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Abstract

Motion capture (MoCap) data derived from wearable Inertial Measurement Units is es-
sential to applications in sports science and healthcare robotics. However, a significant
amount of the potential of this data is limited due to missing data derived from sensor
limitations, network issues, and environmental interference. Such limitations can introduce
bias, prevent the fusion of critical data streams, and ultimately compromise the integrity
of human activity analysis. Despite the plethora of data imputation techniques available,
there have been few systematic performance evaluations of these techniques explicitly
for the time series data of IMU-derived MoCap data. We address this by evaluating the
imputation performance across three distinct contexts: univariate time series, multivariate
across players, and multivariate across kinematic angles. To address this limitation, we
propose a systematic comparative analysis of imputation techniques, including statisti-
cal, machine learning, and deep learning techniques, in this paper. We also introduce
the first publicly available MoCap dataset specifically for the purpose of benchmarking
missing value imputation, with three missingness mechanisms: missing completely at
random, block missingness, and a simulated value-dependent missingness pattern simu-
lated at the signal transition points. Using data from 53 karate practitioners performing
standardized movements, we artificially generated missing values to create controlled ex-
perimental conditions. We performed experiments across the 53 subjects with 39 kinematic
variables, which showed that discriminating between univariate and multivariate imputa-
tion frameworks demonstrates that multivariate imputation frameworks surpassunivariate
approaches when working with more complex missingness mechanisms. Specifically,
multivariate approaches achieved up to a 50% error reduction (with the MAE improv-
ing from 10.8 £ 6.9 to 5.8 £ 5.5) compared to univariate methods for transition point
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missingness. Specialized time series deep learning models (i.e., SAITS, BRITS, GRU-D)
demonstrated a superior performance with MAE values consistently below 8.0 for univari-
ate contexts and below 3.2 for multivariate contexts across all missing data percentages,
significantly surpassing traditional machine learning and statistical methods. Notable
traditional methods such as Generative Adversarial Imputation Networks and Iterative
Imputers exhibited a competitive performance but remained less stable than the specialized
temporal models. This work offers an important baseline for future studies, in addition
to recommendations for researchers looking to increase the accuracy and robustness of
MoCap data analysis, as well as integrity and trustworthiness.

Keywords: benchmark dataset; data imputation; deep learning; Inertial Measurement
Units (IMUs); machine learning; missing data; motion capture; performance evaluation;
time series analysis

1. Introduction

MoCap has become a critical aspect of studying various human activities in sports
science [1,2] and in studying human disorders in neurosciences [3]. This includes capturing
gestures using Inertial Measurement Unit (IMU) sensors to study various human move-
ments. IMU wearable sensors are used to capture players’ sport skills for further study and
analysis, such as human performance assessment [4-7].

IMU sensors have recently gained popularity due to their widespread use in wearable
devices that aid in the detection of body part motion and orientation. They have the ability
to offer acceptable data rates and provide digital outputs, together with their reasonable
cost and extended lifetime. Several applications of IMUs have been found, including
capturing and monitoring the movement of athletes in order to assess their talent and
document their professional motion [8]. In addition, they have been used for healthcare
challenges, such as neurological illnesses, where they are employed in daily activities and
environments for remote diagnosis and rehabilitation direction [9]. Additional uses include
professional motion capture studios and intensive 3D animation and design resources [10].
During the collection of digital data, however, some data may be lost due to the battery life
of the sensors or inadequate network connectivity. Likewise, the presence of metallic items
in the surroundings of IMUs might impact the accuracy of the collected data.

To our knowledge, despite the benefits of IMU sensors to a wide range of applications,
imputation of the data obtained from IMU sensors remains underexplored. The IMU sen-
sors’ readings are impacted negatively by several factors, including drifting, the placement
of the sensors, and magnetic field interference [11]. These issues result in missing data,
which may lead to corrupted data, inaccurate outcomes, or biased results. Data imputation
is therefore required early in the preprocessing stage to treat missing data. This study
investigates the effectiveness of typical data imputation techniques when applied to MoCap
data gained from IMU wearable sensors. However, the comprehensive performance of
imputation techniques specifically for this type of sensory data remains underexplored in
the existing literature. As a consequence, this study provides the first MoCap-based dataset
for benchmarking various data imputation methods and then reports on the performance
of the data imputation techniques. The issue of missing data is evaluated for MoCap
data. The models utilized in this study belong to three major categories, namely machine
learning (ML), deep learning (DL), and statistical methods. The key contributions of this
study are generating a new dataset from a publicly available MoCap dataset [2] gathered
using IMU wearable sensors to be utilized to impute the missing values and addressing
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the state-of-the-art imputation methods. To our knowledge, this is the first dataset to be
introduced into the field.

To provide readers with a clear overview of our research design, Figure 1 depicts
the overall MoCap data imputation methodology employed in this study. The detailed
methodology is explained in Section 3.
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Figure 1. The proposed MoCap data imputation methodology.

The remainder of this paper is structured as follows. In Section 2, related works
with the missing data imputation methods are addressed. The proposed dataset along
with the proposed methodology and data evaluation metrics are presented in Section 3.
Section 4 lists and discusses the study results. Finally, this paper is concluded in Section 5.

2. Background and Related Work
2.1. IMUs

IMU sensors have achieved popularity in recent years in numerous applications,
including manufacturing, robotics, and healthcare evaluations [12]. IMUs are portable elec-
tronic equipment used to track and measure angular velocity and body motion. Different
forms of data collection sensors exist, such as accelerometers, gyroscopes, and magnetome-
ters. Accelerometers and gyroscopes measure the inertial acceleration and rotational angle.
However, a magnetometer measures the bearing magnetic direction, which enhances the
acquired readings and means that it is considered an advanced sort of sensor. IMUs are
considered some of the most straightforward and rapid means of capturing the motion
of body parts due to the omission of cable extensions during data acquisition [13-15].
As IMUs have been extensively applied to determining motion in terms of acceleration,
angular velocity, and orientation [16], an accelerometer measures the total acceleration a,,
as shown in Equation (1).

am =a,+g+7, 1)

where aj, represents the body’s acceleration due to external forces, g represents the gravitational
acceleration vector with a magnitude of 9.81 m/s?, and #, represents accelerometer noise.
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The angular velocity wy, is quantified in degrees per second using the gyroscope sensor:

where w is the actual angular velocity, by is the gyroscope bias, and 7, is the gyroscope noise.

The relationship between orientation ysintation(t) and actual angular velocity is
wi(t) = dOprintation(t)/dt. In discrete time, orientation is estimated by integrating mea-
sured angular velocity using the Euler integration:

6w'ini.‘ation(t) ~ eorintation(t - At) + wm(t - At) <At 3)

where At is the sampling interval.

Unfortunately, accuracy cannot be guaranteed when depending on an accelerometer
and gyroscope because of the presence of noise and the gyroscope drift. Thus, a magne-
tometer is incorporated to determine the yaw angle rotation which improves the gyroscope
drift. However, readings from the magnetometer sensor can be affected by surrounding
metals or electronic objects [16]. Using IMUs, the data for calibration is collected only in
the gravitational field so that the calculated scale factor of each axis is limited to the range
of [-1 g, 1 g]. Such limitation prevents tasks with large gravity values [17,18]. However,
this limitation has been overcome by rotating the accelerometer sensor around a given
point to detect centripetal and Euler acceleration. Consequently, the detection range of
the accelerometer sensor has been expanded [19-23]. These limitations of the IMU sensors
are a direct explanation of some of the missingness mechanisms examined in this study.
The presence of noise, gyroscope drift, and magnetic disturbances introduces instability in
sensor readings, which consequently yields gaps in measurements or periods of missing
data. In addition, calibration restrictions and range restrictions may yield sequences where
motion capture is not possible and may produce block-missing sequences. Consequently,
the physical limitations of IMU sensors explain the prevalence of missing data in motion
capture studies and underscore the need to develop robust imputation models.

