
i

Enhancing Decision-Making in

Software Development: An

Automated System for Software

Requirements Change Impact

Analysis

by Kareshna Zamani

Thesis submitted in fulfilment of the requirements for

the degree of

Doctor of Philosophy, in the School of Computer Science

Under the supervision of Dr. Fahimeh (Danna) Ramezani

University of Technology Sydney

Faculty of Engineering and Information Technology

July 2025

ii

CERTIFICATE OF ORIGINAL AUTHORSHIP

I, Kareshna Zamani, declare that this thesis is submitted in fulfilment of the

requirements for the award of Doctor of Philosophy in Computer Science, in the

Faculty of Engineering and Information Technology at the University of Technology

Sydney.

This thesis is wholly my own work unless otherwise referenced or acknowledged. In

addition, I certify that all information sources and literature used are indicated in the

thesis.

This document has not been submitted for qualifications at any other academic

institution.

This research is supported by the Australian Government Research Training Program.

Signature:

Date: 30/07/2025

Production Note:
Signature removed prior to publication.

iii

TABLE OF CONTENTS

CHAPTER 1. INTRODUCTION ... 1

1.1. Background ..1
1.2. Research Gap ...3
1.3. Research Questions ...4
1.4. Research Objectives ...5
1.5. Research Contributions ...7
1.6. Research Methodology ..11
1.7. Thesis Structure ...14

CHAPTER 2. LITERATURE REVIEW ..17

2.1. Introduction ...17
2.2. Software Requirements ...18
2.3. Evolution of Software Requirements ...19
2.4. Understanding Requirements Change ...21
2.5. Challenges in Managing Requirements Change ...23
2.6. Change Impact Analysis in Software Engineering ..24
2.7. Change Impact Analysis Background ...25
2.8. Machine Learning in CIA ..30
2.8.1. Decision Trees ..31
2.8.2. Random Forests ...32
2.8.3. Support Vector Machines (SVMs) ..32
2.8.4. Logistic Regression ...33
2.8.5. Gaussian Naive Bayes (NB) ..34
2.9. Natural Language Processing in CIA ...34
2.9.1. CoreNLP ...35
2.9.2. SpaCy ...36
2.10. BEIR: Benchmarking Information Retrieval ..38
2.10.1. Lexical Retrieval with BM25 ...39
2.10.2. Dense Retrieval Using Bi-Encoders ...40
2.10.3. Re-Ranking with Cross-Encoders ..41
2.11. Large Language Models ...41
2.11.1. Transformer Architecture ...42
2.12. RAG Model ...43
2.13. Vector Databases ...46
2.14. Mathematical Heuristics for Optimizing Similarity-Based Analysis ..46
2.15. Applied Evaluation Metrics ..47
2.15.1. Precision ...48
2.15.2. Recall ..48

iv

2.15.3. F1 Score ..48
2.15.4. Mean Reciprocal Rank (MRR) ...49
2.15.5. Normalized Discounted Cumulative Gain (NDCG) ..49
2.15.6. Partial Credit ...49
2.15.7. Precision@K and Recall@K ...50
2.15.8. Mean Average Precision (MAP) ..50
2.16. Related Literature Reviews ..50
2.17. Mapping Study ...51
2.17.1. Scope and Limitations ..52
2.17.2. Mapping Study Planning and Execution ...52
2.17.3. Search Strategy and Data Sources ..52
2.17.4. Study Selection Criteria ..53
2.17.5. Quality Assessment criteria ..55
2.17.6. Data Extraction ...56
2.17.7. Data Synthesis and Analysis ...57
2.17.8. Findings ..58
2.17.9. Evaluation metrics for ML approaches in RE ..75
2.17.10. Discussion ...76
2.17.11. Emerging Trends and Future Directions ...78
2.17.12. Threats to validity ...78
2.18. Summary ..79

CHAPTER 3. SOFTWARE REQUIREMENTS CHANGE IMPACT ANALYSIS (SRCIA) FRAMEWORK ..81

3.1. Introduction ...81
3.2. SRCIA Framework ..82
3.3. The AI models incorporated in the proposed SRCIA Framework ...84
3.4. Novelty of SRCIA ..86
3.5. Datasets Description ..87
3.6. Data Collection Procedure ...88
3.7. Data Annotation & Quality Verification ...89
3.8. Data Preparation..90
3.9. Implementation ...91
3.10. Summary ..91

