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A B S T R A C T

Accurate forecasting of national CO2 emissions is critical for evidence-based climate policy and for meeting 
commitments such as Australia’s 2050 net-zero target and the United Nations Sustainable Development Goal 13 
(Climate Action). This study implements and evaluates thirteen forecasting approaches, including statistical 
models (ARIMA), machine learning methods (random forest, XGBoost, SVR), kernel methods (GPR), hybrid 
approaches (ELM, ISSA-ELM), deep learning networks (MLP, LSTM, GRU, RNN), and two ensemble models 
(stacking regressor and enhanced stacking regressor), using annual Australian data from 1982 to 2022 within a 
reproducible pipeline. Thirty random seeds ensured robustness for stochastic learners. Ensemble tree methods 
delivered the most accurate and stable predictions: Random Forest achieved mean cross-validation R2 ≈ 0.989 ±
0.003 and RMSE ≈0.018 ± 0.002 and generalized well to unseen 2016–2022 data (R2 

≈ 0.96; RMSE ≈ 2.43 Mt 
CO2). Pairwise significance testing confirmed that Random Forest and stacking significantly outperformed most 
individual learners (p < 0.01). SHAP analysis identified energy productivity, total GHG excluding land-use 
change, total energy consumption, and population as dominant drivers. Scenario experiments show that deter
ministic adjustments yield only modest 2050 reductions (− 0.49 % to − 2.68 %), with population shifts treated as 
exogenous sensitivities, underscoring the need for system-level action to achieve net-zero. Limitations include 
reliance on annual data and exclusion of policy and trade factors. Future work could extend this framework 
through causal inference and hybrid physics-informed machine learning. Building on global advances in emis
sions forecasting, this study contributes a localized, interpretable comparative framework tailored to Australia’s 
emissions profile, addressing a notable gap in national-level forecasting research. This transparent and repro
ducible approach provides evidence-based guidance for model selection and supports policy-relevant discussions 
on national CO2 forecasting.

1. Introduction

Carbon dioxide (CO2) emissions, which account for approximately 
63 % of Australia’s total

greenhouse gas emissions as reported in the quarterly update of 
Australia’s National.

Greenhouse Gas Inventory March 2024, remain a principal driver of 
global climate change.

Accurate and interpretable forecasting of CO2 emissions is crucial to 
support evidence-based policymaking, environmental planning, and 
sustainability strategies. Australia, with one of the highest per capita 
CO2 emission rates globally, faces unique challenges due to its reliance 
on fossil fuels, expansive urban development, and diverse climatic zones 
[1]. In line with international commitments such as the Paris Agree
ment, Australia has pledged to achieve net-zero emissions by 2050, 

aligning with the United Nations Sustainable Development Goal 13 
(Climate Action). This context underscores the importance of devel
oping robust forecasting frameworks that can inform national decar
bonisation pathways.

Machine learning (ML) methods have emerged as powerful tools for 
forecasting emissions, demonstrating superior capabilities over tradi
tional statistical models in capturing nonlinear relationships and com
plex feature interactions [2,3]. Recent studies have expanded ML 
applications beyond national aggregates to urban contexts, identifying 
critical drivers such as transportation activity [4], GDP and energy 
consumption [5], urban density and population growth [7], industrial 
output [17] and climatic variables [18]. The integration of diverse 
datasets, including socio-economic indicators and sensor-based traffic 
data, has further enhanced the granularity and relevance of emissions 
prediction models [7].
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Of the various ML models, ensemble approaches such as random 
forest, gradient boosting, and XGBoost have consistently outperformed 
traditional statistical techniques, particularly in terms of predictive ac
curacy and robustness against overfitting [6,8]. However, while deep 
learning models like long short-term memory networks (LSTM) and 
convolutional neural networks (CNNs) have shown strong performance 
in high-frequency, large-volume datasets, their effectiveness diminishes 
when applied to smaller, coarse-grained datasets such as annual national 
CO2 emissions, as observed in this study and supported by prior research 
[9,10].

Increasingly, model transparency has become as critical as predictive 
performance, particularly for policy-relevant applications. Tools such as 
SHAP (Shapley Additive Explanations) are widely employed to interpret 
complex ML models and reveal the relative influence of input variables 
[4,8]. Feature importance methods based on ensemble trees and inter
pretability frameworks ensure that models provide actionable insights 
into the underlying factors driving emissions, beyond mere predictive 
accuracy.

Despite recent advancements, few studies provide a unified, 
explainable framework comparing a broad spectrum of forecasting 
models from traditional statistical approaches to advanced deep 
learning methods within the Australian context. Most existing studies 
either focus on a single class of models or prioritize predictive accuracy 
without addressing interpretability. Although there has been significant 
global progress, the application of interpretable, machine-learning- 
driven CO2 forecasting specific to Australia remains largely unex
plored. Much of the existing literature concentrates on countries such as 
the United States or China, with limited attention given to Australia’s 
unique economic, geographic, and policy environment [11].

This study addresses this gap by systematically evaluating thirteen 
forecasting models for Australia’s CO2 emissions from 1982 to 2022, 
using national-level datasets from Our World in Data and the Australian 
Energy Statistics. The analysis emphasizes both predictive performance 
and explainability, ensuring that the results provide not only accurate 
forecasts but also actionable insights for policymakers and environ
mental planners. By integrating statistical, machine learning, deep 
learning, and hybrid approaches within a reproducible pipeline, this 
work contributes a transparent comparative framework that supports 
Australia’s decarbonisation strategies and aligns with Australia’s 2050 
net-zero commitments.

2. Literature review and related work

The accurate forecasting of CO2 emissions has been a critical area of 
research in both environmental science and machine learning. Early 
forecasting approaches relied heavily on traditional statistical models 
such as grey models, ARIMA, and SARIMAX, offering interpretability but 
often struggling to capture the nonlinear, multivariate dynamics 
inherent in emissions data [2,6]. Comparative studies have consistently 
demonstrated that ML models, particularly ensemble methods, outper
form statistical models in both predictive accuracy and adaptability [3,
8].

Across the literature, common influencing factors used for emissions 
modelling include GDP, total energy consumption, industrial activity, 
transportation metrics, urban density, population, and weather-related 
variables [5,12]. Open-access socio-economic and environmental data
sets have become increasingly valuable, enabling robust feature selec
tion across diverse geographic scales [4,7]. While urban-focused studies 
highlight real-time, sensor-based traffic emissions as critical drivers [4], 
national-level research similarly confirms that economic and 
energy-related factors remain dominant predictors.

Ensemble learning models, such as random forest, gradient boosting 
machines, and XGBoost, have consistently demonstrated strong perfor
mance by effectively modelling nonlinear relationships and complex 
feature interactions without significant overfitting [3,6]. Deep learning 
models, including multilayer perceptrons, CNNs, and LSTM networks, 

have shown promise particularly in handling large, high-frequency 
datasets [4,5]. However, several studies emphasize that deep models 
require rich temporal or spatial resolution to outperform simpler ML 
techniques, and their advantage diminishes when applied to smaller, 
annual datasets [9,10].

