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ARTICLE INFO ABSTRACT

Communicated by Z. Wang With the advancement of powerful computational hardware in recent years, neural networks, once popular for
machine learning on pre-collected datasets, are becoming applicable for streaming data processing. Stream data
have the characteristics of high velocity, variety and volume. In stream data mining a common challenge is

Keywords:
C o}::ept drift concept drift, which refers to the phenomenon where the statistical properties of the target variable in predictive
Classification tasks change over time. For instance, in image prediction problems, the input facilities may be altered by the

Stream data mining
Neural network

environment or device flaws. The materials generated from them could be distorted, such as blurring, discoloring
or part-missing. Concept drift problem is considered a root cause of performance degradation in machine learning

models on stream data. Traditional concept drift detection methods usually require large amount of historical
data, which leads to substantial memory footprint and high computational cost, and tend to be overly sensitive
to arbitrary distribution changes not related to prediction results. Such limitations are particularly evident in
settings using neural network models, where input data are usually high dimensional images or videos. Aiming
to improve the accuracy and efficiency of concept drift detection in neural network models, we propose a new
concept drift detection method that specifically addresses these limitations and is applicable to general neural
network models. Our method represents the original data with a distance-based statistic, extracted from the layer
outputs of the neural network models, and is able to adjust its sensitivity to input distribution changes based on
their relevance to neural network features. We evaluated our method with popular neural network architectures
on both synthetic and real-world data sets. The results showed our method not only outperforms existing concept
drift methods in accuracy, but is also significantly faster and consumes less resources.

1. Introduction Concept drift is a well-studied research field. Existing approaches
can be categorized into two branches: incremental learning and detec-
tion combined with retraining. Incremental learning algorithms [4] are
widely used in streaming data settings. They use incoming data con-
tinuously to adapt to the data distribution change. Detection and then
retraining is another popular strategy to handle concept drift problems.
They use concept drift detection methods such as [5,6] to monitor the
stability of the incoming data. If a drift alert is triggered, the model will
be retrained with new data set. In this strategy, drift detection methods
can be directly applied to the traditional models.

In the meanwhile, artificial neural networks have undergone tremen-
dous growth in recent years. Many artificial neural network models have
been favorably used in stream applications, such as image recognition,
fraud detection [7], etc. For neural network models, the concept drift
problem is also a significant concern. For example, in image prediction

In the field of machine learning, stream data mining attracts lots of
attention from researchers. Stream data is being generated from multi-
ple applications in many different scenarios, for example, stock market
quotes, outputs from various equipment sensors and social media feeds.
Unlike traditional machine learning problems, stream data mining has
its own characteristics. First, streaming data sources produce informa-
tion continually and at a high rate [1]. The processing system may not
have enough memory to store the endlessly arriving data elements [2].
Second, the underlying distributions of the data streams have potential
changes in unforeseen ways. In literature, this characteristic of evolv-
ing is referred to as concept drift [3], which would likely degrade the
accuracy of models over time. Algorithms designed for streaming data
should be able to adapt to the concept drift in a timely manner while
performing with lower memory and computation costs.
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problems, the input facilities may be altered by the environment or de-
vice flaws. The materials generated from them could be distorted, such
as blurring, discoloring or part-missing. Also, the proportion of input
images containing targets of interest may vary seasonally. In order to
deal with these evolving characteristics without changing the whole
structure of the original models, concept drift detection methods are
advantageous in monitoring the status of the data. When changes are
detected, the weights of the networks should be adjusted to adapt to the
novel information.

In unsupervised settings, traditional concept drift methods, such
as [5,8], cannot achieve a desired effect. They first choose a window
method to divide the data into smaller, manageable segments. Once
the data is divided into batches, the next step is to apply a two-sample
statistical test to compare the distributions between the batches. They
need to store sufficient data to make the test statistically significant. In
the context of neural networks, which usually process images, videos,
and audios, retaining large amounts of data may not be feasible. Some
methods approach this problem using output features of intermediate
or the last layer of the model instead of the original input data, such
as [9,10]. However, in deep neural network models, even these ab-
stract feature representations are still high dimensional data. It will
consume enormous memory to store these historical data. In addition,
existing concept drift detection methods [11,12] treat all features in the
whole feature space equally in terms of their test power. However, in
neural network settings, data from different classes tend to have dif-
ferent subspaces of features. These features should be given more test
power to enhance the detection accuracy, in contrast to other features.
Thus, an efficient concept drift detection method for such problems be-
comes highly desirable, as we need to both avoid over-sensitiveness
induced by irrelevant features and reduce the computation and storage
cost.

Targeting to deal with these challenges in concept drift detection
for the neural network settings, we proposed a method named Radial
Distance Drift Detection (RDDD), aiming to avoid over-sensitive retrain-
ing, while eliminating the need to store high dimensional input data sets.
We use the radial base distance to represent each data point to reduce
the dimensionality of the data. The other advantage of using the radial
distance is that we could adjust the sensitivity to specific features of each
class by modifying the location of the radial base. Data from different
classes tends to activate different groups of neurons in the same layer
of a neural network. So for the features we want to focus on, we choose
higher values for the radial base. This will make the radial distance more
sensitive to changes in those important features. For features we hope
to downplay, we choose the mean values for the radial base. This will
effectively reduce the influence of those less relevant features in the data
representation. This method can be applied to most classification mod-
els with neural network architectures. It only uses the activation of the
neural network layers as input. Therefore the prediction model does not
require extra computational costs. Finally, our method is suitable for
both sudden and gradual drift detection by adjusting the test window
size.

The main contribution of this work is: we propose a radial distance-
based feature for drift detection in neural networks, that can adjust
detection sensitivity based on the feature subspace. Changes within the
target subspace are emphasized, while variations in irrelevant dimen-
sions are suppressed, leading to more reliable detection. Experiments
on two synthetic data sets and three real data sets with 5 neural net-
work architectures demonstrate the competitive performance compared
with existing concept drift methods. The remainder of the paper is orga-
nized as follows. Section 2 reviews the literature on traditional concept
drift strategies for neural network settings. In Section 3, we present
the preliminaries and articulate the problem addressed in this work.
Section 4 introduces the radial distance concept and presents our pro-
posed methodology. Section 5 experimentally evaluates our method on
a variety of data sets. Finally, Section 6 provides conclusions and future
research.
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2. Related work

In this work, we aim to develop an efficient method to detect concept
drifts in neural network scenarios. In this section, we review concept
drift problems, concept drift detection methods, neural networks used
on stream data and concept drift detection in neural network models.
We also review distance-based feature extraction. This work builds upon
distance-based feature extraction methods.

