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Abstract

Machine learning (ML) and deep learning (DL) have been used for anomaly detection in industrial internet of things (IIoT) environ-
ments. The presence of imbalanced data, high noise levels, missing values, and high dimensionality poses an enormous challenge for
existing methods, leading to inconsistent reliability in detecting anomalies in real-world industrial environments. Current anomaly
detection solutions suffer from high false negative rates due to class imbalance and noisy sensor data, limiting their practical ap-
plicability. This paper proposes the Ensemble Wasserstein generative adversarial network for IIoT (EWAD-IIoT) framework, which is
uniquely designed to address these challenges. The aim is to build a robust anomaly detection model with high recall (94.7%) and
precision (93.6%) while minimizing miss rates in complex IIoT settings. Evaluations on two benchmark data sets, SECOM (industrial
sensor data) and MNIST (image data), demonstrate EWAD-IIoT’s superiority over traditional methods like standalone WGAN and
WGAN-GP. To highlight its efficacy, we compare results against these benchmarks, showcasing improvements in F1-score (95.8%) and
noise robustness. The framework leverages advanced pre-processing (Z-score filtering and min-max scaling), SMOTE-based balancing,
and WGAN-generated synthetic samples to handle data imbalance and dimensionality. The results validate EWAD-IIoT’s capability
to detect rare anomalies in IIoT environments, with a balanced trade-off between recall and precision, making it a scalable solution
for predictive maintenance and fault diagnosis.

Keywords: anomaly detection, industrial internet of things, Wasserstein generative adversarial network, data imbalance, high-
dimensional data, noisy data

1. Introduction the principal challenge when extensive sensor networks combine
with device systems to produce comprehensive data ranges across
different features (Alkhafaji & Viana, 2024). Traditional machine
learning (ML)-based approaches struggle to work with large-scale
data sets since they lack suitable tools for pattern interpreta-
tion. The ‘noisy and incomplete data problems’ that the IIoT en-
vironment faces derive from sensor malfunctions, communica-
tion disruptions, and environmental elements that damage sen-
sor readings or result in sensor data corruption. Several issues af-
fect anomaly detection systems because unanticipated changes
occur frequently in monitored systems. [IoT systems develop re-
curring temporal dependencies between their data records due
to their permanent monitoring of evolving state patterns with
time (Kumar et al., 2024). Time-free data analysis produces erro-
neous anomaly detection outcomes since most anomalous pat-
terns develop from modifications in past patterns. Generative ad-
versarial networks (GANs) show promising applications for re-
search anomaly detection, as described in Liu et al. (2023). Accord-
ing to research findings, WGANSs successfully detect anomalies in
complex data sets yet struggle with overfitting and data set im-
balance problems (Qi et al., 2023). Wan et al. (2024) demonstrated
how GAN-based methods successfully deal with imbalanced data
and create dependable anomaly detection points. Ba-Alawi et al.

The Fourth Industrial Revolution, also known as Industry 4.0, has
led to the widespread adoption of industrial internet of things
(IIoT) systems in various sectors, including manufacturing, logis-
tics, energy, and smart infrastructure (Keshar, 2025; Routaib et al.,
2025). One of the significant challenges in IIoT applications is
the detection of anomalies and deviations from expected system
behaviour. Anomaly detection and deviation identification from
standard system operation create one of the main obstacles when
implementing IIoT applications. Systematic or cyber-based distur-
bances, process defects, sensor issues, and environmental stres-
sors produce significant operational and financial setbacks. IIoT
systems depend on precise anomaly detection systems to operate
smoothly while providing security.

Multiple operational limitations affect existing anomaly de-
tection systems deployed in IIoT applications, as described by
Ghosh et al. (2024). The rare occurrence of system failures in
IIoT settings leads to catastrophic results. Research shows that
K-nearest neighbours (KNN) and support vector machines (SVM)
fail to achieve accurate anomaly detection when implemented
on imbalanced data sets (Khalid et al., 2024). Anomaly detection
is one of the most challenging security tasks because of IIoT’s
distinct operating characteristics. High dimensionality represents
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(2022) evaluated these models against industrial sensor data noise
and missing value scenarios. In real-world IIoT deployments,
anomaly detection must contend with significant data challenges.
Data streams are typically highly imbalanced (many normal
observations versus very few anomalies), complicating the learn-
ing of rare fault signatures (Saranya & Valarmathi, 2025). Sensor
measurements may also be heavily corrupted by noise or suf-
fer frequent missing values due to hardware faults or network
dropouts, obscuring true anomalies (Huang et al., 2025). Further-
more, data are often extremely high-dimensional, with numerous
correlated sensor channels and time points. This exacerbates the
curse of dimensionality and can cause models to overfit or gener-
ate false alarms (Arafah et al., 2025).

Modern IIoT anomaly detectors now emphasize advanced
deep learning (DL) architectures instead of generative ensembles.
Transformer-based models, for example, use self-attention to cap-
ture long-range temporal and cross-sensor dependencies. Zia et al.
(2025) develop a transformer-based framework that learns com-
plex temporal patterns in multivariate IoT streams and even em-
ploys adversarial perturbations to boost robustness. Autoencoder
variants remain popular for unsupervised detection: one-class or
variational autoencoders compress high-dimensional sensor data
into latent spaces, flagging outliers by reconstruction error. Ayad
et al. (2024) report that a hybrid asymmetric stacked autoencoder
with a deep neural networks (DNN) achieves very high 96% detec-
tion rates on Botnet of Things-IoT (BoT-IoT) with minimal false
positives, effectively tackling data imbalance and high dimension-
ality. Hybrid networks further combine complementary layers to
improve feature extraction. For instance, Shang et al. (2024) intro-
duce CAE-T, which merges a convolutional autoencoder (for spa-
tial feature learning) with a transformer (for long-term temporal
context) in an unsupervised anomaly detector.

In this work, the EWAD-IIoT (Ensemble Wasserstein generative
adversarial network for IIoT) framework incorporates a dedicated
and integrated pre-processing step as part of its training phase,
rather than treating it as an external or independent step. This
pipeline, as illustrated in the framework 1, is specifically designed
to improve data quality and address class imbalance before train-
ing the ensemble of WGANSs. Each stage, from data cleaning to bal-
anced sample generation, contributes directly to the robustness
and stability of the learning process. It is important to note that
this pre-processing pipeline is applied only during the training
phase of EWAD-IIoT and not to the test data or baseline models.
The trained EWAD-IIoT model directly evaluates the test data and
compares against baseline methods (GAN, WGAN, and WGAN-
GP) without any additional processing, ensuring a clear and fair
comparison of model performance. Table 1 displays the complete
forms and descriptions of acronyms used in this paper to support
a better understanding of technical terminology for the reader.
The principal contributions of this study are as follows.

(1) A novel EWAD-IIoT framework is proposed, combining
multiple WGANSs within an ensemble architecture to cap-
ture complex data distributions in IIoT anomaly detection
effectively. The ensemble technique significantly improves
the robustness and accuracy of anomaly detection by ef-
fectively addressing challenges such as data imbalance,
high dimensionality, and noisy sensor data. The proposed
framework significantly reduces the limitations associated
with traditional GAN-based approaches, including mode
collapse and instability during training.

(2) The EWAD-IIoT framework integrates advanced data pre-
processing strategies specifically tailored for IIoT data sets.

Table 1: List of Acronyms.

