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 1 

Abstract 28 

Although the per-base error rate of short-read sequencing data is very low at 0.1%–29 

0.5%, the percentage/probability of erroneous reads in a dataset can be as high as 10%–30 

15% or in the number millions. As current methods correct only some errors while 31 

introducing many new errors, we solve this problem by turning erroneous reads into 32 

their original states, without bringing up any non-existing reads to keep the data 33 

integrity. The novelty is originated in a computable rule translated from polymerase 34 

chain reaction (PCR) erring mechanism that: a rare read is erroneous if it has a 35 

neighbouring read of high abundance. With this principle, we construct a graph to link 36 

each pair of reads of tiny edit distances to detect a solid part of erroneous reads; then 37 

we consider these pairs of reads of tiny edit distances as training data to learn the erring 38 

mechanisms to identify possibly remaining hard-case errors between pairs of high-39 

abundance reads. The proposed approach, noise2read, is competent to handle the 40 

rectification of erroneous reads from short-read sequencing data whenever PCR is 41 

involved. Compared with state-of-the-art methods on tens of evaluation datasets of 42 

unique molecular identifier (UMI) based ground truth, noise2read performs 43 

significantly better on 19 metrics. Case studies found that noise2read can greatly 44 

improve short-reads quality and make substantial impact on genome abundance 45 

quantification, isoform identification, single nucleotide polymorphisms (SNP) profiling, 46 

and genome editing efficiency estimation. Noise2read is publicly available at 47 

https://github.com/JappyPing/noise2read and 48 

https://ngdc.cncb.ac.cn/biocode/tool/7951. 49 

 50 

KEYWORDS: Short reads error correction; Polymerase chain reaction erring; Graph 51 

of reads; Edit distance of two reads; Machine learning 52 
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 2 

Introduction 54 

Next generation sequencing (NGS) techniques and platforms have dramatically 55 

changed the world of genomics and computational biology [1–3]. High throughput 56 

DNA sequencing has enabled large-scale whole-genome sequencing and gene-targeted 57 

sequencing; NGS-based RNA-seq has provided ever higher coverage and sharper 58 

resolution of dynamic transcriptomes for a wide range of applications such as isoform 59 

discovery, differential gene expression analysis, alternative gene splicing, and allele-60 

specific expression profiling [2]. However, NGS inevitably self-made sequencing 61 

errors including base deletions, insertions and substitutions at various steps like sample 62 

handling, library preparation, polymerase chain reaction (PCR), and/or at the base 63 

calling step [4,5]. Although the erring rate is estimated very low at 0.1%–0.5% per base 64 

in Illumina short-read sequencing, huge numbers of erroneous bases have been 65 

generated and stored at every sequencing dataset (e.g., about 197,402 base errors in a 66 

miRNA-sequencing dataset ERR187525, and about 997,020 base errors in a pair-end 67 

whole-genome sequencing dataset SRR22085311 which have been found through this 68 

study). As these mistaken bases are randomly distributed across possibly all the reads 69 

in a dataset, the percentage/probability of erroneous reads in a dataset can be very high 70 

(e.g., as high as 10%–15%). 71 

   Suppose the per-base erring probability is estimated as 𝑝 at a sequencing platform, 72 

and assume these erring events are independent at all the base positions in a read, then 73 

the probability 𝑝𝑒𝑟𝑟𝑜𝑟(𝑟) of a read 𝑟 containing one or multiple base errors is given 74 

by 75 

𝑝𝑒𝑟𝑟𝑜𝑟(𝑟) = ∑ (
𝐿

𝑖
) 𝑝𝑖(1 − 𝑝)(𝐿−𝑖) = 1 − (1 − 𝑝)𝐿

𝐿

𝑖=1

 (1) 76 

where 𝐿 = ‖𝑟‖, the length of read 𝑟. If 𝑝 = 0.1% and L = 100, then 𝑝𝑒𝑟𝑟𝑜𝑟(𝑟) =77 

9.52%. In other words, the percentage of erroneous reads in a dataset is about 9.52% 78 

when the per-base erring rate is estimated as 0.1% and the length of reads 𝐿 = 100 bp. 79 

If the per-base erring rate 𝑝 is estimated as 0.15%, then there are about 13.94% of 80 

erroneous reads in the dataset. 81 

   This is a fundamental issue previously unrecognized concerning the high 82 

percentages of erroneous reads in NGS datasets. These erroneous reads are usually 83 

treated as data noise implicitly or explicitly excluded for downstream data analysis such 84 

as de novo genome/transcriptome assembly and differential gene expression profiling 85 
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 3 

[6,7]. Or these erroneous reads are un-purposely considered as genuine true reads in the 86 

data analysis which may have led to inaccurate or wrong conclusions. To restore the 87 

huge missing value of these high percentages of erroneous reads in each sequencing 88 

dataset, it is highly demanded to do accurate rectification of all these errors, as opposed 89 

to treating them as noise removal, to boost the data quality and integrity so as to improve 90 

the downstream applications. 91 

   One of the main sources of the sequencing errors is from PCR, a technique that 92 

makes fast duplications of small segments of DNA which has been used by NGS to 93 

amplify the fragmented DNA/RNA molecules for effective sequencing. Most of the 94 

time, PCR makes perfect copies of the fragmented segments of DNA/RNA, but 95 

occasionally it introduces base-pair substitutions, deletions, insertions, or even yields 96 

new hybrid sequences during template switching [8]. Thus, after the PCR amplification, 97 

one or two copies in the duplications of a DNA segment may show inconsistent bases. 98 

Figure 1A illustrates how base errors arise when amplifying one DNA template during 99 

PCR amplification. PCR errors not only occur in the library preparation but also during 100 

sequencing processes such as clonal molecules [5]; Figure 1B is an example that depicts 101 

how errors are introduced in the process of bridge amplification during Illumina 102 

sequencing. Such PCR erring incidents are then inherited by NGS’s base calling step 103 

that converts a nucleotide sequence into a digital string (named a read). The conversion 104 

is not 100% accurate as well, similar to PCR introducing minor mistakes (Figure 1C) 105 

[4,9]. Therefore, sequencing errors can occur in various ways. However, it is almost 106 

certain that an erroneous read will appear at low frequency if the error occurred at the 107 

late cycles of PCR. This is because the probability of the same error occurring at the 108 

same position is extremely low, especially in 200–300 bp reads. 109 

   Efficient detection of these erroneous reads from a dataset of hundreds of millions 110 

of reads is challenging. First, some low-frequency rare reads are genuine reads not 111 

containing any sequencing errors. This is attributed to the uneven PCR amplification 112 

rates at different segments of the DNA — poorly amplified molecules will be sequenced 113 

to a lesser extent than the highly amplified molecules [10,11]. Second, an amplified 114 

segment after PCR erring may become identical to a high-frequency molecule. As a 115 

result, for two highly similar high-frequency reads (A and B), it is impossible to 116 

determine, without machine learning of PCR erring mechanisms, whether B represents 117 

an erroneous amplification of A or vice versa. 118 
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 4 

   We construct a graph 𝑟𝐺(𝑅) using the unique reads 𝑟1, 𝑟2, … , 𝑟𝑛 along with their 119 

frequencies from a read dataset 𝑅 (a multiset of reads) to detect erroneous reads under 120 

the sophisticated help of graph-based machine learning. Let 𝑓𝑟𝑒𝑞(𝑟) represent the 121 

abundance level or the frequency of a read 𝑟, or the number of copies of 𝑟 in the 122 

sequencing data. For each of the unique reads in 𝑅, we represent it as a node in the 123 

graph and label the node with the read’s frequency. There is an edge 𝑒(𝑖,𝑗) between 124 

node 𝑟𝑖  and node 𝑟𝑗  if the edit distance between read 𝑟𝑖  and read 𝑟𝑗  is 1 or 2. 125 

Specifically, when searching for edges with an edit distance of 2, only substitutions are 126 

taken into account. A read 𝑢  is a neighbouring read of read 𝑣  if there is an edge 127 

between them. As understood from the PCR erring mechanism in NGS, the pairing of 128 

two neighbouring reads 𝑢  and 𝑣 implies that a copy of 𝑢  is a wrongly 129 

amplified/sequenced copy of the 𝑣  molecule, or a copy of 𝑣  is a wrongly 130 

amplified/sequenced copy of the 𝑢 molecule, or both. When 𝑓𝑟𝑒𝑞(𝑣) is low while 131 

𝑓𝑟𝑒𝑞(𝑢) is high, we rectify the erroneous read 𝑣 by removing this node from the graph, 132 

while increase 𝑓𝑟𝑒𝑞(𝑢) by 𝑓𝑟𝑒𝑞(𝑣). That is, we turn the “noise” read (i.e., a read that 133 

contains erroneous bases) 𝑣  (low-frequency rare read) into its normal state 𝑢 . We 134 

denote such a set of erroneous reads in the graph as edit-erring-READS and the isolated 135 

nodes with high frequencies as error-free-READS. Notably, “noise” refers to erroneous 136 

bases contained in reads in this study. Our correction procedure turns individual base 137 

errors into their correct state (signal) without changing other bases in the reads, and the 138 

rectified reads can be used for any downstream applications. 139 

   We use a small edit distance of 1 or 2 to define the edges of the graph because those 140 

erroneous reads containing one mistaken base or two constitute the majority of the total 141 

erroneous reads in the dataset. The majority percentage is given by 142 

𝑒𝑟𝑟𝑜𝑟%(𝑝, 1, 𝐸𝑚𝑎𝑥) =
∑ (𝐿

𝑖
)𝑝𝑖𝐸𝑚𝑎𝑥

𝑖=1 (1 − 𝑝)(𝐿−𝑖)

1 − (1 − 𝑝)𝐿
(2) 143 

where 𝑝 is the base erring probability, 𝐸𝑚𝑎𝑥 is a maximum edit distance allowable 144 

to define an edge. If 𝐿 = 100, 𝑝 = 0.1%, 𝐸𝑚𝑎𝑥 = 2, then 𝑒𝑟𝑟𝑜𝑟%(𝑝, 1, 𝐸𝑚𝑎𝑥) =145 

99.84%. This indicates that 99.84% of all the possible erroneous reads in the dataset 146 

are those reads containing one base error or two (Emax). 147 

   The second challenge in the correction of erroneous reads in the graph 𝑟𝐺(𝑅) is to 148 

deal with the situation when a low-frequency read is linked to multiple high-frequency 149 

reads, and/or two (or more) high-frequency reads are linked each other in the graph 150 
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 5 

