
Contents lists available at ScienceDirect

Neurocomputing

journal homepage: www.elsevier.com/locate/neucom

Concept drift detection based on radial distance

Dan Shang, Guangquan Zhang, Jie Lu 

∗

Australian Artificial Intelligence Institute, Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, Australia

A R T I C L E I N F O

Communicated by Z. Wang

Keywords:

Concept drift 

Classification 

Stream data mining 

Neural network

A B S T R A C T

With the advancement of powerful computational hardware in recent years, neural networks, once popular for 

machine learning on pre-collected datasets, are becoming applicable for streaming data processing. Stream data 

have the characteristics of high velocity, variety and volume. In stream data mining a common challenge is 

concept drift, which refers to the phenomenon where the statistical properties of the target variable in predictive 

tasks change over time. For instance, in image prediction problems, the input facilities may be altered by the 

environment or device flaws. The materials generated from them could be distorted, such as blurring, discoloring 

or part-missing. Concept drift problem is considered a root cause of performance degradation in machine learning 

models on stream data. Traditional concept drift detection methods usually require large amount of historical 

data, which leads to substantial memory footprint and high computational cost, and tend to be overly sensitive 

to arbitrary distribution changes not related to prediction results. Such limitations are particularly evident in 

settings using neural network models, where input data are usually high dimensional images or videos. Aiming 

to improve the accuracy and efficiency of concept drift detection in neural network models, we propose a new 

concept drift detection method that specifically addresses these limitations and is applicable to general neural 

network models. Our method represents the original data with a distance-based statistic, extracted from the layer 

outputs of the neural network models, and is able to adjust its sensitivity to input distribution changes based on 

their relevance to neural network features. We evaluated our method with popular neural network architectures 

on both synthetic and real-world data sets. The results showed our method not only outperforms existing concept 

drift methods in accuracy, but is also significantly faster and consumes less resources.

1. Introduction

In the field of machine learning, stream data mining attracts lots of 

attention from researchers. Stream data is being generated from multi-

ple applications in many different scenarios, for example, stock market 

quotes, outputs from various equipment sensors and social media feeds. 

Unlike traditional machine learning problems, stream data mining has 

its own characteristics. First, streaming data sources produce informa-

tion continually and at a high rate [1]. The processing system may not 

have enough memory to store the endlessly arriving data elements [2]. 

Second, the underlying distributions of the data streams have potential 

changes in unforeseen ways. In literature, this characteristic of evolv-

ing is referred to as concept drift [3], which would likely degrade the 

accuracy of models over time. Algorithms designed for streaming data 

should be able to adapt to the concept drift in a timely manner while 

performing with lower memory and computation costs.

Concept drift is a well-studied research field. Existing approaches 

can be categorized into two branches: incremental learning and detec-

tion combined with retraining. Incremental learning algorithms [4] are 

widely used in streaming data settings. They use incoming data con-

tinuously to adapt to the data distribution change. Detection and then 

retraining is another popular strategy to handle concept drift problems. 

They use concept drift detection methods such as [5,6] to monitor the 

stability of the incoming data. If a drift alert is triggered, the model will 

be retrained with new data set. In this strategy, drift detection methods 

can be directly applied to the traditional models.

In the meanwhile, artificial neural networks have undergone tremen-

dous growth in recent years. Many artificial neural network models have 

been favorably used in stream applications, such as image recognition, 

fraud detection [7], etc. For neural network models, the concept drift 

problem is also a significant concern. For example, in image prediction
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problems, the input facilities may be altered by the environment or de-

vice flaws. The materials generated from them could be distorted, such 

as blurring, discoloring or part-missing. Also, the proportion of input 

images containing targets of interest may vary seasonally. In order to 

deal with these evolving characteristics without changing the whole 

structure of the original models, concept drift detection methods are 

advantageous in monitoring the status of the data. When changes are 

detected, the weights of the networks should be adjusted to adapt to the 

novel information.

In unsupervised settings, traditional concept drift methods, such 

as [5,8], cannot achieve a desired effect. They first choose a window 

method to divide the data into smaller, manageable segments. Once 

the data is divided into batches, the next step is to apply a two-sample 

statistical test to compare the distributions between the batches. They 

need to store sufficient data to make the test statistically significant. In 

the context of neural networks, which usually process images, videos, 

and audios, retaining large amounts of data may not be feasible. Some 

methods approach this problem using output features of intermediate 

or the last layer of the model instead of the original input data, such 

as [9,10]. However, in deep neural network models, even these ab-

stract feature representations are still high dimensional data. It will 

consume enormous memory to store these historical data. In addition, 

existing concept drift detection methods [11,12] treat all features in the 

whole feature space equally in terms of their test power. However, in 

neural network settings, data from different classes tend to have dif-

ferent subspaces of features. These features should be given more test 

power to enhance the detection accuracy, in contrast to other features. 

Thus, an efficient concept drift detection method for such problems be-

comes highly desirable, as we need to both avoid over-sensitiveness 

induced by irrelevant features and reduce the computation and storage 

cost.

Targeting to deal with these challenges in concept drift detection 

for the neural network settings, we proposed a method named Radial 

Distance Drift Detection (RDDD), aiming to avoid over-sensitive retrain-

ing, while eliminating the need to store high dimensional input data sets. 

We use the radial base distance to represent each data point to reduce 

the dimensionality of the data. The other advantage of using the radial 

distance is that we could adjust the sensitivity to specific features of each 

class by modifying the location of the radial base. Data from different 

classes tends to activate different groups of neurons in the same layer 

of a neural network. So for the features we want to focus on, we choose 

higher values for the radial base. This will make the radial distance more 

sensitive to changes in those important features. For features we hope 

to downplay, we choose the mean values for the radial base. This will 

effectively reduce the influence of those less relevant features in the data 

representation. This method can be applied to most classification mod-

els with neural network architectures. It only uses the activation of the 

neural network layers as input. Therefore the prediction model does not 

require extra computational costs. Finally, our method is suitable for 

both sudden and gradual drift detection by adjusting the test window 

size.

The main contribution of this work is: we propose a radial distance-

based feature for drift detection in neural networks, that can adjust 

detection sensitivity based on the feature subspace. Changes within the 

target subspace are emphasized, while variations in irrelevant dimen-

sions are suppressed, leading to more reliable detection. Experiments 

on two synthetic data sets and three real data sets with 5 neural net-

work architectures demonstrate the competitive performance compared 

with existing concept drift methods. The remainder of the paper is orga-

nized as follows. Section 2 reviews the literature on traditional concept 

drift strategies for neural network settings. In Section 3, we present 

the preliminaries and articulate the problem addressed in this work. 

Section 4 introduces the radial distance concept and presents our pro-

posed methodology. Section 5 experimentally evaluates our method on 

a variety of data sets. Finally, Section 6 provides conclusions and future 

research.

2. Related work

In this work, we aim to develop an efficient method to detect concept 

drifts in neural network scenarios. In this section, we review concept 

drift problems, concept drift detection methods, neural networks used 

on stream data and concept drift detection in neural network models. 

We also review distance-based feature extraction. This work builds upon 

distance-based feature extraction methods.