Acronym Description

IIoT Industrial internet of things

EWAD-IIoT Ensemble Wasserstein generative adversarial
network for IIoT

WGAN Wasserstein generative adversarial network

WGAN-GP Wasserstein generative adversarial network with
gradient penalty

GAN Generative adversarial network

SMOTE Synthetic minority over-sampling technique

SECOM Semiconductor manufacturing data set

MNIST Modified National Institute of Standards and
Technology (Image data set)

ROC-curve Receiver operating characteristic curve

Fl-score Harmonic mean of precision and recall

G-mean Geometric mean

KNN K-nearest neighbours

SVM Support vector machine

CNN Convolutional neural network

RNN Recurrent neural network

GPU Graphics processing unit

These pre-processing methods, including SMOTE-based
oversampling for balancing minority classes, statistical
and KNN-based imputation for handling missing values,
and Z-score-based outlier detection combined with min-
max normalization, collectively ensure the model’s opti-
mal performance by improving data quality and reliability.

(3) The performance of the proposed EWAD-IIoT framework
was rigorously evaluated on standard benchmarks such as
the SECOM and MNIST data sets. The results demonstrate
superior detection capabilities in precision, recall, F1-score,
accuracy, and ROC, thus validating our approach’s practical
effectiveness and robustness for diverse and complex IIoT
scenarios.

The paper is organized as follows: Section 2 reviews related
work on IIoT anomaly detection. Section 3 outlines the pro-
posed EWAD-IIoT framework, including pre-processing, ensemble
WGAN architecture, and evaluation. Section 4 presents experi-
mental results and comparisons with benchmarks, and Section 5
presents conclusions and future directions.

2. Related Work

Anomaly detection in IIoT systems has been a critical area of re-
search due to the significant impact anomalies can have on in-
dustrial operations, safety, and efficiency. Anomaly detection re-
lies on traditional and modern techniques, which are grouped into
statistical methods, ML approaches, and DL methods with distinct
strengths and drawbacks.

2.1. Conventional approaches

IIoT early anomaly detection techniques mostly used statistical
methods in their initial implementations, including threshold-
setting methods based on previously defined rules and cluster-
ing techniques used to identify outliers. These methods main-
tain low computational costs and interpretability, yet they face
challenges when analysing high-dimensional and noisy IloT data
sets. Real-world industrial scenarios with dynamic and hetero-
geneous sensor data pose challenges to statistical methods be-
cause these methods cannot correctly capture complex data
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distributions (Liu et al., 2023). ML technology introduced improve-
ments to IIoT system anomaly detection methods. Multiple algo-
rithms, including SVMs (Zeng et al., 2025), decision trees (Papaste-
fanopoulos et al., 2025), random forests, and KNN, are commonly
used for their broad applicability. Results from these methods
prove superior to statistical techniques in analysing data sets with
moderate distribution complexity. IIoT anomaly detection tech-
niques experience a significant performance decline due to highly
imbalanced data sets since these detection tasks often deal with
rare anomalies. ML models prefer the majority class when de-
tecting anomalies because they lack pre-processing through un-
dersampling, oversampling, or synthetic data generation (Lazaar,
2024).

2.2. GAN-based approaches for anomaly
detection

GAN-based methods have shown remarkable promise in anomaly
detection due to their generative capabilities. Arjovsky et al. (2017)
introduced GANs consisting of opposing neural networks, which
include a generator and a discriminator. The generator works to
produce synthetic data that replicates real data distributions, but
the discriminator performs a task to distinguish between real and
synthetic data. GANs extract complex data patterns through their
adversarial training mechanism to produce high-quality synthetic
data for anomaly detection tasks. GANs demonstrate numerous
applications in anomaly detection systems. Anomaly detection re-
lies heavily on synthetic data samples generated by the generator
by assessing reconstruction errors (Geiger et al., 2020). The genera-
tor shows reconstruction failures when it produces synthetic data
that significantly diverges from the learned distribution (Mestav
et al., 2022). However, standard GANs are often limited by mode
collapse, where the generator fails to capture the diversity of the
accurate data distribution, and training instability due to the ad-
versarial nature of the network (Ahmad et al., 2024). GANs per-
form poorly when processing real-world IIoT data sets because
their limitations fail to properly manage data characteristics such
as multidimensionality, noise, and imbalanced distributions (Be-
naddi et al., 2022).

The standard GAN framework has led researchers to develop
multiple variations to improve the system’s stability and robust-
ness. WGANs have gained significant attention by employing the
Wasserstein distance as the loss function; WGANs mitigate train-
ing instability and provide more meaningful gradients for opti-
mization, making them particularly effective in anomaly detec-
tion tasks (Arjovsky et al, 2017; Gulrajani et al., 2017). WGANs
demonstrate excellent capabilities for modelling complex data
distributions and synthetic data generation while detecting subtle
anomalies simultaneously (Gondhi, 2024). The proposed frame-
work is tailored to tackle the challenges specific to IIoT environ-
ments, such as data imbalance, high dimensionality, and noisy or
incomplete data, marking a significant step forward in industrial
anomaly detection.

2.3. Limitations of traditional GANs and need for
advanced GAN variants

Further advancements, such as WGAN with gradient penalty
(WGAN-GP), improve the WGAN by addressing gradient explo-
sion and mode collapse by introducing gradient penalties (Lee
et al., 2023). The generator achieves better data distribution cover-
age through this technique, improving anomaly detection perfor-
mance (Guertler et al., 2022). f-AnoGAN extends GANs for anomaly
detection by integrating generative modelling with encoder-

decoder components, enabling exact anomaly grading via latent
space measurement and reconstruction errors. Complex [IoT data
environments contain multiple data modes that single GAN mod-
els find difficult to capture, leading to reduced detection accuracy.
The development of ensemble methods is a promising solution
to address these limitations. Combining multiple models within
ensemble GANs helps single GANs enhance their detection ac-
curacy and produce reliable results. These data approaches suit
IIoT environments because they efficiently handle data hetero-
geneity alongside imbalanced systems (Liu et al., 2024). The re-
search uses a specialized ensemble of WGANSs to address imbal-
anced IIoT data set requirements in its proposed framework. The
framework achieves better anomaly detection and resolves multi-
ple data problems through the joint ability of multiple WGANSs to
generate data. This advancement marks a crucial development
for implementing GAN-based methods within industrial opera-
tions, which require prioritizing operational safety and reliability.

2.4. Ensemble learning techniques for improved
anomaly detection

Ensemble learning methods establish an efficient anomaly detec-
tion system that operates effectively in IIoT environments and
handles high-dimensional data sets combined with incomplete
information and noise. Multiple GANs improve anomaly detec-
tion performance compared to standard methods by optimizing
outcomes for imbalanced data sets during processing. Research
by Al-Fakih et al. (2024) demonstrates that multiple GANs achieve
better anomaly detection through individual decision boundary
discovery processes. Strelcenia (2024) developed WGAN-GP mod-
els, which produced high-quality synthetic data set samples for
uneven data so detection systems could perform better in follow-
ing anomaly detection operations. The EWAD-IIoT framework en-
hances existing developments through its simultaneous solutions
for data imbalance problems while enabling scalable and inter-
pretable IIoT applications. WGANs work together in this frame-
work to achieve improved robustness while reducing bias and of-
fering full-scale anomaly detection capabilities for intricate in-
dustrial operations. The EWAD-IIoT framework extends the con-
cept through prediction aggregation from multiple WGANSs that
operate in separate sections of an imbalanced IIoT data set. The
specialized data pattern knowledge enables each WGAN to func-
tion as part of the ensemble, effectively tackling imbalanced data
patterns to enhance anomaly detection results.

