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Cosmos 1.0: a multidimensional 
map of the emerging technology 
frontier
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& Marian-Andrei Rizoiu1

This paper introduces the Cosmos 1.0 dataset and describes a novel methodology for creating and 
mapping a universe of technologies, adjacent concepts, and entities. We utilise various source data that 
contain a rich diversity and breadth of contemporary knowledge. The Cosmos 1.0 dataset comprises 
23,544 technology-adjacent entities (TA23k) with a hierarchical structure and eight categories of 
external indices. Each entity is represented by a 100-dimensional contextual embedding vector, 
which we use to assign it to seven thematic tech-clusters (TC7) and three meta tech-clusters (TC3). We 
manually verify 100 emerging technologies (ET100). This dataset is enriched with additional indices 
specifically developed to assess the landscape of emerging technologies, including the Technology 
Awareness Index, Generality Index, Deeptech, and Age of Tech Index. The dataset incorporates 
extensive metadata sourced from Wikipedia and linked data from third-party sources such as 
Crunchbase, Google Books, OpenAlex and Google Scholar, which are used to validate the relevance and 
accuracy of the constructed indices.

Background & Summary
Emerging technologies have been shown to deliver the greatest benefits to the economy and society when 
understood and adopted early, resulting in improved health, environmental outcomes, economic growth, and 
sustained innovation1,2. In the era of the Fourth and even Fifth Industrial Revolution (Industry 4.0 and 5.0), 
researchers are delving deeply into defining what constitutes emerging technologies3,4. These technologies may 
be entirely new innovations or reimagined applications of existing technologies. Their critical role in national 
competitiveness5,6 and a firm’s innovative growth7 is increasingly evident. We can see this with the digital trans-
formation of the retail industry. Traditional store-based retailers who adopted the Internet as a communication 
channel and formed e-alliances experienced a positive impact on firm performance. This is supported by a 
study reviewing 181 companies across multiple countries, demonstrating the broad impact of digital adoption in 
the retail sector8. Technologies related to artificial intelligence, smart devices, information and communication 
technologies, new materials, robotics, automation, sensors, and mechatronics, among others, are proving to be 
pivotal elements in the competitiveness of both developed and emerging economies4.

Both qualitative and quantitative methods are currently used to identify emerging technologies. Traditionally, 
the most common way is to use qualitative “top-down” processes with panels of experts discussing and voting 
on critical technologies and themes. Many leading global organisations use this approach, for example, the 
Organisation for Economic Co-operation and Development (OECD), World Economic Forum (WEF), and 
MIT Technology Review each produce annual reports on emerging technologies9–11. The best-typified one is the 
Delphi method, a structured methodology designed to systematically elicit and refine the opinions of experts 
through iterative rounds of questionnaires and controlled feedback12. Quantitative methods evolve rapidly with 
text analysis and deep learning techniques. There are two main limitations in current methods of identifying 
emerging technologies: the types of data used and the “top-down” methodology applied. At an early stage, most 
data used to explore emerging technologies started with publications, patent information, News articles or a mix 
of these13,14. Counts of keywords, authors, publications, citations, patents, or even News articles are commonly 
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used as data resources of quantitative methods15,16. The development of data analysis tools and methods, includ-
ing natural language processing (NLP), subject-action-object (SAO) structure, similarity matrix, knowledge net-
works, full-text analysis, and large language models (LLMs), has the potential to enable the creation of new types 
of data for detecting emerging technologies17,18. The vast majority (89%) of data sources on emerging technology 
forecasting are related to patents, publications and News articles19. The rapid advancement of text-mining tech-
niques enhances data diversity and offers new, unique insights into both explicit and latent knowledge about the 
nature, structure, and functions of emerging technologies.

This paper presents a dataset of two broad components. The first comprises entity embeddings of 23k 
technology-adjacent entities (TA23k) with a hierarchical structure, including an identifiable subset of 100 
manually verified, highly recognisable emerging technologies (ET100). The second component is a set of 
technology indices that can be used to filter both mature and emerging technologies from the universe of 
technology-adjacent entities. Those indices study the detection and diffusion of technologies ranging from old 
inventions to the latest advancements in various research and industry fields included in Wikipedia. This dataset 
aims to help researchers, policymakers, and corporations make informed decisions, allocate resources wisely, 
and foster the development of these technologies for sustainable growth and competitive advantage. By identi-
fying these emerging technologies early, stakeholders can better prepare for the changes and opportunities they 
present, encouraging proactive adaptation and strategic planning.

This study uses a “bottom-up” approach to identify and explore the underlying structure of 
technology-adjacent space by leveraging the Wikipedia corpus and NLP techniques. Wikipedia is edited by 
numerous experts and contains texts from reliable sources20,21. For most technologies, Wikipedia provides 
relevant description text and links relevant articles using hyperlinks. Wikipedia2Vec, a pre-trained language 
model with entity embeddings, enables us to filter technology-adjacent articles related to emerging technologies 
based on cosine similarity22. Entity embeddings provide context-specific representations of real-world entities 
(Wikipedia article) compared to the more generalised semantic and syntactic information captured by word 
embeddings. After defining a universe of technology-adjacent entities from the Wikipedia corpus, dimension-
ality reduction algorithms and clustering algorithms are used to detect and visualise the clusters and hierarchi-
cal structure among the technology-adjacent space. The output of this “bottom-up” approach is a three-level 
hierarchical tree called three meta tech-clusters (TC3), seven theme tech-clusters (TC7) and ET100 from top to 
bottom level. The ET100 at the bottom level are the 100 emerging technologies that have been manually verified 
from the larger technology-adjacent universe. In the meantime, we manually name the three meta tehc-clusters 
and the seven theme tech-clusters based on the typical characters of the cluster of those technologies (See 
Subsection Hierarchical Structure of Emerging Technologies for more details). Moreover, we collect and create 
a series of external indices for the final dataset (See Section Data Records for more details). The workflow of the 
Cosmos 1.0 dataset is shown in Fig. 1.

Methods
We aim to leverage large language models to automatically identify rising technologies across a broad spectrum 
of research areas instead of concentrating on just one area or limiting ourselves to technologies that have only 
recently gained popularity. Current lists of emerging technologies23–25 are often limited and lack depth and com-
plex categorisation. We use insights from language models to streamline the exploration of emerging technolo-
gies and to categorise them into clusters with machine-learning methods. We also construct technology indices 

Fig. 1  The repeatable workflow of creating and mapping the Cosmos 1.0 Dataset. It illustrates the simplified 
process of data collection, taxonomy, all features and potential usages of the Cosmos 1.0 dataset.
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from reliable third-party sources to quickly and accurately position potential emerging technologies within the 
technology-adjacent space, validating the approach and strengthening the dataset. These are designed to offer 
governments, entrepreneurs, and researchers valuable perspectives. Since technologies continuously evolve, we 
document in detail the processes of collecting data, creating indices, and building Cosmos 1.0. It facilitates 
future updates to the next generation of the Cosmos dataset.

