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Abstract 

Machine learning (ML) and deep learning (DL) have been used for anomaly detection in industrial internet of things (IIoT) environ- 
ments. The presence of imbalanced data, high noise levels, missing values, and high dimensionality poses an enormous challenge for 
existing methods, leading to inconsistent reliability in detecting anomalies in real-world industrial environments. Current anomaly 
detection solutions suffer from high false negative rates due to class imbalance and noisy sensor data, limiting their practical ap- 
plicability. This paper proposes the Ensemble Wasserstein generative adversarial network for IIoT (EWAD-IIoT) framework, which is 
uniquely designed to address these challenges. The aim is to build a robust anomaly detection model with high recall (94.7%) and 

precision (93.6%) while minimizing miss rates in complex IIoT settings. Evaluations on two benchmark data sets, SECOM (industrial 
sensor data) and MNIST (image data), demonstrate EWAD-IIoT’s superiority over traditional methods like standalone WGAN and 

WGAN-GP. To highlight its efficacy, we compare results against these benchmarks, showcasing improvements in F1-score (95.8%) and 

noise robustness. The framework leverages advanced pre-processing ( Z -score filtering and min–max scaling), SMOTE-based balancing, 
and WGAN-generated synthetic samples to handle data imbalance and dimensionality. The results validate EWAD-IIoT’s capability 
to detect rare anomalies in IIoT environments, with a balanced trade-off between recall and precision, making it a scalable solution 

for predictive maintenance and fault diagnosis. 

Keywords: anomaly detection, industrial internet of things, Wasserstein generative adversarial network, data imbalance, high- 
dimensional data, noisy data 
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. Introduction 

he Fourth Industrial Revolution, also known as Industry 4.0, has
ed to the widespread adoption of industrial internet of things
IIoT) systems in various sectors, including manufacturing, logis-
ics, energy, and smart infrastructure (Keshar, 2025 ; Routaib et al.,
025 ). One of the significant challenges in IIoT applications is
he detection of anomalies and deviations from expected system
ehaviour. Anomaly detection and deviation identification from
tandard system operation create one of the main obstacles when
mplementing IIoT applications. Systematic or cyber-based distur-
ances, process defects, sensor issues, and environmental stres-
ors produce significant operational and financial setbacks. IIoT
ystems depend on precise anomaly detection systems to operate
moothly while providing security. 

Multiple operational limitations affect existing anomaly de-
ection systems deployed in IIoT applications, as described by
hosh et al. ( 2024 ). The rare occurrence of system failures in

IoT settings leads to catastrophic results. Research shows that
-nearest neighbours (KNN) and support vector machines (SVM)

ail to achieve accurate anomaly detection when implemented
n imbalanced data sets (Khalid et al., 2024 ). Anomaly detection
s one of the most challenging security tasks because of IIoT’s
istinct operating characteristics. High dimensionality represents
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ifferent features (Alkhafaji & Viana, 2024 ). Traditional machine

earning (ML)-based approaches struggle to work with large-scale
ata sets since they lack suitable tools for pattern interpreta-
ion. The ‘noisy and incomplete data problems’ that the IIoT en-
ironment faces derive from sensor malfunctions, communica-
ion disruptions, and environmental elements that damage sen-
or readings or result in sensor data corruption. Several issues af-
ect anomaly detection systems because unanticipated changes
ccur frequently in monitored systems. IIoT systems develop re-
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Table 1: List of Acronyms. 

Acronym Description 

IIoT Industrial internet of things 
EWAD-IIoT Ensemble Wasserstein generative adversarial 

network for IIoT 

WGAN Wasserstein generative adversarial network 
WGAN-GP Wasserstein generative adversarial network with 

gradient penalty 
GAN Generative adversarial network 
SMOTE Synthetic minority over-sampling technique 
SECOM Semiconductor manufacturing data set 
MNIST Modified National Institute of Standards and 

Technology (Image data set) 
ROC-curve Receiver operating characteristic curve 
F1-score Harmonic mean of precision and recall 
G-mean Geometric mean 
KNN K-nearest neighbours 
SVM Support vector machine 
CNN Convolutional neural network 
RNN Recurrent neural network 
GPU Graphics processing unit 
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( 2022 ) evaluated these models against industrial sensor data noise 
and missing value scenarios. In real-world IIoT deployments, 
anomaly detection must contend with significant data challenges. 
Data streams are typically highly imbalanced (many normal 
observations versus very few anomalies), complicating the learn- 
ing of rare fault signatures (Saranya & Valarmathi, 2025 ). Sensor 
measurements may also be heavily corrupted by noise or suf- 
fer frequent missing values due to hardware faults or network 
dropouts, obscuring true anomalies (Huang et al., 2025 ). Further- 
more, data are often extremely high-dimensional, with numerous 
correlated sensor channels and time points. This exacerbates the 
curse of dimensionality and can cause models to overfit or gener- 
ate false alarms (Arafah et al., 2025 ). 

Modern IIoT anomaly detectors now emphasize advanced 

deep learning (DL) architectures instead of generative ensembles. 
Transformer-based models, for example, use self-attention to cap- 
ture long-range temporal and cross-sensor dependencies. Zia et al.
( 2025 ) develop a transformer-based framework that learns com- 
plex temporal patterns in multivariate IoT streams and even em- 
ploys adversarial perturbations to boost robustness. Autoencoder 
variants remain popular for unsupervised detection: one-class or 
variational autoencoders compress high-dimensional sensor data 
into latent spaces, flagging outliers by reconstruction error. Ayad 

et al. ( 2024 ) report that a hybrid asymmetric stacked autoencoder 
with a deep neural networks (DNN) achieves very high 96% detec- 
tion rates on Botnet of Things-IoT (BoT–IoT) with minimal false 
positives, effectively tackling data imbalance and high dimension- 
ality. Hybrid networks further combine complementary layers to 
improve feature extraction. For instance, Shang et al. ( 2024 ) intro- 
duce CAE-T, which merges a convolutional autoencoder (for spa- 
tial feature learning) with a transformer (for long-term temporal 
context) in an unsupervised anomaly detector. 

In this work, the EWAD-IIoT (Ensemble Wasserstein generative 
adversarial network for IIoT) framework incorporates a dedicated 

and integrated pre-processing step as part of its training phase,
rather than treating it as an external or independent step. This 
pipeline, as illustrated in the framework 1, is specifically designed 

to improve data quality and address class imbalance before train- 
ing the ensemble of WGANs. Each stage, from data cleaning to bal- 
anced sample generation, contributes directly to the robustness 
and stability of the learning process. It is important to note that 
this pre-processing pipeline is applied only during the training 
phase of EWAD-IIoT and not to the test data or baseline models.
The trained EWAD-IIoT model directly evaluates the test data and 

compares against baseline methods (GAN, WGAN, and WGAN- 
GP) without any additional processing, ensuring a clear and fair 
comparison of model performance. Table 1 displays the complete 
forms and descriptions of acronyms used in this paper to support 
a better understanding of technical terminology for the reader.
The principal contributions of this study are as follows. 

(1) A novel EWAD-IIoT framework is proposed, combining 
multiple WGANs within an ensemble architecture to cap- 
ture complex data distributions in IIoT anomaly detection 

effectively. The ensemble technique significantly improves 
the robustness and accuracy of anomaly detection by ef- 
fectively addressing challenges such as data imbalance, 
high dimensionality, and noisy sensor data. The proposed 

framework significantly reduces the limitations associated 

with traditional GAN-based approaches, including mode 
collapse and instability during training. 

