Array 29 (2026) 100639

FI. SEVIER

journal homepage: www.sciencedirect.com/journal/array

Contents lists available at ScienceDirect

Array

An explainable comparative study of statistical, machine learning, deep
learning, and hybrid models for CO, emissions forecasting in Australia

Safa Ghannam

School of Professional Practice and Leadership Faculty of Engineering & IT, Australian Artificial Intelligence Institute, University of Technology Sydney, Australia

ARTICLE INFO

Keywords:

CO,, emissions forecasting
Statistical models
Machine learning

Deep learning
Explainable AI

Net-zero 2050

Climate policy

ABSTRACT

Accurate forecasting of national CO, emissions is critical for evidence-based climate policy and for meeting
commitments such as Australia’s 2050 net-zero target and the United Nations Sustainable Development Goal 13
(Climate Action). This study implements and evaluates thirteen forecasting approaches, including statistical
models (ARIMA), machine learning methods (random forest, XGBoost, SVR), kernel methods (GPR), hybrid
approaches (ELM, ISSA-ELM), deep learning networks (MLP, LSTM, GRU, RNN), and two ensemble models
(stacking regressor and enhanced stacking regressor), using annual Australian data from 1982 to 2022 within a
reproducible pipeline. Thirty random seeds ensured robustness for stochastic learners. Ensemble tree methods
delivered the most accurate and stable predictions: Random Forest achieved mean cross-validation R? ~ 0.989 +
0.003 and RMSE ~0.018 + 0.002 and generalized well to unseen 2016-2022 data (R2 ~ 0.96; RMSE ~ 2.43 Mt
COy). Pairwise significance testing confirmed that Random Forest and stacking significantly outperformed most
individual learners (p < 0.01). SHAP analysis identified energy productivity, total GHG excluding land-use
change, total energy consumption, and population as dominant drivers. Scenario experiments show that deter-
ministic adjustments yield only modest 2050 reductions (—0.49 % to —2.68 %), with population shifts treated as
exogenous sensitivities, underscoring the need for system-level action to achieve net-zero. Limitations include
reliance on annual data and exclusion of policy and trade factors. Future work could extend this framework
through causal inference and hybrid physics-informed machine learning. Building on global advances in emis-
sions forecasting, this study contributes a localized, interpretable comparative framework tailored to Australia’s
emissions profile, addressing a notable gap in national-level forecasting research. This transparent and repro-
ducible approach provides evidence-based guidance for model selection and supports policy-relevant discussions
on national CO, forecasting.

1. Introduction

Carbon dioxide (CO2) emissions, which account for approximately

63 % of Australia’s total

greenhouse gas emissions as reported in the quarterly update of

Australia’s National.

aligning with the United Nations Sustainable Development Goal 13
(Climate Action). This context underscores the importance of devel-
oping robust forecasting frameworks that can inform national decar-
bonisation pathways.

Machine learning (ML) methods have emerged as powerful tools for
forecasting emissions, demonstrating superior capabilities over tradi-

Greenhouse Gas Inventory March 2024, remain a principal driver of
global climate change.

Accurate and interpretable forecasting of CO5 emissions is crucial to
support evidence-based policymaking, environmental planning, and
sustainability strategies. Australia, with one of the highest per capita
CO; emission rates globally, faces unique challenges due to its reliance
on fossil fuels, expansive urban development, and diverse climatic zones
[1]. In line with international commitments such as the Paris Agree-
ment, Australia has pledged to achieve net-zero emissions by 2050,
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tional statistical models in capturing nonlinear relationships and com-
plex feature interactions [2,3]. Recent studies have expanded ML
applications beyond national aggregates to urban contexts, identifying
critical drivers such as transportation activity [4], GDP and energy
consumption [5], urban density and population growth [7], industrial
output [17] and climatic variables [18]. The integration of diverse
datasets, including socio-economic indicators and sensor-based traffic
data, has further enhanced the granularity and relevance of emissions
prediction models [7].
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Of the various ML models, ensemble approaches such as random
forest, gradient boosting, and XGBoost have consistently outperformed
traditional statistical techniques, particularly in terms of predictive ac-
curacy and robustness against overfitting [6,8]. However, while deep
learning models like long short-term memory networks (LSTM) and
convolutional neural networks (CNNs) have shown strong performance
in high-frequency, large-volume datasets, their effectiveness diminishes
when applied to smaller, coarse-grained datasets such as annual national
CO4 emissions, as observed in this study and supported by prior research
[9,10].

Increasingly, model transparency has become as critical as predictive
performance, particularly for policy-relevant applications. Tools such as
SHAP (Shapley Additive Explanations) are widely employed to interpret
complex ML models and reveal the relative influence of input variables
[4,8]. Feature importance methods based on ensemble trees and inter-
pretability frameworks ensure that models provide actionable insights
into the underlying factors driving emissions, beyond mere predictive
accuracy.

Despite recent advancements, few studies provide a unified,
explainable framework comparing a broad spectrum of forecasting
models from traditional statistical approaches to advanced deep
learning methods within the Australian context. Most existing studies
either focus on a single class of models or prioritize predictive accuracy
without addressing interpretability. Although there has been significant
global progress, the application of interpretable, machine-learning-
driven CO; forecasting specific to Australia remains largely unex-
plored. Much of the existing literature concentrates on countries such as
the United States or China, with limited attention given to Australia’s
unique economic, geographic, and policy environment [11].

This study addresses this gap by systematically evaluating thirteen
forecasting models for Australia’s CO, emissions from 1982 to 2022,
using national-level datasets from Our World in Data and the Australian
Energy Statistics. The analysis emphasizes both predictive performance
and explainability, ensuring that the results provide not only accurate
forecasts but also actionable insights for policymakers and environ-
mental planners. By integrating statistical, machine learning, deep
learning, and hybrid approaches within a reproducible pipeline, this
work contributes a transparent comparative framework that supports
Australia’s decarbonisation strategies and aligns with Australia’s 2050
net-zero commitments.

2. Literature review and related work

The accurate forecasting of CO, emissions has been a critical area of
research in both environmental science and machine learning. Early
forecasting approaches relied heavily on traditional statistical models
such as grey models, ARIMA, and SARIMAX, offering interpretability but
often struggling to capture the nonlinear, multivariate dynamics
inherent in emissions data [2,6]. Comparative studies have consistently
demonstrated that ML models, particularly ensemble methods, outper-
form statistical models in both predictive accuracy and adaptability [3,
8].

Across the literature, common influencing factors used for emissions
modelling include GDP, total energy consumption, industrial activity,
transportation metrics, urban density, population, and weather-related
variables [5,12]. Open-access socio-economic and environmental data-
sets have become increasingly valuable, enabling robust feature selec-
tion across diverse geographic scales [4,7]. While urban-focused studies
highlight real-time, sensor-based traffic emissions as critical drivers [4],
national-level research similarly confirms that economic and
energy-related factors remain dominant predictors.

Ensemble learning models, such as random forest, gradient boosting
machines, and XGBoost, have consistently demonstrated strong perfor-
mance by effectively modelling nonlinear relationships and complex
feature interactions without significant overfitting [3,6]. Deep learning
models, including multilayer perceptrons, CNNs, and LSTM networks,
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have shown promise particularly in handling large, high-frequency
datasets [4,5]. However, several studies emphasize that deep models
require rich temporal or spatial resolution to outperform simpler ML
techniques, and their advantage diminishes when applied to smaller,
annual datasets [9,10].

