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A Federated Graph Neural Network with Differential Privacy
for Cross-domain Recommender Systems

PHAM MINH THU DO, JIE LU, QIAN ZHANG, and GUANGQUAN ZHANG, Australian
Artificial Intelligence Institute, University of Technology Sydney, Sydney, Australia

Cross-domain recommender systems, which are designed to address issues with data sparsity, tend to suffer
notable challenges with safeguarding user privacy. While existing cross-domain recommendation methods
incorporate privacy mechanisms, they often fall short in practice, offering only one-sided benefits and limited
privacy safeguards. In this study, we propose a novel privacy-preserving cross-domain recommender system
that combines federated transfer learning with differential privacy to facilitate cross-domain knowledge
transfer while ensuring strong privacy protection. First, we leverage federated transfer learning, treating each
domain as an independent client to protect privacy for business partners by preventing the exchange of raw
data. Second, we use a graph neural network (GNN) as the encoder to learn the user and item representations.
We also design a consistency loss function that maintains the invariance between local and global user
representations while preventing representation collapse. Third, we introduce a privacy mechanism that
applies differential privacy to the output of each aggregation layer in the GNN—the aim being to protect
transferred user representations while balancing privacy with accuracy. Finally, our transfer mechanism
operates without user-identifying information, establishing connections between domains by detecting latent
overlapping users and subsequently performing personalized preference aggregation. This allows for efficient
knowledge transfer across domains. Experiments on real-world datasets show that our approach significantly
enhances recommendation accuracy while offering robust privacy protection, outperforming state-of-the-art
baselines.
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1 Introduction

Collaborative filtering [16, 24, 27, 34] is a widely used technique for building recommender systems
based on user preferences. However, its performance significantly deteriorates in the presence
of data sparsity. Cross-domain recommender systems (CDRSs), which enable knowledge
transfer across multiple domains, have emerged as an effective solution to alleviate this issue.
Privacy regulations impose a major challenge in developing practical CDRSs. For example, in
digital advertising, companies aim to exchange insights on user preferences to enhance targeted
advertising while adhering to strict privacy policies. In online education, multiple institutions may
wish to collaborate on personalized course recommendations without exposing student identities.
However, traditional CDRSs facilitate cross-domain knowledge transfer either by sharing raw user
behavior data [13, 20, 44] or by exchanging extracted user representations [2, 21], neither of which
fully complies with privacy requirements. In practice, data from different domains are often owned
by separate entities, and privacy regulations strictly prohibit direct data sharing [47]. Moreover,
transferring high-quality user representations can still pose significant privacy risks, leading to
potential information leakage [3, 39].

As a result, privacy-preserving CDRSs have gained increasing attention. Several recent methods
attempt to address privacy concerns through various techniques. PriCDR [4] employs differential
privacy (DP) to safeguard the source rating matrix, while PPGenCDR [18] leverages a conditional
generative adversarial network (GAN) with DP to protect user preferences. FedCDR [26] utilizes
federated learning with personalized strategies to improve recommendations in the target domain.
However, these methods primarily focus on unidirectional knowledge transfer, which can lead to
negative transfer when the direction is reversed, discouraging source-domain data owners from
participating in real-world collaborations. Additionally, FedCDR treats edge devices as clients that
store local user data, which may not fully address privacy concerns in inter-company collaborations,
where businesses require robust privacy protection. P2FCDR [5] partially addresses these limitations
by integrating federated learning with DP to protect user representations. However, its reliance
on deep matrix factorization as an encoder may restrict its capability to learn high-quality user
representations. PPCDR [37] introduces a graph-based architecture with DP to enhance protection
before exchanging user representations across domains.

Despite the progress of existing methods, several limitations hinder their practical applicability.
One major challenge is their reliance on user-identifying information to detect overlapping users.
This dependency severely limits practical feasibility in privacy-sensitive contexts, particularly
when a shared user identifier is absent. For example, in healthcare recommender systems, patient
identities must remain strictly confidential, making direct user matching impossible. Another critical
challenge stems from the lack of differentiation between local and global user representations.
While incorporating both representations improves user preference modeling, failing to properly
distinguish them can lead to negative transfer, where domain-specific information is erroneously
shared across domains. Thus, three fundamental challenges in building privacy-preserving CDRS
are: (1) Designing a privacy-preserving framework that benefits all participants while effectively
balancing privacy and accuracy, (2) learning high-quality user representations while mitigating the
risk of negative transfer, and (3) developing a general and stable knowledge transfer mechanism
that is adaptable to multiple scenarios.

In this study, we propose a novel approach, Federated Graph neural network with Differen-
tial privacy for Cross-Domain Recommender systems, called FGD-CDR for short. Our FGD-CDR
method combines federated transfer learning with DP to facilitate cross-domain knowledge transfer
without compromising user privacy. First, we implement federated transfer learning, treating each
domain as a client to ensure that no original data are shared across domains. Second, within each
domain, we extract both local and global user representations, along with item representations,
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from the interaction graph. A specially designed consistency loss encourages consistent informa-
tion capture between local and global user representations while ensuring they remain distinct
and discriminative. Next, we introduce a privacy mechanism in which DP is applied after each
aggregation step within the GNN to protect the global user representations shared between do-
mains. Lastly, a transfer mechanism establishes connections and aggregates preferences among
domains, guiding the knowledge transfer process. The connection establishment (CE) identifies
latent overlapping users, creating implicit connections between domains, while the personalized
preference aggregation (PPA) ensures domain-specific adaptation, generating enhanced global
user representations.
In summary, this article makes the following contributions:

—We introduce a novel CDRS that incorporates robust privacy protection designed for real-
world applications. Our method supports bidirectional knowledge transfer and treats each
domain as an independent client, ensuring that all data remains locally stored.

—We introduce a consistency loss that enhances alignment between local and global user
representations while maintaining their distinctiveness. This improves representation learning
and reduces the risk of transferring irrelevant knowledge.

— We propose a privacy mechanism that applies Laplace noise to the output of the aggregation
function, safeguarding user representations before transfer. This approach preserves the
essential structure of the input graph, provides robust privacy protection, and better balances
privacy with accuracy.

—We present a novel transfer mechanism that identifies latent overlaps in users to establish
inter-domain connections and performs personalized aggregation for domain-specific adapta-
tion. Hence, our approach does not rely on user-identifying information, making it highly
suitable for privacy-sensitive environments. Additionally, this transfer mechanism is adaptable
to various cross-domain scenarios, including both overlapping and non-overlapping user
settings.

The remainder of this article is structured as follows: Section 2 offers a comprehensive overview
of the relevant works. Section 3 introduces essential background concepts and outlines the problem
statement. In Section 4, we detail our proposed methodology, focusing on the overall framework
and its individual components. Section 5 presents and analyzes the experimental results, including
an ablation study to assess the contributions of various components. Finally, Section 6 summarizes
our work and discusses potential directions for future research.

2 Related Works

This section provides an overview of current CDRSs, with a focus on approaches that prioritize
privacy preservation.

2.1 CDRSs

CDRSs have emerged as a powerful solution to the challenge of data sparsity by enabling knowledge
exchange across different domains. The transferred knowledge can either be user interaction data
[6, 17, 43, 44] or extracted user representations [2, 21, 23, 46]. For example, PPGN [44] constructs
a cross-domain interaction graph to model interactions across domains. HeroGraph [6] employs
recurrent attention combined with graph convolution operations to embed the cross-domain
interaction graph into a latent space. The representations learned from the shared structure are
embedded in a common coordinate system, enabling seamless knowledge transfer across domains.
DACDR [43] enhances representation learning by capturing both local and global representations
from local interaction matrices and cross-domain interaction matrices, respectively. Its adversarial
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network, with a domain discriminator, prevents domain-specific knowledge from being included in
the global representations, thus avoiding negative transfer.