(2) The EWAD-IIoT framework integrates advanced data pre- 
processing strategies specifically tailored for IIoT data sets. 
These pre-processing methods, including SMOTE-based 

oversampling for balancing minority classes, statistical 
and KNN-based imputation for handling missing values,
and Z -score-based outlier detection combined with min–
max normalization, collectively ensure the model’s opti- 
mal performance by improving data quality and reliability.

(3) The performance of the proposed EWAD-IIoT framework 
was rigorously evaluated on standard benchmarks such as 
the SECOM and MNIST data sets. The results demonstrate 
superior detection capabilities in precision, recall, F1-score,
accuracy, and ROC, thus validating our approach’s practical 
effectiveness and robustness for diverse and complex IIoT 

scenarios. 

The paper is organized as follows: Section 2 reviews related
ork on IIoT anomaly detection. Section 3 outlines the pro-
osed EWAD-IIoT framework, including pre-processing, ensemble 
GAN architecture, and evaluation. Section 4 presents experi- 
ental results and comparisons with benchmarks, and Section 5 

resents conclusions and future directions. 

. Related Work 

nomaly detection in IIoT systems has been a critical area of re-
earch due to the significant impact anomalies can have on in-
ustrial operations, safety, and efficiency. Anomaly detection re- 

ies on traditional and modern techniques, which are grouped into
tatistical methods, ML approaches, and DL methods with distinct 
trengths and drawbacks. 

.1. Conventional approaches 

IoT early anomaly detection techniques mostly used statistical 
ethods in their initial implementations, including threshold- 

etting methods based on previously defined rules and cluster- 
ng techniques used to identify outliers. These methods main- 
ain low computational costs and interpretability, yet they face 
hallenges when analysing high-dimensional and noisy IIoT data 
ets. Real-world industrial scenarios with dynamic and hetero- 
eneous sensor data pose challenges to statistical methods be- 
ause these methods cannot correctly capture complex data 
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istributions (Liu et al., 2023 ). ML technology introduced improve-
ents to IIoT system anomaly detection methods. Multiple algo-

ithms, including SVMs (Zeng et al., 2025 ), decision trees (Papaste-
anopoulos et al., 2025 ), random forests, and KNN, are commonly
sed for their broad applicability. Results from these methods
rove superior to statistical techniques in analysing data sets with
oderate distribution complexity. IIoT anomaly detection tech-

iques experience a significant performance decline due to highly
mbalanced data sets since these detection tasks often deal with
are anomalies. ML models prefer the majority class when de-
ecting anomalies because they lack pre-processing through un-
ersampling, oversampling, or synthetic data generation (Lazaar,
024 ). 

.2. GAN-based approaches for anomaly 

detection 

AN-based methods have shown remarkable promise in anomaly
etection due to their generative capabilities. Arjovsky et al. ( 2017 )

ntroduced GANs consisting of opposing neural networks, which
nclude a generator and a discriminator. The generator works to
roduce synthetic data that replicates real data distributions, but
he discriminator performs a task to distinguish between real and
ynthetic data. GANs extract complex data patterns through their
dversarial training mechanism to produce high-quality synthetic
ata for anomaly detection tasks. GANs demonstrate numerous
pplications in anomaly detection systems. Anomaly detection re-
ies heavily on synthetic data samples generated by the generator
y assessing reconstruction errors (Geiger et al., 2020 ). The genera-
or shows reconstruction failures when it produces synthetic data
hat significantly diverges from the learned distribution (Mestav
t al., 2022 ). However, standard GANs are often limited by mode
ollapse, where the generator fails to capture the diversity of the
ccurate data distribution, and training instability due to the ad-
ersarial nature of the network (Ahmad et al., 2024 ). GANs per-
orm poorly when processing real-world IIoT data sets because
heir limitations fail to properly manage data characteristics such
s multidimensionality, noise, and imbalanced distributions (Be-
addi et al., 2022 ). 

The standard GAN framework has led researchers to develop
ultiple variations to improve the system’s stability and robust-

ess. WGANs have gained significant attention by employing the
asserstein distance as the loss function; WGANs mitigate train-

ng instability and provide more meaningful gradients for opti-
ization, making them particularly effective in anomaly detec-

ion tasks (Arjovsky et al., 2017 ; Gulrajani et al., 2017 ). WGANs
emonstrate excellent capabilities for modelling complex data
istributions and synthetic data generation while detecting subtle
nomalies simultaneously (Gondhi, 2024 ). The proposed frame-
ork is tailored to tackle the challenges specific to IIoT environ-
ents, such as data imbalance, high dimensionality, and noisy or

ncomplete data, marking a significant step forward in industrial
nomaly detection. 

.3. Limitations of traditional GANs and need for 
advanced GAN variants 

urther advancements, such as WGAN with gradient penalty
WGAN-GP), improve the WGAN by addressing gradient explo-
ion and mode collapse by introducing gradient penalties (Lee
t al., 2023 ). The generator achieves better data distribution cover-
ge through this technique, improving anomaly detection perfor-
ance (Guertler et al., 2022 ). f-AnoGAN extends GANs for anomaly

etection by integrating generative modelling with encoder–
ecoder components, enabling exact anomaly grading via latent
pace measurement and reconstruction errors. Complex IIoT data
nvironments contain multiple data modes that single GAN mod-
ls find difficult to capture, leading to reduced detection accuracy.
he development of ensemble methods is a promising solution
o address these limitations. Combining multiple models within
nsemble GANs helps single GANs enhance their detection ac-
uracy and produce reliable results. These data approaches suit
IoT environments because they efficiently handle data hetero-
eneity alongside imbalanced systems (Liu et al., 2024 ). The re-
earch uses a specialized ensemble of WGANs to address imbal-
nced IIoT data set requirements in its proposed framework. The
ramework achieves better anomaly detection and resolves multi-
le data problems through the joint ability of multiple WGANs to
enerate data. This advancement marks a crucial development
or implementing GAN-based methods within industrial opera-
ions, which require prioritizing operational safety and reliability.

.4. Ensemble learning techniques for improved 

anomaly detection 

nsemble learning methods establish an efficient anomaly detec-
ion system that operates effectively in IIoT environments and
andles high-dimensional data sets combined with incomplete

nformation and noise. Multiple GANs improve anomaly detec-
ion performance compared to standard methods by optimizing
utcomes for imbalanced data sets during processing. Research
y Al-Fakih et al. ( 2024 ) demonstrates that multiple GANs achieve
etter anomaly detection through individual decision boundary
iscovery processes. Strelcenia ( 2024 ) developed WGAN-GP mod-
ls, which produced high-quality synthetic data set samples for
neven data so detection systems could perform better in follow-

ng anomaly detection operations. The EWAD-IIoT framework en-
ances existing developments through its simultaneous solutions
or data imbalance problems while enabling scalable and inter-
retable IIoT applications. WGANs work together in this frame-
ork to achieve improved robustness while reducing bias and of-

ering full-scale anomaly detection capabilities for intricate in-
ustrial operations. The EWAD-IIoT framework extends the con-
ept through prediction aggregation from multiple WGANs that
perate in separate sections of an imbalanced IIoT data set. The
pecialized data pattern knowledge enables each WGAN to func-
ion as part of the ensemble, effectively tackling imbalanced data
atterns to enhance anomaly detection results. 

