

Enhancing the Diversity of Genetic Algorithm for
Improved Feature Selection

Akram AlSukker, Rami N. Khushaba, and Ahmed Al-Ani
School of Electrical, Mechanical and Mechatronic Systems

University of Technology, Sydney (UTS)
Sydney, Australia

Alsukker, Rkhushab, Ahmed@eng.uts.edu.au

Abstract— Genetic algorithm (GA) is one of the most widely
used population-based evolutionary search algorithms. One of
the challenging optimization problems in which GA has been
extensively applied is feature selection. It aims at finding an
optimal small size subset of features from the original large
feature set. It has been found that the main limitation of the
traditional GA-based feature selection is that it tends to get
trapped in local minima, a problem known as premature
convergence. A number of implementations are presented in the
literature to overcome this problem based on fitness scaling,
genetic operator modification, boosting genetic population
diversity, etc. This paper presents a new modified genetic
algorithm based on enhanced population diversity, parents’
selection and improved genetic operators. Practical results
indicate the significance of the proposed GA variant in
comparison to many other algorithms from the literature on
different datasets.

Keywords— feature selection, genetic algorithm, premature
convergan.

I. INTRODUCTION

Genetic algorithm (GA) is a powerful population based
search procedure inspired by evolution theory. It proved to give
good results when applied to different applications [1-6]. One
of these applications is the feature/variable selection problem
[2, 7-10]. In such a problem, a number of variables d, that
perform the best under certain classification scheme, are
selected from a pool of D variables (d << D). GA search
consists of several steps: random population generation, fitness
evaluation, fitness ranking, parent’s selection, crossover and
mutation operators, and a stopping criterion. A binary version
of genetic population can be expressed as a list of binary strings
with length D in which the presence of a feature is expressed
by ‘1’ and its absence is expressed by ‘0’. As an example,
consider a binary string X with six features ‘110101’, this
represents selecting the first, second, fourth and sixth features.

In Simple Genetic Algorithm (SGA) search, the most fit
population members have more chance to be selected to
generate the next population through crossover and mutation
operators. In certain complex applications, a high number of
local minima are presented in different areas of the search
space, which may get the genetic population stuck in one of
them. In such a case, the newly generated population may not
be able to produce better children, a situation known as
“premature convergence”, which is likely to happen when

selecting a small number of features from a relatively large
feature set. To clarify this problem, consider that GA is applied
to a dataset of 10,000 features with a genetic population of 50
to search for the best 5 features. The number of features for a
given generation will range between 5 and 250 depending on
the duplication of features in the different population members.
If the current population does not contain all of the five features
that constitute the optimal subset, which is expected for this
example, then it will be very likely for GA to get stuck in local
minima, as the crossover operator does not introduce new
features, and the possibility of finding an optimal feature using
the mutation operator is very small. To overcome such a
limitation a new method is proposed in this paper to enhance
the diversity of the solutions represented by the population
members.

This paper is organized as follows: section 2 presents
variants of GA, section 3 describes the proposed GA.
Experimental results are presented in section 4, and the
conclusion is given in section 5.

II. GENETIC ALGORITHM VARIANTS

Studies in this field of research have shown that premature
convergence has a great relation to population diversity. Simple
GA search starts usually with diverse population but after a
number of iterations, many population members tend to carry
similar solutions and converge to a certain point. Some studies
attempted to overcome this problem by one of the following
techniques: (i) fitness scaling and parent selection, and (ii)
improved crossover and mutation operators and introducing
hybrid search. The Relative Fitness scaling Genetic Algorithm
(GARF) introduced in [10] is inspired by the inverse power law
relationship that occurs in physical and social science, as
shown in equation 1

2

2

() .

1

x
f x

x

c

where x represents the fitness of population member and c is
the ceiling factor which can take any values greater than or
equal to the maximum possible fitness.

Note that when c is very high, the scaling factor’s effect is
minimum (f(x) x). In this way relative scaling gives most

individuals a small or average fitness and a very high fitness
value to a few individuals. This scaling preserves population
diversity by creating small differences between small and large
fitness value members, and therefore avoids destroying unfit
individuals early in the process that might contain good
contributed features. Once candidate solutions approach a
fitness value close to c, they will dominate the Roulette wheel.