Data Collection based on Wikipedia2Vec.  One significant drawback of patents and publications is that 
the naming of emerging technologies can vary across different publications, depending on the authors’ prefer-
ences and interpretations26. Wikipedia’s advantage lies in providing each technology with a consistent and uni-
versally recognised name and a detailed and standardised description. Previous efforts have utilised the hyperlink 
structure of Wikipedia to identify more extensive lists of emerging technologies18. However, these approaches 
overlooked the textual content of Wikipedia and failed to recognise the structure of these technologies or create 
additional metrics for comparing them.

Wikipedia2Vec22 is a toolkit that generates embeddings from each article and word within Wikipedia. With 
this toolkit, Wikipedia articles are trained as entities and thus represent the concepts and linkages within a 
broad context of 2.6 million other articles. The embeddings for the English language Wikipedia (2018) are used 
in this research. It is a powerful tool to leverage the vast amount of knowledge encoded in Wikipedia to create 
high-quality word and entity embeddings. It uses a skip-gram model, a type of neural network architecture that 
learns to predict the context of a given word based on its embedding. It then applies modifications to the original 
skip-gram model to incorporate the Wikipedia structure. For example, it uses the categories, links, and redirects 
in Wikipedia to define the context of a given word or article. It also uses a negative sampling technique to train 
the model efficiently. Word embeddings represent words in a vector space, while entity embeddings do the same 
for Wikipedia entities, such as articles for people, places, and concepts. Since the embedding space captures 
semantic similarities based on Wikipedia’s context, co-occurrence, and linkage structure, we retrieve emerging 
technology-related articles using cosine similarity measurements.

To create the Cosmos 1.0 dataset, we start with the seed article “List of emerging technologies” and collect 
the 100,000 most similar words and entities based on cosine similarity to the seed. The whole list contains 
45,149 words and 54,851 entities. Since entity embeddings offer the advantage of capturing entities’ specific 
contexts and relationships more accurately than word embeddings, we only keep the entities as the universe 
of emerging technology “candidates”. Moreover, we incorporated an additional thirteen technologies found in 
Wikipedia that were not initially included in our set. These technologies are: “Advanced Computer Techniques”, 
“Biopharmaceutical”, “Communication”, “Computer security software”, “Customer relationship management”, 
“Educational technology”, “Electronic data interchange”, “Enterprise resource planning”, “Financial technology”, 
“Genetics”, “Microsatellite”, “Online service provider”, “Research”. Those technologies align with other emerging 
technology frameworks, including World Economic Forum, OECD, and MIT Technology Review.

We refer to the complete entity list as TR50k (54,864 technology-related entities). It includes technolo-
gies, theories, organisations, people and other concepts, which are technology-related but not directly close to 
technologies themselves. These articles represent “noise” for our purposes, and we remove and minimise their 
impact using properties of Wikidata and pageviews. Firstly, we utilise the Wikidata property “instance of ” to 
refine and clean this data. The “instance of ” attribute connects an item with its broader category, denoting it as 
a particular instance within that category. Since we aim to remove those apparent anomalies and retain as many 
entities as possible, we manually select technology-adjacent instance labels and keep all Wikipedia articles with-
out “instance of ” information. Although this less rigorous screening may preserve a degree of noise, we consider 
this approach justified as it maximises the retention of potential emerging technology “candidates” within our 
dataset. There are 29,030 entities left after we filter the data based on critical labels of this attribute. The kept 
instance labels are available in supplementary information (Section 1 Supplementary Methods). Secondly, we 
collected pageviews of the TR50k for the last three years (2021 - 2023). We noted many articles with no or 
very few pageviews as being tangentially related to technologies rather than being technologies themselves. We 
assume that valid technologies, even specialised ones, attract some degree of general attention and thus are not 
among the bottom 10% percentile of the whole pageviews distribution. We note that the articles with the least 
attention, that is, those in the bottom 10% percentile on the distribution tails for the last three years are those 
with less than 2085, 2039 and 1766 pageviews, respectively. To be more restrictive again, we manually raised the 
pageviews filter value to 2500 to filter the noise. In other words, we only retain entities that have received more 
than 2500 pageviews per year over the past three years. Finally, we end up with 23,544 technology-adjacent enti-
ties called the TA23k, which consist of the universe of emerging technology “candidates”.

Applying the 2,500 pageviews threshold reshapes the log-transformed distribution of Wikipedia pageviews 
from approximately normal to positively skewed. This indicates that a large portion of ambiguous, non-technical 
entries have been effectively filtered out. The resulting skewed distribution aligns with the typical long-tailed 
patterns found in bibliometric and innovation datasets, where a small number of technologies attract wide-
spread attention while the majority remain niche27. Kostoff et al.28 are concerned that disruptive technologies 
are challenging to detect early because they often emerge in niche domains, outside mainstream research, and 
may be overlooked by conventional and strict metrics. To validate that the threshold does not exclude meaning-
ful technologies, we compared our filtered list against established foresight sources. Over 90% of technologies 
identified by the OECD fall above the 2,500 pageviews threshold (See Subsection Comparison ET100 with other 
emerging technology lists for more details). Together, distributional evidence and benchmarking results provide 
converging support for the 2,500 pageviews threshold as an empirically grounded method for curating emerging 
technologies, while acknowledging that additional methods (e.g., expert review) may be required to capture 
early-stage innovations with limited public visibility.
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Since we frequently mention technology-related entities, technology-adjacent entities, and emerging tech-
nologies in this paper, we distinguish these terms to avoid ambiguity. Technology-related entities, exemplified 
by TR50k, constitute the broadest set of technologies identified on Wikipedia through cosine similarity, though 
this set contains considerable “noise”. Within our framework, we define technology-related entities as those 
positioned furthest from emerging technologies. Following refinement of TR50k using Wikidata and pageviews, 
we derived a more focused subset, TA23k, representing technology-adjacent entities that are closer to emerging 
technologies, yet still affected by “residual noise” due to the limitations of our filtering process. By contrast, 
the 100 emerging technologies (ET100) identified in this paper through a combination of tailored indices and 
manual screening represent the set of genuine emerging technologies (See Subsection Hierarchical Structure 
of Emerging Technologies for more details). Next, we apply machine learning algorithms to the TA23k dataset 
to detect the hierarchical structure of this technology-adjacent space. This provides the initial input of approx-
imately 23k technology-adjacent entities with 100-dimensional embedding vectors. We now have a valuable 
approach for identifying potential emerging technologies “candidates” within the space and exploring the rela-
tionships between different technologies and research fields.

Hierarchical Structure of Emerging Technologies.  Since no globally standardised classification system 
exists to classify technologies, we introduce unsupervised machine learning algorithms to cluster the TA23k based 
on their embedding vectors. Before clustering, we use the t-distributed Stochastic Neighbour Embedding (t-SNE) 
algorithm to map the 100-dimensional entity embeddings space to a two-dimensional space for visualisation and 
further clustering analysis. The t-SNE29 algorithm excels at preserving local structures within high-dimensional 
data, making it particularly well-suited for revealing intricate cluster patterns that linear methods, such as PCA, 
might miss. Its non-linear approach allows it to capture complex relationships between features, offering a more 
nuanced view of data’s inherent structure. This preprocessing step mitigates the curse of dimensionality by sim-
plifying the data, which enables visualising and understanding complex data structures.