Pre-processing techniques such as normalization, standardization,
outlier removal, and logarithmic transformation have been widely
adopted to enhance model performance across multiple studies [5,13,
14,18]. In parallel, feature selection methods, including tree-based
importance rankings, recursive feature elimination, and ReliefF have
been instrumental in improving model efficiency and mitigating over-
fitting [8,15]. Evaluation frameworks and integrated multi-factor ap-
proaches, such as hybrid decomposition models and methodological
guides for reproducible ML workflows, further enhance interpretability
and robustness in emissions forecasting [19,20]. Beyond feature engi-
neering, several studies have emphasized the importance of robust
evaluation frameworks. Optimized regression-based ML models for
energy-related CO, emissions have been benchmarked using widely
adopted performance metrics such as MSE, RMSE, R?, MAE, and MAPE
[21]. Similarly, daily carbon emission prediction studies have employed
multi-stage feature selection combined with extreme learning machines
to improve accuracy and reliability [22]. Machine learning has also been
applied to national-level CO; forecasting in the United States, further
demonstrating the global relevance of data-driven approaches and the
consistency of evaluation practices [23].

Recent trends in the literature highlight the growing importance of
model interpretability, particularly through SHAP values. Studies
applying SHAP to ensemble models, such as random forest and XGBoost,
provide a clearer understanding of feature contributions and foster
greater trust in model outputs [4,8]. More broadly, explainable artificial
intelligence (XAI) has been recognized as a powerful tool in renewable
energy systems, enhancing transparency, accountability, and overall
model efficacy [24]. The integration of renewable sources into urban
energy systems has likewise been identified as a critical component of
sustainable development and long-term emission-reduction strategies
[25]. In maritime transportation, SHAP and LIME have also been applied
to predict fuel consumption and identify key operational drivers [26].
Collectively, these studies underscore the growing importance of
explainability across energy and environmental modelling domains.
These examples highlight the broader relevance of explainable Al in
energy and environmental modelling.

In the context of CO5 forecasting, SHAP analyses often reveal that
demographic, economic, and energy-related factors such as GDP [1,5],
total energy use [5,13], population [7], and industrial output [17] are
among the most influential factors. While considerable advances have
been made globally, research specifically tailored to Australia’s emis-
sions forecasting remains scarce. Most studies continue to prioritize
major economies or broader regional analyses, often overlooking Aus-
tralia’s unique emission patterns, policy frameworks, and urban infra-
structure dynamics [11,16]. Given Australia’s combination of high per
capita emissions and fossil fuel dependence, localized and interpretable
modelling approaches are urgently needed.

Global forecasting efforts have also explored metaheuristic algo-
rithms, such as in India’s greenhouse gas trajectory modelling [27],
highlighting methodological diversity but reinforcing the scarcity of
localized, interpretable approaches tailored to Australia. Recent studies
have adopted multi-method feature selection techniques to enhance the
accuracy and interpretability of CO, emissions forecasting. For instance,
Spearman correlation and mutual information have been employed to
detect both linear and nonlinear associations between emissions and
predictors, while machine-learning-based approaches such as random
forest and XGBoost provide feature importance scores that reflect
complex interactions. To further improve model transparency,
explainable AI tools such as SHAP have been integrated into these
workflows to quantify the contribution of each input variable [19,20].
The combined use of these statistical and machine learning methods
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offers a comprehensive strategy for identifying influencing factors and
improving model performance in emissions modelling.

This study addresses key gaps in carbon emissions forecasting by
conducting one of the few comprehensive, data-driven comparisons of
statistical, machine learning, deep learning, and hybrid models using
national-level annual data from 1982 to 2022 in the Australian context.
It prioritizes not only predictive accuracy but also model interpretability
by integrating explainable Al techniques, particularly SHAP analysis,
into random forest and XGBoost models. This dual focus reveals the
relative importance of influential factors such as population, energy
supply, and fossil fuel use, and provides actionable insights for envi-
ronmental policy and planning. The study also highlights a critical
limitation: deep learning models underperform on coarse-grained
annual datasets, reinforcing the value of ensemble methods like
random forest and stacking regressors as more transparent and reliable
alternatives for medium-sized datasets.

3. Methodology

This study adopts a structured and rigorous methodology to evaluate
and compare a diverse set of forecasting models for national CO,
emissions in Australia. Drawing on annual data from 1982 to 2022, the
research follows a multi-phase process comprising data collection,
feature selection, exploratory analysis, data preprocessing, model
development, hyperparameter tuning, and performance evaluation.
Thirteen models spanning statistical, machine learning, deep learning,
and hybrid approaches were implemented, offering a comprehensive
basis for comparison. The models were trained and validated using
historical data, with a dedicated test set used to assess generalization on
unseen records. Emphasis was placed not only on predictive accuracy
but also on model interpretability, using SHAP analysis to explain the
contribution of individual factors in tree-based models. All experiments
were conducted in Python using standard libraries and executed in the
Google Colab environment, ensuring reproducibility and transparency.

3.1. Data Overview

This study draws on national-level data for Australia spanning the
years 1982-2022. Two reputable and publicly available sources were
used: Our World in Data (OWID) for greenhouse gas emissions and
related environmental metrics, and the Australian Energy Statistics for
detailed energy usage and production indicators. These datasets offer
comprehensive, longitudinal coverage of key factors influencing CO5
emissions across economic, energy, and environmental domains.

A total of 22 factors were selected based on their consistent
appearance in prior emissions forecasting studies and their documented
relevance to national CO2 dynamics in Australia and other high emitting
countries. These include metrics related to energy consumption, fossil
fuel use, economic output, electricity generation, and population dy-
namics. Table 1 provides a summary of these variables, along with their
units and brief descriptions. Together, they offer a multi-dimensional
view of the drivers behind Australia’s CO, emissions and serve as
input features for all forecasting models developed in this study.

3.2. Exploratory data analysis

Exploratory data analysis has played a foundational role in exam-
ining the dynamics between CO, emissions and their influencing factors.
A comprehensive analysis was conducted to explore data patterns,
distributional properties, and relationships among key factors.

Table 2 presents a detailed statistical summary of Australia’s CO;
emissions from 1982 to 2022, offering valuable insights into historical
patterns and variability. The mean emission level over the period was
339.36 million tonnes, while the median was higher at 362.54 million
tonnes, indicating a left-skewed distribution likely influenced by lower
values in the earlier years. The standard deviation of 69.47 million
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Table 1
Summary of influencing factors with corresponding units and descriptions.