2.2. Data Imputation

Recent progress in ML has produced very robust strategies for addressing missing data
in time series. There are methods that can employ deep learning to model complex data
distributions and provide estimators employing robust features of imputation. For instance,
conditional score-based diffusion models (CSDIs) have become a promising alternative to
traditional probabilistic time series imputation, creating a greater level of performance by
providing multiple plausible imputed values denoted from the uncertainty of the missing
values rather than an independent point estimate [24]. This is especially important to sports
science because sensor data captured with wearables (e.g., IMUs) may be missing due to
failure of the sensor, human error, or other technical issues. Analyzing datasets is critical
since they are considered a rich source of information for different types of knowledge.
Nevertheless, missing data in these datasets can prevent the generation of complete in-
formation, which is necessary to make a wise intelligent decision [25]. Hence, the issues
that arise when data are missing can introduce bias and lack of recoverability. For this
reason, several studies have been conducted on missing data imputation to impute missing
data [25-28]. Data imputation techniques are designed to substitute any missing data
samples by randomly estimating data from the same datasets. The data can undergo single
or multiple imputation. In single imputation, only one estimate is used, whereas various es-
timates are used in multiple imputation. The missing data can be categorized as (1) missing
completely at random, (2) missing at random, or (3) missing not at random [29,30].
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Data missing completely at random occurs when parts of the data collected are missing
by design due to out-of-hand circumstances (i.e., unobserved data). In other words, miss-
ingness occurs during the data acquisition process and thus becomes of no interest. Hence,
there is no correlation between the observed and missing data. A popular example is data
being missed while using IMUs due to sensor failure or network connection problems.
In this case, there is no bias to be introduced, and data is estimated from the observed
original data on average. The standard estimates errors are usually substantial due to the
reduced sample size [31-34]. Missing data becomes missing at random if the information
is missing from the observed data after confirming the dataset. Thus, a correlation exists
between the observed and missing data [25].

In both cases, multiple imputation is utilized to replace the missing data with appro-
priate predictive data. The principle behind multiple imputation is to predict the missing
values using the observed dataset. The imputed values are estimated rather than known
or uncertain; this process is repeated several times to create several complete datasets.
The analysis model is then fitted to each generated dataset, and the results are combined
for inference using Rubin’s MI rules [32,35]. However, this estimation remains inefficient
enough, as the data still incomplete. The third technique is used when valuable information
is lost from the dataset and there is no universal method to handle the missing data properly.
Thus, the missing data depends on its value. Hence, missing data is missing not at random
when it is not classified as missing at random or missing completely at random [26,30].

2.3. Single Imputation Methods

Single imputation (SI) techniques are used in handling missing data in research
by replacing the missing data with a single value. This includes implementing Mean
Imputation [36], Last Observation Carried Forward (LOCF) [37], Regression Imputa-
tion [38], Hot Deck Imputation [39], Forward Imputation [40], Single Ratio Imputation [41],
Median Imputation [42], and K-Nearest Neighbors (KNN) imputation [43].

SI approaches are effective in handling missing data across various sports science
scenarios. Team Mean Imputation is used to impute workload data in youth basketball [44].
The average workload of the team for the specific session is used to impute missing
workload data including jumps per hour and RPE for high-school basketball players.
However, this approach cannot always be calculated, may not account for individual
variations, and could introduce bias if team performance varies significantly. KNN im-
putation is employed to predict missing split times for runners who did not finish the
Boston Marathon [45]. Local regression based on KNN is used to estimate missing times.
However, performance depends on the choice of neighbors and may not generalize well
to different datasets. Last Observation Carried Forward (LOCF) is used in [46] to monitor
Total Quality Recovery (TQR) scores and race performance for college swimmers over
two seasons. The missing TQR score is imputed with the TQR score recorded for that
same participant on the preceding day. Although LOCF is generally a less sophisticated
imputation approach, it unrealistically assumes that a variable remains constant over the
period where data is missing. Therefore, LOCF is incapable of capturing daily fluctuations
in an athlete’s recovery status.

In addition, when model-based imputation methods are inappropriate, due to limitations
present in the data, single-imputation procedures, such as random Hot Deck Imputation, may
serve as an alternative. Random Hot Deck Imputation is a valuable procedure because it yields
plausible imputed values through matching records that contain missing data to records with
complete observations; thus, it does not arbitrarily alter the dataset [39]. SI procedures can
also be valuable for analyzing changes in outcome variables such as behaviors, performance,
and psychological constructs. They are beneficial for preserving survey continuity when
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evaluating intended changes resulting from interventions [47]. Single imputation can be a
simple way to impute missing values when gaps are short or missing source assignment
lengths are very short [48]. Finally, Forward Imputation and missForest can potentially also
yield robust imputation results across commonly encountered data patterns, both of which
exhibit varying degrees of excess kurtosis, skewness, and correlated structures. Forward
Imputation and missForest are useful when timely and appropriate imputation is required,
without strong distributional assumptions [40].

Although SI techniques are often used to handle missing data, there are several impor-
tant issues related to validity and reliability with the use of SI. SI techniques will replace
each missing value with a single value. When replacing a missing value with a single,
fixed value, SI techniques do not take into account the imputation uncertainty with missing
data. They risk causing an under-estimation of standard errors, thus leading to confidence
intervals that are overly narrow, which may result in an increased rate of false positives [29].
Replacing a missing value with a single value can also affect the relationships that exist;
it can distort the correlational relationships that we are investigating, as well as the coef-
ficients we are testing. For example, it is known that Mean Imputation typically reduces
correlations. This is challenging within sports science where understanding the relation-
ships between performance metrics, training loads physiological responses. The validity of
single imputation methods will depend upon the imputation methods chosen. Multiple
different SI methods can produce very different results and thus impact the reliability and
consistency of the findings, leading to biased imputations [44]. Mean imputation can distort
the distribution of the data.

Moreover, data in sports science can be markedly variable and context-specific, and
single imputation methods may not work well with complex data structures. This can lead
to implausible imputed values and further bias [39]. Single imputation methods are also less
effective when data are not missing completely at random (MCAR). They do not perform
well under missing at random (MAR) or missing not at random (MNAR) conditions, which
are common in sports science data. Methods including Mean, Median, or Mode Imputation
often do not adequately address the underlying mechanisms that cause the data to be
missing, leading to biased estimates and incorrect conclusions [48-51]. Single imputation
is also limited in longitudinal sports science-related studies. This because it can lead to
biased estimates of trends and associations over time, where tracking changes in performance
or health metrics over time is crucial [44]. For instance, it does not adequately handle the
correlation between repeated measures, which can distort the analysis of longitudinal data [37].

2.4. Multiple Imputation Methods

Multiple imputation (MI) is an a statistical technique used to handle missing data.
MI produces multiple datasets with imputed missing data, analyzes each one separately,
and combines the results to represent uncertainty due to missing data [52]. The primary
strength of MI over SI methods is that MI estimates the parameters with fewer limits of bias
and more accurately derives variance estimates and confidence intervals [53]. Methods
for using MI that have been seen in sport science include chained equations [53], joint
models [54], Markov chain bootstrapping [55], Monotone Imputation [56], and random
Hot Deck Imputation [39].

MI methods are already regularly and commonly used in sport science. A recent
example of MI can be seen in the recent article evaluating the monitoring of athlete
workloads [44] for longitudinal studies that monitor athlete workload. The authors pro-
posed to impute workload for youth basketball players based on the workload variable
of jumps per hour using regression-based methods in MI that use numerous predictors.
The authors used MI only to impute the workload variables and did not include any
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other non-workload data that might have improved their imputations” quality. In sport
injury epidemiology, a predictive model-based MI was used to estimate missing weekly
game hours for 2098 youth ice hockey players [36]. The imputed estimates represent the
mean hour estimates from the imputed samples. The statistical models used for their data
included Poisson, zero-inflated Poisson, and negative binomial regressions, which were
utilized on the imputed datasets to estimate injury rate ratios. In [36] they found that when
the dataset had few to moderate proportional missing data for weekly game hours, MI had
a similar performance to mean imputation.

A new Ml method for auto-correlated multivariate count data from accelerometers was
developed in [57]. It uses mixture of zero-inflated Poisson and Log-normal to handle char-
acteristics including autocorrelation and over/under-dispersion of count data. However,
the characteristics of accelerometer data, such as autocorrelated multivariate counts, still
create challenges in imputation. A framework for multilevel data was proposed in [58] to
estimate aging curves for offensive players in Major League Baseball (MLB). This study
treats unobserved seasons due to player dropouts as missing data. Player performance
metrics associated with missing seasons are imputed, and aging curves are then constructed
using these imputed datasets. The main limitation is accurately modeling the reasons for
player dropout and the performance trajectories of those who drop out. Another study
represents a direct comparison of multiple imputation to alternative methods of addressing
missing data in the context of Rugby [59]. The research focuses on the sports-specific
variable of the rate of perceived exertion (RPE) that is routinely missing from large datasets.

