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Abstract

Although the per-base error rate of short-read sequencing data is very low at 0.1%—
0.5%, the percentage/probability of erroneous reads in a dataset can be as high as 10%—
15% or in the number millions. As current methods correct only some errors while
introducing many new errors, we solve this problem by turning erroneous reads into
their original states, without bringing up any non-existing reads to keep the data
integrity. The novelty is originated in a computable rule translated from polymerase
chain reaction (PCR) erring mechanism that: a rare read is erroneous if it has a
neighbouring read of high abundance. With this principle, we construct a graph to link
each pair of reads of tiny edit distances to detect a solid part of erroneous reads; then
we consider these pairs of reads of tiny edit distances as training data to learn the erring
mechanisms to identify possibly remaining hard-case errors between pairs of high-
abundance reads. The proposed approach, noise2read, is competent to handle the
rectification of erroneous reads from short-read sequencing data whenever PCR is
involved. Compared with state-of-the-art methods on tens of evaluation datasets of
unique molecular identifier (UMI) based ground truth, noise2read performs
significantly better on 19 metrics. Case studies found that noise2read can greatly
improve short-reads quality and make substantial impact on genome abundance
quantification, isoform identification, single nucleotide polymorphisms (SNP) profiling,
and genome editing efficiency estimation. Noise2read is publicly available at
https://github.com/JappyPing/noise2read and
https://ngdc.cncb.ac.cn/biocode/tool/7951.

KEYWORDS: Short reads error correction; Polymerase chain reaction erring; Graph

of reads; Edit distance of two reads; Machine learning
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Introduction
Next generation sequencing (NGS) techniques and platforms have dramatically
changed the world of genomics and computational biology [1-3]. High throughput
DNA sequencing has enabled large-scale whole-genome sequencing and gene-targeted
sequencing; NGS-based RNA-seq has provided ever higher coverage and sharper
resolution of dynamic transcriptomes for a wide range of applications such as isoform
discovery, differential gene expression analysis, alternative gene splicing, and allele-
specific expression profiling [2]. However, NGS inevitably self-made sequencing
errors including base deletions, insertions and substitutions at various steps like sample
handling, library preparation, polymerase chain reaction (PCR), and/or at the base
calling step [4,5]. Although the erring rate is estimated very low at 0.1%-0.5% per base
in Illumina short-read sequencing, huge numbers of erroneous bases have been
generated and stored at every sequencing dataset (e.g., about 197,402 base errors in a
miRNA-sequencing dataset ERR187525, and about 997,020 base errors in a pair-end
whole-genome sequencing dataset SRR22085311 which have been found through this
study). As these mistaken bases are randomly distributed across possibly all the reads
in a dataset, the percentage/probability of erroneous reads in a dataset can be very high
(e.g., as high as 10%-15%).

Suppose the per-base erring probability is estimated as p at a sequencing platform,
and assume these erring events are independent at all the base positions in a read, then

the probability p.,»o-(r) Of a read r containing one or multiple base errors is given

by

Perror () = Z ()pia-peo=1-a-p (M

i=1

where L = ||r||, the length of read r. If p = 0.1% and L = 100, then pgypor(r) =
9.52%. In other words, the percentage of erroneous reads in a dataset is about 9.52%
when the per-base erring rate is estimated as 0.1% and the length of reads L = 100 bp.
If the per-base erring rate p is estimated as 0.15%, then there are about 13.94% of
erroneous reads in the dataset.

This is a fundamental issue previously unrecognized concerning the high
percentages of erroneous reads in NGS datasets. These erroneous reads are usually
treated as data noise implicitly or explicitly excluded for downstream data analysis such

as de novo genome/transcriptome assembly and differential gene expression profiling
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[6,7]. Or these erroneous reads are un-purposely considered as genuine true reads in the
data analysis which may have led to inaccurate or wrong conclusions. To restore the
huge missing value of these high percentages of erroneous reads in each sequencing
dataset, it is highly demanded to do accurate rectification of all these errors, as opposed
to treating them as noise removal, to boost the data quality and integrity so as to improve
the downstream applications.

One of the main sources of the sequencing errors is from PCR, a technique that
makes fast duplications of small segments of DNA which has been used by NGS to
amplify the fragmented DNA/RNA molecules for effective sequencing. Most of the
time, PCR makes perfect copies of the fragmented segments of DNA/RNA, but
occasionally it introduces base-pair substitutions, deletions, insertions, or even yields
new hybrid sequences during template switching [8]. Thus, after the PCR amplification,
one or two copies in the duplications of a DNA segment may show inconsistent bases.
Figure 1A illustrates how base errors arise when amplifying one DNA template during
PCR amplification. PCR errors not only occur in the library preparation but also during
sequencing processes such as clonal molecules [5]; Figure 1B is an example that depicts
how errors are introduced in the process of bridge amplification during Illumina
sequencing. Such PCR erring incidents are then inherited by NGS’s base calling step
that converts a nucleotide sequence into a digital string (named a read). The conversion
is not 100% accurate as well, similar to PCR introducing minor mistakes (Figure 1C)
[4,9]. Therefore, sequencing errors can occur in various ways. However, it is almost
certain that an erroneous read will appear at low frequency if the error occurred at the
late cycles of PCR. This is because the probability of the same error occurring at the
same position is extremely low, especially in 200-300 bp reads.

Efficient detection of these erroneous reads from a dataset of hundreds of millions
of reads is challenging. First, some low-frequency rare reads are genuine reads not
containing any sequencing errors. This is attributed to the uneven PCR amplification
rates at different segments of the DNA — poorly amplified molecules will be sequenced
to a lesser extent than the highly amplified molecules [10,11]. Second, an amplified
segment after PCR erring may become identical to a high-frequency molecule. As a
result, for two highly similar high-frequency reads (A and B), it is impossible to
determine, without machine learning of PCR erring mechanisms, whether B represents

an erroneous amplification of A or vice versa.
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We construct a graph rG(R) using the unique reads ry, 1y, ..., 1, along with their
frequencies from a read dataset R (a multiset of reads) to detect erroneous reads under
the sophisticated help of graph-based machine learning. Let freq(r) represent the
abundance level or the frequency of a read r, or the number of copies of r in the
sequencing data. For each of the unique reads in R, we represent it as a node in the
graph and label the node with the read’s frequency. There is an edge e(; ;, between
node r; and node r; if the edit distance between read r; and read r; is 1 or 2.
Specifically, when searching for edges with an edit distance of 2, only substitutions are
taken into account. A read u is a neighbouring read of read v if there is an edge
between them. As understood from the PCR erring mechanism in NGS, the pairing of
two neighbouring reads u and v implies that a copy of u is a wrongly
amplified/sequenced copy of the v molecule, or a copy of v is a wrongly
amplified/sequenced copy of the u molecule, or both. When freq(v) is low while
freq(u) is high, we rectify the erroneous read v by removing this node from the graph,
while increase freq(u) by freq(v). Thatis, we turn the “noise” read (i.e., a read that
contains erroneous bases) v (low-frequency rare read) into its normal state u. We
denote such a set of erroneous reads in the graph as edit-erring-READS and the isolated
nodes with high frequencies as error-free-READS. Notably, “noise” refers to erroneous
bases contained in reads in this study. Our correction procedure turns individual base
errors into their correct state (signal) without changing other bases in the reads, and the
rectified reads can be used for any downstream applications.

We use a small edit distance of 1 or 2 to define the edges of the graph because those
erroneous reads containing one mistaken base or two constitute the majority of the total
erroneous reads in the dataset. The majority percentage is given by
(et = p) D

1-(1-pt
where p is the base erring probability, Emax is a maximum edit distance allowable

(2)

error%(p, 1, Emax) =

to define an edge. If L = 100, p = 0.1%, Emax = 2, then error%(p, 1, Emax) =
99.84%. This indicates that 99.84% of all the possible erroneous reads in the dataset
are those reads containing one base error or two (Emax).

The second challenge in the correction of erroneous reads in the graph rG(R) is to
deal with the situation when a low-frequency read is linked to multiple high-frequency

reads, and/or two (or more) high-frequency reads are linked each other in the graph
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(denoted as ambiguous errors). Hence, we model the situations as a classification
problem and use machine learning techniques to predict whether the duplications of a
high-frequency read contain or not contain wrongly sequenced copies of its
neighbouring high-frequency reads.

