

1 **Noise2read: Accurately Rectify Millions of Erroneous Short**
2 **Reads Through Graph Learning on Edit Distances**

3
4 Pengyao Ping¹, Shuquan Su^{1,2}, Xinhui Cai¹, Tian Lan¹, Xuan Zhang¹, Hui Peng², Yi
5 Pan², Wei Liu¹, Jinyan Li^{2,*}

6

7 ¹ *School of Computer Science, Faculty of Engineering and Information Technology,*
8 *University of Technology Sydney, Sydney 2007, Australia*

9 ² *Faculty of Computer Science and Control Engineering, Shenzhen University of*
10 *Advanced Technology, Shenzhen 518000, China*

11

12 * Corresponding author.

13 E-mail: lijinyan@suat-sz.edu.cn (Li J).

14

15 **Running title:** *Ping P et al / Noise2read: Turn Noise to Signal for Short Read*

16

17 Total number of words (from “Introduction” to “Discussion”): 9366.

18 Total number of letters for the article title: 92.

19 Total number of letters for the running title: 50.

20 Total number of words for Abstract: 239.

21 Total number of Keywords: 5.

22 Total number of figures: 9.

23 Total number of tables: 6.

24 Total number of supplementary figures: 25.

25 Total number of supplementary tables: 20.

26 Total number of supplementary files: 4.

27 Total number of references: 62.

28 **Abstract**

29 Although the per-base error rate of short-read sequencing data is very low at 0.1%–
30 0.5%, the percentage/probability of erroneous reads in a dataset can be as high as 10%–
31 15% or in the number millions. As current methods correct only some errors while
32 introducing many new errors, we solve this problem by turning erroneous reads into
33 their original states, without bringing up any non-existing reads to keep the data
34 integrity. The novelty is originated in a computable rule translated from polymerase
35 chain reaction (PCR) erring mechanism that: a rare read is erroneous if it has a
36 neighbouring read of high abundance. With this principle, we construct a graph to link
37 each pair of reads of tiny edit distances to detect a solid part of erroneous reads; then
38 we consider these pairs of reads of tiny edit distances as training data to learn the erring
39 mechanisms to identify possibly remaining hard-case errors between pairs of high-
40 abundance reads. The proposed approach, noise2read, is competent to handle the
41 rectification of erroneous reads from short-read sequencing data whenever PCR is
42 involved. Compared with state-of-the-art methods on tens of evaluation datasets of
43 unique molecular identifier (UMI) based ground truth, noise2read performs
44 significantly better on 19 metrics. Case studies found that noise2read can greatly
45 improve short-reads quality and make substantial impact on genome abundance
46 quantification, isoform identification, single nucleotide polymorphisms (SNP) profiling,
47 and genome editing efficiency estimation. Noise2read is publicly available at
48 <https://github.com/JappyPing/noise2read> and
49 <https://ngdc.cncb.ac.cn/biocode/tool/7951>.

50

51 **KEYWORDS:** Short reads error correction; Polymerase chain reaction erring; Graph
52 of reads; Edit distance of two reads; Machine learning

53

54

Introduction

55 Next generation sequencing (NGS) techniques and platforms have dramatically
56 changed the world of genomics and computational biology [1–3]. High throughput
57 DNA sequencing has enabled large-scale whole-genome sequencing and gene-targeted
58 sequencing; NGS-based RNA-seq has provided ever higher coverage and sharper
59 resolution of dynamic transcriptomes for a wide range of applications such as isoform
60 discovery, differential gene expression analysis, alternative gene splicing, and allele-
61 specific expression profiling [2]. However, NGS inevitably self-made sequencing
62 errors including base deletions, insertions and substitutions at various steps like sample
63 handling, library preparation, polymerase chain reaction (PCR), and/or at the base
64 calling step [4,5]. Although the erring rate is estimated very low at 0.1%–0.5% per base
65 in Illumina short-read sequencing, huge numbers of erroneous bases have been
66 generated and stored at every sequencing dataset (e.g., about 197,402 base errors in a
67 miRNA-sequencing dataset ERR187525, and about 997,020 base errors in a pair-end
68 whole-genome sequencing dataset SRR22085311 which have been found through this
69 study). As these mistaken bases are randomly distributed across possibly all the reads
70 in a dataset, the percentage/probability of *erroneous reads* in a dataset can be very high
71 (e.g., as high as 10%–15%).

72 Suppose the per-base erring probability is estimated as p at a sequencing platform,
73 and assume these erring events are independent at all the base positions in a read, then
74 the probability $p_{error}(r)$ of a read r containing one or multiple base errors is given
75 by

$$76 \quad p_{error}(r) = \sum_{i=1}^L \binom{L}{i} p^i (1-p)^{(L-i)} = 1 - (1-p)^L \quad (1)$$

77 where $L = \|r\|$, the length of read r . If $p = 0.1\%$ and $L = 100$, then $p_{error}(r) =$
78 9.52% . In other words, the percentage of erroneous reads in a dataset is about 9.52%
79 when the per-base erring rate is estimated as 0.1% and the length of reads $L = 100$ bp.
80 If the per-base erring rate p is estimated as 0.15%, then there are about 13.94% of
81 erroneous reads in the dataset.

82 This is a fundamental issue previously unrecognized concerning the high
83 percentages of erroneous reads in NGS datasets. These erroneous reads are usually
84 treated as data noise implicitly or explicitly excluded for downstream data analysis such
85 as *de novo* genome/transcriptome assembly and differential gene expression profiling

86 [6,7]. Or these erroneous reads are un-purposely considered as genuine true reads in the
87 data analysis which may have led to inaccurate or wrong conclusions. To restore the
88 huge missing value of these high percentages of erroneous reads in each sequencing
89 dataset, it is highly demanded to do accurate rectification of all these errors, as opposed
90 to treating them as noise removal, to boost the data quality and integrity so as to improve
91 the downstream applications.

92 One of the main sources of the sequencing errors is from PCR, a technique that
93 makes fast duplications of small segments of DNA which has been used by NGS to
94 amplify the fragmented DNA/RNA molecules for effective sequencing. Most of the
95 time, PCR makes perfect copies of the fragmented segments of DNA/RNA, but
96 occasionally it introduces base-pair substitutions, deletions, insertions, or even yields
97 new hybrid sequences during template switching [8]. Thus, after the PCR amplification,
98 one or two copies in the duplications of a DNA segment may show inconsistent bases.
99 **Figure 1A** illustrates how base errors arise when amplifying one DNA template during
100 PCR amplification. PCR errors not only occur in the library preparation but also during
101 sequencing processes such as clonal molecules [5]; Figure 1B is an example that depicts
102 how errors are introduced in the process of bridge amplification during Illumina
103 sequencing. Such PCR erring incidents are then inherited by NGS's base calling step
104 that converts a nucleotide sequence into a digital string (named a read). The conversion
105 is not 100% accurate as well, similar to PCR introducing minor mistakes (Figure 1C)
106 [4,9]. Therefore, sequencing errors can occur in various ways. However, it is almost
107 certain that an erroneous read will appear at low frequency if the error occurred at the
108 late cycles of PCR. This is because the probability of the same error occurring at the
109 same position is extremely low, especially in 200–300 bp reads.

110 Efficient detection of these erroneous reads from a dataset of hundreds of millions
111 of reads is challenging. First, some low-frequency rare reads are genuine reads not
112 containing any sequencing errors. This is attributed to the uneven PCR amplification
113 rates at different segments of the DNA — poorly amplified molecules will be sequenced
114 to a lesser extent than the highly amplified molecules [10,11]. Second, an amplified
115 segment after PCR erring may become identical to a high-frequency molecule. As a
116 result, for two highly similar high-frequency reads (A and B), it is impossible to
117 determine, without machine learning of PCR erring mechanisms, whether B represents
118 an erroneous amplification of A or vice versa.

119 We construct a graph $rG(R)$ using the unique reads r_1, r_2, \dots, r_n along with their
 120 frequencies from a read dataset R (a multiset of reads) to detect erroneous reads under
 121 the sophisticated help of graph-based machine learning. Let $freq(r)$ represent the
 122 abundance level or the frequency of a read r , or the number of copies of r in the
 123 sequencing data. For each of the unique reads in R , we represent it as a node in the
 124 graph and label the node with the read's frequency. There is an edge $e_{(i,j)}$ between
 125 node r_i and node r_j if the *edit distance* between read r_i and read r_j is 1 or 2.
 126 Specifically, when searching for edges with an edit distance of 2, only substitutions are
 127 taken into account. A read u is a neighbouring read of read v if there is an edge
 128 between them. As understood from the PCR erring mechanism in NGS, the pairing of
 129 two neighbouring reads u and v implies that a copy of u is a wrongly
 130 amplified/sequenced copy of the v molecule, or a copy of v is a wrongly
 131 amplified/sequenced copy of the u molecule, or both. When $freq(v)$ is low while
 132 $freq(u)$ is high, we rectify the erroneous read v by removing this node from the graph,
 133 while increase $freq(u)$ by $freq(v)$. That is, we turn the “noise” read (*i.e.*, a read that
 134 contains erroneous bases) v (low-frequency rare read) into its normal state u . We
 135 denote such a set of erroneous reads in the graph as edit-erring-READS and the isolated
 136 nodes with high frequencies as error-free-READS. Notably, “noise” refers to erroneous
 137 bases contained in reads in this study. Our correction procedure turns individual base
 138 errors into their correct state (signal) without changing other bases in the reads, and the
 139 rectified reads can be used for any downstream applications.

140 We use a small edit distance of 1 or 2 to define the edges of the graph because those
 141 erroneous reads containing one mistaken base or two constitute the majority of the total
 142 erroneous reads in the dataset. The majority percentage is given by

$$143 \quad error\%(p, 1, Emax) = \frac{\sum_{i=1}^{Emax} \binom{L}{i} p^i (1-p)^{(L-i)}}{1 - (1-p)^L} \quad (2)$$

144 where p is the base erring probability, $Emax$ is a maximum edit distance allowable
 145 to define an edge. If $L = 100$, $p = 0.1\%$, $Emax = 2$, then $error\%(p, 1, Emax) =$
 146 99.84% . This indicates that 99.84% of all the possible erroneous reads in the dataset
 147 are those reads containing one base error or two ($Emax$).

148 The second challenge in the correction of erroneous reads in the graph $rG(R)$ is to
 149 deal with the situation when a low-frequency read is linked to multiple high-frequency
 150 reads, and/or two (or more) high-frequency reads are linked each other in the graph

151 (denoted as ambiguous errors). Hence, we model the situations as a classification
152 problem and use machine learning techniques to predict whether the duplications of a
153 high-frequency read contain or not contain wrongly sequenced copies of its
154 neighbouring high-frequency reads.

155 This is a novel classification problem not formulated in any literature. In this work,
156 we use edit-erring-READS and error-free-READS as training data and extract multiple
157 features of different dimensions from the data and then utilize an optimized gradient
158 boosting classifier of the extreme gradient boosting (XGBoost) [12] to make the
159 prediction under a supervised learning framework. As the training data is $rG(R)$ -
160 specific, the prediction model can learn the inherent erring patterns of each specific
161 sequencing platform that conducts the specific biomolecular samples' sequencing.
162 Therefore, our machine learning approach is competent to handle the rectification of
163 erroneous reads that have a length less than 300 bp produced by any PCR-involved
164 single/pair-end DNA/RNA sequencing, whole-genome sequencing, miRNA-
165 sequencing, or synthetic sequencing regardless of the difference in the platforms or in
166 the biomolecular samples.

167

168 **Method**

169 **Overview of noise2read algorithm**

170 We present an error correction method to improve the short-read sequencing data
171 quality by turning millions of erroneous short reads into their normal state through
172 graph learning on edit distances between reads. We name our method "noise2read". As
173 introduced above, its novelty sits in the computable rule translated from PCR erring
174 mechanism: a rare read is erroneous if it has a neighbouring read of high abundance.
175 With this principle, we construct a graph to link each pair of reads of a small edit
176 distance to detect a substantial part of erroneous reads in the graph. Then we take them
177 as training data to learn the platform-specific erring mechanism to identify possibly
178 remaining hard-case errors between pairs of frequent reads in the graph, namely specific
179 training data is used at different platforms.

180 Noise2read is a progressive three-stage error correction method, and an overview
181 of the workflow of noise2read is illustrated in **Figure 2**. An auto machine learning
182 (AutoML) module is centred in the process of noise2read, which is used multiple times
183 in the different stages for the prediction of ambiguous or amplicon errors. AutoML has

184 a component for the preparation of training and objective data and has a component for
185 the parameter optimization of the gradient boosting-based classifiers. The first stage
186 (shaded in blue) rectifies low-frequency leaf nodes (genuine errors) and ambiguous
187 errors by a traversal on the 1-nt-edit-distance read graph $1 - nt - rG(R_0)$ constructed
188 from the original reads of dataset R_0 . Here, every edge in the 1-nt-edit-distance read
189 graph means the edit distance between the two nodes is one nucleotide (*i.e.*, 1 nt). The
190 second stage (shaded in pink) conducts correction of genuine and ambiguous errors at
191 the 2-nt-edit-distance read graph $2 - nt - rG(R_1)$ constructed from the first stage
192 corrected dataset R_1 . Here, every edge in the 2-nt-edit-distance read graph means the
193 edit distance between the two nodes is two nucleotides (*i.e.*, 2 nt). Particularly, we
194 consider only substitution relationships for constructing 2-nt-edit-distance edges since
195 the majority of NGS data conforms to a consistent read length. The third stage (shaded
196 in yellow) is designed to eliminate specific errors at an updated 1-nt-edit-distance graph
197 $1 - nt - rG(R_2)$ only for the amplicon sequencing data but using the same AutoML
198 module for prediction.

199 Graph $rG(R)$ is often a disconnected graph. For example, nine subgraphs of
200 $rG(D1)$ constructed in the first stage are shown in Figure S1, where $D1$ is a simplified
201 version of SRR1543964. There are many clustered low-frequency leaf reads linked to
202 one high-frequency read, while there also exist edges that link pairs of high-frequency
203 reads. **Figure 3** is a zoomed version with more details about subgraph A in Figure S1,
204 where the high-frequency nodes are highlighted in orange and the low-frequency nodes
205 are highlighted in pink. Every edge in this graph implies that the linked reads have only
206 one base difference. With these sub-graphs, noise2read (1) directly turns those leaf
207 nodes of low-frequency into their high-frequency parent nodes (their normal states
208 r_1, r_2, \dots , or r_7); (2) uses the AutoML module to identify the parent node of two low-
209 frequency nodes r_8 and r_9 , as these two low-frequency nodes are each linked to more
210 than one high-frequency read (r_8 is linked to r_2, r_3 and r_4 ; r_9 is linked to both of r_1
211 and r_3); and (3) uses the AutoML module to judge whether there are erroneous reads
212 between the linked high-frequency nodes (*e.g.*, between r_2 and r_3 , between r_5 and
213 r_7).

214 Although noise2read is a three-stage progressive error correction method, we
215 usually take the first two stages because they are sufficient to eliminate the majority of
216 the errors in many typical NGS datasets. Only in the cases where the data has extensive

217 coverage, such as amplicon sequencing, the option to use the third step is chosen for
218 additional error correction.

219

220 **Special considerations in the construction of edit-distance graph of short reads**

221 By setting a high-frequency threshold τ , noise2read finds the 1-nt- or 2-nt-edit-distance
222 edges between unique high-frequency reads (with frequency $> \tau$) and all the other
223 unique reads in a read dataset, and then it takes all these unique reads as nodes, their
224 counts as attributes and the detected associations to build a graph. The rationale for not
225 detecting the 1-nt- or 2-nt-edit-distance read pairs in the low-frequency reads is that it
226 is computationally challenging and meaningless to distinguish whether one read of low
227 abundance is mutated from the other low-frequency read (e.g., it is hard to determine if
228 there are mutations or sequencing errors between two reads each with a frequency of
229 one and with one- or two-base difference). The rationale for 2-nt-edit-distance error
230 correction is that some NGS data contain two base errors in some long read (e.g., 150
231 bp), and we set a threshold l (e.g., 30 bp) of the sequence's minimum length to
232 determine whether to perform 2-nt-edit-distance error correction.

233 Noise2read does not perform a pairwise alignment for searching the 1-nt- or 2-nt-
234 edit-distance edges between the high-frequency reads and all the other reads in the read
235 set. Instead, it enumerates all the possible 1-nt- or 2-nt-edit-distance (substitutions only
236 for the 2-nt) reads for all the high-frequency reads and stores them in the Python Set.
237 Then, it invokes the Python built-in function intersection to obtain the edges. It may not
238 be the best way to find all the edges using hash tables in this manner. However, such a
239 strategy can find all required edges instead of finding an approximate number of edges.
240 We constructed the 2-nt-edit-distance graph by searching only substitution relations as
241 edges. This idea is based on the observation that substitutions are the most prevalent
242 type of sequencing error [13], and on that ambiguous nucleotides are often denoted by
243 the symbol “N” [14,15] during sequencing. Moreover, NGS read lengths are usually
244 consistent and fixed in a single sequencing run, owing to the fixed number of
245 sequencing cycles in technologies like Illumina sequencing. This uniform read length
246 is achieved since the read size is directly tied to the number of sequencing cycles
247 performed, and each cycle corresponds to the sequencing of a single base. On the other
248 hand, if a deletion or insertion exists in the read, the sequence length will change, and
249 such a sequence will not appear in a uniform-length sequencing dataset. Noteworthy,

250 noise2read can handle indel errors when insertion or deletions are represented by the
 251 symbol “N”.

252 The time complexity of constructing the 1-nt- or 2-nt-edit-distance read graph in
 253 noise2read is $O(h \cdot L^2 + n)$, where h represents the number of high-frequency reads,
 254 L denotes the uniform read length, and n is the total number of unique reads in a
 255 dataset. This complexity arises from two processes. First, noise2read enumerates all
 256 possible 1-nt-edit-distance variants ($O(h \cdot L)$) and 2-nt-edit-distance variants ($O(h \cdot L^2)$)
 257 for the high-frequency reads, storing them in a Python set in $O(h \cdot L^2)$ time. It then
 258 intersects this set of all n reads to identify edges in $O(h \cdot L^2)$ time. Second, the
 259 resulting edges, numbering $E = O(h \cdot L^2, n)$, are used to construct an undirected graph
 260 with NetworkX [16] in $O(n + E)$ time. Combining these steps, the overall complexity
 261 simplifies to $O(h \cdot L^2 + n)$ for graph construction by noise2read.

262

263 **Construction of edit-erring-READS and error-free-READs as training data**

264 By defining a maximum frequency threshold τ_{err} ($\tau_{err} \leq \tau$), we considered two kinds
 265 of erroneous reads: genuine errors and ambiguous errors. Genuine errors are referred to
 266 those leaf nodes whose frequency τ' is less than or equal to τ_{err} ($\tau' \leq \tau_{err}$) and which
 267 have a neighbouring node with a higher frequency than τ . This set of erroneous reads is
 268 denoted as edit-erring-READS. These genuine errors can be directly rectified to their
 269 correct states. While we define two kinds of ambiguous errors: (1) those nodes (reads)
 270 r with a low-frequency τ' that are each connected to multiple ≥ 2 high-frequency
 271 nodes; (2) wrongly sequenced reads existing between a pair of similar high-frequency
 272 reads as the second kind of ambiguous error instances. In other words, in the constructed
 273 1-nt-edit-distance-based read graph, if there are edges between two similar high-
 274 frequency sequences, there may be sequencing errors between them. Moreover,
 275 amplicon sequencing utilises ultra-deep PCR amplifications for a specific gene target
 276 and supports hundreds to thousands of amplicons multiplexed sequencing in one assay
 277 to achieve high coverage, but ultra-deep PCR simultaneously amplifies PCR errors. To
 278 this end, we further construct a 1-nt-edit-distance-based read graph for amplicon
 279 sequencing data and consider those reads of frequencies less than τ_{amp}^{min} (e.g., 50) as
 280 potential amplicon errors mutated from its neighbouring reads of extremely high-
 281 frequency larger than τ_{amp}^{max} (e.g., 1500).

282 We consider isolated nodes of high frequencies bigger than τ as error-free reads. We
 283 take those isolated nodes of high frequencies in the 1-nt- or 2-nt-edit-distance graphs to
 284 build the training set error-free-READS.