The second step is to utilise agglomerative hierarchical clustering (AHC)30 to reveal the hierarchical structure 
of the TA23k. It is a bottom-up clustering method where each data point starts as its cluster, and pairs of clus-
ters are merged as one moves up the hierarchy. The process begins with calculating the similarity (or distance) 
between each pair of points or clusters. It then iteratively combines the closest pairs into larger clusters until all 
points are merged into a single cluster or a desired number of clusters is reached. This method is known for pro-
ducing a dendrogram. This tree diagram illustrates the series of merges and the multi-level hierarchy of clusters, 
enabling detailed analysis of data grouping and structure.

As Fig. 2(a) shows, each branch represents a cluster, and the height of the branches reflects the dissimilar-
ity between merging clusters. The dendrogram reveals two levels of optimal clustering: one at seven theme 
tech-clusters (TC7) and another at three meta tech-clusters (TC3). At the TC7 level, the dendrogram displays 
smaller, more finely grained clusters, indicating greater similarity within these groups. This level is suitable for 
detailed analyses with significant nuances between data points. A more pronounced gap is observed before 
merging into three clusters as we move higher up the dendrogram. This considerable increase in dissimilarity 
suggests a natural consolidation of the data into three broader categories, each representing a more general 
grouping of the data points. These broader clusters are ideal for high-level insights and understanding overar-
ching patterns within the dataset.

Within the framework of the TC7, a curated compilation of 100 emerging technologies (ET100) was manu-
ally reviewed. For each thematic tech-cluster, we first ranked a broad pool of candidate technologies using the 
Google_Patent_Counts_2023 feature (See Section Data Records for more details), which captures the number 
of patents filed in 2023 on Google Patents that explicitly mention the technology. This patent-based signal served 
as a proxy for recent technological activity and intensity of innovation. Our experts manually assessed the top 
1,000 technologies per cluster, using qualitative criteria such as investment potential, public and industry visibil-
ity, and relevance to broader sociotechnical trends. From this refined pool, 91 technologies were selected in the 
seven theme tech-clusters. Moreover, we refer to other prominent technology listings by leading global organ-
isations such as the OECD, WEF, and Gartner, resulting in a final list of 100 emerging technologies. We ensure 
that each identified technology aligns precisely and unambiguously with one of the seven thematic groups with 
manual inspection, facilitating thematic cluster-level analyses. Figure 2(b) provides a dendrogram that illustrates 
the hierarchical relationship and integration among ET100, TC7, and TC3. This structured approach enables 
the exploration of various levels and relationships within the hierarchy, including the dynamics between parent 
and child entities.

In addition to the hierarchical structure, the ET100 gathering sequence is also worth investigating. Close-knit 
technologies are more likely to be grouped in the same cluster. The spectrum of technologies ranges from foun-
dational ones, such as cloud computing and big data, to specialised innovations like CRISPR and quantum 
computing. Foundational technologies provide the base infrastructure, while data and analytics technologies, 
including machine learning and data mining, build on this foundation to process vast data volumes. Specialised 
industrial technologies, such as robotics and 3D printing, transform specific sectors, while cutting-edge tech-
nologies like graphene represent the forefront of scientific research. Energy and environmental technologies 
focus on sustainability, while health and biotechnologies, such as regenerative medicine, are critical for medical 
advancements. This progression reflects a move from broad, widely adopted technologies to experimental and 
transformative innovations at the cutting edge of technological progress. Each technology contributes to an 
interconnected ecosystem of advancements, pushing the boundaries of the digital and physical worlds.

The data-centric approach utilised in developing the Cosmos 1.0 stands out for its robustness and verifiabil-
ity. It facilitates the analysis of connections between technologies and their relatedness. Unlike traditional meth-
odologies that rely on manual, high-level analyses or one-off in-depth studies, our method offers comprehensive 
mapping capabilities compared to other emerging technology lists of OECD and the WEF, ensuring complete 
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and precise alignment. It is designed to allow for the future inclusion or exclusion of technologies as the land-
scape evolves. Due to its hierarchical structure and extensive technology corpus, it also supports more detailed 
explorations within specific areas. This methodology ensures that both large-scale and niche technologies are 
included, spanning the breadth of the landscape. The utility and relevance of Cosmos 1.0 are demonstrated 
through the application of external technology indices, as outlined in the next section.

Technology Indices.  We create multiple metrics, including the Technology Awareness Index, Generality 
Index, Deeptech Index, Age of Tech Index and Technology Proximity Index, to capture each technology’s growth, 
popularity, research depth and emergence in our TA23k, respectively. The “Technology Awareness Index” meas-
ures the evolving public and academic interest in emerging technologies by analysing their Wikipedia pageviews 
trends over time. The “Generality Index” evaluates emerging technologies’ broad applicability and foundational 
importance by analysing their prevalence across diverse contexts within Wikipedia, providing insights into their 
potential as general-purpose innovations. The “Deeptech Index” leverages advanced data analytics to quantify 
technologies’ scientific depth and innovation potential, providing a crucial tool for identifying and assessing 
Deeptech activities within the broader technology landscape. The “Age of Tech Index” utilises historical literature 
data from the extensive Google Books collection to determine the birth year of technologies, providing a founda-
tional metric for analysing their emergence, societal impact, and evolution over time.

Technology Awareness Index.  The use of Wikipedia pageviews to measure the growth of interest in emerging 
technologies is based on the assumption that increased public and professional curiosity about new technologies 
translates to more visits to their respective Wikipedia articles. By tracking the pageviews statistics over time, 
researchers can potentially gauge the rising or waning interest in specific technologies. This method offers a 
proxy measure of popularity or awareness rather than direct technological adoption or development. It leverages 
the accessibility and extensive use of Wikipedia as a primary source of information, making it a useful, albeit 
indirect, tool for analysing trends in technological engagement and public interest.

To calculate the “Technology Awareness Index”, we use linear regression on the pageviews data from 
Wikipedia articles over the past three years. By plotting the yearly pageviews against time and fitting a linear 
regression model, we derive the slope of this line, which represents the rate of change in pageviews. A positive 
slope indicates an increase in interest, reflected by more pageviews over time, whereas a negative slope suggests 
declining interest. This slope, quantified as the index, provides a numerical value that helps gauge the growth 
or decline in attention toward specific technologies, offering insights into trends in technological engagement.
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Fig. 2  Radial Tree Dendorgam of Cosmos 1.0 and ET100. (a) The full radial tree dendrogram with two grey 
dotted circles demonstrates three and seven are optimal numbers of clusters for the TA23k. We use colours to 
distinguish the three meta tech-clusters (TC3). (b) The curated radial tree dendrogram shows the technologies 
of ET100 and cluster names of TC7 and TC3 from bottom to top. The circle sizes of ET100 represent the 
normalised value of a technology index called Generality_Index. The theme tech-cluster “Data & Analytics” is 
frequently mentioned across Wikipedia articles than other theme tech-clusters.
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Generality Index.  The aim of the “Generality Index” is to quantify and understand emerging technologies’ ver-
satility and foundational nature. It quantifies the breadth of application of a technology by analysing its presence 
across different contexts within Wikipedia’s vast knowledge repository. This index uses computational linguistics 
and document frequency techniques to measure how often technology is mentioned across various Wikipedia 
articles.