(denoted as ambiguous errors). Hence, we model the situations as a classification 151 

problem and use machine learning techniques to predict whether the duplications of a 152 

high-frequency read contain or not contain wrongly sequenced copies of its 153 

neighbouring high-frequency reads. 154 

   This is a novel classification problem not formulated in any literature. In this work, 155 

we use edit-erring-READS and error-free-READS as training data and extract multiple 156 

features of different dimensions from the data and then utilize an optimized gradient 157 

boosting classifier of the extreme gradient boosting (XGBoost) [12] to make the 158 

prediction under a supervised learning framework. As the training data is 𝑟𝐺(𝑅)-159 

specific, the prediction model can learn the inherent erring patterns of each specific 160 

sequencing platform that conducts the specific biomolecular samples’ sequencing. 161 

Therefore, our machine learning approach is competent to handle the rectification of 162 

erroneous reads that have a length less than 300 bp produced by any PCR-involved 163 

single/pair-end DNA/RNA sequencing, whole-genome sequencing, miRNA-164 

sequencing, or synthetic sequencing regardless of the difference in the platforms or in 165 

the biomolecular samples.  166 

 167 

Method 168 

Overview of noise2read algorithm 169 

We present an error correction method to improve the short-read sequencing data 170 

quality by turning millions of erroneous short reads into their normal state through 171 

graph learning on edit distances between reads. We name our method “noise2read”. As 172 

introduced above, its novelty sits in the computable rule translated from PCR erring 173 

mechanism: a rare read is erroneous if it has a neighbouring read of high abundance. 174 

With this principle, we construct a graph to link each pair of reads of a small edit 175 

distance to detect a substantial part of erroneous reads in the graph. Then we take them 176 

as training data to learn the platform-specific erring mechanism to identify possibly 177 

remaining hard-case errors between pairs of frequent reads in the graph, namely specific 178 

training data is used at different platforms. 179 

   Noise2read is a progressive three-stage error correction method, and an overview 180 

of the workflow of noise2read is illustrated in Figure 2. An auto machine learning 181 

(AutoML) module is centred in the process of noise2read, which is used multiple times 182 

in the different stages for the prediction of ambiguous or amplicon errors. AutoML has 183 
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 6 

a component for the preparation of training and objective data and has a component for 184 

the parameter optimization of the gradient boosting-based classifiers. The first stage 185 

(shaded in blue) rectifies low-frequency leaf nodes (genuine errors) and ambiguous 186 

errors by a traversal on the 1-nt-edit-distance read graph 1 − 𝑛𝑡 − 𝑟𝐺(𝑅0) constructed 187 

from the original reads of dataset 𝑅0. Here, every edge in the 1-nt-edit-distance read 188 

graph means the edit distance between the two nodes is one nucleotide (i.e., 1 nt). The 189 

second stage (shaded in pink) conducts correction of genuine and ambiguous errors at 190 

the 2-nt-edit-distance read graph 2 − 𝑛𝑡 − 𝑟𝐺(𝑅1) constructed from the first stage 191 

corrected dataset 𝑅1. Here, every edge in the 2-nt-edit-distance read graph means the 192 

edit distance between the two nodes is two nucleotides (i.e., 2 nt). Particularly, we 193 

consider only substitution relationships for constructing 2-nt-edit-distance edges since 194 

the majority of NGS data conforms to a consistent read length. The third stage (shaded 195 

in yellow) is designed to eliminate specific errors at an updated 1-nt-edit-distance graph 196 

1 − 𝑛𝑡 − 𝑟𝐺(𝑅2) only for the amplicon sequencing data but using the same AutoML 197 

module for prediction. 198 

   Graph 𝑟𝐺(𝑅)  is often a disconnected graph. For example, nine subgraphs of 199 

𝑟𝐺(𝐷1) constructed in the first stage are shown in Figure S1, where 𝐷1 is a simplified 200 

version of SRR1543964. There are many clustered low-frequency leaf reads linked to 201 

one high-frequency read, while there also exist edges that link pairs of high-frequency 202 

reads. Figure 3 is a zoomed version with more details about subgraph A in Figure S1, 203 

where the high-frequency nodes are highlighted in orange and the low-frequency nodes 204 

are highlighted in pink. Every edge in this graph implies that the linked reads have only 205 

one base difference. With these sub-graphs, noise2read (1) directly turns those leaf 206 

nodes of low-frequency into their high-frequency parent nodes (their normal states 207 

𝑟1, 𝑟2, …, or 𝑟7); (2) uses the AutoML module to identify the parent node of two low-208 

frequency nodes 𝑟8 and 𝑟9, as these two low-frequency nodes are each linked to more 209 

than one high-frequency read (𝑟8 is linked to 𝑟2, 𝑟3 and 𝑟4; 𝑟9 is linked to both of 𝑟1 210 

and 𝑟3); and (3) uses the AutoML module to judge whether there are erroneous reads 211 

between the linked high-frequency nodes (e.g., between 𝑟2 and 𝑟3, between 𝑟5 and 212 

𝑟7). 213 

   Although noise2read is a three-stage progressive error correction method, we 214 

usually take the first two stages because they are sufficient to eliminate the majority of 215 

the errors in many typical NGS datasets. Only in the cases where the data has extensive 216 
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 7 

coverage, such as amplicon sequencing, the option to use the third step is chosen for 217 

additional error correction. 218 

 219 

Special considerations in the construction of edit-distance graph of short reads 220 

By setting a high-frequency threshold 𝜏, noise2read finds the 1-nt- or 2-nt-edit-distance 221 

edges between unique high-frequency reads (with frequency > 𝜏) and all the other 222 

unique reads in a read dataset, and then it takes all these unique reads as nodes, their 223 

counts as attributes and the detected associations to build a graph. The rationale for not 224 

detecting the 1-nt- or 2-nt-edit-distance read pairs in the low-frequency reads is that it 225 

is computationally challenging and meaningless to distinguish whether one read of low 226 

abundance is mutated from the other low-frequency read (e.g., it is hard to determine if 227 

there are mutations or sequencing errors between two reads each with a frequency of 228 

one and with one- or two-base difference). The rationale for 2-nt-edit-distance error 229 

correction is that some NGS data contain two base errors in some long read (e.g., 150 230 

bp), and we set a threshold 𝑙  (e.g., 30 bp) of the sequence’s minimum length to 231 

determine whether to perform 2-nt-edit-distance error correction. 232 

   Noise2read does not perform a pairwise alignment for searching the 1-nt- or 2-nt-233 

edit-distance edges between the high-frequency reads and all the other reads in the read 234 

set. Instead, it enumerates all the possible 1-nt- or 2-nt-edit-distance (substitutions only 235 

for the 2-nt) reads for all the high-frequency reads and stores them in the Python Set. 236 

Then, it invokes the Python built-in function intersection to obtain the edges. It may not 237 

be the best way to find all the edges using hash tables in this manner. However, such a 238 

strategy can find all required edges instead of finding an approximate number of edges. 239 

We constructed the 2-nt-edit-distance graph by searching only substitution relations as 240 

edges. This idea is based on the observation that substitutions are the most prevalent 241 

type of sequencing error [13], and on that ambiguous nucleotides are often denoted by 242 

the symbol “N” [14,15] during sequencing. Moreover, NGS read lengths are usually 243 

consistent and fixed in a single sequencing run, owing to the fixed number of 244 

sequencing cycles in technologies like Illumina sequencing. This uniform read length 245 

is achieved since the read size is directly tied to the number of sequencing cycles 246 

performed, and each cycle corresponds to the sequencing of a single base. On the other 247 

hand, if a deletion or insertion exists in the read, the sequence length will change, and 248 

such a sequence will not appear in a uniform-length sequencing dataset. Noteworthy, 249 
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 8 

noise2read can handle indel errors when insertion or deletions are represented by the 250 

symbol “N”. 251 

   The time complexity of constructing the 1-nt- or 2-nt-edit-distance read graph in 252 

noise2read is 𝑂(ℎ ⋅ 𝐿2 + 𝑛), where ℎ represents the number of high-frequency reads, 253 

𝐿 denotes the uniform read length, and 𝑛 is the total number of unique reads in a 254 

dataset. This complexity arises from two processes. First, noise2read enumerates all 255 

possible 1-nt-edit-distance variants (𝑂(ℎ ⋅ 𝐿)) and 2-nt-edit-distance variants (𝑂(ℎ ⋅ 𝐿2) 256 

for the high-frequency reads, storing them in a Python set in 𝑂(ℎ ⋅ 𝐿2) time. It then 257 

intersects this set of all n reads to identify edges in 𝑂(ℎ ⋅ 𝐿2)  time. Second, the 258 

resulting edges, numbering 𝐸 = 𝑂(ℎ ⋅ 𝐿2, 𝑛), are used to construct an undirected graph 259 

with NetworkX [16] in 𝑂(𝑛 + 𝐸) time. Combining these steps, the overall complexity 260 

simplifies to 𝑂(ℎ ⋅ 𝐿2 + 𝑛) for graph construction by noise2read. 261 

 262 

Construction of edit-erring-READS and error-free-READs as training data 263 

By defining a maximum frequency threshold 𝜏𝑒𝑟𝑟 (𝜏𝑒𝑟𝑟 ≤ 𝜏), we considered two kinds 264 

of erroneous reads: genuine errors and ambiguous errors. Genuine errors are referred to 265 

those leaf nodes whose frequency 𝜏′ is less than or equal to 𝜏𝑒𝑟𝑟 (𝜏′ ≤ 𝜏𝑒𝑟𝑟) and which 266 

have a neighbouring node with a higher frequency than τ. This set of erroneous reads is 267 

denoted as edit-erring-READS. These genuine errors can be directly rectified to their 268 

correct states. While we define two kinds of ambiguous errors: (1) those nodes (reads) 269 

𝑟 with a low-frequency 𝜏′  that are each connected to multiple ≥ 2 high-frequency 270 

nodes; (2) wrongly sequenced reads existing between a pair of similar high-frequency 271 

reads as the second kind of ambiguous error instances. In other words, in the constructed 272 