This is a novel classification problem not formulated in any literature. In this work,
we use edit-erring-READS and error-free-READS as training data and extract multiple
features of different dimensions from the data and then utilize an optimized gradient
boosting classifier of the extreme gradient boosting (XGBoost) [12] to make the
prediction under a supervised learning framework. As the training data is rG(R)-
specific, the prediction model can learn the inherent erring patterns of each specific
sequencing platform that conducts the specific biomolecular samples’ sequencing.
Therefore, our machine learning approach is competent to handle the rectification of
erroneous reads that have a length less than 300 bp produced by any PCR-involved
single/pair-end DNA/RNA sequencing, whole-genome sequencing, mMiRNA-
sequencing, or synthetic sequencing regardless of the difference in the platforms or in

the biomolecular samples.

Method

Overview of noise2read algorithm
We present an error correction method to improve the short-read sequencing data
quality by turning millions of erroneous short reads into their normal state through
graph learning on edit distances between reads. We name our method “noise2read”. As
introduced above, its novelty sits in the computable rule translated from PCR erring
mechanism: a rare read is erroneous if it has a neighbouring read of high abundance.
With this principle, we construct a graph to link each pair of reads of a small edit
distance to detect a substantial part of erroneous reads in the graph. Then we take them
as training data to learn the platform-specific erring mechanism to identify possibly
remaining hard-case errors between pairs of frequent reads in the graph, namely specific
training data is used at different platforms.

Noise2read is a progressive three-stage error correction method, and an overview
of the workflow of noise2read is illustrated in Figure 2. An auto machine learning
(AutoML) module is centred in the process of noise2read, which is used multiple times

in the different stages for the prediction of ambiguous or amplicon errors. AutoML has
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a component for the preparation of training and objective data and has a component for
the parameter optimization of the gradient boosting-based classifiers. The first stage
(shaded in blue) rectifies low-frequency leaf nodes (genuine errors) and ambiguous
errors by a traversal on the 1-nt-edit-distance read graph 1 — nt — rG(R,) constructed
from the original reads of dataset R,. Here, every edge in the 1-nt-edit-distance read
graph means the edit distance between the two nodes is one nucleotide (i.e., 1 nt). The
second stage (shaded in pink) conducts correction of genuine and ambiguous errors at
the 2-nt-edit-distance read graph 2 —nt — rG(R,) constructed from the first stage
corrected dataset R;. Here, every edge in the 2-nt-edit-distance read graph means the
edit distance between the two nodes is two nucleotides (i.e., 2 nt). Particularly, we
consider only substitution relationships for constructing 2-nt-edit-distance edges since
the majority of NGS data conforms to a consistent read length. The third stage (shaded
in yellow) is designed to eliminate specific errors at an updated 1-nt-edit-distance graph
1 —nt —rG(R,) only for the amplicon sequencing data but using the same AutoML
module for prediction.

Graph rG(R) is often a disconnected graph. For example, nine subgraphs of
rG(D1) constructed in the first stage are shown in Figure S1, where D1 isasimplified
version of SRR1543964. There are many clustered low-frequency leaf reads linked to
one high-frequency read, while there also exist edges that link pairs of high-frequency
reads. Figure 3 is a zoomed version with more details about subgraph A in Figure S1,
where the high-frequency nodes are highlighted in orange and the low-frequency nodes
are highlighted in pink. Every edge in this graph implies that the linked reads have only
one base difference. With these sub-graphs, noise2read (1) directly turns those leaf
nodes of low-frequency into their high-frequency parent nodes (their normal states
71,1y, . OF 75); (2) uses the AutoML module to identify the parent node of two low-
frequency nodes rg and o, as these two low-frequency nodes are each linked to more
than one high-frequency read (rg is linked to r,, 75 and r; 7y is linked to both of r;
and r3); and (3) uses the AutoML module to judge whether there are erroneous reads
between the linked high-frequency nodes (e.g., between r, and r3, between 15 and
7).

Although noise2read is a three-stage progressive error correction method, we
usually take the first two stages because they are sufficient to eliminate the majority of
the errors in many typical NGS datasets. Only in the cases where the data has extensive
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coverage, such as amplicon sequencing, the option to use the third step is chosen for

additional error correction.

Special considerations in the construction of edit-distance graph of short reads
By setting a high-frequency threshold t, noise2read finds the 1-nt- or 2-nt-edit-distance
edges between unique high-frequency reads (with frequency > t) and all the other
unique reads in a read dataset, and then it takes all these unique reads as nodes, their
counts as attributes and the detected associations to build a graph. The rationale for not
detecting the 1-nt- or 2-nt-edit-distance read pairs in the low-frequency reads is that it
is computationally challenging and meaningless to distinguish whether one read of low
abundance is mutated from the other low-frequency read (e.g., it is hard to determine if
there are mutations or sequencing errors between two reads each with a frequency of
one and with one- or two-base difference). The rationale for 2-nt-edit-distance error
correction is that some NGS data contain two base errors in some long read (e.g., 150
bp), and we set a threshold [ (e.g., 30 bp) of the sequence’s minimum length to
determine whether to perform 2-nt-edit-distance error correction.

Noise2read does not perform a pairwise alignment for searching the 1-nt- or 2-nt-
edit-distance edges between the high-frequency reads and all the other reads in the read
set. Instead, it enumerates all the possible 1-nt- or 2-nt-edit-distance (substitutions only
for the 2-nt) reads for all the high-frequency reads and stores them in the Python Set.
Then, it invokes the Python built-in function intersection to obtain the edges. It may not
be the best way to find all the edges using hash tables in this manner. However, such a
strategy can find all required edges instead of finding an approximate number of edges.
We constructed the 2-nt-edit-distance graph by searching only substitution relations as
edges. This idea is based on the observation that substitutions are the most prevalent
type of sequencing error [13], and on that ambiguous nucleotides are often denoted by
the symbol “N” [14,15] during sequencing. Moreover, NGS read lengths are usually
consistent and fixed in a single sequencing run, owing to the fixed number of
sequencing cycles in technologies like Illumina sequencing. This uniform read length
is achieved since the read size is directly tied to the number of sequencing cycles
performed, and each cycle corresponds to the sequencing of a single base. On the other
hand, if a deletion or insertion exists in the read, the sequence length will change, and

such a sequence will not appear in a uniform-length sequencing dataset. Noteworthy,
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noise2read can handle indel errors when insertion or deletions are represented by the
symbol “N”.

The time complexity of constructing the 1-nt- or 2-nt-edit-distance read graph in
noise2read is O(h - L? + n), where h represents the number of high-frequency reads,
L denotes the uniform read length, and n is the total number of unique reads in a
dataset. This complexity arises from two processes. First, noise2read enumerates all
possible 1-nt-edit-distance variants (O (h - L)) and 2-nt-edit-distance variants (O (h - L?)
for the high-frequency reads, storing them in a Python set in O(h - L?) time. It then
intersects this set of all n reads to identify edges in O(h-L?) time. Second, the
resulting edges, numbering E = O(h - L?,n), are used to construct an undirected graph
with NetworkX [16] in O(n + E) time. Combining these steps, the overall complexity

simplifies to O(h - L? + n) for graph construction by noise2read.

Construction of edit-erring-READS and error-free-READs as training data

By defining a maximum frequency threshold t,,, (7 < 7), We considered two kinds
of erroneous reads: genuine errors and ambiguous errors. Genuine errors are referred to
those leaf nodes whose frequency t’ is less than orequal to 7., (7' < 7.,,-) and which
have a neighbouring node with a higher frequency than t. This set of erroneous reads is
denoted as edit-erring-READS. These genuine errors can be directly rectified to their
correct states. While we define two kinds of ambiguous errors: (1) those nodes (reads)
r with a low-frequency t’ that are each connected to multiple > 2 high-frequency
nodes; (2) wrongly sequenced reads existing between a pair of similar high-frequency
reads as the second kind of ambiguous error instances. In other words, in the constructed
1-nt-edit-distance-based read graph, if there are edges between two similar high-
frequency sequences, there may be sequencing errors between them. Moreover,
amplicon sequencing utilises ultra-deep PCR amplifications for a specific gene target
and supports hundreds to thousands of amplicons multiplexed sequencing in one assay
to achieve high coverage, but ultra-deep PCR simultaneously amplifies PCR errors. To
this end, we further construct a 1-nt-edit-distance-based read graph for amplicon
sequencing data and consider those reads of frequencies less than rg;;'[;, (e.g., 50) as
potential amplicon errors mutated from its neighbouring reads of extremely high-

frequency larger than 7775 (e.g., 1500).
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We consider isolated nodes of high frequencies bigger than t as error-free reads. We
take those isolated nodes of high frequencies in the 1-nt- or 2-nt-edit-distance graphs to
build the training set error-free-READS.