To construct the index, each technology is represented by a canonical search phrase (e.g., “artificial intelli-
gence”, “quantum computing”), which is queried using the Wikipedia API. The API returns a value indicating 
the number of unique Wikipedia articles in which the phrase appears (totalhits). This raw count serves as the 
Generality Score, a proxy for the document frequency (DF) of the term across Wikipedia.

A higher Generality Score indicates that technology is mentioned in broader contexts, suggesting its versa-
tility and importance as a general-purpose technology31,32 that serves as a foundation for innovation in multiple 
industries and markets. In contrast, a lower score indicates a more specialised technology with limited applica-
tions. This index supports the identification of critical generative technologies that serve as essential building 
blocks across many industries and sectors. Such technologies are pivotal in driving continuous innovation and 
have a broad impact due to their wide applicability.

The Generality Index helps researchers, policymakers, and industry leaders recognise technologies likely 
to be more influential and essential for future developments. Essentially, the Generality Index offers a system-
atic approach to gauge technologies’ universality and potential ubiquity, aiding in strategic decision-making on 
research focus, funding allocation, and policy formulation. Limitations of this measure include coverage bias, 
temporal lag, and focus on popularity rather than impact. It can also be influenced by language and cultural 
differences and does not account for the depth or context of technology discussions, suggesting the need for 
third-party data for a verified assessment.

Deeptech Index.  The “Deeptech Index” is a metric designed to evaluate technologies based on their depth of 
scientific research and potential for disruptive innovation. Deeptech technologies are characterised by their 
strong foundations in science-based research and development (R&D), often protected by intellectual property. 
They are distinct from technologies that primarily enhance business or service models. The index aims to distin-
guish these technologically and scientifically intensive technologies from those less anchored in rigorous R&D.

We use an advanced methodology blending business and research dimensions to compute the Deeptech 
Index. This approach utilises the Wikipedia2Vec model, representing Wikipedia articles as embedding vec-
tors that can be quantitatively analysed. For this index, specific Wikipedia articles related to “Business” and 
“Industry” serve as seeds to capture the business orientation of technology. In contrast, articles like “Basic 
research”, “Research and development”, and “Research” represent the research dimension. The cosine similarity 
between the embedding vectors of each technology and these seed vectors is calculated to quantify how closely 
a technology aligns with business or research themes.

The index calculation involves first determining the average cosine similarity of a technology to the busi-
ness seeds and the research seeds. The business component is then inverted (1 - “business”) to prioritise less 
business-oriented technologies and more grounded in deep research. The sum of the research-oriented score 
and the inverted business score is computed for each technology. Finally, these summed scores are ranked on a 
percentile scale to create the Deeptech Index, offering a relative measure of each technology’s position.

This index provides a scalable and robust method for assessing Deeptech activity, overcoming limitations 
found in traditional datasets like patents or research investment records, which can be incomplete or outdated. 
By leveraging real-time and widely available Wikipedia data, the Deeptech Index offers a timely and insightful 
tool for analysing at scale the landscape of technologies foundational to future innovations.

Age of Tech Index.  Determining a technology’s “age” is a methodological approach aimed at understanding 
when it becomes significant within society rather than simply tracking its first mention. This approach is encap-
sulated in the “Age of Tech Index”, which uses a data-driven method to establish a technology’s birth year based 
on its presence in literature, specifically leveraging the expansive Google Books database.

Google Books, a large repository of more than 40 million books in more than 400 languages, is an ideal 
source for this analysis. It includes collections from major research libraries like the University of Oxford 
Bodleian Libraries, Harvard University Library, and Stanford University Libraries. This makes it reflective of 
a broad societal understanding of concepts over time. This vast collection tracks the mentions of technologies 
from as early as 1500 up to 2019, providing a long-term perspective on technological evolution.

To determine the birth year of technology according to the Age Index, the analysis focuses on identifying 
the point in time when mentions of the technology reach a certain threshold, specifically, 5% of its maximum 
mentions during 1900-2019. This threshold is considered significant because it indicates a notable level of rec-
ognition and integration of technology into societal or academic discourse33. The data is analysed year by year, 
starting from 1900, aligning with the period of rapid technological advancement and better documentation.

This methodology is crucial for understanding technologies’ emergence, growth, and relationship to other 
technologies. For example, it allows for examining how technologies like CRISPR and blockchain have rapidly 
reached broad audiences, contrasting with older technologies like neuroscience and renewable energy, which 
have built momentum over more extended periods. Metrics like audience reach on digital platforms provide 
insights into the rapid adoption of specific applications, but the Age of Tech Index offers a broader, more histor-
ical perspective. It analyses mentions across a wide range of literature, reflecting broader societal engagement 
with and the significance of various technologies.

Technology Proximity Index.  The introduction of the “Technology Proximity Index” aims to expedite the pro-
cess of distinguishing between technologies and concepts or terms related to technology. Technology is defined 
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as consisting of three fundamental aspects-purpose, function, and benefit-representing its timeless essence34. 
Within the universe of Cosmos 1.0, certain companies, research institutions, concepts, and terms are highly 
associated with technology but do not yet meet this definition. These entities are retained to ensure the breadth 
and diversity of the universe. Therefore, a classifier has been trained to measure the proximity of each Wikipedia 
entity in Cosmos 1.0 to the concept of technology as defined.

We utilise ChatGPT with manual screening to assist in selecting entities as targets for the classifier. 
Specifically, we identified 100 entities from each of the seven theme tech-clusters (TC7) within Cosmos 1.0, 
resulting in 700 positive targets. To create a balanced input dataset, we subsequently selected 700 negative tar-
gets from the entities that were removed during the filtering process (See Subsection Data Collection based on 
Wikipedia2Vec for more details). An XGBoost classifier is trained on the input data with hyperparameter tun-
ing, resulting in an average accuracy and F1 score of approximately 86% on the test sets.

The classifier assigns a probability score to each entity, representing the likelihood and confidence that it aligns 
with the “technology.” We designate this probability score as Tech_Proximity_Prob. By applying a decision 
threshold of 0.5, these probability scores are converted into discrete class labels, termed Tech_Proximity_Index. 
This process enables us to distinguish entities that closely correspond to the “technology”.

Data Records
The Cosmos 1.0 dataset is openly accessible at Figshare35. The file Cosmos_Dataset.xlsx is a table, with each row 
corresponding to a technology-adjacent entity with a corresponding Wikipedia page. Each row includes the 
following variable fields. We categorise all features into eight meaningful categories and explicitly explain their 
importance, providing simple examples.

Data Structure.  Entity Identification & Taxonomy.  These features contain identity and location in the hier-
archical structure, which enables users to explore the position of a technology in the broader technology-adjacent 
space.

•	 Wiki_Entity: a specific concept or item with a dedicated Wikipedia page.
•	 TC3 meta tech-clusters: Cluster labels for the three meta tech-clusters cut the dendrogram at a higher level, 

resulting in more generalised groups of the data points.
•	 TC7 theme tech-clusters: Cluster labels for the seven theme tech-clusters cut the dendrogram at a lower level, 

yielding finer-detailed clusters that reflect closer similarities among the data points.
•	 ET100_Flag: Flag marks the 100 technologies manually selected.
•	 tsne_x: The x-axis of the 2D map in Fig. 4, also the first dimension of t-SNE on TA23k.
•	 tsne_y: The y-axis of the 2D map in Fig. 4, also the second dimension of t-SNE on TA23k.

