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Abstract— Genetic algorithm (GA) is one of the most widely 
used population-based evolutionary search algorithms. One of 
the challenging optimization problems in which GA has been 
extensively applied is feature selection. It aims at finding an 
optimal small size subset of features from the original large 
feature set. It has been found that the main limitation of the 
traditional GA-based feature selection is that it tends to get 
trapped in local minima, a problem known as premature 
convergence. A number of implementations are presented in the 
literature to overcome this problem based on fitness scaling, 
genetic operator modification, boosting genetic population 
diversity, etc. This paper presents a new modified genetic 
algorithm based on enhanced population diversity, parents’ 
selection and improved genetic operators. Practical results 
indicate the significance of the proposed GA variant in 
comparison to many other algorithms from the literature on 
different datasets. 

Keywords— feature selection, genetic algorithm, premature 
convergan. 

I.  INTRODUCTION 

Genetic algorithm (GA) is a powerful population based 
search procedure inspired by evolution theory. It proved to give 
good results when applied to different applications [1-6]. One 
of these applications is the feature/variable selection problem 
[2, 7-10]. In such a problem, a number of variables d, that 
perform the best under certain classification scheme, are 
selected from a pool of D variables (d << D). GA search 
consists of several steps: random population generation, fitness 
evaluation, fitness ranking, parent’s selection, crossover and 
mutation operators, and a stopping criterion.  A binary version 
of genetic population can be expressed as a list of binary strings 
with length D in which the presence of a feature is expressed 
by ‘1’ and its absence is expressed by ‘0’. As an example, 
consider a binary string X with six features ‘110101’, this 
represents selecting the first, second, fourth and sixth features. 

In Simple Genetic Algorithm (SGA) search, the most fit 
population members have more chance to be selected to 
generate the next population through crossover and mutation 
operators. In certain complex applications, a high number of 
local minima are presented in different areas of the search 
space, which may get the genetic population stuck in one of 
them. In such a case, the newly generated population may not 
be able to produce better children, a situation known as 
“premature convergence”, which is likely to happen when 

selecting a small number of features from a relatively large 
feature set. To clarify this problem, consider that GA is applied 
to a dataset of 10,000 features with a genetic population of 50 
to search for the best 5 features. The number of features for a 
given generation will range between 5 and 250 depending on 
the duplication of features in the different population members. 
If the current population does not contain all of the five features 
that constitute the optimal subset, which is expected for this 
example, then it will be very likely for GA to get stuck in local 
minima, as the crossover operator does not introduce new 
features, and the possibility of finding an optimal feature using 
the mutation operator is very small. To overcome such a 
limitation a new method is proposed in this paper to enhance 
the diversity of the solutions represented by the population 
members. 

This paper is organized as follows: section 2 presents 
variants of GA, section 3 describes the proposed GA. 
Experimental results are presented in section 4, and the 
conclusion is given in section 5. 

II. GENETIC ALGORITHM VARIANTS 

Studies in this field of research have shown that premature 
convergence has a great relation to population diversity. Simple 
GA search starts usually with diverse population but after a 
number of iterations, many population members tend to carry 
similar solutions and converge to a certain point. Some studies 
attempted to overcome this problem by one of the following 
techniques: (i) fitness scaling and parent selection, and (ii) 
improved crossover and mutation operators and introducing 
hybrid search. The Relative Fitness scaling Genetic Algorithm 
(GARF) introduced in [10] is inspired by the inverse power law 
relationship that occurs in physical and social science, as 
shown in equation 1 
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where x represents the fitness of population member and c is 
the ceiling factor which can take any values greater than or 
equal to the maximum possible fitness. 

Note that when c is very high, the scaling factor’s effect is 
minimum (f(x)  x). In this way relative scaling gives most 



 

individuals a small or average fitness and a very high fitness 
value to a few individuals. This scaling preserves population 
diversity by creating small differences between small and large 
fitness value members, and therefore avoids destroying unfit 
individuals early in the process that might contain good 
contributed features. Once candidate solutions approach a 
fitness value close to c, they will dominate the Roulette wheel. 

A hybrid genetic search HGA method presented in [9] uses 
embedded local search to fine tune the search. HGA performs 
constrained crossover and mutation that produce children 
containing n features, where n is not too far from d, where d is 
the desired number of features. A local sequential search is then 
executed to repair the resulting outcome X by including exactly 
d features. Two local search operators are introduced called 
ripple_add(r) & ripple_rem(r), where r is a constant number 
that reflects the number of features to be added/removed. In 
simple words, ripple_add(r) operator is implemented by adding 
r features one at a time to current set followed by removing r-1 
features, while ripple_rem(r) is utilized by removing r features 
followed by adding r-1 features. The following procedure has 
been used by Seok et al. [9] to ensure the selection of fixed 
number of features (d) by each child. 