CHAPTER 4. MACHINE LEARNING ALGORITHMS FOR SOFTWARE REQUIREMENTS CHANGE

IMPACT PREDICTION ..92

4.1. Introduction ...92
4.2. Technical Approach and Implementation ..93
4.3. Sequential Steps of the ML Approach ..95
4.4. Implementation ...98
4.4.1. Apply Class Rebalancing Techniques ...98

v

4.4.2. The Proposed ML Model ..101
4.4.3. Identifying the Dependencies ..102
4.4.4. Generating Features ..103
4.4.5. Hyperparameters ...103
4.4.6. Computational Cost Considerations ..104
4.5. Results Analysis and Evaluation ...110
4.6. Dataset Validity and Size ..112
4.7. Comparative Analysis with State-of-the-Art Approaches ..113
4.8. Importance of Precision vs. Recall ...113
4.9. Threats to Validity ..114
4.9.1. Internal Validity ...114
4.9.2. External Validity ...114
4.10. Discussion ..115
4.10.1. Limitations of the Proposed Solution ...115
4.10.2. Discussion on Algorithms ...116
4.10.3. Discussion on Datasets ...118
4.11. Summary ..120

CHAPTER 5. ENHANCING DECISION-MAKING IN SOFTWARE DEVELOPMENT: A DUAL-MODEL

FRAMEWORK FOR REQUIREMENTS CHANGE IMPACT ANALYSIS .. 122

5.1. Introduction ...122
5.2. Dual Model Framework ...123
5.3. NLP-Based Solution (CoreNLP and SpaCy Integration) ..124
5.4. Beir-Based Solution ..126
5.5. Data ...127
5.6. Implementation ...128
5.6.1. NLP Solution...128
5.6.2. Beir-Based Solution ..130
5.7. Application of Mathematical Heuristics ...131
5.8. Dual Model Evaluation Metrics ..133
5.9. Information Retrieval Models ..133
5.10. NLP Model Evaluation ..134
5.11. Results and Findings ..135
5.11.1. NLP Solution Results ...136
5.11.2. Beir-Based Results: ...140
5.12. Discussion ..144
5.12.1. Discussion on the NLP Solution Results ..144
5.12.2. Beir-Based Results Discussion ..145
5.12.3. Comparison Between NLP-Based and Rule-Based CIA Approaches148
5.12.4. Dataset-Specific Challenges & Remedies..150
5.13. Summary ..150

vi

CHAPTER 6. IMPLEMENTATION OF RETRIEVAL-AUGMENTED GENERATION (RAG) MODEL FOR

PREDICTING REQUIREMENT CHANGE IMPACT ... 153

6.1. Introduction ...153
6.2. Applications of LLMs in CIA ..155
6.3. Architecture and Functionality of LLMs ...156
6.4. LLMs as a Reasoning Engine in the RAG Framework ...156
6.5. Selected LLMs and Their Roles...157
6.6. RAG Architecture ...157
6.6.1. Retriever Component ..158
6.6.2. Generator Component ...158
6.7. RAG Applications in CIA ...159
6.8. Scalability of the RAG Framework for Enterprise-Level Software Systems160
6.9. Implementation Challenges & Limitations ...162
6.10. Vector Databases in RAG Systems ...163
6.10.1. Role of Vector Databases in the RAG Framework ..163
6.10.2. Advantages of Using Vector Databases ..164
6.11. LanceDB and FAISS in this Research ..164
6.12. Relevance to Requirements CIA ...164
6.13. Prompt Engineering Technique in the RAG Framework ..165
6.14. Implementation of the RAG-Based Solution ..165
6.15. Evaluation of the RAG System ...167
6.16. Results and Discussion ...169
6.17. Practical Implications of Precision and Recall Trade-Offs ..177
6.18. Summary ..178

CHAPTER 7. EVALUATION OF THE PROPOSED MODELS ... 180

7.1. Introduction ...180
7.2. Model Setup ..180
7.3. Model Evaluation ...182
7.4. Results Analysis ..183
7.4.1. ML Models ...183
7.4.2. NLP-Based Solution ..184
7.4.3. BEIR-Based Solution ...186
7.4.4. RAG System..187
7.4.5. Practical Implications & Performance Drivers ...189
7.4.6. Adaptability Across Software Domains ..190
7.5. Comparative Analysis ...191
7.6. Summary ..196