2.1. Concept drift

A key challenge in learning from dynamic data streams is concept 

drift, which occurs when the underlying data distribution changes over 

time. Formally, concept drift is defined as a change in the joint proba-

bility distribution 𝑃 (𝑋, 𝑦) between input features 𝑋 and target variable 

𝑦 over time, i.e., 𝑃 𝑡 

(𝑋, 𝑦) ≠ 𝑃 𝑡+1 

(𝑋, 𝑦) [3]. Concept drift may lead to 

performance degradation in machine learning models if the drift affects 

the target concept 𝑃 (𝑌 ∣ 𝑋) and the model fails to adapt. In order to be 

responsive to the ever changing stream data, machine learning models 

need to either identify when and where the drift occurs or adopt incre-

mental learning to suit the development of a data stream [13]. Handling 

concept drift mainly includes concept drift detection and adaptation. 

Concept drift detection copes with the problem of identifying the point 

where change arises, whereas concept drift adaptation focuses on updat-

ing the models according to new data sets [14]. Machine learning models 

can adapt to changing data through several methods: periodic retraining, 

retraining combined with drift detection, or incremental learning. Our 

review mainly focuses on drift detection, which can be used as an exter-

nal drift detection tool that operates alongside the model. This means 

the base learner can retain its own structure while performing the drift 

detection.

In supervised settings, in which class labels are available, detection 

work is generally performed by monitoring the accuracy degradation 

of classifiers. Gama’s popular Drift Detection Method (DDM) [15] fo-

cuses on the number of prediction errors made by the model. DDM is 

based on the assumption that the increase in the error rates suggests 

that the distribution of the incoming data is unstationary. It relies on 

significant changes in error rates to detect drift. Thus, this method is 

not sensitive enough to slow gradual drifts. An extension method Early 

Drift Detection Method (EDDM) [16] was proposed to improve the drift 

detection performance when gradual drifts exist. Unlike methods that 

simply count errors, EDDM focuses on the distance between consecutive 

misclassifications. This makes it more sensitive to gradual changes in the 

data stream. Reactive Drift Detection Method (RDDM) [17] enhances 

the accuracy of DDM by periodically removing older instances of stable 

concepts. This helps DDM detect concept drift more effectively, espe-

cially in datasets where stable concepts have a large number of instances. 

Adaptive Windowing (ADWIN) by Bifet and Gavalda [13] is a variable 

window approach with rigorous performance guarantees. It supervises 

the mean value of the prediction results based on a sliding window. 

The length of the window is updated according to stability of the data 

stream. If there is no change, the length will increase. Otherwise, the 

window will shrink shorter to drop out the outdated data points. Drift 

Detection Methods based on the Hoeffding’s bounds (HDDM) [6] pro-

posed by Frias-Blanco et al. is also a window based method. This method 

utilizes Hoeffding’s inequality to establish confidence bounds on the esti-

mated mean of the data within the window. Instead of directly analyzing 

the data distribution as in HDDM, Fast Hoeffding Drift Detection Method 

(FHDDM) [18] monitors the accuracy of predictions.

In unsupervised settings, detection is usually performed by comput-

ing some predefined distance between two different parts of the stream 

data. Dasu [19] proposed a nonparametric detection method based on 

the relative entropy. Research [5] investigates the impact of concept 

drift on case-base competence and proposed detecting change via com-

petence models. Maximum Mean Discrepancy (MMD) [20] is a powerful 

kernel-based method for measuring the dissimilarity between two prob-

ability distributions. MMD leverages the power of kernel methods to

Neurocomputing 653 (2025) 131190 

2 



D. Shang, G. Zhang and J. Lu

embed probability distributions into a Reproducing Kernel Hilbert Space 

(RKHS). This space allows for measuring the distance between distri-

butions based on their mean embeddings, which are representations of 

the distributions in the RKHS. Calculating MMD can be computation-

ally expensive, especially for large datasets. Research [9] employs the 

outputs of the neural network as the input to MMD, and achieves bet-

ter results. This approach leverages the feature extraction capabilities 

of neural networks to transform complex data into a more manageable 

representation, which is then fed into MMD for a more accurate compar-

ison. This method is also nonparametric, but it comes with the trade-off 

of increased computational cost, because neural networks often have a 

large number of parameters. This method can lead to decreased accuracy 

when only the class distribution changes, but the underlying data dis-

tribution remains the same. Some works utilize the distances of learned 

representations in deep learning. Research [21] proposes an approach 

for detecting changes in graph streams by learning graph embeddings in 

deep autoencoders with manifold constraints. Though empirical stud-

ies suggest that activations do lie near nonlinear subspaces, they are 

not necessarily a specific well-defined manifold. Deep learning activa-

tions are often analyzed directly in Euclidean space without explicit 

manifold constraints. Research [22] uses KS test directly on each fea-

ture of the activation vector from the Variation Autoencoder to detect 

anomalous points. Research [23] uses PCA technique to reduce the di-

mension and employs f-distance to compare the distance of distributions 

under the multi-Gaussian distribution assumption. The computational 

cost of PCA and f-distance is high. With window method, the process still 

needs to store high-dimensional data. Finally, these distribution-based 

strategies all require performing permutation or bootstrap hypothe-

sis tests to determine the statistical significance of the observed drift. 

This adds a significant computational burden to detection process. The 

LSDD method [24] is a kernel-based approach for directly estimating 

the difference between two probability density functions without going 

through density estimation. Compared to other kernel-based methods, 

LSDD maintains strong computational efficiency.

2.2. Concept drift handling in neural network settings

Neural networks are inspired by biological neural systems and at-

tempt to model the human brain’s functional style. Human brains can 

acquire new knowledge continuously. Artificial neural networks also 

should have the ability for continual learning. Draelos [25] proposes 

an incremental method by adding new neurons to neural networks. 

New neurons are added to identify new information in recently arriving 

data. In this method, neural network models adapt directly to chang-

ing data. ExStream [26] is a memory efficient replay-based method. 

Instead of storing the entire historical data, it maintains a small, care-

fully selected subset of past data points, called the “replay buffer.” Then 

mixture of centroids and the new incoming data were used to update 

the parameters. A very fast versatile elliptic basis function neural net-

work (VEBFNN) [27] is designed to learn the data set in one pass based 

on the hyperellipsoidal function. The function can be rotated and trans-

lated according to the distribution of the data set. VEBF neural network 

is also proposed, in which the number of neurons in the hidden layer 

can be automatically updated. Thus, the network continuously adapts 

to the distribution of the incoming data stream. This kind of network 

only has three layers, and the performance depends upon the initial val-

ues of the parameters. Research [27] proposed evolving granular neural 

network (eGNN) in which the fuzzy data streams serve as the input 

to the neural network. The size of the granulars can adapt incremen-

tally to incoming data streams. There are also works dedicated to the 

deep neural networks for evolving stream data. Research [28] used hy-

brid architecture to provide better performance. The surface agent is 

used to adapt to the short term structure, and the deep learning agent 

searches for the long term structure of the data. Research [29] learned 

data streams with partial labels. This approach utilized the output of 

the Deep Belief Network or the Boltzmann machine as the inputs to

the supervised classifiers. Then the model can be fine-tuned to the new 

data streams with the labeled examples. These adaptive learning tech-

niques apply only to specific network structures. A significant constraint 

is that techniques developed for one type of network may not be directly 

applicable to others.

Deep learning provides a representation of each data point in a 

hierarchical manner through multiple transformation layers. More ab-

stract representations are extracted from the less ones of last layer [30]. 

