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Abstract 

A representation of space that includes both 
geometric and semantic information enables a 
robot to perform high-level tasks in complex 
environments. Identifying and categorizing 
environments based on onboard sensors are 
essential in these scenarios. The Kinect™, a 3D 
low cost sensor is appealing in these scenarios as 
it can provide rich information. The downside is 
the presence of large amount of information, 
which could lead to higher computational 
complexity. In this paper, we propose a 
methodology to efficiently classify indoor 
environments into semantic categories using 
Kinect™ data. With a fast feature extraction 
method along with an efficient feature selection 
algorithm (DEFS) and, support vector machines 
(SVM) classifier, we could realize a fast scene 
classification algorithm. Experimental results in 
an indoor scenario are presented including 
comparisons with its counterpart of commonly 
available 2D laser range finder data. 

1 Introduction 

Scene classification endows a robot with the ability to 
describe an environment at a more conceptual level, 
resulting in a common representation of semantic 
information which can be effectively and efficiently 
shared between humans and robots [Shi et al., 2010a]. 
Therefore the robots could be designed with the 
capabilities to carry out complex tasks in populated 
environments smoothly interacting with humans.  

Monocular camera based scene classification has been 
in the forefront for many years [Shi and Samarabandu, 
2006; Viswanathan et al., 2009]. As discussed by 
Quattoni et al. [2002], indoor scene classification is a 
challenging task given the presence of diversity of objects 
in different environments. Further, it becomes extremely 
challenging, in places where the images consist of 
multiple environment types. This could be due to shorter 
partitions or openings such as doors or glass walls. Given 
the application of this paper is to classify places that 
inherently have such environmental features, we have 
focussed more on range and bearing sensors. 

 

In this respect, 2D laser range finders have been popular 
sensors used for scene classification. Buschka and 
Saffiotti [2002] proposed a rectangle fitting algorithm to 
incrementally extract room-like nodes and segment the 
space into room and corridor regions. Mozos et al. [2005] 
extracted a large number of simple features and employed 
the AdaBoost classifier to label an environment consisting 
of rooms, corridors, doorways and halls, with the 
accuracies between 82% and 92% on different datasets; 
and Sousa et al. [2007] obtained the accuracy of about 
80% using a subset of abovementioned features but 
Support Vector Machines (SVM) as a binary classifier. 
We have obtained better accuracies (> 96%) on similar 
data sets as multiclass classification [Shi et al., 2010a; 
2010b]. 

Use of 3D data for object classification in indoor 
environments is reported in literature [Xiong and Huber, 
2010; Rusu et al., 2009] with a reasonable success. On the 
contrary, outdoor scene classification based on 3D data 
has been reported in several literatures such as [Gibbins 
and Swierkowski, 2009; Munoz et al., 2007; Lodha et al., 
2007]. Gibbins and Swierkowski [2009] extracted few 
features from 3D range data and images to distinguish 
structures like ground, earthworks, trees and buildings. 
Munoz et al. [2007] classified urban environments using 
3D geometric features including statistics of local tangent 
and normal vector of each observed point. Lodha et al. 
[2007] sorted 3D Lidar data into four categories: road, 
grass, buildings, and trees using AdaBoost algorithm and 
obtained an accuracy of more than 92%. Rather than 
taking gross environment type classifications, those 
techniques label part of a scene (local) which is not the 
focus of our paper. 

 
Figure 1: LISA robot (Lightweight Integrated Social Autobot) 



In our previous studies [Shi et al., 2010a; 2010b], it was 
observed that 2D laser range data alone can give rise to 
classification ambiguities in some environment types. 
Therefore, as a cost-effective solution, in this work we 
have focused mainly on an inexpensive 3D range sensor, 
the Kinect™. Data from an indoor environment is 
collected using an iRobot® Create based robotics 
platform, LISA (Lightweight Integrated Social Autobot as 
shown in Figure 1), equipped with a Hokuyo laser range 
finder (2D) and a Kinect™ sensor (3D). A feature set that 
can be easily extracted from 3D range data is proposed 
and a subset of features which is capable of discriminating 
between four different spaces is selected by DEFS 
algorithm. A supervised learning algorithm, Support 
Vector Machines, is employed to evaluate the 
classification performance.  

The rest of this paper is arranged as follows. Section 2 
discusses the details about the feature extraction and 
selection strategies as well as the classifier. Section 3 
describes the experimental setup. In Section 4, 
experimental results are presented; and Section 5 
concludes the paper. 