CHAPTER 8. CONCLUSIONS AND FUTURE WORKS .. 197

8.1. Introduction ...197

vii

8.2. Addressing Research Objectives ..197
8.3. Conclusions ..199
8.4. Research Limitations ..201
8.5. Future Works ...202

REFRENCES ………...……. 205

viii

Acknowledgments

First and foremost, I would like to express my deepest gratitude to my two supervisors,

Dr. Fahimeh(Danna) Ramezani and Dr. Mohsen Naderpour. Your guidance, wisdom, and

unwavering support have been instrumental in shaping this research and bringing it to

fruition. Your expertise and insightful feedback have not only enriched my academic

journey but also inspired me to reach new heights. I am profoundly grateful for the time,

effort, and encouragement you both provided throughout this challenging and

rewarding journey.

I am also grateful to Professor Didar Zowghi, for her support and encouragement at

the beginning of this journey. Her belief in my work and her early guidance helped lay

the foundation for this research.

I would also like to extend my sincere thanks to my husband, Hamidreza, whose

patience, understanding, and love have been my anchor during this demanding process.

Your constant support and belief in me gave me the strength to persevere, even during

the most challenging times.

To my beloved daughter, Artemis, thank you for your patience and bringing joy and

light to my life. You have been a source of endless inspiration and motivation. This

achievement would not have been possible without the sacrifices you both made.

A special thanks goes to my sisters, Mona and Panteha, who, despite being overseas,

continuously encouraged me to progress further and pushed me to strive for excellence.

Your words of encouragement were a constant source of motivation.

To my mother, thank you for your unwavering support from afar and for always

believing in me. Your trust and faith in my abilities have been a tremendous source of

strength throughout this journey.

I also wish to express my heartfelt gratitude to my late father, who passed away when

I was in high school. His inspiration to study and his memory has been guiding forces in

my life. Though he is not here to see this accomplishment, his spirit has been with me

every step of the way.

ix

Finally, I would like to thank everyone else who has contributed to my PhD journey,

whether through academic support, friendship, or encouragement. This work is as much

a testament to your support as it is to my efforts.

x

List of Publications

Here is the list of the author’s papers that overlap with this thesis:

1. An In-depth Exploration of Machine Learning Algorithms for Software

Requirements Change Impact Prediction, Kareshna Zamani, Mohsen

Naderpour, Fahimeh Ramezani, Mukesh Prasad, 2024, Neural Computing and

Applications journal, under review

2. Machine Learning in Requirements Engineering: A Mapping Study, Kareshna

Zamani, Didar Zowghi, Chetan Arora, (2021), pp. 116-125, REW 2021:

Proceedings of the 2021 IEEE 29th International Requirements Engineering

Conference Workshops, Notre Dame, Ind., E1

3. A Prediction Model for Software Requirements Change Impact. Kareshna

Zamani, 2021 36th IEEE/ACM International Conference on Automated

Software Engineering (ASE)

