the problem of finding the closest

state with a given diagonal to a given state have applications in quantum

information?

An important caveat we then discuss is that Bures projections onto convex

sets need not be contractive, as we have demonstrated with an example. That

is, it does not always hold that B(P,Q) ≥ B(Π[P ],Π[Q]). Contractivity upon

projection to convex sets is a crucial property enjoyed by Euclidean projection

(see [htta] and [Bub15, Lemma 3.1]) which eases the analysis of projected op-

timization algorithms like projected gradient descent. Due to non-contractivity,

the analysis of optimization algorithms based on Bures projection can be more

difficult. However, convergence analysis for such algorithms is an active field of

research [Alt+21; Che+20].
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Chapter 6

Relating average fidelity and

generalized fidelity

In this short chapter, we elucidate some relations between the results discussed in

the different chapters of this thesis. We first show that the SDP used to construct

the block-matrix characterization of generalized fidelity is a special case of the

SDP from average fidelity maximization (Eq. (3.3)).

6.1 Block-matrix characterization and average

fidelity SDP

In Chapter 4, we discussed the block-matrix characterization of generalized fi-

delity. We now show this characterization is closely related to the semidefinite

program for optimal average fidelity.

Recall that the block-matrix characterization of generalized fidelity FR(P,Q)

is based on the following block matrix from Theorem 4.4.1.

X⋆ :=

 P P
1
2UPU

∗
QQ

1
2 P

1
2UPR

1
2

Q
1
2UQU

∗
PP

1
2 Q Q

1
2UQR

1
2

R
1
2U∗

PP
1
2 R

1
2U∗

QQ
1
2 R



=

GR(P, P ) GR(Q,P ) GR(R,P )

GR(P,Q) GR(Q,Q) GR(R,Q)

GR(P,R) GR(Q,R) GR(R,R)


(6.1)

where we have denoted GR(P,Q) ≡ Q
1
2UQU

∗
PP

1
2 =

√
R

1
2PR

1
2R−1

√
R

1
2QR

1
2

which is the matrix whose trace gives the generalized fidelity: Tr[GR(P,Q)] =

FR(P,Q).

Now let us recall the SDP for average fidelity from Definition 3.3.1, whose
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form, for a fixed state σ, is

X⋆ :=


ρ1 · · · ρ

1
2
1U1U

∗
nρ

1
2
n ρ

1
2
1U1σ

1
2

...
. . .

...
...

ρnUnU
∗
1ρ1 · · · ρn ρ

1
2
nUnσ

1
2

σ
1
2U∗

1ρ
1
2
1 · · · σ

1
2U∗

nρ
1
2
n R

 , (6.2)

where Ui = Pol
(
ρ

1
2
i σ

1
2

)
for each i ∈ [n]. For a distribution supported on two

states P and Q, and an arbitrary input state R this takes the form

X⋆ :=

 P P
1
2UPU

∗
QQ

1
2 P

1
2UPR

1
2

Q
1
2UQU

∗
PP

1
2 Q Q

1
2UQR

1
2

R
1
2U∗

PP
1
2 R

1
2U∗

QQ
1
2 R

 , (6.3)

with UP := Pol
(
P

1
2R

1
2

)
and UQ := Pol

(
Q

1
2R

1
2

)
. Thus we see that the two block

matrices are the same. Essentially, for a distribution supported on two states,

the input to the barycenter function is equivalent to the base in the generalized

fidelity problem. In the barycenter problem, we are interested in terms of the

form P
1
2UPR

1
2 , as these are the terms whose trace yields fidelity. Whereas in the

generalized fidelity problem, we are interested in terms of the form P
1
2UPU

∗
QQ

1
2 ,

as the trace of these terms yields generalized fidelity.

For the barycenter problem where the distribution is supported on n points

we have, for any state σ,

X(σ) =


Gσ(ρ1, ρ1) · · · Gσ(ρ1, ρn) Gσ(ρ1, σ)

...
. . .

...
...

Gσ(ρn, ρ1) · · · Gσ(ρn, ρn) Gσ(ρn, σ)

Gσ(σ, ρ1) · · · Gσ(σ, ρn) Gσ(σ, σ)


=

n∑
i,j=1

|i⟩⟨j| ⊗ Gσ(ρi, ρj) +
n∑

i=1

|i⟩⟨n+ 1| ⊗ Gσ(ρi, σ) + |n+ 1⟩⟨i| ⊗ Gσ(σ, ρi).

(6.4)

We thus see that the SDP formulation for optimal fidelity has fundamental con-

cepts from generalized fidelity and the Riemannian geometry of the Bures mani-

fold hidden away in plain sight.
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6.2 Generalized fidelity, multivariate fidelities,

and fidelity barycenters

We now relate fidelity barycenters (Chapter 3) and generalized fidelity (Chapter

4) to recent results by Nuradha, Mishra, Leditzky, and Wilde [Nur+24] which

introduces and studies notions of multivariate fidelities.

Let R := {ρ1, . . . , ρn} ⊂ Dd be a collection of quantum states. In [Nur+24],

the authors introduced and studied various notions of multivariate fidelities—

fidelities between a collection of n ≥ 2 states. One particular version of multi-

variate fidelity they define and study is the normalized sum of distinct pairwise

(Uhlmann) fidelities:

F(ρ1, . . . , ρn) :=
1

n(n− 1)

n∑
i,j=1;i ̸=j

FU(ρi, ρj) . (6.5)

This quantity has previously appeared in [NR18] as well.

Given a base σ ∈ Dd, one can then define the analogous generalized multi-

variate fidelity at as

Fσ(ρ1, . . . , ρn) :=
1

n(n− 1)

n∑
i,j=1;i ̸=j

Fσ(ρi, ρj) . (6.6)

Define the total fidelity function as g(σ) :=
∑n

i=1 FU(ρi, σ). Observe that the

maximizer of this function over Dd is identical to the maximizer of the average

fidelity function f(σ) := 1
n

∑n
i=1 FU(ρi, σ) as we have uniform probability weights.

Suppose all the states in the ensemble R are full-rank and σ♯ is the average

fidelity maximizer of the (uniform) distribution over these points. That is, σ♯ =

argmaxσ∈Dd
f(σ). By Theorem 3.3.5 we have that σ♯ uniquely satisfies the fixed-

point equation:

σ♯ =
1

f(σ♯)

n∑
i=1

1

n

√
σ

1
2
♯ ρiσ

1
2
♯ =

1

g(σ♯)

n∑
i=1

√
σ

1
2
♯ ρiσ

1
2
♯ , (6.7)

where we have used the fact that g(σ) = nf(σ) for any σ ∈ Dd. One can relate

the total fidelity of this maximizer and the generalized multivariate fidelity as

shown in the following theorem.
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Theorem 6.2.1. Let {ρ1, . . . , ρn} ⊂ Dd be a collection of full-rank states

and σ♯ := argmaxσ∈Dd
g(σ) be the barycenter of the collection. Then

g(σ♯)
2 =

n∑
i,j=1

Fσ♯
(ρi, ρj) . (6.8)

Moreover, the generalized multivariate fidelity is related to the average fi-

delity of the maximizer as follows:

Fσ♯
(ρ1, . . . , ρn) =

g(σ♯)
2 − n

n2 − n
. (6.9)