Thus, concept drift detection methods could also be applied directly 

to the outputs of the layers, which may help to identify the source of 

change. Research [31] utilized Restricted Boltzmann Machine to ex-

tract features, which are used as the input for the ADWIN detection 

method. This method can address the imbalanced class problem, but 

it cannot be applied directly to other types of neural network architec-

tures. Research [32] performs multiple forward passes of a given data 

instance through the network and analyzes the resulting empirical distri-

bution over the outputs or parameters. This requires significantly more 

computation than the prediction process. Monte Carlo Dropout [33,34] 

monitors concept drift in neural networks by tracking the error rate. 

However, the method cannot be used if the true labels are unavailable. 

When true labeled data is unavailable, detecting drifts by monitoring 

the performance of the model becomes infeasible. Drift detection is usu-

ally performed by distribution-based methods, which require storing as 

much historical data as possible. In neural network settings, the output 

of the neural networks is usually of high dimensions. Thus high stor-

age capacity will be required. Feature extraction or reduction can be a 

powerful approach to resolve this type of dilemma.

2.3. Feature extraction based on distances

The foundation of this work is distance-based feature extraction, 

which is a fundamental technique in machine learning. It involves de-

riving new features from data by calculating various distance measures 

between data points or between data points and reference points. This 

approach can enhance the performance of modeling tasks, reducing costs 

of computation and data storage. Treating distance-based features as 

univariate variables also enables the application of certain statistical 

tests in machine learning, such as the Kolmogorov-Smirnov (K-S) test. 

In literature, some studies extract distance-based features to improve 

accuracy. Tsai and Lin [35] proposed a method for intrusion detection 

based on the new features extracted as triangle area formed by the data 

point and the class cluster centers. They evaluated the approach on 

the KDD-cup99 data set [36], and provided higher accuracy and the 

lower false alarm rate. Since data are represented by a number of tri-

angle areas, if the number of the cluster centers is large, their approach 

will lead to the curse of dimensionality [37]. Research [38] proposed a 

feature extraction method using Delaunay triangulation to achieve bet-

ter discrimination power for the task of online handwritten character 

recognition. The topological structure is reflected in the new feature 

space. They achieved good results in the HMM-based recognition sys-

tem. Research [39] introduced a novel distance-based feature extraction 

method. They utilized the discrimination ability of the centroid for each 

cluster. The original feature space is concatenated with the newly ex-

tracted distance features. Classification experiments based on the Naive 

Bayes, kNN, and SVM algorithms show classification improvements for 

most of the data sets. However, this method cannot achieve the same 

good results in the image related datasets which usually come with high 

dimensions.

3. Preliminary

In this section, we first introduce the formal definitions of concept 

drift in data stream mining. Next, we justify our approach of applying 

detection on 𝑃 (𝑋 ∣ 𝑦) (monitoring features per class). Finally, we an-

alyze the properties of neural network hidden layer outputs and their 

relevance to our class-conditional distribution drift detection.
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3.1. Data stream mining and concept drift definition

Data ,  

 stream is defined as a sequence (𝑠 1 𝑠 2,… , 𝑠 𝑖,  

 

…)  

+
  

, 𝑖 ∈ N of in

stances that are generated continuously. 𝑠 𝑖 

denotes the 𝑖th sample. The 

size of the sequence may be infinite. In unsupervised cases, each datum

𝑠 𝑖 

= [𝑥1𝑖 , 𝑥
2
𝑖 

,… , 𝑥𝑑 ] is a -dimensional vector ( ∈ 𝑑 𝑗
).

 

represents the𝑖    𝑑   𝑠𝑖  R  𝑥 𝑖  

𝑗th feature of the 𝑖th sample 𝑠  

 

. In supervised𝑖  classification tasks, the

element is 𝑠 = 

1
 

[𝑥 , 𝑥2,… , 𝑥𝑑 , 𝑦  

 

]. The last component is the assigned𝑖 𝑖 𝑖 𝑖 𝑖    𝑦 𝑖    

 

class label and takes values from a finite set of classes 𝑌 = {𝑐 1, 𝑐 2,… , 𝑐 }.𝑚  

+
   

𝑚 ∈ N  

 is a finite number. In a probabilistic setting, the observation 𝑠 𝑖 

can be considered as a pair of random variables (𝑋𝑖      

1 1 2
 

, 𝑦 from the𝑖 

) drawn
sample  

 space 𝑆 ⊂ R 

𝑑 × R  

 . 𝑋  

 

= [𝑥 , 𝑥 ,… , 𝑥𝑑 ] takes values in 𝑑 ,𝑖 𝑖 𝑖  

 𝑖   𝑋 ⊂ R  

𝑦  

 

∈ 𝑌 ⊂ R 

1 . In supervised classification case, the classifier → ,𝑖       𝑓 ∶ 𝑋  𝑌  

which is trained on the data set {(𝑋 

 

, 𝑦 s 

 

)}𝑛 , approximate the true data𝑖 𝑖 𝑖=1  -

generating process 𝑃 (𝑋, 𝑦). The goal is to minimize the probability of 

misclassification: 𝑃 (𝑓 (𝑋 

 

; {(𝑋 , 𝑦 

 

)}𝑛 ) ≠ ) for new data points𝑗 𝑖 𝑖 ( ),𝑖=1   𝑦𝑗      𝑋𝑗 , 𝑦 𝑗 

which are drawn from the same distribution 𝑃 (𝑋, 𝑦). 𝑓 (𝑋 𝑗 ;  

 

{(𝑋𝑖 

, 𝑦 𝑖 

)} 

𝑛
𝑖=1) 

is the classifier’s prediction for 𝑋𝑗 , conditioned on the training  

 

data set

{(𝑋 𝑖, 𝑦 𝑖 

)}𝑛 .𝑖=1 

-

In real world settings, the underlying generating process 𝑃 (𝑋, 𝑦) may 

change over time. Formally, we say that concept drift occurs if: ∃ time

𝑡 1 

, 𝑡 2 

, such that 𝑃 (𝑋, 𝑦) ≠ .𝑡1  

 

𝑃𝑡 2 

(𝑋, 𝑦)  The evolution may occur in two

ways: change originates from the probability of observing 𝑋 or from the 

conditional probability of observing 𝑦 given 𝑋, denoted as 𝑃 (𝑦 ∣ 𝑋). If 
the change occurs only in P(X), this kind of drift is referred to as virtual 

drift. Change which only happens in 𝑃 (𝑦 ∣ 𝑋) is referred to as real drift. 

If the posterior 𝑃 (𝑦 ∣ 𝑋) changes after the model is deployed, the model’s 

predictions may become less accurate over time, leading to higher error 

rates.When true labels are available, tracking error rate (misclassifica-

tion rate) is an effective way to detect model performance degradation 

caused by data drift. When true labels are not available, practitioners 

typically monitor drifts in the input feature distribution 𝑃 (𝑋). Though it 

is not a perfect proxy for actual performance degradation, this approach 

can be served as a practical early warning system. Two sample test meth-

ods are usually used for 𝑃 (𝑋) monitoring to test whether two batches of

data sets (for example, {𝑋  

 }𝑛 }2, {𝑋 

𝑛 ) are from𝑖 𝑖=1 𝑖 𝑖=𝑛+1   the same distribu

tion. If the test results are significant, it is considered that concept drift 

has occurred.

