
An architecture for systematic tracking of skill and

competence level progression in Computer Science

Richard Gluga, Judy Kay, Tim Lever

School of Information Technologies

University of Sydney

Sydney, Australia

richard@gluga.com, judy.kay@sydney.edu.au,

tim.lever@sydney.edu.au

Raymond Lister

School of Software

University of Technology Sydney

Sydney, Australia

raymond@it.uts.edu.au

Abstract — A typical Computer Science degree is three to five

years long, consists of four to six subjects per semester, and two

semesters per year. A student enrolled in such a degree is

expected to learn both discipline-specific skills and transferable

generic skills. These skills are to be taught in a progressive

sequence through the duration of the degree. As the student

progresses through the subjects and semesters of a degree, his

skill portfolio and competence level for each skill is expected to

grow. Effectively modeling these curriculum skills, mapping

them to assessment tasks across subjects of a degree, and

measuring the progression in learner competence level is, largely,

still an unsolved problem. Previous work at this scale is limited.

This systematic tracking of skills and competence is crucial for

effective quality control and optimization of degree structures.

Our main contribution is an architecture for a curriculum

information management system to facilitate this systematic

tracking of skill and competence level progression in a Computer

Science context.

Keywords-educational technology; outcome-based approach;

curriculum; competence level; learning objectives;

I. INTRODUCTION

As part of a university degree, a student is expected to
develop a collection of transferable and discipline specific
skills. In Computer Science, the relevant discipline-specific
skills to be taught are a set of learning objectives specified by
curriculum bodies such as the ACM/ACS/IEEE. As an
example, the ACM/IEEE Computer Science Curriculum 2008
lists the following learning objectives under the Data Structures
knowledge area [1]:

 Describe the representation of numeric and character
data.

 Understand how precision and round-off can affect
numeric calculations.

 Discuss the use of primitive data types and built-in data
structures.

 Describe common applications for each data structure
in the topic list.

 Implement the user-defined data structures in a high-
level language.

 Compare alternative implementations of data structures
with respect to performance.

 Write programs that use each of the following data
structures: arrays, strings, linked lists, stacks, queues,
and hash tables.

 Compare and contrast the costs and benefits of
dynamic and static data structure implementations.

 Choose the appropriate data structure for modeling a
given problem.

This list of learning objectives is based on the Bloom
Taxonomy, which is a framework for specifying the behavioral
sophistication of each objective [6]. A Computer Science
student is expected to attain these learning objectives in a
progressive sequence. That is, a CS1 student should not be
expected to operate at the higher levels (Synthesis or
Evaluation) [2].

The collection of generic transferable skills is often referred
to as Graduate Attributes and is usually specified internally by
each institution [7][8]. As an example, the University of
Sydney Faculty of Engineering specifies the following seven
high-level Graduate Attributes [3]:

 Design and Problem Solving Skills

 Discipline Specific Expertise

 Fundamentals of Science and Engineering

 Information Skills

 Professional Communication

 Professional Values, Judgment and Conduct

 Teamwork and Project Management
Additionally, these seven attributes contain a maturity

dimension, which is described in terms of five levels,
numbered from one (least sophisticated) to five (most
sophisticated). Each level, for each attribute, has its own
description. As an example, the Design and Problem Solving
Skills attribute from above has the following level descriptor
[3]:

 Level 1 - Ability to analyse standard technical
problems and evaluate potential causes and solutions.

 Level 2 - Ability to analyse ambiguous and unfamiliar
technical problems with appropriate consideration of
assumptions made and their reliability.

 Level 3 - Ability to undertake a major design exercise
to achieve a substantial engineering outcome at
professional standards, to given specifications.

 Level 4 - Ability to develop creative design solutions
for given technical problems.

mailto:richard@gluga.com
mailto:judy.kay@sydney.edu.au
mailto:tim.lever@sydney.edu.au
mailto:raymond@it.uts.edu.au

 Level 5 - Ability to undertake a major design exercise
to achieve a substantial engineering outcome at
professional standards, with specifications determined
by independent analysis of situation and requirements.

 A student is expected to attain these graduate attributes
progressively over the course of his or her study [4].

The mapping and tracking of these discipline-specific and
transferable skills to individual assessment tasks throughout the
subjects that form whole of university degrees is currently still
an unsolved problem. This mapping is essential for quality
control audits, and formal accreditation where applicable, to
ensure that a degree has sufficient curriculum coverage.
Additionally, this mapping of skills is needed to ensure that
content is taught and assessed in an appropriate and effective
progressive sequence. Our contribution is an architecture and
design for implementing a skill and competence level mapping
solution and evaluating it in a Computer Science context.