Proof. Observe that

σ♯ = σ♯σ
−1
♯ σ♯ =

(
1

g(σ♯)

n∑
i=1

√
σ

1
2
♯ ρiσ

1
2
♯

)
σ−1
♯

(
1

g(σ♯)

n∑
j=1

√
σ

1
2
♯ ρjσ

1
2
♯

)

=
1

g(σ♯)2

n∑
i,j=1

√
σ

1
2
♯ ρiσ

1
2
♯ σ

−1
♯

√
σ

1
2
♯ ρjσ

1
2
♯ ,

(6.10)

where the second equality is by Equation (6.7). Take trace across and rearrange

to obtain

g(σ♯)
2 =

n∑
i,j=1

Tr

[√
σ

1
2
♯ ρiσ

1
2
♯ σ

−1
♯

√
σ

1
2
♯ ρjσ

1
2
♯

]
=

n∑
i,j=1

Fσ♯
(ρi, ρj) , (6.11)

which proves the first claim. Note that n =
∑n

i=1 Fσ♯
(ρi, ρi) and subtract this

quantity from both sides (respectively) to obtain

g(σ♯)
2 − n =

n∑
i,j=1;i ̸=j

Fσ♯
(ρi, ρj) . (6.12)

Divide throughout by n(n− 1) to obtain

g(σ♯)
2 − n

n2 − n
=

1

n(n− 1)

n∑
i,j=1;i ̸=j

Fσ♯
(ρi, ρj) =: Fσ♯

(ρ1, . . . , ρn), (6.13)

which concludes the proof.
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Chapter 7

Conclusion

In this thesis, we studied three problems related to quantum fidelities. Succinctly

these problems can be described as follows.

1. In Chapter 3, we studied maximizing average Uhlmann fidelity.

2. In Chapter 4 we generalize quantum fidelities.

3. In Chapter 5 we project with respect to Uhlmann fidelity.

To elaborate, in In Chapter 3 we presented results related to the state

that maximizes average (Uhlmann) fidelity over a finite distribution of quantum

states. This is equivalent to finding the quantum state that minimizes squared

Bures distance over the ensemble. We formulated the problem as a semidefinite

program and also found two fixed-point algorithms for finding the state that

maximizes average fidelity (fidelity barycenter). The fixed-point algorithms offer

superior numerical performance compared to the SDP. We showed that one of the

fixed-point algorithms can be seen as a projected Riemannian gradient descent

on the Bures manifold.

We also presented easier-to-compute upper and lower bounds for the optimal

average fidelity. Apart from being tight, these bounds coincide with optimal

average fidelity if the distribution is supported on a set of commuting states. We

then studied the applications of these results, especially in relation to Bayesian

quantum tomography. The theoretical results are complemented with numerical

experiments studying the performance of these fixed-point algorithms and the

tightness of bounds.

Next, in Chapter 4, we discuss the second set of results which tackle the

more ambitious goal of finding a generalized (quantum) fidelity which can recover

various existing notions of quantum fidelities. We achieve this by studying the

Riemannian geometry of the Bures–Wasserstein manifold. Essentially, one can

linearize the manifold at an arbitrary base point by mapping other points to the

152



tangent space. Then one can compute the natural distance (the distance induced

by the metric tensor on the tangent space) between these tangent vectors whose

functional form turns out to be similar to that of Bures distance. This distance

is called the generalized Bures distance, and the fidelity part is identified as the

generalized fidelity.

The rest of the chapter is devoted to studying various mathematical proper-

ties and characterizations of generalized fidelity and generalized Bures distance.

Apart from basic properties, we study some geometric results related to gener-

alized fidelity, including various invariance and covariance properties as the base

moves along certain geodesic-related paths for fixed input matrices. Other prop-

erties we study include block-matrix characterization of generalized fidelity and

generalized Bures distance and characterization of generalized fidelity in terms of

purifications (an Uhlmann-like theorem for generalized fidelity). We also define

and study a family of fidelities parametrized by a single real-number parameter

called polar fidelities that generalizes Uhlmann-, Holevo-, and Matsumoto-fidelity.

Generalized fidelities are further generalized by Interior fidelities. Specifically, an

interior fidelity between two points is defined by taking the convex combination of

generalized fidelity between the two points at different base points. This imparts

generalized fidelities with the interpretation of being the extreme points of the

family of interior fidelities. We propose metric learning as a possible application

to generalized fidelity. We end the chapter with various open problems such as

convexity, data processing inequality, and certain monotonicity properties.

The final set of results is discussed in Chapter 5 where we study the problem

of Bures projection—projecting an arbitrary positive matrix to certain convex and

compact sets with respect to the Bures distance. A simple example is projecting

a positive semidefinite matrix to the convex set of positive semidefinite matrices

with a fixed trace. In this simple case, the projection in this case is given by

appropriate scaling. We also present closed-form for the projections with respect

to partial trace, pinching channels, and projective measurements.

The projection with respect to the partial trace map, which we call the

marginal projection, is of particular importance. Using it, we study a wide range

of applications—including quantum process tomography, random state and en-

semble generation, and projection for generic optimization methods—as well as

its manifestations, such as novel geometric and operational interpretations of the

pretty good measurement, a new geometric interpretation of the Petz recovery

map, and a shorter proof of the central results of the recent article on quantum

minimal change principle [BBS24]. Our results also provide explicit examples

for the saturation of DPI for fidelity and sandwiched Rényi divergence of order

α = 1/2.
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As an epilogue, Chapter 6 discusses the relations between results from

the previous chapters. We show that the SDP for average fidelity and the

block-matrix characterization of generalized fidelity are closely related. We also

show certain relations between generalized fidelity, multivariate fidelity, and the

Uhlmann fidelity barycenter.

In conclusion, we study various problems related to quantum fidelities. Our

results hold both practical and theoretical value. Practically, it turns out to

be useful in the tomography of quantum states and channels and the genera-

tion of various random states and ensembles of interest in quantum information.

Theoretically, they uncover fundamental geometric properties of quantum states,

channels, and ensembles. They also lead to a panoply of related open problems

with geometric and practical implications.

For future work, we plan to study some of the open problems we discussed.

Specifically, we aim to use the closed-form for Choi projection to construct chan-

nel tomography protocols. The first one aims to follow the lines of Projected

Least Squares channel tomography [Sur+22]. In the second algorithm, we aim

to do Bayesian tomography of quantum channels. This would be a combination

(and extension) of results from Chapter 3 and Chapter 5 by replacing the trace

projection in projected RGD with a marginal projection to the Choi matrices of

quantum channels. We plan to study the convergence analysis more rigorously as

well. We also plan to extend the results of Chapter 5 to more channels and study

other manifestations of the partial trace projection in quantum information.
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Appendix A

Additional preliminaries

In this section, we list some additional mathematical preliminaries and supporting

results.

A.1 Deriving the Bures metric tensor

We now derive the form of the Bures metric tensor ⟨U, V ⟩Bu
P starting from the

square of the line element (ds)2 at P ∈ P+
d [BŻ17, Eq. 9.43]:

(ds)2 ≡ (ds|P )2 :=
1

2
⟨dP,LP (dP )⟩P ≡ 1

2
⟨V,LP (V )⟩P . (A.1)

Here dP is to be interpreted as a tangent vector, and thus we denote it by

V ∈ TPP+
d . Recall that LP (V ) is the unique Hermitian solution to the (implicit)

matrix Lyapunov equation V = LP (V )P + PLP (V ) [Syl84; BR97]. Since V is a

tangent vector, its norm can be computed as ∥V ∥2P = B(P, P+V ) = 1
2
⟨P,LP (V )⟩.