Auto machine learning prediction

Unlike the direct rectification of genuine errors into their original state, we model
whether a high-frequency read contains true mutations or sequencing errors from its
high- or low-frequency neighbours as a classification problem. We created the AutoML
module for its end-to-end prediction. The flowchart illustrated in Figure 4 outlines the

steps involved in the AutoML module.

Formulation of the classification problem

We consider edit-erring-READS as positive training instances, while error-free-
READS as negatives. For a low-frequency node with a degree greater than two, we
calculate its probability of mutation from all its high-frequency neighbouring nodes and
take the node with the highest probability as its correct sequence. For the second type
of ambiguous error prediction, we integrate the predicted results of the first kind into
the training data. In the current version, we only use the predicted ambiguous samples
as negative samples for high-ambiguous error prediction to reduce training time and
complexity. The mutations observed in high-frequency reads exhibit a bidirectional
nature. Therefore, we only consider the prediction result with a higher probability when
the bidirectional predictions match. In other words, if the absolute difference between
the probabilities of the two-way predictions is less than a specific value, we discard the

prediction; otherwise, we choose the prediction having a higher probability.

Feature representation for the training and objective data

A short DNA or RNA sequence can be represented as r = b,b, ... b; ... b;, where
b; e{AC,G TN} or by e{AC,G,UN}. Here, A,G,C, T and U represent the
nitrogenous bases Adenine, Guanine, Cytosine, Thymine and Uracil, respectively. The
letter N denotes an uncertain nucleotide, and [ € N represents the total number of
bases in r. We extract features from r by considering its substrings of length k

(where 1 < k < 1), also known as k-mers.
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Each training instance consists of two reads in the edit-erring-READS or error-free-
READS, examples of the training instances can be found in File S1. The features in
reads are extracted using descriptors: (1) Fourier Transformation [17-20], (2)
Shannon’s and Tsallis’s entropy [17,21], and (3) Fickett’s score [22,23]. Specifically,
the features for a pair of reads with one or two base differences in a training instance
may be identical. Therefore, features are only extracted from the absolute correct read
(i.e., the first read in training instances) to avoid redundancy. These feature extraction
methods are depicted in File S1. Additionally, we used the (4) read counts and (5)
characterised the error types and respective motifs as features. For instance, consider
two reads ACATG and ACGTG, the error is a substitution of C with G. Here, C-G is
the error type, and CAT and CGT are the corresponding motifs. Similarly, for two reads
CGTG and ACGTG, the error is an insertion of A, the error type is represented as X-A,
and the motifs are XA and AC. We define and normalise the feature vector V of error

types or motifs as follows

V = (01,Vg, e, Vi) ooy V) (3)
_fi+6
S T )

Here, i represents an error type, where count; refers to the total number of
occurrences of error type i and ), |i| refers to the total number of all error types
present in the data; & is a small pre-defined value (e.g., 0.01) assigned to each item to
avoid dividing by zero in cases where a certain error type or motif is not present in the
data.

Before training, each type of feature is standardised separately by removing the
mean and scaling to the unit variance using the pre-processing method “StandardScaler”
of Scikit-learn [24]. To address class imbalance issue in the training data, we used the
synthetic minority over-sampling Technique (SMOTE) [25] with sampling performed
by Imbalanced-learn [26].

Model optimisation and prediction

XGBoost [12] is a well-established and efficient machine learning algorithm for
classification. Optuna [27] is a framework that employs sampling and pruning
heuristics to automatically discover optimal hyperparameter settings by conducting
multiple trials. We chose XGBoost as our classifier and utilised Optuna to optimise the

hyperparameters to achieve fast and accurate predictions.

10
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We have pre-set some parameters for the classifier, including the tree method,
regularisation term, number of estimators, and learning rate. A logistic regression was
used to produce the probability for binary classification, and we aimed to maximize the
test accuracy as the objective for selecting the best model via multiple trials (e.g., 20).
For each task, noise2read utilised AutoML to create a new Optuna study object for
training and selecting the best prediction model. For example, we trained and selected
the four best models for predicting 1-nt- and 2-nt-based ambiguous, 1-nt-based high
ambiguous, and amplicon errors.

The time complexity of training XGBoost optimised by Optuna in noise2read, using
“hist” or “gpu_hist” tree method, is O(n¢qsks * Neriats * Merees * Nsamples * Neatures)-
Here, n¢qsks (€.9., 1-4) is the number of tasks, n:.;q4s 1S the number of Optuna trials
(e.9., 10-20) per task, ng.c.s is the pre-set number of trees, nggmpies is the number of

constructed training samples, and 7445 IS the number of constructed features.

Error correction for isolated nodes

After prediction, we restore all the edit-erring-READS to their normal state. We then
adopted a third-party method Bcool [28] to deal with the errors contained in the isolated
nodes, including many singletons, in the 1-nt-edit-distance read graph. However, we
keep only those corrected sequences by Bcool, which present in the original or in the
first round of the corrected dataset without any genuine and ambiguous errors, to

prevent generating non-existing new sequences.

Evaluation criteria

Generation of the gold-standard wet-lab datasets with UMI-based ground truth

In this study, we developed a novel approach for generating ground truth datasets,
motivated by Mitchel’s method presented in literature [29]. One of the differences is
we use the error-corrected Unique Molecular Identifier (UMI) to construct ground truth
datasets. More details of our approach can be found in supplementary methods in File
S2. To ensure validity, credibility and fairness in performance comparison, the UMI-
based ground-truth datasets and evaluation procedures established in the benchmarking

study [29] were also adopted for performance evaluation.

Generation of UMI-based simulated datasets
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Taking motivations from the simulation approach for generating simulated miRNA
sequencing data in [30], we introduced an innovative method to generate UMI-based
simulation datasets that can be applied to a broader range of NGS datasets, extending
beyond just miRNA sequencing data. The details of simulation process can be found in
supplementary methods in File S1.

We also employed the simulation process in [30] to generate simulated single-end
miRNA sequencing datasets to evaluate the proposed method’s performance.
Differently, we additionally incorporate mimic UMIs (numbers are used here instead
of base sequences) for unique sequences in the generated error-free read set based on
the assumption that each unique read corresponds to a UMI to adapt the evaluation

framework developed in this study.

Evaluation metrics

To accurately evaluate the performance of error correction methods, we propose using
confusion matrices at the read-level and base-level to measure changes in reads within
the same UMI cluster rather than relying on the sequencing IDs generated by the
instruments. The rationale is that for the constructed UMI-based datasets in this study,
there is only one unique error-free sequence (of multiple occurrences) in each UMI
cluster. Therefore, in a UMI cluster, we only need to compare the edit distance between
every other unique read and this error-free read before and after error correction. Then,
we can compute the confusion matrix using the relevant read count information before
and after correction. More than half of the calculation time was saved this way.
Otherwise, if we use the sequencing ID as the index, we must compare the edit distances
twice for each group (same sequencing ID) of the raw, error-free, and corrected reads,
even if they are the same. The absolute values of the true positives in each dataset are
associated with the number of reads rather than the number of UMIs. The total number
of positives of the actual condition equals the sum of the True positive and False
negative. At the read level, aread is deemed erroneous if even a single base is incorrect.
Conversely, a read is considered error-free only when all its bases are correct. TP
defines the number of edit-erring reads perfectly modified after correction, and TN is
the amounts of error-free reads without any changes after modification. While FP
denotes the counts of error-free reads that are incorrectly adjusted by introducing new

errors, FN represents the number of unchanged or wrongly fixed edit-erring reads.
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Similarly, at the base level, TP, TN, FP and FN concerned about the mistaken or
accurate bases changing before and after correction.

Additionally, we employ the edit distance changes instead of the multiple sequence
alignment (MLA) strategies used in [29] among raw, authentic and modified reads to
get the confusion conditions as the MLA is highly time-consuming. Another reason is
that MLA has more alternative alignment results since it compares three reads. In
contrast, the edit-distance-based strategy only compares the ground truth read to its raw
or corrected one, respectively. When counting the FN on the base level, we measure the
absolute edit distance difference with the accurate read before and after correction.

Then, we derive the True Positive Ratio (TPR, a.k.a. recall or sensitivity), False
Negative Ratio (FNR), True Negative Ratio (TNR), False Positive Ratio (FPR, a.k.a.
fall-out), precision, gain and accuracy from the confusion matrix. TPR and FNR are the
ratio of the number of edit-erring reads or bases correctly rectified and wrongly kept as
negatives to the total number of actual edit-erring reads or bases, respectively. TNR and
FPR are defined as the ratio of the number of error-free reads or bases correctly kept as
negatives and wrongly rectified to the total number of actual error-free reads or bases,
respectively. From the information theory perspective, TPR is the ratio of noise turning
to signal; in contrast, FNR is the unconverted ratio of noise to signal. While FPR is the

percentage of new noise introduced, TNR is the ratio of the original signal preserved.