Pre-processing techniques such as normalization, standardization, 
outlier removal, and logarithmic transformation have been widely 
adopted to enhance model performance across multiple studies [5,13,
14,18]. In parallel, feature selection methods, including tree-based 
importance rankings, recursive feature elimination, and ReliefF have 
been instrumental in improving model efficiency and mitigating over
fitting [8,15]. Evaluation frameworks and integrated multi-factor ap
proaches, such as hybrid decomposition models and methodological 
guides for reproducible ML workflows, further enhance interpretability 
and robustness in emissions forecasting [19,20]. Beyond feature engi
neering, several studies have emphasized the importance of robust 
evaluation frameworks. Optimized regression-based ML models for 
energy-related CO2 emissions have been benchmarked using widely 
adopted performance metrics such as MSE, RMSE, R2, MAE, and MAPE 
[21]. Similarly, daily carbon emission prediction studies have employed 
multi-stage feature selection combined with extreme learning machines 
to improve accuracy and reliability [22]. Machine learning has also been 
applied to national-level CO2 forecasting in the United States, further 
demonstrating the global relevance of data-driven approaches and the 
consistency of evaluation practices [23].

Recent trends in the literature highlight the growing importance of 
model interpretability, particularly through SHAP values. Studies 
applying SHAP to ensemble models, such as random forest and XGBoost, 
provide a clearer understanding of feature contributions and foster 
greater trust in model outputs [4,8]. More broadly, explainable artificial 
intelligence (XAI) has been recognized as a powerful tool in renewable 
energy systems, enhancing transparency, accountability, and overall 
model efficacy [24]. The integration of renewable sources into urban 
energy systems has likewise been identified as a critical component of 
sustainable development and long-term emission-reduction strategies 
[25]. In maritime transportation, SHAP and LIME have also been applied 
to predict fuel consumption and identify key operational drivers [26]. 
Collectively, these studies underscore the growing importance of 
explainability across energy and environmental modelling domains. 
These examples highlight the broader relevance of explainable AI in 
energy and environmental modelling.

In the context of CO2 forecasting, SHAP analyses often reveal that 
demographic, economic, and energy-related factors such as GDP [1,5], 
total energy use [5,13], population [7], and industrial output [17] are 
among the most influential factors. While considerable advances have 
been made globally, research specifically tailored to Australia’s emis
sions forecasting remains scarce. Most studies continue to prioritize 
major economies or broader regional analyses, often overlooking Aus
tralia’s unique emission patterns, policy frameworks, and urban infra
structure dynamics [11,16]. Given Australia’s combination of high per 
capita emissions and fossil fuel dependence, localized and interpretable 
modelling approaches are urgently needed.

Global forecasting efforts have also explored metaheuristic algo
rithms, such as in India’s greenhouse gas trajectory modelling [27], 
highlighting methodological diversity but reinforcing the scarcity of 
localized, interpretable approaches tailored to Australia. Recent studies 
have adopted multi-method feature selection techniques to enhance the 
accuracy and interpretability of CO2 emissions forecasting. For instance, 
Spearman correlation and mutual information have been employed to 
detect both linear and nonlinear associations between emissions and 
predictors, while machine-learning-based approaches such as random 
forest and XGBoost provide feature importance scores that reflect 
complex interactions. To further improve model transparency, 
explainable AI tools such as SHAP have been integrated into these 
workflows to quantify the contribution of each input variable [19,20]. 
The combined use of these statistical and machine learning methods 
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offers a comprehensive strategy for identifying influencing factors and 
improving model performance in emissions modelling.

This study addresses key gaps in carbon emissions forecasting by 
conducting one of the few comprehensive, data-driven comparisons of 
statistical, machine learning, deep learning, and hybrid models using 
national-level annual data from 1982 to 2022 in the Australian context. 
It prioritizes not only predictive accuracy but also model interpretability 
by integrating explainable AI techniques, particularly SHAP analysis, 
into random forest and XGBoost models. This dual focus reveals the 
relative importance of influential factors such as population, energy 
supply, and fossil fuel use, and provides actionable insights for envi
ronmental policy and planning. The study also highlights a critical 
limitation: deep learning models underperform on coarse-grained 
annual datasets, reinforcing the value of ensemble methods like 
random forest and stacking regressors as more transparent and reliable 
alternatives for medium-sized datasets.

3. Methodology

This study adopts a structured and rigorous methodology to evaluate 
and compare a diverse set of forecasting models for national CO2 
emissions in Australia. Drawing on annual data from 1982 to 2022, the 
research follows a multi-phase process comprising data collection, 
feature selection, exploratory analysis, data preprocessing, model 
development, hyperparameter tuning, and performance evaluation. 
Thirteen models spanning statistical, machine learning, deep learning, 
and hybrid approaches were implemented, offering a comprehensive 
basis for comparison. The models were trained and validated using 
historical data, with a dedicated test set used to assess generalization on 
unseen records. Emphasis was placed not only on predictive accuracy 
but also on model interpretability, using SHAP analysis to explain the 
contribution of individual factors in tree-based models. All experiments 
were conducted in Python using standard libraries and executed in the 
Google Colab environment, ensuring reproducibility and transparency.

3.1. Data Overview

This study draws on national-level data for Australia spanning the 
years 1982–2022. Two reputable and publicly available sources were 
used: Our World in Data (OWID) for greenhouse gas emissions and 
related environmental metrics, and the Australian Energy Statistics for 
detailed energy usage and production indicators. These datasets offer 
comprehensive, longitudinal coverage of key factors influencing CO2 
emissions across economic, energy, and environmental domains.

A total of 22 factors were selected based on their consistent 
appearance in prior emissions forecasting studies and their documented 
relevance to national CO2 dynamics in Australia and other high emitting 
countries. These include metrics related to energy consumption, fossil 
fuel use, economic output, electricity generation, and population dy
namics. Table 1 provides a summary of these variables, along with their 
units and brief descriptions. Together, they offer a multi-dimensional 
view of the drivers behind Australia’s CO2 emissions and serve as 
input features for all forecasting models developed in this study.

3.2. Exploratory data analysis

Exploratory data analysis has played a foundational role in exam
ining the dynamics between CO2 emissions and their influencing factors. 
A comprehensive analysis was conducted to explore data patterns, 
distributional properties, and relationships among key factors.

Table 2 presents a detailed statistical summary of Australia’s CO2 
emissions from 1982 to 2022, offering valuable insights into historical 
patterns and variability. The mean emission level over the period was 
339.36 million tonnes, while the median was higher at 362.54 million 
tonnes, indicating a left-skewed distribution likely influenced by lower 
values in the earlier years. The standard deviation of 69.47 million 

tonnes reflects notable fluctuations across the decades, particularly in 
recent years, potentially shaped by economic transitions and environ
mental policy changes. A skewness value of − 0.59 suggests a prolonged 
period of increasing emissions followed by more recent stabilization or 
decline. Furthermore, the negative kurtosis (− 1.12) indicates a rela
tively flat distribution, with few extreme values or abrupt changes. 
Emissions ranged from a minimum of 207.65 to a maximum of 415.77 
million tonnes, representing a significant rise over the 40-year period. 
The standard error of 10.85 million tonnes reinforces the reliability of 

Table 1 
Summary of influencing factors with corresponding units and descriptions.