Despite the merits of using MI over SI, MI has several limitations. MI typically
performs best under MCAR or MAR assumptions. If data are MNAR, standard MI may
produce biased results unless the MNAR mechanism is explicitly modeled or sensitivity
analyses are conducted [60]. Moreover, implementing MI methods correctly requires
statistical knowledge and familiarity with relevant software [44]. The accuracy of MI
methods is also challenging due to its heavy reliance on the correct specification of the
imputation model. This includes choosing the right variables to include in the model and
specifying the appropriate relationships [61]. Another limitation is that MI methods can be
computationally intensive for large datasets with many variables and complex patterns of
missingness [60]. However, modern software and multi-core processors have alleviated
this to some extent.

2.5. Gap Analysis

MoCap systems utilizing IMUs have become essential as important analysis tools
for studying human activities and sports across multiple fields: sports science, human
performance assessment, the diagnostic properties of certain neurodegenerative disorders,
and 3D animation [1,3]. MoCap systems have high utility for human activity analysis;
however, there are multiple potential sources of error in the IMU sensor data when using
these systems, such as battery limitations, network issues, magnetic fields, drift and place-
ment variability, which can cause missing data (i.e., missing time series data) [11]. It is
critical that any lost or missing data are addressed to eliminate bias and inaccurate infor-
mation that impede data reliability for subsequent analyses and decision making to assess
how various data sources interface. Therefore, effective and appropriate data imputation
methodologies should be explored and applied for use in MoCap analysis. The literature
supports many data imputation methods but concentrates on SI and MI methodologies, as
well as some basic statistical or non-statistical methodologies. However, it only discusses
SI or MI methodologies in relation to sports science broadly, thus presenting a notable gap
in the literature for the classification and evaluation of data imputation methodologies
specific to MoCap data and IMU wearable sensors in order to enhance the capabilities
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of MoCap [11]. Entirely separate from MoCap data, data imputation studies focus on
other types of data with variability in missing data mechanisms and contexts that are
not reflective of continuous time series data or the nature of the missing time series data
(e.g., sequential, biomechanical constraints). In our review of the literature, we identified a
couple of important gaps that this study addresses. detailed as follows.

1.  Lack of comprehensive performance evaluation for IMU-based MoCap imputation:
To date, no research has systematically examined and compared the performance of
well-established data imputation strategies, including ML and DL statistical methods,
specifically for MoCap data acquired from IMU sensors. This absence limits the ability
of researchers and practitioners to select the most appropriate imputation technique
for specific MoCap missing data scenarios, hindering accurate data reconstruction
and subsequent analysis.

2. Absence of a standardized MoCap benchmark dataset for imputation: A fundamental
requirement for reproducible research and comparative analysis is the availability
of a standardized dataset. Currently, there is no publicly available MoCap dataset
explicitly designed and proposed for benchmarking the performance of various data
imputation methods. This hinders the consistent evaluation and advancement of
imputation techniques tailored to the unique complexities of MoCap data.

This research directly addresses these important gaps by providing the first thorough
performance comparison of major data imputation methods in the context of ML, DL, and
statistical methods as they relate to IMU-based MoCap data. As a result of this comparison,
we offer definitive recommendations of the best techniques for specific cases of incomplete
MoCap data. Furthermore, we introduce the first dedicated MoCap dataset as a benchmark
for research focused on missing value imputation in order to stimulate future research
and ensure that there is a consistent method of benchmarking in use in the community.
By addressing these gaps, this work contributes to theories of data processing and advances
the state of the art of robust information fusion from IMU-based motion data. We also offer
practical, official recommendations for best practices in enhancing data quality and use.

3. Methodology

This section details the experimental methods used to test different data imputation
methods on a multivariate time series dataset comprising simulated human motion data.
We describe the dataset’s structure, the methodology for simulating missing data under a
variety of mechanisms, the imputation framework including which specific algorithms were
tested, and the measures used to evaluate the performance of the imputation algorithms.

3.1. Overview

The proposed methodology for evaluating the MoCap data imputation is illustrated
in Figure 1. To emulate real-world scenarios, the procedure begins with the entry of
MoCap data with purposefully absent values. To prepare the raw data for the subsequent
imputation phase, it undergoes cleaning, normalization, and standardization.

Once the data has been preprocessed, it is directed to the basis of our system: a
suite of imputation algorithms. This suite contains a variety of methods, including ML
strategies such as Bsi-ML, Iterative Imputer-ML KNN-ML, the DL method DL-based
Generative Adversarial Imputation Network (DL-GAIN), as well as statistical methods
such as Simplefill mean and Simplefill median. By employing a variety of techniques, our
proposed study aims to accommodate the diverse details and complexities inherent in
MoCap data, thereby guaranteeing optimal data imputation.

The processed data are subjected to a strict evaluation after imputation. This phase of
evaluation assesses the effectiveness of the selected imputation algorithms by comparing
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the imputed values to the original data. Metric calculation, including the critical Mean
Absolute Error (MAE), is employed to further refine the evaluation. These metrics quantify
the accuracy and dependability of the imputed data, demonstrating the model’s proficiency.

Following a robust evaluation and calculation of metrics, the system produces the
imputed dataset. This dataset, augmented by the systematic processes of our methodology,
not only represents the missing MoCap data but also demonstrates the convergence of
ML, DL statistical techniques in addressing the challenges posed by missing data. Our
proposed system offers an effective solution for MoCap data imputation with this inte-
grated approach.

3.2. Dataset and Preprocessing

Due to the nature of our study, we utilized a multivariate time series dataset with
P distinct persons (players) who are performing a specific skill which is publicly avail-
able [2]. This dataset includes four standardized karate skills performed by top members
of the Egyptian men’s national team, namely, (1) Gedan Barai (downward block: an
upper-body—centered, linear defensive motion), (2) Oi-zuki (lunge punch: a linear forward
offensive strike involving both trunk and arm), (3) Jodan Age—uke (upper block against
head attacks: an upward defensive motion with rotation) and (4) Soto—uke (outside inward
block: a rotational defensive arm movement). These karate skills are considered funda-
mental techniques of karate and span different kinematic characteristics. In this dataset,
each player has data collected for T discrete time points and A features that correspond
to measured IMU sensor readings. The original complete dataset is stored as a tensor
X € RP*T*A_For the experiments we describe in this paper, we have a dataset with dimen-
sions P = 53, T = 100 A = 39. While this dataset does not suffer from missing values, we
propose using it to artificially include missing values with three different mechanisms.

We propose a preprocessing step for the original dataset, which is normalization.
The dataset undergoes mi-n-max normalization prior to the use of some of the imputation
methods, specifically those that are particularly sensitive to feature scaling, such as neural
network-based methods like GAIN. For each feature a (angle), we scale the time series X. . 4
across all players and time points to the range [0, 1], using the following formula:

Xp,t,ﬂ - minp/,t/ (Xp’,t’,a)

4)

Xnorm,p,t,ll - maxp”,t” (Xp”,t”,a) - minp/,t/ (Xp/,t’,a) +€
where the min and max are calculated over the observed entries only for that feature a. €
is a small constant (e.g., 10~°) for numerical stability p’, p” and #' ' are dummy indices
that range over all players and time points, respectively. We take the parameters min(-)
and max(-) for each feature and save them in order to perform an inverse transformation
(renormalization) back to the original scale of the data post imputation so that we can
estimate the meaningful error.

The dataset used in this study is based on a publicly available dataset [2]. The original
dataset describes IMU data collected from 53 elite adult male participants from the Egyptian
national karate team (who participate at the international-level) performing four standard-
ized skills. No further demographic characteristics (age range, size, rank, or history of
training) were detailed in the original published dataset [2]. Researchers should consider
the homogeneity of this elite cohort in their assessment of generalizability. The primary
contribution of this work is the generation of new benchmark datasets by introducing
controlled missing values under different mechanisms and comparison of the performance
of existing imputation methods.

Of note, due to limitations on space and the total number of visualizations, all reported
experiments in Sections 4.1 and 4.2 were conducted using the Gedan Barai (downward
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block) subset of the dataset. The additional three standardized skills (i.e., Oi-zuki, Jodan
Age-uke and Soto-uke) are included in the original dataset and available for use. This deci-
sion was made to enable more detailed reporting of methods within the length constraints
of the manuscript. However, the full benchmark dataset can be used to replicate and build
upon the work described here.