3. Proposed Framework

The EWAD-IIoT framework illustrated in Figure 1 presents a mod-
ular end-to-end architecture for enhancing anomaly detection in
IIoT environments.

Figure 1 comprises several step-by-step operational workflows,
which are divided into stages: (1) data collection, splitting, and
pre-processing: raw IIoT data are first split into training, valida-
tion, and testing subsets. The training data undergoes a multi-
step pre-processing stage that includes noise removal, missing
value imputation using KNN, and min-max normalization. (2)
Handling imbalanced data: the pre-processed data enter a two-
tiered augmentation strategy to resolve class imbalance. Initially,
the SMOTE generates interpolated minority class samples. This
is followed by WGAN-GP training, where a generator and critic
adversarially learn to produce realistic synthetic samples. This
hybrid SMOTE+WGAN approach enhances data diversity while
mitigating risks like mode collapse and overfitting. (3) Ensemble
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Figure 1: Comprehensive overview of the proposed EWAD-IIoT framework.

WGAN training: to ensure diverse learning and generalization,
multiple WGAN units are trained independently. Each unit com-
prises a generator G; and critic C;, which are trained on different
partitions of the normal (majority) class data. Hyperparameter
tuning, critic feedback, and weight clipping are incorporated to
stabilize the adversarial learning process. (4) Integration and
anomaly detection: the trained ensemble generates synthetic mi-
nority instances that are combined with the real data and passed
to the anomaly detector. Anomaly scores are computed by aggre-
gating feedback from multiple critics and the reconstruction er-
ror patterns. Threshold-based decision logic categorizes the out-
come as either ‘anomalous’ or ‘non-anomalous.” (5) Output: the
final output module of the EWAD-IIoT framework classifies input
instances as either anomalous or non-anomalous based on the
aggregated anomaly scores derived from the ensemble critics and
reconstruction metrics. This binary decision supports actionable
insight for real-time monitoring, enabling timely responses to po-
tential faults, intrusions, or abnormal behaviours in IIoT systems.

3.1. Implementation and training configuration

The EWAD-IIoT framework utilized Python and Jupyter to imple-
ment DL libraries, enabling model development and training. A
high-performance NVIDIA A100 GPU coupled with 32 GB of mem-
ory enabled efficient training, speeding up the evaluation process
and training time. A powerful GPU configuration supported effi-
cient ensemble training of four GANs across 100 epochs, allow-
ing sufficient optimization time for the best results. We tested
ensemble sizes I € {3, 4,5, 6, 7}. The Fl-score peaked at [ = 5 and
saturated beyond it, while training/inference time increased lin-
early. With I = 6, performance improvement was <0.4% while GPU
memory usage increased by 22%. Therefore, I = 5 offers the best
trade-off, balancing accuracy and efficiency. This empirical basis
strengthens the design decision. This ensemble strategy enables
the framework to learn a broader range of normal patterns, en-
hancing the ability to detect rare and subtle anomalies. The batch

size was set to 128, a common configuration that balances compu-
tational efficiency and memory usage. Additionally, the gradient
penalty coefficient (A = 10) was carefully tuned to ensure stability
during training, particularly with the Wasserstein loss function,
which requires enforcing the Lipschitz continuity constraint. The
learning rate for the training process was set to 1 x 1074, a typi-
cal value used for training GANs. This learning rate ensures sta-
ble convergence while allowing the model to learn the complex
distribution of the data throughout training. These hyperparam-
eters were chosen through extensive experimentation to ensure
the best performance of the model.

3.2. Data pre-processing

The framework utilizes the raw IIoT data sets SECOM and MNIST,
which present challenges due to high dimensionality, noise, and
missing values. Data pre-processing remains essential when im-
plementing ML applications on complex data sets, including in-
dustrial environments with imbalanced and noisy sensor data.
Data pre-processing aims to create a learning environment that
maximizes model accuracy while addressing these challenges.
To ensure robustness and generalizability, k-fold cross-validation
evaluates the EWAD-IIoT framework. The data set is split into k
subsets, with the model trained on k—1 folds and validated on the
remaining fold. This process is repeated k times, and the average
performance metrics provide a reliable estimate of the model’s ef-
fectiveness, helping to reduce overfitting and ensuring good per-
formance on unseen data in the challenging IIoT environment.

3.3. Clean and normalize the data

Noisy and incomplete data are other challenges inherent to
IIoT systems. These are addressed using the following statisti-
cal imputation techniques. KNN imputation provides a secondary
treatment by analysing feature proximity to determine missing
value predictions. Outliers are detected through z-score filtering
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methods that help identify data points beyond expected mean
values to improve data quality. Continuous features are im-
puted using the mean or median of observed values, which helps
preserve the overall distribution. For continuous and categori-
cal features, missing values are imputed using the average (or
mode) of the KNN in the feature space. Noise is managed using
outlier detection methods such as z-score filtering described in
Equation 1:

X—p
Z= R
o

|z| > 3 = outlier. (1)

Here, u and o are the mean and standard deviation of the fea-
ture, respectively. Outliers, identified as samples with z-scores ex-
ceeding a threshold of 3, are excluded from the data set. To ensure
the model treats all features equally, min-max scaling (Shantal
etal.,, 2023)is applied to reduce the impact of selected data dimen-
sions to ensure efficient model training while improving general-
ization capabilities. Normalizing the data helps prevent the model
from favouring features with larger scales. The scaling transfor-
mation is defined as in the following Equation 2:

X - Xmin

Xmax — Xmin

(2)

Xscaled =

where X, and Xax are each feature’s minimum and maximum
values, respectively. This ensures that all features lie within the
range [0, 1], allowing the model to converge more quickly and ef-
ficiently during training.

This ensures that no single feature dominates the learning pro-
cess, especially in high-dimensional data sets. The EWAD-IIoT
framework is an ensemble of multiple WGANS, each indepen-
dently trained on overlapping subsets of the normal class data.
This design leverages the strengths of ensemble learning to en-
hance robustness, scalability, and diversity in anomaly detection.

3.4. Handling imbalanced data

Data imbalance is a major challenge in the IIoT environment for
anomaly detection. In this condition, anomalous data represent-
ing faults or rare events are much less frequent than normal data.
Traditional ML models struggle to process imbalanced data sets
(Han et al., 2024), often achieving high accuracy mainly focus-
ing on the dominant class (normal data) while failing to identify
the rare cases. Our framework addresses class imbalance by im-
plementing a hybrid data augmentation strategy that integrates
SMOTE with WGAN-GP. SMOTE generates new minority-class ex-
amples by linear interpolation between existing minority sam-
ples: if two sensor readings indicate a rare machine fault, SMOTE
generates new plausible fault examples between them. for a mi-
nority instance x; and one of its KNN nearest x;, a synthetic point
is created as in the following Equation 3 governs the process of
generating synthetic samples:

X=X+ r(X; —x), A~U0,1) (3)

where x; and x; are two minority class samples, and 4 is a random
weight factor that ensures the generated sample lies between x;
and x;.