TP

TPR =1pTN ®)
FN

FNR =157 FN (6)
TN

INR =5 TN @
FP

FPR = opTTN ®)

An ideal performance should achieve high TPR and TNR while keeping FNR and
FPR low. Therefore, we can construct a cross-coordinate system where derived scores
from the confusion matrix are assigned to each of the four directions. The four index
values of TPR in the upper axis, FPR in the lower axis, TNR in the right axis and FNR
in the left axis form a rectangle. The larger the overlapping area between the rectangle
and the upper right quadrant, the better the performance. Therefore, we define a
quantitative metric of the overlapping Area Difference (AD) to assess the performance

as follows,
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AD =TPR-TNR —TPR-FNR — FNR - FPR — FPR - TNR 9

Moreover, we also calculate the Precision, Positive Gain and Accuracy denoted as
follows to evaluate the correction performance at read-level or base-level. Precision
evaluates the ratio of precise modifications among all the completed corrections and all
the errors, while Positive Gain indicates the positive effect among all the real errors.
The accuracy is the proportion of accurate modifications, including true positives and

negatives, to the total number of reads or bases concerned.

o TP
Precision = TP+ FP (10)
o ] TP — FP
Positive Gain = TPTFN (11)
TP+ TN

A - 12
CeUracy = Tp ¥ TN + FP + FN (12)

Furthermore, based on the read-level definition for the dataset of known ground
truth, we classify reads into two categories: edit-erring and error-free. Then we measure
the purity of the dataset using entropy defined as

E=—p-log,p— (1—p)- log,(1—p) (13)
where p is the probability of randomly selecting one error-prone or error-free read
from all sequences. The lower the dataset entropy, the fewer edit-erring reads exist in
the dataset.

Results

To assess the performance of noise2read, we generated UMI-based ground-truth and
simulated datasets based on the methods developed in this study and literature [29,30].
After evaluating the performance of noise2read, we conducted case studies on
abundance change of viral reference genomes, isoform identification, single nucleotide
polymorphism (SNP) profiling, and genome base editing efficiency estimation to assess
the impact of noise2read’s error correction on downstream applications. The flowchart
illustrated in Figure 5 outlines the analytical framework and key concepts in this study.
As a result, we used 39 datasets generated in this study or from third-party studies to
evaluate noise2read. Datasets D1 — D8 are UMI-based ground-truth datasets derived
from eight real sequencing runs SRR1543964-SRR1543971 using a UMI-contained
high-fidelity sequencing technique (a.k.a. safe-SeqS) [29,31]. D9 — D13 are simulated

datasets with mimic UMIs based on actual sequencing data (with read lengths of 75 bp,
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101 bp and 150 bp). D14 — D17 are four single-end miRNA datasets generated using
the simulation procedure proposed in miREC [30] and an additional step of mimicking
UMIs to these datasets. The eight UMI-based ground-truth datasets [29] were labelled
as D18 — D25 in this study. D26 — D37 are one paired-end and ten single-end
sequencing datasets used for case studies. Detailed information about these datasets
D1 — D39 can be found in Table S1.

Comparing with state-of-the-art methods including k -mer-methods [32-38],
multiple sequence alignment based methods [39-43], and other methods [28,30,44],
our noise2read consistently outperforms under 19 metrics on eight UMI-based wet-lab
datasets and five simulated single-end and paired-end datasets constructed in this study.
It also has superior performance on eight UMI-based wet-lab datasets and four
simulated miIRNA datasets established previously in published literature. Moreover,
case studies on abundance change of viral reference genomes, isoform identification
and SNP profiling, and genome base editing efficiency estimation revealed that
noise2read can make substantial impacts on downstream applications. The versions of
noise2read and other methods, along with the corresponding commands and parameters
used in the experiments, are provided in File S2.

High prevalence of erroneous reads containing one or two base errors from UMI-
based cluster and distribution analysis
We utilised the sequence information of UMI tags to investigate the distributions of
erroneous reads that contain different numbers of base errors. Specifically, we divided
the reads in a UMI group into high-frequency reads and low-frequency reads. Then, we
calculated the edit distance between each unique low-frequency read and each unique
high-frequency read. Then, each of the unique low-frequency read has the smallest edit
distance with the set of unique high-frequency reads. Given each of these smallest
distances, we record the number of low-frequency sequences that have this edit distance
with the set of high-frequency reads.

We applied the above process to the datasets of SRR1543964-SRR1543971 by

defining a high-frequency read as a read with a copy count no less than five (note:

clusters with ambiguous base “N” in the UMI sequence are not included in this analysis).

We observed that there exist two different high-frequency sequences that have been
tagged with the same UMI, as similarly reported in the literature [45]. For instance, as
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seen in Figure S2, each of these UMI clusters has two high-frequency reads, between
which the edit distance is larger than 100 (111 or 129 respectively), demonstrating that
such two high-frequency reads within the same UMI cluster should be originated from
two different molecules, although they were tagged with the same UMI.

Moreover, there exist big editing distances (e.g., 116) between high and low-
frequency reads within the same UMI cluster, it would be unreasonable to assume only
base-editing-error-relationship between all the low and high frequency reads. In fact, a
low-frequency sequence with a small edit distance to a high-frequency read is more
likely caused by PCR or sequencing errors. Here, we assume that those low frequency
reads with an edit distance < 4 may be erroneous reads caused by PCR or sequencing
errors. In this context, among these eight data sets, at least 60% of the erroneous reads
in 95.21%-96.70% of the UMI clusters are caused by 1 or 2 base errors, as depicted in
the stacked bar chart in Figure S3. Five more UMI clusters are shown in Figure S4:
81.25%, 95.24%, 100%, 94.73% and 100% of low-frequency reads have the 1 and 2
base differences with the set of high-frequency reads in the same UMI cluster. These
findings indicate that those erroneous reads containing one mistaken base or two
constitute a more significant proportion of the total erroneous reads in the dataset. Based
on our theoretical analysis and UMI cluster analysis, the proposed algorithm,

noise2read, is set to correct erroneous reads containing base errors < 3.

Entropy reduction and information gain after error correction

The error correction effect or the noise/uncertainty reduction by an error correction
method in a dataset can be measured by Shannon’s entropy and information gain. For
a read dataset R, its Shannon entropy H is given by

H==) plog,p, (14)

TER

where p,. is the percentage frequency of r in R.

An ideal correction should eliminate all the errors/noises in the dataset while not
introducing any new errors, or new sequences. Therefore, the entropy H'(R') of a
corrected read dataset R’ should consist of two parts: one is about the original reads,

the other is about the wrongly introduced reads. We define H'(R') as

H'(R)=H'(R" nR)+H (R —R) (15)
H®R AR = = > p-logp, (16)
r€{R'NR}
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H® =R == ) pylogpy (17)

r'e{R'—R}

Information gain reflects the amount of information gained from the original state

of the reads after the error correction, defined as
AIR;R)=HR)—H'(R)=HR)—H'(R"nR)—H'(R'—R) (18)

The fewer unique reads are in a dataset, the less uncertainty, and the entropy will
decrease after mistaken bases are corrected. To see the error correction effect on the
data quality improvement, we propose to visualise the information change via a
heatmap of taking items of A I as minor rectangular points and marking the wrongly
introduced sequences as noises red dots. A visualization of A I for D1 is shown in
Figure 6 and those for D2 — D8 are presented at Figures S5-S11. The primary colour
of the heatmaps close to zero strongly suggests that the correction conserves the original
high-frequency information by all the methods. The negative and positive scores on the
colour bar describe the information gain and loss, respectively. As shown in Figure 6,
noise2read is better than the other methods to reduce noise level as there is nearly no
score > 0. Those red points depict information loss brought by wrongly introduced new
sequences, leading to new errors to increase false positives and negatives. Noise2read
does not yield any non-existing reads, and the colour in Figure 6B darker than that in
Figure 6A implies that noise2read has more information gained from the additional
amplicon sequencing correction.

Moreover, to intuitively quantify the information gain or loss, we considered the
changes only in low-frequency sequences before and after error correction. We denote
the frequent reads as a subset FR, of R, and we calculate the entropy by removing
FR, from R or R'. Then, we focus on the entropy change given by

AH=H(R-FR,)—H' (R —FR,) (19)
where 7 is a threshold for defining high frequency reads, H(R — FR,) and H'(R' —
FR;) represent the non-frequent reads’ entropy before and after correction,
respectively.