xi

List of Figures

FIGURE 1.1.THE DESIGN SCIENCE METHODOLOGY PROCESS MODEL [9] ... 14
FIGURE 2.1.SOFTWARE REQUIREMENT PROCESS (SOMMERVILLE, 2004) .. 20
FIGURE 2.2.SELECTION OF THE PRIMARY STUDIES ... 57
FIGURE 2.3.NUMBER OF RESULTED ARTICLES PUBLISHED PER YEAR ... 60
FIGURE 2.4.DISTRIBUTION OF ALGORITHM TYPES BASED ON FUNCTION SIMILARITY .. 64
FIGURE 2.5.THE NUMBER OF USED ALGORITHMS IN SELECTED STUDIES .. 67
FIGURE 2.6.THE FREQUENCY OF MACHINE LEARNING CHALLENGES .. 67
FIGURE 2.7.EVALUATION METRICS FOR THE CLASSIFICATION TASK ... 77
FIGURE 2.8.EVALUATION METRICS FOR THE CLUSTERING TASK .. 77
FIGURE 3.1.SOFTWARE REQUIREMENTS CHANGE IMPACT ANALYSIS (SRCIA) FRAMEWORK .. 82
FIGURE 3.2.DETAILED VIEW OF SRCIA FRAMEWORK ... 83
FIGURE 4.1.ML MODEL APPROACH ... 94
FIGURE 4.2.DATASET-W CLASS DISTRIBUTION OF ORIGINAL AND RESAMPLED DATA ... 101
FIGURE 4.3.DATASET-I CLASS DISTRIBUTION OF ORIGINAL AND RESAMPLED DATA .. 101
FIGURE 4.4. DATASET-O CLASS DISTRIBUTION OF ORIGINAL AND RESAMPLED DATA ... 101
FIGURE 5.1.DUAL-MODEL FRAMEWORK ... 125
FIGURE 5.2.CLUSTERED BAR CHART OF PRECISION, RECALL, AND F1-SCORE OF THE NLP-BASED MODEL 137
FIGURE 5.3.CLUSTERED BAR CHART OF AVERAGE METRICS OF THE BEIR-BASED MODEL .. 141
FIGURE 6.1.THE ARCHITECTURE OF RAG MODEL.. 157
FIGURE 7.1.PERFORMANCE COMPARISON OF ML MODELS ACROSS DATASETS ... 184
FIGURE 7.2.NLP MODEL PERFORMANCE ACROSS DATASETS... 185
FIGURE 7.3.PERFORMANCE METRICS OF BEIR-BASED SOLUTION ACROSS DATASETS ... 187
FIGURE 7.4.RAG MODEL PERFORMANCE COMPARISON ACROSS DATASET .. 189
FIGURE 7.5.MODEL COMPARISON ON DATASET-W (LINGUISTICALLY DIVERSE DATASET) .. 194
FIGURE 7.6.MODEL COMPARISON ON DATASET-I (STRUCTURED DATASET).. 195
FIGURE 7.7.MODEL COMPARISON ON DATASET-O (COMPLEX AND UNSTRUCTURED DATASET..................................... 195

xii

List of Tables

TABLE 2.1.THE NUMBER OF RESULTED ARTICLES .. 54
TABLE 2.2. STUDY CATEGORIES ... 60
TABLE 3.1. THE NUMBER OF DATA INPUT FROM THREE INDUSTRY PARTNERS ... 89
TABLE 4.1. DISTRIBUTION OF CLASSES 1 AND 0 ... 99
TABLE 4.2. CLASS DISTRIBUTION BEFORE AND AFTER RESAMPLING .. 100
TABLE 4.3. ML ALGORITHMS RESULTS ... 106
TABLE 5.1. THE OVERALL EVALUATION METRICS FOR NLP SOLUTION ... 137
TABLE 5.2. NLP SOLUTION RESULTS .. 138
TABLE 5.3. BEIR-BASED AVERAGE RESULTS ... 141
TABLE 5.4. BEIR-BASED RESULTS .. 142
TABLE 6.1. RAG AVERAGE RESULTS ... 174
TABLE 6.2. RAG SOLUTION RESULTS .. 175
TABLE 7.1. RAG MODEL'S F1-SCORES ACROSS THE THREE DOMAINS ... 191

xiii

List of Abbreviations

Abbreviation Full Form

CIA Change Impact Analysis

NLP Natural Language Processing

IR Information Retrieval

RAG Retrieval-Augmented Generation

BM25 Best-Matching 25

ML Machine Learning

SVM Support Vector Machine

NB Naive Bayes

LLM Large Language Model

FAISS Facebook AI Similarity Search

MRR Mean Reciprocal Rank

F1 F₁-Score

API Application Programming Interface

VRAM Video Random-Access Memory

ANN Approximate Nearest Neighbor

xiv

Abstract

Change Impact Analysis (CIA) is a critical task in software requirements engineering,

aiming to predict the effects of requirement changes on related artifacts and systems.

Traditional CIA methods often rely on manual inspection and heuristic-based reasoning,

which are time-consuming and error-prone. This research addresses these limitations

by proposing an automated framework for Software Requirements Change Impact

Analysis (SRCIA), leveraging advances in Machine Learning (ML), Natural Language

Processing (NLP), and Artificial Intelligence (AI).

The framework integrates a range of approaches, including traditional ML models,

NLP-based techniques, BEIR-based retrieval methods, and a Retrieval-Augmented

Generation (RAG) system, to assess their effectiveness across multiple datasets of

varying complexity. Evaluation metrics such as precision, recall, F1 score, BLEU, and

ROUGE are used to benchmark performance.