285

286 **Auto machine learning prediction**

287 Unlike the direct rectification of genuine errors into their original state, we model
 288 whether a high-frequency read contains true mutations or sequencing errors from its
 289 high- or low-frequency neighbours as a classification problem. We created the AutoML
 290 module for its end-to-end prediction. The flowchart illustrated in **Figure 4** outlines the
 291 steps involved in the AutoML module.

292

293 *Formulation of the classification problem*

294 We consider edit-erring-READS as positive training instances, while error-free-
 295 READS as negatives. For a low-frequency node with a degree greater than two, we
 296 calculate its probability of mutation from all its high-frequency neighbouring nodes and
 297 take the node with the highest probability as its correct sequence. For the second type
 298 of ambiguous error prediction, we integrate the predicted results of the first kind into
 299 the training data. In the current version, we only use the predicted ambiguous samples
 300 as negative samples for high-ambiguous error prediction to reduce training time and
 301 complexity. The mutations observed in high-frequency reads exhibit a bidirectional
 302 nature. Therefore, we only consider the prediction result with a higher probability when
 303 the bidirectional predictions match. In other words, if the absolute difference between
 304 the probabilities of the two-way predictions is less than a specific value, we discard the
 305 prediction; otherwise, we choose the prediction having a higher probability.

306

307 *Feature representation for the training and objective data*

308 A short DNA or RNA sequence can be represented as $r = b_1 b_2 \dots b_i \dots b_l$, where
 309 $b_i \in \{A, C, G, T, N\}$ or $b_i \in \{A, C, G, U, N\}$. Here, A, G, C, T and U represent the
 310 nitrogenous bases Adenine, Guanine, Cytosine, Thymine and Uracil, respectively. The
 311 letter N denotes an uncertain nucleotide, and $l \in \mathbb{N}$ represents the total number of
 312 bases in r . We extract features from r by considering its substrings of length k
 313 (where $1 \leq k \leq l$), also known as k -mers.

314 Each training instance consists of two reads in the edit-erring-READS or error-free-
 315 READS, examples of the training instances can be found in File S1. The features in
 316 reads are extracted using descriptors: (1) Fourier Transformation [17–20], (2)
 317 Shannon’s and Tsallis’s entropy [17,21], and (3) Fickett’s score [22,23]. Specifically,
 318 the features for a pair of reads with one or two base differences in a training instance
 319 may be identical. Therefore, features are only extracted from the absolute correct read
 320 (*i.e.*, the first read in training instances) to avoid redundancy. These feature extraction
 321 methods are depicted in File S1. Additionally, we used the (4) read counts and (5)
 322 characterised the error types and respective motifs as features. For instance, consider
 323 two reads ACATG and ACGTG, the error is a substitution of C with G. Here, C-G is
 324 the error type, and CAT and CGT are the corresponding motifs. Similarly, for two reads
 325 CGTG and ACGTG, the error is an insertion of A, the error type is represented as X-A,
 326 and the motifs are XA and AC. We define and normalise the feature vector V of error
 327 types or motifs as follows

$$V = (v_1, v_2, \dots, v_i, \dots, v_n) \quad (3)$$

$$v_i = \frac{f_i + \delta}{\sum |i|} \quad (4)$$

330 Here, i represents an error type, where $count_i$ refers to the total number of
 331 occurrences of error type i and $\sum |i|$ refers to the total number of all error types
 332 present in the data; δ is a small pre-defined value (e.g., 0.01) assigned to each item to
 333 avoid dividing by zero in cases where a certain error type or motif is not present in the
 334 data.

335 Before training, each type of feature is standardised separately by removing the
336 mean and scaling to the unit variance using the pre-processing method “StandardScaler”
337 of Scikit-learn [24]. To address class imbalance issue in the training data, we used the
338 synthetic minority over-sampling Technique (SMOTE) [25] with sampling performed
339 by Imbalanced-learn [26].

341 *Model optimisation and prediction*

342 XGBoost [12] is a well-established and efficient machine learning algorithm for
343 classification. Optuna [27] is a framework that employs sampling and pruning
344 heuristics to automatically discover optimal hyperparameter settings by conducting
345 multiple trials. We chose XGBoost as our classifier and utilised Optuna to optimise the
346 hyperparameters to achieve fast and accurate predictions.

347 We have pre-set some parameters for the classifier, including the tree method,
 348 regularisation term, number of estimators, and learning rate. A logistic regression was
 349 used to produce the probability for binary classification, and we aimed to maximize the
 350 test accuracy as the objective for selecting the best model via multiple trials (e.g., 20).
 351 For each task, noise2read utilised AutoML to create a new Optuna study object for
 352 training and selecting the best prediction model. For example, we trained and selected
 353 the four best models for predicting 1-nt- and 2-nt-based ambiguous, 1-nt-based high
 354 ambiguous, and amplicon errors.

355 The time complexity of training XGBoost optimised by Optuna in noise2read, using
 356 “hist” or “gpu_hist” tree method, is $O(n_{tasks} \cdot n_{trials} \cdot n_{trees} \cdot n_{samples} \cdot n_{features})$.
 357 Here, n_{tasks} (e.g., 1–4) is the number of tasks, n_{trials} is the number of Optuna trials
 358 (e.g., 10–20) per task, n_{trees} is the pre-set number of trees, $n_{samples}$ is the number of
 359 constructed training samples, and $n_{features}$ is the number of constructed features.

360

361 **Error correction for isolated nodes**

362 After prediction, we restore all the edit-erring-READS to their normal state. We then
 363 adopted a third-party method Bcool [28] to deal with the errors contained in the isolated
 364 nodes, including many singletons, in the 1-nt-edit-distance read graph. However, we
 365 keep only those corrected sequences by Bcool, which present in the original or in the
 366 first round of the corrected dataset without any genuine and ambiguous errors, to
 367 prevent generating non-existing new sequences.

368

369 **Evaluation criteria**

370 *Generation of the gold-standard wet-lab datasets with UMI-based ground truth*

371 In this study, we developed a novel approach for generating ground truth datasets,
 372 motivated by Mitchel’s method presented in literature [29]. One of the differences is
 373 we use the error-corrected Unique Molecular Identifier (UMI) to construct ground truth
 374 datasets. More details of our approach can be found in supplementary methods in File
 375 S2. To ensure validity, credibility and fairness in performance comparison, the UMI-
 376 based ground-truth datasets and evaluation procedures established in the benchmarking
 377 study [29] were also adopted for performance evaluation.

378

379 *Generation of UMI-based simulated datasets*

380 Taking motivations from the simulation approach for generating simulated miRNA
381 sequencing data in [30], we introduced an innovative method to generate UMI-based
382 simulation datasets that can be applied to a broader range of NGS datasets, extending
383 beyond just miRNA sequencing data. The details of simulation process can be found in
384 supplementary methods in File S1.

385 We also employed the simulation process in [30] to generate simulated single-end
386 miRNA sequencing datasets to evaluate the proposed method's performance.
387 Differently, we additionally incorporate mimic UMIs (numbers are used here instead
388 of base sequences) for unique sequences in the generated error-free read set based on
389 the assumption that each unique read corresponds to a UMI to adapt the evaluation
390 framework developed in this study.

391

392 *Evaluation metrics*

393 To accurately evaluate the performance of error correction methods, we propose using
394 confusion matrices at the read-level and base-level to measure changes in reads within
395 the same UMI cluster rather than relying on the sequencing IDs generated by the
396 instruments. The rationale is that for the constructed UMI-based datasets in this study,
397 there is only one unique error-free sequence (of multiple occurrences) in each UMI
398 cluster. Therefore, in a UMI cluster, we only need to compare the edit distance between
399 every other unique read and this error-free read before and after error correction. Then,
400 we can compute the confusion matrix using the relevant read count information before
401 and after correction. More than half of the calculation time was saved this way.
402 Otherwise, if we use the sequencing ID as the index, we must compare the edit distances
403 twice for each group (same sequencing ID) of the raw, error-free, and corrected reads,
404 even if they are the same. The absolute values of the true positives in each dataset are
405 associated with the number of reads rather than the number of UMIs. The total number
406 of positives of the actual condition equals the sum of the True positive and False
407 negative. At the read level, a read is deemed erroneous if even a single base is incorrect.
408 Conversely, a read is considered error-free only when all its bases are correct. TP
409 defines the number of edit-erring reads perfectly modified after correction, and TN is
410 the amounts of error-free reads without any changes after modification. While FP
411 denotes the counts of error-free reads that are incorrectly adjusted by introducing new
412 errors, FN represents the number of unchanged or wrongly fixed edit-erring reads.

413 Similarly, at the base level, TP, TN, FP and FN concerned about the mistaken or
 414 accurate bases changing before and after correction.

415 Additionally, we employ the edit distance changes instead of the multiple sequence
 416 alignment (MLA) strategies used in [29] among raw, authentic and modified reads to
 417 get the confusion conditions as the MLA is highly time-consuming. Another reason is
 418 that MLA has more alternative alignment results since it compares three reads. In
 419 contrast, the edit-distance-based strategy only compares the ground truth read to its raw
 420 or corrected one, respectively. When counting the FN on the base level, we measure the
 421 absolute edit distance difference with the accurate read before and after correction.

422 Then, we derive the True Positive Ratio (TPR, a.k.a. recall or sensitivity), False
 423 Negative Ratio (FNR), True Negative Ratio (TNR), False Positive Ratio (FPR, a.k.a.
 424 fall-out), precision, gain and accuracy from the confusion matrix. TPR and FNR are the
 425 ratio of the number of edit-erring reads or bases correctly rectified and wrongly kept as
 426 negatives to the total number of actual edit-erring reads or bases, respectively. TNR and
 427 FPR are defined as the ratio of the number of error-free reads or bases correctly kept as
 428 negatives and wrongly rectified to the total number of actual error-free reads or bases,
 429 respectively. From the information theory perspective, TPR is the ratio of noise turning
 430 to signal; in contrast, FNR is the unconverted ratio of noise to signal. While FPR is the
 431 percentage of new noise introduced, TNR is the ratio of the original signal preserved.

$$432 \quad TPR = \frac{TP}{TP + TN} \quad (5)$$

$$433 \quad FNR = \frac{FN}{TP + FN} \quad (6)$$

$$434 \quad TNR = \frac{TN}{FP + TN} \quad (7)$$

$$435 \quad FPR = \frac{FP}{FP + TN} \quad (8)$$

436 An ideal performance should achieve high TPR and TNR while keeping FNR and
 437 FPR low. Therefore, we can construct a cross-coordinate system where derived scores
 438 from the confusion matrix are assigned to each of the four directions. The four index
 439 values of TPR in the upper axis, FPR in the lower axis, TNR in the right axis and FNR
 440 in the left axis form a rectangle. The larger the overlapping area between the rectangle
 441 and the upper right quadrant, the better the performance. Therefore, we define a
 442 quantitative metric of the overlapping Area Difference (AD) to assess the performance
 443 as follows,

444 $AD = TPR \cdot TNR - TPR \cdot FNR - FNR \cdot FPR - FPR \cdot TNR$ (9)

445 Moreover, we also calculate the Precision, Positive Gain and Accuracy denoted as
 446 follows to evaluate the correction performance at read-level or base-level. Precision
 447 evaluates the ratio of precise modifications among all the completed corrections and all
 448 the errors, while Positive Gain indicates the positive effect among all the real errors.
 449 The accuracy is the proportion of accurate modifications, including true positives and
 450 negatives, to the total number of reads or bases concerned.

451 $Precision = \frac{TP}{TP + FP}$ (10)

452 $Positive\ Gain = \frac{TP - FP}{TP + FN}$ (11)

453 $Accuracy = \frac{TP + TN}{TP + TN + FP + FN}$ (12)

454 Furthermore, based on the read-level definition for the dataset of known ground
 455 truth, we classify reads into two categories: edit-erring and error-free. Then we measure
 456 the purity of the dataset using entropy defined as

457 $E = -p \cdot \log_2 p - (1 - p) \cdot \log_2(1 - p)$ (13)

458 where p is the probability of randomly selecting one error-prone or error-free read
 459 from all sequences. The lower the dataset entropy, the fewer edit-erring reads exist in
 460 the dataset.

461

462 Results

463 To assess the performance of noise2read, we generated UMI-based ground-truth and
 464 simulated datasets based on the methods developed in this study and literature [29,30].
 465 After evaluating the performance of noise2read, we conducted case studies on
 466 abundance change of viral reference genomes, isoform identification, single nucleotide
 467 polymorphism (SNP) profiling, and genome base editing efficiency estimation to assess
 468 the impact of noise2read's error correction on downstream applications. The flowchart
 469 illustrated in **Figure 5** outlines the analytical framework and key concepts in this study.
 470 As a result, we used 39 datasets generated in this study or from third-party studies to
 471 evaluate noise2read. Datasets $D1 - D8$ are UMI-based ground-truth datasets derived
 472 from eight real sequencing runs SRR1543964–SRR1543971 using a UMI-contained
 473 high-fidelity sequencing technique (a.k.a. safe-SeqS) [29,31]. $D9 - D13$ are simulated
 474 datasets with mimic UMIs based on actual sequencing data (with read lengths of 75 bp,

475 101 bp and 150 bp). *D14 – D17* are four single-end miRNA datasets generated using
476 the simulation procedure proposed in miREC [30] and an additional step of mimicking
477 UMIs to these datasets. The eight UMI-based ground-truth datasets [29] were labelled
478 as *D18 – D25* in this study. *D26 – D37* are one paired-end and ten single-end
479 sequencing datasets used for case studies. Detailed information about these datasets
480 *D1 – D39* can be found in Table S1.

481 Comparing with state-of-the-art methods including *k*-mer-methods [32–38],
482 multiple sequence alignment based methods [39–43], and other methods [28,30,44],
483 our noise2read consistently outperforms under 19 metrics on eight UMI-based wet-lab
484 datasets and five simulated single-end and paired-end datasets constructed in this study.
485 It also has superior performance on eight UMI-based wet-lab datasets and four
486 simulated miRNA datasets established previously in published literature. Moreover,
487 case studies on abundance change of viral reference genomes, isoform identification
488 and SNP profiling, and genome base editing efficiency estimation revealed that
489 noise2read can make substantial impacts on downstream applications. The versions of
490 noise2read and other methods, along with the corresponding commands and parameters
491 used in the experiments, are provided in File S2.

492

493 **High prevalence of erroneous reads containing one or two base errors from UMI- 494 based cluster and distribution analysis**

495 We utilised the sequence information of UMI tags to investigate the distributions of
496 erroneous reads that contain different numbers of base errors. Specifically, we divided
497 the reads in a UMI group into high-frequency reads and low-frequency reads. Then, we
498 calculated the edit distance between each unique low-frequency read and each unique
499 high-frequency read. Then, each of the unique low-frequency read has the smallest edit
500 distance with the set of unique high-frequency reads. Given each of these smallest
501 distances, we record the number of low-frequency sequences that have this edit distance
502 with the set of high-frequency reads.

503 We applied the above process to the datasets of SRR1543964–SRR1543971 by
504 defining a high-frequency read as a read with a copy count no less than five (note:
505 clusters with ambiguous base “N” in the UMI sequence are not included in this analysis).
506 We observed that there exist two different high-frequency sequences that have been
507 tagged with the same UMI, as similarly reported in the literature [45]. For instance, as

508 seen in Figure S2, each of these UMI clusters has two high-frequency reads, between
 509 which the edit distance is larger than 100 (111 or 129 respectively), demonstrating that
 510 such two high-frequency reads within the same UMI cluster should be originated from
 511 two different molecules, although they were tagged with the same UMI.

512 Moreover, there exist big editing distances (e.g., 116) between high and low-
 513 frequency reads within the same UMI cluster, it would be unreasonable to assume only
 514 base-editing-error-relationship between all the low and high frequency reads. In fact, a
 515 low-frequency sequence with a small edit distance to a high-frequency read is more
 516 likely caused by PCR or sequencing errors. Here, we assume that those low frequency
 517 reads with an edit distance ≤ 4 may be erroneous reads caused by PCR or sequencing
 518 errors. In this context, among these eight data sets, at least 60% of the erroneous reads
 519 in 95.21%–96.70% of the UMI clusters are caused by 1 or 2 base errors, as depicted in
 520 the stacked bar chart in Figure S3. Five more UMI clusters are shown in Figure S4:
 521 81.25%, 95.24%, 100%, 94.73% and 100% of low-frequency reads have the 1 and 2
 522 base differences with the set of high-frequency reads in the same UMI cluster. These
 523 findings indicate that those erroneous reads containing one mistaken base or two
 524 constitute a more significant proportion of the total erroneous reads in the dataset. Based
 525 on our theoretical analysis and UMI cluster analysis, the proposed algorithm,
 526 noise2read, is set to correct erroneous reads containing base errors < 3 .

527

528 Entropy reduction and information gain after error correction

529 The error correction effect or the noise/uncertainty reduction by an error correction
 530 method in a dataset can be measured by Shannon's entropy and information gain. For
 531 a read dataset R , its Shannon entropy H is given by

$$532 \quad H = - \sum_{r \in R} p_r \cdot \log_2 p_r \quad (14)$$

533 where p_r is the percentage frequency of r in R .

534 An ideal correction should eliminate all the errors/noises in the dataset while not
 535 introducing any new errors, or new sequences. Therefore, the entropy $H'(R')$ of a
 536 corrected read dataset R' should consist of two parts: one is about the original reads,
 537 the other is about the wrongly introduced reads. We define $H'(R')$ as

$$538 \quad H'(R') = H'(R' \cap R) + H'(R' - R) \quad (15)$$

$$539 \quad H'(R' \cap R) = - \sum_{r \in \{R' \cap R\}} p_r \cdot \log_2 p_r \quad (16)$$

540

$$H'(R' - R) = - \sum_{r' \in \{R' - R\}} p_{r'} \cdot \log_2 p_{r'} \quad (17)$$

541 Information gain reflects the amount of information gained from the original state
 542 of the reads after the error correction, defined as

543 $\Delta I(R'; R) = H(R) - H'(R') = H(R) - H'(R' \cap R) - H'(R' - R) \quad (18)$

544 The fewer unique reads are in a dataset, the less uncertainty, and the entropy will
 545 decrease after mistaken bases are corrected. To see the error correction effect on the
 546 data quality improvement, we propose to visualise the information change via a
 547 heatmap of taking items of ΔI as minor rectangular points and marking the wrongly
 548 introduced sequences as noises red dots. A visualization of ΔI for $D1$ is shown in
 549 **Figure 6** and those for $D2 - D8$ are presented at Figures S5–S11. The primary colour
 550 of the heatmaps close to zero strongly suggests that the correction conserves the original
 551 high-frequency information by all the methods. The negative and positive scores on the
 552 colour bar describe the information gain and loss, respectively. As shown in Figure 6,
 553 noise2read is better than the other methods to reduce noise level as there is nearly no
 554 score > 0 . Those red points depict information loss brought by wrongly introduced new
 555 sequences, leading to new errors to increase false positives and negatives. Noise2read
 556 does not yield any non-existing reads, and the colour in Figure 6B darker than that in
 557 Figure 6A implies that noise2read has more information gained from the additional
 558 amplicon sequencing correction.

559 Moreover, to intuitively quantify the information gain or loss, we considered the
 560 changes only in low-frequency sequences before and after error correction. We denote
 561 the frequent reads as a subset FR_τ of R , and we calculate the entropy by removing
 562 FR_τ from R or R' . Then, we focus on the entropy change given by

563 $\Delta H = H(R - FR_\tau) - H'(R' - FR_\tau) \quad (19)$

564 where τ is a threshold for defining high frequency reads, $H(R - FR_\tau)$ and $H'(R' -$
 565 $FR_\tau)$ represent the non-frequent reads' entropy before and after correction,
 566 respectively.

567 We calculated the entropy change ΔH for the sequencing datasets $D1 - D8$ and
 568 five simulated datasets $D9 - D13$ after error correction (details shown in **Table 1**).
 569 noise2read achieves the most considerable information gain on all these datasets.
 570 Specifically, the increased information by noise2read on the simulation datasets

571 outperforms the other methods. The extensive information gain is because noise2read
 572 can rectify almost all the errors in the simulated datasets.

573

574 **Performance comparison on UMI-contained sequencing datasets established in
 575 this study**

576 We evaluated the performance of noise2read in comparison with seven other
 577 computational error correction methods at both the base-level and read-level under
 578 various metrics, including TPR, TNR, FPR, FNR, AD, Precision, Positive Gain,
 579 Accuracy, and Purity Entropy on UMI-based ground truth data $D1 - D8$.