A hybrid genetic search HGA method presented in [9] uses
embedded local search to fine tune the search. HGA performs
constrained crossover and mutation that produce children
containing n features, where n is not too far from d, where d is
the desired number of features. A local sequential search is then
executed to repair the resulting outcome X by including exactly
d features. Two local search operators are introduced called
ripple_add(r) & ripple_rem(r), where r is a constant number
that reflects the number of features to be added/removed. In
simple words, ripple_add(r) operator is implemented by adding
r features one at a time to current set followed by removing r-1
features, while ripple_rem(r) is utilized by removing r features
followed by adding r-1 features. The following procedure has
been used by Seok et al. [9] to ensure the selection of fixed
number of features (d) by each child.

• If n=d, apply ripple_rem() then ripple_add().

• If n >d, apply ripple_rem() n-d times.

• If n <d, apply ripple_add() d-n times.

Where n represent the number of features presented in the
generated child after crossover and mutation.

III. PROPOSED GENETIC ALGORITHM

The proposed modified Diverse Genetic Algorithm (DGA)
tries to escape from local minima through introducing more
diverse features to GA members and avoiding mating of exact
members through a modified roulette wheel selection
procedures. Additionally, a genetic population is checked when
trapped in a certain area to get rid of duplicate population
members and introduce a more diverse population; this
procedure is summarized as follows:

• Apply simple genetic algorithm for a certain fraction
of total number of iterations (threshold, denoted as Th1), to
provide fast convergence to a solution, even if that solution
presents a local minimum. In simple GA search the elitism will
cause other population members to rapidly converge toward
elite members. Therefore the elitism mechanism will be
omitted in DGA after reaching this threshold and start to
improve the search by trying to exit from local minima by
partiality removing the pull toward best population members.
Th1 is set to 10% of the maximum number of iterations.

• When Th1 is reached elitism will be eliminated from
genetic search. Note that the fitness of the best member in the
generated population might be lower than the previous iteration
therefore a memory is introduced to save best achieved results.
It is worth mentioning that this step is not required when
applying SGA with elitism because elite kids perform as a
memory.

• Modifying parent’s selection algorithm in order to
avoid selecting exact parent. Two roulette wheels are utilized.

The first wheel selects the first parent P1. The second wheel
that is used to select parent P2 is constructed by eliminating the
section that represents P1.

• Unconstrained crossover and mutation is used
followed by repairing all resulting kids by adding features
randomly from unused feature set, where each kid has different
added features to enforce diversity.

• When the number of stall generations (No. of
iterations without fitness improvement) exceeds a certain
number, threshold Th2, the current population is checked in
order to remove duplicate members and replace them with a
random member generated from the unused features. A
distance matrix is utilized for detecting duplicate members, i.e.
when the Euclidean distance between two members are zero
then one is replaced with a randomly generated set from unused
features. Th2 is set to 30% of the maximum number of
iterations.

III. EXPERIMENTAL RESULTS

A number of experiments have been implemented to
investigate the performance of the proposed DGA against other
GA variants. In the first experiment, a number of selected small
UCI datasets were used (glass, vowel, wine), with a relatively
low number of features. As a result a full search is feasible and
can be done in less than a minute using a kNN classifier with 3
neighbors and take-one-out method as a fitness function, unlike
other UCI dataset that requires a high computational cost to
evaluate all subset, i.e. when selecting 3 features out of 16 from
letter dataset around 3 hours is needed to evaluate all feasible
subsets. Several GA variants have been compared according to
the time required to achieve optimal solution found by
Exhaustive Search (ES) as in Table 1. All GA variants were
implemented using MATLAB, starting from the same initial
population and allowing a maximum run time of one minute. A
kNN classifier with 3 neighbors was used as a fitness function
using take one out method. It is also worth mentioning that the
search is repeated for five times and stopped when global
minima is achieved as in full search. In all cases, GA variants
were able to achieve global optima with a fraction of full search
time. Table 1 show that ES achieved global optima faster than
other methods when dealing with small search space, i.e. like
selecting 2 or 8 features out of 10 in Glass and Vowel datasets
as shown in Table 2. On the other hand, DGA was able to save
up to 87% of the time, as when selecting 8 features from wine
dataset to achieve the global minima. The justification behind
the good performance of HGA is that better population
members are achieved through local search, which helped in
exploring most of the features. Nevertheless, the local search
requires more subset evaluation when dealing with high
dimension dataset as will be discussed in the next experiments.