Influencing Factors Unit Description

CO2 emissions Mt CO2 Total carbon dioxide emissions
Total greenhouse gas 

emissions excluding land 
use change

Mt CO2-e Total GHG emissions excluding 
emissions from land use, land-use 
change, and forestry

Gross Domestic Product 
(GDP)

Billion 
AUD

Total market value of goods and 
services produced in Australia

Consumption (Total Energy 
Consumption)

PJ Total energy used in the Australian 
economy across all energy types 
(oil, gas, coal, renewables)

Electricity supply PJ Total electricity supplied
Coal consumption PJ Energy from coal consumption
Gas consumption PJ Energy from natural gas 

consumption
Oil consumption PJ Energy from oil consumption
Transport energy 

consumption
PJ Energy used specifically for 

transport purposes
Energy growth in 

Queensland
PJ Annual growth of energy 

consumption in Queensland
Energy growth in the rest of 

Australia
PJ Annual growth of energy 

consumption in the rest of Australia 
(excluding QLD and NT)

Energy growth in Northern 
Territory

PJ Annual growth of energy 
consumption in Northern Territory

Total generation PJ Total energy generation from all 
sources

Residential energy 
consumption

PJ Energy consumed by the residential 
sector

Commercial energy 
consumption

PJ Energy consumed by the 
commercial sector

Renewable energy PJ Total renewable energy produced 
(including electricity and direct uses 
like firewood and solar hot water)

Renewable energy 
generation

GWh Renewable energy used for 
electricity generation only

Net energy exports PJ Energy exports minus imports
Population growth Million 

people
Change in population over time

Energy intensity GJ per 
million 
AUD

Energy consumed per million AUD 
of GDP

Energy productivity GDP per PJ Economic output produced per unit 
of energy input

Land use change CO2 

emissions
Mt CO2-e CO2 emissions from land use, land- 

use change, and forestry activities
Energy Consumption TWh Total electricity consumption in the 

national electricity market

Table 2 
Descriptive statistics for CO2 emissions from 1982 to 
2022.

Statistic Value

Mean 339.362
Median 362.537
Standard Deviation 69.474
Standard Error 10.850
Kurtosis − 1.121
Skewness − 0.586
Minimum 207.645
Maximum 415.770
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the mean as a central estimate. This statistical profile, as shown in 
Table 2, provides a robust foundation for interpreting long-term emis
sion trends and their potential drivers in the Australian context.

Time-series visualizations in Fig. 1 reveal persistent upward trends in 
emissions, energy use, and GDP, with notable downturns corresponding 
to global events such as the 2008 financial crisis and the COVID-19 
pandemic. Fig. 2, which displays distribution plots, highlights skew
ness in several influencing factors, particularly fossil fuel consumption 
and industrial energy use, underscoring the importance of normalization 
techniques. Fig. 3 presents pairwise scatter plots that illustrate both 
linear and nonlinear relationships between CO2 emissions and influ
encing factors such as energy intensity and transport emissions. These 
findings support the application of both linear and nonlinear modelling 
approaches in subsequent analyses. This combination of statistical and 
visual exploration confirms that economic activity and energy-related 
factors are strongly associated with CO2 emission levels, a relationship 
well-documented in the environmental forecasting literature.

3.3. Data preprocessing

Preprocessing was conducted in Python using Google Colab. Several 
key steps were taken to ensure data quality. 

• Handling missing values: Backward fill was applied, especially 
effective for temporally ordered data.

• Renaming columns: Simplified factor names were adopted for 
clarity.

• Log transformation: Applied to factors such as CO2 emissions, GDP, 
and population to reduce skewness and stabilize variance. As shown 
in Fig. 4, this transformation normalized factor distributions, which 
helps enhance model performance and training stability.

3.4. Model development and evaluation

To build a reliable predictive framework capable of accurately 
modelling CO2 emissions in Australia, this study implemented and 
evaluated a suite of thirteen models spanning machine learning, hybrid, 
statistical, and neural network approaches. The selected models repre
sent a diverse array of architectures from tree-based ensembles to bio
logically inspired neural networks and classical time series baselines 
allowing for a comprehensive assessment of the forecasting models.

Model development and evaluation were based on historical CO2 
emissions data from 1982 to 2022. To ensure robust validation and 
minimize the risk of data leakage, the dataset was split into two parts: 
80 % for training and 20 % for validation using data from 1982 to 2015. 
Each model was run 30 times with different random seeds, and the re
sults were averaged to provide a stable and reproducible performance 
evaluation. A diverse set of machine learning, statistical, deep learning 
and hybrid models was explored during this phase, and their perfor
mance was assessed using established evaluation metrics. Following this 
rigorous evaluation, the best-performing model was selected to forecast 
CO2 emissions for the short-term period from 2016 to 2022 data that was 
deliberately set aside to serve as unseen input to test the model’s fore
casting capability. This evaluation phase helped identify the most 
effective model and revealed areas for improving current approaches to 
reduce forecasting discrepancies. The two-phase design also ensured a 
fair assessment and offered a realistic measure of the model’s ability to 
generalize to future CO2 emission patterns [4]. All experiments were 
implemented in Python within the Google Colab environment, making 
use of libraries such as scikit-learn, XGBoost, Keras, TensorFlow, and 
statsmodels. The following models were implemented, trained, and 
evaluated. 

1. Random forest regressor (RF)
2. XGBoost regressor

3. Stacking regressor combining the best RF and best XGBoost with 
linear regression as final estimator

4. Enhanced stacking regressor combining RF, XGBoost, and sup
port vector regressor (SVR)

5. SVR
6. ARIMA
7. Extreme learning machine (ELM)
8. ISSA-ELM, simulated version using a different hidden layer 

configuration
9. Backpropagation neural network (MLP)

10. Gaussian process regression (GPR)
11. Long short-term memory (LSTM)
12. Recurrent neural network (RNN)
13. Gated recurrent unit (GRU)

All models were tuned to optimize performance and ensure gener
alizability. For tree-based models (RF and XGBoost), hyperparameters 
such as the number of estimators, maximum tree depth, and learning 
rate were explored using grid search. SVR was optimized for kernel type, 
regularization parameter (C), and epsilon parameters. Stacking models 
combined optimized base learners (RF, XGBoost, SVR) with a linear 
regression meta-estimator. MLP were tuned for hidden layer sizes and 
maximum iterations, with fixed learning rate and activation functions. 
Sequence models, including LSTM, GRU, and RNN, were trained using 
early stopping and learning rate reduction to prevent overfitting, with 
fixed layer sizes, batch sizes, and epochs. This systematic approach 
ensured robust and high-performing models across all algorithms.

3.5. Model hyperparameters and structural Characteristics

To ensure transparency and reproducibility, the hyperparameters 
and structural configurations of all thirteen models are summarized in 
Table 3. The settings were chosen to balance model expressiveness with 
the limitations imposed by the modest sample size of annual national 
data. For ensemble methods such as RF and XGBoost, the number of 
estimators and maximum tree depth were selected to avoid overfitting 
while preserving predictive power. Stacking models combined these 
optimized base learners with a linear regression meta-estimator. Neural 
models, including MLP, LSTM, GRU, and RNN, were restricted to rela
tively compact architectures with fixed layer sizes and controlled 
epochs, leveraging early stopping and learning rate adjustments where 
applicable. These architectures were deliberately kept compact to avoid 
overfitting given the modest annual dataset size. Layer sizes were fixed 
based on best practices for small datasets, and training employed early 
stopping rather than extensive tuning to control epochs. The hyper
parameter choices ensure fair and reproducible comparisons across 
model classes.

This table consolidates the hyperparameters used in the repeated 30- 
run analysis. The settings reflect a balance between model expressive
ness and stability, given the modest sample size of annual national 
emissions data.