580 The comparative performance with the seven methods Coral [39], RACER [33],
 581 Fiona [40], Lighter [34], Pollux [36], Bcool [28], and Care [42,43] are summarized in
 582 **Figure 7A** for $D1$ and those in Figures S12 and S13 for $D2 - D8$. Tables S2–S9 are
 583 provided to further supplement the results. Our method noise2read has achieved the
 584 best performance on all the datasets under all the metrics.

585 The high-TPR and low-FNR performance indicate that noise2read can turn most
 586 noise while leaving the lowest number of actual noises as signals; The high TNR
 587 illustrates that noise2read can introduce fewer new errors by preserving most signals
 588 unchanged, while the low FPR suggests that noise2read introduces none or few new
 589 noises without bringing up any non-existing sequences after the correction process. In
 590 detail, noise2read surpassed all the other methods on $D1$, achieving a score 0.924
 591 higher than the second-best method RACER which has a score of 0.859. Notably,
 592 noise2read exhibited exceptional performance in Recall, Precision, Positive Gain,
 593 Accuracy, and Purity Entropy, as evidenced by the values in **Table 2**. The positive gain
 594 percentage of noise2read is 7.26% and 48.15% higher than RACER and Care.
 595 noise2read and its amplicon mode achieved the finest purity entropy of 0.05 and 0.077,
 596 sounder than the second-best method RACER which has a score of 0.110.

597 The progressive process gradually converts noise into signals; for example, in Table
 598 2, the 1st, 2nd and 3rd stages convert 72.9% (81,630), 93.2% (104,373), and 96.2%
 599 (107,717) of the errors into signals on $D1$, respectively. Noise2read is mainly designed
 600 for any short-read sequencing data whenever PCR is involved. Without the 3rd step, it
 601 also achieves sound performance (refer to Tables S2–S9) by restoring most erroneous
 602 reads into their normal states and not introducing false positive reads. The 3rd step for
 603 further correction on amplicon sequencing data maintains fewer original error-free

604 reads than the second stage and correspondingly introduces more noise but not new
605 sequences. RACER can rectify 93.4% of the noise but newly introduces almost 22 times
606 the number of new errors compared to our method. Care newly introduces 52 false
607 positives but can only correct 64.9% of the erroneous reads. The other methods can
608 only correct less than 65% of the errors but simultaneously give rise to thousands of
609 new mistakes.

610

611 **Performance on simulated short-read datasets and those with artificially modified 612 bases**

613 Error correction performances on the simulated ground truth are shown in Figure 7B–
614 L, Figure S14 and Table S10 for dataset *D9* and Figures S15–S22 and Tables S11–S14
615 for datasets *D10 – D13*. Noise2read super outperforms the other methods under all the
616 metrics on all the simulated datasets. Specifically, for the *AD* performance, noise2read
617 (0.989) has 39.3%, 61.9% and 123.3% higher performance than that of Lighter (0.71),
618 Care (0.611) and Fiona (0.443) (Figure 7B). Noise2read reaches the best precision, gain
619 and accuracy and achieves a substantial positive gain (Figure 7C). As shown in Figure
620 7D, noise2read is the only method significantly decreasing the purity Entropy after
621 correction. Information gain visualisations in Figure 7E–L indicate the information is
622 still dominated by most of the original signal after correction. All the other methods
623 wrongly introduced new sequences (in a number of 164 to 9698) after correction. The
624 other methods' performance fluctuates widely. For instance, at the read level, the
625 performance ranking of the top three methods in terms of *AD* on dataset *D9* (Figure
626 7B) is Lighter, Care and Fiona. However, the performance ranking is Fiona, Care, and
627 Coral on *D10* (Figure S15), and Lighter, Fiona and Care (Figure S17) on *D12*.

628

629 **Performance evaluation using previously established simulated miRNA 630 sequencing datasets**

631 Comparison results between noise2read (with or without high-frequency ambiguous
632 error prediction) and miREC are shown in **Table 3** and Table S15. Noise2read can
633 rectify more errors than miREC, achieving more TP and less FN after correction. The
634 miREC method and noise2read can achieve similar, reasonably good results in accuracy,
635 precision and fall-out (Table S15). However, from the recall, Positive Gain, purity

636 Entropy (E) and information gain ΔH performance on all four datasets, noise2read is
 637 better than miREC.

638

639 **Performance evaluation using independently established UMI-based benchmarks**

640 **Table 4** shows the comparative performance of noise2read on D_{25} in comparison with
 641 Bless [37], Coral [39], Lighter [34], Reckoner [38], Sga [44], BFC [35], Pollux [36],
 642 Fiona [40], RACER [33], and Care [42,43]. The comparison results on $D_{18} - D_{25}$
 643 (see Tables S16 and S17) highlight that noise2read consistently achieved the highest
 644 number of true positives on all these datasets, except for Fiona’s TP on D_{25} , which is
 645 slightly bigger than noise2read. Importantly, noise2read demonstrates the lowest count
 646 of false positives among all these datasets. noise2read performs exceptionally good in
 647 Precision, Accuracy, AD and Positive Gain on all the eight benchmark datasets.

648

649 **Runtime and memory consumption**

650 We compared CPU runtime and peak memory used by noise2read with those by Care
 651 [42,43], RACER [33], Bcool [28], Pollux [36], Lighter [34], Fiona [40], and Coral [39]
 652 on data sets $D_1 - D_8$. We executed all the programs on an Intel(R) Xeon(R) Gold
 653 6238R CPU clocked at 2.20GHz, leveraging 56 CPU cores for parallel computing. For
 654 the model training of noise2read, a single Tesla V100S-PCIE-32GB GPU was
 655 employed. To gauge memory usage across all the programs, we used the library psutil
 656 (<https://github.com/giampaolo/psutil>). These runtime and memory consumption
 657 comparisons are presented **Table 5**.

658 Lighter and Care exhibited fast speeds, completing corrections within a minute by
 659 taking a small amount of memory consumption for each of the 8 data sets. On the other
 660 hand, Pollux had the slowest speed due to its inability to run in parallel. Noise2read
 661 spent the second-highest memory consumption and made the second-slowest speed.
 662 (We do not suggest using many multiprocessing processes for noise2read to run, as we
 663 have observed that those situations could suddenly consume a significant amount of
 664 memory, and the program ran out of memory and terminated.)

665 The separate time consumption by noise2read at its different stages as recorded in
 666 the built-in log files across all datasets $D_1 - D_{39}$ are presented in Table S18. It can be
 667 observed that a significant amount of time was spent on tasks such as constructing “2-
 668 nt-edit-distance read graphs”, “performing feature extraction”, and “model training”.

669 To shorten the running time on large data sets, it is suggested to choose a smaller
670 number of negative samples and set a smaller number of trials (*e.g.*, 20) for the
671 construction of suboptimal models. Additionally, opting not to predict errors within
672 high-frequency reads will also save noise2read a substantial amount of time and
673 memory usage but fortunately without much performance sacrifice on error correction.
674 We note that although noise2read is slow, it never introduces any non-existing reads
675 into the datasets. This is a unique merit in all current sequencing error correction
676 methods.

677 While the speed of error correction is undeniably a crucial factor in evaluating the
678 performance of a correction method, an even more critical consideration is whether the
679 method introduces new errors. A fast error-introducing method damages the quality of
680 the whole dataset and may become unexpectedly harmful to downstream data analysis,
681 although its fast speed is advantageous in the preprocessing error correction stage. Our
682 method does not have this speed advantage so far, but it never introduces new errors,
683 guaranteeing the integrity of the datasets. In future work, we consider efficiency tricks
684 to improve the speed of feature extraction and machine learning.

685

686 **Error correction increases Monkeypox virus genome abundance by 52.12%**

687 The Monkeypox virus has severely affected the health of human beings and its
688 reference genome sequence has been extensively utilised to understand the origin and
689 phylogeny, and as a fundamental framework for the design of mRNA vaccines. We
690 investigate how much abundance is changed for the reference genome after our
691 algorithm noise2read rectifies the base errors contained in the short-read sequencing
692 data. The study will help understand the within-host viral mutants of the reference
693 genome and the abundance compositions.

694 We used the paired-end whole-genome sequencing dataset SRR22085311 (its
695 paired R1 and R2 denoted as *D*26 and *D*27 here) and the reference genome
696 GCA_025947495.1 [46]. Our noise2read rectified a huge number of erroneous reads in
697 *D*26 (400,622 out of 3,599,812 reads, *i.e.*, 11.13%), and another huge number of
698 erroneous reads in *D*27 (456,242 out of 3,599,812 reads, *i.e.*, 12.67%). **Figure 8A**
699 presents a coverage comparison chart before and after the error correction, alongside a
700 coverage difference chart (Figure 8B), where the average base coverage of the reference
701 genome is increased by 52.12% from depth 1216.75 to 1850.95 after a huge number of

651,410 reads were retrieved to perfectly align with the genome. The frequency distribution of the base coverage differences as another angle viewing the abundance change for the Monkeypox virus is presented in (Figure 8C), where the abundant and perfectly matched reads aligned to the genome are highlighted again. Especially, those positive shifts towards a higher coverage (Figure 8B and C) confirm much more about the ground truth of the known reference genome and the detection of possible new variants of the genome.

The substantial changes in genome abundance for Monkeypox after error correction prompt a revaluation of genome sequences and how we detect new variants. Although this alignment-based analysis focused on viral data, our method has broader applications, as it effectively corrects errors in PCR amplified short-read sequencing without introducing non-existent reads, while preserving data integrity. Since reference genome alignment is a widely used strategy in bioinformatics, our findings suggest that noise2read can enhance the accuracy and conclusions of alignment-based studies across a wide range of organisms and datasets.

717

718 **Accurate error correction improves detection of isomiRs and refines SNPs 719 profiling**

MicroRNAs (miRNAs), non-coding RNA molecules approximately 22 nt, can modulate gene expression post-transcriptionally through the silencing and decay of target mRNAs [47]. Dysregulation of miRNAs plays crucial roles in many biological mechanisms, and it is also a main reason in cancer and autoimmune disorders [48,49]. By miRNA sequencing, various types of isoforms (*i.e.*, isomiRs) have been detected [50]. However, whether the base differences found in the isomiRs are actual biological variations or synthetic artefacts due to the PCR or sequencing errors or both is difficult to judge. Here, we study how our error correction changes the identification and quantification of isomiRs from short RNA-seq datasets and how it refines the profiling of known SNPs in isomiRs.

We downloaded ten single-end small RNA-sequencing datasets of lymphoblastoid cell lines from five population groups in the 1000 Genomes Project [51]. These datasets (denoted as *D*28 – *D*37 here) were cleaned by removing the adapter sequences via cutadapt [52]. We used IsoMiRmap [53] under the setting of pre-defined miRNA reference sets from the database miRbase (v22) [54] as a “miR-space” to quantify known isomiRs and SNPs for *D*28 – *D*37 before and after our sequencing error

736 correction. IsoMiRmap tags an identified isomiR as an exclusive isomiR if it only exists
737 in the miR-space with one or more occurrences but not elsewhere in the human
738 reference genome, otherwise recognized as an ambiguous isomiR.

739 These quantification results are summarised in **Table 6**. The number of unique
740 ambiguous isomiRs is decreased by 24.12%–31.75% or in numbers from 151 to 245,
741 but their total counts are increased by a number between 160 and 640 among the ten
742 datasets after the error correction; the number of exclusive isomiRs is decreased by
743 34.46%–37.48% but their total counts are increased by a number between 5095 and
744 14,441. These results suggest that some previously identified isomiRs are artifacts
745 containing sequencing errors rather than natural isoforms. On the other hand, for the
746 profiling of the known SNPs, the number of unique SNPs decreased by 34.13%–
747 59.09%, and their counts also decreased by 4.40%–35.56% except for two increased by
748 1.41% and 1.61% respectively. This observation unveils that some of the previously
749 annotated SNPs are sequencing errors. Similar quantitative and qualitative changes
750 observed in the profiling of these known SNPs in the isomiRs distinguishing true SNPs
751 from sequencing errors enable more accurate annotation of SNPs. The significant
752 change of the isomiRs quantification after correction is because an average of 235,146
753 (2.62%) sequences were corrected by noise2read in the ten datasets (Table 6).

754 To understand more about the frequency change of isomiRs and SNPs, we
755 categorised the isomiRs according to their original miRNAs, then we utilised scatter
756 graphs with Kepler plots to understand the associations between the number of identical
757 isomiRs and total isomiRs' count (\log_{10} transformation) before and after the error
758 correction of the sequencing reads. The leftward shift on the x-axis (**Figure 9A** and B
759 for exclusive isomiRs of *D28* and *D29*, respectively, Figure 9C and D for ambiguous
760 isomiRs and known SNPs of *D28*, and Figures S23–S25 for the other miRNA datasets)
761 indicates a reduction of the count of unique isomiRs, while the upward change on the
762 y-axis indicates an increase in authentic isomiRs. These significant changes in isomiRs
763 and SNPs highlight the importance of correction for accurately characterizing isomiR
764 and SNP profiles, making contributions to the annotation of isomiRNome.

765

766 **Accurate error correction significantly improves ABE/CBE editing outcomes**

767 Base editing is a new genome editing technique that uses CRISPR systems and enzymes
768 to introduce point mutations into cellular DNA or RNA for modelling and

769 understanding genetic diseases [55,56]. However, deciding whether a nucleotide
770 position is exactly editable in a genomic context is inefficient by wet-lab experiments,
771 and the base editors may yield many unexpected genotypic output sequences when the
772 editable window covers multiple target nucleotides. Deep-learning-based prediction
773 tools have been developed to predict the base-editing efficiency and outcome-sequence
774 copy numbers from Adenine and cytosine base editors (ABEs and CBEs) [57]. The
775 training data used by these prediction tools are extracted from short-read DNA/RNA
776 sequencing data. Here, we investigate how much the number of unique reads (unique
777 outcome sequences) changes after our sequencing error correction.

778 We removed those records in which the target sequence has only one outcome
779 sequence from the training data of HT_ABE_Train and HT_CBE_Train used in the
780 literature [57]. Then, we cleaned them to form two datasets (denoted by *D*38 for ABEs
781 and *D*39 for CBEs here), and applied noise2read to *D*38 and *D*39 separately. As a
782 result, the number of unique outcome sequences in *D*38 is reduced by 2309 from
783 28,892 to 26,583 (7.99%), and the number of unique outcome sequences in *D*39 is
784 reduced by 5042 from 27,312 to 22,270 (18.46%). The number reduction of unique
785 outcome sequences is because some low-frequency reads are not a result of base editing
786 but due to sequencing errors. In total, noise2read recognised 5109 erroneous reads in
787 the ABE dataset and 10,271 erroneous reads in the CBE dataset and turned all of them
788 into normal states. This error correction has significantly improved the quality of the
789 training data that would be very helpful for enhancing the prediction of base editing
790 efficiencies.

791

792 **Discussion**

793 A long-standing problem in sequencing data analysis is how to reduce sequencing base
794 errors and erroneous reads as much as possible before any downstream applications.
795 Existing short reads correction methods utilize biochemical-based experimental designs
796 such as unique molecular identifiers (UMIs) to count and track molecules [10], or take
797 computational methods including *k* -mer-methods [32–38], multiple sequence
798 alignment based methods [39–43], and other methods [28,30,44]. One limit of the UMI-
799 based strategies is that errors/mutations can also happen at UMIs. Serious concern about
800 the computational methods is that they have significantly overcorrected reads by
801 introducing pseudo new sequences or shifting one type of error into another, often

802 leaving numerous reads uncorrected. Some of these methods only focus on restoring
803 substitution mistakes but do not support indels' correction. Besides, instance-based
804 methods such as miREC [30] were designed to handle specific sequencing data type
805 miRNA sequencing reads. And it assumes that frequent sequences contain no mistakes,
806 thus it cannot be used to correct potential errors between high-frequency reads or cannot
807 deal with those singletons with no relationships to the high-frequency reads.

808 Following the principle of the PCR erring incidents and sequencing process, we
809 constructed special graphs of short reads to capture the relationships between edit-
810 erring and error-free reads. Through novel modelling of the errors between high-
811 frequency reads and their high- or low-frequency neighbours as a classification problem,
812 we have successfully predicted almost all the errors using machine learning techniques.
813 Validation experiments on the UMI-based wet lab and simulated datasets of known
814 ground truth have demonstrated that the proposed noise2read algorithm can eliminate
815 most of the PCR and sequencing errors without introducing any non-existing sequences
816 into the read set.

817 Moreover, we investigated the impact of error-corrected data on downstream data
818 applications. We have found that: (1) The abundance level change of the reference
819 genome of Monkeypox virus after the sequencing error correction is remarkable, which
820 may allow us to rethink how to get a precise genome sequence for the virus; (2) For the
821 isomiRs and SNPs profiling, the counts of some isomiRs and SNPs are decreased while
822 some others are increased, which is of great significance to identifying actual isomiRs
823 and SNPs and re-annotating the isomiRNome. (3) Both ABE and CBE should have
824 higher base editing efficiency than currently estimated. The accurate and higher base
825 editing efficiency with correct preprocessing may improve the original deep-learning
826 prediction accuracy. Altogether, these observations and advantages lay down strong
827 evidence to question the accuracies of current downstream research outcomes and open
828 new avenues to conduct downstream analysis whenever short-read data are adopted. In
829 addition to the significant impact demonstrated across the three case studies, our
830 algorithm holds broader potential for applications in cutting-edge research areas that
831 rely on short-read sequencing data. These include advanced research fields such as
832 genomics, epigenomics, infectious disease diagnostics [58,59], low-frequency mutation
833 or rare mutation detection [60], and virus detection [61]. Additionally, a recent study
834 [62] has already highlighted the potential advantages of using error-corrected NGS in
835 assessing off-target effects of gene therapies, enhancing carcinogenicity assessment and

836 advancing genetic toxicology and underscored the potential application of error-
837 corrected NGS for human cancer risk assessment and genetic toxicology testing. We
838 recommend that researchers employ our method to conduct sensitivity analyses based
839 on raw and error corrected short read sequencing data in their cutting-edge studies.

840 A small edit distance such as 1 or 2 is currently used to define the edges of $rG(R)$.
841 When the edit distance threshold $Emax$ is enlarged, more edges will be created for
842 $rG(R)$ and possibly more erroneous reads will be identified. The trade-off is that the
843 computational complexity of constructing these new edges is exponential while newly
844 identified erroneous reads become less and less when $Emax$ increase. In fact, these
845 erroneous reads constitute an extremely small percentage (< 0.16%) of the total
846 erroneous reads in theory. In future work, we will test the computational complexity
847 when $Emax$ is set as 3 and explore how to change the correction steps. Additionally,
848 the optimal value of the parameter τ may vary across different sequencing platforms,
849 applications, and experimental conditions. Conducting wet-lab experiments using
850 synthetic sequencing is a more effective strategy for assessing the adaptability of τ in
851 various settings. In our future work, we will design and conduct experiments to further
852 investigate the optimal τ under different experimental conditions.

853 The speed and memory usage of noise2read still needs improvement, especially the
854 parts for building the 1-nt- and 2-nt-edit-distance read graphs and AutoML training for
855 prediction. The easy-usable and automatic tuning of the classifiers' parameters
856 facilitates wide-range explorations, but we note that noise2read may yield a slightly
857 different result at different trials, even setting the same seeds. We also note that
858 noise2read will derive more false positives when dealing with errors between high
859 frequency reads of extremely short length (*e.g.*, < 30 bp). This limit may be overcome
860 by extracting more or fewer features from the reads. Furthermore, we already attempted
861 using deep learning architecture (*e.g.*, CNN and LSTM) to detect the errors, but a better
862 performance was not achieved than by current noise2read. To elevate noise2read from
863 a good tool to an exceptional one, we plan to explore novel feature representations for
864 short reads and incorporate attention-based deep learning models in future work.
865 Additionally, noise2read operates independently of sequencing quality scores, allowing
866 it to address errors across various sequencing platforms and conditions. However, we
867 acknowledge that incorporating quality scores may further improve the accuracy of our

868 correction procedure. As part of our future work, we also plan to explore integrating
869 quality scores as an additional feature to enhance the correction process.

870

871 **Code availability**

872 The algorithm, noise2read, developed in this study is packaged and released on the
873 Python Package Index (PyPI) at <https://pypi.org/project/noise2read/> and Bioconda at
874 <https://anaconda.org/bioconda/noise2read> with source code publicly available at
875 <https://github.com/JappyPing/noise2read> and documentation publicly available at
876 <https://noise2read.readthedocs.io/en/latest/>. The code has also been submitted to
877 BioCode at the National Genomics Data Center (NGDC), China National Center for
878 Bioinformation (CNCB) (BioCode: BT007951), which is publicly accessible at
879 <https://ngdc.cncb.ac.cn/biocode/tools/BT007951>.