-

There are two critical limitations of monitoring 𝑃 (𝑋). First, in high 

dimensional spaces two-sample tests lose statistical power. Second,

when class ratio (prior probability 𝑃 (𝑦)) changes, two-sample tests on 

𝑃 (𝑋) will flag drift, but model performance may not degrade if the de-

cision boundary remains valid. Instead of considering the overall 𝑃 (𝑥), 
a more efficient way to detect concept drift that actually impacts model

performance is focusing on the class-conditional distributions 𝑃 (𝑋 ∣ 𝑐 𝑘 

). 
We assume that if 𝑃 (𝑋 ∣ 𝑐  

 

) changes, the decision𝑘  boundary may be

come invalid, leading to real performance degradation. Then the model 

needs to be retrained to adapt to the new concept. For each class 𝑐 𝑘 

, we 

compare samples { 𝑐𝑋  𝑘 } ∼ ∣ ) { 𝑐𝑃 (𝑋 𝑐 and 𝑋  𝑘 

  𝑡𝑟𝑎𝑖𝑛    𝑡𝑟𝑎𝑖𝑛    𝑘   }𝑡𝑒𝑠𝑡  ∼ 𝑃 . We𝑡𝑒𝑠𝑡 (𝑋 ∣ 𝑐 𝑘 

)  

supervise every class separately in the meantime. This method will also 

be more suitable to deal with class imbalanced classification problems, 

in which case the majority class will overwhelm the minority class. In

practice, what our 

′method used to test is 𝑃 (𝑥 ∣ 𝑦   

 = 𝑐𝑘  

), where 𝑦 

′ is the

predicted label of the model, which is available without extra cost.

-

3.2. Properties of hidden layers’ outputs

The 𝑗th node in the hidden layer 𝑍 denoted as 𝑧  

 

can be computed𝑗
by 𝑧 = 𝑓 (𝑤⋅𝑥+𝑏). 𝑤 represents weights, 𝑏 is the bias vector,𝑗   and 𝑓 is the 

activation function. The Tanh, Logistic and ReLU functions are common 

choices for activation functions. In many practical neural networks (es

pecially efficiency-focused ones), a significant fraction of neuron outputs

are zero. In well-trained classifiers, neurons fire selectively for specific 

classes. The network learns to separate dissimilar classes in activation 

space, so the activations of each class tend to cluster in lower dimen

sional affine subspaces within the high-dimensional activation space. 

We choose the vector 𝑍 to represent the original input data 𝑋. For each

-

 

-

𝑐
class 𝑐 𝑘 

, comparing activation samples {𝑍  𝑘 }𝑡𝑟𝑎𝑖𝑛  and { 𝑐𝑍  𝑘 }𝑡𝑒𝑠𝑡  will improve 

computational efficiency and accuracy compared to a global comparison 

across all classes. For a given class 𝑐 𝑘      

 

, certain neurons (dimensions) in

the network’s representation 𝑍 have high activations, while others are 

near zero. These high-activation neurons are important for discriminat-

ing 𝑐 𝑘 

. In our method, we aim to adjust the test power to the dimensions

with higher values and ignore the other features that are less relevant to 

the corresponding class cluster. We accomplish this by introducing the 

concept of radial distance in the next section.

4. Methodology

In this section, we first present a distance feature called radial dis-

tance and its properties. Then, we propose our drift detection method 

for neural network models based on the radial distance feature.

4.1. Radial distance as a feature

In high dimensional situations, reducing the dimension of data sets 

has two benefits. First, rather than storing the whole set of features, 

we need only store part of the whole set, this will help save memory 

and computational resources. Second, removing the redundant features 

can also improve accuracy of models. In our method, we only extract 

one distance feature to use as the input of the detection algorithm. This 

will lead to a very high efficiency. The distance feature we have chosen 

should have more test power for the original features that are more re-

lated to the corresponding class cluster. Instead of choosing the centroid 

of the data sets, we choose some fixed point with high feature values 

in some features and mean values in other features. For the features we 

want to mainly focus on, we choose higher values for the radial base. 

For features we want to ignore, we choose the mean values for the radial 

base. The following will explain why we choose radial base in that way.

Definition 1 (Radial Distance and Radial Base). For a data set {𝑠 𝑖 =
(𝑥1, 𝑥2,… , 𝑥𝑑 )       𝐵 = (𝑥 

1 2
 

}, there is a fixed point  

𝑑
  ∗, 𝑥 ∗,… , 𝑥∗ ),𝑖 𝑖 𝑖  the radial 

distance of 𝑠 is = ‖ ‖. The point is the radial base.𝑖  𝑑(𝑠 𝑖  𝑠 𝑖 

− 𝐵    𝐵  

 

)   

 

In this work, we use the Euclidean distance function. For some n 

dimensional data point 𝑋 = (𝑥 1 

, 𝑥 2 

,… , 𝑥 

 

), the𝑛   Euclidean distance from 

radial base 𝐵 is:

𝑑(𝑋) = ‖𝑋 − 𝐵‖ =

√

√

√

√

𝑛
∑ 

𝑖=𝑘
(𝑥 𝑘 

− 𝑏 𝑘 

) 

2 (1)

𝐵 = (𝑏 1 

, 𝑏 2 

,… , 𝑏 𝑛 

) is the chosen radial base. 𝑑(𝑋) is a multivariable

scalar function, which is differentiable. So the directional derivative ex

ists along any unit vector 𝑣. ∇ . For the basis vector of𝑣  

𝑑(𝑋) = ∇𝑑(𝑋) ⋅ 𝑣       

Euclidean space 𝑣 𝑖 

= (0, … , 0, 1, 0, … , 0)

 

-

∇ 𝑣𝑖 

𝑑(𝑋) = ∇𝑑(𝑋) ⋅ 𝑣 𝑖 = 

𝑥 𝑖 

− 𝑏 𝑖
√ 

∑𝑛
𝑖=𝑘 (𝑥 𝑘 − 𝑏 𝑘 

) 

2
= 

1
√

∑𝑛
𝑘=1

(

𝑥 𝑘 

−𝑏 𝑘
𝑥 𝑖−𝑏 𝑖

) 2 

. (2)

From the above equation, we can infer that if the 𝑥 𝑖 −  

 

𝑏𝑖 

is larger 

relative to the other features 𝑥 , the directional derivative along𝑘 −  𝑘     

 

𝑏  

 

the direction 𝑣 ( 𝑑 the𝑖 ∇𝑣 (
𝑖

𝑋)) will be larger. That means   

 

radial distance 

 

feature 𝑑 will be more sensitive to the change of 𝑥 𝑖 

. So we can adjust the 

location of the radial base to modify the sensitivity of 𝑑 with respect to 

𝑥 . We 

 

illustrated this property in the example of (Experiment 1) 𝑖 5.2.2.

4.2. Drift detection in artificial neural network models

In classification tasks, artificial neural networks learn activation vec-

tors in a way that is driven by the classification objective. During the 

training process, neural network models help to filter out irrelevant 

features. Testing on the intermediate layers will give us the benefit 

of focusing on the task-relevant features, ignoring redundant or noisy 

ones. Due to their layered architecture, networks can automatically learn
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hierarchical representations of data, from simple low-level features to 

complex high-level abstractions. In this paper, the input layer does not 

count in the number of layers in a neural network. The output layer is 

more constricted than hidden layers in structure. It usually represents 

the classification results. Many features will disappear in this layer. Our 

detection method can be applied to the intermediate layer activations 

generated during the reference stage.