We calculated the entropy change A H for the sequencing datasets D1 — D8 and
five simulated datasets D9 — D13 after error correction (details shown in Table 1).
noise2read achieves the most considerable information gain on all these datasets.

Specifically, the increased information by noise2read on the simulation datasets
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outperforms the other methods. The extensive information gain is because noise2read

can rectify almost all the errors in the simulated datasets.

Performance comparison on UMI-contained sequencing datasets established in
this study

We evaluated the performance of noise2read in comparison with seven other
computational error correction methods at both the base-level and read-level under
various metrics, including TPR, TNR, FPR, FNR, AD, Precision, Positive Gain,
Accuracy, and Purity Entropy on UMI-based ground truth data D1 — D8.

The comparative performance with the seven methods Coral [39], RACER [33],
Fiona [40], Lighter [34], Pollux [36], Bcool [28], and Care [42,43] are summarized in
Figure 7A for D1 and those in Figures S12 and S13 for D2 — D8. Tables S2-S9 are
provided to further supplement the results. Our method noise2read has achieved the
best performance on all the datasets under all the metrics.

The high-TPR and low-FNR performance indicate that noise2read can turn most
noise while leaving the lowest number of actual noises as signals; The high TNR
illustrates that noise2read can introduce fewer new errors by preserving most signals
unchanged, while the low FPR suggests that noise2read introduces none or few new
noises without bringing up any non-existing sequences after the correction process. In
detail, noise2read surpassed all the other methods on D1, achieving a score 0.924
higher than the second-best method RACER which has a score of 0.859. Notably,
noise2read exhibited exceptional performance in Recall, Precision, Positive Gain,
Accuracy, and Purity Entropy, as evidenced by the values in Table 2. The positive gain
percentage of noise2read is 7.26% and 48.15% higher than RACER and Care.
noise2read and its amplicon mode achieved the finest purity entropy of 0.05 and 0.077,
sounder than the second-best method RACER which has a score of 0.110.

The progressive process gradually converts noise into signals; for example, in Table
2, the 1%, 2" and 3" stages convert 72.9% (81,630), 93.2% (104,373), and 96.2%
(107,717) of the errors into signals on D1, respectively. Noise2read is mainly designed
for any short-read sequencing data whenever PCR is involved. Without the 3™ step, it
also achieves sound performance (refer to Tables S2-S9) by restoring most erroneous
reads into their normal states and not introducing false positive reads. The 3™ step for

further correction on amplicon sequencing data maintains fewer original error-free
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reads than the second stage and correspondingly introduces more noise but not new
sequences. RACER can rectify 93.4% of the noise but newly introduces almost 22 times
the number of new errors compared to our method. Care newly introduces 52 false
positives but can only correct 64.9% of the erroneous reads. The other methods can
only correct less than 65% of the errors but simultaneously give rise to thousands of

new mistakes.

Performance on simulated short-read datasets and those with artificially modified
bases

Error correction performances on the simulated ground truth are shown in Figure 7B-
L, Figure S14 and Table S10 for dataset D9 and Figures S15-S22 and Tables S11-S14
for datasets D10 — D13. Noise2read super outperforms the other methods under all the
metrics on all the simulated datasets. Specifically, for the AD performance, noise2read
(0.989) has 39.3%, 61.9% and 123.3% higher performance than that of Lighter (0.71),
Care (0.611) and Fiona (0.443) (Figure 7B). Noise2read reaches the best precision, gain
and accuracy and achieves a substantial positive gain (Figure 7C). As shown in Figure
7D, noise2read is the only method significantly decreasing the purity Entropy after
correction. Information gain visualisations in Figure 7E—L indicate the information is
still dominated by most of the original signal after correction. All the other methods
wrongly introduced new sequences (in a number of 164 to 9698) after correction. The
other methods’ performance fluctuates widely. For instance, at the read level, the
performance ranking of the top three methods in terms of AD on dataset D9 (Figure
7B) is Lighter, Care and Fiona. However, the performance ranking is Fiona, Care, and
Coral on D10 (Figure S15), and Lighter, Fiona and Care (Figure S17) on D12.

Performance evaluation using previously established simulated mIiRNA
sequencing datasets

Comparison results between noise2read (with or without high-frequency ambiguous
error prediction) and miREC are shown in Table 3 and Table S15. Noise2read can
rectify more errors than miREC, achieving more TP and less FN after correction. The
miREC method and noise2read can achieve similar, reasonably good results in accuracy,

precision and fall-out (Table S15). However, from the recall, Positive Gain, purity
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Entropy (E) and information gain AH performance on all four datasets, noise2read is
better than miREC.

Performance evaluation using independently established UMI-based benchmarks
Table 4 shows the comparative performance of noise2read on D25 in comparison with
Bless [37], Coral [39], Lighter [34], Reckoner [38], Sga [44], BFC [35], Pollux [36],
Fiona [40], RACER [33], and Care [42,43]. The comparison results on D18 — D25
(see Tables S16 and S17) highlight that noise2read consistently achieved the highest
number of true positives on all these datasets, except for Fiona’s TP on D25, which is
slightly bigger than noise2read. Importantly, noise2read demonstrates the lowest count
of false positives among all these datasets. noise2read performs exceptionally good in

Precision, Accuracy, AD and Positive Gain on all the eight benchmark datasets.

Runtime and memory consumption

We compared CPU runtime and peak memory used by noise2read with those by Care
[42,43], RACER [33], Bcool [28], Pollux [36], Lighter [34], Fiona [40], and Coral [39]
on data sets D1 — D8. We executed all the programs on an Intel(R) Xeon(R) Gold
6238R CPU clocked at 2.20GHz, leveraging 56 CPU cores for parallel computing. For
the model training of noise2read, a single Tesla V100S-PCIE-32GB GPU was
employed. To gauge memory usage across all the programs, we used the library psutil
(https://github.com/giampaolo/psutil). These runtime and memory consumption
comparisons are presented Table 5.

Lighter and Care exhibited fast speeds, completing corrections within a minute by
taking a small amount of memory consumption for each of the 8 data sets. On the other
hand, Pollux had the slowest speed due to its inability to run in parallel. Noise2read
spent the second-highest memory consumption and made the second-slowest speed.
(We do not suggest using many multiprocessing processes for noise2read to run, as we
have observed that those situations could suddenly consume a significant amount of
memory, and the program ran out of memory and terminated.)

The separate time consumption by noise2read at its different stages as recorded in
the built-in log files across all datasets D1 — D39 are presented in Table S18. It can be
observed that a significant amount of time was spent on tasks such as constructing “2-

nt-edit-distance read graphs”, “performing feature extraction”, and “model training”.
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To shorten the running time on large data sets, it is suggested to choose a smaller
number of negative samples and set a smaller number of trials (e.g., 20) for the
construction of suboptimal models. Additionally, opting not to predict errors within
high-frequency reads will also save noise2read a substantial amount of time and
memory usage but fortunately without much performance sacrifice on error correction.
We note that although noise2read is slow, it never introduces any non-existing reads
into the datasets. This is a unique merit in all current sequencing error correction
methods.

While the speed of error correction is undeniably a crucial factor in evaluating the
performance of a correction method, an even more critical consideration is whether the
method introduces new errors. A fast error-introducing method damages the quality of
the whole dataset and may become unexpectedly harmful to downstream data analysis,
although its fast speed is advantageous in the preprocessing error correction stage. Our
method does not have this speed advantage so far, but it never introduces new errors,
guaranteeing the integrity of the datasets. In future work, we consider efficiency tricks
to improve the speed of feature extraction and machine learning.

Error correction increases Monkeypox virus genome abundance by 52.12%

The Monkeypox virus has severely affected the health of human beings and its
reference genome sequence has been extensively utilised to understand the origin and
phylogeny, and as a fundamental framework for the design of mRNA vaccines. We
investigate how much abundance is changed for the reference genome after our
algorithm noise2read rectifies the base errors contained in the short-read sequencing
data. The study will help understand the within-host viral mutants of the reference
genome and the abundance compositions.