The second experiment studies the performance of different
GA variants when applied to a dataset which has a large
number of redundant features. The Madelon dataset is
employed for this purpose which contains only 5 relevant
features out of 500 features. In Addition to GA variants, other
benchmark search method such as plus l take away r (PTA),
differential Evolution (DE) [11] and binary Particle Swarm
Optimization (PSO) [12] have been evaluated. A brief
description for each method is presented as follow:

Initialize GA
Itr. counter=0
stall counter=0

if Itr.>Th1

Fitness Evaluation
& Scaling

set Elite kids=0

d-|Kid|

Randomly
Remove

I-|Kid| features

Randomly Add
|Kid|-d features

>0<0

=0

if
Stall>Th2

stopping
condition

Evaluate Resulting
Kid

Itr=Itr+1

Select Parent 1
using Roulette

Wheel 1

Remove Parent 1
from Wheel 1

Crossover
Parent 1 & Parent 2

Mutate Resulting
(Kid)

Fix Wheel 1

select Parent 2
using new Wheel

Remove similar
parents

Generate new
members using
unused features

Evaluate new
members

End

No

Yes

No

Yes

NoIs There any
Improvement

Save Best Kid
Stall=0

stall=stall+1

No

Yes

Yes

Figure 1. DGA flow chart.

-PTA: a refined sequential search approach that partially
overcome the nesting effect and is based on applying a specific
number of additions/removals of variables, where a feature that
is not working well with other selected features can be
removed. This step is repeated until the required number of
features is achieved. This method is known as plus l take away
r method (l > r).

TABLE I. CONVERGENCE SPEED OF GA VARIANTS

Dataset d
ES
Acc

Time (Sec.)
ES

SGA

HGA DGA GARF

Glass 2 99.53 1.5 3 2 2 4
D=10 4 99.53 6 3 3 2 3

6 99.53 6 3 2 2 3
8 99.53 1.5 3 2 3 7

Vowel 2 62.93 13 32 17 27 20
D=10 4 90.10 60 33 31 23 58

6 96.57 62 54 28 32 29
8 98.08 14 31 25 29 27

Wine 3 94.38 7 2 2 2 4
D=13 5 97.19 32 6 6 7 17

8 95.51 30 5 4 4 7
10 94.94 7 5 2 4 9

TABLE II. SERARCH SPACE SIZE & TIME SAVING

Dataset
N. of

Patterns
D d

No. of
evaluated

subset

DGA

ES

Time

Time

Glass 214

10

2 45 1.33

4 210 0.33
6 210 0.33
8 45 2

Vowel 990

10

2 45 2.08

4 210 0.38
6 210 0.52
8 45 2.07

Wine 187

13

3 286 0.29

5 1287 0.22
8 1287 0.13
10 286 0.57

-DE: Differential Evolution (DE) is a simple, parallel, direct
search, and easy to use optimization method having good
convergence and fast implementation properties [11]. The
crucial idea behind DE is a new scheme for generating trial
parameter vectors by adding the weighted difference vector
between two population members to a third member. The
following equation shows how to combine three different,
randomly chosen vectors (Xr0, Xr1 and Xr2) to create a mutant
vector Vi,g from the current generation g:

 Vi,g = Xr0,g + F . (X r1,g - X r2,g) (2)

Where F (0, 1) is a scale factor that controls the rate at
which the population evolves. In addition, DE employs a
uniform crossover, also known as discrete recombination, in
order to build trial vectors out of parameter values that have
been copied from two different vectors. In particular, DE
crosses each vector with a mutant vector Y:

, ,

, ,

, ,

if (0,1)
j i g

j i g

j i g

rand Cr
U

Otherwise

V

X

The crossover probability [0,1]
r

C is a user defined value

that controls the fraction of parameter values that are copied
from the mutant. If the newly generated vector results in a
lower objective function value (better fitness) than the

predetermined population member, then the resulting vector
replaces the vector with which it was compared