2.1. Concept drift

A key challenge in learning from dynamic data streams is concept
drift, which occurs when the underlying data distribution changes over
time. Formally, concept drift is defined as a change in the joint proba-
bility distribution P(X, y) between input features X and target variable
y over time, i.e., P(X,y) # P, ;(X,y) [3]. Concept drift may lead to
performance degradation in machine learning models if the drift affects
the target concept P(Y | X) and the model fails to adapt. In order to be
responsive to the ever changing stream data, machine learning models
need to either identify when and where the drift occurs or adopt incre-
mental learning to suit the development of a data stream [13]. Handling
concept drift mainly includes concept drift detection and adaptation.
Concept drift detection copes with the problem of identifying the point
where change arises, whereas concept drift adaptation focuses on updat-
ing the models according to new data sets [14]. Machine learning models
can adapt to changing data through several methods: periodic retraining,
retraining combined with drift detection, or incremental learning. Our
review mainly focuses on drift detection, which can be used as an exter-
nal drift detection tool that operates alongside the model. This means
the base learner can retain its own structure while performing the drift
detection.

In supervised settings, in which class labels are available, detection
work is generally performed by monitoring the accuracy degradation
of classifiers. Gama’s popular Drift Detection Method (DDM) [15] fo-
cuses on the number of prediction errors made by the model. DDM is
based on the assumption that the increase in the error rates suggests
that the distribution of the incoming data is unstationary. It relies on
significant changes in error rates to detect drift. Thus, this method is
not sensitive enough to slow gradual drifts. An extension method Early
Drift Detection Method (EDDM) [16] was proposed to improve the drift
detection performance when gradual drifts exist. Unlike methods that
simply count errors, EDDM focuses on the distance between consecutive
misclassifications. This makes it more sensitive to gradual changes in the
data stream. Reactive Drift Detection Method (RDDM) [17] enhances
the accuracy of DDM by periodically removing older instances of stable
concepts. This helps DDM detect concept drift more effectively, espe-
cially in datasets where stable concepts have a large number of instances.
Adaptive Windowing (ADWIN) by Bifet and Gavalda [13] is a variable
window approach with rigorous performance guarantees. It supervises
the mean value of the prediction results based on a sliding window.
The length of the window is updated according to stability of the data
stream. If there is no change, the length will increase. Otherwise, the
window will shrink shorter to drop out the outdated data points. Drift
Detection Methods based on the Hoeffding’s bounds (HDDM) [6] pro-
posed by Frias-Blanco et al. is also a window based method. This method
utilizes Hoeffding’s inequality to establish confidence bounds on the esti-
mated mean of the data within the window. Instead of directly analyzing
the data distribution as in HDDM, Fast Hoeffding Drift Detection Method
(FHDDM) [18] monitors the accuracy of predictions.

In unsupervised settings, detection is usually performed by comput-
ing some predefined distance between two different parts of the stream
data. Dasu [19] proposed a nonparametric detection method based on
the relative entropy. Research [5] investigates the impact of concept
drift on case-base competence and proposed detecting change via com-
petence models. Maximum Mean Discrepancy (MMD) [20] is a powerful
kernel-based method for measuring the dissimilarity between two prob-
ability distributions. MMD leverages the power of kernel methods to
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embed probability distributions into a Reproducing Kernel Hilbert Space
(RKHS). This space allows for measuring the distance between distri-
butions based on their mean embeddings, which are representations of
the distributions in the RKHS. Calculating MMD can be computation-
ally expensive, especially for large datasets. Research [9] employs the
outputs of the neural network as the input to MMD, and achieves bet-
ter results. This approach leverages the feature extraction capabilities
of neural networks to transform complex data into a more manageable
representation, which is then fed into MMD for a more accurate compar-
ison. This method is also nonparametric, but it comes with the trade-off
of increased computational cost, because neural networks often have a
large number of parameters. This method can lead to decreased accuracy
when only the class distribution changes, but the underlying data dis-
tribution remains the same. Some works utilize the distances of learned
representations in deep learning. Research [21] proposes an approach
for detecting changes in graph streams by learning graph embeddings in
deep autoencoders with manifold constraints. Though empirical stud-
ies suggest that activations do lie near nonlinear subspaces, they are
not necessarily a specific well-defined manifold. Deep learning activa-
tions are often analyzed directly in Euclidean space without explicit
manifold constraints. Research [22] uses KS test directly on each fea-
ture of the activation vector from the Variation Autoencoder to detect
anomalous points. Research [23] uses PCA technique to reduce the di-
mension and employs f-distance to compare the distance of distributions
under the multi-Gaussian distribution assumption. The computational
cost of PCA and f-distance is high. With window method, the process still
needs to store high-dimensional data. Finally, these distribution-based
strategies all require performing permutation or bootstrap hypothe-
sis tests to determine the statistical significance of the observed drift.
This adds a significant computational burden to detection process. The
LSDD method [24] is a kernel-based approach for directly estimating
the difference between two probability density functions without going
through density estimation. Compared to other kernel-based methods,
LSDD maintains strong computational efficiency.