2 Classification 

2.1 Feature Extraction  

In machine learning tasks, features are descriptors of the 
target concept and the classifier works on features 
directly. Feature extraction is of great importance because 
it affects the ability of generalization, overhead and over-
fitting of the system [Shi et al., 2010a]. In indoor 
environments, the appearance of different areas could be 
drastically affected by the in-class variations and the 
presence of people and furniture. Therefore, classification 
based only on a few trivial features such as the gross 
shape of a scene would be unreliable [Shi et al., 2010a].  

There are various features that could be used for scene 
classification. For 3D range data, Osada et al. [2001] 
proposed five features as shape signatures. Gumhold et al. 
[2001] performed surface reconstruction based on line 
features extracted directly from point clouds. Johnson and 
Hebert [1999] proposed spin images as features for 
surface matching. Sadjadi and Hall [1980] derived a set of 
3D moment invariants which are invariant under size, 
orientation, and position change. Gibbins and 
Swierkowski [2009] reviewed several local 3D features 
which have been used for 3D target recognition and scene 
analysis.  

Using 2D range data, Mozos et al. [2005] extracted two 
sets of simple features from the raw range data and the 
polygonal approximation of the observed area 
respectively. Specifically, they employed about 150 
single-valued features (considering different thresholds) 
of 22 categories, and used a multi-class AdaBoost 
classifier to process them. Similarly, Sousa et al. [2007] 
selected 14 single-valued features from above mentioned 
feature set and performed a classification task using a 
binary SVM classifier. In our previous work, we found 
that using more features normally results in an increased 

computational complexity and does not guarantee better 
performance. In two previous publications [Shi et al., 
2010a; 2010b], we have shown that optimized 
combinations of single-valued features will achieve 
satisfactory classification accuracy.  

For scene classification using 3D point clouds, the 
following 27 features were proposed as computationally 
simple solutions. 

o Five descriptors derived from 3D moment invariants 
[Sadjadi and Hall, 1980], including three relative 
invariants 1J  , 2J   and 3J   - invariant under 

rotations, and two absolute invariants 2
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where ijk are normalized central moments 

o Number of observed points, which are within the 
range of 1.2m - 3.5m from the sensor (specified by 
sensor manufacturers) 

o The volume of the convex hull which comprises all 
the observed points, and the number of points of the 
point cloud which are comprised in the facets of the 
convex hull 

o The average and the standard deviation of the distance 
from the sensor to all observed points 

o The average and the standard deviation of distance 
between the centroid of point cloud and all observed 
points 

o The lengths of three semi-axes of a best-fit ellipsoid 
which comprises all observed points, and the 9 
parameters describing the quadric surface of the best-
fit ellipsoid 
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o The Activity, Mobility and Complexity features which 
were derived by Hjorth [1970] to describe time 
domain signal 

For the purpose of comparison, we use the following 
features extracted as candidate features from 2D range 
data. For the mathematical definitions of these features 
please refer to [Mozos et al., 2005]. 

o The area A of the polygon Z specified by the observed 
points; the perimeter P of Z ; the normalized 
circularity of Z ; the quotient of /A P  

o The average and the standard deviation of both the 
beam length  and the normalized beam length 

o The average, the normalized average and the standard 
deviation of the difference between the length of 
consecutive beams 



o The average and the standard deviation of the relation 
between the length of consecutive beams 

o The average, the normalized average, the standard 
deviation and the normalized standard deviation of the 
distances between the centroid and the shape boundary 

o The major axis aM  and minor axis iM  of the ellipse 

that approximates Z ; the quotient of /a iM M  

o Kurtosis of the laser range sequence 

2.2 Feature Selection 

According to a prevalent point of view that a small subset 
of features is sufficient to approximate the target concept 
well in most learning tasks [Ng, 2004], finding the 
dominant features becomes a key issue. In machine 
learning problems, feature selection algorithms are 
employed to reduce dimensionality and remove redundant 
features [Khushaba et al., 2011]. As a novel and effective 
feature selection algorithm, DEFS is a population based 
method which modified the differential evolution float-
number optimizer to select desired number of features 
from high dimensional feature set. 

The pseudo-code of DEFS algorithm for a single 
iteration is shown as follows. As a rule of thumb, for a 
feature set with dozens of features, 150 iterations are 
sufficient to find a competitive subset containing any 
desired number of features. 

 
As shown in the pseudo code, to deal with the feature 

redundancy problem introduced by the real number 
optimizer, a roulette wheel weighting scheme is 
implemented. The probability of each feature is calculated 
from its distribution factor considering its frequency of 
occurrence in good and less competitive subsets (known 
as positive and negative distributions). For more details 
about the DEFS algorithm, please refer to literature 
[Khushaba et al., 2011]. 