II. BACKGROUND

Mulder et al. highlight the trend towards competency-based
development of curricula in European nations in [11]. The
authors discuss the intentions of the ECVET (European Credit
System for VET) and the ECTS (European Credit Transfer
System in Higher Education) to describe learning outcomes as
topologies of knowledge, skills and competencies through the
Tuning Educational Structures in Europe project, which
“proposes programs based on learning outcomes [that] are
described in terms of subject specific and generic
competencies, [where] competencies serve as reference points
for the design of curricula and evaluation in order to make
study programs comparable.” Mulder et al. also note that “in
June 2002, the Federal Ministry of Education and Research [in
Germany] decided to establish national standards of education
[but] it remains unclear how these standards can be realized
and assessed.”. Likewise in Netherlands, “although many
institutions claim to have a competence-based curriculum,
there is a lot of window-dressing going on, in various cases
only superficial changes have taken place and learning
processes have not changed”.

This highlights the main problem that we are trying to
address in this paper. That is, while many learning goal
frameworks exist, these learning goals are not being
systematically integrated or tracked in university degree
programs due to a lack of supporting technology to do so.

Similar trends in standardization and integration of
discipline-specific learning goals into higher education degree
programs can be found in many other parts of the world as
well. The Australian Learning and Teaching Council, for
example, is currently in the process of drafting a collection of
Threshold Learning Outcomes for each main discipline of
study [15], which all Australian universities will need to show
compliance with during future accreditation and quality control
review processes. The intention of this is to create a
standardized framework against which students can be
compared to across the country. Similarly, the Tuning-AHELO
project is currently drafting a set of similar standards, but at an
international level [16].

There is a clear and growing need for technology to support
a more principled design of university degree programs, which
supports the mapping and tracking of learning and teaching
activities to the various institutional, national and international
learning goal frameworks, such as those presented above. A
large number of educational support systems already exist, and
these go by different names such as Learner Management
Systems (LMS), Learner Course Management Systems
(LCMS), Course Management Systems (CMS), e-Portfolio
systems, etc. Moodle (http://moodle.org), for example, is a
widely deployed open source CMS. It enables the delivery and
assessment of learning content via a web-based interface.
While assessment tasks can be mapped to learning outcomes,
Moodle operates mostly at the individual course/subject level.
It does not support the definition of flexible degree programs
that span multiple years, or the visualization of these degree
programs in terms of different learning goal frameworks. These
same characteristics are shared by other popular LMS/CMS
systems such as Blackboard (formerly WebCT) and Sakai.

To address this growing need for big-picture curriculum
visualization in terms of different learning goal frameworks,
the Faculty of Engineering at the University of Sydney adopted
a customized implementation of Curriculum Central [17].
While this system was a step in the right direction, it was
limited to a single learning-goal framework. It is becoming
increasingly important to be able to show how a degree
program complies to multiple frameworks however, and these
frameworks vary greatly in the level of granularity (generic
transferrable skill statements such as graduate attributes vs.
fine-grained discipline specific learning objectives such as the
ACM/IEEE CS 2008 curriculum guidelines).

The CUSP system (Course and Unit of Study Portal) has
been created to supersede Curriculum Central. It allows degree
coordinators and subject lecturers to map and visualize
transferable generic skills and accreditation competencies
across whole degree programs [4][5]. CUSP captures the
representation of multiple sets of graduate attributes and
accreditation competencies (named curriculum goals or
curriculum goal frameworks) and maps these to the relevant
degrees. Each degree structure is modeled into the system as a
collection of core subjects plus the rules governing the
selection of elective subjects. The high-level skill-mapping
design of CUSP is shown in Figure 1.

Figure 1 - CUSP high level design

As seen in Figure 1, a primary skill set is selected for each
degree, usually the internal Faculty Graduate Attribute
Framework. The skill levels from this primary set are then
mapped to individual subject learning outcomes, which then
map to assessment tasks. Additionally, secondary skill sets are
semantically related to those from the primary framework. For
example, the Teamwork and Leadership Skills goal from the
Faculty of Engineering Graduate Attributes policy statement is
mapped to semantically similar goals from the Engineering
Australia Stage One Accreditation Competencies.