. Proposed Framework 

he EWAD-IIoT framework illustrated in Figure 1 presents a mod-
lar end-to-end architecture for enhancing anomaly detection in

IoT environments. 
Figure 1 comprises several step-by-step operational workflows,

hich are divided into stages: (1) data collection, splitting, and
re-processing: raw IIoT data are first split into training, valida-
ion, and testing subsets. The training data undergoes a multi-
tep pre-processing stage that includes noise removal, missing
alue imputation using KNN, and min–max normalization. (2)
andling imbalanced data: the pre-processed data enter a two-

iered augmentation strategy to resolve class imbalance. Initially,
he SMOTE generates interpolated minority class samples. This
s followed by WGAN-GP training, where a generator and critic
dversarially learn to produce realistic synthetic samples. This
ybrid SMOTE + WGAN approach enhances data diversity while
itigating risks like mode collapse and overfitting. (3) Ensemble
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Figure 1: Comprehensive overview of the proposed EWAD-IIoT framework. 
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WGAN training: to ensure diverse learning and generalization, 
multiple WGAN units are trained independently. Each unit com- 
prises a generator Gi and critic Ci , which are trained on different 
partitions of the normal (majority) class data. Hyperparameter 
tuning, critic feedback, and weight clipping are incorporated to 
stabilize the adversarial learning process. (4) Integration and 

anomaly detection: the trained ensemble generates synthetic mi- 
nority instances that are combined with the real data and passed 

to the anomaly detector. Anomaly scores are computed by aggre- 
gating feedback from multiple critics and the reconstruction er- 
ror patterns. Threshold-based decision logic categorizes the out- 
come as either ‘anomalous’ or ‘non-anomalous.’ (5) Output: the 
final output module of the EWAD-IIoT framework classifies input 
instances as either anomalous or non-anomalous based on the 
aggregated anomaly scores derived from the ensemble critics and 

reconstruction metrics. This binary decision supports actionable 
insight for real-time monitoring, enabling timely responses to po- 
tential faults, intrusions, or abnormal behaviours in IIoT systems.

3.1. Implementation and training configuration 

The EWAD-IIoT framework utilized Python and Jupyter to imple- 
ment DL libraries, enabling model development and training. A 

high-performance NVIDIA A100 GPU coupled with 32 GB of mem- 
ory enabled efficient training, speeding up the evaluation process 
and training time. A powerful GPU configuration supported effi- 
cient ensemble training of four GANs across 100 epochs, allow- 
ing sufficient optimization time for the best results. We tested 

ensemble sizes I ∈ { 3 , 4 , 5 , 6 , 7 } . The F1-score peaked at I = 5 and
saturated beyond it, while training/inference time increased lin- 
early. With I = 6, performance improvement was < 0.4% while GPU 

memory usage increased by 22%. Therefore, I = 5 offers the best 
trade-off, balancing accuracy and efficiency. This empirical basis 
strengthens the design decision. This ensemble strategy enables 
the framework to learn a broader range of normal patterns, en- 
hancing the ability to detect rare and subtle anomalies. The batch 
ize was set to 128, a common configuration that balances compu-
ational efficiency and memory usage. Additionally, the gradient 
enalty coefficient ( λ = 10 ) was carefully tuned to ensure stability
uring training, particularly with the Wasserstein loss function,
hich requires enforcing the Lipschitz continuity constraint. The 

earning rate for the training process was set to 1 × 10−4 , a typi-
al value used for training GANs. This learning rate ensures sta-
le convergence while allowing the model to learn the complex
istribution of the data throughout training. These hyperparam- 
ters were chosen through extensive experimentation to ensure 
he best performance of the model. 

.2. Data pre-processing 

he framework utilizes the raw IIoT data sets SECOM and MNIST,
hich present challenges due to high dimensionality, noise, and 

issing values. Data pre-processing remains essential when im- 
lementing ML applications on complex data sets, including in- 
ustrial environments with imbalanced and noisy sensor data.
ata pre-processing aims to create a learning environment that 
aximizes model accuracy while addressing these challenges.

o ensure robustness and generalizability, k -fold cross-validation 

valuates the EWAD-IIoT framework. The data set is split into k
ubsets, with the model trained on k −1 folds and validated on the
emaining fold. This process is repeated k times, and the average
erformance metrics provide a reliable estimate of the model’s ef-
ectiveness, helping to reduce overfitting and ensuring good per- 
ormance on unseen data in the challenging IIoT environment. 

.3. Clean and normalize the data 

oisy and incomplete data are other challenges inherent to 
IoT systems. These are addressed using the following statisti- 
al imputation techniques. KNN imputation provides a secondary 
reatment by analysing feature proximity to determine missing 
alue predictions. Outliers are detected through z -score filtering 
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ethods that help identify data points beyond expected mean
alues to improve data quality. Continuous features are im-
uted using the mean or median of observed values, which helps
reserve the overall distribution. For continuous and categori-
al features, missing values are imputed using the average (or
ode) of the KNN in the feature space. Noise is managed using

utlier detection methods such as z -score filtering described in
quation 1 : 

z = x − μ

σ
, | z | > 3 ⇒ out l ier . (1) 

Here, μ and σ are the mean and standard deviation of the fea-
ure, respectively. Outliers, identified as samples with z -scores ex-
eeding a threshold of 3, are excluded from the data set. To ensure
he model treats all features equally, min–max scaling (Shantal
t al., 2023 ) is applied to reduce the impact of selected data dimen-
ions to ensure efficient model training while improving general-
zation capabilities. Normalizing the data helps prevent the model
rom favouring features with larger scales. The scaling transfor-

ation is defined as in the following Equation 2 : 

xscaled =
X − Xmin 

Xmax − Xmin 
. (2) 

here Xmin and Xmax are each feature’s minimum and maximum
alues, respectively. This ensures that all features lie within the
ange [0, 1], allowing the model to converge more quickly and ef-
ciently during training. 

This ensures that no single feature dominates the learning pro-
ess, especially in high-dimensional data sets. The EWAD-IIoT
ramework is an ensemble of multiple WGANs, each indepen-
ently trained on overlapping subsets of the normal class data.
his design leverages the strengths of ensemble learning to en-
ance robustness, scalability, and diversity in anomaly detection.

.4. Handling imbalanced data 

ata imbalance is a major challenge in the IIoT environment for
nomaly detection. In this condition, anomalous data represent-
ng faults or rare events are much less frequent than normal data.
raditional ML models struggle to process imbalanced data sets
Han et al., 2024 ), often achieving high accuracy mainly focus-
ng on the dominant class (normal data) while failing to identify
he rare cases. Our framework addresses class imbalance by im-
lementing a hybrid data augmentation strategy that integrates
MOTE with WGAN-GP. SMOTE generates new minority-class ex-
mples by linear interpolation between existing minority sam-
les: if two sensor readings indicate a rare machine fault, SMOTE
enerates new plausible fault examples between them. for a mi-
ority instance xi and one of its KNN nearest xj , a synthetic point

s created as in the following Equation 3 governs the process of
enerating synthetic samples: 

ẋ = xi + λ(xj − xi ) , λ ∼ U (0 , 1) (3) 

here xi and xj are two minority class samples, and λ is a random
eight factor that ensures the generated sample lies between xi 

nd xj . 
This oversampling technique ensures that synthetic samples

emain realistic while preserving the local structure of the mi-
ority class and reduces the variance associated with individ-
al models, and provides a balanced output. It increases the mi-
ority sample count and fills gaps in the feature space, but its
imple interpolation can produce samples that lie too close to
ecision boundaries or overlap other classes, introducing noise
n complex, high-dimensional data. In contrast, WGAN-GP is a
enerative model that learns the underlying minority-class dis-
ribution. Substituting the standard GAN loss with the Wasser-
tein distance and enforcing a gradient penalty, WGAN-GP stabi-
izes training and enables the generator to produce realistic, high-
uality synthetic samples. In practice, WGAN-GP captures non-

inear feature relationships and generates diverse minority exam-
les beyond the linear interpolations of SMOTE. The EWAD-IIoT
ramework applies SMOTE first to expand the minority set and
hen uses WGAN-GP to refine and diversify those samples. This
ybrid approach is applied because SMOTE and WGAN-GP bal-
nce each other’s weaknesses: SMOTE alone can lead to oversam-
ling noise (due to its linear interpolations), whereas a WGAN-GP
rained on very few minority samples can suffer from mode col-
apse and fail to model’s distribution accurately. Pre-processing
nsures the data are cleaner and balanced before modelling.
he ensemble, by aggregating multiple models, improves the sta-
ility and overall detection performance under the same pro-
essed data. In particular, ensemble training helps reduce model
ariance and mitigates overfitting in high-dimensional feature
paces. Integrating them, our framework influences SMOTE’s han-
ling of imbalance and WGAN-GP’s generative power, leading to
 more realistic set of minority-class instances and thereby sig-
ificantly improving minority-class representation in the training
ata. 