Recent studies have concentrated on transferring user representations extracted from each
domain. EMCDR [23] maps source user representations to the target domain using a non-linear
mapping function. GA-DTCDR [46] facilitates knowledge transfer by integrating the source and
target representations of overlapping users through an attention mechanism. Bi-TGCF [21] incor-
porates graph neural networks (GNNs) for representation learning, enabling effective knowledge
transfer between graph convolutional networks. DisenCDR [2] disentangles cross-domain and
domain-specific information, effectively exploiting common patterns across domains. Although
these works achieve impressive performance, they face a significant challenge concerning privacy
protection. The absence of robust privacy-preserving techniques hinders their ability to adapt to
real-world scenarios, particularly in sensitive domains where the confidentiality of user data is
critical [38].

2.2 Privacy-preserving CDRSs

The development of privacy-preserving techniques for CDRSs has become a critical focus, especially
in the context of knowledge transfer. One of the pioneering works addressing privacy concerns
in CDRS is NATR [9], which transfers item-side information instead of sensitive user data to
protect privacy. DP [7] has been widely adopted to protect data prior to transfer. For example,
PriCDR [4] employs a DP algorithm to secure the source rating matrix before transferring it to the
target domain. PPGenCDR [18] introduces a privacy-preserving generator using a conditional GAN
model, where the generator produces synthetic user preferences with DP, and the discriminator
distinguishes between real and synthetic preferences.

Federated learning [14] enables collaborative model training among multiple participants while
preserving the privacy of their raw data. This setup allows each participant to train a local model
using their own data and transmits only the local model updates to a central server. The server then
updates the global model by aggregating these local parameters, which are subsequently distributed
back to all participants. This iterative process continues until the global model converges, facilitating
collective learning without compromising individual data privacy. Based on data distribution among
participants, federated learning is categorized into three types: horizontal [19], vertical [22], and
federated transfer learning [32]. Federated learning is widely adopted as a core element in designing
privacy-preserving CDRSs. For example, FedCDR [26] applies federated learning technique, with
personalized update and aggregation strategies tailored to each client and server. To ensure privacy,
only non-personal parameters, such as item representations and transfer modules, are transmitted
to the server. Recent research has focused on federated transfer learning, which combines the
principles of transfer learning and federated learning. For example, P2FCDR [5] is a dual-target
CDR that applies DP to user representations before transferring them across domains using an
orthogonal mapping function. Similarly, PPCDR [37] introduces a graph transfer module that
merges global and local user representations during the private update process, applying DP to
protect shared user representations prior to transfer.

3 Problem Definition and Preliminaries

This section delineates the theoretical preliminaries, followed by the research problem addressed in
this article.

3.1 Theoretical Preliminaries

3.1.1  GNNs. GNNs [40] aim to learn node representations by integrating initial node features
with a graph structure (edges). A standard K-layer GNN comprises K graph convolution layers.
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In layer k, the nodes receive representations from layer k — 1, denoted by X k=1 and undergo an
aggregation step followed by an update step to produce new node representations X*:

X* = UPD(AGG(A, X*~1); ©F). (1)

The function AGG(-) serves as the aggregation function, which can take forms such as mean, sum,
or max pooling. UPD(-) is the update function, typically a neural network-based transformation
parameterized by ©F.

3.1.2 DP. DP [8] is a fundamental principle in data privacy that ensures any computation’s
output based on a dataset does not allow an attacker to infer information about any individual in
that dataset.

Definition 1 (e-DP [7]). An algorithm A satisfies e-differential privacy (e-DP), where € > 0, if and
only if, for any set of outputs O C Range(A) and any neighboring datasets D and D’ that differ by
one element, it holds that

Pr[A(D) € O] < exp(e) Pr[A(D’) € O],

where exp(.) denotes the exponential function, and Range(A) is the set of all possible outputs of
the algorithm A. The parameter €, known as the privacy budget, controls the strength of privacy: a
smaller € provides stronger privacy protection, while a larger € weakens it.

Definition 2 (Sensitivity [7]). The sensitivity of the function f : D — R is defined as:
Ar = D) — f(D")|2.
£ g{%)}llf( )= F(D)]l2

Sensitivity quantifies the maximum possible change in the output of f when applied to two
neighboring datasets D and D’, differing by a single element. In this case, it refers to the maximum
L2 distance between the function outputs for these two datasets.

A Laplace mechanism that adds noise to the function’s output based on the function’s sensitivity
is a widely used method for achieving DP.

Definition 3 (Laplace Mechanism [7]). Given the function f : D — R¢, the following mechanism
A satisfies e-DP:

Af d
A(D) = £(D) +Lap(?) ,

d
A . . . o .
where Lap (?f) denotes a random variable drawn from a d-dimensional Laplace distribution with
A .
a zero mean and a scale of ?f

Graph datasets differ from traditional tabular datasets because they also contain data about the
connections between data records. Therefore, defining edge-level adjacency in graphs is essential.

Definition 4 (Edge-level Adjacent Graphs [10]). Two graphs G and G’ are considered edge-level
adjacent if one can be formed from the other by adding or removing a single edge. Thus, G and G’
differ by at most one edge.

Accordingly, the definition of edge-level DP is as follows:

Definition 5 (Edge-level e-DP [33]). An algorithm A satisfies edge-level e-DP, where € > 0, if and
only if, for any set of outputs O C Range(A) and any neighboring graphs G and G’ that differ by
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Fig. 1. The network architecture of FGD-CDR.

one edge, the level of privacy satisfies
Pr[A(G) € O] < exp(e) Pr[A(G’) € O].

This definition ensures that the adjacency relationship between datasets accounts for the struc-
tural changes in the graph, specifically focusing on the connections between nodes.

3.2 Problem Definition

We address the cross-domain recommendation problem by considering two domains, denoted
as D% and D’. Each domain includes sets of users and items, denoted as A = {U4 1%} for D*
and B = {U®, T’} for DP. We assume the two domains share the same set of users, represented
by U. The number of users, items in domain D%, and items in domain DY are ny, n} and ng’ ,
respectively. The user-item interaction graphs in D¢ and D? are denoted as G* = (U, 7% R%) and
Gt = (U, Ib Rb), respectively. Here, R* € R™*1{ and R € R™*"! are the interaction matrices,
where the entry rj, is 1 if user u; interacts with item i,.

Our primary objective is to enhance top-N recommendation performance in participating domains
while preserving user privacy under the following constraints:

— Rule 1: The original interaction data are not shared between domains.
— Rule 2: The user representations learned from the interaction graph in each domain must be
protected before exchange.

Due to this privacy-preserving setting, even if user/item overlap exists across domains, identifying
information remains difficult to acquire. Furthermore, since interactions in each domain are modeled
as an interaction graph, the privacy mechanism in each domain must satisfy edge-level DP.

4 Methodology
4.1 Overview of Our FGD-CDR

Building on recent advancements in federated learning [15, 36] and DP [41], we propose a privacy-
preserving framework for cross-domain recommendation. The architecture of our proposed method,
FGD-CDR, is shown in Figure 1, with key notations summarized in Table 1.
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Table 1. Frequently Used Notations

Notations Description

LGE®, LGE? Local graph encoders

GGE“, GGE? Global graph encoders
GSGE® GSGE?  Global-shared graph encoders

CE4,CEP Connection establishment

PPA%, PPB? Personalized preference aggregation
a b :

€Gus €gu Global user representations

e? b Local user representations
lw “lu

egsu, egsu Global-shared user representations

eggu, eggu Adapted global user representations

ed, ez Final user representations

ei“, eg’ Item representations

sa 2b .