-PSO: A binary version of particle swarm optimization was
adopted, the potential solutions (Particles) are considered as
simple agents that can be presented by its location in N
dimensional space. The goodness of each position is evaluated
according certain measure (fitness function). Each particle
memorizes its best achieved fitness (Pbest) and communicates
with other particle to recognize the best achieved result
(Gbest). Search started by randomly selection position,
direction and speed of number of particles, each particle is
accelerated toward Pbest (cognitive learning) and Gbest (social
learning) while constantly checking the fitness of its current
location. The probability of selecting a feature is calculated as
according to next set of equations:

1

2

* * (-)

 * (-)

ij ij ij ij

ij ij

v w v c rand Pbest x

c rand Gbest x

1

()
1 exp()ij

ij
P v

v

 (()) () 1; () 0ij ij ij ijif p P v t then x t else x t

where
 vij particle i velocity in the jth dimension.
 w is the inertia weight which is usually 1.
 c1 and c2 scaling factor which represent relative pull

to Pbest and Gbest. c1 and c2 usually set to 2.
 rand () random variable between 0 and 1.
 Xij particle i position in the jth dimension.
 Pbestij and Gbestij represent the personal and global

best in the jth dimension.
 pij is a vector of random numbers, drawn from a

uniform distribution between 0.0 and 1.0

 The graphs shown in Figure 2 indicate that DE and DGA
converge faster than other methods. However, DGA achieved
its maximum using around 100 iterations while DE required an
additional 50 iteration to achieve the same result. Figure 2 also
shows that DE and DGA achieved the best accuracy (90.6%)
followed by PTA, GARF and HGA (89.5%) and the worst
result were achieved by SGA (88.23%). In one hand, HGA did
not perform well in this experiment and takes around 200
iteration for quick convergence due to the negative aspect of
local search that search all surrounding search space that only
provides a small improvement increment. This may indicate
that HGA has a limitation when applied to large feature sets
with high redundancy taking into account that local search will
produces large number of subsets that need to be evaluated
each crossover and mutation operation. The number of subsets
to be evaluated (NoS) increases as number of features increases
and as ripple factor r increases. Equations 7-10 illustrate the
complication associated with increasing both ripple factor and
feature space.

0 50 100 150 200 250 300 350 400
50

55

60

65

70

75

80

85

90

95

Time (Sec)

A
cc

u
ra

cy
 (

%
)

GA
DGA
DE
PTA(2,1)
HGA
GARF

Figure 1. Convergence of different methods when selecting 5 features from
Madelon.

1 2

0 0

(_ ()) () ()
r r

i i

NoS ripple add r D X i X r i

1 2

0 0

(_ ()) ()
r r

i i

NoS ripple rem r X i D X r i

Note that for D>>|X|

(_ ())NoS ripple add r r D

 (_ ()) (1)NoS ripple rem r r D

On the other hand, GARF will slow down the convergence
of search due to the fact that better population members are
assigned lower fitness ranks to encourage them evolve with
less fit members. Also, GARF does not take into consideration
the size of search space, and hence some features will not have
the chance to be explored.

In the third experiment, a number of large datasets were
used to study searching huge search spaces. Eleven gene
datasets obtained form (http://www.gems-system.org/) were
used. The number of features varies in those dataset from 2 to
12 thousands with relatively small number of test pattern (60-
308 patterns) as shown in Table 2. Due to the small number of
patterns in these datasets a 10-fold cross-validation approach
with kNN classifier (k=3) was adopted. The results in figures
3-13 represent the average value of ten runs, with all methods
starting from the same initial population to make a fair
comparison. The search was started by selecting 5 to 50
features with 5 steps increment which only represent less than
2.5% of the total number of features.

HGA has been excluded from this experiment due to its high
computational cost associated with large number of subset
evaluation after each kid generation especially when dealing
with high dimension dataset coupled with expensive fitness
function as explained earlier.