In practice, we hope to avoid alerting concept drifts, which stem 

from the irrelevant features. A network has 𝐿 layers, with 𝑔1 , 𝑔2 , …, 𝑔𝐿  

neurons in each layer respectively. The output of each layer 𝑙 (where 

𝑙 ∈  

  {1, 2, … , 𝐿}) is represented as a vector 𝑍 

𝑙 with dimensionality 𝑔𝑙 . 
2

 

Our  will 1method select one  

  of the intermediate layer outputs 𝑍 , 𝑍 , …, 

𝑍 

𝐿 as the input. Each layer’s output 𝑍  

 

𝑙 captures a hierarchical repre-

sentation of the input data. In contrast to the original input data, testing 

on 𝑍 

𝑙 filters out irrelevant noise and focuses on task-relevant features. 

By monitoring  

 drift in 𝑍 

𝑙 instead of raw input data, the algorithm can 

ignore nuisance variations. This is efficient because the algorithm could 

avoid some retraining work triggered by irrelevant feature variations. 

Drift detection method used on the outputs of different layers will also 

help us to find out different sources of concept drift.

In our method, the data points will be stored in the form of a set of 

radial distances to save memory, since distances are only real numbers 

with one dimension. By adjusting the location of the radial base we can 

adjust the discrimination power of the radial distances for different sub-
𝑐

spaces of the data sets. For a given data set {𝑠 𝑘} with predicted class
 

𝑖     

label 𝑐 ,𝑘  

𝑐
 

  we choose  

𝑐
  the layer 𝑍 

𝑙(𝑠 

𝑘 ).𝑖  Distances between 𝑍 

𝑙
 

(𝑠 

𝑘 )𝑖  and the
𝑐 

𝑐𝑘 𝑐
radial distance base 𝐵 

𝑘 are computed, denoted as 𝑑𝑖𝑠𝑡 . We𝑖   use 𝑑𝑖𝑠𝑡  

 

𝑘
 𝑖𝑐 𝑐

to represent the
  

 

 data point 𝑠 

𝑘 . The new data set {𝑑𝑖𝑠𝑡 𝑘 } is generated𝑖 𝑠𝑖   

 

𝑐
from the original data set {𝑠 𝑘  }𝑖  during the referencing stage. Algorithm 2

provides the process of generating referential radial distances initializa
𝑐

tion. For the next batch of data set {𝑡 

𝑘}𝑗  with the same predicted class 

label 𝑐 , we perform the same process, computing corresponding dis𝑘         

 

𝑐
tances {𝑑𝑖𝑠𝑡  

 

𝑘 }.𝑡   

 

These distances also serve as compact, one-dimensional
𝑗

𝑐
representations of the original data set {𝑡  

 

       

𝑘}.𝑗  For drift detection, we only

need to choose methods suitable for one dimensional settings. We can 

𝑐 𝑐
choose K-S

 

 

 test. If the distributions of data set {𝑑𝑖𝑠𝑡 

𝑘}𝑠𝑖  and {𝑑𝑖𝑠𝑡 

𝑘
𝑡 

} are 

𝑗
𝑐 𝑐

different, we
 

 

  consider the two original data sets {𝑠 𝑘}𝑖  and {𝑡 𝑘}𝑗  to come

-

-

from two different distributions. A drift will be triggered. Algorithm 3 

provides our detection method using the outputs of a given hidden 

layer.
𝑙,𝑐

To obtain the radial distance of a set of
 

 

 layer activations {𝑍 

𝑘}𝑖  

(output of the 𝑙th layer with class label 𝑐 ), we should choose a suit𝑘      

 

𝑙,𝑐
able

 

 

 radial base vector 𝐵 = (𝑏 1 

, 𝑏 2 

,… , 𝑏 

 

) for the data set {𝑔𝑙 

𝑍 𝑘}.𝑖  In

practice, we could choose the radial base as follows:

-

𝐵({𝑍𝑙,𝑐 𝑘 

𝑖 }, 𝛾)

= 

⟨{ 𝜆max
𝑖
(𝑧𝑙,𝑐𝑘𝑖,𝑗 ), 𝑖𝑓 max

𝑖
(𝑧𝑙,𝑐𝑘𝑖,𝑗 ) >𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒

𝑗
(max 

𝑖
(𝑧𝑙,𝑐𝑘𝑖,𝑗 , 𝛾))

𝑧 

𝑙,𝑐 𝑘
𝑖,𝑗 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

⟩ 

(3)

𝑙,𝑐𝑧  

 

𝑘 is𝑖,𝑗  the activation of neuron 𝑗 in layer 𝑙 for the 𝑖th input of class 𝑐𝑘  

. For 

each neuron 𝑗, max ( 𝑙,𝑐𝑧 𝑘 ) is𝑖,𝑗   the maximum activation across all inputs 𝑖 of 
𝑖

class 𝑐 .𝑘  𝑡 = 𝑙
 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒 (max( ,𝑐𝑧 𝑘 )) is𝑖,𝑗 , 𝛾   

 

the 𝛾 − 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒 of all per-neuron
𝑗 𝑖

maximum activations. 𝛾 is the threshold percentile of layer activation 

values (by default 0.5) to split activations into highly activated neurons 

and weakly activated neurons. 𝜆 is a positive scaling integer, by default
𝑙,𝑐

2. For each neuron 𝑗, if maximum activation max (𝑧 𝑘 ) is lower than𝑖,𝑗   𝑡,
𝑖

𝑙,𝑐 ,𝑐𝑏 is set to be
 𝑘 𝑙
(mean value of the 𝑘 ). If maximum activation𝑗     

 

𝑧𝑖,𝑗     {𝑧 }𝑖,𝑗     

= max( 𝑙,𝑐
is higher than 𝑡, 𝑏 𝑗  𝜆 𝑧 𝑘 ).𝑖,𝑗  

𝑖
Algorithm 1 presents the radial base 

initialization process. Lines 1–6 get the activations of some predefined 

layer for each input in 𝑋 (training data set of a given class). Then we 

find the maximum of each activation and set 𝑏 = max(𝑧𝑙 (𝑗 𝑥)). After that, 

lines 7–9 find threshold activation value 𝑡 of all values in per-neuron

Algorithm 1: Radial distance base initialization.

input : 𝑋, training data set of a specific class;

𝑍 

𝑙 , activation of layer 𝑙 in neural network model;

𝛾, threshold percentile of layer activation values, by

default 0.5.

output: radial distance base vector.

1 forall input 𝑥 in 𝑋 do

2 get layer activations 𝑍 

𝑙 (𝑥) for input 𝑥; 
3 foreach neuron 𝑗 in layer 𝐿 do

4 find max(𝑧𝑙 (𝑗 𝑥)) as the maximum activation value of 

neuron 𝑗 given all 𝑥;

5 initialize vector 𝐵 as radial distance base 

6 𝐵 ={neuron 𝑗 in 𝑙: 𝜆 max(𝑧 

𝑙 (𝑗 𝑥))};
7 find threshold activation value 𝑡 of all values in 𝐵 according to

threshold percentile 𝛾;
8 foreach value 𝑏 in 𝐵 do

9 if 𝑏 < 𝑡 then

10 set 𝑏 ∶= 𝑧 

𝑙 ;𝑗

11 return 𝐵 as the radial distance base.

Algorithm 2: Referential radial distances initialization.

input : 𝑋, referential data set of a specific class;

𝑍 

𝑙 , activation of layer 𝑙 in neural network model;

𝐵, radial distance base;

𝐷𝑖𝑠𝑡, distance function, by default Euclidean.

output: list of referential radial distances.