2.2. Concept drift handling in neural network settings

Neural networks are inspired by biological neural systems and at-
tempt to model the human brain’s functional style. Human brains can
acquire new knowledge continuously. Artificial neural networks also
should have the ability for continual learning. Draelos [25] proposes
an incremental method by adding new neurons to neural networks.
New neurons are added to identify new information in recently arriving
data. In this method, neural network models adapt directly to chang-
ing data. ExStream [26] is a memory efficient replay-based method.
Instead of storing the entire historical data, it maintains a small, care-
fully selected subset of past data points, called the “replay buffer.” Then
mixture of centroids and the new incoming data were used to update
the parameters. A very fast versatile elliptic basis function neural net-
work (VEBFNN) [27] is designed to learn the data set in one pass based
on the hyperellipsoidal function. The function can be rotated and trans-
lated according to the distribution of the data set. VEBF neural network
is also proposed, in which the number of neurons in the hidden layer
can be automatically updated. Thus, the network continuously adapts
to the distribution of the incoming data stream. This kind of network
only has three layers, and the performance depends upon the initial val-
ues of the parameters. Research [27] proposed evolving granular neural
network (eGNN) in which the fuzzy data streams serve as the input
to the neural network. The size of the granulars can adapt incremen-
tally to incoming data streams. There are also works dedicated to the
deep neural networks for evolving stream data. Research [28] used hy-
brid architecture to provide better performance. The surface agent is
used to adapt to the short term structure, and the deep learning agent
searches for the long term structure of the data. Research [29] learned
data streams with partial labels. This approach utilized the output of
the Deep Belief Network or the Boltzmann machine as the inputs to
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the supervised classifiers. Then the model can be fine-tuned to the new
data streams with the labeled examples. These adaptive learning tech-
niques apply only to specific network structures. A significant constraint
is that techniques developed for one type of network may not be directly
applicable to others.

Deep learning provides a representation of each data point in a
hierarchical manner through multiple transformation layers. More ab-
stract representations are extracted from the less ones of last layer [30].
Thus, concept drift detection methods could also be applied directly
to the outputs of the layers, which may help to identify the source of
change. Research [31] utilized Restricted Boltzmann Machine to ex-
tract features, which are used as the input for the ADWIN detection
method. This method can address the imbalanced class problem, but
it cannot be applied directly to other types of neural network architec-
tures. Research [32] performs multiple forward passes of a given data
instance through the network and analyzes the resulting empirical distri-
bution over the outputs or parameters. This requires significantly more
computation than the prediction process. Monte Carlo Dropout [33,34]
monitors concept drift in neural networks by tracking the error rate.
However, the method cannot be used if the true labels are unavailable.
When true labeled data is unavailable, detecting drifts by monitoring
the performance of the model becomes infeasible. Drift detection is usu-
ally performed by distribution-based methods, which require storing as
much historical data as possible. In neural network settings, the output
of the neural networks is usually of high dimensions. Thus high stor-
age capacity will be required. Feature extraction or reduction can be a
powerful approach to resolve this type of dilemma.

2.3. Feature extraction based on distances

The foundation of this work is distance-based feature extraction,
which is a fundamental technique in machine learning. It involves de-
riving new features from data by calculating various distance measures
between data points or between data points and reference points. This
approach can enhance the performance of modeling tasks, reducing costs
of computation and data storage. Treating distance-based features as
univariate variables also enables the application of certain statistical
tests in machine learning, such as the Kolmogorov-Smirnov (K-S) test.
In literature, some studies extract distance-based features to improve
accuracy. Tsai and Lin [35] proposed a method for intrusion detection
based on the new features extracted as triangle area formed by the data
point and the class cluster centers. They evaluated the approach on
the KDD-cup99 data set [36], and provided higher accuracy and the
lower false alarm rate. Since data are represented by a number of tri-
angle areas, if the number of the cluster centers is large, their approach
will lead to the curse of dimensionality [37]. Research [38] proposed a
feature extraction method using Delaunay triangulation to achieve bet-
ter discrimination power for the task of online handwritten character
recognition. The topological structure is reflected in the new feature
space. They achieved good results in the HMM-based recognition sys-
tem. Research [39] introduced a novel distance-based feature extraction
method. They utilized the discrimination ability of the centroid for each
cluster. The original feature space is concatenated with the newly ex-
tracted distance features. Classification experiments based on the Naive
Bayes, kNN, and SVM algorithms show classification improvements for
most of the data sets. However, this method cannot achieve the same
good results in the image related datasets which usually come with high
dimensions.

3. Preliminary

In this section, we first introduce the formal definitions of concept
drift in data stream mining. Next, we justify our approach of applying
detection on P(X | y) (monitoring features per class). Finally, we an-
alyze the properties of neural network hidden layer outputs and their
relevance to our class-conditional distribution drift detection.
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3.1. Data stream mining and concept drift definition

Data stream is defined as a sequence (s, s,, ..., s;,...), i € N* of in-
stances that are generated continuously. s; denotes the ith sample. The
size of the sequence may be infinite. In unsupervised cases, each datum
s; = [x!,x2,...,x4] is a d-dimensional vector (s; € RY). x{ represents the
jth feature of the ith sample s;. In supervised classification tasks, the
element is s; = [x},x2,...,x¢, 1. The last component y, is the assigned
class label and takes values from a finite set of classes Y = {c¢;, ¢y, ..., ¢, }-
m € N* is a finite number. In a probabilistic setting, the observation s;
can be considered as a pair of random variables (X, y;) drawn from the
sample space S ¢ R x Rl. X, =[x}, x?,...,x?] takes values in X c RY,
y; € Y c RL. In supervised classification case, the classifier f : X — Y,
which is trained on the data set {(X;, y;)}]_,, approximates the true data-
generating process P(X,y). The goal is to minimize the probability of
misclassification: P(f(X; {(X;,y)}_,) # y;) for new data points (X, y;),
which are drawn from the same distribution P(X, y). f(X;; {(X;,y)}_})
is the classifier’s prediction for X, conditioned on the training data set
{(Xi»Yf)}7:| .

In real world settings, the underlying generating process P(X, y) may
change over time. Formally, we say that concept drift occurs if: 3 time
1), 1y, such that P (X,y) # P, (X, ). The evolution may occur in two
ways: change originates from the probability of observing X or from the
conditional probability of observing y given X, denoted as P(y | X). If
the change occurs only in P(X), this kind of drift is referred to as virtual
drift. Change which only happens in P(y | X) is referred to as real drift.
If the posterior P(y | X) changes after the model is deployed, the model’s
predictions may become less accurate over time, leading to higher error
rates.When true labels are available, tracking error rate (misclassifica-
tion rate) is an effective way to detect model performance degradation
caused by data drift. When true labels are not available, practitioners
typically monitor drifts in the input feature distribution P(X). Though it
is not a perfect proxy for actual performance degradation, this approach
can be served as a practical early warning system. Two sample test meth-
ods are usually used for P(X) monitoring to test whether two batches of
data sets (for example, {X;}]_, {X; }[2:: +1) are from the same distribu-
tion. If the test results are significant, it is considered that concept drift
has occurred.