• If n=d, apply ripple_rem( ) then ripple_add( ). 

• If n >d, apply ripple_rem( ) n-d times. 

• If n <d, apply ripple_add( ) d-n times.  

Where n represent the number of features presented in the 
generated child after crossover and mutation. 

III. PROPOSED GENETIC ALGORITHM 

The proposed modified Diverse Genetic Algorithm (DGA) 
tries to escape from local minima through introducing more 
diverse features to GA members and avoiding mating of exact 
members through a modified roulette wheel selection 
procedures. Additionally, a genetic population is checked when 
trapped in a certain area to get rid of duplicate population 
members and introduce a more diverse population; this 
procedure is summarized as follows: 

• Apply simple genetic algorithm for a certain fraction 
of total number of iterations (threshold, denoted as Th1), to 
provide fast convergence to a solution, even if that solution 
presents a local minimum. In simple GA search the elitism will 
cause other population members to rapidly converge toward 
elite members. Therefore the elitism mechanism will be 
omitted in DGA after reaching this threshold and start to 
improve the search by trying to exit from local minima by 
partiality removing the pull toward best population members. 
Th1 is set to 10% of the maximum number of iterations.  

• When Th1 is reached elitism will be eliminated from 
genetic search. Note that the fitness of the best member in the 
generated population might be lower than the previous iteration 
therefore a memory is introduced to save best achieved results. 
It is worth mentioning that this step is not required when 
applying SGA with elitism because elite kids perform as a 
memory. 

• Modifying parent’s selection algorithm in order to 
avoid selecting exact parent. Two roulette wheels are utilized. 

The first wheel selects the first parent P1. The second wheel 
that is used to select parent P2 is constructed by eliminating the 
section that represents P1. 

• Unconstrained crossover and mutation is used 
followed by repairing all resulting kids by adding features 
randomly from unused feature set, where each kid has different 
added features to enforce diversity. 

• When the number of stall generations (No. of 
iterations without fitness improvement) exceeds a certain 
number, threshold Th2, the current population is checked in 
order to remove duplicate members and replace them with a 
random member generated from the unused features. A 
distance matrix is utilized for detecting duplicate members, i.e. 
when the Euclidean distance between two members are zero 
then one is replaced with a randomly generated set from unused 
features. Th2 is set to 30% of the maximum number of 
iterations.  

III. EXPERIMENTAL RESULTS 

A number of experiments have been implemented to 
investigate the performance of the proposed DGA against other 
GA variants. In the first experiment, a number of selected small 
UCI datasets were used (glass, vowel, wine), with a relatively 
low number of features. As a result a full search is feasible and 
can be done in less than a minute using a kNN classifier with 3 
neighbors and take-one-out method as a fitness function, unlike 
other UCI dataset that requires a high computational cost to 
evaluate all subset, i.e. when selecting 3 features out of 16 from 
letter dataset around 3 hours is needed to evaluate all feasible 
subsets. Several GA variants have been compared according to 
the time required to achieve optimal solution found by 
Exhaustive Search (ES) as in Table 1. All GA variants were 
implemented using MATLAB, starting from the same initial 
population and allowing a maximum run time of one minute. A 
kNN classifier with 3 neighbors was used as a fitness function 
using take one out method. It is also worth mentioning that the 
search is repeated for five times and stopped when global 
minima is achieved as in full search. In all cases, GA variants 
were able to achieve global optima with a fraction of full search 
time. Table 1 show that ES achieved global optima faster than 
other methods when dealing with small search space, i.e. like 
selecting 2 or 8 features out of 10 in Glass and Vowel datasets 
as shown in Table 2. On the other hand, DGA was able to save 
up to 87% of the time, as when selecting 8 features from wine 
dataset to achieve the global minima. The justification behind 
the good performance of HGA is that better population 
members are achieved through local search, which helped in 
exploring most of the features. Nevertheless, the local search 
requires more subset evaluation when dealing with high 
dimension dataset as will be discussed in the next experiments. 

The second experiment studies the performance of different 
GA variants when applied to a dataset which has a large 
number of redundant features. The Madelon dataset is 
employed for this purpose which contains only 5 relevant 
features out of 500 features. In Addition to GA variants, other 
benchmark search method such as plus l take away r (PTA), 
differential Evolution (DE) [11] and binary Particle Swarm 
Optimization (PSO) [12] have been evaluated. A brief 
description for each method is presented as follow: 
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Figure 1.  DGA flow chart. 