3.6. Evaluation metrics

All the developed models were evaluated using a set of widely 
adopted performance metrics to ensure a comprehensive assessment of 
forecasting accuracy, namely mean squared error (MSE), root mean 
squared error (RMSE), R-squared (R2), mean absolute error (MAE), 
mean absolute percentage error (MAPE), mean squared log error 
(MSLE), and median absolute error (MedAE). These metrics are 
commonly used in the literature and provide complementary perspec
tives on model performance [14,21,23].

3.7. Assessment of model uncertainty via repeated trials

To account for the inherent randomness in some of the models, each 
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Fig. 1. Time series of 22 economic, demographic, and energy-related variables influencing Australia’s CO2 emissions (1982–2022). Panels show trends across GDP, 
population, CO2 emissions, energy consumption, electricity supply, transport, fossil fuels, renewables, and regional energy growth, providing a multidimensional 
view of Australia’s energy-emissions dynamics for the forecasting models.
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algorithm was trained and evaluated 30 times using different random 
seeds. Reporting the mean and 95 % confidence interval for each metric 
across these runs helps reduce the influence of chance and provides a 
more reliable estimate of model performance.

All repeated trials were conducted within the chronological window 
1982–2015. Random seeds affected only model initialization and 
resampling, so the temporal order of the data was preserved while still 
capturing stochastic variability. This approach ensures that the results 
reflect consistent performance patterns rather than isolated outcomes, 
strengthening the reliability and interpretability of the comparisons 
across models.

3.8. Statistical significance testing

To assess whether observed differences in predictive performance 
are statistically meaningful, pairwise comparisons were conducted using 
two complementary approaches. 

• Paired t-test: A parametric test suitable when the differences be
tween paired observations are approximately normally distributed.

• Wilcoxon signed-rank test: A non-parametric alternative that does 
not assume normality of differences.

Both tests were applied to the RMSE values obtained from the 30 
independent runs. This dual approach ensures that the conclusions are 

Fig. 2. Distributional profiles of 22 economic, demographic, and energy-related variables used in the forecasting framework. Each histogram illustrates the fre
quency and spread of values across indicators such as GDP, population, CO2 emissions, energy consumption, electricity supply, transport, fossil fuels, renewables, and 
regional energy growth. These visualizations support exploratory analysis and provide insight into feature behaviour prior to model development.
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Fig. 3. Scatter plots illustrating the relationships between CO2 emissions and selected economic, demographic, and energy-related variables used in the forecasting 
models. Each panel shows the association between emissions and a key feature, with fitted regression lines highlighting direction and strength of correlation, 
supporting feature relevance assessment and interpretability.
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robust regardless of distributional assumptions. The detailed outcomes 
of these tests are reported in subsection 4.1.5, where statistically sig
nificant and non-significant differences between model performances 
are highlighted, providing a rigorous assessment of relative predictive 
accuracy.

4. Comparative analysis and critical discussion

This section presents the results from all the implemented and 
evaluated forecasting models using both quantitative performance 
metrics and qualitative analyses such as actual vs. predicted 

Fig. 4. Histograms of selected factors before and after log transformation, illustrating the effect on distribution normalization.

Table 3 
Machine learning model architecture and key hyperparameter Configuration.

Model 
Category

Model Name Core Architecture Key Hyperparameters Parameter Description Regularization 
Mechanism

Ensemble/ 
Tree

Random 
Forest

Bagging + Random 
Feature Subsets

n_estimators = 300, max_depth = 10, 
min_samples_split = 2, max_features = ’sqrt’

Number of trees, tree depth, min 
samples to split, feature sampling

Ensemble Averaging

Ensemble/ 
Tree

XGBoost Second-Order Gradient 
Boosting

n_estimators = 100, max_depth = 3, 
learning_rate = 0.05, subsample = 1.0

Learning rate, tree depth, number of 
boosting rounds, subsample fraction

L2 Regularization +
Early Stopping

Ensemble Stacking RF + XGB → Linear 
Regression

"Stacking [RF + XGB] with LinearRegression 
final estimator"

Base learners + meta learner Ensemble Averaging

Ensemble Enhanced 
Stacking

RF + XGB + SVR → 
Linear Regression

"Stacking [RF + XGB + SVR] with 
LinearRegression final estimator"

Base learners + meta learner Ensemble Averaging

Kernel/ 
Linear

SVR Support Vector 
Regression (RBF)

C = 10, epsilon = 0.01, kernel = ’rbf’ Regularization strength, tube size, 
kernel type

L2 Regularization

Time Series ARIMA Autoregressive 
Integrated MA

order=(5,1,0) AR, differencing, MA terms None

Neural 
Network

MLP Multi-Layer Perceptron hidden_layer_sizes=(50,50), max_iter = 500 Number of hidden neurons per layer, 
max training iterations

Weight decay 
(implicitly via solver)

Kernel/ 
Bayesian

GPR Gaussian Process 
Regression

kernel = 3.41**2 * RBF(length_scale = 9.12), 
n_restarts_optimizer = 5

Kernel function, optimizer restarts None

Neural 
Network

ELM Extreme Learning 
Machine

n_hidden = 100, activation = ’tanh’ Number of hidden neurons, activation 
function

None

Neural 
Network

ISSA-ELM Extreme Learning 
Machine + ISSA

n_hidden = 200, activation = ’tanh’ Number of hidden neurons, activation 
function

None

Neural 
Network

LSTM Long Short-Term 
Memory Network

layers = [50,50], optimizer = Adam, loss =
MSE, early_stopping = True

Layer sizes, optimizer, loss function, 
early stopping

Implicit via Early 
Stopping & Adam

Neural 
Network

RNN Simple RNN layers = [50,50], optimizer = Adam, loss =
MSE, early_stopping = True

Layer sizes, optimizer, loss function, 
early stopping

Implicit via Early 
Stopping & Adam

Neural 
Network

GRU Gated Recurrent Unit layers = [50,50], optimizer = Adam, loss =
MSE, early_stopping = True

Layer sizes, optimizer, loss function, 
early stopping

Implicit via Early 
Stopping & Adam

Table 4 
Mean ± 95 % confidence interval of key performance metrics for all forecasting models across 30 independent runs.

