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Abstract

Network modeling has long been a well-established field of study.
More recently, Graph Neural Network based models have demon-
strated remarkable capability in capturing complex interactions in
network data without assumptions about physical networks. While
this characteristic facilitates integration across various telecom
access networks, current benchmark models remain impractical
for real-world deployment, due to real-time demands of modern
infrastructure.

This research develops a scalable solution for network modeling
in large-scale domains such as telecommunication networks. By in-
corporating distributed learning into the architecture, we propose a
novel framework that addresses computational inefficiency without
compromising the accuracy offered by benchmark GNN-based mod-
els. The proposed architecture supports deeper and larger graphs,
and natively handles fragmented datasets, reducing reliance on cen-
tralized aggregation and improving compatibility with real-world
infrastructure. Beyond scalability, the design emphasizes stable
optimization and resilience to enhance reliability in production
environments. When applied to the state-of-the-art model, our pro-
posed architecture outperforms the original, achieving a Pearson
correlation of 0.999 with MSE under 0.0005. It also converges faster,
with inference speedup scaling proportionally to the number of
nodes. In a single-node, two-worker setup, it achieves ~48% infer-
ence speedup, with overall training efficiency improving by 20%,
highlighting practical benefits for real-world scenarios.

CCS Concepts

« Computing methodologies — Machine learning; - Networks
— Network performance evaluation.

Keywords
Broadband Telecommunications, Network Modeling, Graph Neu-
ral Network, Distributed Learning, Data Parallelism, Layer-wise
Optimisation

This work is licensed under a Creative Commons Attribution 4.0 International License.
SIGCOMM Posters and Demos °25, Coimbra, Portugal

© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-2026-0/2025/09

https://doi.org/10.1145/3744969.3748415

46

Ren Ping Liu
University of Technology Sydney
RenPing.Liu@uts.edu.au

Tanzeela Altaf

University of Technology Sydney
Tanzeela.Altaf@uts.edu.au

ACM Reference Format:

Maryam Asgari, Ren Ping Liu, Raymond Owen, and Tanzeela Altaf. 2025.
POSTER: Scaling Graph Neural Networks (GNN) for Real-Time Modeling of
Network Behaviour. In ACM SIGCOMM 2025 Conference (SIGCOMM Posters
and Demos °25), September 8—11, 2025, Coimbra, Portugal. ACM, New York,
NY, USA, 3 pages. https://doi.org/10.1145/3744969.3748415

1 Introduction

Network modeling is arguably one of the most critical compo-
nents in enabling autonomous networks. Without accurate, real-
time models of network behaviour, intelligent decision-making
and proactive management become infeasible. As networks ex-
pand and traffic patterns shift rapidly, traditional rule-based ap-
proaches—whether human-driven decisions or classical simula-
tors—are no longer sufficient. Queuing-theoretic models remain
computationally intensive at scale, while digital twins often lack
awareness of complex topologies. Meanwhile, cutting-edge aca-
demic models [4] exemplified by RouteNet [9, 11] and its successors
[2, 3, 8], demonstrate strong performance in controlled environ-
ments, but a persistent gap remains between research prototypes
and deployable systems in real-world telecom settings. This gap
stems from computational inefficiencies, scalability bottlenecks,
lack of robustness under evolving network conditions, and the
inherent difficulty of integrating machine learning into legacy, het-
erogeneous network infrastructures [7].

To enable real-world deployment, key limitations must be ad-
dressed: in-memory designs that restrict scalability [6], compu-
tational overhead from single-threaded execution, and an inabil-
ity to handle decentralized data sources. Working with telecom
network data [12] also presents distinct challenges. This data is
typically high-volume, transient, and often streamed from OSS sys-
tems, telemetry platforms, or vendor-specific APIs. Due to privacy,
cost, and storage constraints, raw traffic data is rarely archived
long-term, requiring models to learn from time-buffered telemetry.
In addition, telecom networks themselves are highly dynamic: in-
frastructure evolves, routing policies change, and regional traffic
patterns shift frequently. These factors create a fundamental re-
quirement: any model intended for real-world telecom deployment
must support frequent retraining to maintain predictive accuracy.
Equally important is preserving end-to-end topology awareness to
ensure coordinated network-wide decision-making. This brings us
to a critical architectural question: how do we design a learning
framework that can adapt effectively to these dynamics?
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2 System Design