3.3. Simulation of Missing Data

Missing values were artificially generated within the complete dataset X to create
controlled experimental conditions for assessing imputation performance. This process
produces a missing data tensor Xpjss and then a corresponding binary mask tensor
M € {0,1}P*T*A. The symbol M,, = 1 indicates the value X, , is missing (NaN in
Xmiss), while Mj ¢, = 0 signifies that the value is observed.

The missing data entries were independently generated for each univariate time series
Xp,..a based on a specified number of missingness count k, corresponding to a fraction k/T
of the total series length (which ranged between 5% and 30% in our experiments) according
to one of three different missing data mechanisms, denoted by .

1. Missing Completely At Random (MCAR): From {0,1,...,T — 1}, k unique time
indices were sampled uniformly without replacement for each series Xpr;,a, and the
corresponding entries in My, , were assigned a value of 1. This mechanism assumes
that missingness was completely independent of observed and unobserved values.
A sample of this approach is depicted in Figure 2a.

2. Value-Dependent Missingness at Transition Points: This mechanism emulates a form
of value-dependent missingness, where the probability of data loss is intentionally
correlated with the local dynamics of the signal itself. Specifically, we target transition
points (local minima and maxima), as these points of high kinetic change can be more
susceptible to measurement error or signal clipping in real-world MoCap applications.
First, for each time series X, ,, we identify the complete set of transition point indices
Tp,q. Then, we randomly sample k' = min(k, |Ty,|) indices from these transition
points. If the total number of missing points to be introduced, k, is greater than the
number of available transition points, we sample the remaining k — k’ indices from the
non-transition points. All sampled indices were set to missing (M, = 1). Figure 2b
shows a sample of this approach.

3. Block Missingness (Structured): We introduced blocks of contiguous missing values.
For the purposes of sampling blocks, the total length of the time series T was con-
ceptually divided into segments of Nj,. For each segment, we placed a block of a
predetermined size L, (where L, was identified to approximate the total count of
k across all blocks) starting from a random index within the limits of the segment.
Again, all sample indices in these Nj blocks were converted to missing in M. In the
case of overlaps in blocks or deviations in total segment length which deemed the total
count < k (or >k), we made adjustments. Figure 2c depicts a sample of this dataset.

The missing data mask M was generated according to these mechanisms as formalized
in Algorithm 1. The algorithm iterates through each player p and angle a and applies
the missingness mechanism { to the corresponding indexed time series to identify the
set of indices ‘idx” to undergo masking updates the mask tensor M, specifying which
mechanism’s logic was used for each mechanism (MCAR, Transition, Block) in the specified
conditional statements.
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Figure 2. Samples of the three proposed/utilized methods for generating 20 missing data points for
the same time series. (a) Random missing data; (b) generating missing data of transition and random
points; (c) generation of continuous intervals of missing data.

Algorithm 1 GenerateMissingMask (X, k, mechanism)

Require: Complete data tensor X € RP*T*4 Missing count k, { mechanism
Ensure: Mask tensor M € {0,1}7*Tx4

1: Initialize M < 0P*Tx4

2 forpe {1,...,P} do

3 forae{l,...,A}do
4: Let S < Xp,., be the time series
5: Let I,,,;5s < @ be the set of indices to mask
6: if mechanism = MCAR then
7: Lyiss < RandomSample({1,...,T}, k)
8: else if mechanism = Transition then
9: Itrans < FindLocalExtremalndices(S)
10: Lsample < RandomSample(Itrans, min(k, | Irans|))
11 if [Lsampre| < k then
12: Iremain — {1/ ceey T} \ Itrans
13: Lsampte < Lsample Y RandomSample(Lemain, k — [Isamptel)
14: end if
15: Liss <= Isample
16: else if mechanism = Block then
17: Let Nj, L, be block parameters s.t. N, - Ly =~ k
18: Partition {1,..., T} into N}, segments, Segy, ..., Segn,
19: foriG{l,...,Nb} do
20: start_idx <— RandomInt(min(Seg;), max(Seg;) — L)
21: Liiss < Lpiss U {start_idx, ... start_idx + L, — 1}
22: end for
23: Trim or extend I, to ensure |[,iss| = k
24: end if
25: Mp 1,00 < 1
26: end for
27: end for
28: return M
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3.4. Imputation Framework Contexts

To clarify on how different imputation methods can take advantage of the structure in

the dataset, we applied algorithms in three different information contexts as follows.

1.

Univariate Context: Here, data are processed independently for each individual time
series Xp., € RT. Univariate algorithms will only learn from information in the
individual series being completed; a limitation of univariate context is that we ignore
any potential relationships across players or angles. Input data is treated as a vector
with length T.

Multivariate Context (Across Players): For a given angle a, we conceptualize imputa-
tion as the data matrix X.., € RPXT (or the transpose). As a result, algorithms that in
the multivariate context can model correlations or similarities across different players
and time series across angles will take advantage of information from the cohort.
Multivariate Context (Across Angles): For a given player p, we represent imputation
as the data matrix X,,.. € RT*A. Algorithms that operate in the multivariate con-
text can take advantage of inter-feature correlations, essentially learning about how
various angles (kinematic variables) are related to the same subject over time.

This exploration of a potentially varied context facilitates a more precise evaluation

of the advantages either gained or lost by utilizing information across players or angles

compared to univariate means.

3.5. Imputation Algorithms

We implemented and compared a diverse set of imputation algorithms, spanning

statistical baselines to state-of-the-art deep learning models.

Statistical Baselines: Simple, computationally economical methods including Mean,

Median, and Random Sample Imputation applied within the relevant context (uni-

variate series or multivariate scope across players/angles for calculating the statistic

or sampling pool).

Classical Machine Learning Methods: Algorithms primarily sourced from the

fancyimpute library.

-  KNN estimates missing values using a weighted average of the values from the
K most similar samples (neighbors), based on observed features.

—  Matrix Factorization (SoftImpute, IterativeSVD): These methods approximate the
data matrix with a low-rank factorization, effectively filling missing entries based
on learned latent factors. Softimpute uses nuclear norm regularization, while
IterativeSVD employs truncated SVD iteratively.

- IterativeImputer models each feature with missing values as a function of the other
features using a regression model (e.g., Bayesian Ridge). It iteratively predicts
and updates missing values until convergence.

- Optimal Transport Imputation (OT) [62]: This method utilizes Optimal Transport
theory, specifically minimizing the Sinkhorn divergence Sc (-, -) between empirical
distributions formed by batches of data. We utilize the BatchSinkhornImputation
approach, where the missing values themselves are treated as learnable parame-
ters 6. In the following text, we will call this method BSI. These parameters are
optimized by minimizing the expected Sinkhorn divergence between pairs of
randomly drawn mini-batches (B3, By) from the currently filled dataset Xgieq(6):

min Lot = Bz, 5,)[Se(Xsited (8) [B1], Xsintea (6)[B2])] (5)

The expectation is approximated using Npairs samples per gradient step.
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¢ Deep Learning Methods:

SAITS [63]: Self-Attention-based Imputation for Time Series (SAITS) is a deep
learning model that can impute missing data from complex time series data.
SAITS addresses an important challenge of many previous imputation models,
which is the lack of a self-attention-based mechanism to capture long-range
dependencies detectable within the time series data [63]. Capturing these long-
term relationships is particularly important when attempting to impute values in
irregularly sampled time series and/or partially observed time series.

BRITS [64]: BRITS is a novel technique that uses bidirectional recurrent neural
networks (RNNs) to impute missing values in multivariate time series data.
Unlike earlier techniques, BRITS makes no particular data assumptions and
learns missing values directly within a recurrent dynamical system. It enables
efficient backpropagation updates by treating missing values as variables in the
RNN graph. The model increases overall accuracy by carrying out imputation
and classification/regression at the same time. This method tackles issues such
as nonlinear dynamics in time series and correlated missing values.

GRU-D [65] is proposed specifically for multivariate time series with missing
values, with an emphasis on “informative missingness.” It employs a Gated
Recurrent Unit (GRU) architecture and integrates time interval and masking
as two representations of missing patterns. GRU-D successfully captures long-
term temporal dependencies and employs missingness for better prediction by
incorporating these patterns into the inputs and hidden states of the GRU through
trainable decay mechanisms. This method improves classification performance
on synthetic and real-world clinical datasets.