1 initialize 𝑅 ∶= empty list;

2 forall input 𝑥 in 𝑋 do

3 get activation 𝑍 

𝑙 (𝑥) for input 𝑥; 
4 compute 𝐷𝑖𝑠𝑡(𝑍 

𝑙 (𝑥), 𝐵), the distance from activation vector

to base vector; 

5 append 𝐷𝑖𝑠𝑡(𝑍 

𝑙 (𝑥), 𝐵) to 𝑅;

6 return 𝑅 as the list of referential radial distances.

maximum activations according to threshold percentile 𝛾. Finally, we
set the values which are smaller than the threshold value 𝑡 as 𝑏 = 𝑧 

𝑙
𝑗 

. 

Then return 𝐵 as the radial base. This radial base will help to enlarge

the test power compared to the centroid. In neural network settings, we 

choose different radial bases for different class clusters. Fig. 1 shows the 

relationship between the chosen radial base for the class cluster A and 

features of the other class B. The dot-dashed line represents the radial 

base of Class A. Its high value features are set to be twice the percentile 

(dashed line) of the activation value of Class A features (shaded area in 

color red). As comparison, percentile of Class B features is also shown as 

shaded area in color blue. The method is designed to avoid dependency 

on distribution density. Fewer sample points in minority class do not im-

pact the calculation of radial base and K-S statistics. Thus, the proposed 

method is suitable for imbalanced datasets.

4.3. Computational analysis and limitations of the proposed method

Radial distance is a feature we extracted to represent the original 

data to reduce the storage and computation cost. Since we only choose 

the radial distance feature to represent the data point, in applications 

we only need to compute the distance and store it. We do not need 

to store the whole high-dimensional data sets. In drift detection phase, 

we only compare two batches of one dimensional data sets. The com-

putation cost is low. Compared with multidimensional two sample test 

methods which usually use permutation tests, we can choose K-S test.
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Algorithm 3: Radial distance drift detection (RDDD).

input : 𝑥, new input data sample from test data set or stream,

predicted as a specific class; 

𝑍 

𝑙 , activation of layer 𝑙 in neural network model; 

𝑛, size of the list of testing radial distances; 

𝐵, radial distance base; 

𝐷𝑖𝑠𝑡, distance function, by default Euclidean; 

𝑅, the list of referential radial distances; 

𝑇 , mutable list of testing radial distances, by default 

empty list; 

𝜃, confidence threshold for drift detection, by default 

0.05. 

output: boolean detection result.

1 get activation 𝑍 

𝑙 (𝑥) for input 𝑥; 
2 compute 𝐷𝑖𝑠𝑡(𝑍 

𝑙 (𝑥), 𝐵), the distance from activation vector to

base vector; 

3 append 𝐷𝑖𝑠𝑡(𝑍 

𝑙 (𝑥), 𝐵) to the end of 𝑇 ; 

4 if 𝑙𝑒𝑛𝑔𝑡ℎ(𝑇 ) < 𝑛 then

5 return False, as not enough testing samples;

6 if 𝑙𝑒𝑛𝑔𝑡ℎ(𝑇 ) > 𝑛 then

7 remove one element from the beginning of 𝑇 ;

8 apply Kolmogorov-Smirnov test to 𝑅 and 𝑇 and get P-value

KS(𝑅, 𝑇 ); 
9 if KS(𝑅, 𝑇 ) < 𝜃 then

10 return True (drift);

11 else

12 return False (no drift)

Fig. 1. Radial Base (dot-dashed line) of Class A features. Its high value features 

are set to be twice the percentile (dashed line) of the activation value of Class A 

features (shaded area in color red). As comparison, percentile of Class B features 

is also shown (shaded area in color blue).

Excluding permutation tests will save lots of computation cost. Our 

approach begins with a one-time preprocessing step that converts the 

input data into a suitable one-dimensional representation by computing 

the distance from a radial base. This step has a time complexity of 𝑂(𝑛), 
where n is the number of data points. In the subsequent Kolmogorov-

Smirnov (K-S) test stage, the complexity is 𝑂((𝑛 + 𝑚)𝑙𝑜𝑔(𝑛 + 𝑚)), where 

m is the window size.

Due to our method adding some kind of bias by choosing the location 

of the radial distance base, our method is mainly suitable for drift detec-

tion in neural network situations. In our method the data should have 

the property that it live in a lower dimensional affine space to achieve 

good results. Our method just focuses on the class clusters 𝑃 (𝑋|𝑦). If 
only the class prior changes, we will miss them. In the Section 3.2, we 

know that the data sets extracted from neural networks have two prop-

erties. First, the activated neurons by the same category samples are the 

same. Second, the activated neurons by different categories are different.

Table 1 

Synthetic datasets with coordinate drift.

Data set Initial mean Drift description

𝐷 𝑣 1
(0.9, 0, 0.9) X1-direction drift decrease by 0.1

𝐷 𝑣 2
(0.9, 0, 0.9) X2-direction drift increase by 0.1

𝐷 𝑣 3
(0.9, 0, 0.9) X3-direction drift decrease by 0.1

𝐷 𝑣 4
(0, 0, 0.9) X1-direction drift increase by 0.1

𝐷 𝑣 5
(0, 0, 0.9) X2-direction drift increase by 0.1

𝐷 𝑣 6
(0, 0.9, 0.9) X1-direction drift increase by 0.1

𝐷 𝑣 7
(0, 0.9, 0.9) X2-direction drift decrease by 0.1

These properties ensure the fitness. We could choose a radial base for 

each class cluster to perform concept drift detection. In our method, the 

related features will be given more test power. If the unrelated features 

change more, our method tends to ignore them.

5. Evaluation

In this section, we assess RDDD’s capability to identify drift across 

different deep learning classifiers for synthetic and real world image 

and text data (described in Section 5.1) by analyzing its drift detection 

performance and runtime efficiency (in Section 5.2) against existing drift 

detection methods.

5.1. Experimental settings 

5.1.1. Synthetic datasets

In experiment 1, we test radial distance locality sensitivity. We gener

ate data from a 3D normal distribution with simulated drift by changing 

the mean along different axes. Three batches of data sets 𝐶 1,  

 

𝐶2 

, 𝐶 3 

are 

used as baseline data with fixed means (0.9, 0, 0.9), (0, 0, 0.9), (0, 0.9, 

0.9) and standard deviation 0.001. Seven datasets 𝐷 𝑣𝑖 ,  

𝑖 = 1, 2, … , 7 are

generated where drift is introduced by shifting the mean of 𝐶 1 

, 𝐶 2 

, 𝐶 3 

-

by 0.1 along different axes. They are summarized in Table 1 and also 

shown in Fig. 2.

In experiment 2, we first evaluate our method with a multivariate

normal distribution comprising 15 features. We selected the first seven 

dimensions as the subspace of interest, while the remaining eight di-

mensions served as the subspace to be ignored. One baseline data set, 

was set to 0.9 in the first seven features, while the remaining eight di-

mensions were set to zero. The other baseline data set have zero mean 

in all features. Drift was introduced in only the first seven features at

four levels: 0.004, 0.005, 0.006, and 0.007. The latter eight dimensions 

remained unchanged. The window size was 500, and a total of 100 

drifts were simulated. The data generating random seed was set to 0. We 

also evaluated the method’s accuracy when drift occurred in a different 

seven-dimensional subspace. In this scenario, the first seven dimen-

sions remained unchanged, while the next seven dimensions experienced 

drifts of the same magnitude as in the previous tests.