This design enables the CUSP system to generate reports
that visualize the curriculum coverage for entire degrees
against any of the curriculum goal frameworks attached. These
reports in turn enable quick identification of any gaps in goal
coverage or any sequencing problems in the degree structure
and facilitate accreditation or other quality control review
processes. Figure 2 is an example of a chart generated by CUSP
which shows the assessment weight associated with each
graduate attribute across a full engineering degree. Along the
bottom are the seven engineering graduate attributes, and each
is broken down into its five constituent levels. Along the
vertical is the percentage of assessment weight for the degree
as a whole. This chart shows the Information Skills attribute is
the most under-assessed in this particular degree program,
which is valuable information that can be used to optimize the
curriculum to comply with accreditation or internal
requirements.

Figure 2 - CUSP attribute coverage chart

To generate these reports, CUSP algorithmically calculates
the minimum set of skills that a student can be assessed on
based on the elective subject options that they make. That is, if
one elective subject has a 50% assessment task associated with,
say, Teamwork and Project Management, while another
elective subject only has a 20% assessment task associated
with this skill, CUSP will generate the report based on the
latter subject. This ensures that the reports show the „worst
case‟ scenario for the assessment weight of each skill, or the
lowest skill profile possible of a student who was trying to
game the elective choices (i.e. a student who is actively
selecting elective subjects that have the lowest assessment of a
particular skill or attribute).

This 'worst case' report is identified from perspective of the
proportionate weighting of the learning goal within program
assessment as a whole. This does not necessarily represent the
proportionate representation of this goal in the attained

competencies of individual students. Indeed, where the
proportion of assessment weighting is low for a particular
assessment goal, the actual learning achievement may be even
lower. Students failing to attain that goal may readily
compensate that failure by attainment in other areas that are
more heavily weighted. A further 'worst-case' analysis that
identifies where the representation of particular learning goals
in the attainment of graduating students may be reduced
through the process of assessment grading is highly desirable,
but not supported by the CUSP system.

As an example, a student who is very poor at Teamwork
and Project Management could pick the elective subjects with
the lowest assessment weight of this skill (e.g. 20% as above),
and even if the student scores zero in this assessment but is
strong in all other skills, s/he can complete the subject with say
a final mark of 80% (distinction). If this student does this
consistently across all subjects, s/he can graduate with a
distinction average and be regarded as a top-student, while his
or her strong weakness in Teamwork and Project Management
goes by undetected.

It is thus crucial to empower curriculum designers with the
systematic tools to model the worst-case scenario not only for
the student who games the elective choices, but also for the
student who tries to game the assessment tasks. That is, the
curriculum information management system should be able to
show reports that differentiate between the skill profile of a
top-decile student and that of a bare-pass student. This is
required to answer important questions such as “which
minimum set of learning objectives from the ACM curriculum
are bare-pass students required to complete, and at what level
of competence, in order to graduate as computer scientists?”

Additionally, the CUSP system has highlighted new
challenges in specification of the learning goals that are to be
attained. The CUSP system provides the framework for an
open-ended range of possible ways of conceiving and
representing the breakdown and progressive development of
key learning goals. The task of determining what sort of goals
should be deployed in the first place, and what scale of
competence level should be used to measure progression, is left
to the curriculum designer. In completing this vital curriculum
planning task, designers have a variety of theoretical models to
choose from, but so far very little assistance in choosing among
them or determining how they might be best applied in
practice.

In Computer Science, the ACM uses Bloom‟s Taxonomy to
specify the level of each learning objective [1]. Research in
Computer Science education also discusses the use of other
progression frameworks including SOLO [9][11] and Neo-
Piagetian Theory of Cognitive Development [10]. A
curriculum information management system should thus be
able to support multiple frameworks of measuring competence
level and should support the users in applying these
frameworks effectively and consistently.

III. METHOD

We are building a system called ProGoSs (Program Goal
Progression), which will enable Computer Science educators to
map out the relevant ACM learning objectives to individual

assessment tasks throughout subjects across a degree. The
high-level architecture of ProGoSs is shown in Figure 3.

Curriculum Requirements are the collection of syllabus
documents from relevant bodies in each discipline. For
Computer Science, these would primarily be the ACM/IEEE
Curriculum Guidelines as well as internal institutional learning
goal statements. These learning requirements drive the design
of the Degree structure in each institution, and can be
represented as a set of Curriculum Goals that the Degree aims
to enable students to achieve. As seen in Figure 3, a Degree
structure is a collection of Core and Elective subjects, and each
subject is broken down into Entry Requirements, Assessments
and Exit Conditions, all of which are mapped against
Curriculum Goals and Competence Levels.