CSDI [24]: The CSDI (Conditional Score-based Diffusion Model) is a deep gen-
erative approach for probabilistic time series imputation. To deal with missing
values, it makes use of score-based diffusion models, which use iterative denois-
ing to learn data distributions. CSDI produces diverse and realistic imputations
by conditioning the diffusion process on observed portions of the time series. It
is appropriate for probabilistic forecasting since it offers imputations and uncer-
tainty estimates.

GAIN [66]: GAIN utilizes a minimax game between a Generator (G) and a Dis-
criminator (D). The Generator (G) attempts to impute the missing values in
the data tensor Xiss given a mask M and a noise tensor Z, producing the final
imputed tensor X = Xpiss @ (1 — M) + G(Xmisss M, Z) ® M. The discriminator
D attempts to differentiate observed components from imputed ones based on X
and a hint vector H (partially revealing M). The objectives are

min £p = ~Ex mu[Mlog D(X,H) + (1 —M)log(1 — D(X,H))] (6)

where © denotes element-wise multiplication and « is a hyperparameter balancing
the adversarial loss and a direct reconstruction (MSE) loss on observed components.

3.6. Evaluation Metrics

To quantitatively assess imputation accuracy, values )A(p,t,u were compared to their respec-

tive known ground truth values Xy, ; , only at the locations where the data had been artificially

made missing (i.e., M+, = 1). The primary measure of performance for our study was the

Mean Absolute Error (MAE), used to quantify the average size of the imputation:
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Zp,t,g Mp,t,u : |Xp,t,a - }A{p,t,a|
Ep,t,a Mp,t,ﬂ

We also calculated the standard deviation of the absolute errors,

MAE = )

STD({|Xpta — Xptal | Mpra = 1}), which serves as a measure of variability or con-
sistency across errors resulting from a particular method. The metrics were pooled and
reported out based on the experiment context (e.g., across a whole context as an average
across missing points, or per player/angle).

3.7. Experimental Setup and Implementation

The entire experimental procedure utilized essential libraries such as NumPy 2.3.0
(for numerical tasks), Pandas 2.3.2 (for handling data), Scikit-learn 1.4.2 (for baseline ML
models), TensorFlow 2.18 (for GAIN), PyTorch 2.7.0, GeomLoss 0.2.6 (for OT imputation),
and FancyImpute 0.7.0 (for many classical methods). Due to the extensive scope of the
experiments (e.g., multiple combinations of parameters: skills, missingness levels, mecha-
nisms, imputation contexts algorithms), computational time was critically important. We
used Python 3.11’s multiprocessing library to run imputation tasks simultaneously across
different CPU cores. This allowed us to assign independent imputation tasks (e.g., different
series or matrices based on context) to different processes. We used shared memory ar-
rays (multiprocessing.Array), built into helper functions to provide process-safe access,
to accumulate results from concurrent processes.

An overview of the whole experimental procedure, which included data genera-
tion, imputation, and evaluation of different configurations, is presented conceptually
in Algorithm 2. Algorithm 2 iterates through each of the experimental configurations; it
loads/generates the data and the mask, applies the algorithm within the context, performs
calculations of performance, and stores the result. The “Applylmputation’ step presents
a conceptual definition of executing the chosen algorithm, including any intended data
slicing based on the context and possible parallelized operation.

Algorithm 2 Experimental Configuration

Require: Dataset X, Players P, time series length T, Features A
1: Define Imputation Methods F < {GAIN, IterativeImputer, KNN, ... }

2: Define Missingness Mechanisms { <— {MCAR, Transition, Block}

3: Define Missingness Proportions K <+ {0.05,0.10,0.15,0.20,0.25,0.30}
4: Define Imputation Contexts C <— {Univariate, Multivariate Player, Multivariate Angle}
5: Initialize Results storage Results <— @

6: forall f € F do

7: forallm € { do

8: foralli € Kdo

9: Letk + [i-T|
10: Generate Mask M <+ GenerateMissingMask (X, k, m)
11: forallc € C do
12: X + Applylmputation(X, M, f,c)
13: MAE < CalculateMAE(X, X, M)
14: StdErr < CalculateStdErr(X, X, M)
15: Results <— Results U {(f,m,i,c) : (MAE, StdErr)}
16: end for
17: end for
18: end for
19: end for

20: return Results
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To formalize the fundamental imputation process across the experimental condi-
tions, we present Algorithm 3, which proposes context-aware imputation methods.
Algorithm 3 is a dispatcher that arranges the data before passing it to an imputation func-
tion f. It essentially first copies the working data to a working dataset, denoted X,,,ss,
which presents the data with missing values represented as NaN. Next, it systematically
slices the data tensor based on the specified context c. In the case of Univariate, the data are
iterated through in an individual time series manner, whereas the multivariate player and
multivariate angle formats create two-dimensional data matrices containing all the data
by angle (all players) or by player (all angles), respectively. This structured context-aware
approach enables each of the imputation methods to be applied to the data so that each
method can take advantage of the different correlations between temporal data, players,
or features that define the context in which they are being applied.

Algorithm 3 Applylmputation(X, M, method, context)

Require: Data X, Mask M, Imputation method f, Context c
Ensure: Imputed data tensor X

: Xpiss — X© (1—M)+NaNo M

2: Initialize X < Xjss

3: if ¢ = Univariate then

4 forpe{l,...,P}do
5: forae {1,...,A} do
6

7

8

9

[y

Let Spiss < Ximiss [P/ b {Il]
Simputed < f-fit_transform (S ;ss)
X[p/ “ LI] — Simputed
: end for
10: end for
11: else if c = Multivariate player then
12: forae {1,...,A} do

13: Let Dyyiss < Xuiss[:, 2, a] (Shape P x T)
14: Dimputed < f-fit_transform(Dy;ss)

15: X[:, : {Il] — Dimputed

16: end for

17: else if c = Multivariate angle then
18  forpe{l,...,P}do

191 Let DmiSS — Xmiss[pr :’ :] (Shape T X A)
20: Dimputed < f-fit_transform(D,y;ss)

21: X[p, 5/3] <~ Dimputed

22: end for

23: end if

24: return X

4. Results and Discussion

In this section, the performance of various imputation methods is evaluated and
interpreted for the experimental conditions described here. First, we examine the base-
line performance in the challenging univariate context, subsequently examining what
may be improved by utilizing multivariate information, both across players and across
angles, for accurate imputation, particularly with complex missingness. We conclude with
recommendations based on our analyses for researchers and practitioners.

4.1. Performance and Interpretation of Univariate Imputation

When considering the univariate case, we treat each time series independently, which
is customary when analyzing the performance of a unique or new skill. Therefore, our
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results show the limitations of this as performance is highly dependent on how the data
is missing.

For randomly missing (MCAR) points, which were the simplest, there were some
methods that functioned reasonably well. The Mean Absolute Error in Figure 3a is confined
to a relatively low range, with the color bar selection ranging from 0 to 70. in this case, this
is expected, as this scenario was both simple and could be interpolated with the adjacent
temporal data points.

However, the challenge escalates significantly with more complex missingness. When
the data is missing for critical transitions, Figure 3b shows the Mean Absolute Errors
increased significantly, with the largest value associated with the MAE exceeding thresh-
olds upwards of 350. This scenario clearly differentiates simple statistical methods from
advanced models due to their critical interaction with time. The simple methods such as
our SimpleFill Mean and SimpleFill Median perform poorly, as for both of these methods,
their core mechanism—averaging—flattens the critical peaks and valleys that define the
motion dynamics and creates a incorrect dependency only on this time series.

As shown in Figure 3¢, the highest error values were observed in datasets with consecu-
tive missing values located around transition points. This demonstrates, again, the difficult
task of accurately imputing large portions of data. Observably, GAIN and Iterative Imputer,
sophisticated models that learn nonlinear relationships within the sequence, performed
better since they could utilize their complex modeling capacity to more effectively approxi-
mate the underlying dynamics of the sequence, thus significantly decreasing their mean
error relative to simpler methods.
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Figure 3. MAE for univariate data imputation of a single player for three datasets with (a) MAE for
imputing randomly missing (MCAR) points; (b) MAE for imputing missing data of transition and
random points; and (c) MAE for imputing sequences of consecutive missing data.