.5. Integration 

fter pre-processing the data, the next step involves implement-
ng the core of the anomaly detection framework, i.e., EWAD-
IoT, described in Figure 2 . Anomaly detection in IIoT environ-

ents poses unique challenges, including imbalanced data, high-
imensional data, and complex distributions arising from varying
perational conditions and sensor noise. Traditional ML models
truggle with these challenges, mainly when anomalies are rare.
 single WGAN might capture certain aspects of the data but can

ail to generalize well for diverse, high-dimensional IIoT data (Ren
t al., 2023 ). The proposed framework performs better than tradi-
ional anomaly detection approaches, including GAN, WGAN, and

GAN-GP, when operating on imbalanced and noisy data sets
uch as SECOM and MNIST. The results of EWAD-IIoT demon-
trate superior precision and recall performance, and the F1-score
nd ROC data indicate its high ability to detect anomalies accu-
ately. The ensemble captures diverse distributions of normal be-
aviour through aggregating multiple WGANs, each trained on a
ubset of the normal data. Each WGAN specializes in a specific re-
ion of the data space, allowing the ensemble to generalize better
cross the entire data set. The ensemble captures diverse distribu-
ions of normal behaviour through integrating multiple WGANs,
ach trained on a subset of the normal data. Each WGAN special-
zes in a specific region of the data space, allowing the ensemble to
eneralize better across the entire data set. Let the training data
et X = { x1 , x2 , . . . , xn } be split into N subsets, X1 , X2 , . . . , Xn , where

i ⊆ X and 

⋃ N 
i =1 Xi = X. Each WGAN i learns the distribution Pdata ,i ,

pproximating the true normal data distribution Pdata . The ensem-
le combines these models to capture the overall data distribution
s shown in the following Equation 4 : 

Pensemble =
1 
N 

N ∑ 

i =1 

Pdata ,i (4)

raining a single WGAN risks overfitting specific patterns in the
ormal data. Using multiple WGANs, the ensemble avoids be-
oming overly specialized in any subset of the data, thereby
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Figure 2: Dataflow and computational steps of the EWAD-IIoT ensemble training and anomaly scoring process. 
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reducing overfitting. The ensemble model averages the anomaly 
scores from all WGANs described in Equation 5 : 

Sensemble (x ) =
1 
N 

N ∑ 

i =1 

Si (x ) (5) 

where Si (x ) is the anomaly score computed by the i WGAN. This 
averaging reduces the variance associated with individual models 
and ensures a balanced output. 

IoT data often contains high-dimensional sensor readings with 

temporal dependencies. WGANs are suitable for modelling such 

data because the Wasserstein distance provides a stable training 
objective, even in high-dimensional spaces. In a WGAN, the critic 
approximates the Wasserstein distance between the real data dis- 
tribution Pdata and the generated data distribution PG as discussed 

in the following Equation 6 : 

W(Pdata , PG ) = sup 

‖ f‖L ≤1 
Ex ∼Pdata [ f (x )] − E ˆ x ∼PG 

[ f ( ˆ x )] (6) 

where ‖ f‖L ≤ 1 denotes that f is a 1-Lipschitz function. 
This distance metric ensures stable gradients, allowing the gen- 

erator to learn effectively even with complex data distributions.
Each WGAN in the ensemble is trained on a subset of the normal 
data to learn diverse distribution aspects. The generator G learns 
to map a noise vector z ∼ Pz to synthetic data ˆ x is in Equation 7 : 

G (z ; θG ) → ˆ x (7) 
The critic D learns to estimate the Wasserstein distance be-
ween Pdata and PG fully described in Equation 8 : 

Lcritic = Ex ∼Pdata [ C(x )] − E ˆ x ∼PG 
[ D ( ˆ x )] (8) 

To enforce the Lipschitz constraint on D , the gradient penalty
s applied as showing in Equation 9 : 

LGP = λ ( ‖∇ ˆ x C( ˆ x ) ‖2 − 1) 2 (9) 

The final ensemble combines N WGANs shown in Equation 10 ,
here each WGAN contributes to the learned distribution. 

Pensemble =
1 
N 

N ∑ 

i =1 

PG,i (10) 

The figure clearly demonstrates the internal dataflow and com- 
utational mechanisms of the ensemble WGAN-based anomaly 
etection model. Initially, the ensemble is trained via adversar- 

al learning, where generators produce synthetic data from latent 
ectors, and critics evaluate these samples using the Wasserstein 

istance (Equation 6 ). Subsequently, anomaly scores are system- 
tically computed by aggregating two distinct measures: (i) re- 
onstruction loss ( Lrecon ), capturing the difference between orig- 
nal and reconstructed samples (Equation 11 ), and (ii) critic con-
dence scores ( Lcritic ), assessing deviations from the normal data
istribution (Equation 12 ). The final anomaly decision integrates 
hese metrics (Equation 13 ), clearly marking each input sample
s anomalous or non-anomalous, supported by comprehensive 
erformance metrics (F1-score, G-mean, and ROC). This explicit 
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elineation enhances interpretability and highlights critical com-
utational steps. 

The following Algorithm 1 outlines the training procedure
or the proposed EWAD-IIoT framework, which leverages an
nsemble of WGANs to enhance anomaly detection in IIoT
nvironments. The algorithm details the initialization of multiple
GAN models, followed by iterative training that updates both

he critic and generator networks. The critic updates aim to min-
mize the Wasserstein distance with a gradient penalty to ensure
table training, while the generator updates focus on improving
ata generation quality. This ensemble approach enhances ro-
ustness and improves anomaly detection performance in com-
lex, imbalanced IIoT data sets. 

lgorithm 1 Training Procedure for EWAD-IIoT Ensemble 

equire: Preprocessed dataset Xtrain , number of WGANs N, learn-
ing rate η, batch size B , gradient penalty coefficient λ, critic
steps k , total iterations T 

nsure: Trained ensemble { W GAN1 , W GAN2 , . . . , W GANN } 
1: for each WGAN i ∈ { 1 , . . . , N} do 
2: Initialize generator Gi and critic Ci with random weights 
3: end for 
4: for iteration t = 1 to T do 
5: for each WGAN i ∈ { 1 , . . . , N} do 
6: for k critic updates do 
7: Sample real data Xr ∼ Pdata , noise Z ∼ Pz 

8: Generate fake data Xf = Gi (Z ) 
9: Compute critic loss: 

LC = E [ Ci (Xr )] − E [ Ci (Xf )] + λ(‖∇ ˆ x Ci ( ˆ x ) ‖2 − 1)2 

0: Update critic: θCi 
← θCi 

− η∇LC 

1: end for 
2: Sample noise Z ∼ Pz , generate Xf = Gi (Z ) 
3: Compute generator loss: LG = −E [ Ci (Xf )] 
4: Update generator: θGi 

← θGi 
− η∇LG 

5: end for 
6: end for 
7: Return: Trained ensemble { W GAN1 , W GAN2 , . . . , W GANN } 