1-nt-edit-distance-based read graph, if there are edges between two similar high-273 

frequency sequences, there may be sequencing errors between them. Moreover, 274 

amplicon sequencing utilises ultra-deep PCR amplifications for a specific gene target 275 

and supports hundreds to thousands of amplicons multiplexed sequencing in one assay 276 

to achieve high coverage, but ultra-deep PCR simultaneously amplifies PCR errors. To 277 

this end, we further construct a 1-nt-edit-distance-based read graph for amplicon 278 

sequencing data and consider those reads of frequencies less than  𝜏𝑎𝑚𝑝
𝑚𝑖𝑛  (e.g., 50) as 279 

potential amplicon errors mutated from its neighbouring reads of extremely high-280 

frequency larger than 𝜏𝑎𝑚𝑝
𝑚𝑎𝑥 (e.g., 1500). 281 
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 9 

We consider isolated nodes of high frequencies bigger than 𝜏 as error-free reads. We 282 

take those isolated nodes of high frequencies in the 1-nt- or 2-nt-edit-distance graphs to 283 

build the training set error-free-READS. 284 

 285 

Auto machine learning prediction 286 

Unlike the direct rectification of genuine errors into their original state, we model 287 

whether a high-frequency read contains true mutations or sequencing errors from its 288 

high- or low-frequency neighbours as a classification problem. We created the AutoML 289 

module for its end-to-end prediction. The flowchart illustrated in Figure 4 outlines the 290 

steps involved in the AutoML module. 291 

 292 

Formulation of the classification problem 293 

We consider edit-erring-READS as positive training instances, while error-free-294 

READS as negatives. For a low-frequency node with a degree greater than two, we 295 

calculate its probability of mutation from all its high-frequency neighbouring nodes and 296 

take the node with the highest probability as its correct sequence. For the second type 297 

of ambiguous error prediction, we integrate the predicted results of the first kind into 298 

the training data. In the current version, we only use the predicted ambiguous samples 299 

as negative samples for high-ambiguous error prediction to reduce training time and 300 

complexity. The mutations observed in high-frequency reads exhibit a bidirectional 301 

nature. Therefore, we only consider the prediction result with a higher probability when 302 

the bidirectional predictions match. In other words, if the absolute difference between 303 

the probabilities of the two-way predictions is less than a specific value, we discard the 304 

prediction; otherwise, we choose the prediction having a higher probability. 305 

 306 

Feature representation for the training and objective data 307 

A short DNA or RNA sequence can be represented as 𝑟 = 𝑏1𝑏2 … 𝑏𝑖 … 𝑏𝑙 , where 308 

𝑏𝑖 ∈ { 𝐴, 𝐶, 𝐺, 𝑇, 𝑁}  or 𝑏𝑖 ∈ { 𝐴, 𝐶, 𝐺, 𝑈, 𝑁} . Here, 𝐴, 𝐺, 𝐶, 𝑇  and 𝑈  represent the 309 

nitrogenous bases Adenine, Guanine, Cytosine, Thymine and Uracil, respectively. The 310 

letter 𝑁  denotes an uncertain nucleotide, and 𝑙 ∈ ℕ represents the total number of 311 

bases in 𝑟 . We extract features from 𝑟  by considering its substrings of length 𝑘 312 

(where 1 ≤ 𝑘 ≤ 𝑙), also known as 𝑘-mers. 313 
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 10 

   Each training instance consists of two reads in the edit-erring-READS or error-free-314 

READS, examples of the training instances can be found in File S1. The features in 315 

reads are extracted using descriptors: (1) Fourier Transformation [17–20], (2) 316 

Shannon’s and Tsallis’s entropy [17,21], and (3) Fickett’s score [22,23]. Specifically, 317 

the features for a pair of reads with one or two base differences in a training instance 318 

may be identical. Therefore, features are only extracted from the absolute correct read 319 

(i.e., the first read in training instances) to avoid redundancy. These feature extraction 320 

methods are depicted in File S1. Additionally, we used the (4) read counts and (5) 321 

characterised the error types and respective motifs as features. For instance, consider 322 

two reads ACATG and ACGTG, the error is a substitution of C with G. Here, C-G is 323 

the error type, and CAT and CGT are the corresponding motifs. Similarly, for two reads 324 

CGTG and ACGTG, the error is an insertion of A, the error type is represented as X-A, 325 

and the motifs are XA and AC. We define and normalise the feature vector 𝑉 of error 326 

types or motifs as follows 327 

𝑉 = (𝑣1, 𝑣2, … , 𝑣𝑖 , … , 𝑣𝑛) (3) 328 

𝑣𝑖 =
𝑓𝑖 + 𝛿

∑|𝑖|
(4) 329 

   Here, 𝑖  represents an error type, where 𝑐𝑜𝑢𝑛𝑡𝑖  refers to the total number of 330 

occurrences of error type 𝑖  and ∑ |𝑖|  refers to the total number of all error types 331 

present in the data; 𝛿 is a small pre-defined value (e.g., 0.01) assigned to each item to 332 

avoid dividing by zero in cases where a certain error type or motif is not present in the 333 

data. 334 

   Before training, each type of feature is standardised separately by removing the 335 

mean and scaling to the unit variance using the pre-processing method “StandardScaler” 336 

of Scikit-learn [24]. To address class imbalance issue in the training data, we used the 337 

synthetic minority over-sampling Technique (SMOTE) [25] with sampling performed 338 

by Imbalanced-learn [26]. 339 

 340 

Model optimisation and prediction 341 

XGBoost [12] is a well-established and efficient machine learning algorithm for 342 

classification. Optuna [27] is a framework that employs sampling and pruning 343 

heuristics to automatically discover optimal hyperparameter settings by conducting 344 

multiple trials. We chose XGBoost as our classifier and utilised Optuna to optimise the 345 

hyperparameters to achieve fast and accurate predictions. 346 

D
ow

nloaded from
 https://academ

ic.oup.com
/gpb/advance-article/doi/10.1093/gpbjnl/qzaf120/8361744 by guest on 23 D

ecem
ber 2025



 11 

   We have pre-set some parameters for the classifier, including the tree method, 347 

regularisation term, number of estimators, and learning rate. A logistic regression was 348 

used to produce the probability for binary classification, and we aimed to maximize the 349 

test accuracy as the objective for selecting the best model via multiple trials (e.g., 20). 350 

For each task, noise2read utilised AutoML to create a new Optuna study object for 351 

training and selecting the best prediction model. For example, we trained and selected 352 

the four best models for predicting 1-nt- and 2-nt-based ambiguous, 1-nt-based high 353 

ambiguous, and amplicon errors. 354 

   The time complexity of training XGBoost optimised by Optuna in noise2read, using 355 

“hist” or “gpu_hist” tree method, is 𝑂(𝑛𝑡𝑎𝑠𝑘𝑠 ⋅ 𝑛𝑡𝑟𝑖𝑎𝑙𝑠 ⋅ 𝑛𝑡𝑟𝑒𝑒𝑠 ⋅ 𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠 ⋅ 𝑛𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠). 356 

Here, 𝑛𝑡𝑎𝑠𝑘𝑠 (e.g., 1–4) is the number of tasks, 𝑛𝑡𝑟𝑖𝑎𝑙𝑠 is the number of Optuna trials 357 

(e.g., 10–20) per task, 𝑛𝑡𝑟𝑒𝑒𝑠 is the pre-set number of trees, 𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠 is the number of 358 

constructed training samples, and 𝑛𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 is the number of constructed features. 359 

 360 

Error correction for isolated nodes 361 

After prediction, we restore all the edit-erring-READS to their normal state. We then 362 

adopted a third-party method Bcool [28] to deal with the errors contained in the isolated 363 

nodes, including many singletons, in the 1-nt-edit-distance read graph. However, we 364 

keep only those corrected sequences by Bcool, which present in the original or in the 365 

first round of the corrected dataset without any genuine and ambiguous errors, to 366 

prevent generating non-existing new sequences. 367 

 368 

Evaluation criteria 369 

Generation of the gold-standard wet-lab datasets with UMI-based ground truth 370 

In this study, we developed a novel approach for generating ground truth datasets, 371 

motivated by Mitchel’s method presented in literature [29]. One of the differences is 372 

we use the error-corrected Unique Molecular Identifier (UMI) to construct ground truth 373 

datasets. More details of our approach can be found in supplementary methods in File 374 

S2. To ensure validity, credibility and fairness in performance comparison, the UMI-375 

based ground-truth datasets and evaluation procedures established in the benchmarking 376 

study [29] were also adopted for performance evaluation. 377 

 378 

Generation of UMI-based simulated datasets 379 
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 12 

Taking motivations from the simulation approach for generating simulated miRNA 380 

sequencing data in [30], we introduced an innovative method to generate UMI-based 381 

simulation datasets that can be applied to a broader range of NGS datasets, extending 382 

beyond just miRNA sequencing data. The details of simulation process can be found in 383 

supplementary methods in File S1. 384 

   We also employed the simulation process in [30] to generate simulated single-end 385 

miRNA sequencing datasets to evaluate the proposed method’s performance. 386 

Differently, we additionally incorporate mimic UMIs (numbers are used here instead 387 

of base sequences) for unique sequences in the generated error-free read set based on 388 

the assumption that each unique read corresponds to a UMI to adapt the evaluation 389 

framework developed in this study.  390 

 391 

Evaluation metrics 392 

To accurately evaluate the performance of error correction methods, we propose using 393 

confusion matrices at the read-level and base-level to measure changes in reads within 394 

the same UMI cluster rather than relying on the sequencing IDs generated by the 395 

instruments. The rationale is that for the constructed UMI-based datasets in this study, 396 

there is only one unique error-free sequence (of multiple occurrences) in each UMI 397 

cluster. Therefore, in a UMI cluster, we only need to compare the edit distance between 398 

every other unique read and this error-free read before and after error correction. Then, 399 

we can compute the confusion matrix using the relevant read count information before 400 

and after correction. More than half of the calculation time was saved this way. 401 

Otherwise, if we use the sequencing ID as the index, we must compare the edit distances 402 

twice for each group (same sequencing ID) of the raw, error-free, and corrected reads, 403 

even if they are the same. The absolute values of the true positives in each dataset are 404 

associated with the number of reads rather than the number of UMIs. The total number 405 

of positives of the actual condition equals the sum of the True positive and False 406 

negative. At the read level, a read is deemed erroneous if even a single base is incorrect. 407 