Figure 3 - High Level Architecture

Using Curriculum Goals and Competence Levels as the
fundamental glue that links all assessments and subjects
together enables the creation of advanced whole-of-degree
quality control reporting and curriculum optimization tools.
Additionally, by differentiating between bare-pass students and
top-decile students in terms of these goals and competence
levels allows for the visualization of the overall degree
curriculum in terms of both the minimum standards and the
aspirational standards.

IV. PROGRESS AND RESULTS

ProGoSs is currently under active development. The first
challenge we tackled was the creation of an interactive Bloom
Taxonomy tutorial as part of the system. This tutorial was
intended to quickly familiarize computer science educators on
the use of Bloom to classify programming assessment
questions. The tutorial proved successful in this respect.
However, the evaluation also revealed some important
weaknesses of Bloom when used in this context that require
further research [12]. This has led us to think more deeply
about the measurement of progression, which appears to be a
key trend in numerous active research projects [9][10][11][13].

1. Which framework is most appropriate for specifying
the competence level of intended learning outcomes
and assessment tasks?

2. Can one framework be used in all contexts, or are
multiple frameworks appropriate?

3. How do we ensure that two educators who classify a
programming question at, for example, the same
Bloom level, both have the same understanding of
what that level describes?

A screenshot of this is shown in Figure 4. We are now
considering the use of a Naïve Bayes approach [14] to
associate a series of weighted evidence or criteria statements
with each Bloom (or SOLO, or any other framework), level
description. ProGoSs will use these criteria to disambiguate the
classification of learning objectives or assessment tasks.

Figure 4 - ProGoSs Bloom Tutorial Screenshot

Once the Naïve Bayes model is discussed and agreed upon by a
Faculty or Department, it can be imported into ProGoSs, after
which the interface will guide participants in reaching the
correct classification through answering or acknowledging the
agreed upon criteria items. This generic approach can be
applied to any framework of cognitive development, can be
used to reach a departmental agreed-upon understanding of the
chosen framework, and can be used as a means of documenting
the rationale and reasoning in the classification of each learning
objective and assessment task.

We have now extended ProGoSs to also offer a Neo-
Piagetian Theory of Cognitive Development [10] tutorial, as an
alternative framework to Bloom, for use in measuring learning
progression, which is in the process of being evaluated. These
tutorials are made freely available as part of the live ProGoSs
deployment at http://progoss.com.

The next phase in ProGoSs development is to enhance our
cognitive framework tutorial structures to further enhance
classification disambiguation (even with the training received
from the tutorials, computer science educators still do not reach
unanimous agreement as to which, say, Bloom level a
particular assessment question maps to [12]). Following this,
we are mapping actual computer science degrees and
assessments from a range of Australian universities to ACM
learning objectives at the pass vs. top-decile levels.

These capabilities, which were not previously possible in
CUSP, are made possible by the new ProGoSs architecture.
Namely, CUSP was restricted to tagging generic skills and

higher-level accreditation skills to assessment tasks. ProGoSs
enhances this approach to allow mapping of fine-grained
discipline-specific skills such as the ACM/IEEE learning
objectives, and further allows for differentiation between the
minimal expectations of pass students vs. the aspirational
expectations of top performing students. In order to support
this differentiation, ProGoSs must support principled and
systematic methods of measuring progression and competence
levels, hence the inclusion of interactive contextualized
tutorials on learning taxonomies such as Bloom and Neo-
Piagetian Theory of Cognitive Development.

V. CONCLUSION

University degrees teach a combination of transferable and

discipline specific skills over a period of three to five years.

These curriculum goals can be used as a glue to link together

all subjects and assessment tasks in degree sequences. The

motivation for doing this is to track student progression and

maturity in a systematic way that enables advanced reporting

tools for use in quality control and curriculum optimization.

Additionally, this approach can be used to discern between the

intended learning outcomes of a bare-pass student vs. that of a

top-decile student in the curriculum design of a degree.

Current research at this scale is limited. We initially

developed CUSP to deal with transferable skills, but this did

not scale well to discipline specific skills. CUSP also could

not discern between different student performance profiles.

Our ProGoSs system architecture is designed to specifically

address these problems, and is actively being developed and

evaluated in a Computer Science context. Initial results in the

use of Bloom‟s Taxonomy for classifying programming exam

questions indicate that we can help people to quickly learn to

use Bloom with moderate reliability but that there are some

serious limitations in using Bloom in this way. This is

particularly important given the key role that Bloom plays in

defining curricula like the current and planned ACM/IEEE CS

curriculum guidelines. Upcoming evaluations in the use of

other competence level measurement frameworks and in the

mapping of actual Computer Science degree structures are

expected to provide insights into alternatives that may be easier

to use in supporting more effective design of the Computer

Science curriculum.