There are two critical limitations of monitoring P(X). First, in high
dimensional spaces two-sample tests lose statistical power. Second,
when class ratio (prior probability P(y)) changes, two-sample tests on
P(X) will flag drift, but model performance may not degrade if the de-
cision boundary remains valid. Instead of considering the overall P(x),
a more efficient way to detect concept drift that actually impacts model
performance is focusing on the class-conditional distributions P(X | ¢;).
We assume that if P(X | ¢,) changes, the decision boundary may be-
come invalid, leading to real performance degradation. Then the model
needs to be retrained to adapt to the new concept. For each class ¢, we
compare samples {X,* 1} ~ P, ,,,(X | ¢,) and { XX } ~ P, (X | ¢;). We
supervise every class separately in the meantime. This method will also
be more suitable to deal with class imbalanced classification problems,
in which case the majority class will overwhelm the minority class. In
practice, what our method used to test is P(x | ' = ¢;), where )/ is the
predicted label of the model, which is available without extra cost.

3.2. Properties of hidden layers’ outputs

The jth node in the hidden layer Z denoted as z; can be computed
by z ; = f(w-x+b). w represents weights, b is the bias vector, and f is the
activation function. The Tanh, Logistic and ReLU functions are common
choices for activation functions. In many practical neural networks (es-
pecially efficiency-focused ones), a significant fraction of neuron outputs
are zero. In well-trained classifiers, neurons fire selectively for specific
classes. The network learns to separate dissimilar classes in activation
space, so the activations of each class tend to cluster in lower dimen-
sional affine subspaces within the high-dimensional activation space.
We choose the vector Z to represent the original input data X. For each
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class ¢;, comparing activation samples {Zfrkain} and {Z,cek”} will improve
computational efficiency and accuracy compared to a global comparison
across all classes. For a given class c;, certain neurons (dimensions) in
the network’s representation Z have high activations, while others are
near zero. These high-activation neurons are important for discriminat-
ing ¢;. In our method, we aim to adjust the test power to the dimensions
with higher values and ignore the other features that are less relevant to
the corresponding class cluster. We accomplish this by introducing the

concept of radial distance in the next section.

4. Methodology

In this section, we first present a distance feature called radial dis-
tance and its properties. Then, we propose our drift detection method
for neural network models based on the radial distance feature.

4.1. Radial distance as a feature

In high dimensional situations, reducing the dimension of data sets
has two benefits. First, rather than storing the whole set of features,
we need only store part of the whole set, this will help save memory
and computational resources. Second, removing the redundant features
can also improve accuracy of models. In our method, we only extract
one distance feature to use as the input of the detection algorithm. This
will lead to a very high efficiency. The distance feature we have chosen
should have more test power for the original features that are more re-
lated to the corresponding class cluster. Instead of choosing the centroid
of the data sets, we choose some fixed point with high feature values
in some features and mean values in other features. For the features we
want to mainly focus on, we choose higher values for the radial base.
For features we want to ignore, we choose the mean values for the radial
base. The following will explain why we choose radial base in that way.

Definition 1 (Radial Distance and Radial Base). For a data set {s; =
(xl,x2,...,x%)}, there is a fixed point B = (x!,x2,...,x%), the radial
distance of s; is d(s;) = ||s; — B||. The point B is the radial base.

In this work, we use the Euclidean distance function. For some n
dimensional data point X = (x,x,, ..., x,), the Euclidean distance from
radial base B is:

d(X) = IX = Bl = 4| X G = b eh)
i=k

B = (b;,b,,...,b,) is the chosen radial base. d(X) is a multivariable
scalar function, which is differentiable. So the directional derivative ex-
ists along any unit vector v. V,d(X) = Vd(X) - v. For the basis vector of
Euclidean space v; = (0, ...,0,1,0,...,0)

b

Xi = b; _ 1 .
\/ZL/{ (x = be)? \/ZZ=1 (Xk_bk )2

vV, dX) =Vd(X) - v; = 2)

x;—b;

From the above equation, we can infer that if the x; — b, is larger
relative to the other features x, — b, the directional derivative along
the direction v; (V,, d(X)) will be larger. That means the radial distance
feature d will be more sensitive to the change of x;. So we can adjust the
location of the radial base to modify the sensitivity of d with respect to
x;. We illustrated this property in the example of (Experiment 1) 5.2.2.

4.2. Drift detection in artificial neural network models

In classification tasks, artificial neural networks learn activation vec-
tors in a way that is driven by the classification objective. During the
training process, neural network models help to filter out irrelevant
features. Testing on the intermediate layers will give us the benefit
of focusing on the task-relevant features, ignoring redundant or noisy
ones. Due to their layered architecture, networks can automatically learn
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hierarchical representations of data, from simple low-level features to
complex high-level abstractions. In this paper, the input layer does not
count in the number of layers in a neural network. The output layer is
more constricted than hidden layers in structure. It usually represents
the classification results. Many features will disappear in this layer. Our
detection method can be applied to the intermediate layer activations
generated during the reference stage.

In practice, we hope to avoid alerting concept drifts, which stem
from the irrelevant features. A network has L layers, with g, g,, ..., g1,
neurons in each layer respectively. The output of each layer / (where
I € {1,2,...,L}) is represented as a vector Z' with dimensionality g,.
Our method will select one of the intermediate layer outputs Z!, Z2, ...,
Z" as the input. Each layer’s output Z' captures a hierarchical repre-
sentation of the input data. In contrast to the original input data, testing
on Z' filters out irrelevant noise and focuses on task-relevant features.
By monitoring drift in Z' instead of raw input data, the algorithm can
ignore nuisance variations. This is efficient because the algorithm could
avoid some retraining work triggered by irrelevant feature variations.
Drift detection method used on the outputs of different layers will also
help us to find out different sources of concept drift.