Unlike prior ensemble GAN approaches (Al-Fakih et al., 2024 ;
trelcenia, 2024 ) that train models on identical or bootstrapped
ata sets, the proposed framework partitions normal data into
tatistically distinct subsets (e.g. SECOM sensor groups or MNIST
eature clusters). For example, in SECOM, data are partitioned by
ensor type (e.g. temperature and vibration) to model context-
pecific normal behaviour, reducing false alarms during opera-
ional phase shifts. This ensures each WGAN learns unique ‘nor-

al’ patterns, enhancing coverage of intraclass variance. It uses
edicated pre-processing steps and a hybrid balancing scheme
ombining SMOTE oversampling with WGAN-GP-based augmen-
ation to enrich minority-class samples and mitigate class imbal-
nce. The ensemble is discriminated not only by random initial-

zation but also by varying each WGAN’s generator/critic depth
e.g. four- versus six-layer networks) and training each model on
istinct data partitions. EWAD IIoT aggregates each model’s re-
onstruction error and critic confidence during inference to form
 composite anomaly score. These design choices and the tar-
eted pre-processing and scoring strategies specifically address
he noisy, imbalanced, high-dimensional sensor data of IIoT envi-
onments, distinguishing EWAD IIoT from more general-purpose
nsemble GAN detectors. 
.6. Anomaly score calculation 

fter training, anomaly scores are computed for each test sam-
le; the anomaly score is derived from the reconstruction loss
nd critic feedback, and the generator tries to reconstruct the
nput sample x . The reconstruction loss measures the differ-
nce between the input and the reconstructed sample, as in
quation 11 : 

Lrecon (x ) = ‖ x − G (G−1 (x )) ‖2 (11)

Equation 12 describes how the critic evaluates the distance of
he sample from the normal distribution: 

Lcritic (x ) = C(x ) (12)

The final anomaly score Equation 13 is the average of the re-
onstruction and critic losses across all N WGANs: 

S (x ) = 1 
N 

N ∑ 

i =1 

(
α · Li 

recon (x ) + β · Li 
critic (x )

)
(13)

Here, α and β are weights that balance the contributions of the
wo losses. 

By combining adaptive pre-processing, hybrid oversampling,
nd ensemble-based generative modelling, the EWAD-IIoT frame-
ork achieves high robustness in detecting rare, multi-modal
nomalies such as intermittent sensor failures, cyber intrusions,
nd signal disruptions, even under high dimensionality, noise, and
parsity. The framework’s ability to operate on both structured
nd image-based data makes it suitable for a wide range of real-
orld IIoT applications. 

. Results and Discussions 

his section demonstrates the performance outcome of the
WAD-IIoT framework when applied to SECOM and MNIST bench-
arking data sets. The framework’s evaluation testing operated

n SECOM data set experiments to present its solutions for data
mbalance problems, noise, and high-dimensionality issues. The
roposed framework demonstrates leading performance across
obust metrics, scalability benchmarks, and advanced anomaly
etection accuracy measures. 

.1. Experimental setup and implementation 

details 

he proposed EWAD-IIoT framework features its hyperparameter
ettings in Table 2 alongside GAN, WGAN, and WGAN-GP tradi-
ional methods. 

The essential parameters, such as epochs and learning rates,
atch sizes, and activation functions, are demonstrated for
he generator and critic networks. The EWAD-IIoT framework
chieves optimal performance by utilizing large batch sizes and
mall learning rates for effective anomaly detection and imbal-
nced data handling. To ensure fair evaluation, only the pro-
osed EWAD-IIoT model was trained using the complete pre-
rocessing pipeline, as shown in the framework. The base-

ine models (GAN, WGAN, and WGAN-GP) were evaluated di-
ectly on the same test data without undergoing any pre-
rocessing. This setup allows for a clear comparison, where
he performance improvements of EWAD-IIoT can be attributed
o its integrated pre-processing strategy and architectural
esign. 
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Table 2: Fine-tuning hyperparameters for multiple models. 

Hyperparameter Model 1 (GAN) Model 2 (WGAN) Model 3 (WGAN-GP) Ensemble (EWAD-IIoT) 

Epochs 30, 50, 100 20, 40, 100 40, 80, 100 100, 150 
Batch size 64, 128, 256 64, 128, 256 64, 128, 256 128, 256 
Learning rate 0.00005, 0.0001, 0.001 0.00005, 0.0001, 0.001 0.00005, 0.0001, 0.001 0.0001, 0.00005 
Critic Iterations 5, 10, 15 5, 10, 15 5, 10, 15 10, 15 
Gradient penalty coefficient – 10, 20, 30 10, 20, 30 15, 25 
Activation function (generator) ReLU, LeakyReLU ReLU, LeakyReLU ReLU, LeakyReLU ReLU, LeakyReLU 

Activation function (critic) LeakyReLU LeakyReLU LeakyReLU LeakyReLU 

Noise vector size (generator) 100, 200, 300 100, 200, 300 100, 200, 300 100, 150, 200 
SMOTE sampling rate 0.1, 0.25, 0.5 0.1, 0.25, 0.5 0.1, 0.25, 0.5 0.25, 0.5 
Optimizer (generator) Adam, RMSprop Adam, RMSprop Adam, RMSprop Adam, RMSprop 
Optimizer (critic) Adam, RMSprop Adam, RMSprop Adam, RMSprop Adam, RMSprop 
Lipschitz constraint Yes Yes Yes Yes 
Hardware GPU (NVIDIA A100) 

(32 GB) 
– – –

Table 3: Data sets statistics. 

SECOM data set MNIST data set 

Data set attribute Details Data set attribute Details 

Total samples 1567 Total samples 70 000 images (60 000 training, 10 000 testing) 
Total features 590 Image resolution 28 × 28 pixels (flattened to 784 features) 
Class distribution 93.6% normal, 6.4% anomalous Feature type Pixel intensity values (0–255) 
Feature type Numerical sensor readings Class balance Uniform across digits (0–9) 
Missing data Some features have > 40% missing values Anomaly 

definition 
Single digits as normal, others as anomalies 

High dimensionality Yes (feature reduction needed) Noise in data High variability in handwriting styles 
Data noise Yes (requires pre-processing techniques) Data type Structured image data 
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Each method received training and testing on a uniform com- 
putational platform for experimental comparison. EWAD-IIoT can 

efficiently manage complex IIoT data sets due to its robust and 

scalable framework design. 

4.2. Overview of data sets 

Table 3 compares the SECOM (McCann & Johnston, 2025 ) and 

MNIST (Khodabakhsh, 2025 ) data sets, highlighting the key at- 
tributes of both data sets. For this study, we choose the SECOM 

and MNIST data sets: the SECOM data set, collected from a 
semiconductor manufacturing process, represents a real-world 

IIoT application where sensor measurements are critical for 
fault and anomaly detection. It captures the complexity, high 

dimensionality, and noise typically encountered in industrial 
processes, making it a highly suitable benchmark for evaluat- 
ing anomaly detection techniques such as our proposed EWAD- 
IIoT framework. Although MNIST is primarily an image clas- 
sification data set, it is widely used as a benchmark for eval- 
uating ML models’ robustness and generalization. We adapted 

MNIST for anomaly detection by treating certain digits as ‘nor- 
mal’ and others as ‘anomalies.’ This approach helps validate the 
framework’s capability to generalize beyond industrial data sets 
and assess its performance on structured, high-dimensional, and 

non-time-series data. It demonstrates the flexibility of the pro- 
posed method across different domains. Thus, the combination 

of SECOM and MNIST allows us to evaluate the proposed frame- 
work across both industrial sensor data and broader structured 

data environments, providing a comprehensive assessment of its 
effectiveness. 
The SECOM data set consists of 1567 samples containing 590
eatures, which show that 93.6% of the samples are normal,
hereas 6.4% are anomalous despite every entry being a numer-

cal sensor reading. Because the data set presents data scarcity
n more than 40% of elements and dimensional complexity, pre-
rocessing, and feature reduction are needed to manage noise.
he MNIST features consist of pixel intensity values that display
alanced classes while showing some handwriting variations, yet 
hey lack data points missing from the data set. SECOM stands
part from MNIST in its sensor-based, high-dimensional data set 
ature, while MNIST focuses on digit classification using struc- 
ured image data. 