We used the paired-end whole-genome sequencing dataset SRR22085311 (its
paired R1 and R2 denoted as D26 and D27 here) and the reference genome
GCA _025947495.1 [46]. Our noise2read rectified a huge number of erroneous reads in
D26 (400,622 out of 3,599,812 reads, i.e., 11.13%), and another huge number of
erroneous reads in D27 (456,242 out of 3,599,812 reads, i.e., 12.67%). Figure 8A
presents a coverage comparison chart before and after the error correction, alongside a
coverage difference chart (Figure 8B), where the average base coverage of the reference
genome is increased by 52.12% from depth 1216.75 to 1850.95 after a huge number of
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651,410 reads were retrieved to perfectly align with the genome. The frequency
distribution of the base coverage differences as another angle viewing the abundance
change for the Monkeypox virus is presented in (Figure 8C), where the abundant and
perfectly matched reads aligned to the genome are highlighted again. Especially, those
positive shifts towards a higher coverage (Figure 8B and C) confirm much more about
the ground truth of the known reference genome and the detection of possible new
variants of the genome.

The substantial changes in genome abundance for Monkeypox after error correction
prompt a revaluation of genome sequences and how we detect new variants. Although
this alignment-based analysis focused on viral data, our method has broader
applications, as it effectively corrects errors in PCR amplified short-read sequencing
without introducing non-existent reads, while preserving data integrity. Since reference
genome alignment is a widely used strategy in bioinformatics, our findings suggest that
noise2read can enhance the accuracy and conclusions of alignment-based studies across

a wide range of organisms and datasets.

Accurate error correction improves detection of isomiRs and refines SNPs
profiling

MicroRNAs (miRNAs), non-coding RNA molecules approximately 22 nt, can
modulate gene expression post-transcriptionally through the silencing and decay of
target mMRNAs [47]. Dysregulation of miRNAs plays crucial roles in many biological
mechanisms, and it is also a main reason in cancer and autoimmune disorders [48,49].
By miRNA sequencing, various types of isoforms (i.e., isomiRs) have been detected
[50]. However, whether the base differences found in the isomiRs are actual biological
variations or synthetic artefacts due to the PCR or sequencing errors or both is difficult
to judge. Here, we study how our error correction changes the identification and
quantification of isomiRs from short RNA-seq datasets and how it refines the profiling
of known SNPs in isomiRs.

We downloaded ten single-end small RNA-sequencing datasets of lymphoblastoid
cell lines from five population groups in the 1000 Genomes Project [51]. These datasets
(denoted as D28 — D37 here) were cleaned by removing the adapter sequences via
cutadapt [52]. We used IsoMiRmap [53] under the setting of pre-defined miRNA
reference sets from the database miRbase (v22) [54] as a “miR-space” to quantify

known isomiRs and SNPs for D28 — D37 before and after our sequencing error
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correction. IsoMiRmap tags an identified isomiR as an exclusive isomiR if it only exists
in the miR-space with one or more occurrences but not elsewhere in the human
reference genome, otherwise recognized as an ambiguous isomiR.

These quantification results are summarised in Table 6. The number of unique
ambiguous isomiRs is decreased by 24.12%-31.75% or in numbers from 151 to 245,
but their total counts are increased by a number between 160 and 640 among the ten
datasets after the error correction; the number of exclusive isomiRs is decreased by
34.46%—-37.48% but their total counts are increased by a number between 5095 and
14,441. These results suggest that some previously identified isomiRs are artifacts
containing sequencing errors rather than natural isoforms. On the other hand, for the
profiling of the known SNPs, the number of unique SNPs decreased by 34.13%-
59.09%, and their counts also decreased by 4.40%—35.56% except for two increased by
1.41% and 1.61% respectively. This observation unveils that some of the previously
annotated SNPs are sequencing errors. Similar quantitative and qualitative changes
observed in the profiling of these known SNPs in the isomiRs distinguishing true SNPs
from sequencing errors enable more accurate annotation of SNPs. The significant
change of the isomiRs quantification after correction is because an average of 235,146
(2.62%) sequences were corrected by noise2read in the ten datasets (Table 6).

To understand more about the frequency change of isomiRs and SNPs, we
categorised the isomiRs according to their original miRNAs, then we utilised scatter
graphs with Kepler plots to understand the associations between the number of identical
isomiRs and total isomiRs’ count (log,, transformation) before and after the error
correction of the sequencing reads. The leftward shift on the x-axis (Figure 9A and B
for exclusive isomiRs of D28 and D29, respectively, Figure 9C and D for ambiguous
isomiRs and known SNPs of D28, and Figures S23-S25 for the other miRNA datasets)
indicates a reduction of the count of unique isomiRs, while the upward change on the
y-axis indicates an increase in authentic isomiRs. These significant changes in isomiRs
and SNPs highlight the importance of correction for accurately characterizing isomiR

and SNP profiles, making contributions to the annotation of isomiRnome.
Accurate error correction significantly improves ABE/CBE editing outcomes

Base editing is a new genome editing technique that uses CRISPR systems and enzymes

to introduce point mutations into cellular DNA or RNA for modelling and
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understanding genetic diseases [55,56]. However, deciding whether a nucleotide
position is exactly editable in a genomic context is inefficient by wet-lab experiments,
and the base editors may yield many unexpected genotypic output sequences when the
editable window covers multiple target nucleotides. Deep-learning-based prediction
tools have been developed to predict the base-editing efficiency and outcome-sequence
copy numbers from Adenine and cytosine base editors (ABEs and CBEs) [57]. The
training data used by these prediction tools are extracted from short-read DNA/RNA
sequencing data. Here, we investigate how much the number of unique reads (unique
outcome sequences) changes after our sequencing error correction.

We removed those records in which the target sequence has only one outcome
sequence from the training data of HT_ABE_Train and HT_CBE_Train used in the
literature [57]. Then, we cleaned them to form two datasets (denoted by D38 for ABES
and D39 for CBEs here), and applied noise2read to D38 and D39 separately. As a
result, the number of unique outcome sequences in D38 is reduced by 2309 from
28,892 to 26,583 (7.99%), and the number of unique outcome sequences in D39 is
reduced by 5042 from 27,312 to 22,270 (18.46%). The number reduction of unique
outcome sequences is because some low-frequency reads are not a result of base editing
but due to sequencing errors. In total, noise2read recognised 5109 erroneous reads in
the ABE dataset and 10,271 erroneous reads in the CBE dataset and turned all of them
into normal states. This error correction has significantly improved the quality of the
training data that would be very helpful for enhancing the prediction of base editing

efficiencies.

Discussion

A long-standing problem in sequencing data analysis is how to reduce sequencing base
errors and erroneous reads as much as possible before any downstream applications.
Existing short reads correction methods utilize biochemical-based experimental designs
such as unique molecular identifiers (UMIs) to count and track molecules [10], or take
computational methods including k -mer-methods [32-38], multiple sequence
alignment based methods [39-43], and other methods [28,30,44]. One limit of the UMI-
based strategies is that errors/mutations can also happen at UMIs. Serious concern about
the computational methods is that they have significantly overcorrected reads by

introducing pseudo new sequences or shifting one type of error into another, often
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leaving numerous reads uncorrected. Some of these methods only focus on restoring
substitution mistakes but do not support indels’ correction. Besides, instance-based
methods such as miREC [30] were designed to handle specific sequencing data type
miRNA sequencing reads. And it assumes that frequent sequences contain no mistakes,
thus it cannot be used to correct potential errors between high-frequency reads or cannot
deal with those singletons with no relationships to the high-frequency reads.

Following the principle of the PCR erring incidents and sequencing process, we
constructed special graphs of short reads to capture the relationships between edit-
erring and error-free reads. Through novel modelling of the errors between high-
frequency reads and their high- or low-frequency neighbours as a classification problem,
we have successfully predicted almost all the errors using machine learning techniques.
Validation experiments on the UMI-based wet lab and simulated datasets of known
ground truth have demonstrated that the proposed noise2read algorithm can eliminate
most of the PCR and sequencing errors without introducing any non-existing sequences
into the read set.

Moreover, we investigated the impact of error-corrected data on downstream data
applications. We have found that: (1) The abundance level change of the reference
genome of Monkeypox virus after the sequencing error correction is remarkable, which
may allow us to rethink how to get a precise genome sequence for the virus; (2) For the
isomiRs and SNPs profiling, the counts of some isomiRs and SNPs are decreased while
some others are increased, which is of great significance to identifying actual isomiRs
and SNPs and re-annotating the isomiRnome. (3) Both ABE and CBE should have
higher base editing efficiency than currently estimated. The accurate and higher base
editing efficiency with correct preprocessing may improve the original deep-learning
prediction accuracy. Altogether, these observations and advantages lay down strong
evidence to question the accuracies of current downstream research outcomes and open
new avenues to conduct downstream analysis whenever short-read data are adopted. In
addition to the significant impact demonstrated across the three case studies, our
algorithm holds broader potential for applications in cutting-edge research areas that
rely on short-read sequencing data. These include advanced research fields such as
genomics, epigenomics, infectious disease diagnostics [58,59], low-frequency mutation
or rare mutation detection [60], and virus detection [61]. Additionally, a recent study
[62] has already highlighted the potential advantages of using error-corrected NGS in

assessing off-target effects of gene therapies, enhancing carcinogenicity assessment and
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advancing genetic toxicology and underscored the potential application of error-
corrected NGS for human cancer risk assessment and genetic toxicology testing. We
recommend that researchers employ our method to conduct sensitivity analyses based
on raw and error corrected short read sequencing data in their cutting-edge studies.