By parallelogram equality (which holds for any norm induced by an inner prod-

uct), we may write

∥U+V ∥2P = ∥U∥2P +∥V ∥2P +⟨U, V ⟩P +⟨V, U⟩P = ∥U∥2P +∥V ∥2P +2⟨U, V ⟩P , (A.2)

where the last equality follows from the fact that TPP+
d

∼= Hd is a real vector

space, and thus the inner product must be real (and thus symmetric). The LHS

is given by

∥U + V ∥2P =
1

2
⟨U + V,LP (U + V )⟩

=
1

2
⟨U,LP (U)⟩ +

1

2
⟨V,LP (V )⟩ +

1

2
⟨U,LP (V )⟩ +

1

2
⟨V,LP (U)⟩

= ∥U∥2P + ∥V ∥2P +
1

2
⟨U,LP (V )⟩ +

1

2
⟨V,LP (U)⟩

(A.3)
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By comparison, we have

1

2
Tr[ULP (V ) + V LP (U)] = ⟨U, V ⟩P + ⟨V, U⟩P = 2⟨U, V ⟩P . (A.4)

Recall that U = LP (U)P + PLP (U), and we thus have

Tr[ULP (V )] = Tr[(LP (U)P + PLP (U))LP (V )]

= Tr[LP (U)PLP (V )] + Tr[LP (V )PLP (U)]

= 2 Re Tr[LP (U)PLP (V )]

(A.5)

By symmetry we have Tr[V LP (U)] = 2 Re Tr[LP (U)PLP (V )], which allows us to

conclude

⟨U, V ⟩P = Re Tr[LP (U)PLP (V )] =
1

2
Tr[ULP (V )] =

1

2
Tr[V LP (U)]. (A.6)

as required.

A.2 A Lemma on the unitary factor of polar

decomposition

The first lemma characterizes the unitary factor of P
1
2Q

1
2 for P,Q ∈ P+

d .

Lemma A.2.1. Let P,Q ∈ P+
d and let U := Pol

(
P

1
2Q

1
2

)
. Then,

U∗P
1
2Q

1
2 =

√
Q

1
2PQ

1
2 = Q

1
2P

1
2U, (A.7)

U

√
Q

1
2PQ

1
2U∗ =

√
P

1
2QP

1
2 , (A.8)

U∗ = Pol
(
Q

1
2P

1
2

)
, (A.9)

U = Pol
(
P− 1

2Q− 1
2

)
, (A.10)

P · (P−1#Q) =
√
PQ = P

1
2UQ

1
2 (A.11)

(P−1#Q) · P =
√
QP = Q

1
2U∗P

1
2 . (A.12)

Proof. The first statement is a direct consequence of the definition of polar de-

composition. To prove the second statement, we begin with the first statement.

Multiply the first and last sides together and square the middle side to get

U∗P
1
2QP

1
2U = Q

1
2PQ

1
2 . (A.13)

Conjugate both sides with U and take the square root to obtain the required
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relation.

For the third statement, we begin with the polar decomposition of Q
1
2P

1
2 to

get

Q
1
2P

1
2 = V

√
P

1
2QP

1
2 =

√
Q

1
2PQ

1
2U∗, (A.14)

where we denote V = Pol
(
Q

1
2P

1
2

)
and the last equality comes from Eq. (A.7).

Multiply by V ∗ on the left to get√
P

1
2QP

1
2 = V ∗

√
Q

1
2PQ

1
2U∗. (A.15)

Comparing the above equation with Equation (A.8), we get V = U∗ as claimed.

To prove the fourth statement, begin with the polar decomposition of P
1
2Q

1
2

and take the inverse across to get

Q− 1
2P− 1

2 =

√
Q− 1

2P−1Q− 1
2U∗. (A.16)

Now take the adjoint to get the desired result.

For the fifth statement, we will use the fact that for any matrix A, not neces-

sarily Hermitian, with positive eigenvalues, there exists a unique matrix B such

that B2 = BB = A. Thus, we may denote B ≡
√
A. See [Bha09, Excercise 4.5.2]

for further details. To prove the first part, observe that

(P · P−1#Q)
(
P · P−1#Q

)
=

(
P · P− 1

2

√
P

1
2QP

1
2P− 1

2

)(
P · P− 1

2

√
P

1
2QP

1
2P− 1

2

)
= PQ.

(A.17)

To prove the second equality, it is sufficient to prove the squared version:

PQ
?
= P

1
2UQ

1
2P

1
2UQ

1
2 , (A.18)

which can be proven by noting that Q
1
2P

1
2U = U∗P

1
2Q

1
2 by Statement 1. Sub-

stituting, the RHS reduces to PQ, thus completing the proof. The final equality

is proven in the same manner as the previous equality, and hence, we skip the

proof.
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Appendix B

Further results related to

averaging fidelities

B.1 Alternate semidefinite program for optimal

fidelity

A more numerically tractable SDP (which is still not as tractable as the fixed-

point algorithms) to solve the maximization problem Eq. (3.1) can be constructed

as follows. Let {ρi}ni=1 ⊂ Dd be a collection of states. The alternate SDP for opti-

mal fidelity is formulated as n different fidelity SDPs (Watrous [Wat18, Theorem

3.17]), with the constraint that the matrix variable σ is the same in each of the

n SDPs. That is, given the weighted ensemble (R, p) with R = {ρ1, . . . , ρn},

Primal problem

maximize :
n∑

i=1

pi Re Tr[Xi]

subject to :

(
ρi Xi

X∗
i σ

)
≥ 0, for each i ∈ [n],

Tr[σ] = 1.

(B.1)

This SDP also achieves the primal optimum maxσ∈Dd
f(σ) while being more

numerically tractable. We compare the performance of this SDP along with

the original SDP and the FP algorithm in Fig. 3.2. The relation between the

original SDP and the alternate SDP can be seen using concepts from chordal

graph-structured SDPs [Fuk+01; Zhe+20; VA+15].
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Figure B.1: Runtime comparison of Λ FP algorithm Eq. (3.33) and Ω FP
algorithm Eq. (3.37) as a function of (a) Number of states for d = 8 and (b)
Number of qubits (log2(d)) for n = 50. Both FP algorithms perform similarly in
terms of runtime. Each data point is the median of 50 runs and interquartile
regions are shaded.

B.2 Runtime comparison of fixed point algo-

rithms

When all the states in the ensemble are full rank, both the FP algorithms are

numerically seen to converge to the optimal state for any full-rank starting point.

We now turn to numerics to compare the performance (runtime) of the two fixed-

point methods. As seen in Fig. B.1, the runtime performance of Ω fixed point

algorithm Eq. (3.37) and Λ fixed point algorithm Eq. (3.33) are comparable. Here

we choose stopping tolerance ε = 10−5. Since the convergence of the Ω fixed-point

algorithm is theoretically guaranteed, it should be preferred over Λ fixed-point

algorithm even though the former has a more complicated form than the latter.
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Appendix C

Proofs related Generalized

fidelity

Here we present the proofs related to generalized fidelity.