 

-PTA: a refined sequential search approach that partially 
overcome the nesting effect and is based on applying a specific 
number of additions/removals of variables, where a feature that 
is not working well with other selected features can be 
removed. This step is repeated until the required number of 
features is achieved. This method is known as plus l take away 
r method (l > r). 

 

 

TABLE I.  CONVERGENCE SPEED OF GA VARIANTS 
 

Dataset d 
ES 
Acc 

Time (Sec.) 
ES 

 
SGA 

 
HGA DGA GARF 

Glass 2 99.53 1.5 3 2 2 4 
D=10 4 99.53 6 3 3 2 3 

6 99.53 6 3 2 2 3 
8 99.53 1.5 3 2 3 7 

Vowel 2 62.93 13 32 17 27 20 
D=10 4 90.10 60 33 31 23 58 

6 96.57 62 54 28 32 29 
8 98.08 14 31 25 29 27 

Wine 3 94.38 7 2 2 2 4 
D=13 5 97.19 32 6 6 7 17 

8 95.51 30 5 4 4 7 
10 94.94 7 5 2 4 9 

 

TABLE II.  SERARCH SPACE SIZE & TIME SAVING 

Dataset 
N. of 

Patterns 
D d 

No. of 
evaluated 

subset 

DGA

ES

Time

Time
 

Glass 214 

10 

2 45 1.33 
 

 
4 210 0.33 
6 210 0.33 
8 45 2 

Vowel 990 

10 

2 45 2.08 
 

 
4 210 0.38 
6 210 0.52 
8 45 2.07 

Wine 187 

13 

3 286 0.29 
 

 
5 1287 0.22 
8 1287 0.13 
10 286 0.57 

 

-DE: Differential Evolution (DE) is a simple, parallel, direct 
search, and easy to use optimization method having good 
convergence and fast implementation properties [11]. The 
crucial idea behind DE is a new scheme for generating trial 
parameter vectors by adding the weighted difference vector 
between two population members to a third member. The 
following equation shows how to combine three different, 
randomly chosen vectors (Xr0, Xr1 and Xr2) to create a mutant 
vector Vi,g  from the current generation g:          

  Vi,g  =  Xr0,g + F . (X r1,g  -  X r2,g )              (2) 

Where F (0, 1) is a scale factor that controls the rate at 
which the population evolves. In addition, DE employs a 
uniform crossover, also known as discrete recombination, in 
order to build trial vectors out of parameter values that have 
been copied from two different vectors. In particular, DE 
crosses each vector with a mutant vector Y: 
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The crossover probability [0,1]
r

C   is a user defined value 

that controls the fraction of parameter values that are copied 
from the mutant. If the newly generated vector results in a 
lower objective function value (better fitness) than the 



 

predetermined population member, then the resulting vector 
replaces the vector with which it was compared 

-PSO: A binary version of particle swarm optimization was 
adopted, the potential solutions (Particles) are considered as 
simple agents that can be presented by its location in N 
dimensional space. The goodness of each position is evaluated 
according certain measure (fitness function). Each particle 
memorizes its best achieved fitness (Pbest) and communicates 
with other particle to recognize the best achieved result 
(Gbest). Search started by randomly selection position, 
direction and speed of number of particles, each particle is 
accelerated toward Pbest (cognitive learning) and Gbest (social 
learning) while constantly checking the fitness of its current 
location. The probability of selecting a feature is calculated as 
according to next set of equations: 
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where 
 vij  particle i velocity in the jth dimension. 
 w  is the inertia weight which is usually 1. 
 c1 and c2 scaling factor which represent relative pull 

to Pbest and Gbest. c1 and c2 usually set to 2.    
 rand () random variable between 0 and 1. 
 Xij  particle i position in the jth dimension. 
 Pbestij and Gbestij  represent the personal and global 

best in the jth dimension. 
 pij  is a vector of random numbers, drawn from a 

uniform distribution between 0.0 and 1.0 

 The graphs shown in Figure 2 indicate that DE and DGA 
converge faster than other methods. However, DGA achieved 
its maximum using around 100 iterations while DE required an 
additional 50 iteration to achieve the same result. Figure 2 also 
shows that DE and DGA achieved the best accuracy (90.6%) 
followed by PTA, GARF and HGA (89.5%) and the worst 
result were achieved by SGA (88.23%). In one hand, HGA did 
not perform well in this experiment and takes around 200 
iteration for quick convergence due to the negative aspect of 
local search that search all surrounding search space  that only 
provides a small improvement increment. This may indicate 
that HGA has a limitation when applied to large feature sets 
with high redundancy taking into account that local search will 
produces large number of subsets that need to be evaluated 
each crossover and mutation operation. The number of subsets 
to be evaluated (NoS) increases as number of features increases 
and as ripple factor r increases.  Equations 7-10 illustrate the 
complication associated with increasing both ripple factor and 
feature space. 
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Figure 1.  Convergence of different methods when selecting 5 features from 
Madelon. 
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On the other hand, GARF will slow down the convergence 
of search due to the fact that better population members are 
assigned lower fitness ranks to encourage them evolve with 
less fit members. Also, GARF does not take into consideration 
the size of search space, and hence some features will not have 
the chance to be explored. 