Model MSE RMSE R2 MAE MAPE MedAE MSLE

RF 0.0004 ± 0.0001 0.0182 ± 0.0023 0.9890 ± 0.0032 0.0142 ± 0.0017 0.2507 ± 0.0308 0.0118 ± 0.0018 0.0000 ± 0.0000
XGBoost 0.0011 ± 0.0003 0.0315 ± 0.0037 0.9613 ± 0.0149 0.0253 ± 0.0026 0.4425 ± 0.0468 0.0187 ± 0.0024 0.0000 ± 0.0000
Stacking 0.0003 ± 0.0001 0.0159 ± 0.0021 0.9913 ± 0.0026 0.0123 ± 0.0015 0.2160 ± 0.0281 0.0095 ± 0.0014 0.0000 ± 0.0000
Enhanced Stacking 0.0003 ± 0.0001 0.0166 ± 0.0023 0.9910 ± 0.0023 0.0130 ± 0.0018 0.2303 ± 0.0324 0.0100 ± 0.0016 0.0000 ± 0.0000
SVR 0.0012 ± 0.0005 0.0289 ± 0.0066 0.9748 ± 0.0078 0.0198 ± 0.0037 0.3542 ± 0.0694 0.0133 ± 0.0026 0.0000 ± 0.0000
ARIMA 0.0639 ± 0.0089 0.2477 ± 0.0184 − 1.1670 ± 0.6909 0.2189 ± 0.0170 4.7259 ± 0.5190 0.2138 ± 0.0234 0.0014 ± 0.0002
ELM 5.4131 ± 4.9047 1.3434 ± 0.6914 − 111.9307 ± 89.0143 0.7344 ± 0.3558 12.9326 ± 6.1750 0.2651 ± 0.1194 0.0329 ± 0.0218
ISSA-ELM 1.4215 ± 2.2025 0.5515 ± 0.3847 − 22.1546 ± 30.2725 0.2883 ± 0.1661 5.1782 ± 3.0627 0.1149 ± 0.0462 0.0218 ± 0.0212
MLP 0.3803 ± 0.2285 0.4243 ± 0.1629 − 11.0970 ± 6.8079 0.4110 ± 0.1648 7.1203 ± 2.8487 0.4091 ± 0.1662 0.0071 ± 0.0041
GPR 0.0003 ± 0.0002 0.0146 ± 0.0031 0.9907 ± 0.0051 0.0117 ± 0.0024 0.2057 ± 0.0427 0.0091 ± 0.0016 0.0000 ± 0.0000
LSTM 0.0718 ± 0.0168 0.2558 ± 0.0290 − 2.0081 ± 1.2453 0.2313 ± 0.0333 4.0580 ± 0.5699 0.2163 ± 0.0431 0.0015 ± 0.0003
RNN 0.4444 ± 0.7415 0.3499 ± 0.2065 − 6.5571 ± 10.5953 0.2468 ± 0.0848 4.3979 ± 1.5728 0.1839 ± 0.0329 0.0015 ± 0.0003
GRU 0.5663 ± 0.1134 0.7219 ± 0.0774 − 20.9966 ± 10.7309 0.6615 ± 0.0734 11.3746 ± 1.2422 0.6972 ± 0.0788 0.0116 ± 0.0024
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comparisons, feature importance interpretation, and learning curve 
diagnostics.

4.1. Model evaluation and multi-run performance comparison

The predictive performance of all models was evaluated over 30 
independent runs to account for stochastic variability. Each run involved 
training and testing on randomly sampled train–test splits. Key metrics 
MSE, RMSE, R2, MAE, MAPE, MedAE, and MSLE were recorded. Table 4
summarizes the mean values along with 95 % confidence intervals, 
providing a clear assessment of both accuracy and stability.

Tree-based ensembles (random forest [RF], stacking, enhanced 
stacking) and Gaussian process regression (GPR) consistently achieved 
the lowest errors and highest R2 values, with narrow confidence in
tervals across runs. Deep learning architectures (LSTM, GRU, RNN, and 
MLP) exhibited higher variability and occasional extreme predictions, 
reflecting their sensitivity to stochastic effects and the constraints of 
annual data. Single-layer biologically inspired models, such as ELM, 
showed moderate variability, while ISSA-ELM demonstrated improved 
stability.

These results indicate that ensemble and kernel-based methods 
provide robust predictions under repeated trials, whereas neural and 
single-layer models require careful multi-run evaluation to achieve 
reliable performance estimates. Cross-validation metrics in Table 4 were 
computed on log-transformed CO2 emissions to stabilize variance, so all 
reported values are therefore in log units.

4.1.1. Ensemble and hybrid models
RF demonstrated the highest accuracy, achieving the lowest RMSE 

and MSE values. Stacking, which combines RF and XGBoost with a linear 
regression meta-learner, offered comparable accuracy and slightly 
improved stability. Enhanced stacking, which incorporates SVR, main
tained strong performance, though confidence intervals were marginally 
wider. Ensemble models proved most reliable and reproducible across 
30 runs.

4.1.2. Individual learning models
XGBoost performed well but slightly below the ensemble models. 

SVR showed moderate accuracy with higher variability. ARIMA under
performed, confirming its limitations in multivariate emission 
forecasting.

4.1.3. Neural and biologically inspired models
ELM exhibited moderate accuracy with notable variability. ISSA- 

ELM improved stability, while GPR consistently achieved reliable per
formance with narrow confidence intervals.

4.1.4. Deep learning architectures
LSTM, RNN, GRU, and MLP underperformed consistently, reflecting 

limitations of annual data for capturing temporal dependencies. Their 
predictions were less reliable despite the theoretical capability for 
complex sequence modelling.

4.1.5. Statistical significance of model performance
Pairwise statistical tests (paired t-test and Wilcoxon signed-rank) on 

RMSE values across 30 runs were conducted to assess the robustness of 
observed performance differences. Table 5 summarizes selected com
parisons among top models.

Key findings. 

• RF significantly outperforms most individual learning and deep 
learning models (p < 0.01).

• Differences between RF and stacking or enhanced stacking are 
smaller; only RF vs Stacking reached statistical significance.

• XGBoost, while strong, was generally surpassed by ensemble models.

• GPR showed robust performance with occasional significant differ
ences relative to RF and ensembles.

These results statistically confirm the conclusions drawn from the 
multi-run performance metrics, reinforcing that tree-based ensembles 
particularly RF and hybrid stacking approaches are the most reliable 
forecasting models.

Overall, ensemble and hybrid models, particularly RF and stacking 
variants, demonstrated the highest predictive accuracy and stability 
across repeated runs. Kernel-based methods such as GPR also provided 
reliable performance. Neural and single-layer biologically inspired 
models exhibited greater variability, while deep learning architectures 
(LSTM, RNN, GRU, and MLP) consistently underperformed, reflecting 
the constraints of annual data frequency for capturing temporal 
dependencies.

4.2. Computational resources, runtime, and memory profiling

All experiments were conducted using Google Colab’s free-tier 
environment, which provides a cloud-based virtual machine with 
approximately 12 GB of RAM and a lightweight multi-core CPU (typi
cally two vCPUs). GPU acceleration was employed only for deep 
learning models, while classical and tree-based approaches were 
executed on the CPU. As Colab’s resource allocation is dynamic and may 
vary across sessions, the reported runtime and memory results should be 
interpreted as representative of the environment during our runs rather 
than fixed hardware specifications. The computational efficiency of all 
evaluated models was assessed in terms of runtime and peak memory 
usage over 30 repeated runs. Table 6 summarizes the mean ± 95 % 

Table 5 
Pairwise Statistical Significance of RMSE Across Top-Performing Models (30 
Independent Runs) Using Paired t-Test and Wilcoxon Signed-Rank Test.

Model 
Comparison

t-test 
RMSE

p- 
value

Wilcoxon p- 
value

Significance

RF vs XGBoost − 7.132 0.0000 4.000 0.0000 Significant
RF vs Stacking 2.775 0.0096 115.000 0.0145 Significant
RF vs Enhanced 

Stacking
1.942 0.0620 147.000 0.0803 Not 

significant
RF vs GPR 2.097 0.0449 112.000 0.0120 Significant
RF vs LSTM − 15.733 0.0000 0.000 0.0000 Significant
RF vs GRU − 17.691 0.0000 0.000 0.0000 Significant
XGBoost vs 

Stacking
7.990 0.0000 0.000 0.0000 Significant

XGBoost vs 
Enhanced 
Stacking

7.473 0.0000 1.000 0.0000 Significant

GPR vs LSTM − 15.712 0.0000 0.000 0.0000 Significant
GPR vs GRU − 18.081 0.0000 0.000 0.0000 Significant

Table 6 
Runtime and peak memory usage of all models (mean ± 95 % CI). Memory 
values < 0.001 MB are reported as measured, reflecting precise consumption 
even when negligible for practical deployment.