Conversely, a read is considered error-free only when all its bases are correct. TP 408 

defines the number of edit-erring reads perfectly modified after correction, and TN is 409 

the amounts of error-free reads without any changes after modification. While FP 410 

denotes the counts of error-free reads that are incorrectly adjusted by introducing new 411 

errors, FN represents the number of unchanged or wrongly fixed edit-erring reads. 412 
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Similarly, at the base level, TP, TN, FP and FN concerned about the mistaken or 413 

accurate bases changing before and after correction. 414 

   Additionally, we employ the edit distance changes instead of the multiple sequence 415 

alignment (MLA) strategies used in [29] among raw, authentic and modified reads to 416 

get the confusion conditions as the MLA is highly time-consuming. Another reason is 417 

that MLA has more alternative alignment results since it compares three reads. In 418 

contrast, the edit-distance-based strategy only compares the ground truth read to its raw 419 

or corrected one, respectively. When counting the FN on the base level, we measure the 420 

absolute edit distance difference with the accurate read before and after correction.   421 

   Then, we derive the True Positive Ratio (TPR, a.k.a. recall or sensitivity), False 422 

Negative Ratio (FNR), True Negative Ratio (TNR), False Positive Ratio (FPR, a.k.a. 423 

fall-out), precision, gain and accuracy from the confusion matrix. TPR and FNR are the 424 

ratio of the number of edit-erring reads or bases correctly rectified and wrongly kept as 425 

negatives to the total number of actual edit-erring reads or bases, respectively. TNR and 426 

FPR are defined as the ratio of the number of error-free reads or bases correctly kept as 427 

negatives and wrongly rectified to the total number of actual error-free reads or bases, 428 

respectively. From the information theory perspective, TPR is the ratio of noise turning 429 

to signal; in contrast, FNR is the unconverted ratio of noise to signal. While FPR is the 430 

percentage of new noise introduced, TNR is the ratio of the original signal preserved. 431 

𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃 + 𝑇𝑁
(5) 432 

𝐹𝑁𝑅 =
𝐹𝑁

𝑇𝑃 + 𝐹𝑁
(6) 433 

𝑇𝑁𝑅 =
𝑇𝑁

𝐹𝑃 + 𝑇𝑁
(7) 434 

𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
(8) 435 

   An ideal performance should achieve high TPR and TNR while keeping FNR and 436 

FPR low. Therefore, we can construct a cross-coordinate system where derived scores 437 

from the confusion matrix are assigned to each of the four directions. The four index 438 

values of TPR in the upper axis, FPR in the lower axis, TNR in the right axis and FNR 439 

in the left axis form a rectangle. The larger the overlapping area between the rectangle 440 

and the upper right quadrant, the better the performance. Therefore, we define a 441 

quantitative metric of the overlapping Area Difference (AD) to assess the performance 442 

as follows, 443 
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𝐴𝐷 = 𝑇𝑃𝑅 ⋅ 𝑇𝑁𝑅 − 𝑇𝑃𝑅 ⋅ 𝐹𝑁𝑅 − 𝐹𝑁𝑅 ⋅ 𝐹𝑃𝑅 − 𝐹𝑃𝑅 ⋅ 𝑇𝑁𝑅 (9) 444 

   Moreover, we also calculate the Precision, Positive Gain and Accuracy denoted as 445 

follows to evaluate the correction performance at read-level or base-level. Precision 446 

evaluates the ratio of precise modifications among all the completed corrections and all 447 

the errors, while Positive Gain indicates the positive effect among all the real errors. 448 

The accuracy is the proportion of accurate modifications, including true positives and 449 

negatives, to the total number of reads or bases concerned. 450 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(10) 451 

𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝐺𝑎𝑖𝑛 =
𝑇𝑃 − 𝐹𝑃

𝑇𝑃 + 𝐹𝑁
(11) 452 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
(12) 453 

   Furthermore, based on the read-level definition for the dataset of known ground 454 

truth, we classify reads into two categories: edit-erring and error-free. Then we measure 455 

the purity of the dataset using entropy defined as 456 

𝐸 = −𝑝 ⋅ log2 𝑝 − (1 − 𝑝) ⋅ log2(1 − 𝑝) (13) 457 

where 𝑝 is the probability of randomly selecting one error-prone or error-free read 458 

from all sequences. The lower the dataset entropy, the fewer edit-erring reads exist in 459 

the dataset. 460 

 461 

Results  462 

To assess the performance of noise2read, we generated UMI-based ground-truth and 463 

simulated datasets based on the methods developed in this study and literature [29,30]. 464 

After evaluating the performance of noise2read, we conducted case studies on 465 

abundance change of viral reference genomes, isoform identification, single nucleotide 466 

polymorphism (SNP) profiling, and genome base editing efficiency estimation to assess 467 

the impact of noise2read’s error correction on downstream applications. The flowchart 468 

illustrated in Figure 5 outlines the analytical framework and key concepts in this study. 469 

As a result, we used 39 datasets generated in this study or from third-party studies to 470 

evaluate noise2read. Datasets 𝐷1 − 𝐷8 are UMI-based ground-truth datasets derived 471 

from eight real sequencing runs SRR1543964–SRR1543971 using a UMI-contained 472 

high-fidelity sequencing technique (a.k.a. safe-SeqS) [29,31]. 𝐷9 − 𝐷13 are simulated 473 

datasets with mimic UMIs based on actual sequencing data (with read lengths of 75 bp, 474 
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101 bp and 150 bp). 𝐷14 − 𝐷17 are four single-end miRNA datasets generated using 475 

the simulation procedure proposed in miREC [30] and an additional step of mimicking 476 

UMIs to these datasets. The eight UMI-based ground-truth datasets [29] were labelled 477 

as 𝐷18 − 𝐷25  in this study. 𝐷26 − 𝐷37  are one paired-end and ten single-end 478 

sequencing datasets used for case studies. Detailed information about these datasets 479 

𝐷1 − 𝐷39 can be found in Table S1. 480 

   Comparing with state-of-the-art methods including 𝑘 -mer-methods [32–38], 481 

multiple sequence alignment based methods [39–43], and other methods [28,30,44], 482 

our noise2read consistently outperforms under 19 metrics on eight UMI-based wet-lab 483 

datasets and five simulated single-end and paired-end datasets constructed in this study. 484 

It also has superior performance on eight UMI-based wet-lab datasets and four 485 

simulated miRNA datasets established previously in published literature. Moreover, 486 

case studies on abundance change of viral reference genomes, isoform identification 487 

and SNP profiling, and genome base editing efficiency estimation revealed that 488 

noise2read can make substantial impacts on downstream applications. The versions of 489 

noise2read and other methods, along with the corresponding commands and parameters 490 

used in the experiments, are provided in File S2. 491 

 492 

High prevalence of erroneous reads containing one or two base errors from UMI-493 

based cluster and distribution analysis 494 

We utilised the sequence information of UMI tags to investigate the distributions of 495 

erroneous reads that contain different numbers of base errors. Specifically, we divided 496 

the reads in a UMI group into high-frequency reads and low-frequency reads. Then, we 497 

calculated the edit distance between each unique low-frequency read and each unique 498 

high-frequency read. Then, each of the unique low-frequency read has the smallest edit 499 

distance with the set of unique high-frequency reads. Given each of these smallest 500 

distances, we record the number of low-frequency sequences that have this edit distance 501 

with the set of high-frequency reads. 502 

   We applied the above process to the datasets of SRR1543964–SRR1543971 by 503 

defining a high-frequency read as a read with a copy count no less than five (note: 504 

clusters with ambiguous base “N” in the UMI sequence are not included in this analysis). 505 

We observed that there exist two different high-frequency sequences that have been 506 

tagged with the same UMI, as similarly reported in the literature [45]. For instance, as 507 
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seen in Figure S2, each of these UMI clusters has two high-frequency reads, between 508 

which the edit distance is larger than 100 (111 or 129 respectively), demonstrating that 509 

such two high-frequency reads within the same UMI cluster should be originated from 510 

two different molecules, although they were tagged with the same UMI. 511 

   Moreover, there exist big editing distances (e.g., 116) between high and low-512 

frequency reads within the same UMI cluster, it would be unreasonable to assume only 513 

base-editing-error-relationship between all the low and high frequency reads. In fact, a 514 

low-frequency sequence with a small edit distance to a high-frequency read is more 515 

likely caused by PCR or sequencing errors. Here, we assume that those low frequency 516 

reads with an edit distance ≤ 4 may be erroneous reads caused by PCR or sequencing 517 

errors. In this context, among these eight data sets, at least 60% of the erroneous reads 518 

in 95.21%–96.70% of the UMI clusters are caused by 1 or 2 base errors, as depicted in 519 

the stacked bar chart in Figure S3. Five more UMI clusters are shown in Figure S4: 520 

81.25%, 95.24%, 100%, 94.73% and 100% of low-frequency reads have the 1 and 2 521 

base differences with the set of high-frequency reads in the same UMI cluster. These 522 

findings indicate that those erroneous reads containing one mistaken base or two 523 

constitute a more significant proportion of the total erroneous reads in the dataset. Based 524 

on our theoretical analysis and UMI cluster analysis, the proposed algorithm, 525 

noise2read, is set to correct erroneous reads containing base errors < 3. 526 

 527 

Entropy reduction and information gain after error correction 528 

The error correction effect or the noise/uncertainty reduction by an error correction 529 

method in a dataset can be measured by Shannon’s entropy and information gain. For 530 

a read dataset 𝑅, its Shannon entropy 𝐻 is given by 531 

𝐻 = − ∑ 𝑝𝑟 ⋅ log2 𝑝𝑟

𝑟∈𝑅

(14) 532 

where 𝑝𝑟 is the percentage frequency of 𝑟 in 𝑅. 533 

An ideal correction should eliminate all the errors/noises in the dataset while not 534 

introducing any new errors, or new sequences. Therefore, the entropy 𝐻′(𝑅′) of a 535 

corrected read dataset R’ should consist of two parts: one is about the original reads, 536 

the other is about the wrongly introduced reads. We define 𝐻′(𝑅′) as 537 

𝐻′(𝑅′) = 𝐻′(𝑅′ ∩ 𝑅) + 𝐻′(𝑅′ − 𝑅) (15) 538 

𝐻′(𝑅′ ∩ 𝑅) =  − ∑ 𝑝𝑟 ⋅ log2 𝑝𝑟

𝑟∈{𝑅′∩𝑅}

(16) 539 
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𝐻′(𝑅′ − 𝑅) = − ∑ 𝑝𝑟′ ⋅ log2 𝑝𝑟′