Influencing Factors Unit Description

CO, emissions Mt CO, Total carbon dioxide emissions

Total greenhouse gas Mt CO,-e Total GHG emissions excluding
emissions excluding land emissions from land use, land-use
use change change, and forestry

Gross Domestic Product Billion Total market value of goods and
(GDP) AUD services produced in Australia

Consumption (Total Energy  PJ Total energy used in the Australian
Consumption) economy across all energy types

(oil, gas, coal, renewables)

Electricity supply PJ Total electricity supplied

Coal consumption PJ Energy from coal consumption

Gas consumption PJ Energy from natural gas

consumption

0il consumption PJ Energy from oil consumption

Transport energy PJ Energy used specifically for
consumption transport purposes

Energy growth in PJ Annual growth of energy
Queensland consumption in Queensland

Energy growth in therestof  PJ Annual growth of energy
Australia consumption in the rest of Australia

(excluding QLD and NT)

Energy growth in Northern  PJ Annual growth of energy

Territory consumption in Northern Territory
Total generation PJ Total energy generation from all
sources
Residential energy PJ Energy consumed by the residential
consumption sector
Commercial energy PJ Energy consumed by the
consumption commercial sector
Renewable energy PJ Total renewable energy produced
(including electricity and direct uses
like firewood and solar hot water)
Renewable energy GWh Renewable energy used for
generation electricity generation only
Net energy exports PJ Energy exports minus imports
Population growth Million Change in population over time
people
Energy intensity GJ per Energy consumed per million AUD
million of GDP
AUD
Energy productivity GDP per PJ  Economic output produced per unit
of energy input
Land use change CO, Mt CO,-e CO,, emissions from land use, land-
emissions use change, and forestry activities
Energy Consumption TWh Total electricity consumption in the
national electricity market
Table 2
Descriptive statistics for CO, emissions from 1982 to
2022.
Statistic Value
Mean 339.362
Median 362.537
Standard Deviation 69.474
Standard Error 10.850
Kurtosis -1.121
Skewness —0.586
Minimum 207.645
Maximum 415.770

tonnes reflects notable fluctuations across the decades, particularly in
recent years, potentially shaped by economic transitions and environ-
mental policy changes. A skewness value of —0.59 suggests a prolonged
period of increasing emissions followed by more recent stabilization or
decline. Furthermore, the negative kurtosis (—1.12) indicates a rela-
tively flat distribution, with few extreme values or abrupt changes.
Emissions ranged from a minimum of 207.65 to a maximum of 415.77
million tonnes, representing a significant rise over the 40-year period.
The standard error of 10.85 million tonnes reinforces the reliability of
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the mean as a central estimate. This statistical profile, as shown in
Table 2, provides a robust foundation for interpreting long-term emis-
sion trends and their potential drivers in the Australian context.
Time-series visualizations in Fig. 1 reveal persistent upward trends in
emissions, energy use, and GDP, with notable downturns corresponding
to global events such as the 2008 financial crisis and the COVID-19
pandemic. Fig. 2, which displays distribution plots, highlights skew-
ness in several influencing factors, particularly fossil fuel consumption
and industrial energy use, underscoring the importance of normalization
techniques. Fig. 3 presents pairwise scatter plots that illustrate both
linear and nonlinear relationships between COy emissions and influ-
encing factors such as energy intensity and transport emissions. These
findings support the application of both linear and nonlinear modelling
approaches in subsequent analyses. This combination of statistical and
visual exploration confirms that economic activity and energy-related
factors are strongly associated with CO2 emission levels, a relationship
well-documented in the environmental forecasting literature.

3.3. Data preprocessing

Preprocessing was conducted in Python using Google Colab. Several
key steps were taken to ensure data quality.

e Handling missing values: Backward fill was applied, especially
effective for temporally ordered data.

e Renaming columns: Simplified factor names were adopted for
clarity.

e Log transformation: Applied to factors such as CO; emissions, GDP,
and population to reduce skewness and stabilize variance. As shown
in Fig. 4, this transformation normalized factor distributions, which
helps enhance model performance and training stability.

3.4. Model development and evaluation

To build a reliable predictive framework capable of accurately
modelling COy emissions in Australia, this study implemented and
evaluated a suite of thirteen models spanning machine learning, hybrid,
statistical, and neural network approaches. The selected models repre-
sent a diverse array of architectures from tree-based ensembles to bio-
logically inspired neural networks and classical time series baselines
allowing for a comprehensive assessment of the forecasting models.

Model development and evaluation were based on historical COy
emissions data from 1982 to 2022. To ensure robust validation and
minimize the risk of data leakage, the dataset was split into two parts:
80 % for training and 20 % for validation using data from 1982 to 2015.
Each model was run 30 times with different random seeds, and the re-
sults were averaged to provide a stable and reproducible performance
evaluation. A diverse set of machine learning, statistical, deep learning
and hybrid models was explored during this phase, and their perfor-
mance was assessed using established evaluation metrics. Following this
rigorous evaluation, the best-performing model was selected to forecast
CO4 emissions for the short-term period from 2016 to 2022 data that was
deliberately set aside to serve as unseen input to test the model’s fore-
casting capability. This evaluation phase helped identify the most
effective model and revealed areas for improving current approaches to
reduce forecasting discrepancies. The two-phase design also ensured a
fair assessment and offered a realistic measure of the model’s ability to
generalize to future CO9 emission patterns [4]. All experiments were
implemented in Python within the Google Colab environment, making
use of libraries such as scikit-learn, XGBoost, Keras, TensorFlow, and
statsmodels. The following models were implemented, trained, and
evaluated.

1. Random forest regressor (RF)
2. XGBoost regressor
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3. Stacking regressor combining the best RF and best XGBoost with
linear regression as final estimator

4. Enhanced stacking regressor combining RF, XGBoost, and sup-

port vector regressor (SVR)

SVR

. ARIMA

. Extreme learning machine (ELM)

. ISSA-ELM, simulated version using a different hidden layer
configuration
9. Backpropagation neural network (MLP)

10. Gaussian process regression (GPR)

11. Long short-term memory (LSTM)

12. Recurrent neural network (RNN)

13. Gated recurrent unit (GRU)

®w N o’

All models were tuned to optimize performance and ensure gener-
alizability. For tree-based models (RF and XGBoost), hyperparameters
such as the number of estimators, maximum tree depth, and learning
rate were explored using grid search. SVR was optimized for kernel type,
regularization parameter (C), and epsilon parameters. Stacking models
combined optimized base learners (RF, XGBoost, SVR) with a linear
regression meta-estimator. MLP were tuned for hidden layer sizes and
maximum iterations, with fixed learning rate and activation functions.
Sequence models, including LSTM, GRU, and RNN, were trained using
early stopping and learning rate reduction to prevent overfitting, with
fixed layer sizes, batch sizes, and epochs. This systematic approach
ensured robust and high-performing models across all algorithms.

3.5. Model hyperparameters and structural Characteristics

To ensure transparency and reproducibility, the hyperparameters
and structural configurations of all thirteen models are summarized in
Table 3. The settings were chosen to balance model expressiveness with
the limitations imposed by the modest sample size of annual national
data. For ensemble methods such as RF and XGBoost, the number of
estimators and maximum tree depth were selected to avoid overfitting
while preserving predictive power. Stacking models combined these
optimized base learners with a linear regression meta-estimator. Neural
models, including MLP, LSTM, GRU, and RNN, were restricted to rela-
tively compact architectures with fixed layer sizes and controlled
epochs, leveraging early stopping and learning rate adjustments where
applicable. These architectures were deliberately kept compact to avoid
overfitting given the modest annual dataset size. Layer sizes were fixed
based on best practices for small datasets, and training employed early
stopping rather than extensive tuning to control epochs. The hyper-
parameter choices ensure fair and reproducible comparisons across
model classes.