TABLE III. GENE DATASET DESCRIPTION

Dataset Symbol NoP NoF NoC
Lung Cancer LC 203 12600 5

Prostate
Tumor

PT 102 10509 2

Leukemia 1 L1 72 5328 3
Leukemia 2 L2 72 11226 3

Brain Tumor 1 BT1 90 5920 5
Brain Tumor 2 BT2 50 10368 4

9 Tumor T9 60 5726 9
11 Tumor T11 174 12533 11
14 Tumor T14 308 15009 26
DLBCL DL 77 5469 2
SRBCT SR 83 2309 4

In order to analyze the results one can start by categorizing
the performance of the different feature selection methods into
three categories. In the first category, it can be noticed that all
of the SGA, GARF, and BPSO compete with each other on
average across all of these datasets, while at the same time
providing the lowest performance in comparison to the other
utilized methods. The second category includes the proposed
DGA and DE, where those two methods are again showing
competing performance across the different datasets, while at
the same time providing better performance than the methods
included in the first category. The third and the final category is
occupied by the PTA(2,1) method, with practical results
indicating that PTA(2,1) offered absolutely the best
classification performance. However, it is worth mentioning
here that PTA(2,1) is a very time consuming method, i.e.
PTA(2,1) results on T11 were achieved in 1.62 hours, while
SGA, GARF, DGA, PSO and DE took 12.2, 11.6, 13.6, 19.8
and 13.6 minutes respectively which is around %15 of the PTA
search time. In most cases, DGA outperformed the other GA
variants when selecting a range of small feature sets (5-50) out
of thousands of features. DGA was also able to achieve results
close to DE, which claims to outperform GA in many studies.

IV. CONCLUSION AND FUTURE WORK

We proposed in this paper a modified genetic algorithm
method for feature selection; terms as DGA, which aimed at
overcome the premature convergence problem that traditional
GA suffers from. It basically infuses more diverse population
members when needed. Results showed that DGA was able to
outperform other GA variants with similar computational cost
and achieved results close to that of differential evolution (DE).
Other GA based methods such as DGA and GARF suffer from
limitation when applied to high redundant data with very high
dimensionality, i.e. high computational local search made DGA
search impractical and the fitness scaling in GARF compromise
the convergence of the search by allocating lower fitness rank
to the best population members. DGA algorithm will be further
developed in the future to enhance the parent selection
procedure and to fuse better feature when needed.

5 10 15 20 25 30 35 40 45 50
91

92

93

94

95

96

97

98

99

Number of Selected Features

A
cc

u
ra

cy
 (

%
)

SGA
GARF
DGA
DE
BPSO
PTA(2,1)

Figure 2. Classification performance of Lung Cancer dataset.

5 10 15 20 25 30 35 40 45 50
92

93

94

95

96

97

98

99

Number of Selected Features

A
cc

u
ra

cy
 (

%
)

SGA
GARF
DGA
DE
BPSO
PTA(2,1)

Figure 3. Classification performance of Prostate Tumor dataset.

5 10 15 20 25 30 35 40 45 50
95.5

96

96.5

97

97.5

98

98.5

99

99.5

100

Number of Selected Features

A
cc

u
ra

cy
 (

%
)

SGA
GARF
DGA
DE
BPSO
PTA(2,1)

Figure 4. Classification performance of Leukemia 1 dataset.

5 10 15 20 25 30 35 40 45 50
94

95

96

97

98

99

100

Number of Selected Features

A
cc

u
ra

cy
 (

%
)

SGA
GARF
DGA
DE
BPSO
PTA(2,1)

Figure 5. Classification performance of Leukemia 2 dataset.

5 10 15 20 25 30 35 40 45 50
86

88

90

92

94

96

98

Number of Selected Features

A
cc

u
ra

cy
 (

%
)

SGA
GARF
DGA
DE
BPSO
PTA(2,1)

Figure 6. Classification performance of Brain Tumor 1 dataset.

5 10 15 20 25 30 35 40 45 50
84

86

88

90

92

94

96

98

Number of Selected Features

A
cc

u
ra

cy
 (

%
)

SGA
GARF
DGA
DE
BPSO
PTA(2,1)

Figure 7. Classification performance of Brain Tumor 2 dataset.

5 10 15 20 25 30 35 40 45 50
50

55

60

65

70

75

80

Number of Selected Features

A
cc

u
ra

cy
 (

%
)

SGA
GARF
DGA
DE
BPSO
PTA(2,1)

Figure 8. Classification performance of 9_Tumor dataset.

5 10 15 20 25 30 35 40 45 50
60

65

70

75

80

85

90

95

Number of Selected Features

A
cc

u
ra

cy
 (

%
)

SGA
GARF
DGA
DE
BPSO
PTA(2,1)

Figure 9. Classification performance of 11_Tumor dataset.