𝑟′∈{𝑅′−𝑅}

(17) 540 

   Information gain reflects the amount of information gained from the original state 541 

of the reads after the error correction, defined as 542 

△ 𝐼(𝑅′; 𝑅) = 𝐻(𝑅) − 𝐻′(𝑅′) = 𝐻(𝑅) − 𝐻′(𝑅′ ∩ 𝑅) − 𝐻′(𝑅′ − 𝑅) (18) 543 

   The fewer unique reads are in a dataset, the less uncertainty, and the entropy will 544 

decrease after mistaken bases are corrected. To see the error correction effect on the 545 

data quality improvement, we propose to visualise the information change via a 546 

heatmap of taking items of △ 𝐼 as minor rectangular points and marking the wrongly 547 

introduced sequences as noises red dots. A visualization of △ 𝐼 for 𝐷1 is shown in 548 

Figure 6 and those for 𝐷2 − 𝐷8 are presented at Figures S5–S11. The primary colour 549 

of the heatmaps close to zero strongly suggests that the correction conserves the original 550 

high-frequency information by all the methods. The negative and positive scores on the 551 

colour bar describe the information gain and loss, respectively. As shown in Figure 6, 552 

noise2read is better than the other methods to reduce noise level as there is nearly no 553 

score > 0. Those red points depict information loss brought by wrongly introduced new 554 

sequences, leading to new errors to increase false positives and negatives. Noise2read 555 

does not yield any non-existing reads, and the colour in Figure 6B darker than that in 556 

Figure 6A implies that noise2read has more information gained from the additional 557 

amplicon sequencing correction. 558 

   Moreover, to intuitively quantify the information gain or loss, we considered the 559 

changes only in low-frequency sequences before and after error correction. We denote 560 

the frequent reads as a subset 𝐹𝑅𝜏 of 𝑅, and we calculate the entropy by removing 561 

𝐹𝑅𝜏 from 𝑅 or 𝑅′. Then, we focus on the entropy change given by 562 

△ 𝐻 = 𝐻(𝑅 − 𝐹𝑅𝜏) − 𝐻′(𝑅′ − 𝐹𝑅𝜏) (19) 563 

where 𝜏 is a threshold for defining high frequency reads, 𝐻(𝑅 − 𝐹𝑅𝜏) and 𝐻′(𝑅′ −564 

𝐹𝑅𝜏)  represent the non-frequent reads’ entropy before and after correction, 565 

respectively. 566 

   We calculated the entropy change △ 𝐻 for the sequencing datasets 𝐷1 − 𝐷8 and 567 

five simulated datasets 𝐷9 − 𝐷13 after error correction (details shown in Table 1). 568 

noise2read achieves the most considerable information gain on all these datasets. 569 

Specifically, the increased information by noise2read on the simulation datasets 570 
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outperforms the other methods. The extensive information gain is because noise2read 571 

can rectify almost all the errors in the simulated datasets. 572 

 573 

Performance comparison on UMI-contained sequencing datasets established in 574 

this study 575 

We evaluated the performance of noise2read in comparison with seven other 576 

computational error correction methods at both the base-level and read-level under 577 

various metrics, including TPR, TNR, FPR, FNR, AD, Precision, Positive Gain, 578 

Accuracy, and Purity Entropy on UMI-based ground truth data 𝐷1 − 𝐷8. 579 

   The comparative performance with the seven methods Coral [39], RACER [33], 580 

Fiona [40], Lighter [34], Pollux [36], Bcool [28], and Care [42,43] are summarized in 581 

Figure 7A for 𝐷1 and those in Figures S12 and S13 for 𝐷2 − 𝐷8. Tables S2–S9 are 582 

provided to further supplement the results. Our method noise2read has achieved the 583 

best performance on all the datasets under all the metrics. 584 

   The high-TPR and low-FNR performance indicate that noise2read can turn most 585 

noise while leaving the lowest number of actual noises as signals; The high TNR 586 

illustrates that noise2read can introduce fewer new errors by preserving most signals 587 

unchanged, while the low FPR suggests that noise2read introduces none or few new 588 

noises without bringing up any non-existing sequences after the correction process. In 589 

detail, noise2read surpassed all the other methods on 𝐷1, achieving a score 0.924 590 

higher than the second-best method RACER which has a score of 0.859. Notably, 591 

noise2read exhibited exceptional performance in Recall, Precision, Positive Gain, 592 

Accuracy, and Purity Entropy, as evidenced by the values in Table 2. The positive gain 593 

percentage of noise2read is 7.26% and 48.15% higher than RACER and Care. 594 

noise2read and its amplicon mode achieved the finest purity entropy of 0.05 and 0.077, 595 

sounder than the second-best method RACER which has a score of 0.110. 596 

   The progressive process gradually converts noise into signals; for example, in Table 597 

2, the 1st, 2nd and 3rd stages convert 72.9% (81,630), 93.2% (104,373), and 96.2% 598 

(107,717) of the errors into signals on 𝐷1, respectively. Noise2read is mainly designed 599 

for any short-read sequencing data whenever PCR is involved. Without the 3rd step, it 600 

also achieves sound performance (refer to Tables S2–S9) by restoring most erroneous 601 

reads into their normal states and not introducing false positive reads. The 3rd step for 602 

further correction on amplicon sequencing data maintains fewer original error-free 603 
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reads than the second stage and correspondingly introduces more noise but not new 604 

sequences. RACER can rectify 93.4% of the noise but newly introduces almost 22 times 605 

the number of new errors compared to our method. Care newly introduces 52 false 606 

positives but can only correct 64.9% of the erroneous reads. The other methods can 607 

only correct less than 65% of the errors but simultaneously give rise to thousands of 608 

new mistakes. 609 

 610 

Performance on simulated short-read datasets and those with artificially modified 611 

bases 612 

Error correction performances on the simulated ground truth are shown in Figure 7B–613 

L, Figure S14 and Table S10 for dataset 𝐷9 and Figures S15–S22 and Tables S11–S14 614 

for datasets 𝐷10 − 𝐷13. Noise2read super outperforms the other methods under all the 615 

metrics on all the simulated datasets. Specifically, for the 𝐴𝐷 performance, noise2read 616 

(0.989) has 39.3%, 61.9% and 123.3% higher performance than that of Lighter (0.71), 617 

Care (0.611) and Fiona (0.443) (Figure 7B). Noise2read reaches the best precision, gain 618 

and accuracy and achieves a substantial positive gain (Figure 7C). As shown in Figure 619 

7D, noise2read is the only method significantly decreasing the purity Entropy after 620 

correction. Information gain visualisations in Figure 7E–L indicate the information is 621 

still dominated by most of the original signal after correction. All the other methods 622 

wrongly introduced new sequences (in a number of 164 to 9698) after correction. The 623 

other methods’ performance fluctuates widely. For instance, at the read level, the 624 

performance ranking of the top three methods in terms of 𝐴𝐷 on dataset 𝐷9 (Figure 625 

7B) is Lighter, Care and Fiona. However, the performance ranking is Fiona, Care, and 626 

Coral on 𝐷10 (Figure S15), and Lighter, Fiona and Care (Figure S17) on 𝐷12. 627 

 628 

Performance evaluation using previously established simulated miRNA 629 

sequencing datasets 630 

Comparison results between noise2read (with or without high-frequency ambiguous 631 

error prediction) and miREC are shown in Table 3 and Table S15. Noise2read can 632 

rectify more errors than miREC, achieving more TP and less FN after correction. The 633 

miREC method and noise2read can achieve similar, reasonably good results in accuracy, 634 

precision and fall-out (Table S15). However, from the recall, Positive Gain, purity 635 
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Entropy (E) and information gain 𝛥𝐻 performance on all four datasets, noise2read is 636 

better than miREC. 637 

 638 

Performance evaluation using independently established UMI-based benchmarks   639 

Table 4 shows the comparative performance of noise2read on 𝐷25 in comparison with 640 

Bless [37], Coral [39], Lighter [34], Reckoner [38], Sga [44], BFC [35], Pollux [36], 641 

Fiona [40], RACER [33], and Care [42,43]. The comparison results on 𝐷18 − 𝐷25 642 

(see Tables S16 and S17) highlight that noise2read consistently achieved the highest 643 

number of true positives on all these datasets, except for Fiona’s TP on 𝐷25, which is 644 

slightly bigger than noise2read. Importantly, noise2read demonstrates the lowest count 645 

of false positives among all these datasets. noise2read performs exceptionally good in 646 

Precision, Accuracy, AD and Positive Gain on all the eight benchmark datasets. 647 

 648 

Runtime and memory consumption 649 

We compared CPU runtime and peak memory used by noise2read with those by Care 650 

[42,43], RACER [33], Bcool [28], Pollux [36], Lighter [34], Fiona [40], and Coral [39] 651 

on data sets 𝐷1 − 𝐷8. We executed all the programs on an Intel(R) Xeon(R) Gold 652 

6238R CPU clocked at 2.20GHz, leveraging 56 CPU cores for parallel computing. For 653 

the model training of noise2read, a single Tesla V100S-PCIE-32GB GPU was 654 

employed. To gauge memory usage across all the programs, we used the library psutil 655 

(https://github.com/giampaolo/psutil). These runtime and memory consumption 656 

comparisons are presented Table 5. 657 

   Lighter and Care exhibited fast speeds, completing corrections within a minute by 658 

taking a small amount of memory consumption for each of the 8 data sets. On the other 659 

hand, Pollux had the slowest speed due to its inability to run in parallel. Noise2read 660 

spent the second-highest memory consumption and made the second-slowest speed. 661 

(We do not suggest using many multiprocessing processes for noise2read to run, as we 662 

have observed that those situations could suddenly consume a significant amount of 663 

memory, and the program ran out of memory and terminated.) 664 

   The separate time consumption by noise2read at its different stages as recorded in 665 

the built-in log files across all datasets 𝐷1 − 𝐷39 are presented in Table S18. It can be 666 

observed that a significant amount of time was spent on tasks such as constructing “2-667 

nt-edit-distance read graphs”, “performing feature extraction”, and “model training”. 668 
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To shorten the running time on large data sets, it is suggested to choose a smaller 669 

number of negative samples and set a smaller number of trials (e.g., 20) for the 670 

construction of suboptimal models. Additionally, opting not to predict errors within 671 

high-frequency reads will also save noise2read a substantial amount of time and 672 

memory usage but fortunately without much performance sacrifice on error correction. 673 