880

881 **Data availability**

882 No new raw sequencing data were generated in this study.

883

884 **CRediT author statement**

885 **Pengyao Ping:** Conceptualization, Data curation, Formal analysis, Investigation,
886 Methodology, Resources, Software, Validation, Visualization, Writing – original draft
887 preparation, Writing – review & editing. **Shuquan Su:** Formal analysis, Methodology,
888 Visualization. **Xinhui Cai:** Data curation, Formal analysis, Visualization. **Tian Lan:**
889 Formal analysis, Methodology. **Xuan Zhang:** Conceptualization, Data curation,
890 Formal analysis, Investigation, Methodology. **Hui Peng:** Data curation, Formal
891 analysis. **Yi Pan:** Resources, Writing – review & editing. **Wei Liu:** Supervision,
892 Resources, Writing – review & editing. **Jinyan Li:** Conceptualization, Formal analysis,
893 Funding acquisition, Methodology, Project administration, Resources, Supervision,
894 Writing – original draft preparation, Writing – review & editing. All authors have read
895 and approved the final manuscript.

896

897 **Competing interests**

898 The authors declare that they have no competing financial interests.

899

900 **Acknowledgments**

901 We would like to thank the computational resources provided by the University of
 902 Technology Sydney eResearch High-Performance Computer Facilities.

903

904 **Supplementary material**

905 Supplementary material is available at *Genomics, Proteomics & Bioinformatics* online
 906 (<https://doi.org/10.1093/gpbjnl/XXXX>).

907

908 **ORCID**

909 0000-0002-1829-3273 (Pengyao Ping)
 910 0000-0003-3957-6325 (Shuquan Su)
 911 0009-0002-7590-172x (Xinhui Cai)
 912 0009-0008-8714-2744 (Tian Lan)
 913 0000-0002-3089-9809 (Xuan Zhang)
 914 0000-0002-5137-1827 (Hui Peng)
 915 0000-0002-2766-3096 (Yi Pan)
 916 0000-0002-3003-1313 (Wei Liu)
 917 0000-0003-1833-7413 (Jinyan Li)

918

919 **References**

920 [1] Shendure J, Balasubramanian S, Church GM, Gilbert W, Rogers J, Schloss JA, et
 921 al. DNA sequencing at 40: past, present and future. *Nature* 2017;550:345–53.

922 [2] Kukurba KR, Montgomery SB. RNA sequencing and analysis. *Cold Spring Harb
 923 Protoc* 2015;2015:951–69.

924 [3] McCombie WR, McPherson JD, Mardis ER. Next-generation sequencing
 925 technologies. *Cold Spring Harb Perspect Med* 2019;9:a036798.

926 [4] Ross MG, Russ C, Costello M, Hollinger A, Lennon NJ, Hegarty R, et al.
 927 Characterizing and measuring bias in sequence data. *Genome Biol* 2013;14:R51.

928 [5] Ma X, Shao Y, Tian L, Flasch DA, Mulder HL, Edmonson MN, et al. Analysis of
 929 error profiles in deep next-generation sequencing data. *Genome Biol* 2019;20:50.

930 [6] Freedman AH, Clamp M, Sackton TB. Error, noise and bias in *de novo*
 931 transcriptome assemblies. *Mol Ecol Resour* 2021;21:18–29.

932 [7] Ma KY, Schonnesen AA, He C, Xia AY, Sun E, Chen E, et al. High-throughput
 933 and high-dimensional single-cell analysis of antigen-specific CD8+ T cells. *Nat
 934 Immunol* 2021;22:1590–8.

935 [8] Kebschull JM, Zador AM. Sources of PCR-induced distortions in high-throughput
 936 sequencing data sets. *Nucleic Acids Res* 2015;43:e143.

937 [9] Bentley DR, Balasubramanian S, Swerdlow HP, Smith GP, Milton J, Brown CG,
938 et al. Accurate whole human genome sequencing using reversible terminator
939 chemistry. *Nature* 2008;456:53–9.

940 [10] Marx V. How to deduplicate PCR. *Nat Methods* 2017;14:473–6.

941 [11] Kivioja T, Vähärautio A, Karlsson K, Bonke M, Enge M, Linnarsson S, et al.
942 Counting absolute numbers of molecules using unique molecular identifiers. *Nat
943 Methods* 2012;9:72–4.

944 [12] Chen T, Guestrin C. XGBoost: a scalable tree boosting system. *Proc 22nd ACM
945 SIGKDD Int Conf Knowl Discov Data Min.* New York: Association for
946 Computing Machinery; 2016, p. 785–94.

947 [13] Schirmer M, Ijaz UZ, D’Amore R, Hall N, Sloan WT, Quince C. Insight into
948 biases and sequencing errors for amplicon sequencing with the Illumina MiSeq
949 platform. *Nucleic Acids Res* 2015;43:e37.

950 [14] Metzker ML. Sequencing technologies — the next generation. *Nat Rev Genet*
951 2010;11:31–46.

952 [15] F. Löchel H, Heider D. Comparative analyses of error handling strategies for next-
953 generation sequencing in precision medicine. *Sci Rep* 2020;10:5750.

954 [16] Hagberg AA, Schult DA, Swart PJ. Exploring network structure, dynamics, and
955 function using NetworkX. In: Varoquaux G, Vaught T, Millman J, editors. *Proc
956 7th Python Sci Conf.* Pasadena; 2008, p. 11–5.

957 [17] Bonidia RP, Domingues DS, Sanches DS, de Carvalho ACPLF. MathFeature:
958 feature extraction package for DNA, RNA and protein sequences based on
959 mathematical descriptors. *Brief Bioinform* 2022;23:bbab434.

960 [18] Holden T, Subramaniam R, Sullivan R, Cheung E, Schneider C, Tremberger Jr.
961 G, et al. ATCG nucleotide fluctuation of *Deinococcus radiodurans* radiation
962 genes. *Instruments, Methods, and Missions for Astrobiology X.* SPIE; 2007, p.
963 402–11.

964 [19] Anastassiou D. Genomic signal processing. *IEEE Signal Process Mag* 2001;18:8–
965 20.

966 [20] Marsella L, Sirocco F, Trovato A, Seno F, Tosatto SCE. REPETITA: detection
967 and discrimination of the periodicity of protein solenoid repeats by discrete
968 Fourier transform. *Bioinformatics* 2009;25:i289–95.

969 [21] Bonidia RP, Sampaio LDH, Domingues DS, Paschoal AR, Lopes FM, de
970 Carvalho ACPLF, et al. Feature extraction approaches for biological sequences: a
971 comparative study of mathematical features. *Brief Bioinform* 2021;22:bbab011.

972 [22] Fickett JW. Recognition of protein coding regions in DNA sequences. *Nucleic
973 Acids Res* 1982;10:5303–18.

974 [23] Wang L, Park HJ, Dasari S, Wang S, Kocher JP, Li W. CPAT: coding-potential
975 assessment tool using an alignment-free logistic regression model. *Nucleic Acids
976 Res* 2013;41:e74.

977 [24] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al.
978 Scikit-learn: machine learning in python. *J Mach Learn Res* 2011;12:2825–30.

979 [25] Chawla NV, Bowyer KW, Hall LO, Kegelmeyer WP. SMOTE: synthetic minority
980 over-sampling technique. *J Artif Intell Res* 2002;16:321–57.

981 [26] Lemaître G, Nogueira F, Aridas CK. Imbalanced-learn: a python toolbox to tackle
982 the curse of imbalanced datasets in machine learning. *J Mach Learn Res*
983 2017;18:559–63.

984 [27] Akiba T, Sano S, Yanase T, Ohta T, Koyama M. Optuna: a next-generation
985 hyperparameter optimization framework. *arXiv* 2019;1907.10902

986 [28] Limasset A, Flot JF, Peterlongo P. Toward perfect reads: self-correction of short
987 reads via mapping on de Bruijn graphs. *Bioinforma Oxf Engl* 2020;36:1374–81.

988 [29] Mitchell K, Brito JJ, Mandric I, Wu Q, Knyazev S, Chang S, et al. Benchmarking
989 of computational error-correction methods for next-generation sequencing data.
990 *Genome Biol* 2020;21:71.

991 [30] Zhang X, Ping P, Hutvagner G, Blumenstein M, Li J. Aberration-corrected
992 ultrafine analysis of miRNA reads at single-base resolution: a k-mer lattice
993 approach. *Nucleic Acids Res* 2021;49:e106.

994 [31] Kinde I, Wu J, Papadopoulos N, Kinzler KW, Vogelstein B. Detection and
995 quantification of rare mutations with massively parallel sequencing. *Proc Natl
996 Acad Sci U S A* 2011;108:9530–5.

997 [32] Liu Y, Schröder J, Schmidt B. Musket: a multistage k-mer spectrum-based error
998 corrector for Illumina sequence data. *Bioinformatics* 2013;29:308–15.

999 [33] Ilie L, Molnar M. RACER: rapid and accurate correction of errors in reads.
1000 *Bioinforma Oxf Engl* 2013;29:2490–3.

1001 [34] Song L, Florea L, Langmead B. Lighter: fast and memory-efficient sequencing
1002 error correction without counting. *Genome Biol* 2014;15:509.

1003 [35] Li H. BFC: correcting Illumina sequencing errors. *Bioinforma Oxf Engl*
1004 2015;31:2885–7.

1005 [36] Marinier E, Brown DG, McConkey BJ. Pollux: platform independent error
1006 correction of single and mixed genomes. *BMC Bioinformatics* 2015;16:10.

1007 [37] Heo Y, Wu XL, Chen D, Ma J, Hwu WM. BLESS: bloom filter-based error
1008 correction solution for high-throughput sequencing reads. *Bioinforma Oxf Engl*
1009 2014;30:1354–62.

1010 [38] Dlugosz M, Deorowicz S. RECKONER: read error corrector based on KMC.
1011 *Bioinforma Oxf Engl* 2017;33:1086–9.

1012 [39] Salmela L, Schröder J. Correcting errors in short reads by multiple alignments.
1013 *Bioinformatics* 2011;27:1455–61.

1014 [40] Schulz MH, Weese D, Holtgrewe M, Dimitrova V, Niu S, Reinert K, et al. Fiona:
1015 a parallel and automatic strategy for read error correction. *Bioinformatics*
1016 2014;30:i356–63.

1017 [41] Allam A, Kalnis P, Solovyev V. Karect: accurate correction of substitution,
1018 insertion and deletion errors for next-generation sequencing data. *Bioinforma Oxf
1019 Engl* 2015;31:3421–8.

1020 [42] Kallenborn F, Hildebrandt A, Schmidt B. CARE: context-aware sequencing read
1021 error correction. *Bioinformatics* 2021;37:889–95.

1022 [43] Kallenborn F, Cascitti J, Schmidt B. CARE 2.0: reducing false-positive
1023 sequencing error corrections using machine learning. *BMC Bioinformatics*
1024 2022;23:227.

1025 [44] Simpson JT, Durbin R. Efficient *de novo* assembly of large genomes using
1026 compressed data structures. *Genome Res* 2012;22:549–56.

1027 [45] Petukhov V, Guo J, Baryawno N, Severe N, Scadden DT, Samsonova MG, et al.
1028 dropEst: pipeline for accurate estimation of molecular counts in droplet-based
1029 single-cell RNA-seq experiments. *Genome Biol* 2018;19:78.

1030 [46] Sereewit J, Lieberman NAP, Xie H, Bakhash SAKM, Nunley BE, Chung B, et al.
1031 ORF-interrupting mutations in monkeypox virus genomes from Washington and
1032 Ohio, 2022. *Viruses* 2022;14:2393.

1033 [47] Iwakawa H, Tomari Y. The functions of microRNAs: mRNA decay and
1034 translational repression. *Trends Cell Biol* 2015;25:651–65.

1035 [48] Telonis AG, Magee R, Loher P, Chervoneva I, Londin E, Rigoutsos I. Knowledge
1036 about the presence or absence of miRNA isoforms (isomiRs) can successfully
1037 discriminate amongst 32 TCGA cancer types. *Nucleic Acids Res* 2017;45:2973–
1038 85.

1039 [49] Meng L, Liu C, Lü J, Zhao Q, Deng S, Wang G, et al. Small RNA zippers lock
1040 miRNA molecules and block miRNA function in mammalian cells. *Nat Commun*
1041 2017;8:13964.

1042 [50] Martí E, Pantano L, Bañez-Coronel M, Llorens F, Miñones-Moyano E, Porta S, et
1043 al. A myriad of miRNA variants in control and Huntington’s disease brain regions
1044 detected by massively parallel sequencing. *Nucleic Acids Res* 2010;38:7219–35.

1045 [51] Lappalainen T, Sammeth M, Friedländer MR, ‘t Hoen PAC, Monlong J, Rivas
1046 MA, et al. Transcriptome and genome sequencing uncovers functional variation
1047 in humans. *Nature* 2013;501:506–11.

1048 [52] Martin M. Cutadapt removes adapter sequences from high-throughput sequencing
1049 reads. *EMBnet J* 2011;17:10–2.

1050 [53] Loher P, Karathanasis N, Londin E, Bray PF, Pliatsika V, Telonis AG, et al.
1051 IsoMiRmap: fast, deterministic and exhaustive mining of isomiRs from short
1052 RNA-seq datasets. *Bioinformatics* 2021;37:1828–38.

1053 [54] Kozomara A, Birgaoanu M, Griffiths-Jones S. miRBase: from microRNA
1054 sequences to function. *Nucleic Acids Res* 2019;47:D155–62.

1055 [55] Gaudelli NM, Komor AC, Rees HA, Packer MS, Badran AH, Bryson DI, et al.
1056 Programmable base editing of A•T to G•C in genomic DNA without DNA
1057 cleavage. *Nature* 2017;551:464–71.

1058 [56] Rees HA, Liu DR. Base editing: precision chemistry on the genome and
1059 transcriptome of living cells. *Nat Rev Genet* 2018;19:770–88.

1060 [57] Song M, Kim HK, Lee S, Kim Y, Seo SY, Park J, et al. Sequence-specific
1061 prediction of the efficiencies of adenine and cytosine base editors. *Nat Biotechnol*
1062 2020;38:1037–43.

1063 [58] Satam H, Joshi K, Mangrolia U, Waghoo S, Zaidi G, Rawool S, et al. Next-
1064 generation sequencing technology: current trends and advancements. *Biology*
1065 2023;12:997.

1066 [59] Polonis K, Blommel JH, Hughes AEO, Spencer D, Thompson JA, Schroeder MC.
1067 Innovations in short-read sequencing technologies and their applications to
1068 clinical genomics. *Clin Chem* 2025;71:97–108.

1069 [60] Salk JJ, Schmitt MW, Loeb LA. Enhancing the accuracy of next-generation
1070 sequencing for detecting rare and subclonal mutations. *Nat Rev Genet*
1071 2018;19:269–85.
1072 [61] Nayfach S, Páez-Espino D, Call L, Low SJ, Sberro H, Ivanova NN, et al.
1073 Metagenomic compendium of 189,680 DNA viruses from the human gut
1074 microbiome. *Nat Microbiol* 2021;6:960–70.
1075 [62] Marchetti F, Cardoso R, Chen CL, Douglas GR, Elloway J, Escobar PA, et al.
1076 Error-corrected next generation sequencing – promises and challenges for
1077 genotoxicity and cancer risk assessment. *Mutat Res Rev Mutat Res*
1078 2023;792:108466.
1079
1080

1081 **Figure legends**

1082 **Figure 1 Schematic diagrams illustrating how base errors are generated during
1083 library preparation and sequencing process**

1084 **A.** Schematic illustration of base error generation when amplifying one DNA template
1085 during conventional polymerase chain reaction (PCR) amplification. Base “T” mutated
1086 to “G” between the third cycle and the fourth cycle and this error is inherited by the
1087 subsequent cycles. **B.** Schematic graph depicting PCR errors generated in the process
1088 of bridge amplification during Illumina sequencing. An example of “A”-to-“G” is
1089 inherited. **C.** An overview of base calling during Illumina sequencing.
1090

1091 **Figure 2 Overview of the workflow of noise2read**

1092 The first stage (1a–1f) and the second stage (2a–2f) rectify 1-nt and 2-nt based-errors
1093 to their normal states, respectively. The third stage (3a–3f) is optional only for further
1094 correction specified to the amplicon sequencing data. The integrative auto machine
1095 learning (AutoML) module is used multiple times for training and predicting based on
1096 different edit-erring-reads and error-free-reads in each stage.
1097

1098 **Figure 3 Zoomed-in view of subgraph A in Figure S1**

1099 This subgraph contains six high-frequency (16 to 234) reads labelled as r_1 to r_7 and
1100 72 low frequency (1 to 3) reads.
1101

1102 **Figure 4 An overview workflow of the AutoML module for end-to-end
1103 prediction on ambiguous errors**

1104 The edit-erring-reads and error-free-reads extracted from the nt -edit-distance graph

1105 are categorised into three types of data. Training data is constructed through the
1106 workflow steps of ②③–⑤⑥–⑧–⑨–⑩; the scaled training data is then fed (⑪) into
1107 XGBoost classifier, with Optuna used to optimize parameters, resulting in the best
1108 prediction model (⑫). Following similar preprocessing steps, the transformed
1109 objective data is created through steps of ①–④–⑦–⑭. Finally, the prediction is
1110 completed by feeding the objective data into the optimized model via steps ⑮–⑯.
1111

1112 **Figure 5 Flowchart illustrating the analytical framework and key concepts in**
1113 **this study**

1114

1115 **Figure 6 Visualisation of information gain for different methods on dataset D1**

1116 **A.** and **B.** Information gain by noise2read with and without amplicon correction,
1117 respectively. **C.–I.** Incorrectly introduced reads as red points. The number of red points
1118 shown on each heatmap corresponds to 502, 2310, 7808, 2935, 8523, 13,899 and 722,
1119 respectively.

1120

1121 **Figure 7 Performance comparison between noise2read and seven other methods**
1122 **on datasets D1 and D9**

1123 **A.** Comparison of true positive rate (TPR), true negative rate (TNR), false positive rate
1124 (FPR), false negative rate (FNR), and area difference (AD), at the read-level for
1125 noise2read and seven other methods on the UMI-based wet-lab dataset *D1*.
1126 noise2read* denotes the result without amplicon correction. **B.–D.** Performance
1127 comparisons at the read-level on simulated dataset *D9*. **E.–L.** Information gain
1128 visualisations for *D9*. Heatmaps in **F–L** display 1223, 164, 9698, 377, 2378, 3651 and
1129 1255 red dots, respectively. Each red dot represents a new sequence introduced after
1130 error correction.

1131

1132 **Figure 8 Comparison of base coverage before and after correction for**
1133 **Monkeypox virus genome using perfectly matched reads**

1134 **A.** Base coverage for Monkeypox virus using the original and corrected sequencing
1135 data. **B.** Coverage differences before and after error correction for the Monkeypox virus
1136 data. **C.** Frequency distribution of coverage differences for the Monkeypox virus data,
1137 also plotted with scaled density curves.