Model Runtime (s) Memory (MB)

RF 0.35 ± 0.03 0.04 ± 0.02
XGBoost 0.11 ± 0.04 0.53 ± 0.33
Stacking 2.65 ± 0.24 0.40 ± 0.17
Enhanced Stacking 2.47 ± 0.17 0.03 ± 0.03
SVR 0.006 ± 0.001 0.00 ± 0.00
ARIMA 0.33 ± 0.11 0.00026 ± 0.00051
ELM 0.0018 ± 0.0003 0.021 ± 0.014
ISSA-ELM 0.0025 ± 0.0003 0.023 ± 0.017
MLP 0.039 ± 0.008 0.020 ± 0.016
GPR 0.086 ± 0.013 0.015 ± 0.024
LSTM 6.51 ± 0.18 32.64 ± 8.27
RNN 5.55 ± 0.31 12.39 ± 11.66
GRU 7.63 ± 0.34 32.90 ± 19.16
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confidence interval (CI) for these metrics.
Simpler models such as RF, XGBoost, SVR, and ELM-based methods 

(ELM and ISSA-ELM) demonstrated low runtime (0.002–0.35 s) and 
minimal memory consumption (0–0.53 MB). These models are compu
tationally lightweight and can be efficiently deployed for rapid pre
dictions on standard hardware.

The ARIMA model, despite being a classical time series approach, 
exhibited a moderate runtime of 0.33 ± 0.11 s with a negligible memory 
footprint ~0 M. Although computationally inexpensive, ARIMA strug
gled to capture the complex dynamics of the dataset, highlighting its 
limitations for CO2 emissions forecasting.

Stacking and enhanced stacking models required longer runtimes 
(2.47–2.65 s) with moderate memory usage (0.03–0.40 MB), reflecting 
the additional overhead of combining multiple base learners. Similarly, 
feedforward and recurrent neural networks (MLP, LSTM, RNN, GRU) 
incurred substantially higher computational costs. LSTM and GRU net
works required over 6–7 s per run with peak memory exceeding 32 MB, 
while RNNs used slightly less memory (~12 MB). This highlights the 
trade-off between the flexibility of deep learning models and their 
computational demands.

As shown in Table 6, simpler models such as RF, XGBoost, SVR, and 
ELM-based approaches exhibit extremely low runtime and minimal 

memory usage, with some values approaching or below 0.001 MB. 
Although negligible for practical deployment, these values are reported 
precisely to reflect the measured performance. In contrast, deep learning 
models, particularly LSTM and GRU, incur substantially higher 
computational and memory demands, highlighting the trade-off be
tween predictive flexibility and resource requirements.

Overall, the profiling reveals a clear trend that simpler models and 
classical approaches are efficient in terms of runtime and memory but 
may underperform in capturing complex dynamics, whereas advanced 
neural architectures offer enhanced predictive capability with higher 
computational demands. Ensemble methods strike a favourable balance 
between predictive accuracy and computational cost, making them 
practical for integration into policy-oriented forecasting systems where 
transparency and scalability are essential. These findings provide guid
ance for researchers seeking to balance accuracy and deployment effi
ciency when selecting appropriate forecasting models.

4.3. Model behaviour and interpretability

In addition to quantitative metrics, we evaluated each model’s 
ability to replicate observed CO2 emission patterns through visual di
agnostics. To assess robustness and consistency, predictions were 

Fig. 5. Scatter plots of actual versus predicted CO2 emissions in Australia (1982–2015) across 30 independent runs for all forecasting models. Orange shading 
denotes the 95 % confidence interval across seeds.
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generated across 30 independent runs using different random seeds, 
with results aggregated to reflect mean behaviour and variability.

4.3.1. Actual vs. predicted comparisons
Fig. 5 presents scatter plots comparing predicted and actual CO2 

emissions for all forecasting models for the period 1982–2015. Each plot 
displays mean predictions (blue dots) and actual values (black dots), 
with orange shading denoting the 95 % confidence interval across 30 
seeds. The red diagonal line represents perfect prediction alignment. 

• RF and stacking exhibit strong agreement with actual emissions. 
Predictions cluster tightly around the diagonal, and narrow confi
dence intervals indicate low variability across seeds.

• Enhanced stacking, ELM, and GPR also track observed emissions 
reliably during stable periods. Enhanced stacking and GPR remain 
near the diagonal with slightly wider confidence intervals, suggest
ing moderate sensitivity to data splits, whereas ELM exhibits unsta
ble behaviour and poor fit, consistent with its negative R2 and large 
RMSE.

• XGBoost performs well but is generally surpassed by ensemble 
methods; prediction points show more scatter and wider confidence 
intervals than RF or stacking.

• SVR, ARIMA, and neural networks (MLP, LSTM, GRU, RNN) deviate 
more substantially from actual values. Neural networks occasionally 
flatten or introduce artificial volatility, while SVR and ARIMA 
struggle to capture both trend and fluctuation dynamics. Broader 
confidence intervals reflect increased variability and reduced 
robustness under limited data.

These visual diagnostics are consistent with quantitative metrics: RF 
and stacking achieved the lowest RMSE (≈0.016–0.018) and highest R2 

(≈0.989–0.991), XGBoost and SVR performed moderately well, and 
ARIMA and ELM showed poor fit (negative R2). Together, the di
agnostics and metrics confirm that tree-based ensembles, particularly RF 
and stacking, offer the most stable and interpretable performance for 
annual CO2 emission forecasting. The use of multi-run predictions en
hances confidence in model reliability, supporting their suitability for 
policy-oriented applications.

4.4. Learning curve insights

To complement the multi-run evaluation and the interpretability 
analysis, learning curves were generated, as shown in Fig. 6, for the RF 
and XGBoost models to examine how their performance changes with 
increasing training data. These curves offer an additional perspective on 
model behaviour by showing not only how well each model fits the data 

but also how efficiently they learn from the limited annual observations 
available for Australia’s emissions.

Across the 30-seed runs, the RF model showed a clear and steady 
convergence between its training and validation RMSE values. As the 
training set expanded, both curves stabilised at low error levels, 
accompanied by consistently high validation R2 scores. This pattern 
indicates that the model captures underlying relationships in a balanced 
manner, learning relevant nonlinear interactions without overfitting, 
even when trained on relatively small subsets of data. The narrowing 
gap between training and validation performance reinforces earlier 
findings that RF is both accurate and structurally well-suited to annual 
CO2 emissions data.

XGBoost, in contrast, displayed a different learning profile. While it 
ultimately reached competitive performance, the early stages of its 
learning curve showed a more noticeable separation between training 
and validation RMSE, alongside greater variability across seeds. This 
behaviour suggests mild overfitting, reflecting the model’s sensitivity to 
boosting depth and learning rate, particularly when applied to datasets 
with limited temporal granularity. Although XGBoost remained a strong 
individual learner, its learning trajectory was less stable than that of RF, 
consistent with the wider confidence intervals observed in the multi-run 
evaluation.

Taken together, the learning curves offer a broader view of model 
behaviour beyond point-estimate performance metrics. They confirm 
that RF not only achieves higher accuracy overall but also learns more 
consistently and reliably from small annual datasets. For policy-oriented 
forecasting where transparency, stability, and reproducibility are 
essential, this learning behaviour strengthens the case for RF as a 
dependable foundation for national-level CO2 modelling. The findings 
also highlight an important implication for future work: analyses using 
higher-resolution or more granular data (such as quarterly emissions or 
sector-level series) may provide the conditions under which boosting- 
based models can fully realise their potential.