A central contribution is the development of a RAG-based solution that combines

Large Language Models (LLMs) with modern information retrieval techniques. By

incorporating vector database tools like LanceDB and FAISS, along with prompt

engineering strategies, the framework achieves accurate and context-aware impact

predictions. This enables robust adaptation to real-world, unstructured, and evolving

requirements. The research provides a practical, scalable, and extensible solution to

support automated CIA in complex software projects.

1

Chapter 1.

Introduction

1.1. Background

Requirements engineering (RE) plays an essential role in capturing correct and

complete requirements and is considered one of the most critical and challenging stages

of developing software. Errors in the requirements can be expensive in terms of lost

time, revenue, reputation, and project sustainability (Beecham, Hall & Rainer 2005).

When a single requirement statement changes within software requirements

specification (SRS), it may trigger multiple changes throughout the SRS. A manual

analysis of how these requirement changes affect other requirements is time and effort-

intensive and error-prone. Requirements changes can potentially lead to inconsistencies

in SRS, particularly in large systems(Arora et al. 2015a; Nejati et al. 2016). Therefore,

analyzing the impact of requirements changes is essential to ensure accuracy, reliability,

and consistency. It is also necessary to assess the effects of changes on downstream

artifacts, such as software design and source code (Bjarnason et al. 2014).

This thesis introduces a novel requirements engineering change impact analysis (CIA)

framework designed for application during the software development phase. This

framework leverages requirement artifacts as the primary source for Enhancing

Decision-Making in Software Development by conducting impact analysis.

Chapter 1

2

The rapid evolution of software systems has brought unprecedented complexity to

their development and maintenance processes. Modern software applications span

diverse domains, including healthcare, finance, and education, demanding scalable and

efficient engineering methodologies. Software requirements are a crucial stage in the

software development lifecycle, serving as the foundation for understanding the

software's purpose, functionality, and boundaries. This stage involves the meticulous

process of identifying, analyzing, and defining what the software is expected to

accomplish (Zowghi & Paryani 2003).

 Among the various facets of software engineering, requirements engineering serves

as the cornerstone, defining the specifications that guide development teams in creating

functional and reliable systems. So, it plays a critical role in ensuring that the needs and

preferences of all stakeholders are adequately captured and documented (Li & Huang

2018). However, the dynamic nature of software projects often necessitates frequent

modifications to requirements, leading to the need for robust mechanisms to manage

and assess the impact of such changes effectively.

Change Impact Analysis (CIA) has emerged as a critical process within RE, addressing

the challenge of identifying and understanding the ramifications of altering software

requirements. Changes may arise due to evolving customer needs, technological

advancements, or regulatory updates, and their ripple effects can span multiple

components of a software system. Without systematic CIA, these changes can lead to

defects, delays, and increased costs, and jeopardizing project outcomes.

Traditional approaches to CIA rely heavily on manual techniques and rule-based

methods, which, while effective in certain scenarios, struggle to cope with the growing

complexity and scale of modern software systems. The advent of advanced

computational models, particularly in the domains of machine learning (ML) and natural

language processing (NLP), has provided new opportunities to automate and enhance

the accuracy of CIA. These models enable engineers to analyze relationships and

dependencies among requirements with greater precision, reducing the likelihood of

overlooked impacts and facilitating proactive decision-making.

3

Recent advancements in ML, NLP, and information retrieval have revolutionized the

way software requirements are analyzed. Techniques such as Retrieval-Augmented

Generation (RAG) and frameworks like BEIR combine powerful retrievers with

generative models, enabling contextually rich analyses of requirements. These models

utilize structured and unstructured data, capturing syntactic and semantic nuances that

traditional approaches may miss. By employing transformer-based architecture and

embedding techniques, these advanced systems align textual descriptions with

potential impact areas, offering significant improvements in both precision and recall.

This chapter outlines the research gaps /motivations, research questions, objectives,

contributions, methodology and the structure of the thesis.

1.2. Research Gap

Despite considerable research efforts in CIA, particularly in software maintenance and

evolution, there is a substantial gap regarding the use of predictive models for CIA in RE.