This table consolidates the hyperparameters used in the repeated 30-
run analysis. The settings reflect a balance between model expressive-
ness and stability, given the modest sample size of annual national
emissions data.

3.6. Evaluation metrics

All the developed models were evaluated using a set of widely
adopted performance metrics to ensure a comprehensive assessment of
forecasting accuracy, namely mean squared error (MSE), root mean
squared error (RMSE), R-squared (R2), mean absolute error (MAE),
mean absolute percentage error (MAPE), mean squared log error
(MSLE), and median absolute error (MedAE). These metrics are
commonly used in the literature and provide complementary perspec-
tives on model performance [14,21,23].

3.7. Assessment of model uncertainty via repeated trials

To account for the inherent randomness in some of the models, each
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Fig. 1. Time series of 22 economic, demographic, and energy-related variables influencing Australia’s CO, emissions (1982-2022). Panels show trends across GDP,
population, CO, emissions, energy consumption, electricity supply, transport, fossil fuels, renewables, and regional energy growth, providing a multidimensional
view of Australia’s energy-emissions dynamics for the forecasting models.
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Fig. 2. Distributional profiles of 22 economic, demographic, and energy-related variables used in the forecasting framework. Each histogram illustrates the fre-
quency and spread of values across indicators such as GDP, population, CO emissions, energy consumption, electricity supply, transport, fossil fuels, renewables, and
regional energy growth. These visualizations support exploratory analysis and provide insight into feature behaviour prior to model development.

algorithm was trained and evaluated 30 times using different random
seeds. Reporting the mean and 95 % confidence interval for each metric
across these runs helps reduce the influence of chance and provides a
more reliable estimate of model performance.

All repeated trials were conducted within the chronological window
1982-2015. Random seeds affected only model initialization and
resampling, so the temporal order of the data was preserved while still
capturing stochastic variability. This approach ensures that the results
reflect consistent performance patterns rather than isolated outcomes,
strengthening the reliability and interpretability of the comparisons
across models.

3.8. Statistical significance testing

To assess whether observed differences in predictive performance
are statistically meaningful, pairwise comparisons were conducted using
two complementary approaches.

e Paired t-test: A parametric test suitable when the differences be-
tween paired observations are approximately normally distributed.

e Wilcoxon signed-rank test: A non-parametric alternative that does
not assume normality of differences.

Both tests were applied to the RMSE values obtained from the 30
independent runs. This dual approach ensures that the conclusions are
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Fig. 3. Scatter plots illustrating the relationships between CO, emissions and selected economic, demographic, and energy-related variables used in the forecasting
models. Each panel shows the association between emissions and a key feature, with fitted regression lines highlighting direction and strength of correlation,
supporting feature relevance assessment and interpretability.
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Fig. 4. Histograms of selected factors before and after log transformation, illustrating the effect on distribution normalization.

Table 3
Machine learning model architecture and key hyperparameter Configuration.

Model Model Name Core Architecture Key Hyperparameters Parameter Description Regularization

Category Mechanism

Ensemble/ Random Bagging + Random n_estimators = 300, max_depth = 10, Number of trees, tree depth, min Ensemble Averaging
Tree Forest Feature Subsets min_samples_split = 2, max_features = ’sqrt’ samples to split, feature sampling

Ensemble/ XGBoost Second-Order Gradient n_estimators = 100, max_depth = 3, Learning rate, tree depth, number of L2 Regularization +
Tree Boosting learning_rate = 0.05, subsample = 1.0 boosting rounds, subsample fraction Early Stopping

Ensemble Stacking RF + XGB — Linear "Stacking [RF + XGB] with LinearRegression Base learners + meta learner Ensemble Averaging

Regression final estimator"
Ensemble Enhanced RF + XGB + SVR — "Stacking [RF + XGB + SVR] with Base learners + meta learner Ensemble Averaging
Stacking Linear Regression LinearRegression final estimator"

Kernel/ SVR Support Vector C = 10, epsilon = 0.01, kernel = 'rbf’ Regularization strength, tube size, L2 Regularization
Linear Regression (RBF) kernel type

Time Series ARIMA Autoregressive order=(5,1,0) AR, differencing, MA terms None

Integrated MA

Neural MLP Multi-Layer Perceptron hidden_layer sizes=(50,50), max_iter = 500 Number of hidden neurons per layer, Weight decay
Network max training iterations (implicitly via solver)

Kernel/ GPR Gaussian Process kernel = 3.41**2 * RBF(length_scale = 9.12), Kernel function, optimizer restarts None
Bayesian Regression n_restarts_optimizer = 5

Neural ELM Extreme Learning n_hidden = 100, activation = 'tanh’ Number of hidden neurons, activation None
Network Machine function

Neural ISSA-ELM Extreme Learning n_hidden = 200, activation = ’tanh’ Number of hidden neurons, activation None
Network Machine + ISSA function

Neural LSTM Long Short-Term layers = [50,50], optimizer = Adam, loss = Layer sizes, optimizer, loss function, Implicit via Early
Network Memory Network MSE, early stopping = True early stopping Stopping & Adam

Neural RNN Simple RNN layers = [50,50], optimizer = Adam, loss = Layer sizes, optimizer, loss function, Implicit via Early
Network MSE, early _stopping = True early stopping Stopping & Adam

Neural GRU Gated Recurrent Unit layers = [50,50], optimizer = Adam, loss = Layer sizes, optimizer, loss function, Implicit via Early
Network MSE, early stopping = True early stopping Stopping & Adam

robust regardless of distributional assumptions. The detailed outcomes
of these tests are reported in subsection 4.1.5, where statistically sig-
nificant and non-significant differences between model performances
are highlighted, providing a rigorous assessment of relative predictive

4. Comparative analysis and critical discussion

This section presents the results from all the implemented and
evaluated forecasting models using both quantitative performance

accuracy. metrics and qualitative analyses such as actual vs. predicted
Table 4
Mean + 95 % confidence interval of key performance metrics for all forecasting models across 30 independent runs.
Model MSE RMSE R? MAE MAPE MedAE MSLE
RF 0.0004 + 0.0001 0.0182 + 0.0023 0.9890 + 0.0032 0.0142 £ 0.0017 0.2507 + 0.0308 0.0118 £ 0.0018 0.0000 =+ 0.0000
XGBoost 0.0011 £ 0.0003 0.0315 £ 0.0037 0.9613 &+ 0.0149 0.0253 + 0.0026 0.4425 + 0.0468 0.0187 £ 0.0024 0.0000 £ 0.0000
Stacking 0.0003 + 0.0001 0.0159 + 0.0021 0.9913 + 0.0026 0.0123 + 0.0015 0.2160 + 0.0281 0.0095 + 0.0014 0.0000 + 0.0000

Enhanced Stacking
SVR

ARIMA

ELM

ISSA-ELM

MLP

GPR

LSTM

RNN

GRU

0.0003 + 0.0001
0.0012 + 0.0005
0.0639 + 0.0089
5.4131 + 4.9047
1.4215 + 2.2025
0.3803 + 0.2285
0.0003 + 0.0002
0.0718 + 0.0168
0.4444 + 0.7415
0.5663 + 0.1134

0.0166 + 0.0023
0.0289 + 0.0066
0.2477 £ 0.0184
1.3434 + 0.6914
0.5515 + 0.3847
0.4243 £ 0.1629
0.0146 + 0.0031
0.2558 + 0.0290
0.3499 + 0.2065
0.7219 £ 0.0774