FaiFuj Ranking scores

L8, LE,, Consistency losses

Our proposed framework is composed of the following main components:

— Representation Modeling (RM): In each domain, item representations, local user representa-
tions, and global user representations are extracted from the local interaction graph. To ensure
alignment between the local and global user representations while preserving their individual
characteristics, we introduce a consistency loss. Furthermore, DP is applied during the ag-
gregation process, which generates the global-shared user representations. These protected
representations are then exchanged between domains to facilitate knowledge transfer.

— Adaptive Knowledge Transfer (AKT): Each domain receives global-shared user representations
from other domains. To ensure privacy, these representations are exchanged without any
user-identifying information. We introduce a knowledge transfer mechanism that incorporates
CE to identify latent overlapping users and establish connections between domains, followed
by PPA to generate adapted global user representations.

— Predictor (P): The adapted global user representations are combined with local user represen-
tations to create the final user representations. A ranking score is then calculated as the inner
product of the final user representation and the item representation.

Our FGD-CDR framework combines DP with federated transfer learning to strengthen privacy
protection in CDRSs. In contrast to traditional methods that focus on individual user data privacy,
our framework emphasizes protecting the privacy of business partners by treating each domain
as an independent client, making it particularly suited for real-world applications. First, each
domain retains its data locally without directly sharing it, significantly reducing the risk of privacy
leaks [25]. Second, directly transferring high-quality user representations could expose sensitive
user data [3]. To counter this risk, we employ DP by introducing controlled Laplace noise to user
representations prior to any exchange. Although a smaller privacy budget (¢) increases privacy
protection, it may slightly impact the quality of the transferred representations, necessitating a
careful balance between privacy and performance. Lastly, to further enhance privacy, only global-
shared user representations, devoid of any identifying information, are exchanged, preventing the
detection of overlapping users across domains.

42 RM

This section introduces the RM approach, which learns item representations, along with local,
global, and global-shared user representations, from the local interaction graph. It incorporates a
consistency loss and a privacy mechanism to ensure both effective learning and robust protection.
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4.2.1 Local Graph Encoder (LGE) and Global Graph Encoder (GGE). Building on the effectiveness
of GNNs in representation learning [11, 42], we design an LGE and a GGE integrated with a
consistency loss. This design enables capturing both local and global user representations from the
user-item interaction graph within each domain. Specifically, local user representations focus on
domain-specific preferences and characteristics tied to each domain, while global user represen-
tations identify more generalizable preferences that span across multiple domains. In real-world
scenarios, users frequently exhibit overlapping preferences across domains while also retaining
distinct interests unique to each domain. Our framework, by jointly modeling both local and global
representations, achieves a balance between capturing cross-domain patterns and preserving the
unique aspects of user behavior within each domain. To achieve these representations, we leverage
the propagation and aggregation mechanisms of LightGCN [11], an efficient model for capturing
user-item interactions.

4.2.2 Consistency Loss. Since local and global user representations relate to the same user,
they should closely align but still retain their distinct information. To enforce this, we introduce
a consistency loss that ensures local and global representations are aligned, but not identical, to
prevent feature collapse. The consistency loss is formulated as:

1 ny 1 ny ny
— _ 112
Leon=— D llegu; = ewil* +y - log————=>" > e~!lleauimens Il @)
=" nu(y = 1) i=1 j=1,j#i

where e~tlegu; 11’ represents the exponential of the negative squared Euclidean distance between
global and local user representations, scaled by a factor t. In the above equation, the first term
promotes alignment between the global user representation ey, and the local user representation
ery, ensuring consistency. The second term encourages a uniform distribution of the representations,
preventing feature collapse and ensuring that local and global user representations remain distinct
and discriminable.

This consistency loss guarantees that, while local and global user representations share common
information, they retain their unique attributes. Maintaining this distinction is critical to avoid
negative transfer, where domain-specific information from one domain negatively impacts rec-
ommendations in another [43]. By distinguishing between local and global user representations,
domain-specific details are confined to their respective domains, reducing the risk of transferring
irrelevant knowledge across domains.

4.2.3 Global-shared Graph Encoder (GSGE). Global user representations encapsulate user pref-
erences that generalize across domains, making them ideal for transfer in cross-domain systems.
However, transferring such high-quality representations introduces a significant risk of information
leakage, as they may reveal the sensitive historical interactions of the users [3, 39]. Therefore, it is
crucial to apply privacy-preserving techniques to global user representations before sharing them
across domains.

In edge-level DP, perturbing the edges of an interaction graph can protect the privacy of rela-
tionships between users and items [28]. However, altering the graph structure at this level risks
distorting the underlying relationships, potentially affecting the interpretability and accuracy of
user-item interactions. Moreover, although adding noise directly to the output layer of a model
can provide strong privacy guarantees, this approach may overwhelm the learned representations,
diminishing their utility and degrading the quality of recommendations. This tension highlights the
need for a privacy mechanism that achieves edge-level DP without compromising the meaningful
signals embedded in the representations. In other words, we need to design DP -based algorithms
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that account for DP provenance [12], focusing on protecting user privacy while ensuring that the
representations retain valuable knowledge.

To balance privacy and utility, following [33], we introduce a method that applies Laplace noise
directly to the output of the model’s aggregation function. By perturbing the aggregation step
rather than the raw graph data, we ensure that the contributions of the individual edges to the
representation are masked, but the overall structure and key patterns remain intact. This approach
mitigates the risk of distorting the graph while still providing a robust privacy guarantee.

In domain D?, the input layer starts with the representation matrix (X%)°, where each row is
normalized to an L2-norm of 1:

(X9? = XD/ XD 2. (©)

— Aggregation: The non-private representation matrix at layer k is computed using the previous
private representation matrix (X%)k~! and the adjacency matrix A%.

(XHF = AGG((XHF~1, A%). ()

— Perturbation: Next, we perturb the non-private representation matrix (X%)* by adding Laplace
noise with a sensitivity of 1 [33] and a privacy budget of € to every row:

(X9* = (X" + Lap(0,1/¢) ()

where Lap(0, 1/¢) represents noise drawn from a Laplace distribution with mean of 0 and a
scale of 1/e. This mechanism satisfies e-DP and protects the privacy of individual edges by
obscuring the presence or absence of specific edges in the output representations.

— Normalization: Finally, we row-normalize the perturbed representation (X?)* to obtain (X?)k,
ensuring each row retains an L2-norm of 1, as per Equation (3).

Applying a privacy mechanism after each aggregation step offers several advantages. First, it
mitigates the increasing interdependence between node representations, effectively concealing the
influence of individual edges in the graph, thereby offering stronger privacy guarantees. Second,
the recursive aggregation acts as a smoothing operation, accumulating useful information while
averaging out the noise introduced in earlier layers. This method preserves true signals, ensuring
that relevant information is retained while minimizing the disruptive effects of noise. The user
representation extracted through this process is termed global-shared user representations, which
is privacy-protected and suitable for exchange across domains. Algorithm 1 details the steps
for generating global user representations in domain 9D“. An analogous process is employed in
domain D?.

In our framework, both the GGE and the GSGE utilize the same input user representations. To
preserve privacy, we apply Laplace noise to the output of the aggregation function in the GSGE
when generating global-shared user representations. This ensures that these representations are
protected by DP and are suitable for exchange among domains, thereby facilitating collaborative
learning without exposing sensitive information. In contrast, the GGE’s outputs remain unchanged
and are confined within each domain. The consistency loss promotes alignment between local
and global user representations without explicitly sharing values, minimizing the risk of privacy
leakage to other domains.