In our method, the data points will be stored in the form of a set of
radial distances to save memory, since distances are only real numbers
with one dimension. By adjusting the location of the radial base we can
adjust the discrimination power of the radial distances for different sub-
spaces of the data sets. For a given data set {s,‘."‘} with predicted class
label ¢,, we choose the layer Z' (sf" ). Distances between Z' (sf") and the
radial distance base Bt are computed, denoted as distf". We use distfk
to represent the data point sfk. The new data set {distif } is generated
from the original data set {sf" } during the referencing stage. Algorithm 2
provides the process of generating referential radial distances initializa-
tion. For the next batch of data set {t;"} with the same predicted class
label ¢, we perform the same process, computing corresponding dis-
tances {distf/f‘ }. These distances also serve as compact, one-dimensional

representations of the original data set {r*}. For drift detection, we only

need to choose methods suitable for one dimensional settings. We can

choose K-S test. If the distributions of data set {dist;*} and {distf"} are
i j

different, we consider the two original data sets {s;*} and {t;"} to come
from two different distributions. A drift will be triggered. Algorithm 3
provides our detection method using the outputs of a given hidden
layer.

To obtain the radial distance of a set of layer activations {Z‘.I’ck}
(output of the /th layer with class label ¢,), we should choose a suit-
able radial base vector B = (b, b,,... 2bg) for the data set {Zl.l’c"}. In
practice, we could choose the radial base as follows:

BUZ ), 7)
< { Amax(zi’;" ), if max(zi’;k ) >percentile(max(zi’;" 7)) >
_ i R i E j i k 3)

Ley

o otherwise

zi’;“ is the activation of neuron j in layer / for the ith input of class c,. For

each neuron j, max(z, IC.“) is the maximum activation across all inputs i of
i ;

C,

class ¢;. 1t = percentile(mjdx(zj'jk, 7)) is the y — percentile of all per-neuron
4 TR

maximum active:tions. y is the threshold percentile of layer activation
values (by default 0.5) to split activations into highly activated neurons
and weakly activated neurons. A is a positive scaling integer, by default
2. For each neuron j, if maximum activation ml_alx(zll.:;") is lower than 7,
Leg
ij
is higher than 1, b; = /lm’ax(zij."). Algorithm 1 presents the radial base

b; is set to be zi‘;k (mean value of the {z.°*}). If maximum activation

initialization process. Lines 1-6 get the activations of some predefined
layer for each input in X (training data set of a given class). Then we
find the maximum of each activation and set b = max(zj,(x)). After that,
lines 7-9 find threshold activation value ¢ of all values in per-neuron
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Algorithm 1: Radial distance base initialization.

input : X, training data set of a specific class;
Z!, activation of layer / in neural network model;
7, threshold percentile of layer activation values, by
default 0.5.

output: radial distance base vector.

1 forall input x in X do
2 get layer activations Z'(x) for input x;

3 foreach neuron j in layer L do
4 find max(zj.(x)) as the maximum activation value of
neuron j given all x;

5 initialize vector B as radial distance base

6 B ={neuron j in I: /lmax(zj.(x))};

7 find threshold activation value ¢ of all values in B according to
threshold percentile y;

8 foreach value b in B do

9 if b < ¢ then

10 L set b :=z§;

11 return B as the radial distance base.

Algorithm 2: Referential radial distances initialization.

input : X, referential data set of a specific class;
Z!, activation of layer / in neural network model;
B, radial distance base;
Dist, distance function, by default Euclidean.
output: list of referential radial distances.

-

initialize R := empty list;

2 forall input x in X do

3 get activation Z/(x) for input x;

4 compute Dist(Z!(x), B), the distance from activation vector
to base vector;

5 | append Dist(Z'(x), B) to R;

6 return R as the list of referential radial distances.

maximum activations according to threshold percentile y. Finally, we

set the values which are smaller than the threshold value ¢ as b = z'.
Then return B as the radial base. This radial base will help to enlarge
the test power compared to the centroid. In neural network settings, we
choose different radial bases for different class clusters. Fig. 1 shows the
relationship between the chosen radial base for the class cluster A and
features of the other class B. The dot-dashed line represents the radial
base of Class A. Its high value features are set to be twice the percentile
(dashed line) of the activation value of Class A features (shaded area in
color red). As comparison, percentile of Class B features is also shown as
shaded area in color blue. The method is designed to avoid dependency
on distribution density. Fewer sample points in minority class do not im-
pact the calculation of radial base and K-S statistics. Thus, the proposed
method is suitable for imbalanced datasets.

4.3. Computational analysis and limitations of the proposed method

Radial distance is a feature we extracted to represent the original
data to reduce the storage and computation cost. Since we only choose
the radial distance feature to represent the data point, in applications
we only need to compute the distance and store it. We do not need
to store the whole high-dimensional data sets. In drift detection phase,
we only compare two batches of one dimensional data sets. The com-
putation cost is low. Compared with multidimensional two sample test
methods which usually use permutation tests, we can choose K-S test.
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Algorithm 3: Radial distance drift detection (RDDD).
input

: x, new input data sample from test data set or stream,
predicted as a specific class;
Z', activation of layer / in neural network model;
n, size of the list of testing radial distances;
B, radial distance base;
Dist, distance function, by default Euclidean;
R, the list of referential radial distances;
T, mutable list of testing radial distances, by default
empty list;
0, confidence threshold for drift detection, by default
0.05.
output: boolean detection result.

get activation Z'(x) for input x;

compute Dist(Z!(x), B), the distance from activation vector to
base vector;

append Dist(Z'(x), B) to the end of T;

if length(T) < n then
L return False, as not enough testing samples;

N

[

=)

if length(T) > n then
L remove one element from the beginning of T’;

N

@

apply Kolmogorov-Smirnov test to R and T and get P-value
KS(R,T);

if KS(R,T) < 6 then

10 L return True (drift);

-

11 else
12 L return False (no drift)

Class B Features

Activation
Radial Base of Class A (Higher value Features)
2 X Y | — b 1 e 4 e 8 ,
i
Drift of i
Class A i Drift of
i Class B
Percentile f--------=--=-ommemmee o3 :
of Class A NN Percentile
Y i of Class B
e
i
i

Radial Base of Class A (Lower value Features)
Features

Fig. 1. Radial Base (dot-dashed line) of Class A features. Its high value features
are set to be twice the percentile (dashed line) of the activation value of Class A
features (shaded area in color red). As comparison, percentile of Class B features
is also shown (shaded area in color blue).