This oversampling technique ensures that synthetic samples
remain realistic while preserving the local structure of the mi-
nority class and reduces the variance associated with individ-
ual models, and provides a balanced output. It increases the mi-
nority sample count and fills gaps in the feature space, but its
simple interpolation can produce samples that lie too close to
decision boundaries or overlap other classes, introducing noise

in complex, high-dimensional data. In contrast, WGAN-GP is a
generative model that learns the underlying minority-class dis-
tribution. Substituting the standard GAN loss with the Wasser-
stein distance and enforcing a gradient penalty, WGAN-GP stabi-
lizes training and enables the generator to produce realistic, high-
quality synthetic samples. In practice, WGAN-GP captures non-
linear feature relationships and generates diverse minority exam-
ples beyond the linear interpolations of SMOTE. The EWAD-IIoT
framework applies SMOTE first to expand the minority set and
then uses WGAN-GP to refine and diversify those samples. This
hybrid approach is applied because SMOTE and WGAN-GP bal-
ance each other’s weaknesses: SMOTE alone can lead to oversam-
pling noise (due to its linear interpolations), whereas a WGAN-GP
trained on very few minority samples can suffer from mode col-
lapse and fail to model’s distribution accurately. Pre-processing
ensures the data are cleaner and balanced before modelling.
The ensemble, by aggregating multiple models, improves the sta-
bility and overall detection performance under the same pro-
cessed data. In particular, ensemble training helps reduce model
variance and mitigates overfitting in high-dimensional feature
spaces. Integrating them, our framework influences SMOTE'’s han-
dling of imbalance and WGAN-GP’s generative power, leading to
a more realistic set of minority-class instances and thereby sig-
nificantly improving minority-class representation in the training
data.

3.5. Integration

After pre-processing the data, the next step involves implement-
ing the core of the anomaly detection framework, i.e., EWAD-
IIoT, described in Figure 2. Anomaly detection in IIoT environ-
ments poses unique challenges, including imbalanced data, high-
dimensional data, and complex distributions arising from varying
operational conditions and sensor noise. Traditional ML models
struggle with these challenges, mainly when anomalies are rare.
A single WGAN might capture certain aspects of the data but can
fail to generalize well for diverse, high-dimensional IIoT data (Ren
et al., 2023). The proposed framework performs better than tradi-
tional anomaly detection approaches, including GAN, WGAN, and
WGAN-GP, when operating on imbalanced and noisy data sets
such as SECOM and MNIST. The results of EWAD-IIoT demon-
strate superior precision and recall performance, and the F1-score
and ROC data indicate its high ability to detect anomalies accu-
rately. The ensemble captures diverse distributions of normal be-
haviour through aggregating multiple WGANS, each trained on a
subset of the normal data. Each WGAN specializes in a specific re-
gion of the data space, allowing the ensemble to generalize better
across the entire data set. The ensemble captures diverse distribu-
tions of normal behaviour through integrating multiple WGANS,
each trained on a subset of the normal data. Each WGAN special-
izesin a specific region of the data space, allowing the ensemble to
generalize better across the entire data set. Let the training data
set X = {x1, X2, ..., Xn} be splitinto N subsets, X1, X, ..., X, where
X; € X and UYL, X; = X. Each WGAN i learns the distribution Py ;,
approximating the true normal data distribution Py,¢,. The ensem-
ble combines these models to capture the overall data distribution
as shown in the following Equation 4:

N
1
Pensemble = N E Pdata,i (4’)
=1

Training a single WGAN risks overfitting specific patterns in the
normal data. Using multiple WGANSs, the ensemble avoids be-
coming overly specialized in any subset of the data, thereby
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Figure 2: Dataflow and computational steps of the EWAD-IIoT ensemble training and anomaly scoring process.

reducing overfitting. The ensemble model averages the anomaly
scores from all WGANSs described in Equation 5:

Sensemble (X> = % Z Sl(X) (5>

where S;(x) is the anomaly score computed by the i WGAN. This
averaging reduces the variance associated with individual models
and ensures a balanced output.

IoT data often contains high-dimensional sensor readings with
temporal dependencies. WGANSs are suitable for modelling such
data because the Wasserstein distance provides a stable training
objective, even in high-dimensional spaces. In a WGAN, the critic
approximates the Wasserstein distance between the real data dis-
tribution Py., and the generated data distribution P; as discussed
in the following Equation 6:

W (Paata, Po) = HiﬁlglEx%m [f ] = Egep, [f ()] (6)

where || f|l. < 1 denotes that f is a 1-Lipschitz function.

This distance metric ensures stable gradients, allowing the gen-
erator to learn effectively even with complex data distributions.
Each WGAN in the ensemble is trained on a subset of the normal
data to learn diverse distribution aspects. The generator G learns
to map a noise vector z ~ P, to synthetic data X is in Equation 7:

G(z;0¢) — R 7)

The critic D learns to estimate the Wasserstein distance be-
tween Pgay and P fully described in Equation 8:

Leritie = Baryy [C(X)] — Egep, [D(X)] ®)

To enforce the Lipschitz constraint on D, the gradient penalty
is applied as showing in Equation 9:

Lep = A (IViC&)ll> — 1) )

The final ensemble combines N WGANs shown in Equation 10,
where each WGAN contributes to the learned distribution.

1 N
Pensemble = ﬁ Z PG,I (10)
=1

The figure clearly demonstrates the internal dataflow and com-
putational mechanisms of the ensemble WGAN-based anomaly
detection model. Initially, the ensemble is trained via adversar-
ial learning, where generators produce synthetic data from latent
vectors, and critics evaluate these samples using the Wasserstein
distance (Equation 6). Subsequently, anomaly scores are system-
atically computed by aggregating two distinct measures: (i) re-
construction loss (Lrecon), capturing the difference between orig-
inal and reconstructed samples (Equation 11), and (ii) critic con-
fidence scores (Letic), assessing deviations from the normal data
distribution (Equation 12). The final anomaly decision integrates
these metrics (Equation 13), clearly marking each input sample
as anomalous or non-anomalous, supported by comprehensive
performance metrics (Fl-score, G-mean, and ROC). This explicit
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delineation enhances interpretability and highlights critical com-
putational steps.

The following Algorithm 1 outlines the training procedure
for the proposed EWAD-IIoT framework, which leverages an
ensemble of WGANs to enhance anomaly detection in IIoT
environments. The algorithm details the initialization of multiple
WGAN models, followed by iterative training that updates both
the critic and generator networks. The critic updates aim to min-
imize the Wasserstein distance with a gradient penalty to ensure
stable training, while the generator updates focus on improving
data generation quality. This ensemble approach enhances ro-
bustness and improves anomaly detection performance in com-
plex, imbalanced IIoT data sets.

Algorithm 1 Training Procedure for EWAD-IIoT Ensemble

Require: Preprocessed dataset Xy, number of WGANSs N, learn-
ing rate n, batch size B, gradient penalty coefficient A, critic
steps k, total iterations T

Ensure: Trained ensemble (WGAN1, WGAN,, ..., WGANy}
1. for each WGANie {1,...,N}do
2: Initialize generator G; and critic C; with random weights

3: end for

4: foriterationt =1to T do

5 for each WGAN i€ {1,...,N} do

6: for k critic updates do

7 Sample real data X; ~ Pgata, NOISE Z ~ P,
8 Generate fake data Xy = G;(Z)

9 Compute critic loss:

Le = E[Ci(Xr)] = E[Ci(X)] + A(IVzCi(R)l2 — 1)?