C.1 Proofs of basic properties

In this section, we prove the basic properties of generalized fidelity stated in

Section 4.1. For the rest of the section we arbitrarily choose and fix P,Q,R ∈ P+
d

and define UP := Pol
(
P

1
2R

1
2

)
and UQ := Pol

(
Q

1
2R

1
2

)
.

1. Conjugate Symmetry. FR(P,Q)
?
= FR(Q,P )∗. The claim easily follows

from the definition:

FR(P,Q) : = Tr

[√
R

1
2PR

1
2R−1

√
R

1
2QR

1
2

]
= Tr

[√
R

1
2QR

1
2R−1

√
R

1
2PR

1
2

]∗
=: FR(Q,P )∗.

(C.1)

2. Equivalent forms:

FR(P,Q) := Tr

[√
R

1
2PR

1
2R−1

√
R

1
2QR

1
2

]
?
= Tr

[
Q

1
2UQU

∗
PP

1
2

]
?
= Tr

[
(R−1#Q)R(R−1#P )

]
,

(C.2)

To show the first equality, we simply take the polar decompositions
√
R

1
2PR

1
2 =

U∗
PP

1
2R

1
2 and

√
R

1
2QR

1
2 = R

1
2Q

1
2UQ, substitute in the definition of general-

ized fidelity, and then use the cyclic nature of the trace map. To prove the
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third equivalent form

Tr

[√
R

1
2PR

1
2R−1

√
R

1
2QR

1
2

]
?
= Tr

[
(R−1#Q)R(R−1#P )

]
, (C.3)

substitute the formula for geometric mean. The relation immediately follows.

3. Simplified form for pure states. Assume P = |ψ⟩⟨ψ| and Q = |ϕ⟩⟨ϕ|.
Consider the term √

R
1
2PR

1
2 =

√
|u⟩⟨u| =

|u⟩⟨u|√
⟨u, u⟩

, (C.4)

where we have defined |u⟩ := R
1
2 |ψ⟩. A similar calculation reveals√

R
1
2QR

1
2 =

|v⟩⟨v|√
⟨v, v⟩

, (C.5)

for |v⟩ := R
1
2 |ϕ⟩. Thus we have

FR(P,Q) = Tr

[√
R

1
2PR

1
2R−1

√
R

1
2QR

1
2

]
=

1

∥u∥∥v∥
Tr
[
|u⟩⟨u|R−1 |v⟩⟨v|

]
=

1

∥u∥∥v∥
Tr
[
R

1
2 |ψ⟩⟨ψ|R

1
2R−1R

1
2 |ϕ⟩⟨ϕ|R

1
2

]
=

⟨ψ, ϕ⟩⟨ϕ,Rψ⟩
FU(P,R) FU(Q,R)

,

(C.6)

where in the last equality, we used ∥u∥ =
√
⟨ψ,Rψ⟩ = FU(P,R) and the

analogous identity for ∥v∥.

4. Commutation with base implies reality. Without loss of generality, as-

sume [R,P ] = 0. Then we have
√
R

1
2PR

1
2 = P

1
2R

1
2 , which implies

FR(P,Q) = Tr

[
P

1
2R− 1

2

√
R

1
2QR

1
2

]
, (C.7)

which is the inner product of two positive matrices, and thus the generalized

fidelity is real (and positive).

5. Multiplicativity. For P1, Q1, R1 ∈ Pd1 and P2, Q2, R2 ∈ Pd2 , the claim is

FR1⊗R2(P1 ⊗ P2, Q1 ⊗Q2)
?
= FR1(P1, Q1) · FR2(P2, Q2) . (C.8)
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Denote P ≡ P1 ⊗ P2, Q ≡ Q1 ⊗Q2, and R ≡ R1 ⊗R2. Then,

FR1⊗R2(P1 ⊗ P2, Q1 ⊗Q2) = Tr

[√
R

1
2PR

1
2R−1

√
R

1
2QR

1
2

]
. (C.9)

Since the matrix square root, product, and inverse factors out with respect to

the tensor product, we have√
R

1
2PR

1
2R−1

√
R

1
2QR

1
2

=

[√
R

1
2
1 P1R

1
2
1R

−1
1

√
R

1
2
1Q1R

1
2
1

]
⊗
[√

R
1
2
2 P2R

1
2
2R

−1
2

√
R

1
2
2Q2R

1
2
2

]
.

(C.10)

Take trace across and using the identity Tr[A ⊗ B] = Tr[A] Tr[B] to obtain

FR(P,Q) = FR1(P1, Q1) · FR2(P2, Q2).

6. Additivity. Here the claim is

FR1⊕R2(P1 ⊕ P2, Q1 ⊕Q2)
?
= FR1(P1, Q1) + FR2(P2, Q2) . (C.11)

Denote P ≡ P1 ⊕ P2, Q ≡ Q1 ⊕Q2, and R ≡ R1 ⊕R2. From the properties of

direct sum we have,√
R

1
2PR

1
2R−1

√
R

1
2QR

1
2

=

[√
R

1
2
1 P1R

1
2
1R

−1
1

√
R

1
2
1Q1R

1
2
1

]
⊕
[√

R
1
2
2 P2R

1
2
2R

−1
2

√
R

1
2
2Q2R

1
2
2

]
.

(C.12)

Take trace across and use the identity that Tr[A ⊕ B] = Tr[A] + Tr[B], we

have FR(P,Q) = FR1(P1, Q1) + FR2(P2, Q2).

7. Unitary invariance. Given P,Q,R ∈ P+
d and U ∈ Ud, we want to show that

FURU∗(UPU∗, UQU∗) = FR(P,Q). (C.13)

Observe that
√
V AV ∗ = V

√
AV ∗ for any V ∈ Ud and A ∈ P+

d . Moreover,

(URU∗)−1 = UR−1U∗. Substituting this in the definition, we get the required

relation.

8. Unitary contravariance. Given P,Q,R ∈ P+
d and U ∈ Ud, we want to show

that

FURU∗(P,Q) = FR(U∗PU,U∗QU). (C.14)
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By definition, we have

FURU∗(P,Q) := Tr

[√
(UR

1
2U∗)P (UR

1
2U∗)(UR−1U∗)

√
(UR

1
2U∗)Q(UR

1
2U∗)

]
= Tr

[
U
√
R

1
2U∗P

1
2UR

1
2R−1

√
R

1
2U∗Q

1
2UR

1
2U∗

]
= Tr

[√
R

1
2

(
U∗P

1
2U
)
R

1
2R−1

√
R

1
2

(
U∗Q

1
2U
)
R

1
2

]
= FR(U∗PU,U∗QU) .

(C.15)

9. Scaling. For positive scalars p, q, r ∈ R+, we want to show that

FrR(pP, qQ) =
√
pq FR(P,Q). (C.16)

The result follows directly from substitution.

10. Upper bound on absolute value. For any triple P,Q,R ∈ P+
d , we want to

show that

|FR(P,Q)| ≤ FU(P,Q). (C.17)

We have

|FR(P,Q)| =
∣∣∣Tr
[
P

1
2UPU

∗
QQ

1
2

]∣∣∣ ≤ max
V ∈Ud

∣∣∣Tr
[
P

1
2V Q

1
2

]∣∣∣ = FU(P,Q), (C.18)

where the first equality comes from the alternative characterization of general-

ized fidelity, and the last equality comes from the variational characterization

of Uhlmann fidelity.