0.9910 + 0.0023
0.9748 + 0.0078
—1.1670 + 0.6909
—111.9307 + 89.0143
—22.1546 + 30.2725
—11.0970 + 6.8079
0.9907 + 0.0051
—2.0081 + 1.2453
—6.5571 + 10.5953
—20.9966 + 10.7309

0.0130 £ 0.0018
0.0198 + 0.0037
0.2189 £+ 0.0170
0.7344 + 0.3558
0.2883 + 0.1661
0.4110 £+ 0.1648
0.0117 + 0.0024
0.2313 £ 0.0333
0.2468 + 0.0848
0.6615 + 0.0734

0.2303 + 0.0324
0.3542 + 0.0694
4.7259 £ 0.5190
12.9326 + 6.1750
5.1782 + 3.0627
7.1203 + 2.8487
0.2057 + 0.0427
4.0580 + 0.5699
4.3979 £+ 1.5728
11.3746 + 1.2422

0.0100 £ 0.0016
0.0133 £ 0.0026
0.2138 £ 0.0234
0.2651 + 0.1194
0.1149 =+ 0.0462
0.4091 £ 0.1662
0.0091 £ 0.0016
0.2163 £ 0.0431
0.1839 £ 0.0329
0.6972 + 0.0788

0.0000 =+ 0.0000
0.0000 =+ 0.0000
0.0014 £ 0.0002
0.0329 £ 0.0218
0.0218 £ 0.0212
0.0071 £ 0.0041
0.0000 =+ 0.0000
0.0015 =+ 0.0003
0.0015 £ 0.0003
0.0116 £ 0.0024
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comparisons, feature importance interpretation, and learning curve
diagnostics.

4.1. Model evaluation and multi-run performance comparison

The predictive performance of all models was evaluated over 30
independent runs to account for stochastic variability. Each run involved
training and testing on randomly sampled train-test splits. Key metrics
MSE, RMSE, R2, MAE, MAPE, MedAE, and MSLE were recorded. Table 4
summarizes the mean values along with 95 % confidence intervals,
providing a clear assessment of both accuracy and stability.

Tree-based ensembles (random forest [RF], stacking, enhanced
stacking) and Gaussian process regression (GPR) consistently achieved
the lowest errors and highest R? values, with narrow confidence in-
tervals across runs. Deep learning architectures (LSTM, GRU, RNN, and
MLP) exhibited higher variability and occasional extreme predictions,
reflecting their sensitivity to stochastic effects and the constraints of
annual data. Single-layer biologically inspired models, such as ELM,
showed moderate variability, while ISSA-ELM demonstrated improved
stability.

These results indicate that ensemble and kernel-based methods
provide robust predictions under repeated trials, whereas neural and
single-layer models require careful multi-run evaluation to achieve
reliable performance estimates. Cross-validation metrics in Table 4 were
computed on log-transformed CO, emissions to stabilize variance, so all
reported values are therefore in log units.

4.1.1. Ensemble and hybrid models

RF demonstrated the highest accuracy, achieving the lowest RMSE
and MSE values. Stacking, which combines RF and XGBoost with a linear
regression meta-learner, offered comparable accuracy and slightly
improved stability. Enhanced stacking, which incorporates SVR, main-
tained strong performance, though confidence intervals were marginally
wider. Ensemble models proved most reliable and reproducible across
30 runs.

4.1.2. Individual learning models

XGBoost performed well but slightly below the ensemble models.
SVR showed moderate accuracy with higher variability. ARIMA under-
performed, confirming its limitations in multivariate emission
forecasting.

4.1.3. Neural and biologically inspired models

ELM exhibited moderate accuracy with notable variability. ISSA-
ELM improved stability, while GPR consistently achieved reliable per-
formance with narrow confidence intervals.

4.1.4. Deep learning architectures

LSTM, RNN, GRU, and MLP underperformed consistently, reflecting
limitations of annual data for capturing temporal dependencies. Their
predictions were less reliable despite the theoretical capability for
complex sequence modelling.

4.1.5. Statistical significance of model performance

Pairwise statistical tests (paired t-test and Wilcoxon signed-rank) on
RMSE values across 30 runs were conducted to assess the robustness of
observed performance differences. Table 5 summarizes selected com-
parisons among top models.

Key findings.

e RF significantly outperforms most individual learning and deep
learning models (p < 0.01).

e Differences between RF and stacking or enhanced stacking are
smaller; only RF vs Stacking reached statistical significance.

e XGBoost, while strong, was generally surpassed by ensemble models.
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Table 5
Pairwise Statistical Significance of RMSE Across Top-Performing Models (30
Independent Runs) Using Paired t-Test and Wilcoxon Signed-Rank Test.

Model t-test p- Wilcoxon  p- Significance
Comparison RMSE value value
RF vs XGBoost -7.132 0.0000 4.000 0.0000  Significant
RF vs Stacking 2.775 0.0096  115.000 0.0145  Significant
RF vs Enhanced 1.942 0.0620  147.000 0.0803  Not
Stacking significant
RF vs GPR 2.097 0.0449  112.000 0.0120  Significant
RF vs LSTM —15.733 0.0000 0.000 0.0000  Significant
RF vs GRU -17.691 0.0000 0.000 0.0000  Significant
XGBoost vs 7.990 0.0000 0.000 0.0000 Significant
Stacking
XGBoost vs 7.473 0.0000 1.000 0.0000 Significant
Enhanced
Stacking
GPR vs LSTM —15.712 0.0000 0.000 0.0000 Significant
GPR vs GRU —18.081 0.0000 0.000 0.0000  Significant

e GPR showed robust performance with occasional significant differ-
ences relative to RF and ensembles.

These results statistically confirm the conclusions drawn from the
multi-run performance metrics, reinforcing that tree-based ensembles
particularly RF and hybrid stacking approaches are the most reliable
forecasting models.

Overall, ensemble and hybrid models, particularly RF and stacking
variants, demonstrated the highest predictive accuracy and stability
across repeated runs. Kernel-based methods such as GPR also provided
reliable performance. Neural and single-layer biologically inspired
models exhibited greater variability, while deep learning architectures
(LSTM, RNN, GRU, and MLP) consistently underperformed, reflecting
the constraints of annual data frequency for capturing temporal
dependencies.

4.2. Computational resources, runtime, and memory profiling

All experiments were conducted using Google Colab’s free-tier
environment, which provides a cloud-based virtual machine with
approximately 12 GB of RAM and a lightweight multi-core CPU (typi-
cally two vCPUs). GPU acceleration was employed only for deep
learning models, while classical and tree-based approaches were
executed on the CPU. As Colab’s resource allocation is dynamic and may
vary across sessions, the reported runtime and memory results should be
interpreted as representative of the environment during our runs rather
than fixed hardware specifications. The computational efficiency of all
evaluated models was assessed in terms of runtime and peak memory
usage over 30 repeated runs. Table 6 summarizes the mean + 95 %

Table 6

Runtime and peak memory usage of all models (mean + 95 % CI). Memory
values < 0.001 MB are reported as measured, reflecting precise consumption
even when negligible for practical deployment.