1138
1139 **Figure 9 Comparison of isomiR and known SNP counts before and after error**
1140 **correction using scatter plots and Kepler plots**
1141 **A.** and **B.** Scatter plots comparing the number of exclusive isomiRs identified in the
1142 original and error-corrected datasets *D*28 and *D*29, respectively. **C.** and **D.**
1143 Comparisons for ambiguous isomiRs and known SNPs identified in the original and
1144 error-corrected dataset *D*28, respectively.
1145

1146 **Tables**

1147 **Table 1 Non-frequent reads' information gain ΔH on the datasets *D*1 – *D*8**
1148 **and *D*9 – *D*13**

1149

1150 **Table 2 Performance comparison between noise2read and seven methods on the**
1151 **dataset *D*1**

1152

1153 **Table 3 Performance comparison between noise2read and miREC at the read**
1154 **level**

1155

1156 **Table 4 Performance comparison between noise2read and ten methods on the**
1157 **dataset *D*25**

1158

1159 **Table 3 Time and memory usage by different methods on the datasets *D*1 – *D*8**

1160

1161 **Table 4 Known isomiRs and SNPs profiling change from miRNA sequencing**
1162 **data before and after correction**

1163

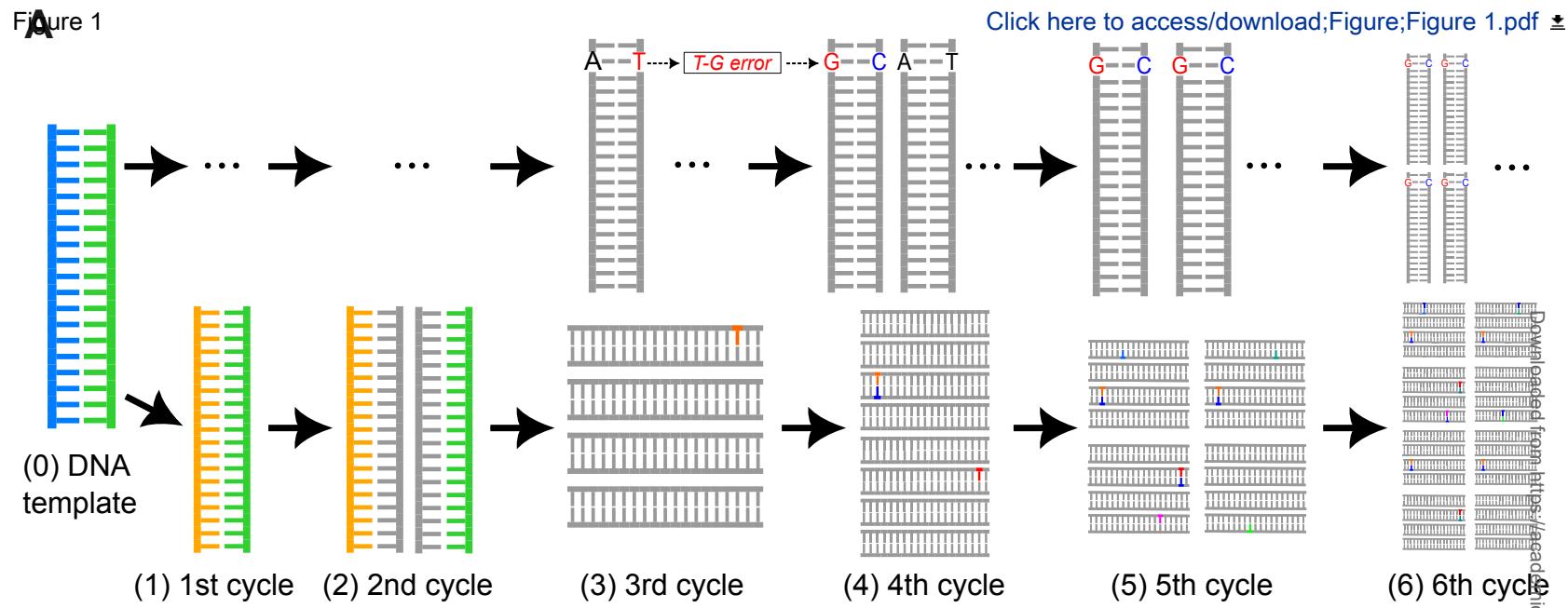
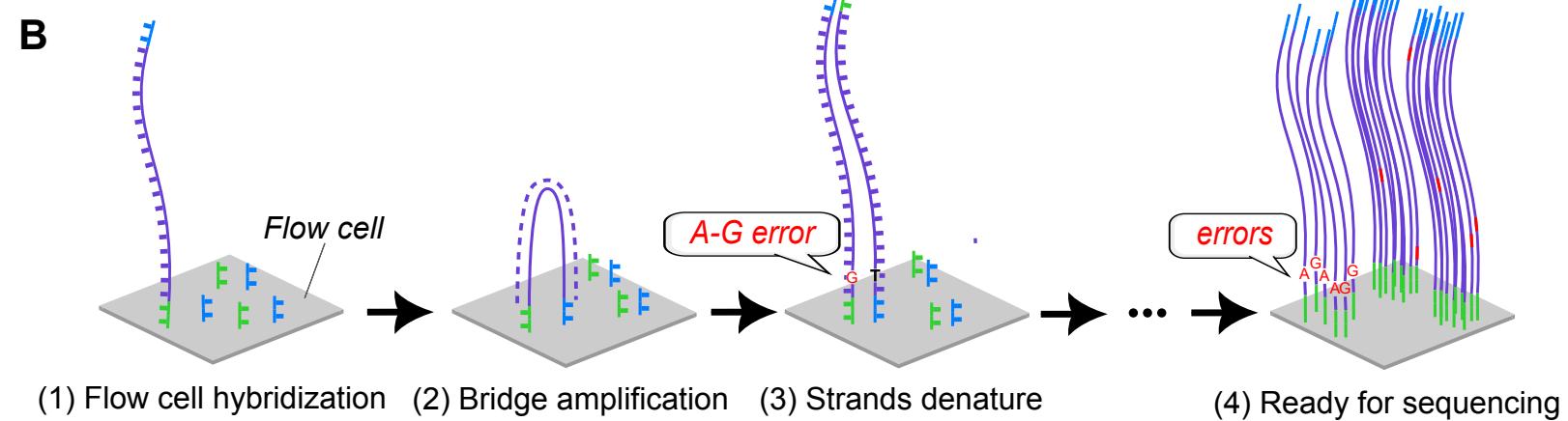
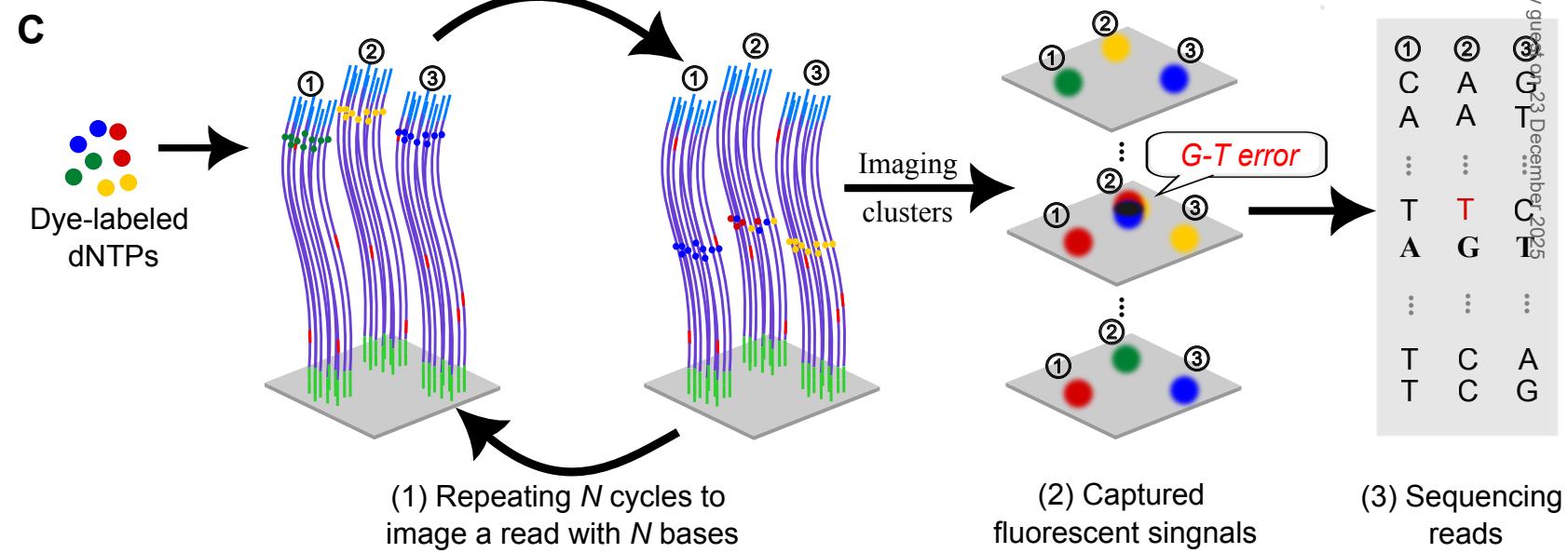
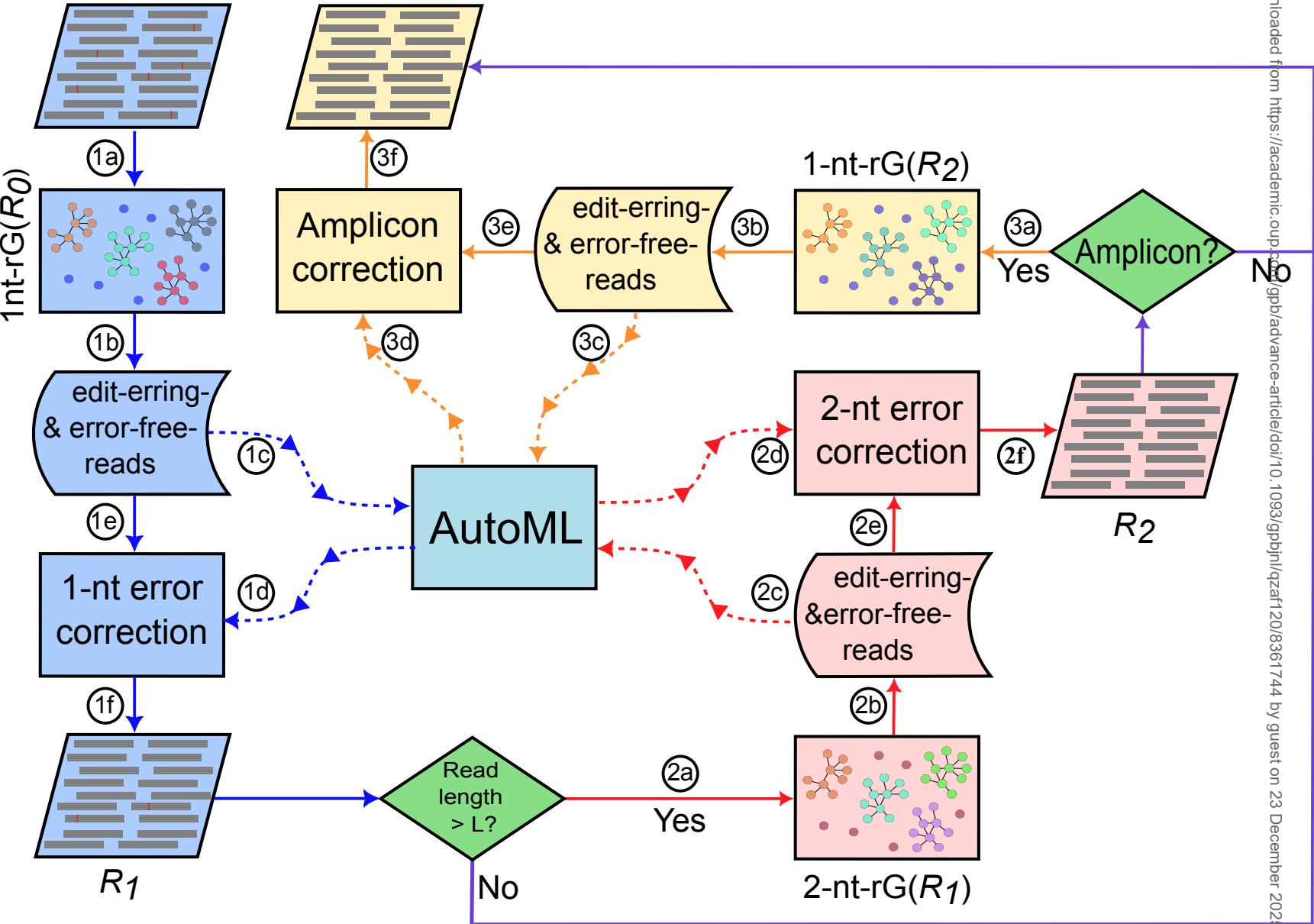


Figure 2 Input R_0 Output R Click here to access/download; Figure; Figure 2.pdf
Downloaded from https://academic.oup.com/gpbi/article/doi/10.1093/gpbi/qlz012/8361744 by guest on 23 December 2022