4.3 AKT

To ensure privacy-preserving knowledge transfer in our framework, the global-shared user repre-
sentations exchanged between domains contain no identifiable user information. After receiving
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Algorithm 1: Perturbing the Aggregation Outputs in GSGE at Domain D

Input :(X%)°: input representation matrix
A%: adjacency matrix
€ : privacy budget
K: number of layers
Output: Protected representations output = Y (X?)* for k € K
Normalization: (X)? = (X?)°/|[(X%)°|l2;
Initialize: ouput = 0;
for k € K do
Aggregation: (X?)* = AGG((X?)k~1,A%);
Perturbation: (X?)k = (X*)* + Lap(0,1/€);
Normalization: (X2)k = (XK /|| (X?)*||2;
Accumulate: output = output + (X%)¥;
end
return output

the global-shared representations from other domains, the next critical step is to perform do-
main adaptation. This adaptation allows each domain to integrate the transferred representations
effectively while maintaining privacy.

CE: The first task in this process is to establish connections by identifying latent overlapping
users—users who display similar preferences across domains. These users are identified based on the
similarity between the global user representations in the current domain and the global-shared user
representations from other domains. The key assumption is that generalizable preferences remain
stable across domains, even though specific behaviors might vary. For example, the similarity
score between user u{ in domain 9 and an unknown user uj.’ in domain D’ is measured using a
Gaussian kernel, as follows:

e, = el |17

fuf,uf) = exp 5 ; (6)

o
where ej, represents the global user representation of user u in domain D, and egbsu_ is the
i J
global-shared user representation of user uf. in domain D?. The kernel 6% controls the sensitivity
to differences between the representations.
For given user u{ in domain D*, the k most similar users from domain DY are selected based
similarity scores.

ICY = {ub | f(ulub) € top-k(FH)}, 7

where 74 = {f (uf, u?)|u® € U} represents the set of similarity scores between user uf and all
users in domain D’. A similar process occurs for users in domain D?.

PPA: Once the connections are established, we perform PPA in each domain to produce an
adapted global user representation. For example, for given user u{ in domain D¢, the global user

a
gu;
domain D? are utilized to generate the adapted global user representation e

representation e, and the top-k most similar global-shared user representations 7 C';'{_) 5 from

a
agu;

b
el = (1= @)l +a Bicho,» ()

uberch
J A—B

as follows:

where « is the transfer ratio and f; is the attention coefficient that signifies the contribution of

knowledge in eé’su_ to domain D¢, calculated using an attention mechanism [46] with a learnable
J
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transformation matrix W:
B = softmax(ReLU(concat(eg“ui, eé’suj) -W)). 9)

Our transfer mechanism establishes robust mappings between domains based on implicit con-
nections without relying on user-identifying information, making it particularly well-suited for
privacy-sensitive applications. This mechanism is highly adaptable, accommodating diverse cross-
domain configurations, including both overlapping and non-overlapping user scenarios. Addition-
ally, establishing implicit connections through latent overlapping user groups helps to reduce noise
from users interested only in items within their current domain.

4.4 Predictor

Local user representations capture preferences that are specific to a particular domain, providing
insights into individual user behavior within that context. In contrast, adapted global user represen-
tations incorporate knowledge from other domains, reflecting common preferences shared across
multiple domains. By combining these two types of representations, we construct a comprehensive
view of user preferences that balances unique domain-specific interests with shared, cross-domain
insights. This integrated approach strengthens the model’s adaptability to individual user behav-
iors and results in more accurate, personalized recommendations. The final user representation is
formulated as follows:

e, = COM*(e}. . e; );el = COMP (e? eggu), (10)

agu w
where COM is a combination operation such as summation, averaging or an attention
mechanism [29].
The final ranking score for a user on a target item is calculated by computing the dot product
between the final user representation and the item representation. This score quantifies the relevance
of the item to the user, enabling the model to prioritize items that best match the user’s preferences.

4.5 Loss Function and Model Training

4.5.1 Loss Function. We compute the recommendation loss using the Bayesian personalized
ranking loss [31]. For domain D¢, the recommendation loss L?,. is calculated as follows:

Lio= D —logo(f, -7t (1)

(u,m%,n?)e0®
Similarly, for domain D?, the recommendation loss £Z,.. is

'Ell')ec = Z - log G(le;m - le;n)’ (12)

(u,mb .nb)e0?

where O represents the training data for domain D%, with m® € 0" denoting the set of interacted
items and n® € 0% signifying the set of non-interacted items. Similarly, O? refers to the training
data in domain D?. The # terms denote the ranking score of a user to the target item.

The objective function for each domain is formulated as:

LY=L+ ALE,, +6]19%2

13
L=t + 2Lk +5)16°, (1)

where £ and £ represent the consistency losses calculated from Equation (2). The hyper-
parameter A is used to control the influence of the consistency loss in each domain’s objective
function. ®* represents the set of parameters in each domain while the § term regulates the strength
of the L2-regularization, helping to prevent overfitting.
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Algorithm 2: Training of FGD-CDR

Input : D% = (U, 1% R?); DY = (U, 1P, RD)
Hyperparameters A, y, o, k, @, tcom

Output:trained model

Random initialization;

while stopping criteria not met do

Create negative samples and randomly shuffle the training data

Domain D? receives global-shared user representations ef_,, from domain D?

gsu

Domain D receives global-shared user representations eZ,, from domain D¢

gsu
for t = 1to teom do

// In domain D¢
Extract the item, local user, global user representations:
ef,efl, « LGE?((ef)", (e, )", A%) 5 ;’u — GGE*((ef)", (eg,)° A?)
Extract latent overlapping users: ICa%b — CE“(eg,,, egsu, k,o);
Generate adapted global user representations: eggu — PPA“(egu, ICaHb, «a);
Generate final user representations: ej; < COM“ (e}, , €5z, );
Predict ranking scores: 4}, = e“Te“,
Calculate objective functlon in domain D¢ using Eq.2, 11, 12 and 13.
Updates parameters related to domain D¢
// In domain D
Extract the item, local user, global user representations
el e — LGEP((e!)", (eh )0,AP) s eb, — GGEP((e!)", (eb,)", A"
Extract latent overlapping users: ch—>a «— CEP (egu, egsu k. 0);
Generate adapted global user representatlons eagu «— PPA (eé’u, ICy b—> @ @)s
Generate final user representations: e, « COM? (elu e, gu)
T
Predict ranking scores: rZi =eb eg’;
Calculate objective function in domain D? using Eq.2, 11, 12 and 13.
Updates parameters related to domain D?

end
Extract global-shared user representations in domain D?: e, ;su — GSGE“((e“)0 (egu)0 A% €)

Extract global-shared user representations in domain Db: gsu — GSGEI’((eb)0 (egu)0 Ab €)
end

4.5.2 Model Training. As representations are exchanged across domains, communication costs
can become a major bottleneck in federated learning environments, especially when handling large-
scale data and frequent updates [30]. To mitigate this issue, we introduce an adjustable communica-
tion interval, denoted as t.,.,,, which specifies the number of training epochs between cross-domain
exchanges. Instead of sharing representations after every training iteration, domains perform multi-
ple local updates and synchronize only after ¢.,,, epochs, thus reducing bandwidth usage and overall
communication costs. In each domain, the process begins by receiving the latest global-shared user
representations from other domains. The item, local user, and global user representations are then
extracted using the LGE and the GGE. The model then leverages AKT to integrate information from
multiple domains, make predictions, and optimize the objective function. After every f.,p, epoch,
each domain extracts its updated global-shared user representations and shares them with other
domains. The training process of our method in a two-domain setting is shown in Algorithm 2.