11. Reduction to named fidelities We now show that for specific choices of the

base R, we can recover the Uhlmann-, Holevo-, and Matsumoto fidelities.

(a) Uhlmann fidelity: R ∈ {P,Q}. Without loss of generality, choose

R = P . We then have

FR(P,Q) := Tr

[√
R

1
2PR

1
2R−1

√
R

1
2QR

1
2

]
= Tr

[
P · P−1

√
P

1
2QP

1
2

]
= FU(P,Q).

(C.19)

The case where R = Q =⇒ FR(P,Q) = FU(P,Q) is derived similarly.

(b) Holevo fidelity. Choose R = I. We then have

FR(P,Q) := Tr

[√
R

1
2PR

1
2R−1

√
R

1
2QR

1
2

]
= Tr

[
P

1
2Q

1
2

]
= FH(P,Q).

(C.20)
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(c) Matsumoto fidelity: R ∈ {P−1, Q−1}. Without loss of generality,

choose R = P−1. We then have

FR(P,Q) := Tr

[√
R

1
2PR

1
2R−1

√
R

1
2QR

1
2

]
= Tr

[
I · P

√
P− 1

2QP− 1
2

]
= Tr[P#Q] = FM(P,Q).

(C.21)

The case where R = Q−1 =⇒ FR(P,Q) = FM(P,Q) is derived similarly.

C.2 Useful lemmas

In this section, we list various supporting results used in the main proofs.

The following proposition characterizes the named fidelities between P and Q

in terms of P
1
2 , Q

1
2 and a unitary matrix.

Proposition C.2.1. Let P,Q ∈ Pd. Then we have

FU(P,Q) = Tr
[
P

1
2UQ

1
2

]
, (C.22)

FM(P,Q) = Tr
[
P

1
2V Q

1
2

]
, (C.23)

FH(P,Q) = Tr
[
P

1
2 IQ

1
2

]
, (C.24)

where U, V ∈ Ud such that U = Pol
(
P

1
2Q

1
2

)
and V = Pol

(
P− 1

2Q
1
2

)
.

Moreover, V is the unique unitary such that P
1
2V Q

1
2 is Hermitian.

Proof. The proof of the first statement directly follows from the definition of

Uhlmann fidelity. Indeed by Lemma A.2.1, we have

Q
1
2P

1
2U =

√
Q

1
2PQ

1
2 , (C.25)

whence it follows

P
1
2UQ

1
2 = Q− 1

2

√
Q

1
2PQ

1
2Q

1
2 . (C.26)

Take trace and use its cyclic nature to obtain

FU(P,Q) = Tr
[
P

1
2UQ

1
2

]
. (C.27)

For the second statement, recall that FM(P,Q) = Tr[P#Q]. The fact that

there exists a unique unitary V such that P#Q = P
1
2V Q

1
2 is proven in multiple

sources including [Bha09, Proposition 4.1.8] and [CS20]. Thus, we omit the proof
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of this part and instead prove that V = Pol(P− 1
2Q

1
2 ). To this end consider the

geometric mean of P and Q:

P#Q = P
1
2

√
P− 1

2QP− 1
2P

1
2 = P

1
2V Q

1
2 ∈ P+

d (C.28)

for some unitary V ∈ Ud. Now left and right multiply by P− 1
2 to obtain

P− 1
2 (P#Q)P− 1

2 =

√
P− 1

2QP− 1
2 = V Q

1
2P− 1

2 . (C.29)

By definition, the polar decomposition of Q
1
2P− 1

2 is

Q
1
2P− 1

2 = W
∣∣∣Q 1

2P− 1
2

∣∣∣ = W

√
P− 1

2QP− 1
2 , (C.30)

where W = Pol
(
Q

1
2P− 1

2

)
. Comparing with the previous equation, we get V ∗ =

W . This completes the proof.

One can use the above Proposition to provide sufficient conditions when the

generalized fidelity will equal these fidelities.

Corollary C.2.2. Let P,Q,R ∈ Pd. Then

FR(Q,P ) = Tr
[
P

1
2UPU

∗
QQ

1
2

]
=


FU(P,Q) if UPU

∗
Q = U

FM(P,Q) if UPU
∗
Q = V

FH(P,Q) if UPU
∗
Q = I or UP = UQ

(C.31)

where
U := Pol

(
P

1
2Q

1
2

)
, V := Pol

(
P− 1

2Q
1
2

)
,

UP := Pol
(
P

1
2R

1
2

)
, UQ := Pol

(
Q

1
2R

1
2

)
.

(C.32)

We shall use the above corollary to prove certain geometric results of gen-

eralized fidelity. The next lemma lists some defining properties of the Bures–

Wasserstein geodesic.
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Lemma C.2.3. Let A,B ∈ P+
d and C = γBW

AB (t) for any t ∈ [0, 1]. Then,

the following statements hold true.

C = [(1 − t)I + t(A−1#B)]A[(1 − t)I + t(A−1#B)], (C.33)

C = (1 − t)
√
C

1
2AC

1
2 + t

√
C

1
2BC

1
2 , (C.34)

I = (1 − t)C−1#A+ tC−1#B, (C.35)

where the fixed-point equation (Eq. (C.34)) is uniquely satisfied by C.

Proof. The first equation has been proven in multiple sources such as [BJL19,

Equation 39]. The second equation can be seen as the n = 2 version of the fixed-

point equation satisfied by the BW barycenter (see [AKF22; Alt+23]). To obtain

the third equation, conjugate the LHS and RHS of the second statement with

C− 1
2 .

Next, we present a well-known result regarding Affine-invariant geodesics

which states. This, along with the following lemmas, will be useful in proving

results related to the geometric mean.

Lemma C.2.4. Let A,B ∈ Pd. Then, for any invertible X with matching

dimensions,

X(γAI
A,B(t))X∗ = γAI

XAX∗,XBX∗(t), (C.36)

for any t ∈ [0, 1].

Proof. See [LL24, Theorem 5.1 and Remark 5.2] for proof.

The following lemma is useful to state a sufficient condition for generalized

fidelity to reduce to Matsumoto fidelity.

Lemma C.2.5. Let P,Q,R ∈ Pd. Then, the following statements are equiv-

alent.

1. R− 1
2

√
R

1
2PR

1
2

√
R

1
2QR

1
2R− 1

2 = P#Q.

2.
[
R

1
2PR

1
2 , R

1
2QR

1
2

]
= 0.

3. PRQ = QRP.

Here [A,B] := AB − BA denotes the commutator of A,B.
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Proof. We will establish the equivalence by showing (1) ⇐⇒ (2) and (2) ⇐⇒
(3). We begin with (1) =⇒ (2). Assume

R− 1
2

√
R

1
2PR

1
2

√
R

1
2QR

1
2R− 1

2 = P#Q, (C.37)

which implies√
R

1
2PR

1
2

√
R

1
2QR

1
2 = R

1
2P#QR

1
2 =

√
R

1
2QR

1
2

√
R

1
2PR

1
2 , (C.38)

where the last equality comes from the fact that P#Q is positive definite (and

thus Hermitian). Hence we have[√
R

1
2QR

1
2 ,
√
R

1
2PR

1
2

]
= 0, (C.39)

which implies their squares also commute, thereby completing the proof.