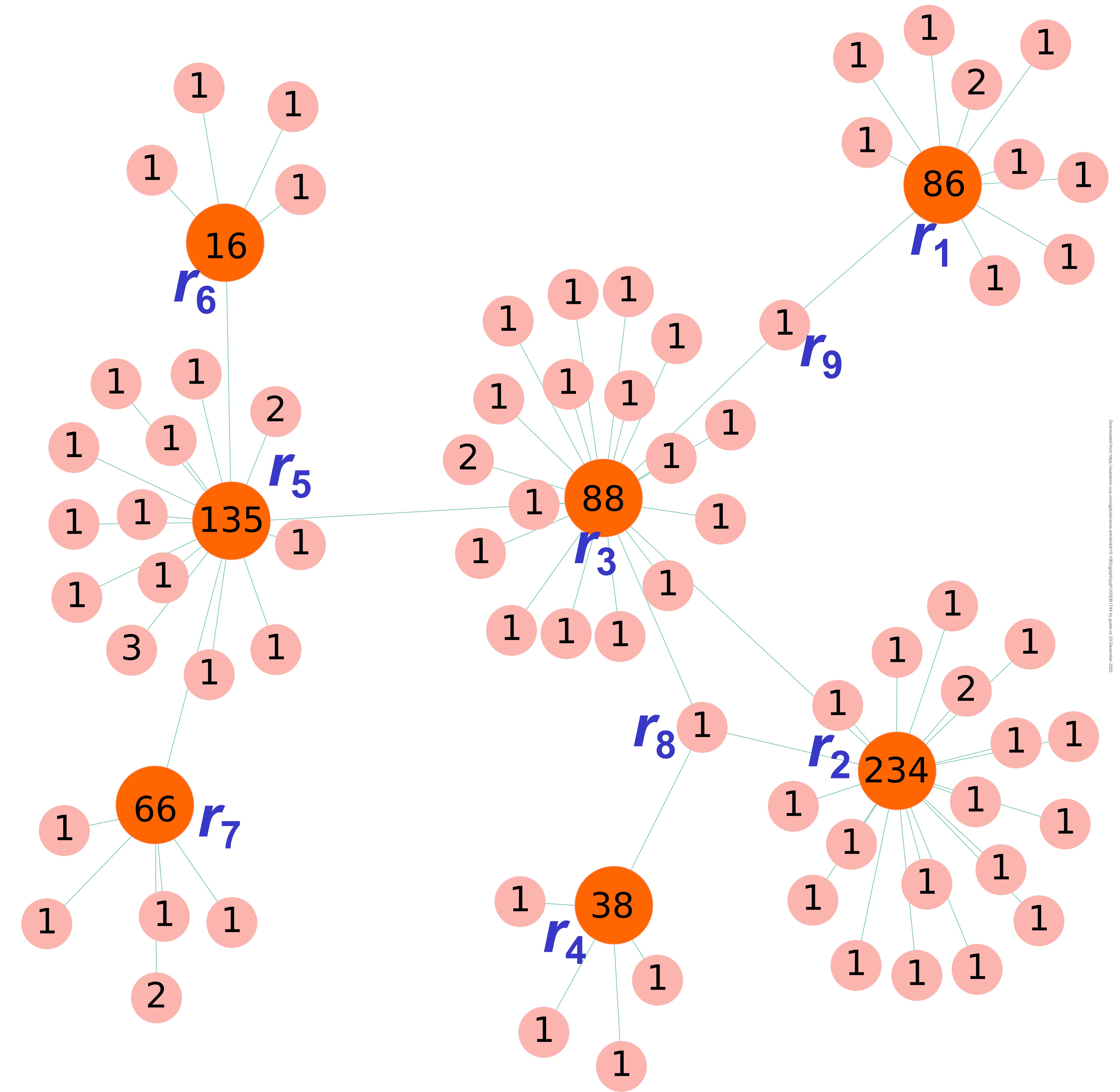


Figure 4

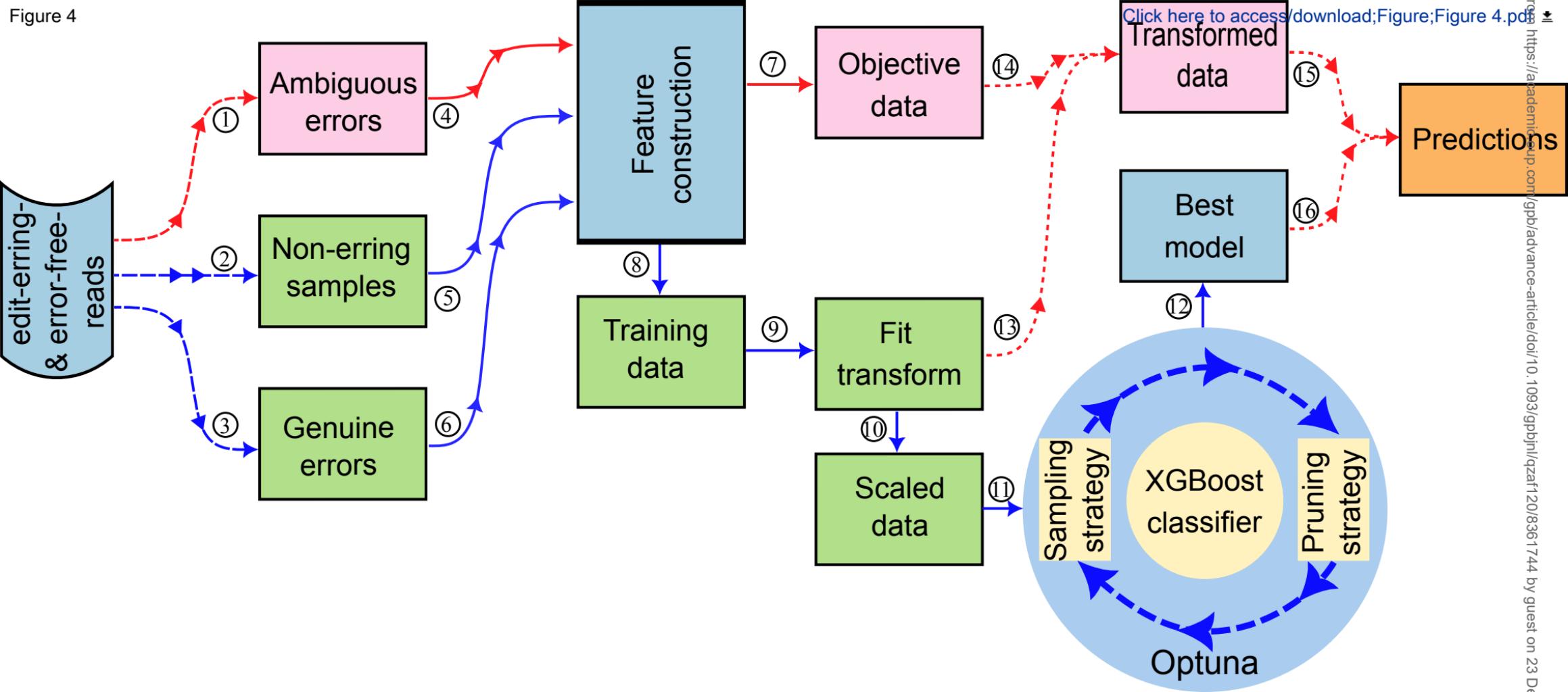
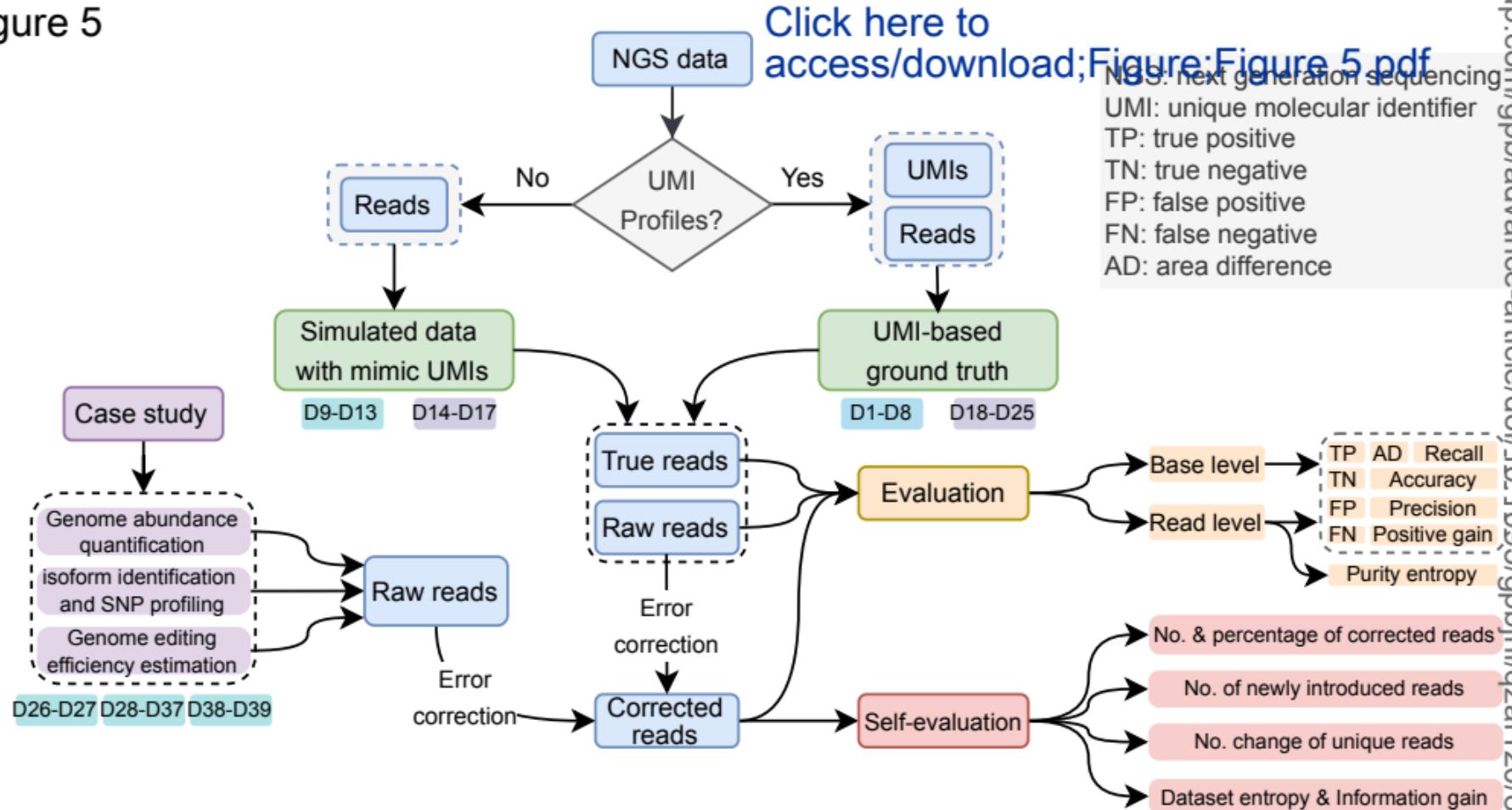
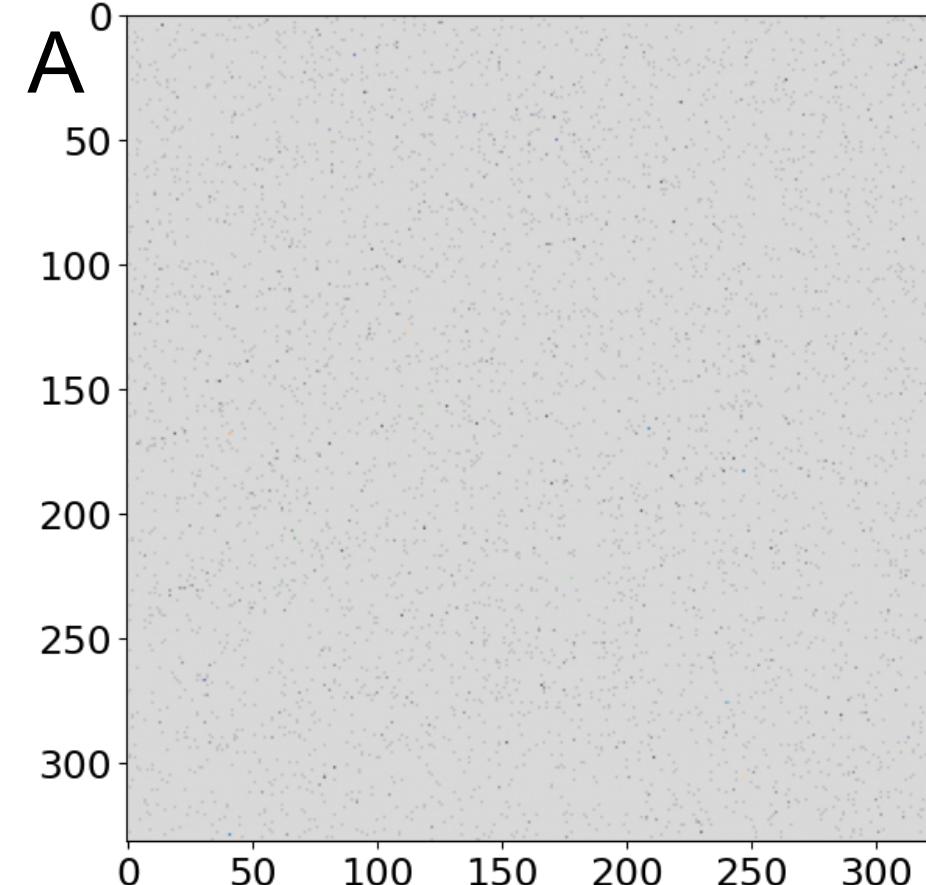
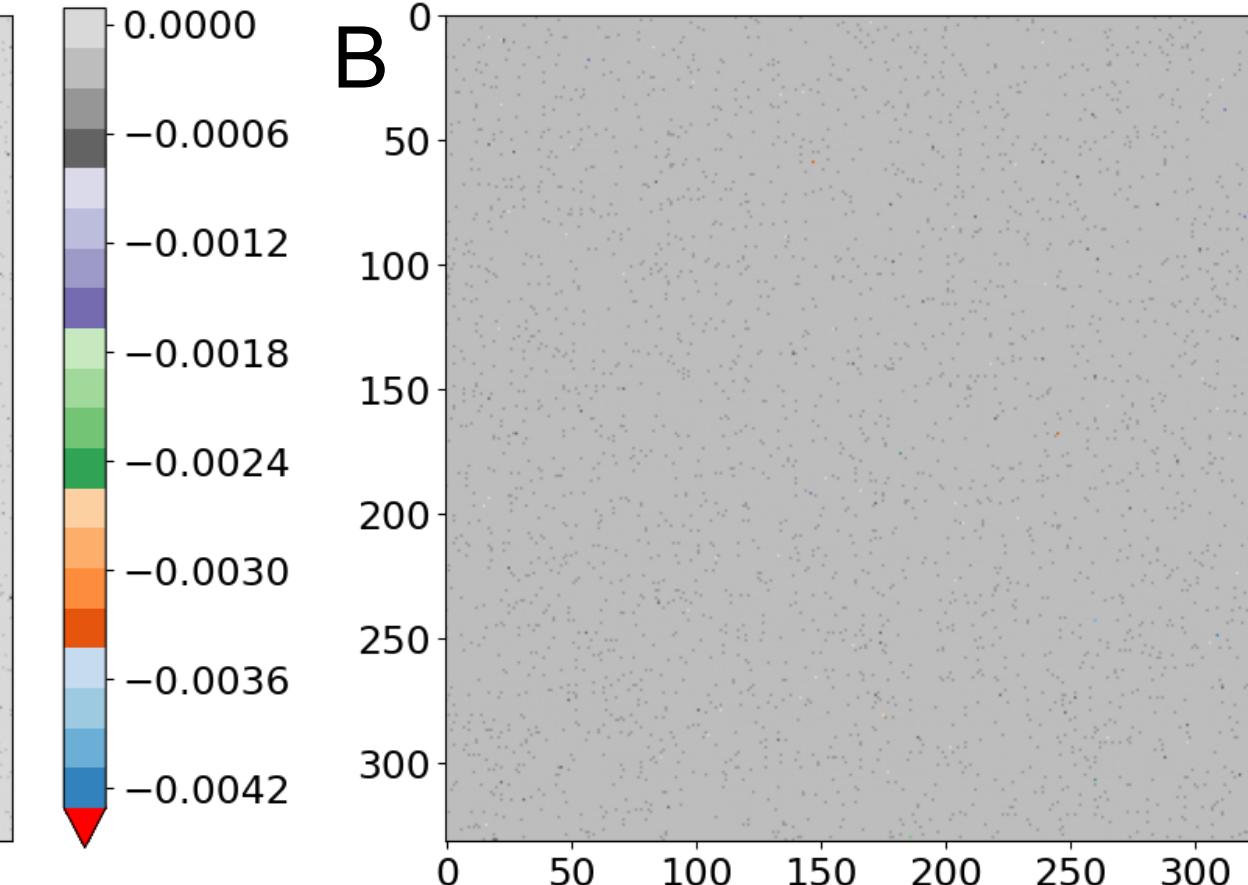
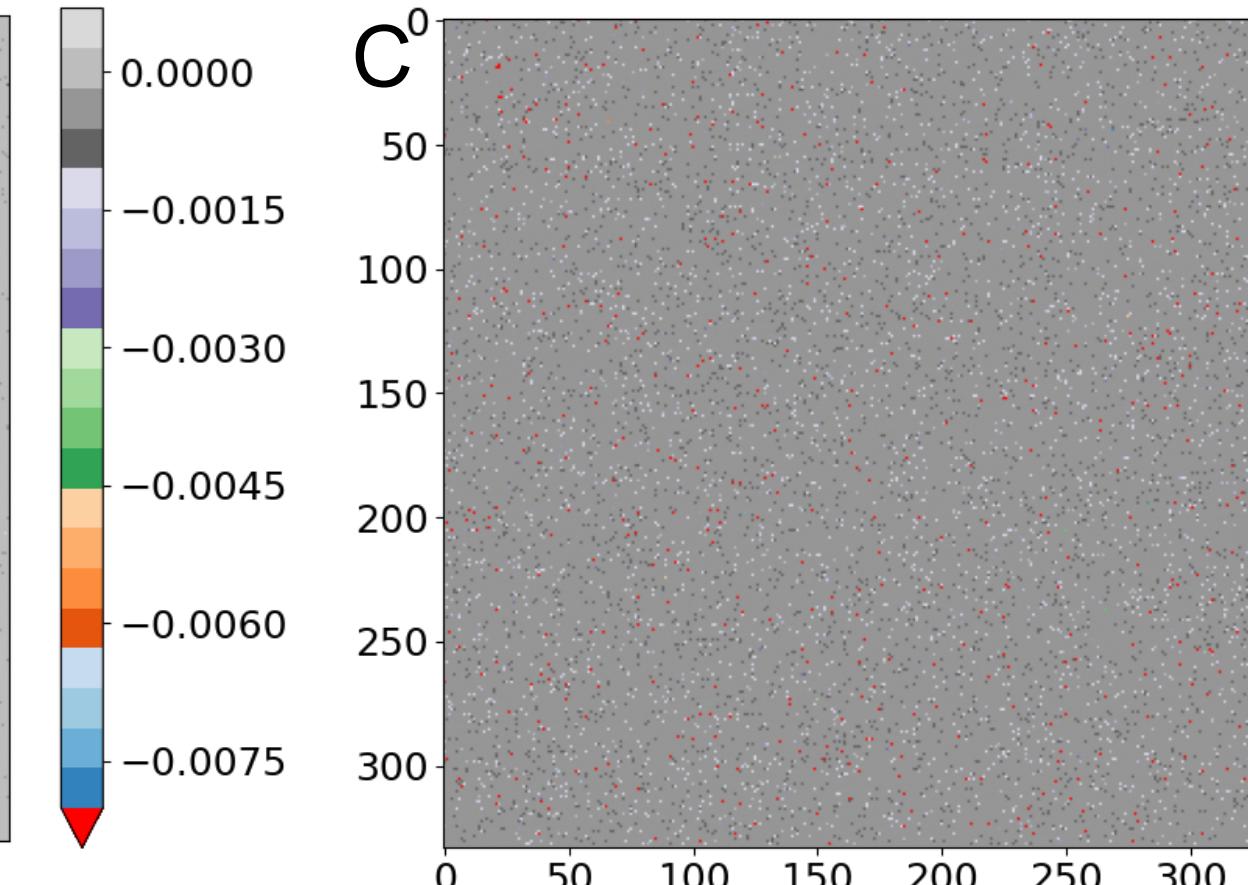
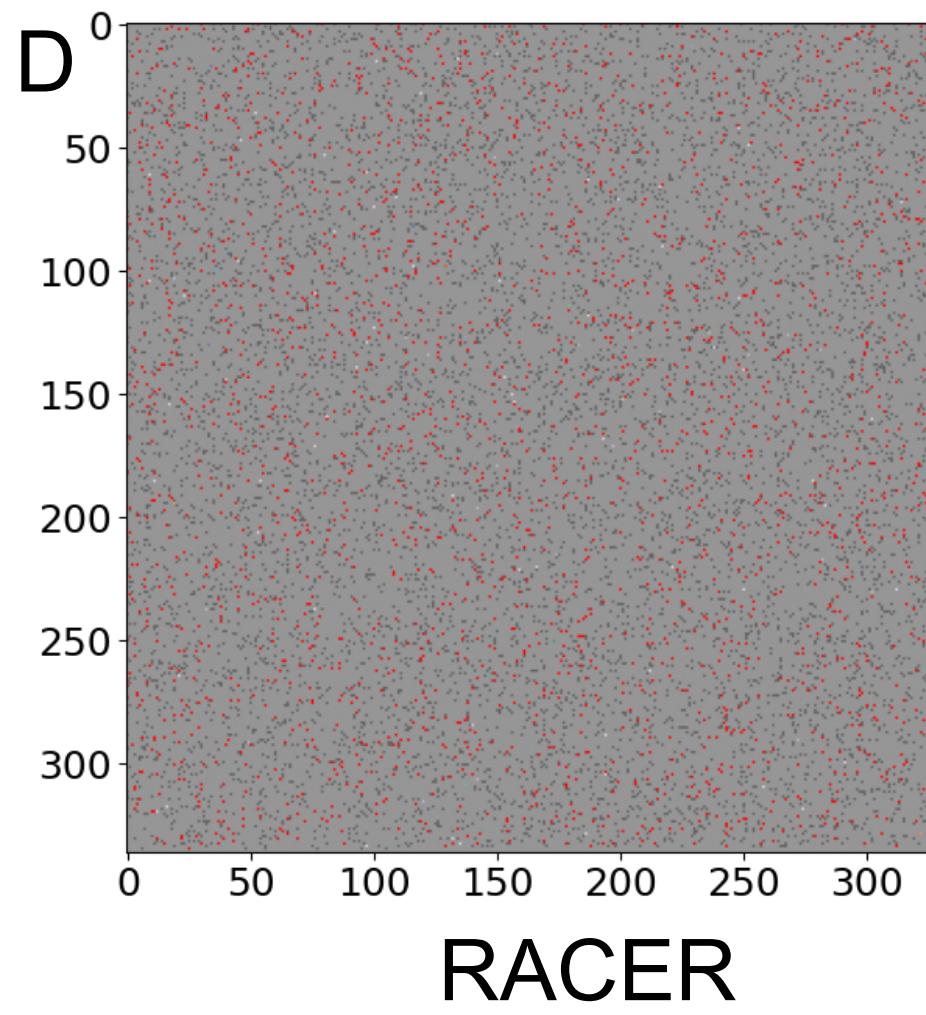
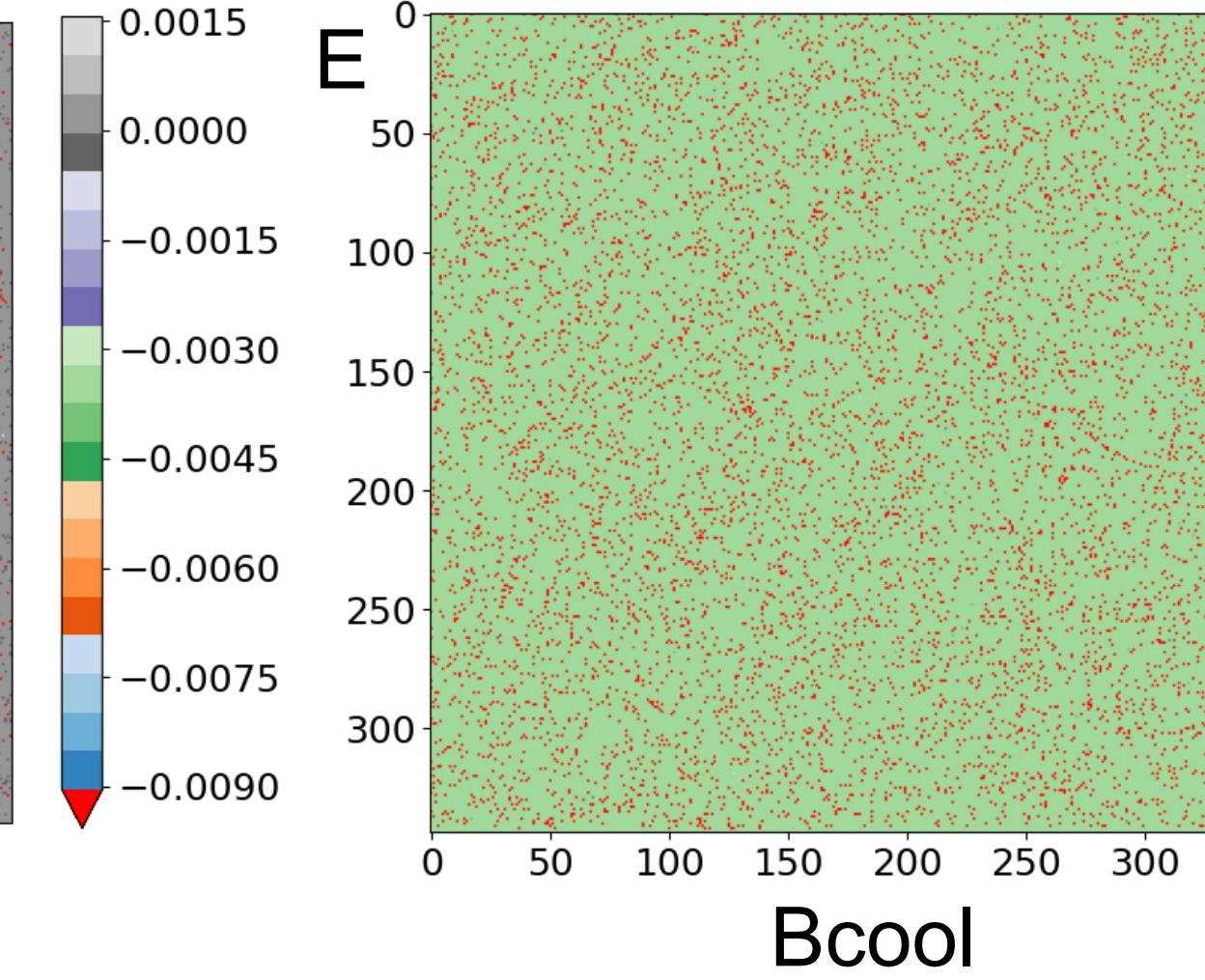
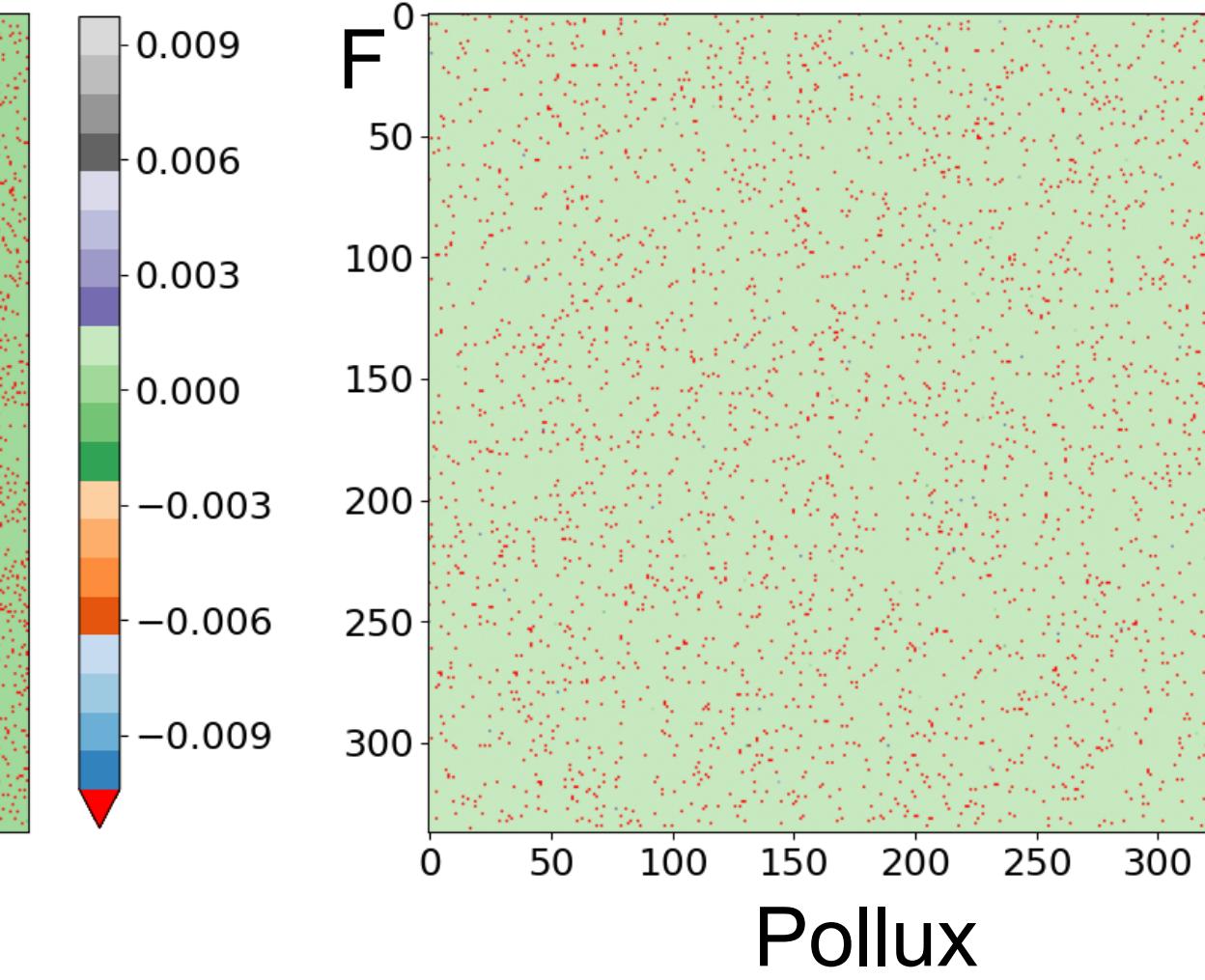
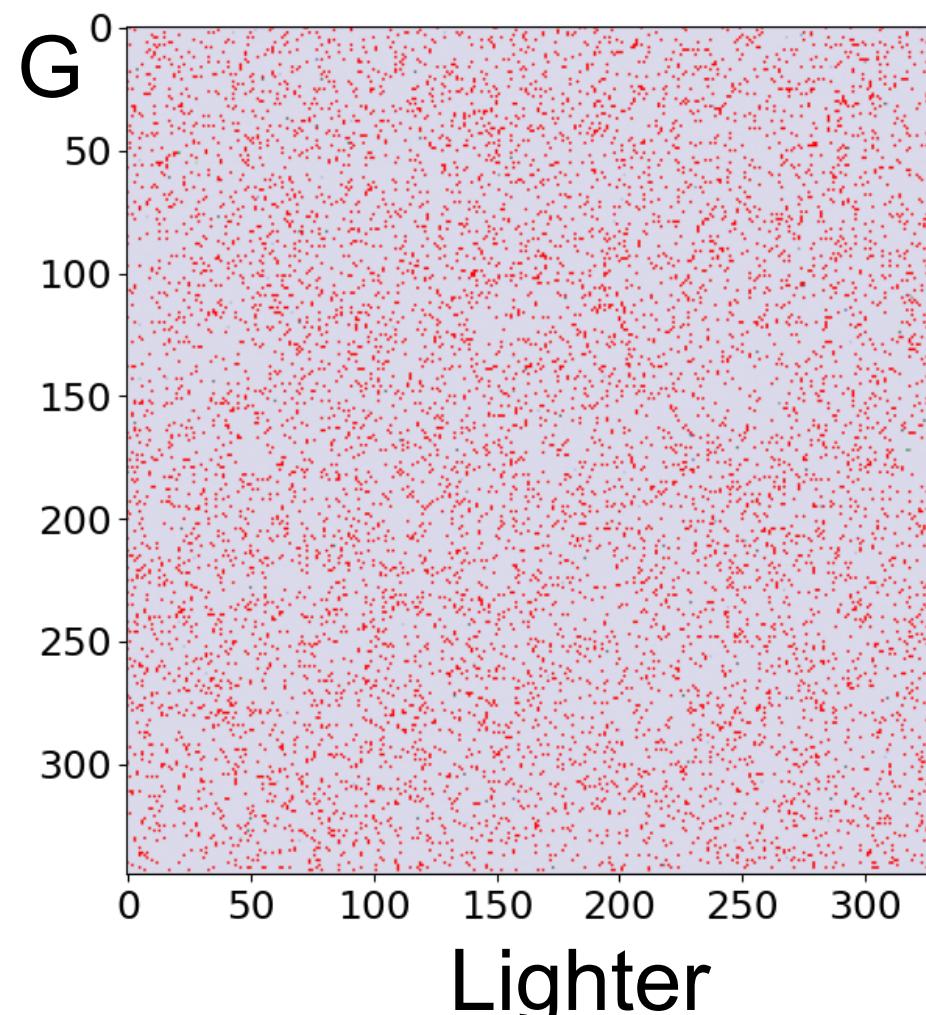
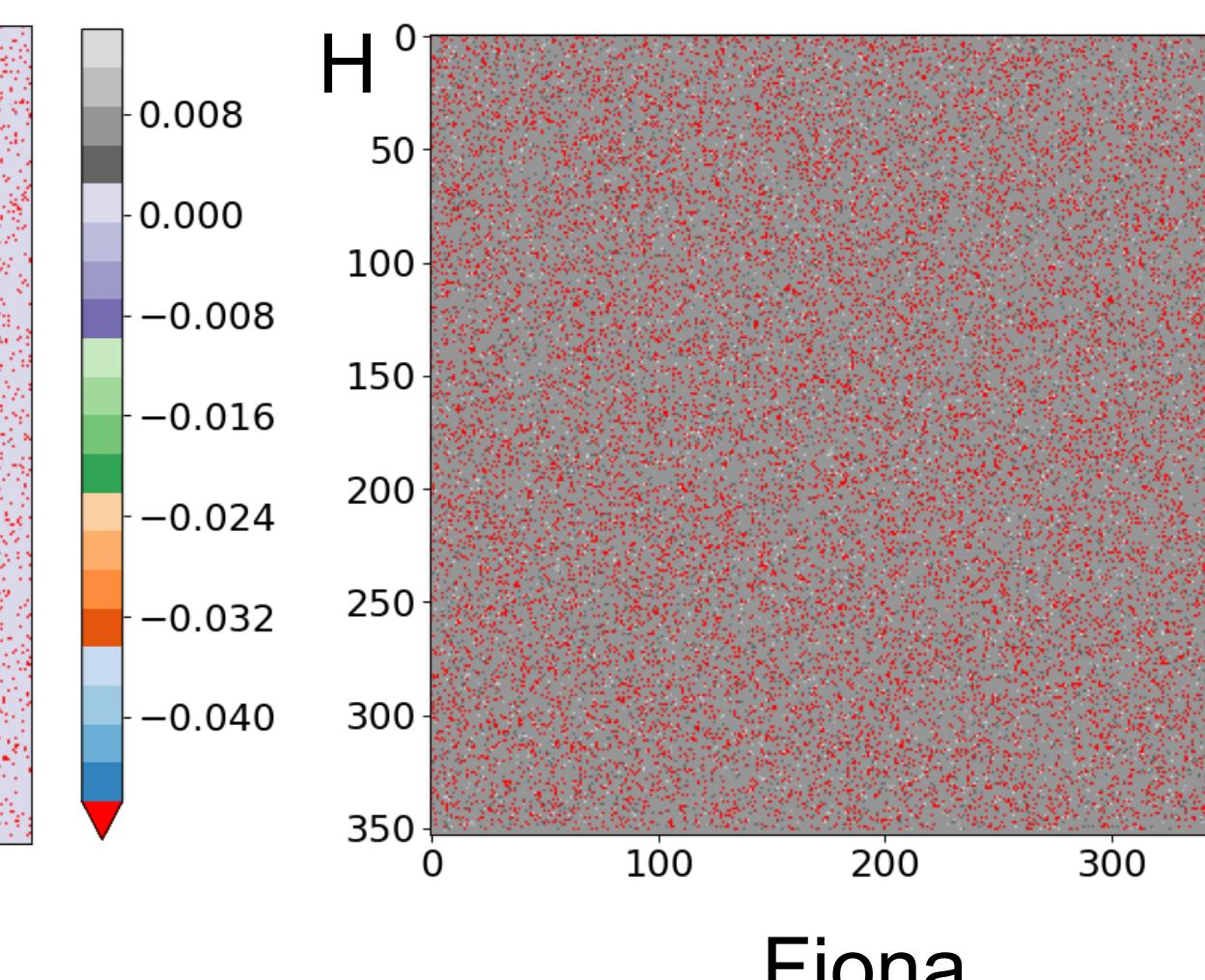
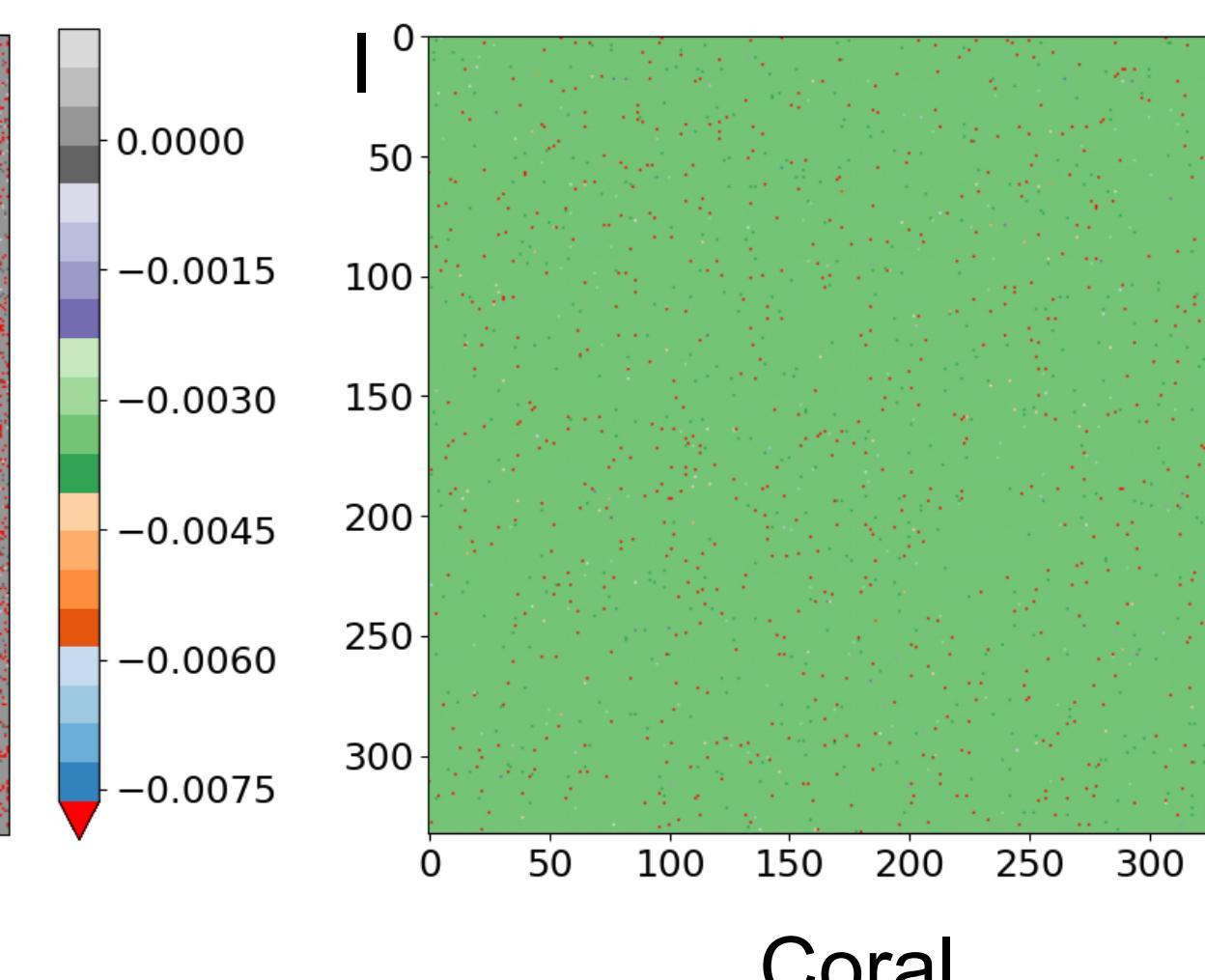