A small edit distance such as 1 or 2 is currently used to define the edges of rG(R).
When the edit distance threshold Emax is enlarged, more edges will be created for
rG(R) and possibly more erroneous reads will be identified. The trade-off is that the
computational complexity of constructing these new edges is exponential while newly
identified erroneous reads become less and less when Emax increase. In fact, these
erroneous reads constitute an extremely small percentage (< 0.16%) of the total
erroneous reads in theory. In future work, we will test the computational complexity
when Emax is set as 3 and explore how to change the correction steps. Additionally,
the optimal value of the parameter T may vary across different sequencing platforms,
applications, and experimental conditions. Conducting wet-lab experiments using
synthetic sequencing is a more effective strategy for assessing the adaptability of t in
various settings. In our future work, we will design and conduct experiments to further
investigate the optimal T under different experimental conditions.

The speed and memory usage of noise2read still needs improvement, especially the
parts for building the 1-nt- and 2-nt-edit-distance read graphs and AutoML training for
prediction. The easy-usable and automatic tuning of the classifiers’ parameters
facilitates wide-range explorations, but we note that noise2read may yield a slightly
different result at different trials, even setting the same seeds. We also note that
noise2read will derive more false positives when dealing with errors between high
frequency reads of extremely short length (e.g., < 30 bp). This limit may be overcome
by extracting more or fewer features from the reads. Furthermore, we already attempted
using deep learning architecture (e.g., CNN and LSTM) to detect the errors, but a better
performance was not achieved than by current noise2read. To elevate noise2read from
a good tool to an exceptional one, we plan to explore novel feature representations for
short reads and incorporate attention-based deep learning models in future work.
Additionally, noise2read operates independently of sequencing quality scores, allowing
it to address errors across various sequencing platforms and conditions. However, we

acknowledge that incorporating quality scores may further improve the accuracy of our
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correction procedure. As part of our future work, we also plan to explore integrating

quality scores as an additional feature to enhance the correction process.

Code availability

The algorithm, noise2read, developed in this study is packaged and released on the

Python Package Index (PyPl) at https://pypi.org/project/noise2read/ and Bioconda at

https://anaconda.org/bioconda/noise2read with source code publicly available at

https://github.com/JappyPing/noise2read and documentation publicly available at

https://noise2read.readthedocs.io/en/latest/. The code has also been submitted to
BioCode at the National Genomics Data Center (NGDC), China National Center for
Bioinformation (CNCB) (BioCode: BT007951), which is publicly accessible at
https://ngdc.cncb.ac.cn/biocode/tools/BT007951.

Data availability

No new raw sequencing data were generated in this study.
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Figure legends

Figure 1 Schematic diagrams illustrating how base errors are generated during
library preparation and sequencing process

A. Schematic illustration of base error generation when amplifying one DNA template
during conventional polymerase chain reaction (PCR) amplification. Base “T” mutated
to “G” between the third cycle and the fourth cycle and this error is inherited by the
subsequent cycles. B. Schematic graph depicting PCR errors generated in the process
of bridge amplification during Illumina sequencing. An example of “A”-to-“G” is

inherited. C. An overview of base calling during Illumina sequencing.

Figure 2 Overview of the workflow of noise2read

The first stage (1a—1f) and the second stage (2a—2f) rectify 1-nt and 2-nt based-errors
to their normal states, respectively. The third stage (3a—3f) is optional only for further
correction specified to the amplicon sequencing data. The integrative auto machine
learning (AutoML) module is used multiple times for training and predicting based on

different edit-erring-reads and error-free-reads in each stage.

Figure 3 Zoomed-in view of subgraph A in Figure S1
This subgraph contains six high-frequency (16 to 234) reads labelled as r; to r, and

72 low frequency (1 to 3) reads.

Figure 4  An overview workflow of the AutoML module for end-to-end
prediction on ambiguous errors

The edit-erring-reads and error-free-reads extracted from the nt-edit-distance graph
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are categorised into three types of data. Training data is constructed through the
workflow steps of @®@-B®—®—-9-10); the scaled training data is then fed (D) into
XGBoost classifier, with Optuna used to optimize parameters, resulting in the best
prediction model (12). Following similar preprocessing steps, the transformed
objective data is created through steps of —@—@—@4). Finally, the prediction is
completed by feeding the objective data into the optimized model via steps 15—@16).

Figure 5 Flowchart illustrating the analytical framework and key concepts in
this study

Figure 6 Visualisation of information gain for different methods on dataset D1
A. and B. Information gain by noise2read with and without amplicon correction,
respectively. C.—I. Incorrectly introduced reads as red points. The number of red points
shown on each heatmap corresponds to 502, 2310, 7808, 2935, 8523, 13,899 and 722,

respectively.

Figure 7 Performance comparison between noise2read and seven other methods
on datasets D1 and D9

A. Comparison of true positive rate (TPR), true negative rate (TNR), false positive rate
(FPR), false negative rate (FNR), and area difference (AD), at the read-level for
noise2read and seven other methods on the UMI-based wet-lab dataset D1 .
noise2read* denotes the result without amplicon correction. B.-D. Performance
comparisons at the read-level on simulated dataset D9. E.—L. Information gain
visualisations for D9. Heatmaps in F—L display 1223, 164, 9698, 377, 2378, 3651 and
1255 red dots, respectively. Each red dot represents a new sequence introduced after

error correction.

Figure 8 Comparison of base coverage before and after correction for
Monkeypox virus genome using perfectly matched reads

A. Base coverage for Monkeypox virus using the original and corrected sequencing
data. B. Coverage differences before and after error correction for the Monkeypox virus
data. C. Frequency distribution of coverage differences for the Monkeypox virus data,
also plotted with scaled density curves.
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Figure 9 Comparison of isomiR and known SNP counts before and after error
correction using scatter plots and Kepler plots

A. and B. Scatter plots comparing the number of exclusive isomiRs identified in the
original and error-corrected datasets D28 and D29, respectively. C. and D.
Comparisons for ambiguous isomiRs and known SNPs identified in the original and

error-corrected dataset D28, respectively.

Tables

Table 1 Non-frequent reads’ information gain A H on the datasets D1 — D8
and D9 — D13

Table 2 Performance comparison between noise2read and seven methods on the
dataset D1

Table 3 Performance comparison between noise2read and miREC at the read

level

Table 4 Performance comparison between noise2read and ten methods on the
dataset D25

Table 3 Time and memory usage by different methods on the datasets D1 — D8

Table 4 Known isomiRs and SNPs profiling change from miRNA sequencing

data before and after correction
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Table1l Non-frequent reads’ information gain A H on the datasets D1- D8 and D9-D13

Datasets Method
Coral RACER Fiona Lighter  Pollux Bcool Care  noise2read

D1 0.588  6.023 4.077 4.686 2.508 0916 1.776  6.409
D2 0.770  6.116 4.393 4.842 2.534 0.023 1557 6.339
D3 0921 6.369 4.891 5.505 3.044 2.333 0469 6.239
D4 0590 6.215 4.638 5.083 3.011 1.702 0907 6.202
D5 0.752  6.360 4.589 5.127 2.821 0.046  1.302 6.297
D6 0970 6.316 4.800 5.026 2.930 1986 1357 6.567
D7 0.898  6.306 4.883 5.422 3.096 0.100 0.446 6.194
D8 1.156 5.974 4.344 4.604 3.014 1.824 1598 6.187
Average 0.831 6.210 4.577 5.037 2.870 1116 1176 6.304
D9 0621 -1.349 -0.209 1.362 0.462 1.874 2941 10.484
D10 2072 -0.673 3.318 3.040 3.152 0960 1.721 12.733
D11 2.849 0.273 2.129 3.910 3.459 0.723 1483 12.380
D12 1.250 0.039 2.476 4.535 2.784 1103 0.881 12.249
D13 1159 0.811 2.991 5.193 3.159 1.725 0909 13.161

Average 1590 -0.180 2.141 3.608 2.603 1277 1587 12.201

Note: T = 4 was used for calculating A H. D1- D8 are UMI-based wet-lab datasets and D9-D13 are