Current approaches focus on specific aspects like traceability or dependency analysis

without leveraging ML's predictive capabilities. For example, (Arora et al. 2015a) relied

on correlation rates to evaluate change impacts without early-stage dependency

definition, which lacks the predictive power needed for proactive impact analysis.

Similarly, (Hassine, Rilling & Hewitt 2005) applied slicing and dependency analysis at the

use case map level, limited by its dependency on predefined structures. The use of

semantic role labeling (SLR) by (Baumer, White & Tomlinson 2010) improved

relationship identification but did not extend to predictive modeling.

The motivation for this research stems from the identified gap in current

methodologies. By integrating ML into CIA, this research aims to develop a predictive

model that enhances the ability to manage requirements changes proactively. This

model will be evaluated using real-world datasets to ensure its practical applicability and

effectiveness, providing a robust tool for software project managers to make informed

decisions regarding change requests.

Chapter 1

4

ML offers significant advantages for CIA, particularly in terms of predictive accuracy.

ML algorithms can analyze historical data to identify patterns and predict future changes

with high precision, which is essential for proactive CIA. Furthermore, ML is adept at

handling the complexity and dynamic nature of software requirements and their

interdependencies, outperforming traditional rule-based methods. The scalability of ML

models allows them to process large datasets efficiently, making them suitable for large-

scale projects where traditional methods fall short. Additionally, ML models have the

capability to continuously learn and adapt from new data, thereby improving their

predictive capabilities over time.

1.3. Research Questions

Software requirements constantly evolve, and new requirements often emerge

(Brucker & Julliand 2014). Changeability has continued to be one of the critical software

development challenges since Brooks identified it in his landmark paper (Brooks, F.

1987). Requirement changes present many challenges that hinder completing a project

that precisely fulfills the client's demands.

CIA is a crucial task in RE as changes to the requirements are the main reason for

software evolution (Bjarnason et al. 2014). As discussed in Section 1, performing

requirements CIA manually might lead to additional complexity, extra cost, and time.

Due to the growing and dynamic nature of requirements and various variables such as

change type, requirement interdependencies, and impact of change, managing

requirements change is highly complex and challenging (Morkos, Shankar & Summers

2012). Another challenge that imposes a restriction is generalizability. Prior studies

explicitly mentioned the need for further experiments in other domains, especially with

the help of domain experts, to determine whether their approaches and tools can be

generalized, although this leads to high costs (e.g., (Arora et al. 2019; Hein, Voris &

Morkos 2018)). An automated solution is thus required to perform CIA, as changes

happen iteratively. For instance, an accurate model to predict new changes and their

impact on the system can benefit requirements analysts in deciding if a change request

should be accepted or rejected.

5

The ability to anticipate and analyze a change in requirements, predict its progression,

and determine the effect early in the requirements engineering stages would enable

requirements analysts to make better decisions about implementing change, especially

in large-scale projects (Hein, Voris & Morkos 2018; Morkos & Summers 2010). This may

be used to estimate the value of implementing requirement changes (Morkos &

Summers 2010). This research was motivated by the need to present an automated

approach for CIA using neural information retrieval approaches. This research attempts

to address the following research questions:

RQ1: How can AI techniques, specifically NLP and ML, be applied to analyze the impact

of requirement changes on other requirements and software artifacts?

RQ2: How can information retrieval techniques enhance the assessment of

requirement changes on software artifacts?

RQ3: Which AI techniques or combinations of techniques are best suited for accurately

predicting the impacts of requirement changes?

RQ4: How can these techniques maintain accuracy and precision across different

application domains with distinct requirements specifications?

RQ5: How can requirements CIA be automated using the insights gained from AI and IR

techniques?

1.4. Research Objectives

The primary aim of this research is to develop a predictive model capable of

forecasting which software requirements will be impacted by a given change. The goal

is to support project managers in making informed decisions regarding the acceptance

or rejection of specific requirement changes, ultimately enhancing the efficiency and

accuracy of the software development process.

This research introduces an algorithmic-based prediction model that leverages ML and

NLP techniques to forecast the impact of requirement changes. The model aims to

automate CIA and improve upon traditional, manual methods, which are often time-

Chapter 1

6

consuming and error-prone, especially in large-scale software projects. The key

objectives of the research are as follows:

Objective 1: Develop methodologies for comprehensive data preparation and feature

engineering to support the proposed CIA models.