Regarding communication cost, suppose that a total of 1,,,,4 local update rounds are executed,
the number of global communication rounds is approximately n,q,nq/tcom- Consequently, the overall
communication cost is expressed as O(d.nyound/tcom-ny-|D|(|D] — 1)), where d is size of vector
representations, n, is the number of users, and |D| is the number of domains. By performing global
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communication every tc,m epochs, this strategy can achieve a t.o,,-fold reduction communication
cost—the larger the t.,,,, the lower the communication overhead. However, setting t.,, too high
may result in the model converging to a suboptimal solution on local domains, thereby reducing
the effectiveness of cross-domain knowledge transfer.

4.6 Algorithm Analysis

4.6.1 Analysis on Privacy Protection. In our federated learning framework, each business partner
retains user data locally, aligning with Rule 1 that prohibits sharing raw interaction data between
domains. To address Rule 2, which mandates the protection of user representations before exchange,
we apply DP techniques, ensuring that transferred knowledge remains secure—not only from exter-
nal attackers but also from other business partners participating in the knowledge transfer process.
Furthermore, our transfer mechanism operates without relying on any user-identifying information,
making it ideally suited for privacy-preserving settings where obtaining such identifying data is
challenging.

Proof: The Algorithm 1 satisfies the edge-level DP.

Laplace achieves DP by adding noise drawn from Laplace distribution. The Laplace distribution
is defined as:

Lap(0) = %exp (%) (14)

where 0 = % is the noise scale, with A, representing the sensitivity, x being a random variable
that follows the Laplace distribution. For two neighboring graphs G and G’ differing by one edge,
the probability density function of the output O is:

1 -0 -
Pr[A(G) € O] = ssexp (%) (15)
and similarly for G’
Pr[A(G) € O] = zieexp (M) (16)

where eg and eg represents the node representations learned from graphs G and G’, respectively.
Taking the ratio:

Pr[A(G) € 0] _ (Ieg - eg'l) (17)
Pr[A(G’) € O] 0 '
Since |eg — eg/| < A, and A, = O¢, we obtain:
Pr[A(G) € O] Oe\ _
m <exp (?) =exp(e). (18)

4.6.2  Potential Extension Scenario Setting. Our transfer mechanism introduces a general mapping
function between domains by extracting latent overlapping users based on general preferences. This
enables our method to effectively adapt to scenarios where no shared users exist between domains.
In real-world applications, this corresponds to collaborations among different companies, where
user overlap may be non-existent or difficult to identify due to privacy concerns. Furthermore,
our method is designed to support multi-domain scenarios, where each domain operates as an
independent client. The training process of FGD-CDR in a multi-domain setting is thoroughly
detailed in the Algorithm 3. To validate the effectiveness of our approach, we conducted experiments
for both the non-overlapping user scenario and the multi-domain scenario. The results and analysis
of these experiments are presented in Section 5.5.
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Algorithm 3: Extension of FGD-CDR for Multi-domain Scenarios

Input :D = {D!, D?,..., D"}, where each DP = (UP, TP, RP) for p=1,2,...,n
UP: User set in domain DP
I?:Item set in domain D?
RP: Interaction matrix in domain D?
Hyperparameters A, y, 0, k, @, tcom
Output:trained model
Random initialization;

while stopping criteria not met do
Create negative samples and randomly shuffle the training data

for domain DP € D do
Received global-shared user representations from other domains

for t = 1to teom do
Extract the item, local user, global user representations:
el el — LGEP((e?)°, (e} )°,AP) s el — GGEP ((l)°, (eh,)°, A7)

for pair of domains (DP, D1), where DP # D9 do

Beq — CEP (el efs k. 0);

‘ Extract latent overlapping users: 7 C p—q

end
Generate adapted global user representations: e‘ggu — PPAP(éb,, T CZicmss, a);

gu>
where ICZ‘:C,OSS = {]C;f‘iqll)q € D, DP + DI},

Generate final user representations: el — comp (e‘;’u, e‘ggu );
. . . T
Predict ranking scores: rgi =, ef;
Calculate objective function in domain D? using Eq.2, 11, 12 and 13.
Updates parameters related to domain D?

end
Extract global-shared user representations: egsu — GSGEP((ef)O, (egu)o, AP €)

end
end

5 Experiments

This section outlines the experiments conducted to assess the recommendation performance and
privacy-preserving capabilities of our FGD-CDR model, targeting the following research questions:

—RQ1: How does FGD-CDR perform compared to state-of-the-art baseline models?

— RQ2: What is the impact of each individual component on the overall performance of FGD-
CDR?

—RQ3: How effective is FGD-CDR in ensuring privacy protection?

— RQ4: Can FGD-CDR be adapted for other real-world scenarios?

—RQ5: How do hyperparameter choices affect the performance of FGD-CDR?

5.1 Experimental Settings

5.1.1 Datasets. We evaluate FGD-CDR, comparing it to other baseline models, using two widely
adopted real-world datasets: Douban [35] and Amazon.! To ensure data quality, we filter out
users with fewer than 10 interactions, focusing specifically on overlapping users across domains.
For each user, two interactions per domain are randomly selected—one for validation and one
for testing—while the remaining interactions form the training set. To simulate cross-domain
recommendation tasks, we create three distinct tasks, with descriptive statistics for each provided
in Table 2.

https://jmcauley.ucsd.edu/data/amazon/.

ACM Transactions on Intelligent Systems and Technology, Vol. 16, No. 4, Article 88. Publication date: July 2025.


https://jmcauley.ucsd.edu/data/amazon/
https://jmcauley.ucsd.edu/data/amazon/

A Federated GNN with Differential Privacy for CDRSs 88:15

Table 2. Statistics of Tasks

Task Dataset Users Items Ratings Density
amazon-movie (D1_1) 6,255 42,441 373,596 0.14%

Task 1
amazon-cd (D2_1) 6,255 57,695 309,692 0.09%
Task 2 amazon-cd (D2_2) 4,968 54,439 233,812 0.09%
amazon-book (D3_1) 4,968 125,663 334,700 0.05%
- ic(D4_1 1 16,81 1 48%
Task 3 douban-music (D4_1) 7,106 6,813 571,738 0.48%

douban-book (D5_1) 7,106 16,407 472,187 0.41%

5.1.2  Evaluation Protocol. For each record in the evaluation data, we randomly select 99 items
that the user has not interacted with to generate negative samples. The model then predicts
preferences for 100 items, consisting of 1 positive sample and 99 negative samples, and produces
a ranked list of the top-N items. To assess performance, we use the standard metrics: hit ratio
(HR@N) and normalized discounted cumulative gain (NDCG@N), setting N to 5. Each experiment
is repeated five times to ensure robust results.

5.1.3 Baselines. To compare the performance of our proposed approach, we have selected the
following baseline methods:

Single-domain Recommendation Methods:

— LightGCN [11]: captures high-order connectivity by propagating and aggregating information
within the user-item interaction graph.

— FCF [1]: employs federate learning that trains local models on each client and aggregates
local parameters to create a global model.

— impactOfDP [28]: applies DP to protect interaction data at the graph level.

Non-private Cross-domain Recommendation Methods:

— PPGN [44]: builds a cross-domain graph to establish connections among domains and exploits
this graph to learn representations.

— Bi-TGCF [21]: performs the bidirectional knowledge transfer at each graph convolution layer.

— DisenCDR [2]: utilizes disentangled learning to separate domain-shared and domain-specific
information.

Privacy-preserving Cross-domain Recommendation Methods:

— PriCDR [4]: implements a DP algorithm to protect the source rating matrix before transfer to
the target domain.

— P2FCDR [5]: develops an orthogonal mapping matrix to learn and protect global user repre-
sentations with DP before transferring across domains.

— PPCDR [37]: designs a graph transfer module that fuses local and global user representations
during private updates and applies DP to protect global user representations before transfer.