In summary, as the missing data conditions become more complex, the results of the
error values across the datasets clearly show a trend of increasingly more difficult and
erroneous data, as depicted in Figure 3. The ability of imputation techniques to replicate
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and adjust to the fundamental dynamics of the motion sequences largely determines their
performance. When comparative external data was not available, more sophisticated
techniques including GAIN and Iterative Imputer were able to manage the variance and
complexity underlying intricate motion data. In summary, this study shows that although
selecting simple imputation techniques based on the properties of the missing data may
be crucial, more complicated approaches, such GAIN, have the possibility to improve the
integrity of data reconstruction under challenging data conditions. Figure 4 depicts the
true values against the imputed values for the utilized models. Figure 41 (i.e., CSDI) has
a different visual scale than other figures in Figure 4a—k because there were higher error
imputed values; thus, a greater range was required on the y-axis to display the data.
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Figure 4. Imputed vs true missing values for univariate single player series imputation (Transition
missing points).

Table 1 lists the MAE values of several univariate imputation models applied to single
player motion capture data. All listed results demonstrated the difficulty of reconstructing
the missing data where no other data is utilized. The temporal models (SAITS, BRITS,
GRU-D) specializing in time series analysis show the best performance, with an MAE
under 8.0 for every missing data proportion explored. These models utilize temporal-aware
architectures, firstly meant to operate on sequential data, while the other ML methods (i.e.,
KNN, Soft Imputer) display below-average performance at lower levels of missing data
(i.e., data missing at 5%) before declining in performance at higher proportions of missing
data. Statistical models using likelihood, most notably the Simplefill random, demonstrated
worse performance relative to other types of models and consistently produced a worse
level of error regardless of missing data %; this was as expected as they do not recognize
the underlying biomechanical and temporal lay of movement data.

Notably, the CSDI model appears to exhibit significant variability and error rates
relative to other DL models. The nature of the diffusion-based model remains important,
but CSDI may be one additional deep learning technique that shows promise, requiring
more adaptations to suit IMU-based motion capture data. The more traditional ML models
and even DL methods such as GAIN and Iterative Imputer generated comparable levels of
error to the majority of simple procedures with differing proportions of missing data, but
they had high levels of inconsistencies when comparing their performance to various tem-
poral models and limited missing data imputation processes.This analysis showcases the
critical importance of temporal modeling features in univariate motion capture imputation
processes in the absence of cross-sectional context, where imputation relies on a backlog of
other player temporal data; its reliability depends on the imputation model.
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Table 1. MAE for univariate data imputation of single players for different missing point percentages

(transition missing points).

Percentage of Missing Data

Imputation Method  Type
5% 10% 15% 20% 25% 30%
BSI ML 10.88 +5.99 11.12 £ 5.6 9.52 £5.12 9.69 £ 5.74 11.45 +5.74 10.0 + 6.57
Iterative Imputer ML 1193 £821  10.67 + 6.06 95+721 10.22 £+ 6.82 10.8 £6.9 9.71 +7.19
KNN ML 8.73 + 6.98 14.2 £ 10.09 9.56 £+ 7.05 10.99 £8.8 12.0 £9.89 12.19 £8.92
Simplefill mean Statistical ~ 11.93 +£8.21  10.67 & 6.06 95+721 10.22 + 6.82 10.8 £ 6.9 9.71 £7.19
Simplefill median  Statistical =~ 13.78 9.8 10.05+8.62  1018+9.33  10.75+8.65  10.99 £ 8.57 9.97 £9.0
Simplefill random  Statistical 20.79 +11.95 13.89 £8.18 1874 £12.77 1546 +12.66 17.24£10.06 1727 +12.73
Soft imputer ML 8.73 £ 6.98 14.2 +10.09 9.56 £ 7.05 10.99 + 8.8 12.0 £9.89 12.19 +8.92
GAIN DL 11.99 £ 8.25 10.69 £ 6.0 1351 £9.55  10.21 £6.73 10.8 £+ 6.85 9.71+72
CSDI DL 26.1+1877 1654 +11.12 12.094+9.73 32.08+21.72 14.88+13.34 13.31 +£10.24
SAITS DL 742 £4.15 7.12 £ 3.52 6.64 £2.79 7.55 £ 2.69 6.68 £+ 2.79 7.23 +£2.99
BRITS DL 7.56 + 4.08 74 +3.74 6.74 £+ 3.02 7.7 £2.76 7.37 £2.97 7.52 £295
GRUD DL 7.48 +4.03 7.16 +3.79 6.03 £+ 2.66 7.07 £ 2.64 6.95+2.38 7.26 £291

4.2. Results and Comparative Interpretation of Multivariate Contexts

Switching from a univariate to a multivariate context provides auxiliary information
to the imputation models, allowing their performance to be substantially enhanced. Our
approach distinguishes between two multivariate scenarios: information from data of
different players performing the same skill (motion) and information from data of different
angles from the same player.

4.2.1. Across-Player Imputation: Results and Cohort-Based Interpretation

The multivariate player context assumes that for a given kinematic variable (angle),
the time series from multiple players performing the same skill will exhibit common
patterns. This is a powerful assumption in sports science and clinical studies involving
standardized tasks.

We investigated formulating the problem as a multivariate imputation task by uti-
lizing similar sequences within the data, thereby potentially improving the accuracy and
dependability of imputation. This method enables us to use relationships and patterns
across several variables in every sequence, thus providing a more informative context for
imputing missing values. We sought to understand how different imputation techniques
might take advantage of these interdependencies in scenarios spanning simple to highly
complex missing data patterns by analyzing multivariate imputation across three datasets.
In this experiment, we used the data of the same skill (motion) performed by several
players to guide the imputation models to reconstruct the missing values for the players
with missing motion data. The results of this experiment are listed in Table 2 and depicted
in Figure 5.

In Table 2, one can observe substantial performance improvements between the uni-
variate and multivariate cases. The time series deep learning models (i.e., SAITS, BRITS,
GRU-D) yielded the best overall performance, with an MAE across all missing data per-
centages consistently below 3.2; this represents as much as a 70-80% improvement when
compared to their univariate conditions. Traditional ML procedures such as KNN and
Iterative Imputer provided moderate relative performance benefits, using cross-player cor-
relations to reduce errors from their respective univariate baselines (for example, Iterative
Imputer improved from 10.8 & 6.9 to 5.82 & 5.52 at 25% missing observations). However,
statistical methods (Simplefill mean, median, and random) still performed poorly for the
multivariate context, with only small improvements often varying considerably across
missing data percentages. CSDI still had a considerable amount of variability with poor
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Imputation method

performance when compared to other DL methods, whereas GAIN did show moderate
improvements but was less consistent than the specialized time series approaches. Overall,
this analysis demonstrates that multimethod approaches lead to significant improvements
in imputation accuracy by capitalizing on cohort-based correlations, with the largest gains
resulting from models designed to capture spatio-temporal dependencies.
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Figure 5. MAE for multivariate data imputation using multi-player data for the same skill. (a) MAE
for imputing randomly missing (MCAR) points. (b) MAE for imputing missing data of transition
and random points. (c) MAE for imputing sequences of consecutive missing data.

The vast majority of error values for the first dataset, randomly missing (MCAR)
points, range roughly 0 to 20 as shown in Figure 5a. While methods such as SimpleFill
Random, SimpleFill Mean, and SimpleFill Median performed well in most cases, they
struggled with only one case (i.e., angle 36) where the error values ranged from 60 to 140.
In the multivariate context, adding more information helped even simpler techniques
like SimpleFill Mean and SimpleFill Median; this range shows that most approaches
performed effectively. More advanced techniques such KNN and Iterative Imputer used
the correlations between variables to provide more exact imputations, thus stressing the
advantages of concurrently considering several variables.

With error values peaking at 140, the results of the second dataset, in which missing
data was randomly distributed and at transition points, are depicted in Figure 5b. The sec-
ond dataset was even more complex and emphasized the need for multivariate techniques
such as Soft Imputer and Iterative Imputer. Both advanced methods took advantage of the
complicated interrelationships between several variables, especially at transition points in
the sequences where multiple variables are in motion; these methods had to account for the
multivariate complexity of the data to discretely estimate the missing values. In contrast,
the SimpleFill Random technique had a harder time with the increasing complexity and
was more consistent with the higher error rates associated with simple method approaches.
Comparing Figure 5 to Figure 3b, we note that the error range declines from 350 to 140; this
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reflects the importance of the auxiliary information, i.e., other players” motion data, to the
imputation models when improving error rates.