5 10 15 20 25 30 35 40 45 50
35

40

45

50

55

60

65

70

75

Number of Selected Features

A
cc

u
ra

cy
 (

%
)

SGA
GARF
DGA
DE
BPSO
PTA(2,1)

Figure 10. Classification performance of 14_Tumor dataset.

5 10 15 20 25 30 35 40 45 50
97.5

98

98.5

99

99.5

100

Number of Selected Features

A
cc

u
ra

cy
 (

%
)

SGA
GARF
DGA
DE
BPSO
PTA(2,1)

Figure 11. Classification performance of DLBCL dataset.

5 10 15 20 25 30 35 40 45 50
94

95

96

97

98

99

100

Number of Selected Features

A
cc

u
ra

cy
 (

%
)

SGA
GARF
DGA
DE
BPSO
PTA(2,1)

Figure 12. Classification performance of SRBCL dataset.

REFERENCES

[1] A. S. Andreou, E. F. Georgopoulos, and S. D. Likothanassis,

"Exchange-Rates Forecasting: A Hybrid Algorithm Based on
Genetically Optimized Adaptive Neural Networks," Computational
Economics, vol. 20, pp. 191-210, 2002.

[2] M. T. Harandi, M. N. Ahmadabadi, B. N. Araabi, and C. Lucas,
"Feature selection using genetic algorithm and it's application to
face recognition," in Cybernetics and Intelligent Systems, 2004
IEEE Conference on, 2004, pp. 1368-1373.

[3] C. G. Wu, X. L. Xing, H. P. Lee, C. G. Zhou, and Y. C. Liang,
"Genetic algorithm application on the job shop scheduling
problem," in Machine Learning and Cybernetics, 2004.
Proceedings of 2004 International Conference on, 2004, pp. 2102-
2106 vol.4.

[4] W. Li-Ying, Z. Jie, and L. Hua, "An Improved Genetic Algorithm
for TSP," in Machine Learning and Cybernetics, 2007 International
Conference on, 2007, pp. 925-928.

[5] S. Obayashi, D. Sasaki, Y. Takeguchi, and N. Hirose,
"Multiobjective evolutionary computation for supersonic wing-
shape optimization," Evolutionary Computation, IEEE
Transactions on, vol. 4, pp. 182-187, 2000.

[6] B. T. Skinner, B. T. Skinner, H. T. Nguyen, and D. K. Liu,
"Classification of EEG Signals Using a Genetic-Based Machine
Learning Classifier," in Engineering in Medicine and Biology
Society, 2007. EMBS 2007. 29th Annual International Conference
of the IEEE, 2007, pp. 3120-3123.

[7] A. AlSukker and A. Al-Ani, "Evaluation of Feature Selection
Methods for Improved EEG Classification," in Biomedical and
Pharmaceutical Engineering, 2006. ICBPE 2006. International
Conference on, 2006, pp. 146-151.

[8] J. Yang and V. Honavar, "Feature subset selection using a genetic
algorithm," Intelligent Systems and their Applications, IEEE, vol.
13, pp. 44-49, 1998.

[9] O. Il-Seok, L. Jin-Seon, and M. Byung-Ro, "Hybrid genetic
algorithms for feature selection," Pattern Analysis and Machine
Intelligence, IEEE Transactions on, vol. 26, pp. 1424-1437, 2004.

[10] G. Surabhi, "Relative fitness scaling for improving efficiency of
proportionate selection in genetic algorithms," in Proceedings of
the 11th Annual Conference Companion on Genetic and
Evolutionary Computation Conference: Late Breaking Papers
Montreal, Québec, Canada: ACM, 2009, pp. 2741-2744.

[11] R. N. Khushaba, A. Al-Ani, and A. Al-Jumaily, "Differential
evolution based feature subset selection," in Pattern Recognition,
2008. ICPR 2008. 19th International Conference on, 2008, pp. 1-4.

[12] B. Coppin, Artificial intelligence illuminated, 1st ed. Boston: Jones
and Bartlett Publishers, 2004.

“© 2010 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in
any current or future media, including reprinting/republishing this material for advertising or promotional purposes,
creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of
this work in other works.”

	Pages from 2010000888-2
	Pages from 2010000888