Embeddings for Semantic Analysis.  The feature captures the semantic context of each technology-adjacent 
entity, which enables clustering, similarity search, transfer learning, or visualisation in latent space.

•	 Feature_1-100: Entity embedding vector representations of Wikipedia article (100 dimensions).

Popularity & Awareness Trends.  This category captures public interest by tracking Wikipedia pageviews over 
time, enabling the identification of technologies that are rapidly gaining or losing visibility.

•	 Pageviews_2019-2023: The annual sum of pageviews of Wikipedia technology-adjacent entity pages for the 
last five years (2019-2023).

•	 Pageviews_3yr_slope: The regression slope on the annual pageviews counts of technology-adjacent entities 
for the last three years (2021-2023).

•	 3yr_Awareness_Index: Standardised Pageviews_3yr_slope to compare how awareness of the technolo-
gy-adjacent entity is growing or declining relative to others.

•	 Pageviews_5yr_slope: The regression slope on the annual pageviews counts of technology-adjacent entities 
for the last five years (2019-2023).

•	 5yr_Awareness_Index: Standardised Pageviews_5yr_slope to compare how awareness of the technolo-
gy-adjacent entity is growing or declining relative to others.

Breadth & Depth Metrics.  This category helps distinguish general-purpose technologies, deeptech innovations, 
and core technological concepts from adjacent or peripheral entities.

•	 Generality_Index: Document frequency of a technology-adjacent entity mentioned across various Wikipe-
dia articles.

•	 DeepTech_Index: A measure of assessing the deeptech activity of each technology-adjacent entity.
•	 Tech_Proximity_Prob: Evaluate the proximity of Wiki_Entity as the core technology.
•	 Tech_Proximity_Index: Flag marks Wiki_Entity as a core technology if its Tech_Proximity_Prob is larger 

than 50%.
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Temporal Emergence.  This category helps distinguish recently emerging technologies from more established 
ones, supporting analyses of technology life cycles and diffusion timelines.

•	 Age_of_Tech_Index: Predictive age of each technology-adjacent entity.
•	 First_Pub_Year: The year of the first publication that mentions the technology-adjacent entity in the title, as 

recorded in the OpenAlex database.

Academic Signals.  This category indicates how actively a technology-adjacent entity is being studied, helping 
to identify research frontiers and emerging academic focus areas.

•	 Publication_Counts_2019-2023: The annual counts of publications that mention the technology-adjacent 
entity in the title for the last five years (2019-2023) from OpenAlex.

•	 Publication_Counts_3yr_slope: The regression slope on the annual publication counts of technology-adja-
cent entities in OpenAlex for the last three years (2021-2023).

•	 3yr_Publications_Growth_Index: Standardised Publication_Counts_3yr_slope.
•	 Publication_Counts_5yr_slope: The regression slope on the annual publication counts of technology-adja-

cent entities in OpenAlex for the last five years (2019-2023).
•	 5yr_Publications_Growth_Index: Standardised Publication_Counts_5yr_slope.
•	 GS_Author_Counts: The number of scholars, as collected from Google Scholar, who have shown interest in 

or are actively working in a specific technology-adjacent entity area.
•	 GS_Author_Counts_Scaled: Scale GS_Author_Counts from the smallest to the largest count, making it 

easier to compare across different technology-adjacent entities.

Industrial Signals.  This category helps identify technologies with growing industrial investment and innova-
tion potential, signaling their relevance to markets and applied R&D.

•	 TFR: The sum of the cumulative amount of money companies that mention specific technology-adjacent 
entity in their description have raised across all their funding rounds.

•	 Google_Patent_Counts_2019-2023: The annual counts of patents that mention the technology-adjacent 
entity for the last five years (2019-2023) from Google Patents.

•	 Google_Patent_Counts_3yr_slope: The regression slope on the annual Google Patent counts of technolo-
gy-adjacent entities for the last three years (2021-2023).

•	 3yr_Google_Patent_Growth_Index: Standardised Google_Patent_Counts_3yr_slope.
•	 Google_Patent_Counts_5yr_slope: The regression slope on the annual Google Patent counts of technolo-

gy-adjacent entities for the last five years (2019-2023).
•	 5yr_Google_Patent_Growth_Index: Standardised Google_Patent_Counts_5yr_slope.

Wikipedia Metadata.  This category supports qualitative analysis, global relevance assessment, and 
content-based filtering for downstream applications.

•	 Wikipedia_Content: The full text of a Wikipedia page, excluding images and tables.
•	 Wikipedia_Summary: A concise overview of the main points of a Wikipedia page’s content.
•	 Wikipedia_External_Links: The counts of links on a Wikipedia page connect to other related Wikipedia 

articles, external sites, and sources that provide additional information or verify the content discussed.
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•	 Wikipedia_Num_Ref_Links: The count of reference links used to substantiate the information presented in 
the article.

•	 Wikipedia_Coordinates: The geographical coordinates of locations mentioned in articles, linking to interac-
tive maps for easy visualisation and navigation.

•	 Wikipedia_Num_Language: Each technology’s number of Wikipedia language editions in 2024.

Multidimensional Framework of the Cosmos 1.0.  Identifying emerging technologies requires multidimen-
sional assessments rather than a single evaluation. We introduce eight categories to evaluate all technology-adjacent 
entities, providing a holistic framework for assessing emerging technologies within the technology-adjacent space by 
integrating structural, semantic, temporal, academic, industrial, and public interest dimensions.

Organising technology-adjacent entities into a hierarchical structure (TC3, TC7, ET100) provides a foun-
dational taxonomy for understanding the emerging technology landscape (in Fig. 2(b)). Such a taxonomy helps 
users navigate complex domains and identify clusters of interested technologies. Katy Börner36 highlights the 
importance of structured knowledge systems and hierarchical maps for facilitating foresight and exploration 
across scientific domains. This multilevel design enables both broad overviews and granular analysis of technol-
ogy domains on different scales. It also allows users to quickly focus on specific domains of interest, making the 
dataset highly adaptable to diverse needs.

Moreover, semantic embeddings derived from Wikipedia2Vec capture rich contextual relationships among 
technology-adjacent entities that traditional keyword-based methods often miss22,37. By applying cosine similar-
ity to rank technology-adjacent entities relative to a curated set of seeds, one can identify overlooked but seman-
tically proximate technologies within the same cluster. It enhances the discovery of specific emerging areas within 
broad fields, such as “Renewable Energy Technologies” (See subsection Intra-Cluster Similarity for more details).

Prior studies38,39 have demonstrated the predictive and interpretive power of Wikipedia pageviews, which 
can serve as a meaningful indicator of emerging attention in our dataset. Fortunato et al.40 emphasise the impor-
tance of tracking temporal dynamics in scholarly and public engagement to map the evolution of scientific and 
technological knowledge. Accordingly, these features quantify both the volume and growth of public attention 
toward each technology-adjacent entity, capturing not only how widely known a technology-adjacent entity is 
but also how rapidly its visibility is changing. By standardising growth rates, they are helpful for comparative 
assessment of emerging momentum relative to other technology-adjacent entities (See subsection Multi-Indices 
Filtering Strategy for more details).