Model Runtime (s) Memory (MB)
RF 0.35 + 0.03 0.04 + 0.02
XGBoost 0.11 + 0.04 0.53 + 0.33
Stacking 2.65 + 0.24 0.40 £ 0.17
Enhanced Stacking 2.47 +£0.17 0.03 + 0.03
SVR 0.006 + 0.001 0.00 + 0.00
ARIMA 0.33 £0.11 0.00026 =+ 0.00051
ELM 0.0018 + 0.0003 0.021 + 0.014
ISSA-ELM 0.0025 =+ 0.0003 0.023 + 0.017
MLP 0.039 + 0.008 0.020 + 0.016
GPR 0.086 + 0.013 0.015 + 0.024
LSTM 6.51 +0.18 32.64 + 8.27
RNN 5.55 + 0.31 12.39 + 11.66
GRU 7.63 + 0.34 32.90 +19.16
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confidence interval (CI) for these metrics. memory usage, with some values approaching or below 0.001 MB.

Simpler models such as RF, XGBoost, SVR, and ELM-based methods Although negligible for practical deployment, these values are reported
(ELM and ISSA-ELM) demonstrated low runtime (0.002-0.35 s) and precisely to reflect the measured performance. In contrast, deep learning
minimal memory consumption (0-0.53 MB). These models are compu- models, particularly LSTM and GRU, incur substantially higher
tationally lightweight and can be efficiently deployed for rapid pre- computational and memory demands, highlighting the trade-off be-
dictions on standard hardware. tween predictive flexibility and resource requirements.

The ARIMA model, despite being a classical time series approach, Overall, the profiling reveals a clear trend that simpler models and
exhibited a moderate runtime of 0.33 + 0.11 s with a negligible memory classical approaches are efficient in terms of runtime and memory but
footprint ~0 M. Although computationally inexpensive, ARIMA strug- may underperform in capturing complex dynamics, whereas advanced
gled to capture the complex dynamics of the dataset, highlighting its neural architectures offer enhanced predictive capability with higher
limitations for COy emissions forecasting. computational demands. Ensemble methods strike a favourable balance

Stacking and enhanced stacking models required longer runtimes between predictive accuracy and computational cost, making them
(2.47-2.65 s) with moderate memory usage (0.03-0.40 MB), reflecting practical for integration into policy-oriented forecasting systems where
the additional overhead of combining multiple base learners. Similarly, transparency and scalability are essential. These findings provide guid-
feedforward and recurrent neural networks (MLP, LSTM, RNN, GRU) ance for researchers seeking to balance accuracy and deployment effi-
incurred substantially higher computational costs. LSTM and GRU net- ciency when selecting appropriate forecasting models.

works required over 6-7 s per run with peak memory exceeding 32 MB,
while RNNs used slightly less memory (~12 MB). This highlights the
trade-off between the flexibility of deep learning models and their ~ 4-3. Model behaviour and interpretability
computational demands.
As shown in Table 6, simpler models such as RF, XGBoost, SVR, and In addition to quantitative metrics, we evaluated each model’s

ELM-based approaches exhibit extremely low runtime and minimal ability to replicate observed CO5 emission patterns through visual di-
agnostics. To assess robustness and consistency, predictions were
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Fig. 5. Scatter plots of actual versus predicted CO, emissions in Australia (1982-2015) across 30 independent runs for all forecasting models. Orange shading
denotes the 95 % confidence interval across seeds.
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generated across 30 independent runs using different random seeds,
with results aggregated to reflect mean behaviour and variability.

4.3.1. Actual vs. predicted comparisons

Fig. 5 presents scatter plots comparing predicted and actual CO,
emissions for all forecasting models for the period 1982-2015. Each plot
displays mean predictions (blue dots) and actual values (black dots),
with orange shading denoting the 95 % confidence interval across 30
seeds. The red diagonal line represents perfect prediction alignment.

e RF and stacking exhibit strong agreement with actual emissions.
Predictions cluster tightly around the diagonal, and narrow confi-
dence intervals indicate low variability across seeds.

Enhanced stacking, ELM, and GPR also track observed emissions
reliably during stable periods. Enhanced stacking and GPR remain
near the diagonal with slightly wider confidence intervals, suggest-
ing moderate sensitivity to data splits, whereas ELM exhibits unsta-
ble behaviour and poor fit, consistent with its negative R? and large
RMSE.

XGBoost performs well but is generally surpassed by ensemble
methods; prediction points show more scatter and wider confidence
intervals than RF or stacking.

SVR, ARIMA, and neural networks (MLP, LSTM, GRU, RNN) deviate
more substantially from actual values. Neural networks occasionally
flatten or introduce artificial volatility, while SVR and ARIMA
struggle to capture both trend and fluctuation dynamics. Broader
confidence intervals reflect increased variability and reduced
robustness under limited data.

These visual diagnostics are consistent with quantitative metrics: RF
and stacking achieved the lowest RMSE (=0.016-0.018) and highest R?
(~0.989-0.991), XGBoost and SVR performed moderately well, and
ARIMA and ELM showed poor fit (negative R?). Together, the di-
agnostics and metrics confirm that tree-based ensembles, particularly RF
and stacking, offer the most stable and interpretable performance for
annual CO; emission forecasting. The use of multi-run predictions en-
hances confidence in model reliability, supporting their suitability for
policy-oriented applications.

4.4. Learning curve insights

To complement the multi-run evaluation and the interpretability
analysis, learning curves were generated, as shown in Fig. 6, for the RF
and XGBoost models to examine how their performance changes with
increasing training data. These curves offer an additional perspective on
model behaviour by showing not only how well each model fits the data
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but also how efficiently they learn from the limited annual observations
available for Australia’s emissions.

Across the 30-seed runs, the RF model showed a clear and steady
convergence between its training and validation RMSE values. As the
training set expanded, both curves stabilised at low error levels,
accompanied by consistently high validation R? scores. This pattern
indicates that the model captures underlying relationships in a balanced
manner, learning relevant nonlinear interactions without overfitting,
even when trained on relatively small subsets of data. The narrowing
gap between training and validation performance reinforces earlier
findings that RF is both accurate and structurally well-suited to annual
CO,, emissions data.

XGBoost, in contrast, displayed a different learning profile. While it
ultimately reached competitive performance, the early stages of its
learning curve showed a more noticeable separation between training
and validation RMSE, alongside greater variability across seeds. This
behaviour suggests mild overfitting, reflecting the model’s sensitivity to
boosting depth and learning rate, particularly when applied to datasets
with limited temporal granularity. Although XGBoost remained a strong
individual learner, its learning trajectory was less stable than that of RF,
consistent with the wider confidence intervals observed in the multi-run
evaluation.

Taken together, the learning curves offer a broader view of model
behaviour beyond point-estimate performance metrics. They confirm
that RF not only achieves higher accuracy overall but also learns more
consistently and reliably from small annual datasets. For policy-oriented
forecasting where transparency, stability, and reproducibility are
essential, this learning behaviour strengthens the case for RF as a
dependable foundation for national-level CO, modelling. The findings
also highlight an important implication for future work: analyses using
higher-resolution or more granular data (such as quarterly emissions or
sector-level series) may provide the conditions under which boosting-
based models can fully realise their potential.