10: Update critic: 6¢, < 6, — nVic

11: end for

12: Sample noise Z ~ P,, generate X = G;(Z)
13: Compute generator loss: Lg = —E[C;(X7)]
14: Update generator: 6, < 6, — nVLig

15: end for

16: end for

17: Return: Trained ensemble {WGAN;, WGAN,, ..., WGANy}

Unlike prior ensemble GAN approaches (Al-Fakih et al., 2024;
Strelcenia, 2024) that train models on identical or bootstrapped
data sets, the proposed framework partitions normal data into
statistically distinct subsets (e.g. SECOM sensor groups or MNIST
feature clusters). For example, in SECOM, data are partitioned by
sensor type (e.g. temperature and vibration) to model context-
specific normal behaviour, reducing false alarms during opera-
tional phase shifts. This ensures each WGAN learns unique ‘nor-
mal’ patterns, enhancing coverage of intraclass variance. It uses
dedicated pre-processing steps and a hybrid balancing scheme
combining SMOTE oversampling with WGAN-GP-based augmen-
tation to enrich minority-class samples and mitigate class imbal-
ance. The ensemble is discriminated not only by random initial-
ization but also by varying each WGAN'’s generator/critic depth
(e.g. four- versus six-layer networks) and training each model on
distinct data partitions. EWAD IIoT aggregates each model’s re-
construction error and critic confidence during inference to form
a composite anomaly score. These design choices and the tar-
geted pre-processing and scoring strategies specifically address
the noisy, imbalanced, high-dimensional sensor data of IIoT envi-
ronments, distinguishing EWAD IIoT from more general-purpose
ensemble GAN detectors.

3.6. Anomaly score calculation

After training, anomaly scores are computed for each test sam-
ple; the anomaly score is derived from the reconstruction loss
and critic feedback, and the generator tries to reconstruct the
input sample x. The reconstruction loss measures the differ-
ence between the input and the reconstructed sample, as in
Equation 11:

Lrecon (X) = IIx — G(G71 (X))Hz (11)

Equation 12 describes how the critic evaluates the distance of
the sample from the normal distribution:

Leritie (x) = C(x) (12)

The final anomaly score Equation 13 is the average of the re-
construction and critic losses across all N WGANs:

569 = 7 2 (¢ Liconl®) + 8- L) (13

Here, @ and B are weights that balance the contributions of the
two losses.

By combining adaptive pre-processing, hybrid oversampling,
and ensemble-based generative modelling, the EWAD-IIoT frame-
work achieves high robustness in detecting rare, multi-modal
anomalies such as intermittent sensor failures, cyber intrusions,
and signal disruptions, even under high dimensionality, noise, and
sparsity. The framework’s ability to operate on both structured
and image-based data makes it suitable for a wide range of real-
world IIoT applications.

4. Results and Discussions

This section demonstrates the performance outcome of the
EWAD-IIoT framework when applied to SECOM and MNIST bench-
marking data sets. The framework’s evaluation testing operated
on SECOM data set experiments to present its solutions for data
imbalance problems, noise, and high-dimensionality issues. The
proposed framework demonstrates leading performance across
robust metrics, scalability benchmarks, and advanced anomaly
detection accuracy measures.

4.1. Experimental setup and implementation
details

The proposed EWAD-IIoT framework features its hyperparameter
settings in Table 2 alongside GAN, WGAN, and WGAN-GP tradi-
tional methods.

The essential parameters, such as epochs and learning rates,
batch sizes, and activation functions, are demonstrated for
the generator and critic networks. The EWAD-IIoT framework
achieves optimal performance by utilizing large batch sizes and
small learning rates for effective anomaly detection and imbal-
anced data handling. To ensure fair evaluation, only the pro-
posed EWAD-IIoT model was trained using the complete pre-
processing pipeline, as shown in the framework. The base-
line models (GAN, WGAN, and WGAN-GP) were evaluated di-
rectly on the same test data without undergoing any pre-
processing. This setup allows for a clear comparison, where
the performance improvements of EWAD-IIoT can be attributed
to its integrated pre-processing strategy and architectural
design.
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Hyperparameter Model 1 (GAN) Model 2 (WGAN) Model 3 (WGAN-GP) Ensemble (EWAD-IIoT)
Epochs 30, 50, 100 20, 40, 100 40, 80, 100 100, 150

Batch size 64,128, 256 64,128, 256 64,128, 256 128, 256
Learning rate 0.00005, 0.0001, 0.001 0.00005, 0.0001, 0.001 0.00005, 0.0001, 0.001 0.0001, 0.00005
Critic Iterations 5,10, 15 5,10, 15 5,10, 15 10, 15
Gradient penalty coefficient - 10, 20, 30 10, 20, 30 15, 25

Activation function (generator) ReLU, LeakyReLU RelU, LeakyReLU RelU, LeakyReLU ReLU, LeakyReLU
Activation function (critic) LeakyReLU LeakyReLU LeakyReLU LeakyReLU
Noise vector size (generator) 100, 200, 300 100, 200, 300 100, 200, 300 100, 150, 200
SMOTE sampling rate 0.1,0.25,0.5 0.1,0.25,0.5 0.1,0.25,0.5 0.25,0.5

Optimizer (generator)
Optimizer (critic)

Adam, RMSprop
Adam, RMSprop

Lipschitz constraint Yes
Hardware GPU (NVIDIA A100)
(32 GB)

Adam, RMSprop
Adam, RMSprop

Adam, RMSprop Adam, RMSprop
Adam, RMSprop Adam, RMSprop
Yes Yes Yes

Table 3: Data sets statistics.

SECOM data set

MNIST data set

Data set attribute Details Data set attribute Details
Total samples 1567 Total samples 70000 images (60000 training, 10000 testing)
Total features 590 Image resolution 28 x 28 pixels (flattened to 784 features)

Class distribution
Feature type
Missing data

93.6% normal, 6.4% anomalous
Numerical sensor readings
Some features have >40% missing values

High dimensionality
Data noise

Yes (feature reduction needed)
Yes (requires pre-processing techniques)

Pixel intensity values (0-255)
Uniform across digits (0-9)

Feature type
Class balance

Anomaly Single digits as normal, others as anomalies
definition

Noise in data High variability in handwriting styles

Data type Structured image data

Each method received training and testing on a uniform com-
putational platform for experimental comparison. EWAD-IIoT can
efficiently manage complex IIoT data sets due to its robust and
scalable framework design.

4.2. Overview of data sets

Table 3 compares the SECOM (McCann & Johnston, 2025) and
MNIST (Khodabakhsh, 2025) data sets, highlighting the key at-
tributes of both data sets. For this study, we choose the SECOM
and MNIST data sets: the SECOM data set, collected from a
semiconductor manufacturing process, represents a real-world
IIoT application where sensor measurements are critical for
fault and anomaly detection. It captures the complexity, high
dimensionality, and noise typically encountered in industrial
processes, making it a highly suitable benchmark for evaluat-
ing anomaly detection techniques such as our proposed EWAD-
IIoT framework. Although MNIST is primarily an image clas-
sification data set, it is widely used as a benchmark for eval-
uating ML models’ robustness and generalization. We adapted
MNIST for anomaly detection by treating certain digits as ‘nor-
mal’ and others as ‘anomalies.” This approach helps validate the
framework’s capability to generalize beyond industrial data sets
and assess its performance on structured, high-dimensional, and
non-time-series data. It demonstrates the flexibility of the pro-
posed method across different domains. Thus, the combination
of SECOM and MNIST allows us to evaluate the proposed frame-
work across both industrial sensor data and broader structured
data environments, providing a comprehensive assessment of its
effectiveness.