4.5. Feature importance analysis

To assess the relative influence of input variables on model pre
dictions, classical feature importances were computed for both RF and 
XGBoost and averaged across 30 random seeds, reducing the stochastic 
variability introduced by different initialisations, complementing the 
learning-curve insights shown in Fig. 6, and enhancing reproducibility. 
Fig. 7 presents the aggregated feature importances, with error bars 
representing standard deviations across seeds, quantifying attribution 
uncertainty.

For RF, importance scores were broadly distributed, reflecting the 
model’s ability to integrate signals from both macroeconomic and 

Fig. 6. Learning curves for random forest and XGBoost models, showing training and validation RMSE and validation R2 across increasing training set sizes, averaged 
over 30 seeds.
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sector-level energy variables. Energy productivity (0.0593 ± 0.0131), 
total_ghg_excluding_LUCF (0.0562 ± 0.0191), energy consumption 
(0.0562 ± 0.0124), population (0.0557 ± 0.0126), and residential en
ergy (0.0559 ± 0.0099) were the most influential features. Gas con
sumption (0.0542 ± 0.0128) and total electricity generation (0.0535 ±
0.0135) also contributed meaningfully. The moderate SDs across seeds 
indicate consistent RF attribution, aligning with the stable learning 
behaviour described in Section 4.3.

In contrast, XGBoost exhibited a selective profile: total_
ghg_excluding_LUCF (0.00996 ± 0.00240) and Gas (0.00680 ±

0.01128) were the most influential features, while several others had 
standard deviations larger than their means, reflecting variability in 
attribution across seeds. This sparsity reflects XGBoost’s strong regula
rization under coarse-grained annual data and mirrors the more variable 
learning trajectory observed in Section 4.3. Although XGBoost remained 
competitive in predictive accuracy, its attribution behaviour indicates a 
narrower emissions-driver representation compared with RF.

4.6. SHAP analysis of feature contributions

To complement classical importance metrics, SHAP values were 
computed for each model and averaged across seeds to capture the 
magnitude and direction of feature effects. SHAP enables a transparent 
interpretation by quantifying each variable’s contribution to individual 
predictions across the dataset.

Fig. 8 presents the mean absolute SHAP values. For the RF model, the 
SHAP profile closely mirrors the classical importance results. Energy 

productivity (0.0125), total greenhouse gas emissions excluding LUCF 
(0.0115), population (0.0112), commercial energy consumption 
(0.0111), and residential energy consumption (0.0110) emerged as key 
contributors. Several other energy-related variables also contributed 
meaningfully, reflecting RF’s ability to integrate signals across both 
macroeconomic and sectoral drivers. Error bars (standard deviations 
across 30 seeds) were relatively narrow, underscoring attribution con
sistency and providing a direct measure of uncertainty. This stability 
reinforces the reproducibility of RF’s interpretability under coarse- 
grained annual data, consistent with the stable learning behaviour 
observed in Section 4.3.

For the XGBoost model, SHAP values reveal a sparse attribution 
profile. Total_ghg_excluding_LUCF (0.00573) and Gas (0.00026) were 
the main contributors, while most other features were effectively zero, 
with several exhibiting standard deviations larger than their mean SHAP 
values, reflecting variability across seeds. Despite this, the overall 
sparsity pattern remained consistent when averaged across 30 seeds, 
reinforcing the reproducibility of XGBoost’s selective attribution 
behaviour. This concentration of importance on a narrow set of drivers 
reflects XGBoost’s regularization under coarse-grained annual data and 
aligns with the more variable learning trajectory observed in Section 
4.3.

Fig. 9 shows the SHAP summary for the first-seed RF model. 
Although feature rankings vary slightly across seeds, the top drivers 
closely align with the 30-seed average shown in Fig. 8, indicating that 
the first seed provides a representative view of the model’s feature at
tributions. AUS Energy Growth-QLD is top ranked, followed by Energy 

Fig. 7. Aggregated feature importances for RF and XGBoost across 30 seeds. Error bars show standard deviations, indicating attribution uncertainty. RF distributes 
importance across multiple drivers, while XGBoost concentrates importance on a narrower subset.

Fig. 8. Mean absolute SHAP values for RF and XGBoost across 30 seeds. Error bars show standard deviations, reflecting attribution uncertainty. RF exhibits 
distributed and stable attributions, while XGBoost relies on a smaller set of dominant drivers.
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productivity, Commercial_Energy, Residential_Energy, Consumption, 
and total_ghg_excluding_LUCF, all with broad SHAP ranges indicating 
distributed contributions across instances. Higher feature values (red 
dots) generally correspond to positive SHAP impacts, particularly for 
Energy productivity and Residential_Energy. Although individual seed 
rankings vary slightly, these patterns are consistent across the multi- 
seed framework and align with the averaged SHAP values in Fig. 8, 
reinforcing RF’s reproducible attributions under coarse-grained annual 
data. These results illustrate the integrated influence of multiple eco
nomic and energy-sector variables on national emission trajectories.

For completeness, the XGBoost SHAP summary was also examined, 
as shown in Fig. 10. Consumption and total_ghg_excluding_LUCF 
dominate the predictions, showing high SHAP magnitudes and wide 
dispersion, while most other features cluster near zero regardless of 
value. These patterns confirm the selective attribution observed in both 
the averaged SHAP values and classical feature importance metrics, 
highlighting that XGBoost relies on a narrow set of drivers compared 
with RF’s more integrative structure.

Overall, these SHAP analyses reinforce the attribution patterns 
observed in the classical feature importance metrics and learning curves, 
emphasizing RF’s integrative representation of multiple emission 
drivers and XGBoost’s reliance on a smaller subset of dominant pre
dictors. These interpretability results provide the foundation for the 

scenario analysis in Section 6, where the practical implications of these 
drivers are explored under alternative trajectories.

5. Forecasting CO2 emissions on unseen data using a multi-seed 
ensemble approach

To evaluate generalization capacity, forecasting experiments were 
conducted on unseen test data spanning 2016–2022 using a 30-seed 
ensemble framework. Models were trained exclusively on 1982–2015 
data, and predictions were inverse-transformed to Mt CO2 prior to 
metric calculation. This design ensures that performance results reflect 
predictive ability beyond the training samples, providing a robust 
assessment of model reliability. The RF ensemble achieved high pre
dictive accuracy (MSE = 5.89, RMSE = 2.43 Mt CO2, R2 = 0.96), with 
modest errors (MAE = 1.81, MedAE = 1.16, MAPE <0.5 %) and a near- 
zero MSLE (0.000037), confirming stability across emission scales. As 
shown in Fig. 11, scatter points represent mean predictions, the shaded 
band indicates ±1 standard deviation across seeds, and the dashed line 
denotes the 1:1 reference. These results indicate that the ensemble 
captured meaningful and reproducible relationships in the data rather 
than overfitting, making the model both statistically sound and practi
cally valuable. Beyond statistical performance, the ensemble’s stability 
supports applications in policy analysis, national emissions forecasting, 

Fig. 9. RF SHAP summary dot plot for a single seed. Dot colour indicates feature value (blue: low, red: high); x-axis reflects SHAP impact. Multiple features show 
directional influence on predictions, highlighting the integrated effect of macroeconomic and energy-sector drivers.
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and integration into decision-making frameworks.