In the third experiment, a number of large datasets were 
used to study searching huge search spaces. Eleven gene 
datasets obtained form (http://www.gems-system.org/) were 
used. The number of features varies in those dataset from 2 to 
12 thousands with relatively small number of test pattern (60-
308 patterns) as shown in Table 2. Due to the small number of 
patterns in these datasets a 10-fold cross-validation approach 
with kNN classifier (k=3) was adopted. The results in figures 
3-13 represent the average value of ten runs, with all methods 
starting from the same initial population to make a fair 
comparison. The search was started by selecting 5 to 50 
features with 5 steps increment which only represent less than 
2.5% of the total number of features.  

HGA has been excluded from this experiment due to its high 
computational cost associated with large number of subset 
evaluation after each kid generation especially when dealing 
with high dimension dataset coupled with expensive fitness 
function as explained earlier. 

 

 

 



 

TABLE III.  GENE DATASET DESCRIPTION 

Dataset Symbol NoP NoF NoC 
Lung Cancer LC 203 12600 5 

Prostate 
Tumor 

PT 102 10509 2 

Leukemia 1 L1 72 5328 3 
Leukemia 2 L2 72 11226 3 

Brain Tumor 1 BT1 90 5920 5 
Brain Tumor 2 BT2 50 10368 4 

9 Tumor T9 60 5726 9 
11 Tumor T11 174 12533 11 
14 Tumor T14 308 15009 26 
DLBCL DL 77 5469 2 
SRBCT SR 83 2309 4 

 

In order to analyze the results one can start by categorizing 
the performance of the different feature selection methods into 
three categories. In the first category, it can be noticed that all 
of the SGA, GARF, and BPSO compete with each other on 
average across all of these datasets, while at the same time 
providing the lowest performance in comparison to the other 
utilized methods. The second category includes the proposed 
DGA and DE, where those two methods are again showing 
competing performance across the different datasets, while at 
the same time providing better performance than the methods 
included in the first category. The third and the final category is 
occupied by the PTA(2,1) method, with practical results 
indicating that PTA(2,1) offered absolutely the best 
classification performance. However, it is worth mentioning 
here that PTA(2,1) is a very time consuming method, i.e. 
PTA(2,1) results on T11 were achieved in 1.62 hours, while 
SGA, GARF, DGA, PSO and DE took 12.2, 11.6, 13.6, 19.8 
and 13.6 minutes respectively which is around %15 of the PTA 
search time. In most cases, DGA outperformed the other GA 
variants when selecting a range of small feature sets (5-50) out 
of thousands of features. DGA was also able to achieve results 
close to DE, which claims to outperform GA in many studies.  

 

IV. CONCLUSION AND FUTURE WORK 

We proposed in this paper a modified genetic algorithm 
method for feature selection; terms as DGA, which aimed at 
overcome the premature convergence problem that traditional 
GA suffers from. It basically infuses more diverse population 
members when needed. Results showed that DGA was able to 
outperform other GA variants with similar computational cost 
and achieved results close to that of differential evolution (DE). 
Other GA based methods such as DGA and GARF suffer from 
limitation when applied to high redundant data with very high 
dimensionality, i.e. high computational local search made DGA 
search impractical and the fitness scaling in GARF compromise 
the convergence of the search by allocating lower fitness rank 
to the best population members. DGA algorithm will be further 
developed in the future to enhance the parent selection 
procedure and to fuse better feature when needed. 
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Figure 2.  Classification performance of  Lung Cancer dataset. 
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Figure 3.  Classification performance of Prostate Tumor dataset. 
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Figure 4.  Classification performance of Leukemia 1 dataset. 
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Figure 5.  Classification performance of Leukemia 2 dataset. 
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Figure 6.  Classification performance of Brain Tumor 1 dataset. 
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Figure 7.  Classification performance of Brain Tumor 2 dataset. 
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Figure 8.  Classification performance of  9_Tumor dataset. 
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Figure 9.  Classification performance of  11_Tumor dataset. 
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Figure 10.  Classification performance of  14_Tumor dataset. 
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Figure 11.  Classification performance of DLBCL dataset. 
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Figure 12.  Classification performance of SRBCL dataset. 
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