The design centers on a synchronous data-parallel strategy [1, 5],
where multiple model replicas are instantiated across available
computational units. Each replica applies the forward pass inde-
pendently using a shared core GNN that encodes the model’s pre-
dictive logic. An adapted regularization is applied during this stage
to support more stable optimization. Synchronization maintains
variable consistency, enabling full topology awareness and coordi-
nated learning. This parallelism boosts training throughput, reduces
inference latency, and improves resource efficiency — delivering
capabilities not attainable through batch scaling alone. A custom
data pipeline supports fragmented, transient telemetry by ingest-
ing decentralized, regionally scoped datasets without prior aggre-
gation. Parallel loading, prefetching, and dynamic tuning ensure
high-throughput ingestion under diverse infrastructure constraints.
Since custom GNN-based models often exhibit heterogeneous layer
structures, the architecture includes layer-wise optimization, allow-
ing each layer to adapt independently. This mitigates instability
caused by global optimization under distributed conditions, espe-
cially when network dynamics shift due to traffic bursts or data
noise. The workflow is illustrated below:

|
|
|
Allocate : Aggregate
|
|
|

[ grad (model) 1

Figure 1: Synchronous data-parallel training

(1) The model is replicated across all processing units. (2) Input
is allocated via the custom data pipeline, enabling dataset partition-
ing or per-replica assignment. (3) Each replica performs a forward
pass and computes the loss, incorporating an adapted regulariza-
tion. (4) Gradients are computed independently on each replica.
(5) Gradients are aggregated and used to update model parame-
ters. (6) A layer-wise optimizer applies updates, keeping all replicas
synchronized.

3 Experiment Design and Results

To evaluate effectiveness, we applied the framework to RouteNet - a
state-of-the-art GNN model for SDN - and observed measurable im-
provements over the benchmark. While the experiment preserves
RouteNet’s predictive core, the framework itself is designed to
generalize to other GNN-based models with similar constraints.
Training and evaluation were conducted on a single RHEL 8 ma-
chine with two Nvidia L4 GPUs, modeling per-path delay using the
14-node NSF network. Each dataset sample represents an indepen-
dent source-destination traffic scenario, enabling a data-parallel
approach where batches are distributed across replicas. RouteNet
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was trained under identical conditions to ensure a fair performance
baseline. Both models are trained for 50k steps and evaluated every
1k to observe model behaviour comprehensively. A summary of
the training run is presented in the following table, with source
code available in [10]:

Metric RouteNet Proposed Framework
Lowest MSE 0.0013 0.0001
Highest p 0.993 0.999
Training step/sec ~2.13 ~ 2.05
Inference Time ~ 356 sec ~ 184 sec
Convergence Step 14000 7000

Time to Convergence 3h22m 1h18m

MSE StdDev 0.00251 0.00155

Wall Time (50k steps) 11:42:12 9:20:27

Table 1: Performance summary

Although the distributed framework introduces a modest syn-
chronization overhead of ~4% (reflected in reduced training step/sec),
it delivers substantial performance gains — including ~48% faster
inference, ~62% faster convergence, and a ~92% reduction in MSE.
As shown in the figures below, the proposed model (blue curve)
reaches stability at 7k steps (1h18m) versus 14k steps (3h22m) for the
original (black curve), achieving a lower MSE floor and consistently
higher p, contributing to improved reliability under fluctuating
network conditions. It also exhibits fewer oscillations throughout
training (lower MSE StdDev), reducing training instability by 38%
and maintaining smoother, more stable convergence, demonstrating
resilience in a production-like environment.
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Figure 2: Performance metrics (MSE, p) comparison
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