Features in the Breadth & Depth Metrics category are largely independent and exhibit low intercorrelation. 
Each one offers a distinct dimension and perspective on the technology universe, revealing its generality, scien-
tific depth, and technical proximity, and is critical to assessing the potential impact and long-term development 
of a technology-adjacent entity. Emerging technologies often exhibit both specialisation and diffusion: some 
originate in narrow domains and evolve into general-purpose platforms (e.g., “Small satellite” and “Sensor”), 
while others gain traction through deep scientific advancement41–44. In Fig. 3(a), technologies with high general-
ity indices, such as “Small satellite” and “Electric vehicle”, demonstrate widespread applicability across diverse 
domains including aerospace, environmental monitoring, and consumer electronics. In contrast, “Distributed 
acoustic sensing” and “Autonomous underwater vehicle” are more specialised use cases and narrower appli-
cation scopes. Traditional indicators, such as publication or patent counts, often overlook these subtleties. By 
integrating generality, deeptech intensity, and technical closeness, these indices offer a multidimensional view of 
technology-adjacent entities, enabling more accurate identification of technologies and more precise differenti-
ation between fleeting trends and fundamental breakthroughs.

The Temporal Emergence category is crucial for identifying the stage of technologies in the innovation 
life cycle. Tracking temporal indicators of innovation is a well-established approach in technology forecasting 
and bibliometrics45–47. The First_Pub_Year feature captures the earliest appearance of a technology-adjacent 
entity in scientific literature. The Age_of_Tech_Index estimates the onset of societal or academic recognition 
by identifying the first year in which the technology-adjacent entity reached 5% of its historical peak men-
tions. The combination of these two features allows for distinguishing between technology-adjacent entities 
that have emerged recently and those that have existed longer but only recently gained traction. For example, 
a technology with an early publication date but a recent age index may indicate delayed adoption or a resur-
gence of interest. In contrast, a close alignment between the two features suggests steady and early uptake, 
thereby helping to classify technologies as early-stage or mature with greater precision. We focus on technologies 
where the Age_of_Tech_Index exceeds the First_Pub_Year, indicating a delay between initial publication and 
broader recognition. To ensure relevance, we retain only those with an Age_of_Tech_Index after 2010 and a 
First_Pub_Year after 1920. The size of this gap ranks the technology-adjacent entities: a larger gap suggests 
a mature technology-adjacent entity with delayed adoption, while a smaller gap signals a recently emerging 
technology-adjacent entity. From the top and bottom 60 entities, five technologies are manually selected as 
examples for each group shown in Fig. 3(b).

Features in the Academic Signals quantify the intensity and growth of scholarly activity, capturing how 
actively it is currently being studied and how rapidly that attention is growing. Increasing publication counts and 
growth slopes indicate an increasing interest in research48,49, while standardised indices allow fair comparison 
among domains with different baseline activity levels. The GS_Author_Counts feature adds another dimension 
by measuring the size of the engaged research community. A larger community often indicates that the tech-
nology has attracted broad, interdisciplinary attention, increasing its potential for diffusion50. It also suggests a 
stronger foundation for future innovation, collaboration, and funding, making such technologies more likely to 
transition from emerging research areas to impactful applications.
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The Industrial Signals category helps identify technologies with commercial attraction by capturing signs of 
capital investment and patent data. Capital investment and patent data serve as practical indicators for identi-
fying technologies with strong commercial potential and strategic value51–53. For example, a high TFR indicates 
that startups referencing a technology have successfully attracted significant investment, reflecting market confi-
dence and anticipated demand. Meanwhile, steep patent growth slopes represent intensifying innovative activity 
and protection efforts, which often precede product development and commercialisation. When these signals 
align, they help screen potential technologies that are strategically positioned for industry adoption and policy 
support. Therefore, this category reflects the market closeness, investment appeal and technological maturity.

The Wikipedia Metadata category provides rich textual and structural signals that enable qualitative eval-
uation, content filtering, and assessment of global relevance for technologies. Wikipedia content and link 
structures reflect collective intelligence and serve as proxies for public understanding, topical coverage, and 
notability54,55. Features such as full article content and summaries support semantic analysis and contextual 
enrichment, while external and reference links serve as indicators of information quality and interconnected-
ness, similar to how citation networks are used in scientometrics. Compared to traditional bibliographic data-
bases, these Wikipedia-based features offer open access and real-time insights across a broader spectrum of 
knowledge domains. They are particularly useful for downstream tasks such as filtering ambiguous entries and 
identifying technologies with international presence.

Technical Validation
Comparison indices with third-party data sources.  Correlation analysis is used to validate the indi-
ces in our dataset. Employing three different correlation tests, including Pearson, Spearman, and Kendall Tau, 
provides a robust analysis by measuring relationships from various perspectives, accommodating different data 
characteristics like non-normal distributions and outliers, and confirming consistency across tests for more reli-
able results. This approach offers a statistical method to measure and establish the strength and direction of 
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relationships between the dataset’s indices and external, reputable data sources such as publication counts from 
OpenAlex, total funds raised from Crunchbase and patent records from Google Patents. It provides empirical evi-
dence of validity, showing that these indices reflect real-world trends and activities surrounding technologies. By 
using correlation analysis in this context, we quantitatively assess the reliability of these indices as accurate indi-
cators of technological significance and impact, thereby supporting the robustness of the dataset’s construction.

There are also limitations to this approach. Correlation does not imply causation; it merely indicates patterns 
of association between two variables without establishing a direct cause-and-effect relationship. Additionally, 
the validity of the results depends heavily on the quality and relevance of the third-party data used. Since the 
third-party data are unavailable for all 23,544 technologies, the validation process may not comprehensively 
cover the entire dataset, potentially leading to biases or gaps in the validation efforts. However, all third-party 
data used had significant overlap in entities with the whole technology-adjacent space (TA23k), with all having 
more than two thousand data points in common.

Table 1 summarises the correlations between the four constructed indices and the third-party data. To justify 
the Awareness Index, the growth in public interest in technologies based on Wikipedia pageviews, we evaluate 
the growth in academic interest in technologies based on publication counts from OpenAlex. We use the same 
method and compare these two trends through correlation analysis. For the trend of the last three years, both 
Pearson and non-parametric tests (Spearman and Kendall Tau) indicate a statistically significant positive corre-
lation, supporting the reliability of the Awareness Index as an indicator of growing interest in these technologies 
over a shorter timeframe. It statistically confirms that increases in Wikipedia pageviews are associated with 
increases in scholarly publications. The significance of these correlations in the shorter term suggests that the 
Awareness Index effectively reflects real-time shifts and trends, making it a reliable tool for gauging immediate 
academic and public interest in new technologies. However, for the 5-year periods, only the non-parametric 
tests remain significantly positive, while the Pearson correlation does not show significance. This divergence 
may suggest that over longer periods, the relationship between public interest and scholarly output becomes 
less linear or direct, possibly due to the maturation of the technology or shifts in research focus. These findings 
highlight the importance of considering both short-term and long-term trends in technology awareness and 
their relation to academic activities. Granger causality could further explore the dynamic relationship between 
public interest and scholarly activity, helping to determine if there’s a time-lagged effect where public interest in 
Wikipedia predicts subsequent changes in research activities. The limited data points and the requirement for 
data stationarity restrict the effectiveness of our analysis in this scenario.