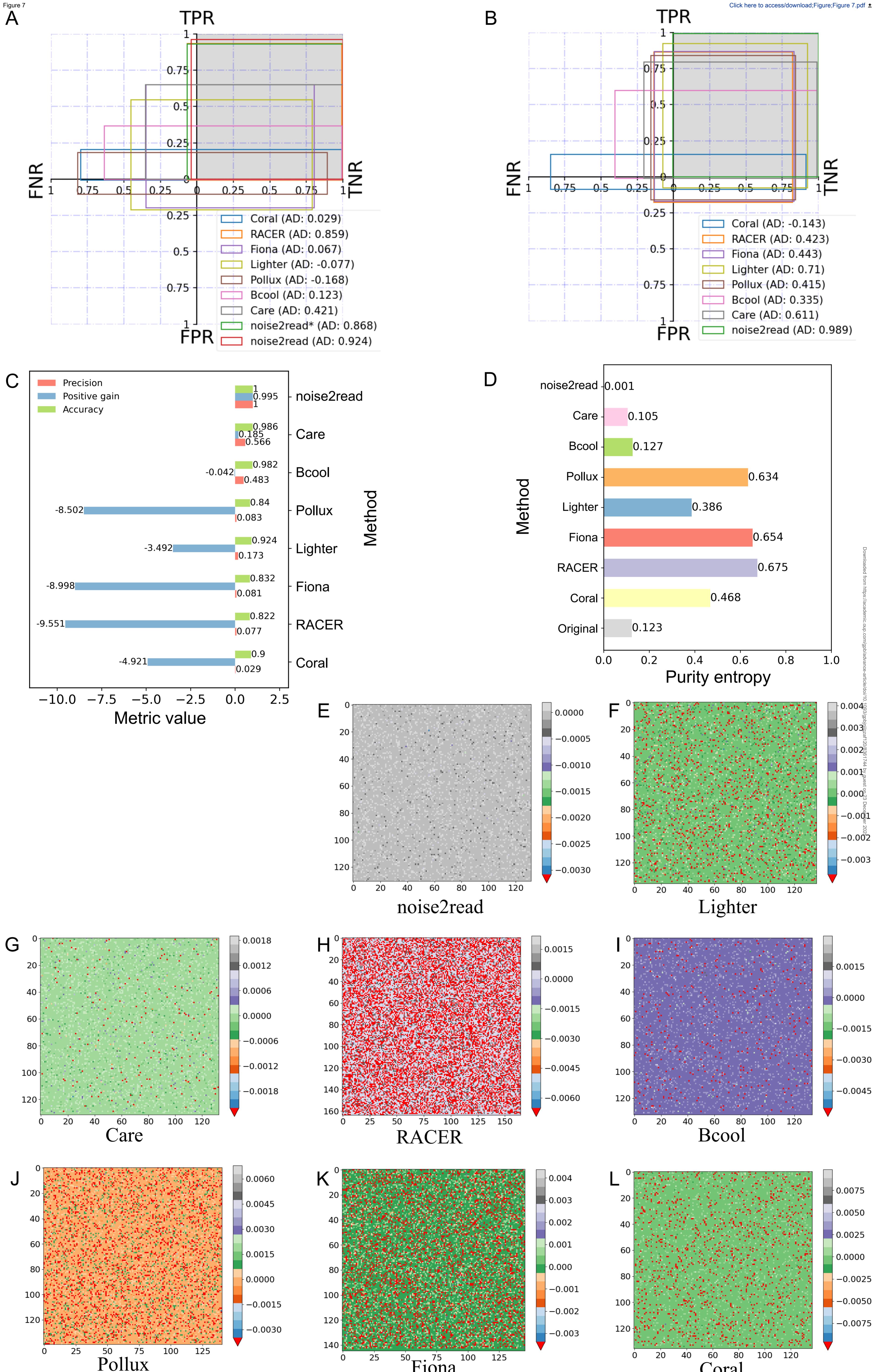
Figure 5



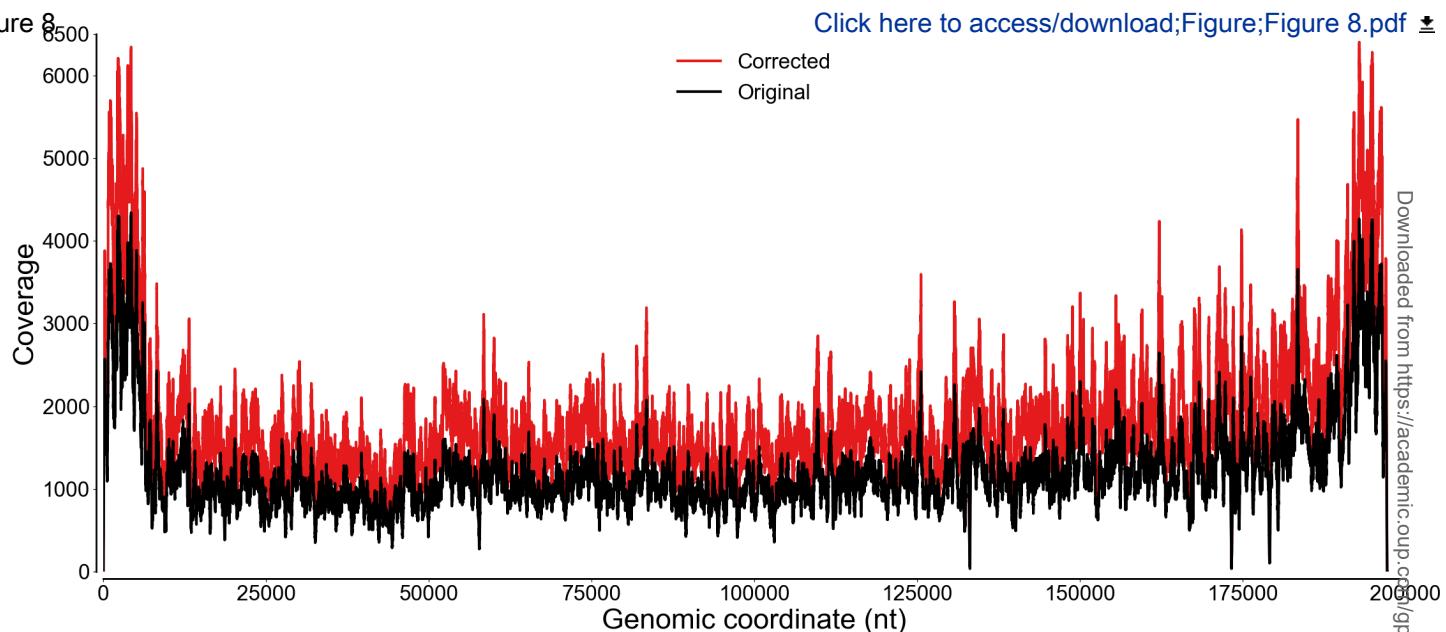


Downloaded from https://academic.oup.com/gpp/advance-article/10/1/gppj120/8341744 by guest on 23 December 2025