The results for the third dataset depicted in Figure 5c present substantial ranges
of missing values even with transition points. Again, the highest error rate reduced
to 140 from 350, which is the highest value of the same dataset using univariate imputation,
as shown in Figure 3c. In cases where advanced methods like GAIN and Iterative Imputer
can use their unique modeling powers to accurately reconstruct these portions of missing
data, we noted that they performed the best, which was reassuring in that the extremely
challenging continuity and accuracy of our imputed sequences relied on these methods’
management of the multivariate aspect of data.

Moving to a multivariate imputation framework significantly improves the imputation
process, especially in complex scenarios. In a multivariate framework, multiple variables
can be treated simultaneously, which further leverages the data available with the benefit
of varying dimensions of detections. There is an emphasis, however, on selecting a method
based on the dimensionality of the data, i.e., the the complexities of missingness across
multiple variables. Multivariate imputation techniques will yield notable merits, being able
to utilize and analyze the integrated data structures while maintaining the structural and
dynamic integrity of complex data or datasets.

The increments in accuracy are explained in Tables 1 and 2. For example, with 25% of
data missing at transition points, the MAE for the Iterative Imputer reduced from 10.8 £ 6.9
(Table 1, Single-Player) to an improved 5.82 + 5.52 (Table 2, Multi-Player). The MAE for
the KNN imputer reduced from 12.0 & 9.89 to 4.29 + 7.06, which is close to a 50 percent
improvement. This proves that if one player has a sensor that fails, the actions of other
players provide useful information to guide the imputation model towards better imputed
values of the missing data.

A graphical illustration of the imputed points and the true points for one case is
presented in Figure 6. In Figure 6, the points imputed by the statistical-based methods are
far from the true points, which indicates their weak performance, as shown in Figure 6d—{.
In contrast, Figure 6a,c,h show accurate data imputation, as the distances between the
imputed points and the true points are very small. The specialized deep learning models
(i.e., SAITS, BRITS, GRUD) also exhibit consistently accurate reconstructions with low MAE
values, but the CSDI exhibits poor performance (MAE » 3.0), with larger error validating
the improved stability of the specialized time series approaches for the multivariate context
(see Figure 6i-1).

Table 2. MAE for multivariate data imputation of multiple players for different missing-point
percentages (transition missing points).

Percentage of Missing Data

Imputation Method Type
5% 10% 15% 20% 25% 30%
BSI ML 6.47 £ 5.16 6.65 + 547 721 £ 4.95 7.68 = 4.99 8.48 £ 5.15 8.12+5.21
Iterative Imputer ML 0.86 + 0.88 3.29 +£4.13 274+£25 249 £242 5.82 £5.52 4.4 +433
KNN ML 0.77 + 0.87 2.19 +£3.37 2.26 £+ 3.46 248 £3.5 4.29 £7.06 6.96 + 8.57
Simplefill mean Statistical ~ 10.96 + 5.99 11.1 +4.97 9.08 +4.77 10.06 + 4.72 10.8 £ 5.15 10.07 = 4.76
Simplefill median Statistical 10.3 £2.94 11.81 £ 5.13 8.92 + 3.14 10.06 + 3.97 10.89 + 4.8 10.53 +4.21
Simplefill random  Statistical 9.12 £ 6.31 1295 +8.19 18.75+£1239 16.89+ 128 1527 +£1228 14.71 £13.44
Soft imputer ML 3.06 £1.75 57 +7.89 299 £3.23 391+£524 587 £7.82 4.81 £6.63
GAIN DL 221+1.36 6.99 + 7.67 2.89 £2.18 14.72 + 6.89 6.2 = 6.87 4.38 £5.45
CSDI DL 1929 +£ 1421 13.89+108 232+1484 1689 +11.97 1938 +1345 13.7+10.11
SAITS DL 2.8 £3.07 3.03+3.72 3.0+£343 2.89 £ 3.36 2.96 + 3.35 293 +3.27
BRITS DL 2.67 £ 3.0 3.07 £ 3.75 3.01 £3.42 2.79 £341 291 £ 3.36 291 +3.28
GRUD DL 2.86 £ 3.07 3.15+3.72 3.07 £341 3.04 £341 3.01 £3.32 2.99 £ 3.29
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Figure 6. Imputed vs. true missing values for multiple player imputation (transition missing points).

4.2.2. Across-Angle Imputation: Results and Biomechanical Interpretation

The multivariate angle context was built upon the principle of biomechanical coupling:
for one subject (person), the movement of one joint is dependent on the movements of
other joints. This was the most impactful context, especially with structured data loss.

In the first dataset, sequences contained random missing values, and applying a uni-
variate method resulted in an error range of 0 to 120, as depicted in Figure 7a. Although the
multivariate approach increased the complexity of the imputation procedure, the perfor-
mance of most of the non-statistical-based model significantly improved compared to the
univariate results, as shown in Figure 3a. On the contrary, the statistical-based models’
performance declined. This behavior of model performance continued to appear in the
other two datasets of missing values: the missing values around the transition points, as

shown in Figure 7b, and the interval of missing values, as shown in Figure 7c.
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Figure 7. MAE for multivariate data imputation using multi-angle data for the same player. (a) MAE for
the imputation of randomly missing (MCAR) points. (b) MAE for the imputation of missing data of
transition and random points. () MAE for the imputation of sequences of consecutive missing data.

The second dataset contained random discrete missing values and missing values at
transition points in the sequences, which was a more complex scenario, where univariate
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missing value imputation methods yielded error values of 0-350. The use of multivariate
imputation methods drastically improved the error values to 0-120, as shown in Figure 7b.
This represents a more than 50% reduction in max error and supports the effectiveness of
multivariate methods in utilizing relationships among multiple variables when confronted
with complex patterns of missing data, especially at critical transition points in sequences.

The third dataset exhibited the most significant difficulties, with long intervals of miss-
ing values including transition points. Although the multivariate approach still produced
high error values, peaking at 120 (as shown in Figure 7c), it was much better than the
univariate results, thus illustrating the advanced powers of techniques such as GAIN and
Iterative Imputer in a multivariate setting.

Generally, especially in complicated situations, the shift to a multivariate framework
indicates a trend toward better imputation accuracy. Particularly where multivariate
techniques can use inter-variable relationships to negotiate the complexity of missing data,
thereby lowering error margins, the thorough comparison highlights great advantages.
In disciplines like sports science, where exact data reconstruction is essential to the quality
of performance analysis and consequent insights, this method is especially helpful.

4.3. Biomechanical Interpretation of Multivariate Gains

The superior performance of multivariate approaches within our benchmark analysis
is consistent with the kinematic coupling between trunk and limbs during karate tech-
niques. Angular velocities and linear accelerations at the shoulder, elbow, and wrist co-vary
with pelvic and trunk rotation as torque is transferred proximally to distally. Multivariate
angle contexts therefore help to preserve joint angle synergies during rotational movements,
stabilizing peaks and transitions that univariate baselines tend to flatten. In multivariate
player contexts, temporal consistency of acceleration profiles across sensor axes—a conse-
quence of standardized elite instruction—provides strong priors for plausible trajectories
at a given angle. Model-specific iterative multivariate imputers exploit cross-feature re-
gression on aligned angles, while adversarial and attention-based models (e.g., GAIN’s
ability to model latent dependencies between IMU streams) leverage long-range temporal
structure to maintain physically consistent reconstructions through ballistic phases and
re-grasping phases.

4.4. Discussion

Our empirical investigation first identified severe limitations in treating MoCap time
series as either merely sequences of observations or as univariate series. In this context,
the imputation performance is critically dependent on the missingness mechanism, as, for
example, some simple, randomly missing points may reasonably interpolate from each side
of the temporal sequence; however, for more complex structures, performance degrades
severely. The failure of simple statistics methods on missing transitional points is particu-
larly telling and reinforces the nature of methods like mean filling, which “flatten” some
of the important peaks and valleys in the dynamics of the movement, thereby creating
possibly unacceptable distortions. The extent to which this limitation was compounded in
terms of instability for representative motions with block missingness, where there were
no local conditions to view the interpolulated motion, forced the model to extrapolate
without guidance and therefore resulted in fundamentally unreliable imputations, leading
to fundamentally unreliable imputations.

The multivariate frameworks offered a way to mitigate this issue by using critical aux-
iliary information, with the across-player context also performing well in incident-related
data loss. This context leverages cohort similarities and is predicated on assumptions
that the different players possess common motions in certain skilled aspects. The model
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effectively learns a statistically shared template or archetype for the skill movement it-
self by drawing information from a distribution of performances. A key observation is
that when a player’s sensor failed at a key incident in the movement (e.g., peak, val-
ley), the equivalent motion from other players provided an excellent, high-fidelity basis
for reconstructing the movement, explaining the significant error reduction for missing
transition points.