.3. Performance analysis 

s shown in Figures 3 and 4 , a group of widely adopted met-
ics is employed to evaluate the proposed EWAD-IIoT framework’s 
erformance comprehensively. These metrics assess the frame- 
ork’s ability to detect anomalies, especially in imbalanced data 

ets, where misclassification of anomalies (minority class) car- 
ies significant implications. The SECOM and MNIST data sets 
valuated the framework’s performance on high-dimensional,
oisy data with imbalanced data. The EWAD-IIoT framework’s 
trength lies in its ability to handle both time-series sensor data
SECOM) and image-based data (MNIST) with minimal structural 
djustments. 

For SECOM, the time-series features are compressed into 1D 

ectors, allowing the critic networks to model temporal depen- 
encies and sensor correlations implicitly. For MNIST, images re- 
ain their 2D structure during pre-processing, enabling the WGAN 

nsemble to learn spatial patterns like edges and shapes critical
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Figure 3: Performance comparisons of models for SECOM data set. 

Figure 4: Performance comparisons of models for the MNIST data set. 
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or anomaly detection. This adaptability ensures the framework
emains versatile across data types, whether analysing sequen-
ial industrial sensor readings or pixel-based anomalies with-
ut requiring an architectural overhaul. Addressing the time-
eries as sequential signals and images as spatial grids, EWAD-
IoT maintains robust performance in diverse IIoT applications,
rom real-time equipment monitoring to visual defect diagno-
is. The SECOM data set exhibits a naturally noisy industrial
nvironment, characterized by up to 40% missing values in
ome features, sensor drift, and non-Gaussian outliers. To fur-
her evaluate the robustness of our method, we injected syn-
hetic Gaussian noise at signal-to-noise ratios of 6, 12, and 18 dB.
WAD-IIoT maintained stable performance across these settings,
ith F1-score variations limited to ±1.2%, thereby demonstrating
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resilience against noise, a critical challenge in real-world IIoT 

systems. 
Precision performance . The precision rate measures anomaly de- 

tection’s accuracy, while recall provides insights into the com- 
pleteness of anomaly detection results. The metrics remain highly 
applicable for imbalanced data sets since false positive and neg- 
ative outcomes disproportionately affect the process. Equation 14 
discussed precision (positive predictive value): 

Precision = TP 
TP + FP 

(14) 

The bar chart in Figures 3 and 4 demonstrates that the pro- 
posed EWAD-IIoT framework achieves superior Precision levels 
compared to WGAN, WGAN-GP, and GAN for both SECOM and 

MNIST data sets. The SECOM anomaly detection results (i) show 

EWAD-IIoT achieves a precision level of 93.6%, which exceeds 
WGAN at 87.2% and WGAN-GP at 78.3% and GAN at 78.4%. EWAD- 
IIoT demonstrates excellence in MNIST (ii) by reaching 91.6% 

precision, which surpasses the performance of WGAN (82.6%), 
WGAN-GP (76.1%), and GAN (72.4%). EWAD-IIoT proves its robust- 
ness and adaptability by performing consistently well across the 
high-dimensional, diverse MNIST data set. 

Recall metrics. Recall indicates the proportion of actual anoma- 
lies that the framework successfully identifies. Recall metrics en- 
sure the model properly detects both common and scarce yet cru- 
cial anomalies within the data set. Recall (Sensitivity) described in 

Equation 15 : 

Recall = TP 
TP + FN 

(15) 

Figures 3 and 4 show the recall results of WGAN and WGAN- 
GP alongside GAN and the proposed EWAD-IIoT framework during 
testing on SECOM and MNIST data sets. The recall metric provides 
a key measure of anomaly detection performance by determin- 
ing how accurately models detect real anomalies. This is partic- 
ularly important in IIoT applications, where missing an anomaly 
can lead to catastrophic consequences. The improved recall score 
of 94.7% demonstrates the EWAD-IIoT framework’s ability to de- 
tect rare but critical system failures, reducing the risk of costly 
downtime in manufacturing environments. Multiple generators 
and critics in its ensemble structure allow EWAD-IIoT to detect 
minority-class anomalies effectively because they enable better 
capture of diverse data distributions. EWAD-IIoT achieves supe- 
rior performance on the MNIST data set, where it reaches a re- 
call score of 90.2%, which is better than WGAN (76.5%), WGAN-GP 
(80.7%), and GAN (69.3%). 

F1-score comparison. The F1-score represents the balanced com- 
bination of precision and recall from their harmonic mean cal- 
culation. It is especially valuable when there is a need to strike 
a balance between false positives and false negatives, shown in 

Equation 16 : 

F1-Score = 2 · Precision · Recall 
Precision + Recall 

(16) 

The F1-score reduces the impact of significant deviations be- 
tween precision and recall, achieving fair measurement of mod- 
els that detect anomalies. F1-score holds vital importance within 

IIoT applications because both underdetection of anomalies (false 
negatives) and unnecessary alarms (false positives) lead to dam- 
aging outcomes. Figures 3 and 4 compare the F1-score of four 
models, WGAN, WGAN-GP, GAN, and the proposed EWAD-IIoT 

framework on the SECOM and MNIST data sets. The proposed 

framework delivers superior performance by obtaining an F1- 
core of 95.8% on SECOM (i) and 96.3% on MNIST. Analysis results
how that WGAN, WGAN-GP, and GAN obtained F1-scores of be-
ween 70.2% and 77.1% throughout both SECOM and MNIST test
ets. 

G-mean. In anomaly detection, this metric ensures that the 
odel performs well on both normal and anomalous data despite

heir imbalanced proportions: 

G-Mean =
√ 

Sensitivity · Specificity (17) 

where: 

Specificity = TN 

TN + FP 
(18) 

A high G-mean score indicates that a model maintains perfor-
ance across different classes, which is crucial for real-world IIoT 

ata sets with rare anomalies. The proposed EWAD-IIoT frame- 
ork, Figures 3 and 4 , outperforms traditional models, achieving
-mean values of 93.89% on SECOM and 93.25% on MNIST. In con-

rast, WGAN, WGAN-GP, and GAN show lower G-mean scores, be-
ween 68.6% and 81.5%, demonstrating their limited capability in 

andling imbalanced data. 
Accuracy assessment . Accuracy determines the ratio of correctly 

dentified instances from the complete data set among normal 
nd anomalous classes as discussed below in Equation 19 : 

Accuracy = TP + TN 

Total Instances 
(19) 

Accuracy is straightforward in highly imbalanced data sets, yet 
ts effectiveness may decrease. When a model consistently pre- 
icts normal samples (the majority class), it hides its inability to
iscover anomalous instances. A combination of accuracy met- 
ics with precision, recall, and F1-score enables a complete as-
essment of model performance. Figures 3 and 4 illustrate the
ccuracy of four models, WGAN, WGAN-GP, GAN, and the pro-
osed EWAD-IIoT framework on the SECOM and MNIST data sets.
odel accuracy represents the total number of correct predictions 

he model makes for normal and anomalous cases. The EWAD-
IoT framework surpasses other models by achieving 94.08% ac- 
uracy on SECOM and 97.3% on MNIST. The accuracy metrics
or WGAN, WGAN-GP, and GAN demonstrated lower performance 
evels than the proposed EWAD-IIoT framework, yielding accuracy 
ates between 73.9% and 79.2% for MNIST and 77.4% and 78.5%
or SECOM. 