4.5. Feature importance analysis

To assess the relative influence of input variables on model pre-
dictions, classical feature importances were computed for both RF and
XGBoost and averaged across 30 random seeds, reducing the stochastic
variability introduced by different initialisations, complementing the
learning-curve insights shown in Fig. 6, and enhancing reproducibility.
Fig. 7 presents the aggregated feature importances, with error bars
representing standard deviations across seeds, quantifying attribution
uncertainty.

For RF, importance scores were broadly distributed, reflecting the
model’s ability to integrate signals from both macroeconomic and

XGBoost Learning Curve
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Fig. 6. Learning curves for random forest and XGBoost models, showing training and validation RMSE and validation R? across increasing training set sizes, averaged

over 30 seeds.
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Random Forest Feature Importance (Avg 30 seeds)
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XGBoost Feature Importance (Avg 30 seeds)
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Fig. 7. Aggregated feature importances for RF and XGBoost across 30 seeds. Error bars show standard deviations, indicating attribution uncertainty. RF distributes
importance across multiple drivers, while XGBoost concentrates importance on a narrower subset.

sector-level energy variables. Energy productivity (0.0593 + 0.0131),
total_ghg excluding LUCF (0.0562 =+ 0.0191), energy consumption
(0.0562 + 0.0124), population (0.0557 + 0.0126), and residential en-
ergy (0.0559 + 0.0099) were the most influential features. Gas con-
sumption (0.0542 + 0.0128) and total electricity generation (0.0535 +
0.0135) also contributed meaningfully. The moderate SDs across seeds
indicate consistent RF attribution, aligning with the stable learning
behaviour described in Section 4.3.

In contrast, XGBoost exhibited a selective profile: total -
ghg excluding LUCF (0.00996 + 0.00240) and Gas (0.00680 =+
0.01128) were the most influential features, while several others had
standard deviations larger than their means, reflecting variability in
attribution across seeds. This sparsity reflects XGBoost’s strong regula-
rization under coarse-grained annual data and mirrors the more variable
learning trajectory observed in Section 4.3. Although XGBoost remained
competitive in predictive accuracy, its attribution behaviour indicates a
narrower emissions-driver representation compared with RF.

4.6. SHAP analysis of feature contributions

To complement classical importance metrics, SHAP values were
computed for each model and averaged across seeds to capture the
magnitude and direction of feature effects. SHAP enables a transparent
interpretation by quantifying each variable’s contribution to individual
predictions across the dataset.

Fig. 8 presents the mean absolute SHAP values. For the RF model, the
SHAP profile closely mirrors the classical importance results. Energy

Random Forest SHAP Feature Importance (Avg 30 seeds)
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productivity (0.0125), total greenhouse gas emissions excluding LUCF
(0.0115), population (0.0112), commercial energy consumption
(0.0111), and residential energy consumption (0.0110) emerged as key
contributors. Several other energy-related variables also contributed
meaningfully, reflecting RF’s ability to integrate signals across both
macroeconomic and sectoral drivers. Error bars (standard deviations
across 30 seeds) were relatively narrow, underscoring attribution con-
sistency and providing a direct measure of uncertainty. This stability
reinforces the reproducibility of RF’s interpretability under coarse-
grained annual data, consistent with the stable learning behaviour
observed in Section 4.3.

For the XGBoost model, SHAP values reveal a sparse attribution
profile. Total ghg excluding LUCF (0.00573) and Gas (0.00026) were
the main contributors, while most other features were effectively zero,
with several exhibiting standard deviations larger than their mean SHAP
values, reflecting variability across seeds. Despite this, the overall
sparsity pattern remained consistent when averaged across 30 seeds,
reinforcing the reproducibility of XGBoost’s selective attribution
behaviour. This concentration of importance on a narrow set of drivers
reflects XGBoost’s regularization under coarse-grained annual data and
aligns with the more variable learning trajectory observed in Section
4.3.

Fig. 9 shows the SHAP summary for the first-seed RF model.
Although feature rankings vary slightly across seeds, the top drivers
closely align with the 30-seed average shown in Fig. 8, indicating that
the first seed provides a representative view of the model’s feature at-
tributions. AUS Energy Growth-QLD is top ranked, followed by Energy

XGBoost SHAP Feature Importance (Avg 30 seeds)
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Fig. 8. Mean absolute SHAP values for RF and XGBoost across 30 seeds. Error bars show standard deviations, reflecting attribution uncertainty. RF exhibits
distributed and stable attributions, while XGBoost relies on a smaller set of dominant drivers.
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Fig. 9. RF SHAP summary dot plot for a single seed. Dot colour indicates feature value (blue: low, red: high); x-axis reflects SHAP impact. Multiple features show
directional influence on predictions, highlighting the integrated effect of macroeconomic and energy-sector drivers.

productivity, Commercial Energy, Residential Energy, Consumption,
and total_ghg_excluding LUCF, all with broad SHAP ranges indicating
distributed contributions across instances. Higher feature values (red
dots) generally correspond to positive SHAP impacts, particularly for
Energy productivity and Residential Energy. Although individual seed
rankings vary slightly, these patterns are consistent across the multi-
seed framework and align with the averaged SHAP values in Fig. 8,
reinforcing RF’s reproducible attributions under coarse-grained annual
data. These results illustrate the integrated influence of multiple eco-
nomic and energy-sector variables on national emission trajectories.

For completeness, the XGBoost SHAP summary was also examined,
as shown in Fig. 10. Consumption and total ghg excluding LUCF
dominate the predictions, showing high SHAP magnitudes and wide
dispersion, while most other features cluster near zero regardless of
value. These patterns confirm the selective attribution observed in both
the averaged SHAP values and classical feature importance metrics,
highlighting that XGBoost relies on a narrow set of drivers compared
with RF’s more integrative structure.

Overall, these SHAP analyses reinforce the attribution patterns
observed in the classical feature importance metrics and learning curves,
emphasizing RF’s integrative representation of multiple emission
drivers and XGBoost’s reliance on a smaller subset of dominant pre-
dictors. These interpretability results provide the foundation for the
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scenario analysis in Section 6, where the practical implications of these
drivers are explored under alternative trajectories.

5. Forecasting CO, emissions on unseen data using a multi-seed
ensemble approach

To evaluate generalization capacity, forecasting experiments were
conducted on unseen test data spanning 2016-2022 using a 30-seed
ensemble framework. Models were trained exclusively on 1982-2015
data, and predictions were inverse-transformed to Mt CO, prior to
metric calculation. This design ensures that performance results reflect
predictive ability beyond the training samples, providing a robust
assessment of model reliability. The RF ensemble achieved high pre-
dictive accuracy (MSE = 5.89, RMSE = 2.43 Mt COa, R? = 0.96), with
modest errors (MAE = 1.81, MedAE = 1.16, MAPE <0.5 %) and a near-
zero MSLE (0.000037), confirming stability across emission scales. As
shown in Fig. 11, scatter points represent mean predictions, the shaded
band indicates 41 standard deviation across seeds, and the dashed line
denotes the 1:1 reference. These results indicate that the ensemble
captured meaningful and reproducible relationships in the data rather
than overfitting, making the model both statistically sound and practi-
cally valuable. Beyond statistical performance, the ensemble’s stability
supports applications in policy analysis, national emissions forecasting,
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Fig. 10. SHAP summary plot for XGBoost using the first seed. Consumption and total GHG excluding LUCF dominate the model’s predictions, while most other

features exert minimal influence.
and integration into decision-making frameworks.