In experiment 3, we test the efficiency of our method in higher-

dimensional situations. For datasets with higher dimensions (more than 

40 features), the first 20 features are initialized with a mean value of 0.9. 

Concept drift is introduced in these 20 features by shifting their means 

by 0.005 over time. The remaining features (those beyond the first 20) 

have a constant mean of zero and do not experience any drift.

5.1.2. Realworld datasets

For real world data sets in experiment 4, we used MNIST [40], which 

consists of 70000 handwritten digit images. We choose the subset, which 

are labeled “3”. Three image transformations (rotation, saturation loss, 

partial erase) are introduced to simulate concept drifts. In experiment 5 

we used CIFAR10 [41], which contains 60000 32 × 32 color images in 

10 classes. We choose one subset with the class label “car”. We apply 

saturation, blur, erase, and rotate transformations to simulate drifts. In 

experiment 6, we used SST-2 (Stanford Sentiment Treebank) [42], which 

is a widely used benchmark dataset for binary sentiment classification.
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Fig. 2. Sensitivity of radial distance to change in different direction.

It consists of movie reviews from the Rotten Tomatoes platform, where 

each sentence is annotated for sentiment polarity (positive or negative). 

Drift is simulated by introducing negative samples into the positive class 

by 5 %, 7 %, 10 % and 12 %. The window size on data sets is 500. 

We sampled 100 windows from the drifted data sets. The radial base is 

chosen from the baseline data set (reference distribution) and fixed.

5.1.3. The compared methods

We compared our method with existing methods MMD and CM in ex-

periments 2, 3, and 5. For MMD method, we used the RBF kernel. Both 

MMD and CM have 100 permutations used for the permutation test. The 

permutation test p-value for both methods was set to 0.05. The default 

p-value threshold for distinguishing between drifted and non-drifted dis-

tributions is set at 0.05. The MMD and CM parameters are set to the 

default values by the original authors. In experiment 6, we compare our 

method with MMD, CM, LSDD, and K-S [43] in Alibi. For LSDD and K-S 

(in Alibi) methods, we keep the default parameter configuration.

5.2. Drift detection performance evaluation

We test the radial distance locality sensitivity in 3D situation. We 

also compare our method with MMD and CM using a synthetic dataset 

generated from a multivariate normal distribution, where only a sub-

set of features undergoes a mean shift. In this part, we also compare 

our method with MMD and CM in terms of computational efficiency, 

measuring time and memory costs on higher-dimensional datasets. We 

evaluate our method on two benchmark image datasets: MNIST (using 

a simple network architecture) and CIFAR-10 (comparing performance 

across three popular DNNs). Finally, we conduct comparative analysis

against MMD, CM, LSDD, and K-S Detector (in Alibi) on the SST-2 text 

dataset.

5.2.1. Evaluation metrics

We choose activation layers from different network models as the 

inputs. The comparison methods also use the same activation vectors as

inputs. In experiment 1, the amplitude of the fluctuations reflects the

magnitude of change in radial distance when drift occurs, indicating its 

sensitivity to a particular drift direction. In experiments 2–6, the num-

ber of detected drifts served as the metric for accuracy the more drifts 

detected, the higher the accuracy. P-value threshold is set to 0.05 by de-

fault for all methods. We repeated the full process 10 times and obtained 

the average accuracy result value.

5.2.2. (Experiment 1) Radial distance locality sensitivity

We use radial distance to represent the data point. Therefore, we

hope that certain drift in the data can be reflected through changes in 

radial distance in a synchronized manner. Thus, we want radial distance

to be more sensitive to changes in the dimensions we focus on and less

sensitive to changes we wish to ignore. In this experiment, we tested the 

sensitivity of radial distance to drifts in different directions. As shown 

in Fig. 2 (a), baseline data sets 𝐶 1 

, 𝐶 2, 𝐶 3 

are used as reference distri

butions before introducing drift. A fixed radial base point 𝐵 is set to be 

(1, 0, 1), located in the subspace 𝑆1 ,3  

 

spanned by 𝑋 1 

and 𝑋3   

 

. The average

radial distance from the radial base 𝐵 is computed for each data batch. 

-

In Fig. 2 (b), the seven lines correspond to average radial distance (from 

𝐵) changes of seven drift datasets 𝐷  

 

, which we generate by chang𝑣𝑖 

ing the mean separately in directions of X1, X2, X3 with the same drift 

-

amount 0.1. The bottom of each line (baseline) represents no drift occur-

ring, while the top represents drift happening, pushing radial distances 

away from the baseline. We perform the test five times, so there are five 

peaks in the figure. From the Fig. 2, it can be observed that for drifts

parallel to the 𝑆 1,3 

direction (lines V1, V3), the fluctuation amplitude is 

larger, meaning that for the same amount of drift, radial distance is more 

sensitive to changes in these two directions 𝑋 1 

and 𝑋 3 

. Conversely, in 

line V2 it is less sensitive to changes in the perpendicular direction 𝑋 2 

.

Though the orange data set (C2) in Fig. 2(a) is positioned farther from 

the radial base 𝐵 compared to the blue dataset (C1), a similar trend is 

observed. For the green data set (C3), changes in the direction 𝑉 7 don’t 

strongly affect the radial distance as 𝑉 6. This shows our method will 

be sensitive if the change happens in the direction of 𝑋 1 

or 𝑋 3 

. In the 

meantime, it will ignore some amount of change in the direction of 𝑋 2.

5.2.3. (Experiment 2) Synthetic data sets

To examine the impact of the radial base selection when drift occurs 

in a subspace, we evaluate the detection performance of our method us-

ing the same radial base when drifts occur in different subspaces. Two 

baseline datasets are generated. The mean of the first data set is set to 

be (0.9, 0.9, 0.9, 0.9, 0.9, 0.9, 0.9, 0, 0, 0, 0, 0, 0, 0, 0), where the first 

seven features are non-zero. Drifts are intentionally induced by reduc-

ing the means of these seven features by 0.004, 0.005, 0.006, and 0.007, 

respectively, while the remaining eight features remain unchanged. For 

the second data set, the mean vector is initialized as (0, 0, 0, 0, 0, 0, 

0, 0, 0, 0, 0, 0, 0, 0, 0). Drifts are introduced by increasing the means 

of the first seven features by 0.004, 0.005, 0.006, and 0.007, respec-

tively. For both datasets, the radial base is fixed at (1, 1, 1, 1, 1, 1, 1, 

0, 0, 0, 0, 0, 0, 0, 0), emphasizing the first seven features while ignor-

ing the others. Using the same radial base, we also tested the method 

when drift occurred in a different seven-dimensional subspace. The first 

seven dimensions remained unchanged, while the next seven dimensions 

underwent the same magnitude of drift.

The results are depicted in Fig. 3(a) and (b). As the quantity of change 

increases, the accuracy of all three methods increases. The detection 

accuracy here is the number of detected drifts out of the 100 already 

known drifts. Our method outperforms the other two methods in drift 

detection accuracy. In contrast, when keeping the first seven features the
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Fig. 3. Accuracy evaluation on synthetic data set.

same, the change occurs in other 7 dimensions. The radial base remains 

the same as above. That is the situation where the radial distance base 

is not in the subspace in which the drift occurs. In that situation, our 

method achieved lower detection rates than the other two. The results 

are shown in Fig. 3(c). Our method is a biased method. Thus, we can 

adjust the sensitivity to changes in different feature spaces by changing 

the choice of the radial distance base. We can achieve higher accuracy 

during tests in the drifts of the features we aim to focus on.