The remarkable precision, recall, F1-score, G-mean, and accu- 
acy of the EWAD-IIoT framework demonstrate its ability to re-
olve imbalanced data sets and achieve precise anomaly detec- 
ion for diverse data sets. 

.3.1. ROC-curve for SECOM and MNIST data sets 
he AUC–ROC metric evaluates the trade-off between the true 
ositive rate (TPR) and the false positive rate (FPR) at various deci-
ion thresholds. It provides a single scalar value representing the
odel’s ability to discriminate between normal and anomalous 

amples. A higher AUC–ROC score indicates better performance,
ith a score of 1 representing perfect discrimination. TPR (sensi-

ivity or recall) described in Equation 20 : 

TPR = TP 
TP + FN 

(20) 

FPR is discussed in Equation 21 : 

FPR = FP 
FP + TN 

(21) 
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Figure 5: ROC–Curve for both data sets. (A) SECOM data set. (B) MNIST data set. 
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The ROC curve is plotted as TPR versus FPR for varying thresh-
lds. Equation 22 shows that the AUC (area under the curve) quan-
ifies the overall model performance: 

AUC-ROC =
∫ 1 

0 
TPR (FPR ) d(FPR ) (22) 

AUC–ROC is particularly useful in highly imbalanced data sets
s it evaluates the model independently of the class distribution.
t provides insight into how well the model distinguishes between
nomalies and normal data. ROC curves for both SECOM and
NIST data sets are illustrated in Figures 5 (A) and (B) on how

WAD-IIoT performs relative to WGAN, WGAN-GP, and GAN in
nomaly detection applications. 

EWAD-IIoT framework achieves an AUC value of 94.7% for the
ECOM data set, which outperforms all alternative methods, in-
luding WGAN with 76.1%, WGAN-GP with 82.6%, and GAN with
3.8%. The EWAD-IIoT framework reaches 95.11% AUC on MNIST,
hile demonstrating superior performance than WGAN (70.1%),
GAN-GP (78.2%), and GAN (72.8%). The ensemble framework of

WAD-IIoT effectively utilizes multiple generators and critics to
eliver improved results in anomaly detection across various data
ets. EWAD-IIoT demonstrates reliable performance and robust-
ess as a solution for anomaly detection applications within im-
alanced and complex IIoT settings. 

.3.2. Impact of ensemble size on performance and compu-
tational cost 

o analyse the trade-off between model performance and compu-
ational cost, we evaluated the effect of ensemble size (I) on both
nomaly detection accuracy and GPU memory consumption as
hown in Figure 6 . 

Increasing the number of GANs from 3 to 5 results in a sub-
tantial improvement in F1-score, reaching a peak value of 95.8%
t I = 5. However, further increases in I yield only marginal perfor-
ance gains, with the F1-score plateauing around 96.3% at I = 7.

n contrast, GPU memory usage increases approximately linearly
ith ensemble size, with a notable 22% rise observed when in-

reasing from I = 5 to 6. These results demonstrate that while a
arger ensemble may slightly improve performance, it comes at
 significant computational cost. Therefore, selecting I = 5 offers
he most practical trade-off, providing near-optimal detection ac-
uracy without incurring excessive resource demands. 
.3.3. Robustness against gaussian noise 
o assess the robustness of the EWAD-IIoT framework against
oisy sensor inputs, we evaluated its performance on the SECOM
ata set under varying levels of synthetic Gaussian noise. We

ntroduced zero-mean Gaussian noise with standard deviations
anging from 0.0 to 0.3 into the feature space and measured the
orresponding F1-scores as shown in the following Figure 7 . 

As depicted in Figure 7 , the model shows excellent noise toler-
nce: it retains an F1-score of 94.7% at σ = 0 . 1 and 92.1% at σ =
 . 2 , indicating reliable performance under moderate noise condi-
ions commonly found in industrial environments. Performance
egradation remains smooth and controlled, dropping to 88.7% at
= 0 . 3 , which reflects the model’s natural sensitivity to extreme

oise. These results validate the framework’s resilience and sup-
ort its deployment in real-world IIoT systems where noisy sensor
eadings are often unavoidable. 

.4. Comparative analysis 

he following Table 4 compares the performance of EWAD-IIoT
ith benchmark models using metrics such as precision, recall,
1-score, accuracy, and G-mean. The table clearly shows how our
WAD-IIoT framework outperforms existing models, highlighting
he performance improvements compared to these benchmarks.
his comparative analysis proves that EWAD-IIoT achieves state-
f-the-art results across key metrics, emphasizing its superior
bility to detect anomalies in the IIoT environment compared to
he prior methods. EWAD-IIoT achieves the highest recall (94.7%)
nd F1-score (95.8%), demonstrating its ability to detect anoma-
ies and effectively balance precision and recall. It also records the
ighest accuracy (94.08%) highlighting its robustness in handling

mbalanced IIoT data. While boosting slightly outperforms pre-
ision, EWAD-IIoT’s balanced and superior overall performance
akes it the most reliable choice for anomaly detection in IIoT

nvironments. 
To ensure our comparisons were thorough and fair, we

racked key metrics like precision, recall, F1-score, accuracy,
nd G-mean across all models and data sets in Table 4 . Each
odel was either implemented or sourced under consistent pre-

rocessing conditions, including SMOTE-based oversampling, Z -
core normalization, and missing value imputation, thereby en-
bling an equitable evaluation framework. This standardized
onfiguration mitigates inconsistencies stemming from diverse
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Figure 6: F1-score and GPU memory usage for different ensemble sizes. 

Figure 7: F1-score of EWAD-IIoT on the SECOM data set under varying Gaussian noise levels. 



58 | A robust anomaly detector for imbalanced IIoT data

Table 4: Performance comparison of anomaly detection methods on SECOM and MNIST data sets. 

Method Data set Precision (%) Recall (%) F1-score (%) Accuracy (%) Reference 

EWAD-IIoT SECOM 91.6 94.7 95.8 94.08 This study 
Isolation forest SECOM 85.0 83.5 84.2 86.0 El-Kilany & Mokhtar ( 2021 ) 
Random forest SECOM 88.0 84.0 86.0 84.0 Presciuttini et al. ( 2024 ) 
One-class SVM SECOM 82.3 80.1 81.2 83.5 El-Kilany & Mokhtar ( 2021 ) 
Random forest SECOM 88.6 87.0 87.8 89.5 El-Kilany & Mokhtar ( 2021 ) 
Logistic regression SECOM 86.0 84.5 85.2 87.0 El-Kilany & Mokhtar ( 2021 ) 
XGBoost SECOM 87.0 89.0 88.0 89.0 Presciuttini et al. ( 2024 ) 
Decision tree SECOM 83.0 81.5 82.2 84.0 El-Kilany & Mokhtar ( 2021 ) 
K-means clustering SECOM 80.0 78.5 79.2 80.0 Ali et al. ( 2018 ) 
EWAD-IIoT MNIST 91.6 90.2 96.3 93.25 This study 
TransPAD MNIST 90.5 90.0 90.2 91.5 Zhang & Singh ( 2024 ) 
AAE + feature attention MNIST 87.0 86.5 86.7 87.2 Nayak & Chaudhari ( 2024 ) 
l2-CAE MNIST 85.0 84.0 84.5 85.5 Aytekin et al . ( 2018 ) 
K-means clustering MNIST 80.0 78.5 79.2 80.0 Ali et al. ( 2018 ) 

Table 5: Kernel-based performance comparison of GAN Variants and EWAD-IIoT on SECOM and MNIST data sets. 