The correlation analysis results for the Generality Index, which assesses a technology-adjacent entity’s 
breadth of application across various contexts within Wikipedia, reveal significant insights about its broader 
relevance and applicability. It can serve as an indicator of a general-purpose technology (GPT). General-purpose 
technologies are defined by their wide-ranging impact across many sectors, fundamentally altering industries 
and economies. By measuring the frequency and diversity of mentions across various contexts, the Generality 
Index captures an essential characteristic of GPTs: their pervasive applicability. The significant positive Pearson 
correlation between the Generality Index and patent counts for 2023, with a coefficient of 0.2043, indicates 
that technologies with a higher generality score tend to have more patent filings. This suggests that technolo-
gies mentioned frequently across different Wikipedia articles are more likely to be innovative and patentable. 
Similarly, the positive Pearson correlation with total funds raised (coefficient of 0.2047) underscores that more 
general technologies attract more investment, reflecting their potential commercial viability. However, the lack 
of significant positive correlations in the Spearman and Kendall Tau tests with total funds raised suggests that 
this relationship may not be strictly monotonic, indicating variations in how generality impacts funding across 
different types of technologies. The observed variation in patenting levels across industries can be meaningfully 
correlated with the specific characteristics of the technologies and the R&D process, particularly in relation to 
the nature of the technological regime56,57. Overall, these results support the validity of the Generality Index as a 
measure of a technology’s broad relevance and potential impact in both academic and commercial areas.

The significant positive correlations across all tests for the Deeptech Index provide substantial support for 
its effectiveness in capturing the scientific and innovative depth of technologies. The correlation derived from 

Technology Indices (Constructed) Third-Party Data Sources Sample Size Pearson Spearman Kendall Tau

Awareness Index (3yr) Publication Counts Trend (3yr) 19,080 0.0146** 0.1045*** 0.0725***

Awareness Index (5yr) Publication Counts Trend (5yr) 19,078 0.0071 0.1379*** 0.0956***

Generality Index Patent Counts 2023 12,938 0.2043*** 0.2666*** 0.1807***

Generality Index Total Funds Raised 4,101 0.2047*** 0.0256 0.0170

Deeptech Index Wikipedia Reference Links 22,109 0.1305*** 0.1794*** 0.1212***

Deeptech Index Scholar Counts 2,272 0.0439** 0.0712*** 0.0475***

Age of Tech Index First Publication Year 15,614 0.2897** 0.4152*** 0.2942***

Table 1.  Technology Indices and their Correlations with Third-Party Data Sources. The statistical tests validate 
the accuracy, utility, and significance of the internal Cosmos 1.0 dataset by demonstrating that the internal 
structure of the Cosmos technology model aligns with research metrics, patent counts, and venture capital 
investments. Significant at the 5% level; *** Significant at the 1% level. Third Party Data Sources: Publication 
Counts (Microsoft Academic / OpenAlex); Patent Counts (Google Patents); Total Funds Raised (Crunchbase); 
Reference Links (Wikipedia); Scholar Counts (Google Scholar / League of Scholars); First Publication Year 
(Microsoft Academic / OpenAlex).
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Wikipedia2Vec cosine similarity measures with real-world data, such as reference links and scholar counts, 
indicates that the Deeptech index represents relevant aspects of advanced technologies as they are recognised 
and valued in practical and academic domains. This suggests that quantifying technological alignment with deep 
research and business aspects via Wikipedia2Vec embeddings reliably reflects a technology’s depth and impact 
in academia. It validates using Wikipedia-based data and the Wikipedia2Vec model as robust tools for assess-
ing technological significance, bridging the gap between theoretical conceptualisation and real-world relevance 
and application. These findings underscore the Deeptech Index as a valuable tool for determining technologies 
based on their scientific rigour and potential impact, reflecting its utility in pinpointing emerging areas likely to 
influence future technological landscapes.

The Age Index, identifying the emergence year of technology-adjacent entities based on historical mentions, 
shows significant positive correlations with the First_Pub_Year from the OpenAlex database. High correlation 
coefficients across all three statistical tests indicate a strong alignment between the Age Index and the earliest 
recorded scholarly mention of technology-adjacent entities. It demonstrates the Age Index’s effectiveness in 
approximating the time when technologies first gained noticeable recognition and began to impact scholarly 
discourse. The positive results reinforce the reliability of using historical documentation frequencies to estimate 
the birth year of technologies, highlighting the index’s value in historical analysis of technological development.

Comparison ET100 with other emerging technology lists.  We reviewed a number of other emerging 
technology lists and chose to compare our emerging technology list with the robust and extensive OECD dataset9. 
The list in the OECD report is derived from technology foresight exercises conducted by or for national govern-
ments of several OECD countries (Canada, Finland, Germany, United Kingdom) and the Russian Federation, as 
well as an exercise by the European Commission. These exercises assess promising technologies over a future 10 
to 20-year horizon, pooling insights from various experts and analytical techniques. The OECD limits its focus 
on transformative technologies that significantly impact global socio-economic conditions and address critical 
challenges over the next two decades.

The ET100 list provides a more detailed and specialised overview of emerging technologies than the OECD’s 
broader categorisations. For instance, while the OECD lists 40 technologies in total under four general fields 
like Digital Technologies, Biotechnologies, Advanced Materials, and Energy plus Environment, the ET100 dives 
deeper into specific applications and innovations within these areas—such as edge computing in digital technol-
ogies, personalised medicine in biotechnologies, and microgeneration in energy technologies. This granularity 
makes the ET100 more practical for stakeholders needing precise, actionable information on current techno-
logical trends, whereas the OECD’s approach is better suited for broad strategic planning and policy guidance. 
The ET100’s emphasis on cutting-edge and specific applications and a structured hierarchical system of meta 
tech-clusters and theme tech-clusters offers a clear, up-to-date roadmap for navigating the rapidly evolving tech 
landscape.

The ET100 overlaps significantly with the OECD list. The ET100 contains 31 (77.5%) technologies that 
exactly match, and 37 (92.5%) of the technologies appearing in the OECD list. The overlap primarily features in 
core areas like digital technologies and biotechnologies, where both identify significant trends such as AI, IoT, 
and synthetic biology. The ET100 and TA23k may not include some technologies due to the 2018 limitation 
of Wikipedia2Vec; our lists may not capture new concepts, terms, or updated information that has emerged 
since 2018. However, the ET100 employs a data-driven approach, using techniques (Wikipedia2Vec) and other 
third-party data combined with hierarchical clustering to analyse and update its list of emerging technologies. 
This allows for detailed, nuanced insights into specific technologies and their interconnections. In contrast, the 
OECD uses a more traditional method involving expert panels and foresight exercises, focusing on broader 
technological areas and long-term policy implications. Our approach enables more frequent updates and might 
also lead to a focus shift towards newer or rapidly evolving technologies, potentially omitting stable ones that 
still appear in the OECD’s less frequently updated list. This technical and selective approach helps the ET100 
maintain a more dynamic and detailed roadmap tailored to current market and innovation cycles, complement-
ing the OECD’s strategic overview.