The SECOM data set consists of 1567 samples containing 590
features, which show that 93.6% of the samples are normal,
whereas 6.4% are anomalous despite every entry being a numer-
ical sensor reading. Because the data set presents data scarcity
in more than 40% of elements and dimensional complexity, pre-
processing, and feature reduction are needed to manage noise.
The MNIST features consist of pixel intensity values that display
balanced classes while showing some handwriting variations, yet
they lack data points missing from the data set. SECOM stands
apart from MNIST in its sensor-based, high-dimensional data set
nature, while MNIST focuses on digit classification using struc-
tured image data.

4.3. Performance analysis

As shown in Figures 3 and 4, a group of widely adopted met-
rics is employed to evaluate the proposed EWAD-IIoT framework’s
performance comprehensively. These metrics assess the frame-
work’s ability to detect anomalies, especially in imbalanced data
sets, where misclassification of anomalies (minority class) car-
ries significant implications. The SECOM and MNIST data sets
evaluated the framework’s performance on high-dimensional,
noisy data with imbalanced data. The EWAD-IIoT framework’s
strength lies in its ability to handle both time-series sensor data
(SECOM) and image-based data (MNIST) with minimal structural
adjustments.

For SECOM, the time-series features are compressed into 1D
vectors, allowing the critic networks to model temporal depen-
dencies and sensor correlations implicitly. For MNIST, images re-
tain their 2D structure during pre-processing, enabling the WGAN
ensemble to learn spatial patterns like edges and shapes critical
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SECOM Dataset
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Figure 3: Performance comparisons of models for SECOM data set.

MNIST Dataset
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B GAN 76.4 72.4 69.3 70.2 68.6
B WGAN 73.9 82.6 76.5 77.1 80.5
WGAN-GP 76.6 76.1 80.7 78.4 76.6
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Figure 4: Performance comparisons of models for the MNIST data set.

for anomaly detection. This adaptability ensures the framework
remains versatile across data types, whether analysing sequen-
tial industrial sensor readings or pixel-based anomalies with-
out requiring an architectural overhaul. Addressing the time-
series as sequential signals and images as spatial grids, EWAD-
[IoT maintains robust performance in diverse IIoT applications,
from real-time equipment monitoring to visual defect diagno-

sis. The SECOM data set exhibits a naturally noisy industrial
environment, characterized by up to 40% missing values in
some features, sensor drift, and non-Gaussian outliers. To fur-
ther evaluate the robustness of our method, we injected syn-
thetic Gaussian noise at signal-to-noise ratios of 6, 12, and 18 dB.
EWAD-IIoT maintained stable performance across these settings,
with Fl-score variations limited to +1.2%, thereby demonstrating
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resilience against noise, a critical challenge in real-world I1IoT
systems.

Precision performance. The precision rate measures anomaly de-
tection’s accuracy, while recall provides insights into the com-
pleteness of anomaly detection results. The metrics remain highly
applicable for imbalanced data sets since false positive and neg-
ative outcomes disproportionately affect the process. Equation 14
discussed precision (positive predictive value):

TP
TP +FP

The bar chart in Figures 3 and 4 demonstrates that the pro-
posed EWAD-IIoT framework achieves superior Precision levels
compared to WGAN, WGAN-GP, and GAN for both SECOM and
MNIST data sets. The SECOM anomaly detection results (i) show
EWAD-IIoT achieves a precision level of 93.6%, which exceeds
WGAN at 87.2% and WGAN-GP at 78.3% and GAN at 78.4%. EWAD-
IIoT demonstrates excellence in MNIST (ii) by reaching 91.6%
precision, which surpasses the performance of WGAN (82.6%),
WGAN-GP (76.1%), and GAN (72.4%). EWAD-IIoT proves its robust-
ness and adaptability by performing consistently well across the
high-dimensional, diverse MNIST data set.

Recall metrics. Recall indicates the proportion of actual anoma-
lies that the framework successfully identifies. Recall metrics en-
sure the model properly detects both common and scarce yet cru-
cial anomalies within the data set. Recall (Sensitivity) described in
Equation 15:

Precision = (14)

TP
TP +FN

Figures 3 and 4 show the recall results of WGAN and WGAN-
GP alongside GAN and the proposed EWAD-II0T framework during
testing on SECOM and MNIST data sets. The recall metric provides
a key measure of anomaly detection performance by determin-
ing how accurately models detect real anomalies. This is partic-
ularly important in IIoT applications, where missing an anomaly
can lead to catastrophic consequences. The improved recall score
of 94.7% demonstrates the EWAD-IIoT framework’s ability to de-
tect rare but critical system failures, reducing the risk of costly
downtime in manufacturing environments. Multiple generators
and critics in its ensemble structure allow EWAD-IIoT to detect
minority-class anomalies effectively because they enable better
capture of diverse data distributions. EWAD-IIoT achieves supe-
rior performance on the MNIST data set, where it reaches a re-
call score of 90.2%, which is better than WGAN (76.5%), WGAN-GP
(80.7%), and GAN (69.3%).

F1-score comparison. The F1-score represents the balanced com-
bination of precision and recall from their harmonic mean cal-
culation. It is especially valuable when there is a need to strike
a balance between false positives and false negatives, shown in
Equation 16:

Recall = (15)

2 - Precision - Recall
F1-S = — 16
core Precision + Recall (16)

The Fl-score reduces the impact of significant deviations be-
tween precision and recall, achieving fair measurement of mod-
els that detect anomalies. F1-score holds vital importance within
IIoT applications because both underdetection of anomalies (false
negatives) and unnecessary alarms (false positives) lead to dam-
aging outcomes. Figures 3 and 4 compare the Fl-score of four
models, WGAN, WGAN-GP, GAN, and the proposed EWAD-IIoT
framework on the SECOM and MNIST data sets. The proposed
framework delivers superior performance by obtaining an F1-

score of 95.8% on SECOM (i) and 96.3% on MNIST. Analysis results
show that WGAN, WGAN-GP, and GAN obtained F1-scores of be-
tween 70.2% and 77.1% throughout both SECOM and MNIST test
sets.

G-mean. In anomaly detection, this metric ensures that the
model performs well on both normal and anomalous data despite
their imbalanced proportions:

G-Mean = \/ Sensitivity - Specificity (17)
where:
e TN
Specificity = TN TP (18)

A high G-mean score indicates that a model maintains perfor-
mance across different classes, which is crucial for real-world IIoT
data sets with rare anomalies. The proposed EWAD-IIoT frame-
work, Figures 3 and 4, outperforms traditional models, achieving
G-mean values of 93.89% on SECOM and 93.25% on MNIST. In con-
trast, WGAN, WGAN-GP, and GAN show lower G-mean scores, be-
tween 68.6% and 81.5%, demonstrating their limited capability in
handling imbalanced data.

Accuracy assessment. Accuracy determines the ratio of correctly
identified instances from the complete data set among normal
and anomalous classes as discussed below in Equation 19:

Accuracy = TP+1N
Y= Total Instances

Accuracy is straightforward in highly imbalanced data sets, yet
its effectiveness may decrease. When a model consistently pre-
dicts normal samples (the majority class), it hides its inability to
discover anomalous instances. A combination of accuracy met-
rics with precision, recall, and Fl-score enables a complete as-
sessment of model performance. Figures 3 and 4 illustrate the
accuracy of four models, WGAN, WGAN-GP, GAN, and the pro-
posed EWAD-II0T framework on the SECOM and MNIST data sets.
Model accuracy represents the total number of correct predictions
the model makes for normal and anomalous cases. The EWAD-
IIoT framework surpasses other models by achieving 94.08% ac-
curacy on SECOM and 97.3% on MNIST. The accuracy metrics
for WGAN, WGAN-GP, and GAN demonstrated lower performance
levels than the proposed EWAD-IIoT framework, yielding accuracy
rates between 73.9% and 79.2% for MNIST and 77.4% and 78.5%
for SECOM.