Excluding permutation tests will save lots of computation cost. Our
approach begins with a one-time preprocessing step that converts the
input data into a suitable one-dimensional representation by computing
the distance from a radial base. This step has a time complexity of O(n),
where n is the number of data points. In the subsequent Kolmogorov-
Smirnov (K-S) test stage, the complexity is O((n + m)log(n + m)), where
m is the window size.

Due to our method adding some kind of bias by choosing the location
of the radial distance base, our method is mainly suitable for drift detec-
tion in neural network situations. In our method the data should have
the property that it live in a lower dimensional affine space to achieve
good results. Our method just focuses on the class clusters P(X|y). If
only the class prior changes, we will miss them. In the Section 3.2, we
know that the data sets extracted from neural networks have two prop-
erties. First, the activated neurons by the same category samples are the
same. Second, the activated neurons by different categories are different.
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Table 1
Synthetic datasets with coordinate drift.

Data set Initial mean Drift description

D,,l (0.9, 0, 0.9) X1-direction drift decrease by 0.1
D, (0.9, 0,0.9) X2-direction drift increase by 0.1
D, (0.9, 0, 0.9) X3-direction drift decrease by 0.1
D,,4 (0, 0, 0.9) X1-direction drift increase by 0.1
D, (0, 0, 0.9) X2-direction drift increase by 0.1
D, (0, 0.9, 0.9) X1-direction drift increase by 0.1
D, (0, 0.9, 0.9) X2-direction drift decrease by 0.1

These properties ensure the fitness. We could choose a radial base for
each class cluster to perform concept drift detection. In our method, the
related features will be given more test power. If the unrelated features
change more, our method tends to ignore them.

5. Evaluation

In this section, we assess RDDD’s capability to identify drift across
different deep learning classifiers for synthetic and real world image
and text data (described in Section 5.1) by analyzing its drift detection
performance and runtime efficiency (in Section 5.2) against existing drift
detection methods.

5.1. Experimental settings

5.1.1. Synthetic datasets

In experiment 1, we test radial distance locality sensitivity. We gener-
ate data from a 3D normal distribution with simulated drift by changing
the mean along different axes. Three batches of data sets C,, C,, C; are
used as baseline data with fixed means (0.9, 0, 0.9), (0, 0, 0.9), (0, 0.9,
0.9) and standard deviation 0.001. Seven datasets DU,, i=1,2,...,7 are
generated where drift is introduced by shifting the mean of C;, C,, C3
by 0.1 along different axes. They are summarized in Table 1 and also
shown in Fig. 2.

In experiment 2, we first evaluate our method with a multivariate
normal distribution comprising 15 features. We selected the first seven
dimensions as the subspace of interest, while the remaining eight di-
mensions served as the subspace to be ignored. One baseline data set,
was set to 0.9 in the first seven features, while the remaining eight di-
mensions were set to zero. The other baseline data set have zero mean
in all features. Drift was introduced in only the first seven features at
four levels: 0.004, 0.005, 0.006, and 0.007. The latter eight dimensions
remained unchanged. The window size was 500, and a total of 100
drifts were simulated. The data generating random seed was set to 0. We
also evaluated the method’s accuracy when drift occurred in a different
seven-dimensional subspace. In this scenario, the first seven dimen-
sions remained unchanged, while the next seven dimensions experienced
drifts of the same magnitude as in the previous tests.

In experiment 3, we test the efficiency of our method in higher-
dimensional situations. For datasets with higher dimensions (more than
40 features), the first 20 features are initialized with a mean value of 0.9.
Concept drift is introduced in these 20 features by shifting their means
by 0.005 over time. The remaining features (those beyond the first 20)
have a constant mean of zero and do not experience any drift.

5.1.2. Realworld datasets

For real world data sets in experiment 4, we used MNIST [40], which
consists of 70000 handwritten digit images. We choose the subset, which
are labeled “3”. Three image transformations (rotation, saturation loss,
partial erase) are introduced to simulate concept drifts. In experiment 5
we used CIFAR10 [41], which contains 60000 32 x 32 color images in
10 classes. We choose one subset with the class label “car”. We apply
saturation, blur, erase, and rotate transformations to simulate drifts. In
experiment 6, we used SST-2 (Stanford Sentiment Treebank) [42], which
is a widely used benchmark dataset for binary sentiment classification.
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V1: X1 decrease
V2: X2 increase
V3: X3 decrease
V4: X1 increase X3
V5: X2 increase
V6: X1 increase
V7: X2 decrease

C2: mean=(0, 0, 0.9)

/ v\

V5

_2:®B=(1,0,1)
o

I c1: mean=(0.9, 0, 0.9)

C3: mean=(0.0, 0.9, 0.9)

X2

(a) Blue data set are generated from the 3d normal distribution with mean (0.9,0,0.9) and standard
deviation 0.001. Radial distance base B = (1,0, 1) locates in the subspace S1 3 spanned by @1 and
x3. Three data sets drift in the directions of arrows V; (i = 1,2,3,4,5,6,7) with the same amount 0.1

(b) For the same amount of change in different features. The radial distances from radial distance
base B = (1,0, 1) are much more sensitive to change in the direction x; or z3. It ignores some
amount of change in the direction of x3.

Fig. 2. Sensitivity of radial distance to change in different direction.

It consists of movie reviews from the Rotten Tomatoes platform, where
each sentence is annotated for sentiment polarity (positive or negative).
Drift is simulated by introducing negative samples into the positive class
by 5 %, 7 %, 10 % and 12 %. The window size on data sets is 500.
We sampled 100 windows from the drifted data sets. The radial base is
chosen from the baseline data set (reference distribution) and fixed.

5.1.3. The compared methods

We compared our method with existing methods MMD and CM in ex-
periments 2, 3, and 5. For MMD method, we used the RBF kernel. Both
MMD and CM have 100 permutations used for the permutation test. The
permutation test p-value for both methods was set to 0.05. The default
p-value threshold for distinguishing between drifted and non-drifted dis-
tributions is set at 0.05. The MMD and CM parameters are set to the
default values by the original authors. In experiment 6, we compare our
method with MMD, CM, LSDD, and K-S [43] in Alibi. For LSDD and K-S
(in Alibi) methods, we keep the default parameter configuration.