 

2.3 Classification Algorithm 

For the work reported in this paper, we use Support 
Vector Machines (SVM) for supervised learning. SVM is 
a prominent learning algorithm originally developed by 
Vapnik [1999] based on a theoretical foundation rooted in 
statistical learning theory [Xue et al., 2010]. The basic 
idea of SVM is to map data into a high dimensional 
feature space and find an optimal separating hyper-plane 
with the maximal margin which has been proved to offer 
the best generalization ability. 

Consider a training set of instance-label pairs 

    1 1, ,..., ,m mD x y x y , n
ix R and  1, 1iy    , 1,...,i m  

where m  is the number of samples, instances ix are firstly 

mapped into a higher dimension feature space F via a 
nonlinear mapping : nR F  . 

In the case that data are linearly separable in F , SVM 
constructs an optimal separating hyper-plane by solving 
the following optimization problem: 

,
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where w  and b  denote the weight vector and bias in the 
optimal hyper-plane 0Tw x b   respectively. 

Otherwise, if data are linearly non-separable in F , the 
optimization problem is extended to allow a few of noisy 
data to exist by introducing a non-negative slack 
variable i , which accounts for the amount of 

misclassification. SVM then constructs an optimal hyper-
plane   0Tw x b   with maximum-margin and bounded 

error by solving: 
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where the constant C is a penalty parameter used to 
control the amount of regularization. 

The kernel function is defined as: 

     ,
T

i j i jK x x x x      (5)   

If the kernel function exists, then it is not required to 
find out the specific definition of  jx  . 

Given that the SVM is inherently a binary classifier, 
there exist various multi-class solutions. In this paper, we 
utilize the multi-class implementation of C-Support 
Vector Classification scheme included in LibSVM 
package [Chang and Lin, 2001]. 

3 Environment and Dataset 

In the following experiments, datasets were collected by 
the LISA robot (Figure 1) operating in an indoor 
environment (Lab / Office Area, Level 6, Building 2 of 
the University of Technology, Sydney), consisting of 
office rooms, cubicles for student workstations, corridors 
and a common area for seminars and gatherings. The 
layout of the environment is shown in Figure 2 where 
black areas are occupied spaces and the other coloured 

o Input:  DNF (desired number of features)  
   NF (total number of features) 
   NP (number of population) 
   Target population (NP x DNF) 

o Generate mutant population (NP x DNF) from the 
target population using differential evolution 
algorithm 

o For 1,…,NP 

a. Generate trial vector through a crossover of a 
target vector from target population with a 
mutant vector  from mutant population 

b. If there is a feature redundancy in the trial vector, 
employ the feature distribution factor in a 
roulette wheel to substitute redundant feature, 
and then update the feature distribution 
estimation model 

o Select the target vector or the trial vector whichever 
provides a smaller testing error to be put into the 
new target population. 



areas indicate the free space representing the above four 
categories. The environment contains glass walls and 
inherits people during the experiments (see Figure 3). The 
cubicles and the offices contain similar furniture but are 
arranged differently based on the needs of the occupants. 

The LISA robot is equipped with a Hokuyo UTM-30LX 
laser range finder and a Kinect™ sensor device, as shown 
in Figure 1. The Kinect™ provides 3D point clouds of the 
environment and has 57° horizontal field of view, 43° 
vertical field of view. The reliable range of depth is 
approximately 1.2m ~ 3.5m. In the experiment discussed 
in this paper, RGB images from Kinect™ sensor are only 
used for visualization purposes. The Hokuyo laser range 
finder has a span of 30m with 270° horizontal field of 
view. 

 
Figure 2: Blueprint of the indoor environment. Green, yellow, 
blue and red areas represent cubicle area, corridor area, office 
rooms and common area respectively. The training and testing 
samples were collected by robot moving randomly in the cross 
patterned areas, and the validation samples are gathered from 
coloured (except black) solid areas. 

In this experiment, we have utilized a combination of 
six snapshots of the Kinect™ to provide 360° field of 
view (3D) and called it a 360° sample for the rest of the 
paper. Six snapshots were aligned through coordinate 
transformation according to the odometry information. In 
addition, experiments on other combinations / coverage 
are also conducted to provide comparable results. 

Typically a 360° 3D sample comprises ~1.5 million 
unorganized points lying in a space with a 43° vertical 
field of view. By contrast, a 360° 2D sample contains ~ 
6.5 thousand (it has 6 overlapping laser scans). Examples 
of 3D / 2D sample pairs from each class are shown in 
Figure 3, in which colours superimposed on the range 
readings are presented for ease of visualization.  