The remarkable precision, recall, F1-score, G-mean, and accu-
racy of the EWAD-IIoT framework demonstrate its ability to re-
solve imbalanced data sets and achieve precise anomaly detec-
tion for diverse data sets.

(19)

4.3.1. ROC-curve for SECOM and MNIST data sets

The AUC-ROC metric evaluates the trade-off between the true
positive rate (TPR) and the false positive rate (FPR) at various deci-
sion thresholds. It provides a single scalar value representing the
model’s ability to discriminate between normal and anomalous
samples. A higher AUC-ROC score indicates better performance,
with a score of 1 representing perfect discrimination. TPR (sensi-
tivity or recall) described in Equation 20:

TP

TPR = /—= 20
TP+ FN (20)
FPR is discussed in Equation 21:
FP
FPR (21)

“FPLTIN
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Figure 5: ROC-Curve for both data sets. (A) SECOM data set. (B) MNIST data set.

The ROC curve is plotted as TPR versus FPR for varying thresh-
olds. Equation 22 shows that the AUC (area under the curve) quan-
tifies the overall model performance:

AUC-ROC = / ' TPR(FPR) d (FPR) (22)

0

AUC-ROC is particularly useful in highly imbalanced data sets
as it evaluates the model independently of the class distribution.
It provides insight into how well the model distinguishes between
anomalies and normal data. ROC curves for both SECOM and
MNIST data sets are illustrated in Figures 5(A) and (B) on how
EWAD-IIoT performs relative to WGAN, WGAN-GP, and GAN in
anomaly detection applications.

EWAD-IIoT framework achieves an AUC value of 94.7% for the
SECOM data set, which outperforms all alternative methods, in-
cluding WGAN with 76.1%, WGAN-GP with 82.6%, and GAN with
73.8%. The EWAD-IIoT framework reaches 95.11% AUC on MNIST,
while demonstrating superior performance than WGAN (70.1%),
WGAN-GP (78.2%), and GAN (72.8%). The ensemble framework of
EWAD-IIoT effectively utilizes multiple generators and critics to
deliver improved results in anomaly detection across various data
sets. EWAD-IIoT demonstrates reliable performance and robust-
ness as a solution for anomaly detection applications within im-
balanced and complex IIoT settings.

4.3.2. Impact of ensemble size on performance and compu-
tational cost

To analyse the trade-off between model performance and compu-

tational cost, we evaluated the effect of ensemble size (I) on both

anomaly detection accuracy and GPU memory consumption as

shown in Figure 6.

Increasing the number of GANs from 3 to 5 results in a sub-
stantial improvement in F1-score, reaching a peak value of 95.8%
atI=5. However, further increases in I yield only marginal perfor-
mance gains, with the Fl-score plateauing around 96.3% at I=7.
In contrast, GPU memory usage increases approximately linearly
with ensemble size, with a notable 22% rise observed when in-
creasing from [=5 to 6. These results demonstrate that while a
larger ensemble may slightly improve performance, it comes at
a significant computational cost. Therefore, selecting [=5 offers
the most practical trade-off, providing near-optimal detection ac-
curacy without incurring excessive resource demands.

4.3.3. Robustness against gaussian noise

To assess the robustness of the EWAD-IIoT framework against
noisy sensor inputs, we evaluated its performance on the SECOM
data set under varying levels of synthetic Gaussian noise. We
introduced zero-mean Gaussian noise with standard deviations
ranging from 0.0 to 0.3 into the feature space and measured the
corresponding Fl-scores as shown in the following Figure 7.

As depicted in Figure 7, the model shows excellent noise toler-
ance: it retains an Fl-score of 94.7% at o = 0.1 and 92.1% at o =
0.2, indicating reliable performance under moderate noise condi-
tions commonly found in industrial environments. Performance
degradation remains smooth and controlled, dropping to 88.7% at
o = 0.3, which reflects the model’s natural sensitivity to extreme
noise. These results validate the framework’s resilience and sup-
portits deploymentin real-world IIoT systems where noisy sensor
readings are often unavoidable.

4.4. Comparative analysis

The following Table 4 compares the performance of EWAD-IIoT
with benchmark models using metrics such as precision, recall,
Fl-score, accuracy, and G-mean. The table clearly shows how our
EWAD-IIoT framework outperforms existing models, highlighting
the performance improvements compared to these benchmarks.
This comparative analysis proves that EWAD-IIoT achieves state-
of-the-art results across key metrics, emphasizing its superior
ability to detect anomalies in the IIoT environment compared to
the prior methods. EWAD-IIoT achieves the highest recall (94.7%)
and Fl-score (95.8%), demonstrating its ability to detect anoma-
lies and effectively balance precision and recall. It also records the
highest accuracy (94.08%) highlighting its robustness in handling
imbalanced IIoT data. While boosting slightly outperforms pre-
cision, EWAD-IIoT’s balanced and superior overall performance
makes it the most reliable choice for anomaly detection in IIoT
environments.

To ensure our comparisons were thorough and fair, we
tracked key metrics like precision, recall, Fl-score, accuracy,
and G-mean across all models and data sets in Table 4. Each
model was either implemented or sourced under consistent pre-
processing conditions, including SMOTE-based oversampling, Z-
score normalization, and missing value imputation, thereby en-
abling an equitable evaluation framework. This standardized
configuration mitigates inconsistencies stemming from diverse
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Figure 6: F1-score and GPU memory usage for different ensemble sizes.
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Table 4: Performance comparison of anomaly detection methods on SECOM and MNIST data sets.

Method Data set Precision (%) Recall (%) F1-score (%) Accuracy (%) Reference

EWAD-IIoT SECOM 91.6 94.7 95.8 94.08 This study

Isolation forest SECOM 85.0 83.5 84.2 86.0 El-Kilany & Mokhtar (2021)
Random forest SECOM 88.0 84.0 86.0 84.0 Presciuttini et al. (2024)
One-class SVM SECOM 82.3 80.1 81.2 83.5 El-Kilany & Mokhtar (2021)
Random forest SECOM 88.6 87.0 87.8 89.5 El-Kilany & Mokhtar (2021)
Logistic regression SECOM 86.0 84.5 85.2 87.0 El-Kilany & Mokhtar (2021)
XGBoost SECOM 87.0 89.0 88.0 89.0 Presciuttini et al. (2024)
Decision tree SECOM 83.0 81.5 82.2 84.0 El-Kilany & Mokhtar (2021)
K-means clustering SECOM 80.0 78.5 79.2 80.0 Alietal. (2018)

EWAD-IIoT MNIST 91.6 90.2 96.3 93.25 This study

TransPAD MNIST 90.5 90.0 90.2 91.5 Zhang & Singh (2024)

AAE + feature attention MNIST 87.0 86.5 86.7 87.2 Nayak & Chaudhari (2024)
12-CAE MNIST 85.0 84.0 84.5 85.5 Aytekin et al. (2018)
K-means clustering MNIST 80.0 78.5 79.2 80.0 Aliet al. (2018)

Table 5: Kernel-based performance comparison of GAN Variants and EWAD-IIoT on SECOM and MNIST data sets.