5.2.4. (Experiment 3) Efficiency in higher-dimensional situations

We also test the capability of our method in higher dimensional 

situations. We compare the accuracy, computation time and memory 

cost when the dimension is 20, 40, 60, and 80 separately. As shown 

in Fig. 4, our method outperforms the other two methods in accuracy 

in high dimensional situations. Besides, our method is very efficient in 

terms of time and memory cost compared with MMD and CM. The re-

sults are listed in Tables 2 and 3. The running times are recorded as the

Fig. 4. Accuracy evaluation on high dimension synthetic data set.

Table 2 

Running time cost.

Dim CM(s) RDDD(s) MMD(s)

20 10.5 0.5 22.6

40 12.8 0.5 23

60 13.2 0.6 23.6

80 13.4 0.7 24.3

Table 3 

Memory cost.

Dim CM RDDD MMD

20 172789760 170369024 183304192

40 173645824 170774528 184774656

60 174854144 170844160 189812736

80 178028544 171114496 193384448

Fig. 5. Samples from the transformed MNIST data sets.

running times of 100 tests. Our method uses far less time resources than 

the other two methods. CM is faster than MMD. The running times are 

obtained in a server environment with Intel Xeon 2.40 GHz CPU, 256GB 

memory and 64bit Red Hat Linux Operating System. The programs are 

implemented in Python 2.7 with numpy and scipy library stack.

5.2.5. (Experiment 4) Radial distance sensitivity on image data drifts

We apply our method on a simple convolutional neural network 

(CNN) to detect concept drift in the MNIST image data set. The net-

work contains two convolutional layers, two max pooling layers and 

one fully-connected layer. The kernel size of each convolutional layer 

is 3. The detection is applied on the fully connected layer. Samples 

from the transformed MNIST data sets are shown in Fig. 5. Fig. 6 shows 

the relationships between the image changes and the accuracy degra-

dation. The p-value changes of the KS test are also presented in the 

figure to show the accuracy change at drift alert points. In this exper-

iment, P-value is the output of the KS 2-sample test in Python. When 

the magnitude of the changes increases, the P-value outputs decrease.
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Fig. 6. Results on the MNIST data set.

When the P-value decreases to below 0.05, we consider that the two 

data set come from different distributions. We note that p-value of the 

KS-test decreases as image rotation (or saturation loss, partial erase) in-

creases. Figure (a) shows that when the rotation angle reaches about 

5.5, p-value decreases to 5 percent, at which point concept drifts will be 

triggered. In the meantime, the prediction accuracy decreases to about 

98 %. For human eyes such small rotation is barely distinguishable. In 

Figure (b), P-value dropped below 5 percent when saturation decreases 

by 13.6 percent, and drift detection will trigger alarm. The prediction 

accuracy decreases to 98.7 %. In Figure (c), P-value dropped below 5 

percent when erase size increases to 2.2*2.2. The prediction accuracy 

decreases to 97.5 %. This experiment shows that as the transformation 

degrees increase the p-value of the KS test drops more sharply than the 

accuracy. That means in prediction stage our method will help to detect 

drifts before the performance drops sharply.

5.2.6. (Experiment 5) Drift detection on deep neural networks

We evaluate our methods on some popular deep network architec-

tures, including AlexNet [44], VGG [45] and ResNet50 [46] on CIFAR10. 

These architectures all contain massive parameter spaces and produce 

high-dimensional hidden vectors. These networks are pretrained on 

ImageNet and fine tuned on the CIFAR-10 data set. The AlexNet has

Table 4 

Result of three neural networks on Cifar10 data set.

AlexNet VGG ResNet

RDDD MMD CM RDDD MMD CM RDDD MMD CM

Saturation 0.4 96 91 84 67 54 64 91 100 23

0.3 85 73 65 33 23 34 62 92 6

0.2 58 51 50 9 4 10 40 23 0

Blur 0.5 98 58 89 78 26 75 97 80 6

0.49 94 44 85 64 15 63 97 80 6

0.48 91 35 73 49 7 48 72 18 3

Erase 4*4 100 99 96 100 100 100 99 100 93

4*3 77 74 50 100 97 82 83 82 66

3*3 44 40 9 89 83 66 60 44 49

Rotate 3.3 97 42 92 98 89 99 99 97 29

3.2 94 28 78 85 62 83 76 77 10

3.1 91 29 71 77 42 71 68 83 1

Table 5 

Detection performance on text data sets.

Data set CM RDDD MMD LSDD K-S(Alibi)

5 % negative samples 37 24 27 23 31

7 % negative samples 55 39 47 37 45

10 % negative samples 70 69 76 60 61

12 % negative samples 89 97 93 74 80

Running time 11 m 0.2 s 2m39s 7.9 s 1m36s

eight layers, consisting of five convolutional layers and 3 fully connected 

layers followed by ReLU activation in each of these layers except for the 

output layer. We chose the feature activations from the ReLU activa-

tion layer after the second fully connected layer, which has about two 

thousand features. VGG is one of the most popular image recognition 

architectures. It consists of 13 convolutional layers and 5 maxpool-

ing layers. We chose the feature activations from layer 44 AvgPool2d, 

which has 512 features. The ResNet has 48 convolutional layers, one

MaxPool layer, and one average pool layer. We chose the outputs of the

last Bottleneck, which has 2048 features. The results are presented in 

Table 4. As shown in the table, for the four kinds of drifts (Saturation, 

Blur, Erase, Rotate) our method (RDDD) outperforms the other two 

methods in most of settings. For the ResNet network, MMD has similar 

accuracy to our method. However, when the amount of change is small, 

our method is more sensitive to small drifts than MMD. We also found 

that change detection methods behave differently for different change 

types. In the Saturation and Erase situations, the MMD drift detection 

method performs better than CM. However, it achieves less accuracy in 

the Blur and Rotation change detection processes.

5.2.7. (Experiment 6) Drift detection performance on text data sets

We utilize the pretrained ’DistilBertForSequenceClassification’ model 

from Hugging Face, extracting the outputs from its pre-classifier layer 

with 768 output features. In this experiment, we compared our method 

with four existing methods, MMD, CM, LSDD, and K-S Detector in Alibi 

[43]. The results are shown in Table 5. The parameters of LSDD and K-S 

Detector in Alibi are set as default in Alibi library. Results in Table 5 

show that our technique achieves better drift detection accuracy than 

previous methods when the new class data exceeds 10 %, and it is at 

least 10 times faster.

6. Conclusion and further study

This work presents an efficient concept drift detection method dedi-

cated to neural network classification settings. In neural network stream 

data mining tasks, input data are usually high dimensional images or 

videos. In literature, concept drift detection methods usually need to
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store much historical data and are over sensitive, which leads to sub-

stantial memory footprint and high computational cost. The proposed 

method is developed to improve the efficiency of drift detection. We in-

troduced the radial base distance as a univariate feature representing 

the original data point. Next, we monitor the univariate radial distance 

distribution. The proposed method demonstrates two advantages over 

alternative solutions: (1) it achieves higher time and memory efficiency 

by using the univariate radial distance feature; (2) it is able to efficiently 

detect concept drift happening in subspace of the entire space through 

choosing the location of the radial distance base. Our next attempt will 

aim to develop adaptive model maintenance algorithms based on the 

concept drift detection results.
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