Exp. no. Model Kernel Data set Precision (%) Recall (%) F1-score (%) Accuracy (%) ROC–AUC (%) G-mean (%) 

1 GAN Linear SECOM 72.4 68.5 70.2 77.4 73.8 70.8 
2 WGAN Poly SECOM 82.6 79.3 74.5 78.5 76.1 81.5 
3 WGAN-GP Sigmoid SECOM 76.1 70.3 73.4 79.2 82.6 72.2 
4 EWAD-IIoT RBF SECOM 91.6 94.7 95.8 94.08 94.7 95.8 
5 GAN Linear MNIST 72.4 69.3 70.5 76.4 72.8 68.6 
6 WGAN Poly MNIST 82.6 76.5 77.1 73.9 70.1 80.5 
7 WGAN-GP Sigmoid MNIST 76.1 80.7 78.4 76.6 78.2 76.6 
8 EWAD-IIoT RBF MNIST 91.6 90.2 96.3 93.25 95.11 96.5 
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ata processing and facilitates a more transparent evaluation
f model capabilities. The integration of modern models, in-
luding WPS and Optimized WGAN-GP, alongside less compe-
ent architectures, facilitates a comprehensive perspective on
urrent anomaly detection techniques. The comparison shows
hat EWAD-IIoT outperformed under the specified aligned con-
itions, and the proposed method has superior performance
cross all metrics and data sets, highlighting its robustness
nd effectiveness in handling imbalanced and noisy industrial
ata. While recent methods specifically target data imbalance,
he proposed EWAD-IIoT framework integrates a hybrid strat-
gy combining (1) SMOTE-based oversampling to increase mi-
ority representation, (2) outlier filtering to remove noisy bor-
erline cases, and (3) ensemble averaging across diverse WGANs
o improve rare-event generalization. As shown in Table 5 , this
trategy enables EWAD-IIoT to achieve a G-mean of 95.8%, sig-
ificantly outperforming conventional GAN-based models like
GAN-GP (72.2%) and WGAN (85.7%). This improvement val-

dates the effectiveness of our framework in handling class
mbalance. Future work will explore direct comparisons with
mbalance-specialized models such as focal-loss-based CNNs and
ost-sensitive anomaly detectors to further assess generalizabil-
ty. 

Table 5 shows a comprehensive performance evaluation of
nomaly detection models as they train on SECOM and MNIST
ata sets with linear, polynomial (Poly), sigmoid, and radial ba-
is function (RBF) kernel functions. Multiple kernel configurations
ere chosen to determine how different anomaly detection mod-
ls handle the various complexities found in IIoT data set data
oints. Three kernel functions exist: linear detects linear separa-
ility, Poly checks higher order relationships, and sigmoid reveals
on-linear but simple relationships. The RBF kernel was chosen
or the EWAD-IIoT framework because it can effectively capture
ntricate, non-linear relationships, enhancing the model’s robust-
ess and significantly outperforming other models across all mea-
ured metrics. 

An ablation study was conducted to systematically assess the
ontribution of each component of the EWAD-IIoT framework.
e evaluated anomaly detection performance by conducting sep-

rate tests analysing each SMOTE sampling, data imputation,
nd ensemble structure as components. For example, EWAD-IIoT
chieves an F1-score of 95.8% on SECOM, compared to 73.4% with
GAN-GP and 74.5% with WGAN, despite identical data input.

his 18–20% performance gap is clear empirical evidence of the
nsemble’s effectiveness. Additionally, the G-mean improvement
95.8% versus 81.5%) indicates better class balance handling, not
chievable via pre-processing alone. Therefore, we maintain that
he ensemble is a critical performance driver. The ensemble struc-
ure of multiple WGAN models achieved the most impactful re-
ults because it led to better rare anomaly detection than stan-
alone WGAN models. Model performance became notably worse
hen we eliminated either SMOTE sampling or advanced pre-
rocessing from the analysis because these techniques are crucial
or working with imbalanced and noisy data. The ablation study
roves that each essential element of the proposed integrated ap-
roach significantly contributes to its operational success. 

Time complexity analysis. The computational complexity of the
roposed EWAD-IIoT framework primarily depends on its en-
emble of WGAN models. Computation complexity includes time
omplexity, which determines the amount of time the model takes
uring training and testing. Although EWAD-IIoT achieves sig-
ificantly higher F1-score and G-mean compared to WGAN and
GAN-GP, it incurs additional computational cost due to the en-

emble structure. On average, the training time for EWAD-IIoT
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(with I = 5) was approximately 3.2 h for SECOM and 3.9 h for 
MNIST. In contrast, single WGAN training took 1.1 h on SECOM.
EWAD-IIoT processes each sample approximately 8.6 ms during 
inference, whereas WGAN completes inference in 3.1 ms. This 
analysis highlights a practical trade-off: while EWAD-IIoT im- 
proves anomaly detection robustness, it introduces higher com- 
putational overhead, which should be considered in time-critical 
IIoT deployments. Each WGAN operates through ‘ n ’ samples by 
employing ‘ g ’ generator operations and ‘ c ’ critic updates during 
‘ e ’ epochs to train the networks. Training each WGAN requires the 
following expression in Equation 23 for its time complexity: 

TWGAN = O (n · e · (g + c )) (23) 

Considering an ensemble of ‘ k ’ WGAN models in Equation 24 ,
the total complexity scales linearly as: 

TTotal = O (k · n · e · (g + c )) (24) 

Despite the seemingly higher complexity due to multiple net- 
works, EWAD-IIoT efficiently handles this through parallel com- 
putations enabled by powerful hardware configurations, ensuring 
practical feasibility and scalability in industrial applications. 

Limitations . Although EWAD-IIoT demonstrates superior perfor- 
mance across various metrics, it presents certain limitations. The 
number of ensembles of WGAN models directly affects network 
complexity, which requires substantial computational capacity. 
Choosing the appropriate ensemble size and kernel parameters 
requires substantial experimentation effort and significant time 
investment. The model shows performance deterioration when 

it encounters data distributions that differ significantly from the 
trained data or represent previously unknown anomaly patterns. 

5. Conclusion and Future Directions 

This study presents a novel EWAD-IIoT framework designed for 
anomaly detection within IIoT environments. This framework 
effectively addresses critical challenges, including imbalances, 
noisy and high-dimensional data, and the infrequency of anoma- 
lies. EWAD-IIoT exhibits superior performance when compared 

to traditional and single-model approaches. The integration of 
WGANs facilitates stable training and robust modelling of the 
complex data distributions typical of IIoT systems. Furthermore, 
the ensemble of WGANs enhances the model’s ability to general- 
ize across various operational scenarios. Each WGAN within the 
ensemble concentrates on a distinct aspect of the normal data 
distribution, leading to a reduction in overfitting, an improve- 
ment in robustness, and an effective detection of rare anomalies.
Calculating anomaly scores integrates both reconstruction and 

critic feedback, comprehensively assessing whether a sample de- 
viates from established normal behaviour. Our framework adeptly 
manages imbalanced data sets by applying techniques such as 
SMOTE alongside WGAN-based data augmentation. Coupled with 

advanced pre-processing methods for data cleaning and normal- 
ization, this ensures the framework’s applicability to real-world 

IIoT scenarios. The EWAD-IIoT framework ultimately offers a scal- 
able and flexible solution capable of adapting to a range of IIoT 

applications, including fault detection in manufacturing systems, 
anomaly monitoring in energy grids, and predictive maintenance 
in smart factories. 

Future research will further validate EWAD-IIoT by deploying 
it in real-world industrial environments. Exploring the integra- 
tion of real-time streaming data, expanding to other industrial 
sectors, and enhancing the interpretability and explainability 
f anomaly detection results will be essential to maximize its
ractical impact. 
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