5.1.4 Implementation and Hyperparameter Settings. Common hyperparameters are set across all
methods as follows: the embedding size is 64, the batch size is 1,024, the learning rate is 0.001, the
L2 regularization coefficient is 1e-5, three graph convolution layers, and the Adam optimizer to
learn the parameters. The maximum number of training epochs is set to 200. Specific parameters
for each baseline are set based on the original papers and fine-tuned accordingly. Our method
is implemented in PyTorch, with the key hyperparameters A, y, o, a, k, and t.,, tune via a grid
search. We apply the same privacy budget across all graph layers.
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Table 3. Overall Performance Comparison of FGD-CDR with Baseline Methods for All Tasks

Task 1 Task 2 Task 3
Method D1_1 D2_1 D2_2 D3_1 D4_1 D5_1
HR NDCG HR NDCG HR NDCG HR NDCG HR NDCG HR NDCG
LightGCN 0.5243 0.3745 0.5189 0.3841 0.4401 0.3172 0.3615 0.2644 0.6191 0.4669 0.5876 0.4403
FCF 0.4109 0.2859 0.4091 0.2987 0.3492 0.2527 0.2874 0.2109 0.5741 0.4265 0.5276 0.3916

impactOfDP 0.4814 0.3464 0.4719 0.3538 0.4147 0.3087 0.3422 0.2577 0.5913 0.4455 0.5586 0.4175

PPGN 0.5550 0.4098 0.5239 0.3970 0.4617 0.3416 0.3957 0.3058 0.6492 0.4930 0.6442 0.4913
Bi-TGCF 0.5646 0.4151 0.5421 0.4016 0.4801 0.3541 0.4101 0.3068 0.6711 0.5178 0.6538 0.5064
DisenCDR  0.5741 0.4204 0.5656 0.4266 0.4915 0.3661 0.4092 0.3127 0.6701 0.5108 0.6469 0.4919

PriCDR 0.5183 0.3765 0.5249 0.3922 0.4613 0.3426 0.3861 0.2914 0.6365 0.4803 0.6033 0.4512
P2FCDR 0.5380 0.3878 0.4903 0.3551 0.4322 0.3157 0.3570 0.2705 0.6546 0.4964 0.6245 0.4717

PPCDR 0.5548 0.4084 0.5645 0.3896 0.4905 0.3564 0.4137 0.3097 0.6718 0.5185 0.6552 0.5064
FGD-CDR  0.6312 0.4853 0.6293 0.4943 0.5539 0.4321 0.4571 0.3646 0.7306 0.5827 0.7073 0.5628
RI 9.9% 154% 11.3% 15.9% 12.7% 18.0% 10.5% 16.6% 8.7% 12.4% 8.0% 11.1%

5.2 Overall Performance Comparison (RQ1)

Table 3 presents the results for HR@5 and NDCG@5, comparing our method against selected
baseline methods across the three tasks. The privacy budget used for our FGD-CDR and privacy-
preserving baseline methods is set to 1.0. The highest performances are highlighted in bold, while
the top-performing baseline results are underlined. “RI” represents the relative improvement of our
FGD-CDR model compared to the best-performing baseline.

The insights gained from these experimental results are as follows:

—GNN s are increasingly preferred in modern recommendation approaches due to their ability
to capture intricate collaborative filtering signals from user-item interaction graphs. Utilizing
advanced propagation and aggregation mechanisms, GNNs excel at modeling complex rela-
tionships. The superior performance of graph-based methods, such as PPCDR, over traditional
neural network-based methods like PriCDR and P2FCDR highlights this advantage.

—Cross-domain recommendation methods typically outperform single-domain approaches,
demonstrating the benefits of sharing valuable information across domains to mitigate data
sparsity challenges.

—PPGN relies solely on global user representations, limiting its ability to capture nuanced
user preferences. In contrast, methods that integrate both local and global user represen-
tations—such as Bi-TGCF, DisenCDR, and our FGD-CDR—achieve superior performance.
However, Bi-TGCF lacks a mechanism to effectively distinguish between local and global pref-
erences, which can lead to negative transfer when domain-specific information is embedded in
global user representations. Additionally, as highlighted in [45], physically overlapping users
may exhibit different preferences across domains. Consequently, bidirectional knowledge
transfer methods based on physical overlap, such as Bi-TGCF and DisenCDR, may introduce
noise, particularly when these users display conflicting preferences in different domains. In
contrast, our method introduces consistency loss, which effectively differentiates local and
global user representations, preventing them from collapsing into an indistinguishable space.
Furthermore, instead of relying on physical overlap, our approach identifies latent overlap-
ping users based on similarities in general preferences. This ensures that users with aligned
preferences are meaningfully connected, reducing noise and enhancing the effectiveness of
knowledge transfer across domains.
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Table 4. Results of Ablation Studies in All Tasks
Task 1 Task 2 Task 3

Method D11 D2_1 D2_2 D3_1 D4_1 D5_1

HR NDCG HR NDCG HR NDCG HR NDCG HR NDCG HR NDCG
w/0 sim 0.5681 0.4369 0.5552 0.4452 0.4830 0.3823 0.4000 0.3216 0.7030 0.5490 0.6803 0.5296
w/o ppa 0.5796 0.4380 0.6000 0.4671 0.5212 0.4013 0.4340 0.3422 0.7081 0.5536 0.6878 0.5422
w/o con-loss 0.5816 0.4321 0.5822 0.4447 0.5001 0.3759 0.4184 0.3228 0.6796 0.5202 0.6451 0.4931
FGD-CDR 0.6312 0.4853 0.6293 0.4943 0.5539 0.4321 0.4571 0.3646 0.7306 0.5827 0.7073 0.5628

The highest performances are highlighted in bold.

—The impactOfDP method applies DP at the graph-data level to safeguard the structure of the
interaction graph. However, the notable performance drop compared to LightGCN in Task 1
suggests that applying DP may distort key structural elements of the graph, thereby impacting
recommendation accuracy.

—PriCDR improves recommendation performance in sparser domains through unidirectional
transfer. However, it may be less effective when transferring data from sparser to richer
domains. For example, in Task 1, PriCDR better enhances the recommendations in D2_1
(sparser) compared to the single-domain method LightGCN but performs worse in D1_1. This
observation underscores the limitations of unidirectional transfer methods. P2FCDR employs
bidirectional transfer, showing better performance than PriCDR in Tasks 1 and 3. However,
it utilizes deep matrix factorization as the encoder, which constrains its ability to capture
high-quality representations.

— Among privacy-preserving baseline methods, PPCDR demonstrates better performance by
effectively extracting both local and global user preferences. However, similar to Bi-TGCF, it
lacks a mechanism to distinguish between these preferences, potentially leading to negative
transfer. Furthermore, those privacy-preserving CDRS require user-identifying information to
detect overlapping users for cross-domain connections, limiting their practical deployment,
especially in high-security scenarios.

— Our proposed method, FGD-CDR, consistently outperforms all baseline methods, highlighting
its effectiveness in handling data sparsity, ensuring privacy protection, and preventing negative
transfer. Specifically, FGD-CDR improves performance by an average of 35% compared to
single-domain recommendation methods and by 14% when compared to non-private CDRS.
For privacy-preserving CDRS, FGD-CDR shows an improvement of around 20% compared to
PriCDR and P2FCDR, and approximately 12% compared to PPCDR.

5.3 Model Ablation Study (RQ2)

We perform ablation studies to evaluate the impact of key components in FGD-CDR. These ex-
periments include: (1) a similarity computation step to select the top-k most similar users for
establishing cross-domain connections (w/o sim), (2) PPA for generating adapted global user rep-
resentations (w/o ppa), and (3) the application of a consistency loss (w/o con-loss). As shown in
Table 4, removing any of these components leads to a decline in performance, highlighting their
critical role in our model.