5.2. Drift detection performance evaluation

We test the radial distance locality sensitivity in 3D situation. We
also compare our method with MMD and CM using a synthetic dataset
generated from a multivariate normal distribution, where only a sub-
set of features undergoes a mean shift. In this part, we also compare
our method with MMD and CM in terms of computational efficiency,
measuring time and memory costs on higher-dimensional datasets. We
evaluate our method on two benchmark image datasets: MNIST (using
a simple network architecture) and CIFAR-10 (comparing performance
across three popular DNNs). Finally, we conduct comparative analysis
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against MMD, CM, LSDD, and K-S Detector (in Alibi) on the SST-2 text
dataset.

5.2.1. Evaluation metrics

We choose activation layers from different network models as the
inputs. The comparison methods also use the same activation vectors as
inputs. In experiment 1, the amplitude of the fluctuations reflects the
magnitude of change in radial distance when drift occurs, indicating its
sensitivity to a particular drift direction. In experiments 2-6, the num-
ber of detected drifts served as the metric for accuracy the more drifts
detected, the higher the accuracy. P-value threshold is set to 0.05 by de-
fault for all methods. We repeated the full process 10 times and obtained
the average accuracy result value.

5.2.2. (Experiment 1) Radial distance locality sensitivity

We use radial distance to represent the data point. Therefore, we
hope that certain drift in the data can be reflected through changes in
radial distance in a synchronized manner. Thus, we want radial distance
to be more sensitive to changes in the dimensions we focus on and less
sensitive to changes we wish to ignore. In this experiment, we tested the
sensitivity of radial distance to drifts in different directions. As shown
in Fig. 2 (a), baseline data sets C;, C,, C; are used as reference distri-
butions before introducing drift. A fixed radial base point B is set to be
(1,0, 1), located in the subspace .5 ; spanned by X; and X;. The average
radial distance from the radial base B is computed for each data batch.
In Fig. 2 (b), the seven lines correspond to average radial distance (from
B) changes of seven drift datasets D, , which we generate by chang-
ing the mean separately in directions of X1, X2, X3 with the same drift
amount 0.1. The bottom of each line (baseline) represents no drift occur-
ring, while the top represents drift happening, pushing radial distances
away from the baseline. We perform the test five times, so there are five
peaks in the figure. From the Fig. 2, it can be observed that for drifts
parallel to the S ; direction (lines V1, V3), the fluctuation amplitude is
larger, meaning that for the same amount of drift, radial distance is more
sensitive to changes in these two directions X; and X;. Conversely, in
line V2 it is less sensitive to changes in the perpendicular direction X,.
Though the orange data set (C2) in Fig. 2(a) is positioned farther from
the radial base B compared to the blue dataset (C1), a similar trend is
observed. For the green data set (C3), changes in the direction V7 don’t
strongly affect the radial distance as V6. This shows our method will
be sensitive if the change happens in the direction of X; or Xj. In the
meantime, it will ignore some amount of change in the direction of X,.

5.2.3. (Experiment 2) Synthetic data sets

To examine the impact of the radial base selection when drift occurs
in a subspace, we evaluate the detection performance of our method us-
ing the same radial base when drifts occur in different subspaces. Two
baseline datasets are generated. The mean of the first data set is set to
be (0.9, 0.9, 0.9, 0.9, 0.9, 0.9, 0.9, 0, 0, 0, 0, 0, 0, 0, 0), where the first
seven features are non-zero. Drifts are intentionally induced by reduc-
ing the means of these seven features by 0.004, 0.005, 0.006, and 0.007,
respectively, while the remaining eight features remain unchanged. For
the second data set, the mean vector is initialized as (0, 0, 0, 0, 0, O,
0,0,0,0,0,0, 0, 0, 0). Drifts are introduced by increasing the means
of the first seven features by 0.004, 0.005, 0.006, and 0.007, respec-
tively. For both datasets, the radial base is fixed at (1, 1, 1, 1, 1, 1, 1,
0,0,0,0,0, 0, 0, 0), emphasizing the first seven features while ignor-
ing the others. Using the same radial base, we also tested the method
when drift occurred in a different seven-dimensional subspace. The first
seven dimensions remained unchanged, while the next seven dimensions
underwent the same magnitude of drift.

The results are depicted in Fig. 3(a) and (b). As the quantity of change
increases, the accuracy of all three methods increases. The detection
accuracy here is the number of detected drifts out of the 100 already
known drifts. Our method outperforms the other two methods in drift
detection accuracy. In contrast, when keeping the first seven features the
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Fig. 3. Accuracy evaluation on synthetic data set.

same, the change occurs in other 7 dimensions. The radial base remains
the same as above. That is the situation where the radial distance base
is not in the subspace in which the drift occurs. In that situation, our
method achieved lower detection rates than the other two. The results
are shown in Fig. 3(c). Our method is a biased method. Thus, we can
adjust the sensitivity to changes in different feature spaces by changing
the choice of the radial distance base. We can achieve higher accuracy
during tests in the drifts of the features we aim to focus on.

5.2.4. (Experiment 3) Efficiency in higher-dimensional situations

We also test the capability of our method in higher dimensional
situations. We compare the accuracy, computation time and memory
cost when the dimension is 20, 40, 60, and 80 separately. As shown
in Fig. 4, our method outperforms the other two methods in accuracy
in high dimensional situations. Besides, our method is very efficient in
terms of time and memory cost compared with MMD and CM. The re-
sults are listed in Tables 2 and 3. The running times are recorded as the
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Fig. 4. Accuracy evaluation on high dimension synthetic data set.

Table 2
Running time cost.
Dim CM(s) RDDD(s) MMD(s)
20 10.5 0.5 22.6
40 12.8 0.5 23
60 13.2 0.6 23.6
80 13.4 0.7 24.3
Table 3
Memory cost.
Dim CM RDDD MMD
20 172789760 170369024 183304192
40 173645824 170774528 184774656
60 174854144 170844160 189812736
80 178028544 171114496 193384448

Original ImageB
Saturation Loss.....-....
Partial Erase

Fig. 5. Samples from the transformed MNIST data sets.