6. Scenario analysis and policy implications

6.1. Scenario analysis

To examine how shifts in key drivers may influence Australia’s 2050 
emissions outcomes, a set of illustrative decarbonisation scenarios was 
constructed using RF feature importance and SHAP analysis. Deter
ministic adjustments were applied to the most influential variables: 
energy productivity, total energy consumption, and population. These 
scenarios are illustrative rather than predictive; values are deterministic 
and intended to highlight the potential impacts of driver adjustments on 
long-term emissions outcomes.

As shown in Fig. 12, the baseline scenario reaches 410 Mt CO2 by 
2050. Incremental adjustments deliver consistently modest reductions: a 
5 % improvement in energy productivity lowers emissions to 406.7 Mt 
(− 0.80 %), while a 10 % improvement achieves 403.4 Mt (− 1.61 %). 
Demand-side efficiency produces similar results, with a 5 % reduction in 
consumption yielding 408.0 Mt (− 0.49 %) and a 10 % reduction 406.0 
Mt (− 0.98 %). Population sensitivity tests confirm exogenous effects: 
±5 % shifts translate to ±0.5 % changes (412.1 Mt and 407.9 Mt, 
respectively), reinforcing that population is a contextual driver rather 

than a policy lever.
A combined adjustment of productivity and consumption achieves 

404.0 Mt (− 1.46 %), while an aggressive decarbonisation package de
livers 399.0 Mt (− 2.68 %). Only the Net-Zero 2050 scenario achieves 
complete decarbonisation (0 Mt, − 100 %), highlighting the scale of 
systemic transformation required beyond incremental measures. Across 
all tested adjustments, the sensitivity range is − 1.61 % to +0.51 % 
relative to baseline, confirming that incremental measures even when 
combined yield consistently modest changes.

6.2. Policy implications

The scenario outcomes and model interpretability converge on a 
clear message: coordinated, system-level action is necessary to support 
meaningful decarbonisation. Efficiency-oriented measures, such as 
improving energy productivity or reducing consumption, deliver only 
marginal gains when applied in isolation, and lowering consumption 
without changing the energy mix limits overall progress. Population 
dynamics, while influential, remain exogenous and outside the scope of 
direct policy intervention. Comprehensive changes across energy supply 
and demand, technology adoption, and infrastructure are required to 
reshape the energy–economy system and generate reinforcing effects. 
SHAP analysis reinforces this conclusion: efficiency improvements, 

Fig. 10. SHAP summary plot for XGBoost using the first seed. Consumption and total GHG excluding LUCF dominate the model’s predictions, while most other 
features exert minimal influence.
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renewable expansion, and demand reduction act synergistically rather 
than as substitutes. Policy frameworks that treat these levers as com
plementary for example, coupling renewable targets with demand-side 
efficiency initiatives are more likely to achieve meaningful decarbon
isation within this modelling framework.

The RF framework clarifies the drivers behind emissions changes, 
enhancing transparency, supporting evidence-based interpretation, and 
improving communication of results. These findings provide actionable 
insights for national climate strategy, emphasizing multi-sector coordi
nation and alignment between federal and state initiatives. Incremental 
reforms alone are insufficient; coordinated, system-level approaches are 

required to meet Australia’s climate commitments. Ensemble outputs, 
including feature importance scores and SHAP explanations, further 
enhance transparency and contribute to the growing role of explainable 
AI in climate and energy policy discussions. By combining scenario 
outcomes with SHAP interpretability, the analysis demonstrates how 
explainable AI can bridge quantitative forecasts with actionable policy 
insights, reinforcing the case for coordinated, system-level strategies to 
achieve national climate targets.

Fig. 11. Actual versus predicted CO2 emissions for the 30-seed RF ensemble on unseen data (2016–2022). Scatter points show mean predictions, the shaded band 
represents ±1 standard deviation across seeds, and the dashed line indicates the 1:1 perfect fit.

Fig. 12. Illustrative 2050 CO2 emissions scenarios for Australia. Bars show projected emissions (Mt) relative to the 410 Mt baseline. Incremental adjustments are 
shown in light blue, combined/aggressive measures in dark blue, population sensitivity in grey (exogenous, not policy levers), and the legislated net-zero target in 
green. The “Aggressive decarbonisation” scenario is illustrative and not derived from a specific policy package.
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7. Limitations and future work

This study provides valuable insights but has several limitations. The 
reliance on annual national-level data constrains the effectiveness of 
deep learning models, which are better suited to higher-frequency 
temporal patterns. Additionally, the exclusion of policy instruments 
such as carbon pricing, renewable energy targets, and regulatory in
terventions as well as international trade factors limits the ability to 
capture broader economic and policy interactions.

While a broad set of economic, energy, and demographic variables 
was included (GDP, electricity supply, coal, gas, oil, transport, renew
ables, energy intensity, energy productivity, and population), national- 
level aggregation from 1982 to 2022 can mask subnational or sector- 
specific dynamics and limits the ability of models to capture short- 
term fluctuations or shocks. Incorporating higher-resolution data, such 
as quarterly or sectoral series, could enhance model performance and 
provide a more nuanced understanding of emissions drivers.

Model uncertainty is an important consideration. RF predictions 
exhibited minor variability across random seeds, highlighting the 
importance of reproducibility checks and uncertainty quantification. 
While the ensemble approach helped stabilize results, scenario experi
ments consistently showed that deterministic adjustments produced 
only modest reductions by 2050, ranging from − 0.49 % for incremental 
measures to − 2.68 % for aggressive changes, with the combined pro
ductivity and consumption adjustment reaching − 1.46 % relative to the 
baseline. Population shifts were treated as exogenous sensitivities rather 
than policy levers.

Several avenues for future research emerge from this study. These 
include leveraging higher-frequency, sectoral, and regional data to 
improve temporal resolution and capture detailed dynamics. Incorpo
rating policy and trade variables would enhance projection realism. 
Methodologically, integrating machine learning with causal inference or 
physics-informed hybrid models could ensure that forecasts reflect 
structural drivers rather than purely statistical correlations. Probabi
listic forecasting approaches (e.g., Monte Carlo simulations) would 
provide policymakers with clearer guidance on risks and confidence 
intervals. By addressing these limitations, future studies can build on 
this work’s contribution: a transparent, interpretable comparison of 
forecasting approaches for national CO2 emissions. Such extensions 
would provide more robust insights into Australia’s legislated 2030 
target and net-zero 2050 pathway, strengthen scientific rigor, and 
enhance policy relevance by demonstrating how transparent, repro
ducible modelling can inform Australia’s transition pathways under SDG 
13.

8. Conclusion

This study systematically compared statistical, machine learning, 
hybrid, and deep learning approaches for forecasting Australia’s CO2 
emissions. Scenario analyses indicate that incremental adjustments yield 
only modest reductions by 2050, underscoring the limited impact of 
isolated measures and reinforcing the importance of coordinated, 
system-level approaches to align with net-zero targets.

Methodologically, the study contributes a transparent and repro
ducible forecasting pipeline with interpretable outputs, including 
feature importance rankings and SHAP explanations. By balancing rigor 
and transparency, the framework enhances trust in model outputs, 
supports evidence-based discussions of Australia’s climate transition, 
and contributes to broader global climate objectives under SDG 13.
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