We note that although noise2read is slow, it never introduces any non-existing reads 674 

into the datasets. This is a unique merit in all current sequencing error correction 675 

methods. 676 

   While the speed of error correction is undeniably a crucial factor in evaluating the 677 

performance of a correction method, an even more critical consideration is whether the 678 

method introduces new errors. A fast error-introducing method damages the quality of 679 

the whole dataset and may become unexpectedly harmful to downstream data analysis, 680 

although its fast speed is advantageous in the preprocessing error correction stage. Our 681 

method does not have this speed advantage so far, but it never introduces new errors, 682 

guaranteeing the integrity of the datasets. In future work, we consider efficiency tricks 683 

to improve the speed of feature extraction and machine learning. 684 

 685 

Error correction increases Monkeypox virus genome abundance by 52.12%  686 

The Monkeypox virus has severely affected the health of human beings and its 687 

reference genome sequence has been extensively utilised to understand the origin and 688 

phylogeny, and as a fundamental framework for the design of mRNA vaccines. We 689 

investigate how much abundance is changed for the reference genome after our 690 

algorithm noise2read rectifies the base errors contained in the short-read sequencing 691 

data. The study will help understand the within-host viral mutants of the reference 692 

genome and the abundance compositions. 693 

   We used the paired-end whole-genome sequencing dataset SRR22085311 (its 694 

paired R1 and R2 denoted as 𝐷26  and 𝐷27  here) and the reference genome 695 

GCA_025947495.1 [46]. Our noise2read rectified a huge number of erroneous reads in 696 

𝐷26  (400,622 out of 3,599,812 reads, i.e., 11.13%), and another huge number of 697 

erroneous reads in 𝐷27 (456,242 out of 3,599,812 reads, i.e., 12.67%). Figure 8A 698 

presents a coverage comparison chart before and after the error correction, alongside a 699 

coverage difference chart (Figure 8B), where the average base coverage of the reference 700 

genome is increased by 52.12% from depth 1216.75 to 1850.95 after a huge number of 701 
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651,410 reads were retrieved to perfectly align with the genome. The frequency 702 

distribution of the base coverage differences as another angle viewing the abundance 703 

change for the Monkeypox virus is presented in (Figure 8C), where the abundant and 704 

perfectly matched reads aligned to the genome are highlighted again. Especially, those 705 

positive shifts towards a higher coverage (Figure 8B and C) confirm much more about 706 

the ground truth of the known reference genome and the detection of possible new 707 

variants of the genome. 708 

   The substantial changes in genome abundance for Monkeypox after error correction 709 

prompt a revaluation of genome sequences and how we detect new variants. Although 710 

this alignment-based analysis focused on viral data, our method has broader 711 

applications, as it effectively corrects errors in PCR amplified short-read sequencing 712 

without introducing non-existent reads, while preserving data integrity. Since reference 713 

genome alignment is a widely used strategy in bioinformatics, our findings suggest that 714 

noise2read can enhance the accuracy and conclusions of alignment-based studies across 715 

a wide range of organisms and datasets. 716 

 717 

Accurate error correction improves detection of isomiRs and refines SNPs 718 

profiling 719 

MicroRNAs (miRNAs), non-coding RNA molecules approximately 22 nt, can 720 

modulate gene expression post-transcriptionally through the silencing and decay of 721 

target mRNAs [47]. Dysregulation of miRNAs plays crucial roles in many biological 722 

mechanisms, and it is also a main reason in cancer and autoimmune disorders [48,49]. 723 

By miRNA sequencing, various types of isoforms (i.e., isomiRs) have been detected 724 

[50]. However, whether the base differences found in the isomiRs are actual biological 725 

variations or synthetic artefacts due to the PCR or sequencing errors or both is difficult 726 

to judge. Here, we study how our error correction changes the identification and 727 

quantification of isomiRs from short RNA-seq datasets and how it refines the profiling 728 

of known SNPs in isomiRs. 729 

   We downloaded ten single-end small RNA-sequencing datasets of lymphoblastoid 730 

cell lines from five population groups in the 1000 Genomes Project [51]. These datasets 731 

(denoted as 𝐷28 − 𝐷37 here) were cleaned by removing the adapter sequences via 732 

cutadapt [52]. We used IsoMiRmap [53] under the setting of pre-defined miRNA 733 

reference sets from the database miRbase (v22) [54] as a “miR-space” to quantify 734 

known isomiRs and SNPs for 𝐷28 − 𝐷37  before and after our sequencing error 735 
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correction. IsoMiRmap tags an identified isomiR as an exclusive isomiR if it only exists 736 

in the miR-space with one or more occurrences but not elsewhere in the human 737 

reference genome, otherwise recognized as an ambiguous isomiR. 738 

   These quantification results are summarised in Table 6. The number of unique 739 

ambiguous isomiRs is decreased by 24.12%–31.75% or in numbers from 151 to 245, 740 

but their total counts are increased by a number between 160 and 640 among the ten 741 

datasets after the error correction; the number of exclusive isomiRs is decreased by 742 

34.46%–37.48% but their total counts are increased by a number between 5095 and 743 

14,441. These results suggest that some previously identified isomiRs are artifacts 744 

containing sequencing errors rather than natural isoforms. On the other hand, for the 745 

profiling of the known SNPs, the number of unique SNPs decreased by 34.13%–746 

59.09%, and their counts also decreased by 4.40%–35.56% except for two increased by 747 

1.41% and 1.61% respectively. This observation unveils that some of the previously 748 

annotated SNPs are sequencing errors. Similar quantitative and qualitative changes 749 

observed in the profiling of these known SNPs in the isomiRs distinguishing true SNPs 750 

from sequencing errors enable more accurate annotation of SNPs. The significant 751 

change of the isomiRs quantification after correction is because an average of 235,146 752 

(2.62%) sequences were corrected by noise2read in the ten datasets (Table 6). 753 

   To understand more about the frequency change of isomiRs and SNPs, we 754 

categorised the isomiRs according to their original miRNAs, then we utilised scatter 755 

graphs with Kepler plots to understand the associations between the number of identical 756 

isomiRs and total isomiRs’ count (log10  transformation) before and after the error 757 

correction of the sequencing reads. The leftward shift on the x-axis (Figure 9A and B 758 

for exclusive isomiRs of 𝐷28 and 𝐷29, respectively, Figure 9C and D for ambiguous 759 

isomiRs and known SNPs of 𝐷28, and Figures S23–S25 for the other miRNA datasets) 760 

indicates a reduction of the count of unique isomiRs, while the upward change on the 761 

y-axis indicates an increase in authentic isomiRs. These significant changes in isomiRs 762 

and SNPs highlight the importance of correction for accurately characterizing isomiR 763 

and SNP profiles, making contributions to the annotation of isomiRnome. 764 

 765 

Accurate error correction significantly improves ABE/CBE editing outcomes 766 

Base editing is a new genome editing technique that uses CRISPR systems and enzymes 767 

to introduce point mutations into cellular DNA or RNA for modelling and 768 
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understanding genetic diseases [55,56]. However, deciding whether a nucleotide 769 

position is exactly editable in a genomic context is inefficient by wet-lab experiments, 770 

and the base editors may yield many unexpected genotypic output sequences when the 771 

editable window covers multiple target nucleotides. Deep-learning-based prediction 772 

tools have been developed to predict the base-editing efficiency and outcome-sequence 773 

copy numbers from Adenine and cytosine base editors (ABEs and CBEs) [57]. The 774 

training data used by these prediction tools are extracted from short-read DNA/RNA 775 

sequencing data. Here, we investigate how much the number of unique reads (unique 776 

outcome sequences) changes after our sequencing error correction. 777 

   We removed those records in which the target sequence has only one outcome 778 

sequence from the training data of HT_ABE_Train and HT_CBE_Train used in the 779 

literature [57]. Then, we cleaned them to form two datasets (denoted by 𝐷38 for ABEs 780 

and D39 for CBEs here), and applied noise2read to 𝐷38 and 𝐷39 separately. As a 781 

result, the number of unique outcome sequences in 𝐷38 is reduced by 2309 from 782 

28,892 to 26,583 (7.99%), and the number of unique outcome sequences in 𝐷39 is 783 

reduced by 5042 from 27,312 to 22,270 (18.46%). The number reduction of unique 784 

outcome sequences is because some low-frequency reads are not a result of base editing 785 

but due to sequencing errors. In total, noise2read recognised 5109 erroneous reads in 786 

the ABE dataset and 10,271 erroneous reads in the CBE dataset and turned all of them 787 

into normal states. This error correction has significantly improved the quality of the 788 

training data that would be very helpful for enhancing the prediction of base editing 789 

efficiencies. 790 

 791 

Discussion 792 

A long-standing problem in sequencing data analysis is how to reduce sequencing base 793 

errors and erroneous reads as much as possible before any downstream applications. 794 

Existing short reads correction methods utilize biochemical-based experimental designs 795 

such as unique molecular identifiers (UMIs) to count and track molecules [10], or take 796 

computational methods including 𝑘 -mer-methods [32–38], multiple sequence 797 

alignment based methods [39–43], and other methods [28,30,44]. One limit of the UMI-798 

based strategies is that errors/mutations can also happen at UMIs. Serious concern about 799 

the computational methods is that they have significantly overcorrected reads by 800 

introducing pseudo new sequences or shifting one type of error into another, often 801 
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leaving numerous reads uncorrected. Some of these methods only focus on restoring 802 

substitution mistakes but do not support indels’ correction. Besides, instance-based 803 

methods such as miREC [30] were designed to handle specific sequencing data type 804 

miRNA sequencing reads. And it assumes that frequent sequences contain no mistakes, 805 

thus it cannot be used to correct potential errors between high-frequency reads or cannot 806 

deal with those singletons with no relationships to the high-frequency reads. 807 

   Following the principle of the PCR erring incidents and sequencing process, we 808 

constructed special graphs of short reads to capture the relationships between edit-809 

erring and error-free reads. Through novel modelling of the errors between high-810 

frequency reads and their high- or low-frequency neighbours as a classification problem, 811 

we have successfully predicted almost all the errors using machine learning techniques. 812 