First, the w/o sim variant replaces the similarity computation with random selection for the top-k
user selection. This modification leads to a 13% performance drop, illustrating the importance of
similarity-based connections. By matching users with similar behaviors across domains, the model
efficiently transfers knowledge, improving recommendation performance. However, randomly
pairing users with unrelated behaviors introduces noise into the knowledge transfer process,
significantly weakening the model’s ability to generate accurate recommendations.
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Fig. 2. Impact of privacy budget € on recommendation performance in our FGD-CDR.

Second, in the w/o ppa variant, the aggregation function in Equation (8) is replaced with simple av-
eraging, where the adapted global user representation is calculated as the average of the global user
representation and the top-k global-shared representations from other domains. This change results
in a 6% performance decline, highlighting the value of personalized aggregation. Unlike simple aver-
aging, the personalized aggregation mechanism controls the integration of cross-domain knowledge,
filtering out irrelevant information while preserving critical knowledge during the transfer. This
ensures that the adapted global user representation is not diluted by noisy or unrelated domain data.

Third, removing the consistency loss in the w/o con-loss variant results in a 10% performance
decline, emphasizing its role in representation learning. Consistency loss enhances alignment be-
tween local and global representations of the same user, preventing them from being collapsed. This
mechanism creates a balanced representation space, ensuring that both shared and domain-specific
information are well-represented, thus reducing the risk of irrelevant knowledge transfer between
domains.

In summary, the results of these ablation studies confirm that each of these components—similar-
ity computation, PPA, and consistency loss—plays a pivotal role in the effectiveness of FGD-CDR.
Their removal disrupts the balance of knowledge transfer, degrades representation learning, and
ultimately reduces the model’s overall effectiveness in cross-domain recommendation tasks.

5.4 Privacy Analysis (RQ3)

We also evaluate the impact of privacy mechanisms in our FGD-CDR model on both recommenda-
tion performance and privacy protection. First, we compare our method across different privacy
budget settings with a non-private variant, representing a scenario in which no privacy mechanism
is applied to the aggregation outputs. Following the experiments in [37], we assess the privacy
protection capability of FGD-CDR by predicting historical interactions based on global-shared
user representations. For each interaction record, we randomly sample nine non-interacted items
and combine them with the interacted item to form a candidate set. We then rank all candidate
items based on a score computed as the dot product between the item representation and the
global-shared user representations. The item with the highest score is predicted as the historical
interaction. Lower accuracy in this task indicates better privacy protection.

The results for overall recommendation performance and privacy protection capabilities are
presented in Figures 2 and 3, respectively. As shown, an increase in the privacy budget, denoted by
€, leads to improved recommendation performance but decreased privacy protection, and vice versa.
A smaller € necessitates the addition of more noise to the representations, which enhances privacy
guarantees but hampers the model’s ability to accurately capture user preferences, resulting in
reduced recommendation accuracy. In contrast, a larger € improves recommendation accuracy but
compromises privacy protection. This highlights the inherent tradeoff between privacy and accuracy.

Next, we compare our method with selected cross-domain baselines, including a non-private
method (Bi-TGCF) and two privacy-preserving methods (P2FCDR and PPCDR). The results are
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Fig. 3. Impact of privacy budget € on privacy protection ability in our FGD-CDR. The lower accuracy reflects
stronger privacy protection.
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Fig. 4. Comparison of recommendation performance between our FGD-CDR and selected baseline methods.
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Fig. 5. Comparison in privacy protection ability between our FGD-CDR and selected baseline methods. The
lower accuracy reflects stronger privacy protection.

shown in Figures 4 and 5. The non-private method, Bi-TGCF, demonstrates performance comparable
to the privacy-preserving method PPCDR; however, it carries the highest risk of inferring user
historical data. Our FGD-CDR model achieves superior recommendation accuracy, while PPCDR
offers stronger privacy protection by applying DP to global user representations. This method
adds noise at the output layer, which can overwhelm the learned representations, enhancing
privacy protection but often compromising the model’s ability to retain useful information and thus
reducing recommendation accuracy. In contrast, our method introduces noise at each aggregation
step during graph representation learning. By incrementally adding noise after each aggregation,
our model preserves more informative signals at each layer, enabling it to refine representations
in subsequent layers while smoothing out the noise from earlier steps. This approach results in
better accuracy, albeit with slightly weaker privacy protection. As demonstrated in Figures 4 and 5,
our method achieves a better balance between maintaining high recommendation accuracy and
delivering effective privacy protection.

5.5 Further Analysis (RQ4)

This section assesses the effectiveness of our approach in non-overlapping and multi-domain
scenarios, with the tasks are defined in Table 5.
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Table 5. Statistics of Tasks in Non-overlapping and Multi-domain
Scenarios

Task Category Users Items Ratings Density
Non-overlapping Cross-domain Recommendation Tasks
douban-music (D4_2) 10,393 11,589 1,143,883 0.95%
amazon-cd (D2_3) 7,062 27,456 378,391 0.20%
douban-book (D5_2) 8,821 8,627 808,298 1.06%
amazon-book (D3_2) 9,407 20,058 643,397 0.34%
Multi-domain Recommendation Tasks
amazon-movie (D1_2) 4,327 44,798 313,815 0.16%
Task 6 amazon-cd (D2_4) 4,327 60,290 216,259 0.08%
amazon-book (D3_3) 4,327 139,268 343,488 0.06%
douban-music (D4_2) 10,393 11,589 1,143,883 0.95%
Task7  douban-book (D5_2) 8,821 8,627 808,298 1.06%
amazon-book (D3_2) 9,407 20,058 643,397 0.34%

Task 4

Task 5

Table 6. Overall Performance Comparison for Non-overlapping Tasks

Task 4 Task 5
Method D4 2 D2_3 D5 2 D3 2
HR NDCG HR NDCG HR NDCG HR NDCG
LightGCN 0.5938 0.4406 0.5930 0.4340 0.5622 0.4178 0.5290 0.3777
FCF 0.5425 0.3972 0.5290 0.3899 0.5119 0.3751 0.4555 0.3269
impactOfDP  0.5731 0.4252 0.5571 0.4105 0.5477 0.4061 0.4811 0.3436
FGD-CDR 0.6725 0.5166 0.7183 0.5624 0.6510 0.5010 0.6498 0.4845

The highest performances are highlighted in bold, while the top-performing baseline results are
underlined.

Table 7. Overall Performance Comparison for Multi-domain Tasks

Task 6 Task 7
Method D1 2 D2 4 D3_3 D4 2 D5 2 D3 2
HR NDCG HR NDCG HR NDCG HR NDCG HR NDCG HR NDCG
LightGCN 0.4635 0.3403 0.4007 0.2901 0.3463 0.2522 0.5938 0.4406 0.5622 0.4178 0.5290 0.3777
FCF 0.3460 0.2345 0.2911 0.2091 0.2569 0.1901 0.5425 0.3972 0.5119 0.3751 0.4555 0.3269
impactOfDP 0.4234 0.3004 0.3790 0.2813 0.3082 0.2267 0.5731 0.4252 0.5477 0.4061 0.4811 0.3436

PPGN 0.5038 0.3663 0.4294 0.3249 0.3626 0.2704 - - - - - -
PPCDR 0.5137 0.3726 0.4638 0.3356 0.3854 0.2843 - - - - - -
FGPCDR 0.5735 0.4339 0.5098 0.4008 0.4313 0.3397 0.6829 0.5261 0.6583 0.5053 0.6601 0.4936

The highest performances are highlighted in bold, while the top-performing baseline results are underlined.