Usage Notes
The Cosmos 1.0 dataset comprises 23,544 technology-adjacent entities with a hierarchical structure, and 100 
emerging technologies have been manually verified. We enhance the dataset with unique technology indices, 
such as Age of Tech, Deeptech, Generality, and Tech Awareness, and enrich it with metadata from Wikipedia 
and data from third-party sources, including Crunchbase, Google Books, and Google Scholar. In this section, 
we demonstrate how to utilise the Cosmos 1.0 dataset through several examples.

Atlas of Comos 1.0.  We illustrate the 2D mapping of Cosmos 1.0 based on the features tsne_x and tsne_y 
from the “Embeddings for Semantic Analysis” category. Figure 4 visualises TA23k colored by seven theme 
tech-clusters while the stars represent the ET100. The three circular areas are the groups that are easily noticeable. 
The two circles at the edge are separated from the main body, forming two offshore islands (labelled “Traditional 
Knowledge Systems” and “Patent Law Concepts”). The third circle contains multiple technologies from ET100, 
notably (“Smart grid”, “Microgrid”, “Microgeneration”, “Photovoltaics”, “Grid energy storage”, “Energy storage”, 
“Wave power”), and we define these seven ET100 technologies as “Renewable Energy Technologies”. We gather 
technologies through coordinates and notice that the two islands are technology-related terms rather than actual 
technologies. For example, “Traditional Knowledge Systems” primarily consists of philosophical concepts, reli-
gious doctrines, classical texts, epistemological frameworks, and metaphysical ideas from Indian, Chinese, and 
Buddhist traditions. “Patent Law Concepts” encompasses legal doctrines, administrative processes, classifications, 
and tools related to the patent system. The third circle, located at the centre of the map, includes the domains of 
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renewable energy generation, storage, grid integration, and power system management, affirming its technologi-
cal nature. This spatial layout demonstrates the utility of Cosmos 1.0 in distinguishing between technological and 
technology-related entities. This visual and structural differentiation is crucial for identifying emerging technolo-
gies, as it allows researchers and policymakers to focus on regions of dense innovation, observe thematic overlaps, 
and detect underexplored areas with high growth potential.

Intra-Cluster Similarity.  To further understand a group of closely related emerging technologies, we uti-
lise intra-cluster cosine similarity to identify and rank technology-adjacent entities most relevant to a given 
seed set. We define “Renewable Energy Technologies” in the subsection Atlas of Comos 1.0, as the seven ET100 
technologies within this circle (“Smart grid”, “Microgrid”, “Microgeneration”, “Photovoltaics”, “Grid energy stor-
age”, “Energy storage”, “Wave power”). Since those technologies are included in the same theme tech-cluster 
“Converging Technology”, we limit the scope to this theme and calculate the average cosine similarity between 
each candidate technology and the seven ET100 technologies within “Renewable Energy Technologies”. A higher 
average cosine similarity indicates a stronger semantic relationship to “Renewable Energy Technologies”. Based 
on this metric, we rank all candidate technologies in descending order and select the top 30 most relevant entities, 
shown in Fig. 5. The retrieved list demonstrates high quality and strong relevance. Most entities (highlighted in 
orange) fall within a subdomain of renewable energy, which includes solar and photovoltaic technologies (e.g., 
“Power optimiser”, “Solar inverter”, “Photovoltaic mounting system”, “Parabolic trough”). Energy experts can 
detect more granular subdomains on the basis of the list. These ranked entities represent a cohesive technological 
framework encompassing generation, storage, distribution, and demand-side management. This approach helps 
contextualise and deepen our understanding of “Renewable Energy Technologies” and its broader ecosystem by 
revealing closely related and complementary technologies within the same semantic space.

Multi-Indices Filtering Strategy.  Academics and researchers can leverage this dataset to track techno-
logical advancements and trends within their fields of interest using multi-index filtering. Figure 6 illustrates the 
monthly pageviews counts movement of an example of custom lists of technology-adjacent entities filtered by 
multiple technology indices. We select technology-adjacent entities from each of the TC7 theme tech-clusters 
that consistently exhibit strong signals across multiple features, retaining only those with positive values in 
3yr_Awareness_Index, 3yr_Publications_Growth_Index, and 3yr_Google_Patent_Growth_Index. These 
indicators respectively capture public interest, academic momentum, and industrial innovation. Additionally, we 
limit the selection to technologies that emerged after 1950, based on the Age_of_Tech_Index, to ensure relevance 

Fig. 5  Top 30 technologies that are closest to the ET100 group of seven technologies “Renewable Energy 
Technologies” based on average cosine similarity. The higher-ranking entities demonstrate strong relevance. 
The entities highlighted in orange represent the technologies we observed for different potential subdomains of 
“Renewable Energy Technologies” in the space of solar and photovoltaic technologies.
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to recent developments. Finally, we manually review and highlight three fast-moving frontier technologies as 
examples of rapidly evolving technologies for each theme tech-cluster.

The multi-indices filtering strategy facilitates a deeper understanding of how specific technologies are 
selected and their broader implications within the technology landscape. It increases the understanding of meas-
urements of emerging technologies. Most studies focus on the patent record58,59 or research literature60, such as 
robotics and internet-of-things59,61. The Cosmos 1.0 provides a rich data source for identifying technologies on 
a broad scale through the eight categories.

Overall, the Cosmos 1.0 dataset provides valuable insights for researchers, policymakers, and corporations by 
capturing emerging technologies through complementary signals. For researchers, it enables targeted discovery 
of fast-evolving research frontiers. Policymakers can leverage the strategy to design policies based on techno-
logical socio-economic shifts. Corporations can use it to identify commercially promising technologies early, 
optimise R&D investments, and inform strategic planning in competitive landscapes. This multidimensional 
framework enhances the relevance and ability of technology detection across sectors.

Microbial electrosynthesis

Phenomics

Continuous glucose monitor

Unconventional computing

Optical neural network

Egocentric vision

Electronic data capture

Cognitive behavioral therapy for insomnia

Enterprise master patient index

Electronic navigational chart

GNSS reflectometry

Snapshot hyperspectral imaging

Quantum sensor

Superconducting quantum computing

Photonic integrated circuit

Network emulation

Post−quantum cryptography

Real−time communication

Multi−agent system
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Data & Analytics

Networking & Connectivity
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Autonomous Systems

Health & Medical

Converging Technology
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Fig. 6  Monthly Pageviews Trends of Technology-Adjacent Entities of TC7. Three fast-moving frontier 
technologies are selected as examples for each of the seven theme tech-clusters (TC7) identified. This 
custom list of technologies is filtered using various technology indices that meet the different criteria. The 
criteria include all positive indices values, such as Awareness_Index, Publications_Growth_Index and 
Google_Patent_Growth_Index (See the description of indices in Section Data Records). Moreover, it only 
keeps the technologies that appeared after the year 1950 (Age_of_Tech_Index > 1950).
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Data availability
The Cosmos 1.0 dataset generated and analysed in this study is publicly available on Figshare at https://doi.
org/10.6084/m9.figshare.28268561 or on Github repository at https://github.com/xian-gong-elaine/Cosmos_1.0. 
The file includes all the features we discussed in the paper.

Code availability
The code for the analyses and the experiments in this paper is available at https://github.com/xian-gong-elaine/
Cosmos_1.0.
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