The whole dataset has been divided into training set, 
testing set and validation set according to different robot 
positions. For learning, two hundred 3D / 2D sample pairs 
were collected in the patterned areas shown in Figure 2 
for training and testing. The supervised learning and the 
feature selection algorithms work on both training and 
testing dataset to tune model parameters and select 
optimized feature combinations. For validation, another 
six hundred sample pairs were collected from the 
remainder of the environment, which were excluded in the 
learning process. The classification results on validation 
dataset reflect the performance of the model. 

 
     (a)                                                        (b) 

 
         (c)                                                        (d) 

Figure 3. Examples of 3D / 2D sample pairs from (a) cubicle, (b) 
corridor, (c) common area, (d) room. Colours in the 3D view are 
for visualization purposes only, and there are people appearing 
in (a) and (c). (Note: figures are not drawn to scale) 

4 Results 

4.1 DEFS Feature Selection 

In order to find a subset of features that best interact 
together to solve the scene classification problem, DEFS 
feature selection algorithm was applied on 3D and 
corresponding 2D samples. Therefore, a sweep in the 
whole feature space among all possible desired 
dimensions is performed, and the testing accuracies of the 
best- n  features are recorded, where n ranges from one to 
the dimension of the feature space. 

The feature selection process operated on training and 
testing sets and the optimization criteria is to minimize 
testing error. Validation set did not involve in the 
selection, therefore the accuracy on validation set with 
corresponding selected subset applied reflects the real-
world scenario. 

The results of feature selection on 3D and 2D samples 
are shown in Figure 4 (a) and Figure 4 (b) respectively. In 
these figures, feature selection has proved essential to 
machine learning problems by highlighting the 
outstanding performance of certain feature combinations. 
Furthermore, using an optimized subset of features 
avoided the cost of constructing insignificant or even 
misleading features.   



There is no particular rule to accept certain n -
dimensional optimized subset, because the choice is a 
compromise between the performance and the time 
overhead. However, for the sake of efficiency, it would be 
a reasonable choice to focus on the end of the steep rising 
stage of the performance curve. Therefore, without 
considering the accuracy on validation set which is 
actually unavailable to the feature selection algorithm, the 
optimized subset which first gives a testing accuracy of 
within 95% of maximum testing accuracy, is adopted in 
the following experiment. 

 
(a)  

 
(b)  

Figure 4. Performance and time overhead of selected feature 
subsets with different desired numbers of features on (a) 360° 
3D samples and (b) 360° 2D samples. The horizontal solid / 
dotted line indicates the best performance and 95% of the best 
performance on testing set respectively, and the vertical dotted 
line marked the accepted subset dimension. 
(Note: the validation set was not involved in the feature 
selection) 

As a result, a subset of the four features has been 
selected for the 3D classification scenario: 

o The volume of the convex hull which comprises all 
observed points 

o The standard deviation of the distances from the 
sensor to all observed points 

o The standard deviation of the distances between the 
centroid of the point cloud and all observed points 

o The parameter h , which is one of the 9 parameters 
describing the quadric surface of the best-fit ellipsoid. 
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Another subset of the five features has been selected for 
the 2D classification scenario: 

o The perimeter P of the polygon Z specified by all 
observed points 

o The standard deviation and the normalized average of 
the difference between the length of consecutive 
beams 

o The standard deviation and the average of the 
distances between the centroid and the shape boundary 

For a computer with Intel Xeon W3580, 3.33GHz CPU, 
it takes typically 0.88s to process a 360° 3D sample 
containing ~1.5 million unorganized points to extract the 
four 3D features. To extract the five 2D features from a 
sample with ~6.5 thousand points typically takes 0.03s.  

4.2 Results from Supervised Learning 

In this section, a learning model is generated from 
training set and thereafter has been applied on validation 
sets. Specifically, in the learning stage, 360° 3D samples 
(or corresponding 360° 2D samples) from the training set 
with preselected feature subset and known labels (cubicle, 
corridor, common area and room) were processed by 
SVM classifier to generate a model. To demonstrate the 
effectiveness of learning, the model was then applied on 
the validation set, resulting in a series of predictions. The 
degree of closeness between the ground truth and the 
predictions reflected the correctness of the model. 

In this experiment, classification of 360° 3D samples 
gave an accuracy of 97.17% and 360° 2D samples 
provided 90.67%. To be specific, the classification 
performances in Figure 5 and Figure 6 illustrate class-
specified accuracies in the 3D and 2D scenarios 
respectively. 