Our key contributions are in the exploration of principled

approaches to formulating curricula so that the long term

learning over a full degree program is more effectively planned

and monitored; this will mean that students can be assured a

coherent series of learning experiences that build to achieve the

key learning goals.

A deployment of the ProGoSs system is being made

publicly available at http://progoss.com. This will allow

Computer Science educators from around the world to use our

Bloom and Neo-Piagetian tutorials, to comment on the use of

these frameworks in a programming context, and to develop

more principled and systematic design of teaching and

learning in Computer Science.

ACKNOWLEDGMENT

We would like to thank the Smart Services CRC who is
partially sponsoring this project and all our colleagues that we
have collaborated with throughout the project.

REFERENCES

[1] ACM Computer Science Curriculum 2008, http://www.acm.org/
education/curricula/ComputerScience2008.pdf

[2] Lister, R., (2001) Objectives and Objective Assessment in CS1. Proc.
SIGCSE Technical Symposium on Computer Science Education,
Charlotte NC, USA, 292-296, ACM Press.

[3] Engineering & IT Graduate Attribute Matrix, University of Sydney,
http://cusp.sydney.edu.au/attributes/view-attribute-set-
pdf/competency_set_id/20/ [Last Accessed - Sep 15 2011]

[4] Gluga, R., Kay, J., and Lever, T (2010). Modeling long term learning of
generic skills. In V. Aleven, J. Kay, and J. Mostow, editors, ITS2010,
Proceedings of the Tenth International Conference on Intelligent
Tutoring Systems, pages 85-94. Springer, 2010.

[5] Gluga, R., and Kay, J. (2009) Largescale, long-term learner models
supporting flexible curriculum definition. In Proceedings of the
Workshop on Scalability Issues in AIED, held in conjunction with
AIED2009, pages 10-19, 2009.

[6] Bloom, B.S. (Ed.) (1956) Taxonomy of Educational Objectives:
Handbook I: Cognitive Domain, Longmans, Green and Company.

[7] Barrie, S. C. (2004). A research-based approach to generic graduate
attributes policy. Higher Education Research & Development. Vol. 23,
No. 3, 2004.

[8] Barrie, S. C. (2007). A conceptual framework for the teaching and
learning of generic graduate attributes. Studies in Higher Education, Vol
32, No. 4, pp. 439-458, 2007.

[9] Sheard, J., Carbone, A., Lister, R. and Simon, B. (2008), Going SOLO
to assess noice programmers. Proceedings of the 13th annual conference
on Innovation and technology in computer science education
(ITiCSE2008), pp. 209-213, Vol. 40.

[10] Lister, R. (2011). Concrete and Other Neo-Piagetian Forms of
Reasoning in the Novice Programmer. Australasian Computing
Education Conference (ACE2011). Pp. 9-14. Vol. 114.

[11] Brabrand, C. and Dahl, B. (2009). Using the SOLO taxonomy to analyze
competence progression of university science curricula. Journal of
Higher Education. Vol 58. No. 4. Pp: 531-549.

[12] Gluga. R., Kay. J., Lister, R., Kleitman. S., Lever. T. (2012). Coming to
terms with Bloom: an online tutorial for teachers of programming
fundamentals. Proc. Fourteenth Australasian Computing Education
Conference (ACE2012), Melbourne.

[13] Oliver, D., Dobele, T., Greber, Tm., Roberts, T. (2004). This course has
a Bloom Rating of 3.9. Proceedings of the sixth conference on
Australasian computing education. Vol. 30

[14] Shinghal, R. (1992). Plausible Reasoning in Expert Systems. Formal
concepts in artifical intelligence: findamental. London; New York :
Chapman & Hall, 1992

[15] A. Learning and T. Council, “Engineering and ICT learning and
teaching academic standards statement,”http://www.altc.edu.au/system/
files/altc standards ENGINEERING 090211.December 2010.

[16] A. C. for Educational Research (ACER), “Assessment of higher
education learning outcomes (AHELO),”
http://www.acer.edu.au/aheloau.

[17] Calvo R, Carroll N, Ellis R. Curriculum Central: A portal system for the
academic enterprise. International Journal of Continuing Engineering
Education and Life-Long Learning. 2007 ;17(1):43-56.

http://cusp.sydney.edu.au/attributes/view-attribute-set-pdf/competency_set_id/20/
http://cusp.sydney.edu.au/attributes/view-attribute-set-pdf/competency_set_id/20/