Now for the reverse implication (2) =⇒ (1), assume
[
R

1
2PR

1
2 , R

1
2QR

1
2

]
= 0.

Then their square roots also commute, and thus we have√
R

1
2PR

1
2

√
R

1
2QR

1
2 > 0 ⇐⇒ R− 1

2

√
R

1
2PR

1
2

√
R

1
2QR

1
2R− 1

2 > 0. (C.40)

By polar decomposition, we can write the RHS as

0 < R− 1
2 ·R

1
2P

1
2UP · U∗

QQ
1
2R

1
2 ·R− 1

2 = P
1
2UPU

∗
QQ

1
2 , (C.41)

where UP := Pol
(
P

1
2R

1
2

)
and UQ := Pol

(
Q

1
2R

1
2

)
. By Proposition C.2.1, if

A,B > 0 and V is a unitary matrix such that A
1
2V B

1
2 > 0, then A

1
2V B

1
2 = A#B.

Thus we have

R− 1
2

√
R

1
2PR

1
2

√
R

1
2QR

1
2R− 1

2 = P
1
2UPU

∗
QQ

1
2 = P#Q, (C.42)

which proves the reverse implication. Now we prove (2) ⇐⇒ (3). This is easily

seen as[
R

1
2PR

1
2 , R

1
2QR

1
2

]
= 0 ⇔ R

1
2PRQR

1
2 = R

1
2QRPR

1
2 ⇔ PRQ = QRP.

(C.43)

This concludes the proof.

We note that triples of matrices of these forms have been studied as Γ-

commuting matrices in [LL08]. Observe that the first statement of this lemma

is a sufficient condition for the generalized fidelity to be equal to the Matsumoto

fidelity (take trace across and use cyclicity on the LHS). Thus, we have the fol-
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lowing corollary.

Corollary C.2.6. Let P,Q,R ∈ P+
d . If PRQ = QRP , then FR(P,Q) =

FM(P,Q).

Proof. The proof follows directly from Statements 1 and 3 of Lemma C.2.5.

C.3 Proofs of geometric properties

In this section, we provide the proofs of the geometric results results discussed in

Chapter 4.

Theorem C.3.1 (Path 2; restated from Theorem 4.2.1). Let P,Q ∈ P+
d be

fixed. Let the base R = γBW
PQ (t) for any t ∈ [0, 1]. Then

FR(P,Q) = FU(P,Q). (C.44)

Proof. Let

UP := Pol
(
P

1
2R

1
2

)
, UQ := Pol

(
Q

1
2R

1
2

)
, and U := Pol

(
P

1
2Q

1
2

)
(C.45)

be polar factors. Using the alternate representation of generalized fidelity, we

have

FR(P,Q) = Tr
[
Q

1
2UQU

∗
PP

1
2

]
(C.46)

and noting that FU(P,Q) = Tr
[
P

1
2UQ

1
2

]
, it suffices to show that UPU

∗
Q = U .

By Eq. (C.35), we have

I = (1 − t)R−1#P + tR−1#Q ≡M +N, (C.47)

where, for simplicity, we have denoted M ≡ (1 − t)R−1#P and N ≡ tR−1#Q.

We thus have M,N ∈ Pd and M +N = I, which implies

[M,N ] = [M, I−M ] = 0, (C.48)

which implies R−1#P commutes with R−1#Q. Thus, the product of these posi-

tive matrices is also positive:

0 < (R−1#P )(R−1#Q) = R− 1
2

√
R

1
2PR

1
2R−1

√
R

1
2QR

1
2R− 1

2 , (C.49)
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which implies√
R

1
2QR

1
2R−1

√
R

1
2PR

1
2 = U∗

QQ
1
2P

1
2UP = U∗

PP
1
2Q

1
2UQ > 0, (C.50)

where the first equality follows from polar decomposition. Conjugating with UP

we get

UPU
∗
QQ

1
2P

1
2 = P

1
2Q

1
2UQU

∗
P > 0, (C.51)

whence it follows that(
UPU

∗
QQ

1
2P

1
2

)2
=
(
P

1
2Q

1
2UQU

∗
P

)(
UPU

∗
QQ

1
2P

1
2

)
= P

1
2QP

1
2 . (C.52)

Since the positive semidefinite matrices have unique positive semidefinite square

roots, it follows that

UPU
∗
QQ

1
2P

1
2 =

√
P

1
2QP

1
2 , (C.53)

which implies UPU
∗
Q = U = Pol

(
P

1
2Q

1
2

)
, which then further implies

FR(Q,P ) = Tr
[
UPU

∗
QQ

1
2P

1
2

]
= Tr

[
P

1
2UQ

1
2

]
= FU(P,Q), (C.54)

where R = Rt for any t ∈ [0, 1]. This completes the proof.

Theorem C.3.2 (Path 1, restated from 4.2.2). Let P,Q ∈ P+
d be fixed. Let

the base R be any point along the path [γBW
P−1Q−1(t)]−1. Then

FR(P,Q) = FU(P,Q). (C.55)

Proof. This theorem will be proved similarly to the previous one. Let us begin

with the form of R:

R = [γBW
P−1Q−1(t)]−1 ⇐⇒ R−1 = γBW

P−1Q−1(t). (C.56)

Similar to the previous proof, let

UP := Pol
(
P

1
2R

1
2

)
, UQ := Pol

(
Q

1
2R

1
2

)
, and U := Pol

(
P

1
2Q

1
2

)
. (C.57)

We will show that UPU
∗
Q = U . By Eq. (C.35) (with (A,B,C) = (P−1, Q−1, R−1))

we have

I = (1 − t)R#P−1 + tR#Q−1 = M +N, (C.58)

where we wrote M ≡ (1 − t)R#P−1 and N = (1 − t)R#Q−1 for simplicity. We
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thus have M,N ∈ Pd with M +N = I. It follows that

[M,N ] = [M, I−M ] = 0, (C.59)

which implies P−1#R commutes with Q−1#R. We thus have their product to be

Hermitian and positive definite:

R
1
2

√
R− 1

2P−1R− 1
2R

1
2R

1
2

√
R− 1

2Q−1R− 1
2R

1
2 > 0, (C.60)

which implies √
R− 1

2P−1R− 1
2R

√
R− 1

2Q−1R− 1
2 > 0. (C.61)

Now take inverse across to get√
R

1
2PR

1
2R−1

√
R

1
2QR

1
2 = U∗

PP
1
2Q

1
2UQ = U∗

QQ
1
2P

1
2UP > 0, (C.62)

where the first equality follows from polar decomposition. The rest of the proof

mirrors the last part of the previous proof, which we write for the sake of com-

pletion. Conjugating U∗
QQ

1
2P

1
2UP > 0 with UQ we get

Q
1
2P

1
2UPU

∗
Q = UQU

∗
PP

1
2Q

1
2 > 0, (C.63)

whence it follows that(
Q

1
2P

1
2UPU

∗
Q

)2
=
(
Q

1
2P

1
2UPU

∗
Q

)(
UQU

∗
PP

1
2Q

1
2

)
= Q

1
2PQ

1
2 . (C.64)

Since the positive semidefinite matrices have unique positive semidefinite square

roots, we have

Q
1
2P

1
2UPU

∗
Q =

√
Q

1
2PQ

1
2 , (C.65)

which implies UPU
∗
Q = U = Pol

(
P

1
2Q

1
2

)
. Thus we have

FR(P,Q) = Tr

[√
R

1
2P 1R

1
2R−1

√
R

1
2Q1R

1
2

]
= Tr

[
UPU

∗
QQ

1
2P

1
2

]
= Tr

[
P

1
2UQ

1
2

]
= FU(P,Q),

(C.66)

where R = [γBW
P−1Q−1(t)]−1 for any t ∈ [0, 1]. This completes the proof.
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Theorem C.3.3 (Restated from Theorem 4.2.3). Let P,Q ∈ Pd be fixed.