Validation experiments on the UMI-based wet lab and simulated datasets of known 813 

ground truth have demonstrated that the proposed noise2read algorithm can eliminate 814 

most of the PCR and sequencing errors without introducing any non-existing sequences 815 

into the read set. 816 

   Moreover, we investigated the impact of error-corrected data on downstream data 817 

applications. We have found that: (1) The abundance level change of the reference 818 

genome of Monkeypox virus after the sequencing error correction is remarkable, which 819 

may allow us to rethink how to get a precise genome sequence for the virus; (2) For the 820 

isomiRs and SNPs profiling, the counts of some isomiRs and SNPs are decreased while 821 

some others are increased, which is of great significance to identifying actual isomiRs 822 

and SNPs and re-annotating the isomiRnome. (3) Both ABE and CBE should have 823 

higher base editing efficiency than currently estimated. The accurate and higher base 824 

editing efficiency with correct preprocessing may improve the original deep-learning 825 

prediction accuracy. Altogether, these observations and advantages lay down strong 826 

evidence to question the accuracies of current downstream research outcomes and open 827 

new avenues to conduct downstream analysis whenever short-read data are adopted. In 828 

addition to the significant impact demonstrated across the three case studies, our 829 

algorithm holds broader potential for applications in cutting-edge research areas that 830 

rely on short-read sequencing data. These include advanced research fields such as 831 

genomics, epigenomics, infectious disease diagnostics [58,59], low-frequency mutation 832 

or rare mutation detection [60], and virus detection [61]. Additionally, a recent study 833 

[62] has already highlighted the potential advantages of using error-corrected NGS in 834 

assessing off-target effects of gene therapies, enhancing carcinogenicity assessment and 835 
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advancing genetic toxicology and underscored the potential application of error-836 

corrected NGS for human cancer risk assessment and genetic toxicology testing. We 837 

recommend that researchers employ our method to conduct sensitivity analyses based 838 

on raw and error corrected short read sequencing data in their cutting-edge studies.  839 

   A small edit distance such as 1 or 2 is currently used to define the edges of 𝑟𝐺(𝑅). 840 

When the edit distance threshold Emax is enlarged, more edges will be created for 841 

𝑟𝐺(𝑅) and possibly more erroneous reads will be identified. The trade-off is that the 842 

computational complexity of constructing these new edges is exponential while newly 843 

identified erroneous reads become less and less when Emax increase. In fact, these 844 

erroneous reads constitute an extremely small percentage (< 0.16%) of the total 845 

erroneous reads in theory. In future work, we will test the computational complexity 846 

when 𝐸𝑚𝑎𝑥 is set as 3 and explore how to change the correction steps. Additionally, 847 

the optimal value of the parameter τ may vary across different sequencing platforms, 848 

applications, and experimental conditions. Conducting wet-lab experiments using 849 

synthetic sequencing is a more effective strategy for assessing the adaptability of τ in 850 

various settings. In our future work, we will design and conduct experiments to further 851 

investigate the optimal τ under different experimental conditions. 852 

   The speed and memory usage of noise2read still needs improvement, especially the 853 

parts for building the 1-nt- and 2-nt-edit-distance read graphs and AutoML training for 854 

prediction. The easy-usable and automatic tuning of the classifiers’ parameters 855 

facilitates wide-range explorations, but we note that noise2read may yield a slightly 856 

different result at different trials, even setting the same seeds. We also note that 857 

noise2read will derive more false positives when dealing with errors between high 858 

frequency reads of extremely short length (e.g., < 30 bp). This limit may be overcome 859 

by extracting more or fewer features from the reads. Furthermore, we already attempted 860 

using deep learning architecture (e.g., CNN and LSTM) to detect the errors, but a better 861 

performance was not achieved than by current noise2read. To elevate noise2read from 862 

a good tool to an exceptional one, we plan to explore novel feature representations for 863 

short reads and incorporate attention-based deep learning models in future work. 864 

Additionally, noise2read operates independently of sequencing quality scores, allowing 865 

it to address errors across various sequencing platforms and conditions. However, we 866 

acknowledge that incorporating quality scores may further improve the accuracy of our 867 
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correction procedure. As part of our future work, we also plan to explore integrating 868 

quality scores as an additional feature to enhance the correction process. 869 

 870 

Code availability 871 

The algorithm, noise2read, developed in this study is packaged and released on the 872 

Python Package Index (PyPI) at https://pypi.org/project/noise2read/ and Bioconda at 873 

https://anaconda.org/bioconda/noise2read with source code publicly available at 874 

https://github.com/JappyPing/noise2read and documentation publicly available at 875 

https://noise2read.readthedocs.io/en/latest/. The code has also been submitted to 876 

BioCode at the National Genomics Data Center (NGDC), China National Center for 877 

Bioinformation (CNCB) (BioCode: BT007951), which is publicly accessible at 878 

https://ngdc.cncb.ac.cn/biocode/tools/BT007951. 879 
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 1079 

 1080 

Figure legends 1081 

Figure 1  Schematic diagrams illustrating how base errors are generated during 1082 

library preparation and sequencing process  1083 

A. Schematic illustration of base error generation when amplifying one DNA template 1084 

during conventional polymerase chain reaction (PCR) amplification. Base “T” mutated 1085 

to “G” between the third cycle and the fourth cycle and this error is inherited by the 1086 

subsequent cycles. B. Schematic graph depicting PCR errors generated in the process 1087 

of bridge amplification during Illumina sequencing. An example of “A”-to-“G” is 1088 

inherited. C. An overview of base calling during Illumina sequencing. 1089 

 1090 

Figure 2  Overview of the workflow of noise2read  1091 

The first stage (1a–1f) and the second stage (2a–2f) rectify 1-nt and 2-nt based-errors 1092 

to their normal states, respectively. The third stage (3a–3f) is optional only for further 1093 

correction specified to the amplicon sequencing data. The integrative auto machine 1094 

learning (AutoML) module is used multiple times for training and predicting based on 1095 

different edit-erring-reads and error-free-reads in each stage. 1096 

 1097 

Figure 3  Zoomed-in view of subgraph A in Figure S1 1098 

This subgraph contains six high-frequency (16 to 234) reads labelled as 𝑟1 to 𝑟7 and 1099 

72 low frequency (1 to 3) reads. 1100 

 1101 

Figure 4  An overview workflow of the AutoML module for end-to-end 1102 

prediction on ambiguous errors  1103 

The edit-erring-reads and error-free-reads extracted from the 𝑛𝑡-edit-distance graph 1104 
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are categorised into three types of data. Training data is constructed through the 1105 

workflow steps of ②③–⑤⑥–⑧–⑨–⑩; the scaled training data is then fed (⑪) into 1106 

XGBoost classifier, with Optuna used to optimize parameters, resulting in the best 1107 

prediction model (⑫). Following similar preprocessing steps, the transformed 1108 

objective data is created through steps of ①–④–⑦–⑭. Finally, the prediction is 1109 

completed by feeding the objective data into the optimized model via steps ⑮–⑯. 1110 

 1111 

Figure 5  Flowchart illustrating the analytical framework and key concepts in 1112 

this study  1113 

 1114 

Figure 6  Visualisation of information gain for different methods on dataset 𝑫𝟏  1115 

A. and B. Information gain by noise2read with and without amplicon correction, 1116 

respectively. C.–I. Incorrectly introduced reads as red points. The number of red points 1117 

shown on each heatmap corresponds to 502, 2310, 7808, 2935, 8523, 13,899 and 722, 1118 

respectively. 1119 

 1120 

Figure 7  Performance comparison between noise2read and seven other methods 1121 

on datasets 𝑫𝟏 and 𝑫𝟗 1122 

A. Comparison of true positive rate (TPR), true negative rate (TNR), false positive rate 1123 

(FPR), false negative rate (FNR), and area difference (AD), at the read-level for 1124 

noise2read and seven other methods on the UMI-based wet-lab dataset 𝐷1 . 1125 

noise2read* denotes the result without amplicon correction. B.–D. Performance 1126 

comparisons at the read-level on simulated dataset 𝐷9 . E.–L. Information gain 1127 

visualisations for 𝐷9. Heatmaps in F–L display 1223, 164, 9698, 377, 2378, 3651 and 1128 

1255 red dots, respectively. Each red dot represents a new sequence introduced after 1129 

error correction. 1130 

 1131 

Figure 8  Comparison of base coverage before and after correction for 1132 

Monkeypox virus genome using perfectly matched reads 1133 

A. Base coverage for Monkeypox virus using the original and corrected sequencing 1134 

data. B. Coverage differences before and after error correction for the Monkeypox virus 1135 

data. C. Frequency distribution of coverage differences for the Monkeypox virus data, 1136 

also plotted with scaled density curves. 1137 
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 1138 

Figure 9  Comparison of isomiR and known SNP counts before and after error 1139 

correction using scatter plots and Kepler plots 1140 

A. and B. Scatter plots comparing the number of exclusive isomiRs identified in the 1141 

original and error-corrected datasets 𝐷28  and 𝐷29 , respectively. C. and D. 1142 

Comparisons for ambiguous isomiRs and known SNPs identified in the original and 1143 

error-corrected dataset 𝐷28, respectively. 1144 

 1145 

Tables 1146 

Table 1  Non-frequent reads’ information gain △ 𝑯 on the datasets 𝑫𝟏 − 𝑫𝟖 1147 

and 𝑫𝟗 − 𝑫𝟏𝟑 1148 

 1149 

Table 2  Performance comparison between noise2read and seven methods on the 1150 

dataset 𝑫𝟏 1151 

 1152 

Table 3  Performance comparison between noise2read and miREC at the read 1153 

level 1154 

 1155 

Table 4  Performance comparison between noise2read and ten methods on the 1156 

dataset 𝑫𝟐𝟓 1157 

 1158 

Table 3  Time and memory usage by different methods on the datasets 𝑫𝟏 − 𝑫𝟖 1159 

 1160 

Table 4  Known isomiRs and SNPs profiling change from miRNA sequencing 1161 

data before and after correction  1162 

 1163 
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Table 1  Non–frequent reads’ information gain △𝑯 on the datasets 𝑫𝟏–𝑫𝟖 and 𝑫𝟗–𝑫𝟏𝟑 