Rotation

running times of 100 tests. Our method uses far less time resources than
the other two methods. CM is faster than MMD. The running times are
obtained in a server environment with Intel Xeon 2.40 GHz CPU, 256GB
memory and 64bit Red Hat Linux Operating System. The programs are
implemented in Python 2.7 with numpy and scipy library stack.

5.2.5. (Experiment 4) Radial distance sensitivity on image data drifts

We apply our method on a simple convolutional neural network
(CNN) to detect concept drift in the MNIST image data set. The net-
work contains two convolutional layers, two max pooling layers and
one fully-connected layer. The kernel size of each convolutional layer
is 3. The detection is applied on the fully connected layer. Samples
from the transformed MNIST data sets are shown in Fig. 5. Fig. 6 shows
the relationships between the image changes and the accuracy degra-
dation. The p-value changes of the KS test are also presented in the
figure to show the accuracy change at drift alert points. In this exper-
iment, P-value is the output of the KS 2-sample test in Python. When
the magnitude of the changes increases, the P-value outputs decrease.
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P-value decreases as image rotation increases.
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P-value decreases as saturation loss increases.
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Fig. 6. Results on the MNIST data set.

When the P-value decreases to below 0.05, we consider that the two
data set come from different distributions. We note that p-value of the
KS-test decreases as image rotation (or saturation loss, partial erase) in-
creases. Figure (a) shows that when the rotation angle reaches about
5.5, p-value decreases to 5 percent, at which point concept drifts will be
triggered. In the meantime, the prediction accuracy decreases to about
98 %. For human eyes such small rotation is barely distinguishable. In
Figure (b), P-value dropped below 5 percent when saturation decreases
by 13.6 percent, and drift detection will trigger alarm. The prediction
accuracy decreases to 98.7 %. In Figure (c), P-value dropped below 5
percent when erase size increases to 2.2*2.2. The prediction accuracy
decreases to 97.5 %. This experiment shows that as the transformation
degrees increase the p-value of the KS test drops more sharply than the
accuracy. That means in prediction stage our method will help to detect
drifts before the performance drops sharply.

5.2.6. (Experiment 5) Drift detection on deep neural networks

We evaluate our methods on some popular deep network architec-
tures, including AlexNet [44], VGG [45] and ResNet50 [46] on CIFAR10.
These architectures all contain massive parameter spaces and produce
high-dimensional hidden vectors. These networks are pretrained on
ImageNet and fine tuned on the CIFAR-10 data set. The AlexNet has

Table 4
Result of three neural networks on Cifar10 data set.
AlexNet VGG ResNet
RDDD MMD CM RDDD MMD CM RDDD MMD CM
Saturation 0.4 96 91 84 67 54 64 91 100 23
03 85 73 65 33 23 34 62 92 6
0.2 58 51 50 9 4 10 40 23 0
Blur 0.5 98 58 89 78 26 75 97 80 6
0.49 94 44 85 64 15 63 97 80 6
0.48 91 35 73 49 7 48 72 18 3
Erase 4*4 100 99 96 100 100 100 99 100 93
4*3 77 74 50 100 97 82 83 82 66
3*3 44 40 9 89 83 66 60 44 49
Rotate 33 97 42 92 98 89 99 99 97 29
32 94 28 78 85 62 83 76 77 10
31 91 29 71 77 42 71 68 83 1
Table 5
Detection performance on text data sets.
Data set CM RDDD MMD LSDD K-S(Alibi)
5 % negative samples 37 24 27 23 31
7 % negative samples 55 39 47 37 45
10 % negative samples 70 69 76 60 61
12 % negative samples 89 97 93 74 80
Running time 11m 0.2s 2m39s 79s 1m36s

eight layers, consisting of five convolutional layers and 3 fully connected
layers followed by ReLU activation in each of these layers except for the
output layer. We chose the feature activations from the ReLU activa-
tion layer after the second fully connected layer, which has about two
thousand features. VGG is one of the most popular image recognition
architectures. It consists of 13 convolutional layers and 5 maxpool-
ing layers. We chose the feature activations from layer 44 AvgPool2d,
which has 512 features. The ResNet has 48 convolutional layers, one
MaxPool layer, and one average pool layer. We chose the outputs of the
last Bottleneck, which has 2048 features. The results are presented in
Table 4. As shown in the table, for the four kinds of drifts (Saturation,
Blur, Erase, Rotate) our method (RDDD) outperforms the other two
methods in most of settings. For the ResNet network, MMD has similar
accuracy to our method. However, when the amount of change is small,
our method is more sensitive to small drifts than MMD. We also found
that change detection methods behave differently for different change
types. In the Saturation and Erase situations, the MMD drift detection
method performs better than CM. However, it achieves less accuracy in
the Blur and Rotation change detection processes.

5.2.7. (Experiment 6) Drift detection performance on text data sets

We utilize the pretrained ’DistilBertForSequenceClassification’ model
from Hugging Face, extracting the outputs from its pre-classifier layer
with 768 output features. In this experiment, we compared our method
with four existing methods, MMD, CM, LSDD, and K-S Detector in Alibi
[43]. The results are shown in Table 5. The parameters of LSDD and K-S
Detector in Alibi are set as default in Alibi library. Results in Table 5
show that our technique achieves better drift detection accuracy than
previous methods when the new class data exceeds 10 %, and it is at
least 10 times faster.

6. Conclusion and further study

This work presents an efficient concept drift detection method dedi-
cated to neural network classification settings. In neural network stream
data mining tasks, input data are usually high dimensional images or
videos. In literature, concept drift detection methods usually need to
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store much historical data and are over sensitive, which leads to sub-
stantial memory footprint and high computational cost. The proposed
method is developed to improve the efficiency of drift detection. We in-
troduced the radial base distance as a univariate feature representing
the original data point. Next, we monitor the univariate radial distance
distribution. The proposed method demonstrates two advantages over
alternative solutions: (1) it achieves higher time and memory efficiency
by using the univariate radial distance feature; (2) it is able to efficiently
detect concept drift happening in subspace of the entire space through
choosing the location of the radial distance base. Our next attempt will
aim to develop adaptive model maintenance algorithms based on the
concept drift detection results.
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