For any fixed t ∈ [0, 1], define

R1 := γBW
PQ−1(t) and R2 := γBW

QP−1(t). (C.67)

Then FR1(P,Q) = FR2(P,Q).

Proof. Fix arbitrary P,Q ∈ Pd, t ∈ [0, 1] and define R1 and R2 as above. We aim

to show that the generalized fidelities between P and Q at these bases are equal.

Recall that the generalized fidelity can also be written as

FR1(P,Q) = Tr
[
(R−1

1 #Q)R1(R
−1
1 #P )

]
, FR2(P,Q) = Tr

[
(R−1

2 #Q)R2(R
−1
2 #P )

]
.

(C.68)

Thus, to prove the theorem, it suffices to show that the terms inside the trace are

equal, which will be done in two steps. We first prove that

(R−1
1 #Q)R1(R

−1
1 #P ) =

√
QMPMM−1, (C.69)

(R−1
2 #Q)R2(R

−1
2 #P ) = M−1

√
MQMP, (C.70)

for a particular M ∈ P+
d , whose form is described later. In the second step, we

show that the two RHS terms are equal.

Let us perform the first step. To this end, we first write down the explicit

forms of R1 and R2. For an arbitrary fixed t ∈ [0, 1] we have

R1 = γBW
PQ−1(t) =

[
(1 − t)I + tP−1#Q−1

]
P
[
(1 − t)I + tP−1#Q−1

]
, (C.71)

R2 = γBW
QP−1(t) =

[
(1 − t)I + tQ−1#P−1

]
Q
[
(1 − t)I + tQ−1#P−1

]
. (C.72)

Denote M ≡ [(1 − t)I + tP−1#Q−1]. Thus, and noting that the geometric mean

is symmetric, we may write

R1 = MPM and R2 = MQM. (C.73)

It follows that

R1#P
−1 = M = R2#Q

−1. (C.74)

Moreover by Lemma A.2.1, we have that (A−1#B)A =
√
BA and A(A−1#B) =√

AB for any A,B ∈ P+
d . Thus, we can write

(R−1
1 #Q)R1 =

√
QR1 and R2(R

−1
2 #P ) =

√
R2P . (C.75)
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By inverting Eq. (C.74), and using the above relation, we have

(R−1
1 #Q)R1(R

−1
1 #P ) =

√
QR1M

−1 =
√
QMPMM−1, (C.76)

(R−1
2 #Q)R2(R

−1
2 #P ) = M−1

√
R2P = M−1

√
MQMP, (C.77)

as claimed, where we also used the relations R1 = MPM and R2 = MQM . Now

we prove that the RHS terms are equal, which amounts to proving,√
QMPMM−1 ?

= M−1
√
MQMP. (C.78)

This is equivalent to proving√
QMPM

?
= M−1

√
MQMPM. (C.79)

To prove this, it suffices to prove the squared version as matrices with positive

eigenvalues have a unique square root (see [Bha13, Excercise 4.5.2]). Square the

LHS to obtain QMPM . Now square the RHS to obtain(
M−1

√
MQMPM

)(
M−1

√
MQMPM

)
= M−1(MQMP )M = QMPM,

(C.80)

which is equal to the square of the LHS. By uniqueness of square root, we have

(R−1
1 #Q)R1(R

−1
1 #P ) = (R−1

2 #Q)R2(R
−1
2 #P ). (C.81)

Trace both sides to obtain FR1(P,Q) = FR2(P,Q) as claimed.

Theorem C.3.4 (Restated from Theorem 4.2.4). Let P,Q ∈ P+
d be fixed.

For any fixed t ∈ [0, 1], let

R1 := [γBW
P−1Q(t)]−1 and R2 := [γBW

Q−1P (t)]−1. (C.82)

Then FR1(P,Q) = FR2(P,Q).

Proof. The proof works similarly to the previous proof. We aim to show that for

arbitrary P,Q ∈ Pd and any t ∈ [0, 1],

R−1
1 = γBW

P−1Q(t) and R−1
2 = γBW

Q−1P (t) =⇒ FR1(P,Q) = FR2(P,Q). (C.83)

We first recall the alternative form of generalized fidelity:

FR1(P,Q) = Tr
[
(R−1

1 #Q)R1(R
−1
1 #P )

]
FR2(P,Q) = Tr

[
(R−1

2 #Q)R2(R
−1
2 #P )

]
.

(C.84)
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We will show that the terms inside the trace are equal, which will be done in two

steps. We first prove that

(R−1
1 #Q)R1(R

−1
1 #P ) =

√
QN−1PN−1N, (C.85)

(R−1
2 #Q)R2(R

−1
2 #P ) = N

√
N−1QN−1P , (C.86)

for a particular choice of N ∈ P+
d , whose form is described later. In the second

step, we show that the two RHS terms are equal.

To this end, we first write down the explicit forms of R−1
1 and R−1

2 . For an

arbitrary fixed t ∈ [0, 1] we have

R−1
1 = γBW

P−1Q(t) := [(1 − t)I + tP#Q]P−1 [(1 − t)I + tP#Q] , (C.87)

R2 = γBW
Q−1P (t) := [(1 − t)I + tQ#P ]Q−1 [(1 − t)I + tQ#P ] . (C.88)

Denote N ≡ [(1 − t)I + tP#Q]. Thus, the above relations can be written as

R−1
1 = NP−1N and R−1

2 = NQ−1N. (C.89)

which implies

P#R−1
1 = N = Q#R−1

2 . (C.90)

Using Lemma A.2.1 as before, we have that (A−1#B)A =
√
BA andA(A−1#B) =√

AB for any A,B ∈ P+
d . Thus, we can write

(R−1
1 #Q)R1 =

√
QR1 =

√
QN−1PN−1

R2(R
−1
2 #P ) =

√
R2P =

√
N−1QN−1P .

(C.91)

Using Eq. (C.90) and the above relation, we have

(R−1
1 #Q)R1(R

−1
1 #P ) =

√
QN−1PN−1N, (C.92)

(R−1
2 #Q)R2(R

−1
2 #P ) = N

√
N−1QN−1P (C.93)

as claimed. Now we prove that the RHS terms are equal:√
QN−1PN−1N

?
= N

√
N−1QN−1P , (C.94)

which is equivalent to proving√
QN−1PN−1 ?