Datasets 
Method 

Coral RACER Fiona Lighter Pollux Bcool Care noise2read 

D1 0.588 6.023 4.077 4.686 2.508 0.916 1.776 6.409 

D2 0.770 6.116 4.393 4.842 2.534 0.023 1.557 6.339 

D3 0.921 6.369 4.891 5.505 3.044 2.333 0.469 6.239 

D4 0.590 6.215 4.638 5.083 3.011 1.702 0.907 6.202 

D5 0.752 6.360 4.589 5.127 2.821 0.046 1.302 6.297 

D6 0.970 6.316 4.800 5.026 2.930 1.986 1.357 6.567 

D7 0.898 6.306 4.883 5.422 3.096 0.100 0.446 6.194 

D8 1.156 5.974 4.344 4.604 3.014 1.824 1.598 6.187 

Average 0.831 6.210 4.577 5.037 2.870 1.116 1.176 6.304 

D9 0.621 –1.349 –0.209 1.362 0.462 1.874 2.941 10.484 

D10 2.072 –0.673 3.318 3.040 3.152 0.960 1.721 12.733 

D11 2.849 0.273 2.129 3.910 3.459 0.723 1.483 12.380 

D12 1.250 0.039 2.476 4.535 2.784 1.103 0.881 12.249 

D13 1.159 0.811 2.991 5.193 3.159 1.725 0.909 13.161 

Average 1.590 –0.180 2.141 3.608 2.603 1.277 1.587 12.201 

Note: 𝜏 = 4 was used for calculating △𝐻. 𝐷1–𝐷8 are UMI–based wet–lab datasets and 𝐷9–𝐷13 are 

UMI–based simulated datasets. Best scores are highlighted in bold. 
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Table 2  Performance comparison between noise2read and seven methods on the dataset 𝑫𝟏 

Method 

Metric 

TP FP FN TN Recall Precision 
Positive 

Gain 
Accuracy E 

noise2reada 1st stage  81630 0 30391 693059 0.729 1.000 0.729 0.962 0.232 

2nd stage 104373 0 7648 693059 0.932 1.000 0.932 0.991 0.077 

3rd stage 107717 201 4304 692858 0.962 0.998 0.960 0.994 0.050 

Coral 22677 4249 89344 688810 0.202 0.842 0.165 0.884 0.518 

RACER 104589 4347 7432 688712 0.934 0.960 0.895 0.985 0.110 

Fiona 72792 136472 39229 556587 0.650 0.348 –0.568 0.782 0.757 

Lighter 61330 145999 50691 547060 0.547 0.296 –0.756 0.756 0.802 

Pollux 20537 73710 91484 619349 0.183 0.218 –0.475 0.795 0.732 

Bcool 40970 3889 71051 689170 0.366 0.913 0.331 0.907 0.447 

Care 72673 52 39348 693007 0.649 0.999 0.648 0.951 0.3 

Note: aThe results obtained by noise2read was decomposed at different stages. 𝐷1 is a UMI-based wet-

lab dataset. Best scores are highlighted in bold. 
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Table 3  Performance comparison between noise2read and miREC at the read level 

Datasets Methods 
Metrics 

TP FP FN TN Recall Gain E ΔH 

D14 miREC 4224 0 267 218980 0.941 0.941 0.129 4.755 

noise2read 4410 15 81 218965 0.982 0.979 0.137 9.053 

noise2reada 4408 3 83 218977 0.982 0.981 0.137 9.053 

D15 miREC 4135 5 271 219060 0.938 0.937 0.126 4.821 

noise2read 4312 10 94 219055 0.979 0.976 0.134 8.485 

noise2reada 4310 4 96 219061 0.978 0.977 0.134 8.485 

D16 miREC 6418 16 309 216728 0.954 0.952 0.179 5.301 

noise2read 6590 20 137 216724 0.980 0.977 0.187 8.184 

noise2reada 6588 16 139 216728 0.979 0.977 0.187 8.184 

D17 miREC 6398 0 306 216767 0.954 0.954 0.179 5.337 

noise2read 6578 2 126 216765 0.981 0.981 0.187 8.769 

noise2reada 6576 0 128 216767 0.981 0.981 0.187 8.769 

Note: High-frequency threshold 𝜏 = 4  used for noise2read. 𝐷14− 𝐷17  are simulated miRNA 

sequencing datasets. 𝐷14− 𝐷15 contain substitution and indel errors, while 𝐷16− 𝐷17 contain only 

substitution errors. a Performance by noise2read without prediction of errors between high frequency 

reads.  
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Table 4  Performance comparison between noise2read and ten methods on the dataset 𝑫𝟐𝟓 

Method 

𝒌 -

mer 

size 

Metric 

TP TN FN FP TPR FNR TNR FPR Precision Accuracy AD 
Positive 

Gain 

Bless 30 39345 509513 23498 1751 0.63 0.37 1 0 0.957 0.96 0.39 0.6 

Coral 30 23172 497906 48255 4774 0.32 0.68 0.99 0.01 0.829 0.91 0.09 0.26 

Lighter 30 51934 497165 19336 5672 0.73 0.27 0.99 0.01 0.902 0.96 0.51 0.65 

Reckoner 30 24143 501767 47233 964 0.34 0.66 1 0 0.962 0.92 0.11 0.32 

Sga 26 13129 501767 58582 629 0.18 0.82 1 0 0.954 0.9 0.03 0.17 

BFC 30 18415 500964 53345 1383 0.26 0.74 1 0 0.93 0.9 0.06 0.24 

Pollux 30 26308 430041 33643 83210 0.44 0.56 0.84 0.16 0.24 0.8 –0.11 –0.95 

Fiona NA 54983 483470 13675 21979 0.8 0.2 0.96 0.04 0.714 0.94 0.56 0.48 

RACER NA 50106 444352 9857 69792 0.84 0.16 0.86 0.14 0.418 0.86 0.45 –0.33 

Care NA 43213 501631 28896 367 0.6 0.4 1 0 0.992 0.95 0.36 0.59 

noise2read NA 54316 501759 18011 21 0.75 0.25 1 0 0.9996 0.97 0.56 0.75 

Note: 𝐷25 is a UMI-based benchmark dataset previously established in the literature [29]. 
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Table 5  Time and memory usage by different methods on the datasets 𝑫𝟏−𝑫𝟖 

Method 
CPU 

cores 

D1 D2 D3 D4 D5 D6 D7 D8 

Time Memory Time Memory Time Memory Time Memory Time Memory Time Memory Time Memory Time Memory 

Coral 56 3.3 65528 3.4 91045 3.0 54182 3.8 99376 3.9 99673 3.3 68805 3.7 61512 2.4 49311 

Fiona 36.4 1736 20.2 1702 22.5 1811 25.2 2111 29.1 1794 33.4 1755 19.9 1846 15.2 1353 

Lighter 1 568 1 564 1 568 1 568 1 568 1 564 1 566 1 566 

RACER 64 3.1 111 2.7 100 3.7 130 4.1 146 3.4 123 3.4 125 3.7 135 2.2 110 

Pollux 1 1277.4 219 1072.2 197 1445.3  204 1722.2 217 1425.1  209.07 1455.3 219 1480.1 217 844.9 198 

Bcool 56 15.9 12 4.6 12 8.1 12 11.7 12 3.9 12 11.6 12 5.5 12 5.3 12 

Care 1 788 1 793 1.0 813 1 737 1 812 1 823 1 822 1 589 

noise2read 137.3 4405 121.5 4012 126.8 6629 143.1 5723 125.8 4755 136.3 6557 123.0 5393 110.2 3472 

noise2reada 171.0 4373 161.0 5350 146.0 4824 199.0 7449 173.0 4699 178.0 5189 160.0 5014 198.0 3767 

Note: The CPU model of Intel(R) Xeon(R) Gold 6238R CPU @ 2.20GHz was used by all the methods. 1 GPU of Tesla V100S-PCIE-32GB was used for the model training of 

noise2read. The runtime is given in minutes; Memory consumption is given in MB. a The performance of noise2read is enhanced through additional amplicon correction. 
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Table 6  Known isomiRs and SNPs profiling change from miRNA sequencing data before and after correction 

Dataset 

Corr. 

read 

No. 

Corr. 

PCT. 

Ambiguous isomiRs Exclusive isomiRs SNPs 

Unique reads No. Total reads No. Unique reads No. Total reads No. Unique reads No. Total reads No. 

 Orig. Corr. Dec. Orig. Corr. Inc. Orig. Corr. Dec. Orig. Corr. Inc. Orig. Corr. Dec. Orig. Corr. Dec. 

D28 197071 2.70% 827 619 25.2% 16425 16859 2.6% 7158 4590 35.9% 1276397 1287399 0.9% 168 79 53.0% 704 606 13.9% 

D29 236699 4.02% 485 331 31.8% 10867 11365 4.6% 5511 3489 36.7% 928151 940139 1.3% 116 54 53.4% 6220 6320 –1.6% 

D30 324175 1.91% 851 632 25.7% 17653 17978 1.8% 5229 3427 34.5% 732858 739190 0.9% 144 73 49.3% 450 392 12.9% 

D31 147763 2.17% 871 634 27.2% 24767 25191 1.7% 8134 5200 36.1% 1763443 1776084 0.7% 154 63 59.1% 396 266 32.8% 

D32 268616 1.43% 688 508 26.2% 19761 20147 2.0% 5553 3512 36.8% 779496 786162 0.9% 101 56 44.6% 253 192 24.1% 

D33 264327 2.24% 915 670 26.8% 29849 30344 1.7% 6788 4377 35.5% 1215062 1223420 0.7% 126 83 34.1% 362 318 12.2% 

D34 288649 4.23% 449 309 31.2% 8735 9124 4.5% 4733 2959 37.5% 741500 751526 1.4% 119 51 57.1% 3909 3964 –1.4% 

D35 144252 2.45% 821 594 27.6% 32558 33198 2.0% 7464 4855 35.0% 2598394 2612835 0.6% 185 84 54.6% 2639 2523 4.4% 

D36 272107 3.40% 626 475 24.1% 14092 14517 3.0% 5367 3403 36.6% 938218 947607 1.0% 122 50 59.0% 284 183 35.6% 

D37 207804 1.66% 547 407 25.6% 10752 10912 1.5% 5184 3347 35.4% 685935 691030 0.7% 87 51 41.4% 184 142 22.8% 

AVE. 235146 2.62% 708 518 27.1% 18546 18964 2.5% 6112 3916 36.0% 1165945 1175539 0.9% 132 64 50.6% 1540 1491 15.6% 

Note: Abbreviation: Corr., Correction; No., Number; PCT., Percentage; Ori., Original; Inc., Increase; Dec., Decrease. 
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