6. Scenario analysis and policy implications
6.1. Scenario analysis

To examine how shifts in key drivers may influence Australia’s 2050
emissions outcomes, a set of illustrative decarbonisation scenarios was
constructed using RF feature importance and SHAP analysis. Deter-
ministic adjustments were applied to the most influential variables:
energy productivity, total energy consumption, and population. These
scenarios are illustrative rather than predictive; values are deterministic
and intended to highlight the potential impacts of driver adjustments on
long-term emissions outcomes.

As shown in Fig. 12, the baseline scenario reaches 410 Mt CO5 by
2050. Incremental adjustments deliver consistently modest reductions: a
5 % improvement in energy productivity lowers emissions to 406.7 Mt
(—0.80 %), while a 10 % improvement achieves 403.4 Mt (—1.61 %).
Demand-side efficiency produces similar results, with a 5 % reduction in
consumption yielding 408.0 Mt (—0.49 %) and a 10 % reduction 406.0
Mt (—0.98 %). Population sensitivity tests confirm exogenous effects:
+5 % shifts translate to +0.5 % changes (412.1 Mt and 407.9 Mt,
respectively), reinforcing that population is a contextual driver rather
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than a policy lever.

A combined adjustment of productivity and consumption achieves
404.0 Mt (—1.46 %), while an aggressive decarbonisation package de-
livers 399.0 Mt (—2.68 %). Only the Net-Zero 2050 scenario achieves
complete decarbonisation (0 Mt, —100 %), highlighting the scale of
systemic transformation required beyond incremental measures. Across
all tested adjustments, the sensitivity range is —1.61 % to +0.51 %
relative to baseline, confirming that incremental measures even when
combined yield consistently modest changes.

6.2. Policy implications

The scenario outcomes and model interpretability converge on a
clear message: coordinated, system-level action is necessary to support
meaningful decarbonisation. Efficiency-oriented measures, such as
improving energy productivity or reducing consumption, deliver only
marginal gains when applied in isolation, and lowering consumption
without changing the energy mix limits overall progress. Population
dynamics, while influential, remain exogenous and outside the scope of
direct policy intervention. Comprehensive changes across energy supply
and demand, technology adoption, and infrastructure are required to
reshape the energy—economy system and generate reinforcing effects.
SHAP analysis reinforces this conclusion: efficiency improvements,
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Actual vs Predicted CO2 Emissions
using 30-Seed Random Forest on Unseen Data
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Fig. 12. Illustrative 2050 CO, emissions scenarios for Australia. Bars show projected emissions (Mt) relative to the 410 Mt baseline. Incremental adjustments are
shown in light blue, combined/aggressive measures in dark blue, population sensitivity in grey (exogenous, not policy levers), and the legislated net-zero target in
green. The “Aggressive decarbonisation” scenario is illustrative and not derived from a specific policy package.

renewable expansion, and demand reduction act synergistically rather
than as substitutes. Policy frameworks that treat these levers as com-
plementary for example, coupling renewable targets with demand-side
efficiency initiatives are more likely to achieve meaningful decarbon-
isation within this modelling framework.

The RF framework clarifies the drivers behind emissions changes,
enhancing transparency, supporting evidence-based interpretation, and
improving communication of results. These findings provide actionable
insights for national climate strategy, emphasizing multi-sector coordi-
nation and alignment between federal and state initiatives. Incremental
reforms alone are insufficient; coordinated, system-level approaches are
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required to meet Australia’s climate commitments. Ensemble outputs,
including feature importance scores and SHAP explanations, further
enhance transparency and contribute to the growing role of explainable
Al in climate and energy policy discussions. By combining scenario
outcomes with SHAP interpretability, the analysis demonstrates how
explainable AI can bridge quantitative forecasts with actionable policy
insights, reinforcing the case for coordinated, system-level strategies to
achieve national climate targets.
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7. Limitations and future work

This study provides valuable insights but has several limitations. The
reliance on annual national-level data constrains the effectiveness of
deep learning models, which are better suited to higher-frequency
temporal patterns. Additionally, the exclusion of policy instruments
such as carbon pricing, renewable energy targets, and regulatory in-
terventions as well as international trade factors limits the ability to
capture broader economic and policy interactions.

While a broad set of economic, energy, and demographic variables
was included (GDP, electricity supply, coal, gas, oil, transport, renew-
ables, energy intensity, energy productivity, and population), national-
level aggregation from 1982 to 2022 can mask subnational or sector-
specific dynamics and limits the ability of models to capture short-
term fluctuations or shocks. Incorporating higher-resolution data, such
as quarterly or sectoral series, could enhance model performance and
provide a more nuanced understanding of emissions drivers.

Model uncertainty is an important consideration. RF predictions
exhibited minor variability across random seeds, highlighting the
importance of reproducibility checks and uncertainty quantification.
While the ensemble approach helped stabilize results, scenario experi-
ments consistently showed that deterministic adjustments produced
only modest reductions by 2050, ranging from —0.49 % for incremental
measures to —2.68 % for aggressive changes, with the combined pro-
ductivity and consumption adjustment reaching —1.46 % relative to the
baseline. Population shifts were treated as exogenous sensitivities rather
than policy levers.

Several avenues for future research emerge from this study. These
include leveraging higher-frequency, sectoral, and regional data to
improve temporal resolution and capture detailed dynamics. Incorpo-
rating policy and trade variables would enhance projection realism.
Methodologically, integrating machine learning with causal inference or
physics-informed hybrid models could ensure that forecasts reflect
structural drivers rather than purely statistical correlations. Probabi-
listic forecasting approaches (e.g., Monte Carlo simulations) would
provide policymakers with clearer guidance on risks and confidence
intervals. By addressing these limitations, future studies can build on
this work’s contribution: a transparent, interpretable comparison of
forecasting approaches for national CO5 emissions. Such extensions
would provide more robust insights into Australia’s legislated 2030
target and net-zero 2050 pathway, strengthen scientific rigor, and
enhance policy relevance by demonstrating how transparent, repro-
ducible modelling can inform Australia’s transition pathways under SDG
13.

8. Conclusion

This study systematically compared statistical, machine learning,
hybrid, and deep learning approaches for forecasting Australia’s CO2
emissions. Scenario analyses indicate that incremental adjustments yield
only modest reductions by 2050, underscoring the limited impact of
isolated measures and reinforcing the importance of coordinated,
system-level approaches to align with net-zero targets.

Methodologically, the study contributes a transparent and repro-
ducible forecasting pipeline with interpretable outputs, including
feature importance rankings and SHAP explanations. By balancing rigor
and transparency, the framework enhances trust in model outputs,
supports evidence-based discussions of Australia’s climate transition,
and contributes to broader global climate objectives under SDG 13.
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Data availability

All datasets and code used in this study are publicly available. Data
were obtained from Our World in Data (https://ourworldindata.
org/co2-and-greenhouse-gas-emissions) and the Australian Energy Up-
date 2024  (https://www.energy.gov.au/publications/australian-
energy-update-2024). The code for model training, evaluation, and
multi-run analyses is available at https://github.com/safaghannam/
CO2-Emissions-Forecasting-in-Australia.
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