= N
√
N−1QN−1PN−1, (C.95)

As in the previous proof, it suffices to prove the squared version of the above
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equation. First, square the LHS to obtain QN−1PN−1. Now square the RHS to

obtain(
N
√
N−1QN−1PN−1

)(
N
√
N−1QN−1PN−1

)
= N(N−1QN−1P )N

= QN−1PN−1,
(C.96)

which is equal to the square of LHS. We have thus shown, by the uniqueness of

the positive square root,

(R−1
1 #Q)R1(R

−1
1 #P ) = (R−1

2 #Q)R2(R
−1
2 #P ). (C.97)

Taking the trace across, we get FR1(P,Q) = FR2(P,Q) as claimed.

Theorem C.3.5 (Restated from Theorem 4.2.5). Let P,Q ∈ Pd and choose

R = P−1#Q−1. Then FR(P,Q) = FM(P,Q).

Proof. By definition, we have

FR(P,Q) = FR(P,Q) = Tr

(√
R

1
2PR

1
2 (P#Q)

√
R

1
2QR

1
2

)
, (C.98)

where we used the property of the geometric mean that (A#B)−1 = A−1#B−1

for any A,B ∈ P+
d . Recall that FM(P,Q) = Tr[P#Q] by definition. Thus it

suffices to show that
√
R

1
2PR

1
2

?
=

(√
R

1
2QR

1
2

)−1

. Equivalently, it suffices to

show that their squares equal:

R
1
2PR

1
2

?
= R− 1

2Q−1R− 1
2 ⇐⇒ RPR

?
= Q−1. (C.99)

By Proposition 2.1.3, we have that the geometric mean R = P−1#Q−1 uniquely

satisfies the second condition, and thus we have R
1
2PR

1
2 = R− 1

2Q−1R− 1
2 , which

implies their matrix square roots equal, which in turn implies

FR(P,Q) = Tr[P#Q] = FM(P,Q). (C.100)

This completes the proof.

Now we prove the result for the whole curve γAI
P−1Q−1 .
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Theorem C.3.6 (Path 9, restated from Theorem 4.2.2). Let P,Q ∈ P+
d

and let R = γAI
P−1Q−1(t) for any t ∈ [0, 1]. Then

FR(P,Q) = FM(P,Q). (C.101)

Proof. Let

R = γAI
P−1Q−1(t) = P− 1

2

(
P

1
2Q−1P

1
2

)t
P− 1

2 (C.102)

for some t ∈ [0, 1]. By Corollary C.2.6, it is sufficient to show that

PRQ
?
= QRP (C.103)

Let us begin with the LHS. We first left and right multiply by P− 1
2 to obtain

P− 1
2 (PRQ)P− 1

2 = P
1
2RP

1
2

(
Q

P

)
1
= (P

1
2γAI

P−1Q−1(t)P
1
2 )

(
Q

P

)
2
= γAI

I,P
1
2Q−1P

1
2
(t)

(
Q

P

)
3
=

(
Q

P

)−t(
Q

P

)
=

(
Q

P

)1−t

=
(
P− 1

2QP− 1
2

)1−t

(C.104)

where we use the shorthand A
B

:= B− 1
2AB− 1

2 . Here in (1) we have used the

fact that R is an element of the geodesic γAI
P−1Q−1 , in (2) we have used the

Affine invariance property (Lemma C.2.4, and in (3) we used the definition of

the AI geodesic. A similar calculation on the RHS reveals P− 1
2 (QRP )P− 1

2 =(
Q
P

)1−t
= (P− 1

2QP− 1
2 )1−t, which implies PRQ = QRP . In then follows from

Corollary C.2.6 that FR(P,Q) = FM(P,Q). This concludes the proof.

Theorem C.3.7 (Path 10, restated from Theorem 4.2.8). Let P,Q ∈ P+
d

and let R = γEucP−1Q−1(t) for any t ∈ [0, 1]. Then

FR(P,Q) = FM(P,Q). (C.105)

Proof. By Lemma C.2.5, it suffices to show that PRQ = QRP . Recall that R

takes the form R = (1 − t)P−1 + tQ−1 for any t ∈ [0, 1]. Use this form of R to

write
PRQ = P

(
(1 − t)P−1 + tQ−1

)
Q = (1 − t)Q+ tP

= Q
(
(1 − t)P−1 + tQ−1

)
P = QRP.

(C.106)

This completes the proof.
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Theorem C.3.8 (Path 11, restated from Theorem 4.2.9). Let P,Q ∈ P+
d

and let R = [γEucPQ (t)]−1 for any t ∈ [0, 1]. Then

FR(P,Q) = FM(P,Q). (C.107)

Proof. Here too we will prove the sufficient condition PRQ = QRP , which is

equivalent to showing Q−1R−1P−1 = P−1R−1Q−1. Noting that along the path

[γEucPQ (t)]−1, we have R = ((1 − t)P + tQ)−1 for t ∈ [0, 1]. Thus we have

P−1R−1Q−1 = P−1 ((1 − t)P + tQ)Q−1 = (1 − t)Q−1 + tP−1

= Q−1 ((1 − t)P + tQ)P−1 = Q−1R−1P−1,
(C.108)

which implies PRQ = QRP . By Lemma C.2.5, this completes the proof.
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Appendix D

Proofs related Bures projection

D.1 Proof of Bures projection for pinching chan-

nel

Proof. Let E = {Ei}i∈[n] be an arbitrary orthogonal resolution of identity and

ΛE be the corresponding pinching channel. Firstly observe that P > 0 implies

ΛE(P ) > 0. One way to prove this is to observe that the pinching channel is a

unital map (as every pinching channel is a mixed-unitary map [Wat18; Tom15])

and unital maps are strictly positive [Bha09, Section 2.2]. Strictly positive maps

map positive definite matrices to positive definite matrices. We thus have

(ΛE(P ))−1 =

(
n∑

i=1

EiPEi

)−1

=
n∑

i=1

(EiPEi)
−1 =

n∑
i=1

(Pi)
−1, (D.1)

where we denote Pi ≡ EiPEi and the inverse is taken in the support. To see this

is indeed the inverse, observe that(
n∑

i=1

EiPEi

)
·

(
n∑

i=j

(EjPEj)
−1

)
=

n∑
i=1

EiPEi · (EiPEi)
−1 =

n∑
i=1

Ei = I. (D.2)

Noting that C is feasible, and thus C = ΛE(C), compute

ΛE(P )−1#C = ΛE(P )−1#ΛE(C) =

(
n∑

i=1

P−1
i

)
#

n∑
j=1

Cj =
n∑

i=1

P−1
i #Ci. (D.3)

where Ci ≡ EiCEi and the last equality comes from the orthogonality of the

projectors. We thus have

ΓΛ,C [P ] =

(
n∑

i=1

P−1
i #Ci

)
P

(
n∑

j=1

P−1
j #Cj

)
=

n∑
i,j=1

P−1
i #CiPijP

−1
j #Cj, (D.4)
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where we denote Pij = EiPEj. To show that this is a feasible point, let us apply

the pinching channel:

ΛE(ΓΛ,C [P ]) =
n∑

i=k

Ek

(
n∑

i,j=1

P−1
i #CiPijP

−1
j #Cj

)
Ek

=
n∑

k=1

P−1
k #CkPkP

−1
k #Ck =

n∑
i=1

Ck = C,

(D.5)

as required. This concludes the proof.
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