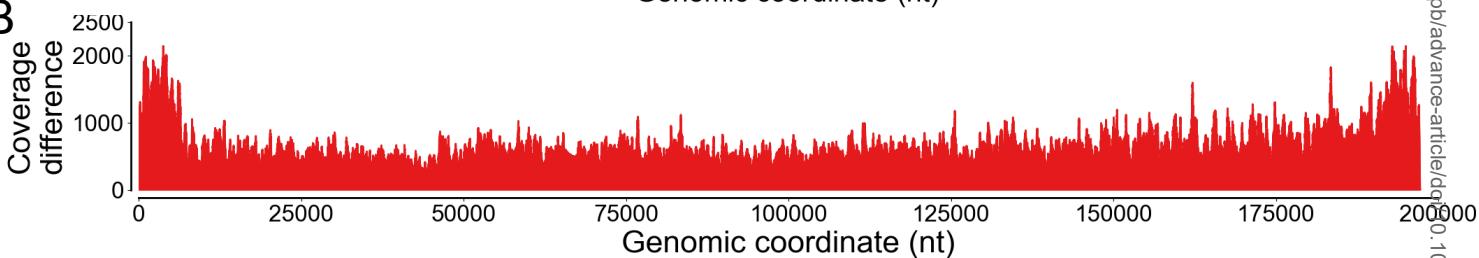




A



B



C

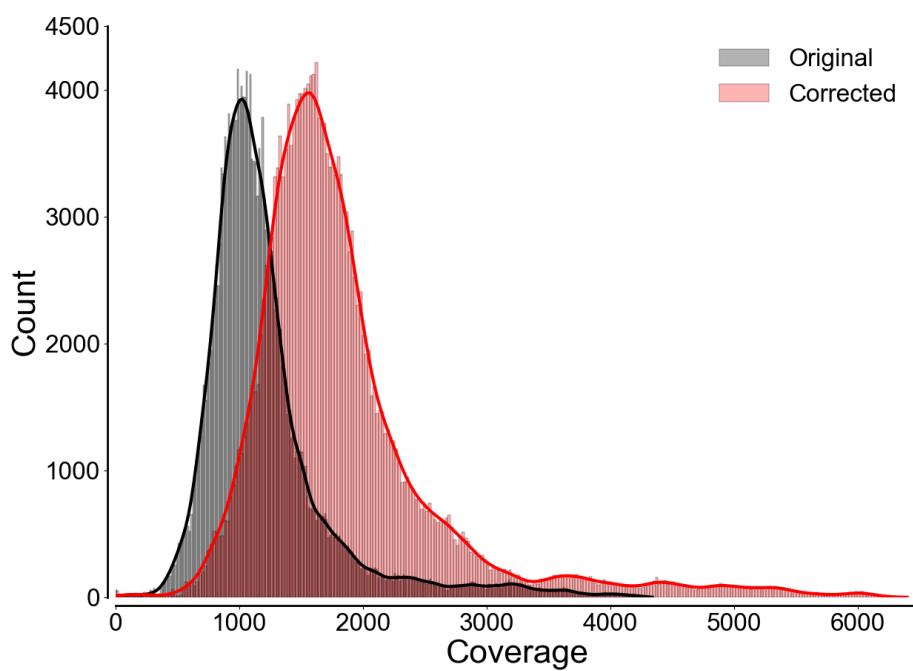


Figure 9

Click here to access/download; Figure; Figure 9.pdf

Downloaded from https://academic.oup.com/gpb/advance-article/doi/10.1093/gpbjnl/qzaf120/8361744 by guest on 23 December 2025

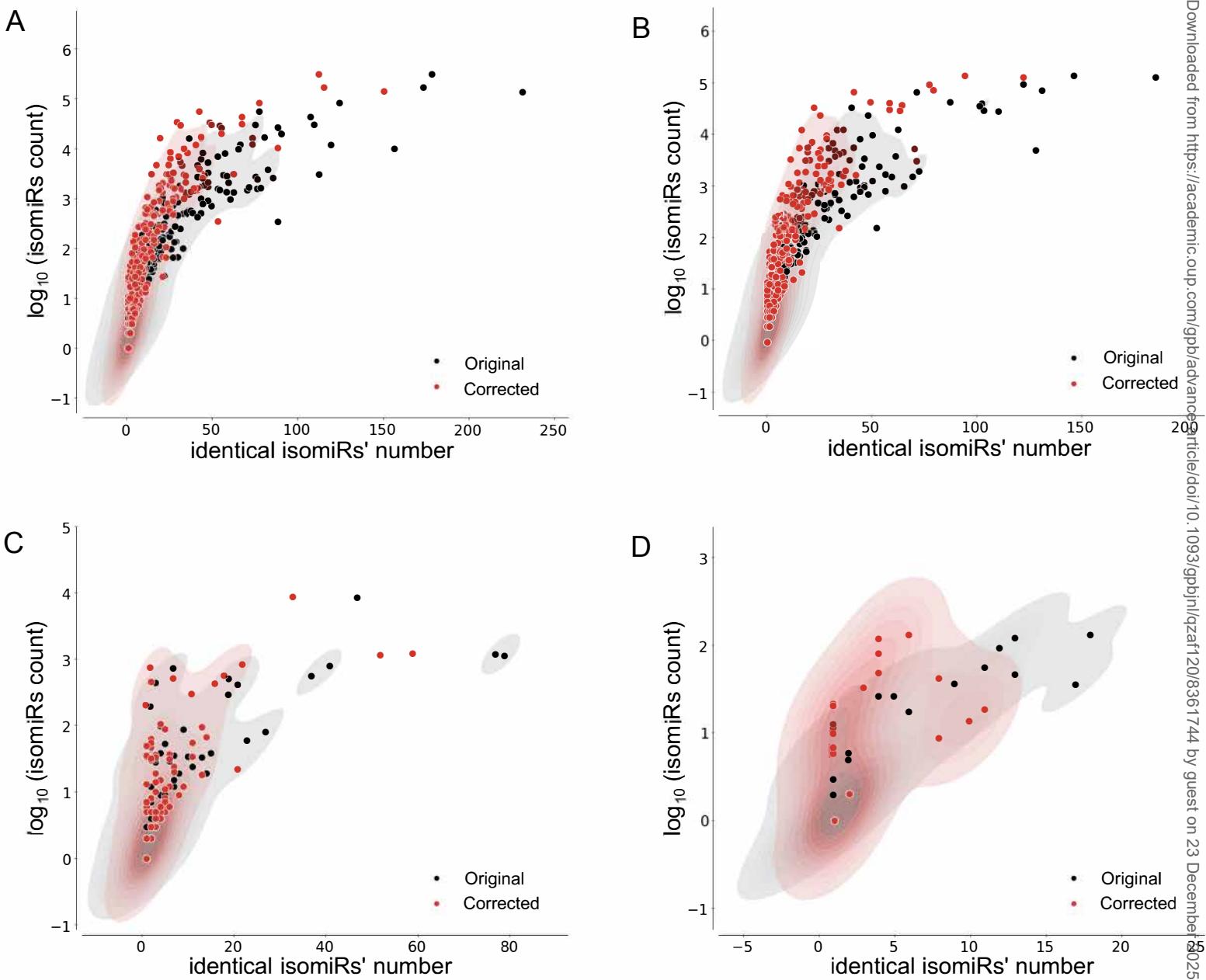


Table 1 Non-frequent reads' information gain ΔH on the datasets **D1–D8** and **D9–D13**

Datasets	Method							
	Coral	RACER	Fiona	Lighter	Pollux	Bcool	Care	noise2read
D1	0.588	6.023	4.077	4.686	2.508	0.916	1.776	6.409
D2	0.770	6.116	4.393	4.842	2.534	0.023	1.557	6.339
D3	0.921	6.369	4.891	5.505	3.044	2.333	0.469	6.239
D4	0.590	6.215	4.638	5.083	3.011	1.702	0.907	6.202
D5	0.752	6.360	4.589	5.127	2.821	0.046	1.302	6.297
D6	0.970	6.316	4.800	5.026	2.930	1.986	1.357	6.567
D7	0.898	6.306	4.883	5.422	3.096	0.100	0.446	6.194
D8	1.156	5.974	4.344	4.604	3.014	1.824	1.598	6.187
Average	0.831	6.210	4.577	5.037	2.870	1.116	1.176	6.304
D9	0.621	-1.349	-0.209	1.362	0.462	1.874	2.941	10.484
D10	2.072	-0.673	3.318	3.040	3.152	0.960	1.721	12.733
D11	2.849	0.273	2.129	3.910	3.459	0.723	1.483	12.380
D12	1.250	0.039	2.476	4.535	2.784	1.103	0.881	12.249
D13	1.159	0.811	2.991	5.193	3.159	1.725	0.909	13.161
Average	1.590	-0.180	2.141	3.608	2.603	1.277	1.587	12.201

Note: $\tau = 4$ was used for calculating ΔH . **D1–D8** are UMI-based wet-lab datasets and **D9–D13** are UMI-based simulated datasets. Best scores are highlighted in bold.

Table 2 Performance comparison between noise2read and seven methods on the dataset D1

Method		Metric								
		TP	FP	FN	TN	Recall	Precision	Positive Gain	Accuracy	E
noise2read ^a	1 st stage	81630	0	30391	693059	0.729	1.000	0.729	0.962	0.232
	2 nd stage	104373	0	7648	693059	0.932	1.000	0.932	0.991	0.077
	3 rd stage	107717	201	4304	692858	0.962	0.998	0.960	0.994	0.050
Coral		22677	4249	89344	688810	0.202	0.842	0.165	0.884	0.518
RACER		104589	4347	7432	688712	0.934	0.960	0.895	0.985	0.110
Fiona		72792	136472	39229	556587	0.650	0.348	-0.568	0.782	0.757
Lighter		61330	145999	50691	547060	0.547	0.296	-0.756	0.756	0.802
Pollux		20537	73710	91484	619349	0.183	0.218	-0.475	0.795	0.732
Bcool		40970	3889	71051	689170	0.366	0.913	0.331	0.907	0.447
Care		72673	52	39348	693007	0.649	0.999	0.648	0.951	0.3

Note: ^aThe results obtained by noise2read was decomposed at different stages. D1 is a UMI-based wet-lab dataset. Best scores are highlighted in bold.

Table 3 Performance comparison between noise2read and miREC at the read level

Datasets	Methods	Metrics							
		TP	FP	FN	TN	Recall	Gain	E	ΔH
D14	miREC	4224	0	267	218980	0.941	0.941	0.129	4.755
	noise2read	4410	15	81	218965	0.982	0.979	0.137	9.053
	noise2read ^a	4408	3	83	218977	0.982	0.981	0.137	9.053
D15	miREC	4135	5	271	219060	0.938	0.937	0.126	4.821
	noise2read	4312	10	94	219055	0.979	0.976	0.134	8.485
	noise2read ^a	4310	4	96	219061	0.978	0.977	0.134	8.485
D16	miREC	6418	16	309	216728	0.954	0.952	0.179	5.301
	noise2read	6590	20	137	216724	0.980	0.977	0.187	8.184
	noise2read ^a	6588	16	139	216728	0.979	0.977	0.187	8.184
D17	miREC	6398	0	306	216767	0.954	0.954	0.179	5.337
	noise2read	6578	2	126	216765	0.981	0.981	0.187	8.769
	noise2read ^a	6576	0	128	216767	0.981	0.981	0.187	8.769

Note: High-frequency threshold $\tau = 4$ used for noise2read. *D14 – D17* are simulated miRNA sequencing datasets. *D14 – D15* contain substitution and indel errors, while *D16 – D17* contain only substitution errors. ^aPerformance by noise2read without prediction of errors between high frequency reads.

Table 4 Performance comparison between noise2read and ten methods on the dataset D25

Method	k - mer size	Metric											
		TP	TN	FN	FP	TPR	FNR	TNR	FPR	Precision	Accuracy	AD	Positive Gain
Bless	30	39345	509513	23498	1751	0.63	0.37	1	0	0.957	0.96	0.39	0.6
Coral	30	23172	497906	48255	4774	0.32	0.68	0.99	0.01	0.829	0.91	0.09	0.26
Lighter	30	51934	497165	19336	5672	0.73	0.27	0.99	0.01	0.902	0.96	0.51	0.65
Reckoner	30	24143	501767	47233	964	0.34	0.66	1	0	0.962	0.92	0.11	0.32
Sga	26	13129	501767	58582	629	0.18	0.82	1	0	0.954	0.9	0.03	0.17
BFC	30	18415	500964	53345	1383	0.26	0.74	1	0	0.93	0.9	0.06	0.24
Pollux	30	26308	430041	33643	83210	0.44	0.56	0.84	0.16	0.24	0.8	-0.11	-0.95
Fiona	NA	54983	483470	13675	21979	0.8	0.2	0.96	0.04	0.714	0.94	0.56	0.48
RACER	NA	50106	444352	9857	69792	0.84	0.16	0.86	0.14	0.418	0.86	0.45	-0.33
Care	NA	43213	501631	28896	367	0.6	0.4	1	0	0.992	0.95	0.36	0.59
noise2read	NA	54316	501759	18011	21	0.75	0.25	1	0	0.9996	0.97	0.56	0.75

Note: D25 is a UMI-based benchmark dataset previously established in the literature [29].

Table 5 Time and memory usage by different methods on the datasets *D1 – D8*

Method	CPU cores	D1		D2		D3		D4		D5		D6		D7		D8	
		Time	Memory	Time	Memory												
Coral	56	3.3	65528	3.4	91045	3.0	54182	3.8	99376	3.9	99673	3.3	68805	3.7	61512	2.4	49311
Fiona		36.4	1736	20.2	1702	22.5	1811	25.2	2111	29.1	1794	33.4	1755	19.9	1846	15.2	1353
Lighter		1	568	1	564	1	568	1	568	1	568	1	564	1	566	1	566
RACER	64	3.1	111	2.7	100	3.7	130	4.1	146	3.4	123	3.4	125	3.7	135	2.2	110
Pollux	1	1277.4	219	1072.2	197	1445.3	204	1722.2	217	1425.1	209.07	1455.3	219	1480.1	217	844.9	198
Bcool	56	15.9	12	4.6	12	8.1	12	11.7	12	3.9	12	11.6	12	5.5	12	5.3	12
Care		1	788	1	793	1.0	813	1	737	1	812	1	823	1	822	1	589
noise2read		137.3	4405	121.5	4012	126.8	6629	143.1	5723	125.8	4755	136.3	6557	123.0	5393	110.2	3472
noise2read ^a		171.0	4373	161.0	5350	146.0	4824	199.0	7449	173.0	4699	178.0	5189	160.0	5014	198.0	3767

Note: The CPU model of Intel(R) Xeon(R) Gold 6238R CPU @ 2.20GHz was used by all the methods. 1 GPU of Tesla V100S-PCIE-32GB was used for the model training of noise2read. The runtime is given in minutes; Memory consumption is given in MB. ^aThe performance of noise2read is enhanced through additional amplicon correction.

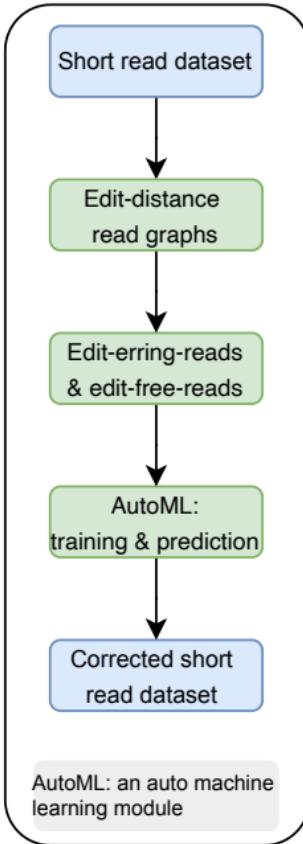
Table 6 Known isomiRs and SNPs profiling change from miRNA sequencing data before and after correction

Dataset	read	Corr.	Corr.	Ambiguous isomiRs						Exclusive isomiRs						SNPs							
		PCT.	Unique reads No.	Total reads No.			Unique reads No.	Total reads No.			Unique reads No.	Total reads No.			Unique reads No.	Total reads No.			Unique reads No.	Total reads No.			
				No.	Orig.	Corr.	Dec.	Orig.	Corr.	Inc.	Orig.	Corr.	Dec.	Orig.	Corr.	Inc.	Orig.	Corr.	Dec.	Orig.	Corr.	Dec.	
D28	197071	2.70%	827	619	25.2%	16425	16859	2.6%	7158	4590	35.9%	1276397	1287399	0.9%	168	79	53.0%	704	606	13.9%			
D29	236699	4.02%	485	331	31.8%	10867	11365	4.6%	5511	3489	36.7%	928151	940139	1.3%	116	54	53.4%	6220	6320	-1.6%			
D30	324175	1.91%	851	632	25.7%	17653	17978	1.8%	5229	3427	34.5%	732858	739190	0.9%	144	73	49.3%	450	392	12.9%			
D31	147763	2.17%	871	634	27.2%	24767	25191	1.7%	8134	5200	36.1%	1763443	1776084	0.7%	154	63	59.1%	396	266	32.8%			
D32	268616	1.43%	688	508	26.2%	19761	20147	2.0%	5553	3512	36.8%	779496	786162	0.9%	101	56	44.6%	253	192	24.1%			
D33	264327	2.24%	915	670	26.8%	29849	30344	1.7%	6788	4377	35.5%	1215062	1223420	0.7%	126	83	34.1%	362	318	12.2%			
D34	288649	4.23%	449	309	31.2%	8735	9124	4.5%	4733	2959	37.5%	741500	751526	1.4%	119	51	57.1%	3909	3964	-1.4%			
D35	144252	2.45%	821	594	27.6%	32558	33198	2.0%	7464	4855	35.0%	2598394	2612835	0.6%	185	84	54.6%	2639	2523	4.4%			
D36	272107	3.40%	626	475	24.1%	14092	14517	3.0%	5367	3403	36.6%	938218	947607	1.0%	122	50	59.0%	284	183	35.6%			
D37	207804	1.66%	547	407	25.6%	10752	10912	1.5%	5184	3347	35.4%	685935	691030	0.7%	87	51	41.4%	184	142	22.8%			
AVE.	235146	2.62%	708	518	27.1%	18546	18964	2.5%	6112	3916	36.0%	1165945	1175539	0.9%	132	64	50.6%	1540	1491	15.6%			

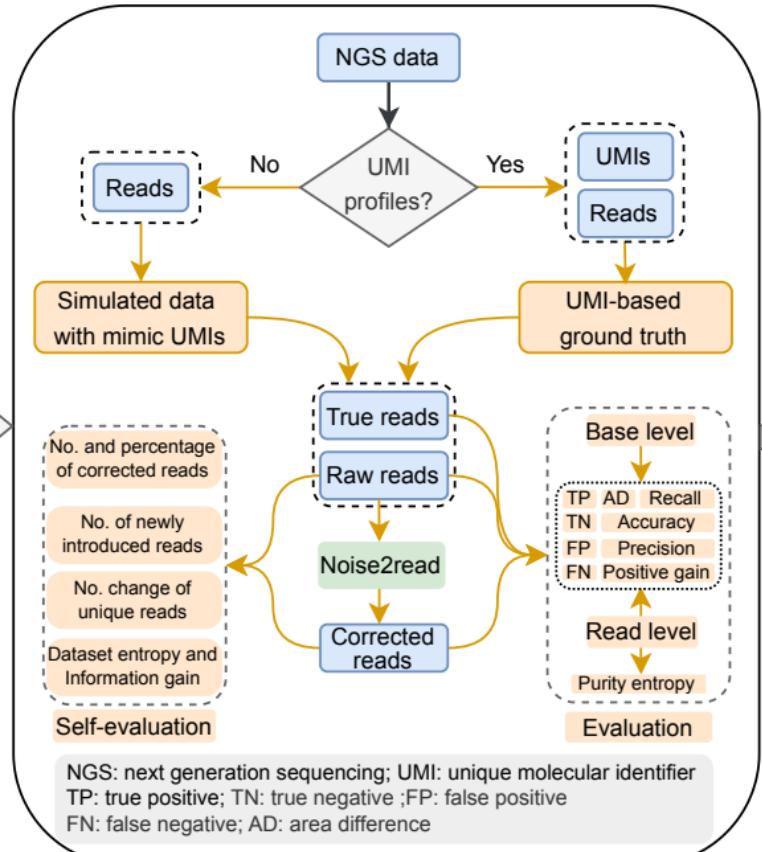
Note: Abbreviation: Corr., Correction; No., Number; PCT., Percentage; Ori., Original; Inc., Increase; Dec., Decrease.

Graphical Abstract

Noise2read: turn noise to signal in short read



Comprehensively evaluate noise2read's performance on UMI-based benchmarks



Noise2read has significant impact on downstream analysis

Noise2read's error correction

Increases genome abundance of Monkeypox virus by 52%

Improves isoform identification and SNP profiling

Significantly improves ABE & CBE editing outcomes

SNP: single-nucleotide polymorphism;
ABE: adenine base editor;
CBE: cytosine base editor