Based on the varieties of the missing measurements, the multivariate angle context
consistently achieved the best performance, simply because it is the model most suited to
the nature of MoCap data. The framework’s ability to model the intrinsic biomechanical
coupling of the human kinematic chain meant that in that context, it was very effective.
For instance, one joint (e.g., elbow) should have one state based on the states of the
adjacent joints (e.g., shoulder and wrist). This context is particularly powerful when
considering contiguous block missingness as well, because it is true that while temporal
information is lost for one channel, the cross-sectional kinematic relationships with all other
channels are intact for every time step. In short, this offers an ongoing and structural basis
for reconstructing data that the other contexts cannot provide when there is structured
data loss.

It is challenging to synthesize these results to propose a clear hierarchy of imputation
strategies predicated on the correlation type being exploited. The findings demonstrate
that the imputation context is not arbitrary; it is a critical modeling decision that encodes
assumptions about the structure of the data. Second, when a subject has multi-joint data
available, it is obviously better to use the across-angle context because of its use of physically
constrained data.In contrast, the across-player context is a useful alternative for single-angle
analysis across a cohort; it may be better than designated parameters in this context and the
across-player context.Lastly, for univariate contexts, it is limited to that instance in which
there is no other correlated data, with the explicit understanding of its vulnerability to
structured data loss.

A direct comparison of the error bar plots for the transition point missingness mecha-
nism shows a significant difference in imputation performance across the three contexts
and underlines the importance of the correlation of the data itself, as shown in Figure 8.
In the univariate and multivariate multi-player contexts, advanced models (e.g., Iterative
Imputer and KNN) achieve much better performance than basic statistical models, with an
MAE of around 1-5. Of note, the specialized time series deep learning models (i.e., SAITS,
BRITS, GRUD) show consistently superior performance, with MAE values below 3 across
all contexts, while CSDI shows higher variability but still surpasses traditional statistical
methods. Due to large variance in Simplefill mean and Simplefill random, the error bars
extend to an MAE of over 30 in some cases. Thus, using these statistical methods is risky
for dynamically important data. However, performance characteristics shift dramatically
when moving to the multi-angle context. In the multi-angle context, advanced models that
can leverage biomechanically coupled kinematic variables and achieve an MAE of around
zero with very little variance (indicating perfect reconstruction), with the specialized deep
learning models maintaining their superior stability. Meanwhile, simple statistical-based
methods fail catastrophically, with Simplefill random demonstrating an MAE of over 100.
This makes sense because they these methods perform a physically incongruous operation
of averaging across distinct and dynamically different angles (e.g., of the shoulder and
wrist), which results in a physically impossible data ranges and very large errors. This
demonstrates that the choice of imputation method is as critical as the availability of data,
as an incongruous approach can negate the benefits of a richer dataset and compromise the
trustworthiness of the results.
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(c) Data imputation for multiple angles of the same player.

Figure 8. MAE Error bar for data imputation of Transition missing points.
The enhanced performance of the Iterative Imputer and GAIN methods at transition

points can be understood based on their design and mechanisms of operation. These
methods can model nonlinear temporal dependencies within each time series with biome-
chanical coupling to multiple joints. Consequently, the two methods were able to produce
physically consistent kinematic sequences with nonlinear transitions during quick fluctua-
tions/changes in motion (i.e., peak and valley) when applying these methods.Conversely,
even the simple statistical approach (mean or median filling) was unable to capture cross-
joint correlation and nonlinear dynamics, which flattened the important transitions and
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generated large errors at change points, because it relied on a single imputation from a
likelihood model and did not model any cross-joint correlation.

4.5. Study Limitations and Implications for Future Work

A limitation of this work is that we did not perform missing not at random (MNAR)
scenarios or dynamic (i.e., time-dependent) missingness approaches, and we did not use
any multimodal signals (e.g., electromyographic (EMG)). Generally speaking, while our
benchmark focused on MCAR, transition-based block structures (missing-at-random forms
of treatment), MNAR, and non-stationary missingness are very relevant in practice, and
therefore so are the complexities of cross-modal interpolation. These were not experimented
with in this part of the work due to its scope, but we recognize that they are important,
and we have identified them as important directions in future extensions to the benchmark.
Furthermore, our benchmark was based solely on IMU-based MoCap data. Extending
the framework into further domains such as medical time series (e.g., EEG) and financial
domains would serve to assess the transferability of the techniques we have proposed into
further application domains. We believe this is an important area of future work for more
generalizable findings.

One additional limitation of this work is that we did not consider hybrid models, such
as traditional methods followed by deep learning methods (e.g., KNN pre-filling followed
by GAN), which may benefit from both methods’ compounded properties. Further, hy-
perparameter tuning—for example, running a grid search for Iterative Imputer iterations,
or GAIN’s generator configurations—could produce enhanced performance. However,
we also consider these as future directions for future applications of this framework. Al-
though the MAE was chosen for its ease of interpretation and uniformity across methods,
we acknowledge that the MAE does not measure temporal alignment or structural consis-
tency; therefore, future additions will include relevant metrics like Dynamic Time Warping
distance and joint-angle-based errors rather than position-based errors.

The primary limitation of this work is the uniformity of the dataset: all 53 subjects
were elite adult male participants. The lack of demographic variability (age, gender, rank,
and anthropometrics) is likely to limit the transferability or generalizability of our findings.
Beginners or less elite players may exhibit more inter-trial variability, which may change
how difficult imputation is to perform. Moreover, while there are four skills in the dataset,
we only used the Gedan Barai skill for this analysis due to space constraints. Future research
should involve larger movement repertoires including a more heterogeneous population to
investigate the robustness of imputation approaches.

5. Conclusions

This work provides a broad introduction to data imputation with missing data within
the area of motion capture through IMU sensors, an area in which data quality is important.
We were able to perform the first exhaustive comparison of statistical methods, machine
learning methods, and deep learning methods across three new imputation contexts: uni-
variate, multivariate players, and multivariate angles. Specifically, in the multivariate angle
context, advanced methods like the Iterative Imputer and KNN achieved a 64% reduction
in MAE (from 12.0 £ 9.89 to 4.29 £ 7.06) by leveraging multi-player information. The
utilization of time series DL models (i.e., SAITS, BRITS, GRU-D) consistently achieved
50-80% better accuracy than traditional approaches across all experimental conditions. A
key contribution of this paper is the introduction of the first publicly available benchmark
dataset to help standardize the evaluation of imputation methods for this unique time
series data. All our experimental findings are clear. We show that multivariate frame-
works that exploit the correlations across players or kinematic variables are far superior
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to univariate approaches, especially with unusual patterns of missingness. The more so-
phisticated models such as GAIN and the Iterative Imputer produced the highest quality
data imputation—these are the best models for capturing the complex aspects of human
motion. The scale of the dataset (53 subjects, 100 time points) may limit the capacity of our
findings to be generalized to sequences that are longer or have more diverse movements.
One key limitation of this study is that the motion capture is restricted to four specific skills
performed by Karate practitioners; however, it provided a controlled setting in which to
analyze the proposed imputation methods. The work we have undertaken has created an
acceptable baseline and defined the most apparent next steps through which to support
future researchers. Based on our findings, we suggest the following: (1) prioritization of
specialized time series models (i.e., SAITS, BRITS, GRU-D) for optimal performance across
all contexts; (2) use of a multivariate angle context when complete kinematic data is accessi-
ble; (3) use of Iterative Imputer or GAIN as secondary options when specialized models
are unavailable; and (4) avoidance of simple statistical methods for dynamic transition
points, as they can significantly compromise reconstruction quality. Our results indicate
that specialized time series models (SAITS, BRITS, GRU-D) perform optimally across all
missing rates (5-30%) and contexts, while traditional methods like Iterative Imputer and
GAIN serve as viable alternatives when there are moderate missing rates (<30%), especially
in multivariate contexts. Future researchers should focus on transparent validation studies
when working with real observations that will have naturally occurring gaps. While this
work considered only IMU-derived kinematic signals, the multimodal extension combin-
ing IMU with EMG recordings represents an important opportunity for future research.
Cross-modal imputation may result in stronger imputations through complementary infor-
mation from multiple detection modalities. Future benchmark datasets and studies should
therefore explicitly include multimodal data to increase the robustness and applicability of
imputation methods in human motion analysis.
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