UMI-based simulated datasets. Best scores are highlighted in bold.
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Table 2 Performance comparison between noise2read and seven methods on the dataset D1

Metric
Method Positive
TP FP FN TN Recall  Precision . Accuracy E
Gain

noise2read® 1%stage 81630 O 30391 693059 0.729  1.000 0.729 0.962 0.232

2stage 104373 0 7648 693059 0.932  1.000 0.932 0.991 0.077

3dstage 107717 201 4304 692858 0.962  0.998 0.960 0.994 0.050
Coral 22677 4249 89344 688810 0.202  0.842 0.165 0.884 0.518
RACER 104589 4347 7432 688712 0.934  0.960 0.895 0.985 0.110
Fiona 72792 136472 39229 556587 0.650  0.348 -0.568 0.782 0.757
Lighter 61330 145999 50691 547060 0.547  0.296 -0.756 0.756 0.802
Pollux 20537 73710 91484 619349 0.183  0.218 -0.475 0.795 0.732
Bcool 40970 3889 71051 689170 0.366  0.913 0.331 0.907 0.447
Care 72673 52 39348 693007 0.649  0.999 0.648 0.951 0.3

Note: #The results obtained by noise2read was decomposed at different stages. D1 is a UMI-based wet-

lab dataset. Best scores are highlighted in bold.
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Table 3 Performance comparison between noise2read and miREC at the read level

Datasets Methods Metrics -
TP FP FN TN Recall Gain E AH
D14 miREC 4224 0 267 218980 0.941 0.941 0.129 4.755
noise2read 4410 15 81 218965 0.982 0.979 0.137 9.053
noise2read? 4408 3 83 218977 0.982 0.981 0.137 9.053
D15 miREC 4135 5 271 219060 0.938 0.937 0.126 4.821
noise2read 4312 10 94 219055 0.979 0.976 0.134 8.485
noise2read? 4310 4 96 219061 0.978 0.977 0.134 8.485
D16 miREC 6418 16 309 216728 0.954 0.952 0.179 5.301
noise2read 6590 20 137 216724 0.980 0.977 0.187 8.184
noise2read? 6588 16 139 216728 0.979 0.977 0.187 8.184
D17 miREC 6398 0 306 216767 0.954 0.954 0.179 5.337
noise2read 6578 2 126 216765 0.981 0.981 0.187 8.769

noise2read? 6576 0 128 216767 0.981 0.981 0.187 8.769

Note: High-frequency threshold t =4 used for noise2read. D14 — D17 are simulated miRNA
sequencing datasets. D14 — D15 contain substitution and indel errors, while D16 — D17 contain only
substitution errors. 2 Performance by noise2read without prediction of errors between high frequency

reads.
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Table 4 Performance comparison between noise2read and ten methods on the dataset D25

k- Metric
Method ~ mer - Positive

size TP TN FN FP TPR FNR TNR FPR Precision Accuracy AD Gain
Bless 30 39345 509513 23498 1751 0.63 037 1 0 0.957 0.96 039 06
Coral 30 23172 497906 48255 4774 032 0.68 0.99 0.01 0.829 0.91 0.09 0.26
Lighter 30 51934 497165 19336 5672 0.73 0.27 0.99 0.01 0.902 0.96 051 0.65
Reckoner 30 24143 501767 47233 964 034 066 1 0 0.962 0.92 011 032
Sga 26 13129 501767 58582 629 018 082 1 0 0.954 0.9 0.03 0.17
BFC 30 18415 500964 53345 1383 0.26 0.74 1 0 0.93 0.9 0.06 0.24
Pollux 30 26308 430041 33643 83210 044 056 0.84 016 0.24 0.8 -0.11 -0.95
Fiona NA 54983 483470 13675 21979 0.8 0.2 096 0.04 0.714 0.94 056  0.48
RACER NA 50106 444352 9857 69792 0.84 0.16 0.86 0.14 0.418 0.86 045 -0.33
Care NA 43213 501631 28896 367 06 04 1 0 0.992 0.95 036  0.59
noise2read NA 54316 501759 18011 21 075 025 1 0 0.9996 0.97 056 0.75

Note: D25 is a UMI-based benchmark dataset previously established in the literature [29].
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Table 5 Time and memory usage by different methods on the datasets D1 — D8

Method CPU D1 D2 D3 D4 D5 D6 D7 D8
cores  Time  Memory Time  Memory Time Memory Time Memory Time Memory Time Memory Time Memory Time Memory
Coral 56 3.3 65528 3.4 91045 3.0 54182 3.8 99376 3.9 99673 3.3 68805 3.7 61512 2.4 49311
Fiona 36.4 1736 20.2 1702 22.5 1811 25.2 2111 29.1 1794 334 1755 19.9 1846 15.2 1353
Lighter 1 568 1 564 1 568 1 568 1 568 1 564 1 566 1 566
RACER 64 3.1 111 2.7 100 3.7 130 4.1 146 3.4 123 3.4 125 3.7 135 2.2 110
Pollux 1 12774 219 1072.2 197 14453 204 1722.2 217 1425.1  209.07 1455.3 219 1480.1 217 8449 198
Bcool 56 15.9 12 4.6 12 8.1 12 11.7 12 3.9 12 11.6 12 55 12 53 12
Care 1 788 1 793 1.0 813 1 737 1 812 1 823 1 822 1 589
noise2read 137.3 4405 1215 4012 126.8 6629 143.1 5723 125.8 4755 136.3 6557 123.0 5393 110.2 3472
noise2read? 171.0 4373 161.0 5350 146.0 4824 199.0 7449 173.0 4699 178.0 5189 160.0 5014 198.0 3767

Note: The CPU model of Intel(R) Xeon(R) Gold 6238R CPU @ 2.20GHz was used by all the methods. 1 GPU of Tesla V100S-PCIE-32GB was used for the model training of

noise2read. The runtime is given in minutes; Memory consumption is given in MB. @ The performance of noise2read is enhanced through additional amplicon correction.
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Table 6 Known isomiRs and SNPs profiling change from miRNA sequencing data before and after correction

Corr. Corr. Ambiguous isomiRs Exclusive isomiRs SNPs
Dataset read PCT. Unique reads No. Total reads No. Unique reads No. Total reads No. Unique reads No. Total reads No.

No. Orig. Corr. Dec. Orig. Corr. Inc. Orig. Corr. Dec. Orig. Corr. Inc. Orig. Corr. Dec. Orig. Corr. Dec.
D28 197071 2.70% 827 619 252% 16425 16859 2.6% 7158 4590 35.9% 1276397 1287399 0.9% 168 79 53.0% 704 606 13.9%
D29 236699 4.02% 485 331 31.8% 10867 11365 4.6% 5511 3489 36.7% 928151 940139 13% 116 54 53.4% 6220 6320 -1.6%
D30 324175 191% 851 632 25.7% 17653 17978 1.8% 5229 3427 345% 732858 739190 0.9% 144 73 49.3% 450 392 12.9%
D31 147763 2.17% 871 634 27.2% 24767 25191 1.7% 8134 5200 36.1% 1763443 1776084 0.7% 154 63 59.1% 396 266 32.8%
D32 268616 1.43% 688 508 26.2% 19761 20147 2.0% 5553 3512 36.8% 779496 786162 0.9% 101 56 446% 253 192 24.1%
D33 264327 2.24% 915 670 26.8% 29849 30344 1.7% 6788 4377 355% 1215062 1223420 0.7% 126 83 34.1% 362 318 12.2%
D34 288649 4.23% 449 309 31.2% 8735 9124 4.5% 4733 2959 375% 741500 751526 1.4% 119 51 57.1% 3909 3964 -1.4%
D35 144252  2.45% 821 594 27.6% 32558 33198 2.0% 7464 4855 35.0% 2598394 2612835 0.6% 185 84 54.6% 2639 2523 4.4%
D36 272107 3.40% 626 475 241% 14092 14517 3.0% 5367 3403 36.6% 938218 947607 1.0% 122 50 59.0% 284 183 35.6%
D37 207804 1.66% 547 407 25.6% 10752 10912 1.5% 5184 3347 354% 685935 691030 0.7% 87 51 41.4% 184 142 22.8%
AVE. 235146 2.62% 708 518 27.1% 18546 18964 2.5% 6112 3916 36.0% 1165945 1175539 0.9% 132 64 50.6% 1540 1491 15.6%

Note: Abbreviation: Corr., Correction; No., Number; PCT., Percentage; Ori., Original; Inc., Increase; Dec., Decrease.
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