Table 6 provides a detailed comparison of recommendation performance between our FGD-CDR
model and baseline methods in non-overlapping scenarios. Our model demonstrates a substantial
improvement over single-domain approaches, underscoring the effectiveness of our transfer mecha-
nism. This enhancement can be attributed to two key factors. First, the implicit relationships created
through latent overlapping user help to limit information transfer from users who are exclusively
interested in items within the current domain. Second, more precise similarity calculations lower
the chances of creating inaccurate implicit connections.

Table 7 illustrates the overall recommendation performance for the multi-domain tasks.
Notably, the performance in each domain for Task 7 is superior to its corresponding per-
formance in Task 4 (D4_2) and Task 5 (D5_2 and D3_2), with an average improvement of

ACM Transactions on Intelligent Systems and Technology, Vol. 16, No. 4, Article 88. Publication date: July 2025.



A Federated GNN with Differential Privacy for CDRSs 88:21

- p1_1-HR - DI_1-NDCG @ D2_2HR @ p2_2-NDcG  -#F D4 1-HR  -E- D4_1-NDCG
@ D21HR -® pz1wNDcG M D31-HR - D3_1-NDCG @ D5_1-HR @ D5_1-NDCG

T T
0.01 0.05 01 05 10

A A A
(a) Task 1 (b) Task 2 (c) Task 3

Fig. 6. Hyperparameter analysis of 1.

- 01_1-HR B DI_1-NDCG @~ D22-HR @ D2 2-NDcG  ~HF D4 1-HR B D4_1-NDCG
<@ p2.1HR -® pzinpcc <M D3 1HR B D3 1-NDCG =@ D5_1-HR  *@° D5_1-NDCG

= . L — 7 T % o7 F:;:'S.:—hq
: 05

05 —- 04
P [ o o
01 05 10 15 20 :
¥ ¥ y
(a) Task 1 (b) Task 2 (c) Task 3

Fig. 7. Hyperparameter analysis of y.

& p11-HR -B- plLLlnDCG @ D22HR @ pz2npDcG - D4 1-HR - D4_1-NDCG
@ pz_1-HR @ pz1-npcG - D3 1-HR B D3_1NDCG =@~ D51-HR @ D5_1-NDCG

07 jg—ar—T———§

0.6

.,....A.-..‘.'.'.-

T T
0.001 0.01 01

T T T
0.001 001 01 10 10.0

c o o
(a) Task 1 (b) Task 2 (c) Task 3

Fig. 8. Hyperparameter analysis of o.

@ DI_1-HR '@ DL1-NDCG ~—@ [22HR @ D22-NDCG =@~ D4_1-HR '@ D& 1-NDCG
- p2.1-HR M- pzanpcG M D3 1HR - D3 1-NDcG M D5_1-HR -l D5_1-NDCG

(a) Task 1 (b) Task 2 (c) Task 3

Fig. 9. Hyperparameter analysis of k.

—@- DL 1-HR -@- D1 _1-NDCG —@~ D2_2-HR @ D2_2-NDCG -4~ D4 1-HR -@- D4_1-NDCG
- D2_1HR W D2_1-NDCG - D3_1-HR -M- D3_.1-NDCG  —f- D5_1-HR M- DS5_1-NDCG

(a) Task 1 (b) Task 2 (c) Task 3

Fig. 10. Hyperparameter analysis of t.om.
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around 2%. This improvement highlights the advantage of leveraging knowledge from multiple
domains to enhance recommendations within each individual domain.

5.6 Hyperparameter Analysis (RQ5)

This section analyzes the sensitivity of key hyperparameters 4, y, o, k, t.om, and « on the model’s
performance, as illustrated in the Figures 6—11. The results show that A, y, and t.,,, have a signifi-
cant impact on the model’s performance, while k has a lesser effect. Both « and ¢ exhibit stable
performance across their respective ranges.

— A controls the weight of the consistency loss relative to the recommendation loss. As the
consistency loss promotes coherence between local and global user representations, increasing
A may help enforce robustness across domains, allowing the model to leverage cross-domain
information. However, placing too much emphasis on this consistency can lead to overly
homogeneous representations, potentially compromising the model’s ability to optimize for
specific domain preferences in recommendations. Conversely, reducing A allows the model
to focus more heavily on the recommendation loss. A small A may lead to a model that
performs well in individual domains but could suffer in cross-domain generalization due
to less consistency across representations. The model achieves the highest performance at
A = 0.1 for Tasks 1 and 2, while for Task 3, the optimal value is A = 1.5.

—The uniformity term, controlled by y, ensures that local and global user representations
remain diverse and well-distributed, preventing them from becoming overly similar. A higher
y encourages more distinct and varied representations, helping to reduce the risk of domain-
specific information dominating the global representations, thus minimizing the likelihood
of negative transfer. On the other hand, a lower y enforces tighter alignment between local
and global representations, which can enhance cross-domain generalization but might reduce
the model’s ability to capture nuanced, domain-specific user preferences. The model achieves
optimal performance in Tasks 1 and 2 with y = 1.0, while in Task 3, the best results occur
with y =0.1.

— o exhibits consistently strong performance in terms of HR@5 and NDCG@5, with stable
results as o varies between 0.001 and 10. This indicates that o has less sensitivity compared to
A and y, contributing to stable recommendation performance across different values.
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—k determines the number of most similar users used to establish connections between do-
mains. Increasing k results in denser implicit connections, facilitating greater cross-domain
information exchange. However, this can also introduce noise if inaccurate connections are
formed. Moreover, bidirectional knowledge transfer may not be symmetric, meaning the
optimal value of k could vary across domains. The model performs optimally with k = 3 in
Task 1, k = 50 in Task 2, and k = 10 in Task 3.

—teom denotes the number of training epochs a domain performs before sharing its user prefer-
ences with other domains. Increasing t.,,, can help lower communication costs by reducing
the frequency of data exchange. However, setting .o, too high risks degrading recommenda-
tion performance, as the model might converge to suboptimal solutions based on local domain
data. To maintain an effective balance between communication efficiency and recommenda-
tion accuracy, it is crucial to carefully select an appropriate t,,, value. In our experiments,
we found that setting t.,,, to 2 achieves a good compromise across all tasks, minimizing
communication overhead while still providing strong recommendation performance.

—a defines the transfer ratio, indicating how much knowledge from other domains is incor-
porated into the current domain. While the convergence curves exhibit slight variations,
they ultimately reach similar performance levels, demonstrating the model’s robustness. As o
increases, the learning curve initially grows more slowly, as the influence of knowledge from
other domains may temporarily hinder the learning process in the current domain. However,
after a few iterations, this external knowledge begins to support the target domain, leading to
improved performance in subsequent stages. Generally, @ = 0.3 is an effective choice for the
transfer ratio.

6 Conclusion

In this work, we propose a novel privacy-preserving CDRS that leverages federated transfer
learning and DP. Our development process begin by designing a consistency mechanism to ensure
the local and global user representations capture coherent information while, at the same time,
preventing their collapse. Next, we implement privacy mechanisms, applying DP to the outputs
of each aggregation step in the GNN. This effectively balances privacy and accuracy. We then
introduce a general and stable transfer mechanism that extracts latent overlapping users to establish
implicit connections, incorporating transferred knowledge through PPA. Experiments conducted
on real-world datasets highlight the effectiveness of our proposed FGD-CDR, which outperforms
baseline methods in terms of accuracy while also achieving superior privacy protection.

Future work will focus on integrating user profiles to gain deeper insights into user preferences.
However, incorporating sensitive user information poses challenges in maintaining strong privacy
guarantees while ensuring accurate personalized recommendations. Additionally, since deeper
GNNs may experience significant privacy budget compounding, we will explore adaptive privacy
budgeting as a potential solution.
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