Figure 6 demonstrates that in 2D scenario the classifier 
suffers from higher classification errors on cubicle (blue) 
and room (brown) categories. By contrast the 3D 
information is able to provide adequate discrimination 
because Figure 5 shows that the class-specified accuracies 
on 3D dataset are remarkably high and uniform.  

The error sources of misclassification come from the 
presence of people and furniture in the environment, 
ambiguity of classes and in-class variations. Moreover, 
both 3D and 2D range sensors “see through” glass walls 
in the environment, introducing another error source in 
both cases. This error source may be minimized by further 
analyzing the depth images, which was not carried out in 
the current implementation. 

 
Figure 5. Classification accuracies of using SVM classifier on 
360° 3D dataset. Blue, cyan, yellow and brown bars represent 
accuracies (96.71% / 98.06% / 99.29% / 94.74%) on cubicle, 
corridor, common area and room categories respectively. The 
standard deviation of class-specific accuracies is 1.95%. 



 
Figure 6. Classification accuracies of using SVM classifier on 
360° 2D dataset. blue, cyan, yellow and brown bars represent 
accuracies (82.24% / 89.68% / 95.74% / 95.39%) on cubicle, 
corridor, common area and room categories respectively. The 
standard deviation of class-specific accuracies is 6.32%. 

4.3 Effect of Coverage 

As a single snapshot of the Kinect™ sensor provides a 
limited field of view (57° horizontal by 43° vertical). A 
sample used in the above experiment comprised of six 
snapshots of different directions to cover a 360° of view. 
However, as a closer examination of the issue, a further 
investigation on sensor coverage and accuracy was 
conducted. 

In this experiment, different sensor combinations were 
considered and processed for classification.  

Figure 7 shows the accuracies of different coverage 
schemes. It is rather an expected and reasonable 
observation that by registering adjacent snapshots 
gradually, classification accuracies on 3D samples 
increased in a near-linear manner. The accuracies are 
62.17%, 71.33%, 79.50%, 86.17%, 93.83% and 97.17% 
respectively for combinations of one to six snapshots, 
with a correlation coefficient 0.99 between the number of 
registered snapshots and the accuracies. However, by 
arranging the sensor readings more symmetrically around 
the robot, the classification performance overwhelmed 
corresponding unsymmetrical configurations (81.33% vs. 
71.33% for a combination of two snapshots, and 88.00% 
vs. 79.50% for a combination of three snapshots).  

When comparing with samples from the 2D sensor, a 
single snapshot of 2D sensor covering 270° field of view 
provided more useful information and thus outperformed 
its 3D counterpart which covered about 60° (horizontal) 
field of view, with an accuracy of 77.67% vs. 62.17%. 
However, a combination of two symmetrical snapshots of 
the 3D sensor covering about 120° field of view showed 
an accuracy of 81.33%, which is better than a single 
snapshot of the 2D sensor.  

Therefore, in practical implementations, a proper 3D 
data acquisition scheme which registers symmetrical 
snapshots provided by either a motorized sensor or 
multiple physically mounted sensors is recommended.  

 
Figure 7. Classification accuracies on different coverage 
schemes. The blue and red points indicate 3D and 2D scenarios 
respectively and the filled pattern of the circle reflects the sensor 
coverage. 
(Note: as a single snapshot from 2D sensor provides the 
coverage of 270°, it does not necessarily need 6 snapshots to 
cover 360°. Therefore an overlapping exists and is accepted in 
this experiment.) 

5 Conclusion 

In this paper, we have proposed a feature set for 
unorganized 3D point clouds and then presented a 
supervised learning approach to discriminate the 
environment around a robot into four categories. DEFS 
algorithm has been employed to select optimized subset 
of features and SVM has been applied on the 
classification tasks. In a similar manner, corresponding 
observations from 2D laser range finder has been 
processed for comparison purposes. The comparison 
results between 3D and 2D datasets demonstrated the 
superiority of the 3D dataset.  

Experiments on the dataset collected by a robot 
operating in an indoor environment demonstrated that: 1) 
the feature extraction algorithm spends 0.88s on average 
to obtain four single-valued features from a typical 360° 
3D sample comprising about 1.5 million unorganized 
points; 2) the classification stage achieves 97.17% gross 
accuracies using SVM classifier, with a standard 
deviation of 1.95% on class-specified accuracies; 3) with 
different data acquisition schemes, a range of solutions 
with 62.17% to 97.17% accuracies were available to cope 
with various requirements and constraints. 
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