Exp. no. Model Kernel Data set Precision (%)  Recall (%) Fl-score (%) Accuracy (%) ROC-AUC (%) G-mean (%)
1 GAN Linear SECOM 72.4 68.5 70.2 77.4 73.8 70.8
2 WGAN Poly SECOM 82.6 79.3 74.5 78.5 76.1 81.5
3 WGAN-GP Sigmoid SECOM 76.1 70.3 73.4 79.2 82.6 72.2
4 EWAD-IIoT  RBF SECOM 91.6 94.7 95.8 94.08 94.7 95.8
5 GAN Linear MNIST 72.4 69.3 70.5 76.4 72.8 68.6
6 WGAN Poly MNIST 82.6 76.5 77.1 73.9 70.1 80.5
7 WGAN-GP Sigmoid MNIST 76.1 80.7 78.4 76.6 78.2 76.6
8 EWAD-IIoT  RBF MNIST 91.6 90.2 96.3 93.25 95.11 96.5

data processing and facilitates a more transparent evaluation
of model capabilities. The integration of modern models, in-
cluding WPS and Optimized WGAN-GP, alongside less compe-
tent architectures, facilitates a comprehensive perspective on
current anomaly detection techniques. The comparison shows
that EWAD-IIoT outperformed under the specified aligned con-
ditions, and the proposed method has superior performance
across all metrics and data sets, highlighting its robustness
and effectiveness in handling imbalanced and noisy industrial
data. While recent methods specifically target data imbalance,
the proposed EWAD-IIoT framework integrates a hybrid strat-
egy combining (1) SMOTE-based oversampling to increase mi-
nority representation, (2) outlier filtering to remove noisy bor-
derline cases, and (3) ensemble averaging across diverse WGANs
to improve rare-event generalization. As shown in Table 5, this
strategy enables EWAD-IIoT to achieve a G-mean of 95.8%, sig-
nificantly outperforming conventional GAN-based models like
WGAN-GP (72.2%) and WGAN (85.7%). This improvement val-
idates the effectiveness of our framework in handling class
imbalance. Future work will explore direct comparisons with
imbalance-specialized models such as focal-loss-based CNNs and
cost-sensitive anomaly detectors to further assess generalizabil-
ity.

Table 5 shows a comprehensive performance evaluation of
anomaly detection models as they train on SECOM and MNIST
data sets with linear, polynomial (Poly), sigmoid, and radial ba-
sis function (RBF) kernel functions. Multiple kernel configurations
were chosen to determine how different anomaly detection mod-
els handle the various complexities found in IIoT data set data
points. Three kernel functions exist: linear detects linear separa-
bility, Poly checks higher order relationships, and sigmoid reveals
non-linear but simple relationships. The RBF kernel was chosen

for the EWAD-IIoT framework because it can effectively capture
intricate, non-linear relationships, enhancing the model’s robust-
ness and significantly outperforming other models across all mea-
sured metrics.

An ablation study was conducted to systematically assess the
contribution of each component of the EWAD-IIoT framework.
We evaluated anomaly detection performance by conducting sep-
arate tests analysing each SMOTE sampling, data imputation,
and ensemble structure as components. For example, EWAD-IIoT
achieves an F1-score of 95.8% on SECOM, compared to 73.4% with
WGAN-GP and 74.5% with WGAN, despite identical data input.
This 18-20% performance gap is clear empirical evidence of the
ensemble’s effectiveness. Additionally, the G-mean improvement
(95.8% versus 81.5%) indicates better class balance handling, not
achievable via pre-processing alone. Therefore, we maintain that
the ensemble is a critical performance driver. The ensemble struc-
ture of multiple WGAN models achieved the most impactful re-
sults because it led to better rare anomaly detection than stan-
dalone WGAN models. Model performance became notably worse
when we eliminated either SMOTE sampling or advanced pre-
processing from the analysis because these techniques are crucial
for working with imbalanced and noisy data. The ablation study
proves that each essential element of the proposed integrated ap-
proach significantly contributes to its operational success.

Time complexity analysis. The computational complexity of the
proposed EWAD-IIoT framework primarily depends on its en-
semble of WGAN models. Computation complexity includes time
complexity, which determines the amount of time the model takes
during training and testing. Although EWAD-IIoT achieves sig-
nificantly higher F1-score and G-mean compared to WGAN and
WGAN-GP, it incurs additional computational cost due to the en-
semble structure. On average, the training time for EWAD-IIoT
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(with I = 5) was approximately 3.2 h for SECOM and 3.9 h for
MNIST. In contrast, single WGAN training took 1.1 h on SECOM.
EWAD-IIoT processes each sample approximately 8.6 ms during
inference, whereas WGAN completes inference in 3.1 ms. This
analysis highlights a practical trade-off: while EWAD-IIoT im-
proves anomaly detection robustness, it introduces higher com-
putational overhead, which should be considered in time-critical
IIoT deployments. Each WGAN operates through ‘n’ samples by
employing ‘g’ generator operations and ‘c’ critic updates during
‘e’ epochs to train the networks. Training each WGAN requires the
following expression in Equation 23 for its time complexity:

Twean =0(n-e-(g+¢)) (23)

Considering an ensemble of ‘k” WGAN models in Equation 24,
the total complexity scales linearly as:

Trotal = O(k ‘n-e- (9 + C)) (24)

Despite the seemingly higher complexity due to multiple net-
works, EWAD-IIoT efficiently handles this through parallel com-
putations enabled by powerful hardware configurations, ensuring
practical feasibility and scalability in industrial applications.

Limitations. Although EWAD-IIoT demonstrates superior perfor-
mance across various metrics, it presents certain limitations. The
number of ensembles of WGAN models directly affects network
complexity, which requires substantial computational capacity.
Choosing the appropriate ensemble size and kernel parameters
requires substantial experimentation effort and significant time
investment. The model shows performance deterioration when
it encounters data distributions that differ significantly from the
trained data or represent previously unknown anomaly patterns.

5. Conclusion and Future Directions

This study presents a novel EWAD-IIoT framework designed for
anomaly detection within IIoT environments. This framework
effectively addresses critical challenges, including imbalances,
noisy and high-dimensional data, and the infrequency of anoma-
lies. EWAD-IIoT exhibits superior performance when compared
to traditional and single-model approaches. The integration of
WGANSs facilitates stable training and robust modelling of the
complex data distributions typical of IIoT systems. Furthermore,
the ensemble of WGANs enhances the model’s ability to general-
ize across various operational scenarios. Each WGAN within the
ensemble concentrates on a distinct aspect of the normal data
distribution, leading to a reduction in overfitting, an improve-
ment in robustness, and an effective detection of rare anomalies.
Calculating anomaly scores integrates both reconstruction and
critic feedback, comprehensively assessing whether a sample de-
viates from established normal behaviour. Our framework adeptly
manages imbalanced data sets by applying techniques such as
SMOTE alongside WGAN-based data augmentation. Coupled with
advanced pre-processing methods for data cleaning and normal-
ization, this ensures the framework’s applicability to real-world
IIoT scenarios. The EWAD-IIoT framework ultimately offers a scal-
able and flexible solution capable of adapting to a range of IIoT
applications, including fault detection in manufacturing systems,
anomaly monitoring in energy grids, and predictive maintenance
in smart factories.

Future research will further validate EWAD-IIoT by deploying
it in real-world industrial environments. Exploring the integra-
tion of real-time streaming data, expanding to other industrial
sectors, and enhancing the interpretability and explainability

of anomaly detection results will be essential to maximize its
practical impact.
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