Objective 2: Develop a framework for CIA using the capabilities of NLP and ML.

Objective 3: Implement information retrieval techniques to enhance the assessment

of requirement change impacts on software artifacts.

Objective 4: Embed AI and IR techniques to determine the most effective methods for

accurate prediction of requirement change impacts.

Objective 5: Analyse and evaluate the robustness and applicability of these techniques

across different application domains with distinct requirements specifications.

Objective 6: Design and implement an automated framework that integrates AI and

IR techniques to predict the impacts of requirement changes on software artifacts and

other requirements.

The significance of this research lies in its potential to advance the field of software

requirements management by offering a scalable, automated solution to CIA. When

dealing with smaller projects or a limited number of changes, manual impact analysis,

while time-consuming, remains feasible. However, as complexity and volume of changes

increase, manual methods become inefficient and error-prone. Automating CIA for

large-scale, rapidly evolving software specifications can drastically reduce human error

while enhancing both the speed and accuracy of analysis.

This research focuses on automating the prediction of future requirement changes by

utilizing historical change requests accumulated over periods of one to three months.

ML techniques are employed to predict the likely impact of new changes, providing

valuable insights into how requirements will evolve throughout the software lifecycle

(Basri et al. 2016).

Precise CIA is crucial for informed decision-making during software development,

particularly when planning and prioritizing requirements in both traditional and agile

7

methodologies. By integrating existing manual approaches with an advanced predictive

model, this research aims to improve the effectiveness of software development by

providing accurate, real-time predictions on the impact of requirement changes.

1.5. Research Contributions

This research makes several significant contributions to the domain of software

requirements engineering, focusing on developing innovative solutions for predicting

the impacts of requirement changes. Each contribution corresponds to the outcomes of

the research objectives, as outlined below:

1. Enhanced Dataset Preparation for Comprehensive Evaluation

A key contribution of this research lies in the comprehensive preparation of datasets

used for training and evaluating the proposed models. Three distinct datasets, Dataset-

I, Dataset-W, and Dataset-O, were curated from real-world sources, encompassing a

total of 891 requirements and 77 change requests. These datasets were carefully

selected and preprocessed to ensure they represent varying levels of complexity,

domain-specific terminologies, and linguistic diversity, providing a robust testbed for the

proposed frameworks. The rationale for selecting these datasets is further elaborated

in Chapter 3, where their complexity, linguistic characteristics, and representativeness

of various application domains are discussed in detail. This justifies their suitability for

evaluating the adaptability and robustness of the proposed models.

The preparation process involved extensive normalization of the data to standardize

terminologies and linguistic structures across datasets, coupled with tokenization to

break down requirements and change requests into manageable components. Semantic

relationships within the requirements were preserved and enhanced through the

generation of sentence embeddings using the all-MiniLM-L6-v2 model. Additionally,

addressing data imbalance posed by diverse requirements was a crucial focus;

techniques such as oversampling for minority classes and augmenting

underrepresented datasets were employed to reduce bias and improve model

performance.

Chapter 1

8

Furthermore, this research introduced a benchmark dataset tailored specifically for

requirement change impact analysis, categorized by complexity, length, and domain

specificity. These benchmark datasets provide a valuable resource for future studies and

facilitate cross-comparison of methods in this domain. To ensure high-quality and

reliable evaluation, domain experts manually annotated change requests to establish

relationships with impacted requirements, thereby creating a strong ground truth. The

datasets also emphasize generalizability, representing a wide array of application

domains such as Web Service, Telecommunications and Satellite, enabling the

evaluation of the proposed models' adaptability across diverse contexts.

This contribution underscores the importance of high-quality dataset preparation in

advancing the field of requirements change impact analysis. The carefully curated

datasets serve as a foundation for training, evaluation, and future research, enhancing

the scalability, precision, and robustness of automated solutions in software

requirements engineering.

2. Development of AI-Based framework for Impact Analysis:

Based on the second research objective, this work contributes an AI-based approach

that leverages Natural Language Processing (NLP) techniques such as dependency

parsing, named entity recognition (NER), and term frequency-inverse document

frequency (TF-IDF) for feature extraction. Additionally, it incorporates ML models,

including Random Forest, Support Vector Machines (SVM), and Decision Trees, to

analyze the impact of requirement changes on other requirements and software

artifacts. This contribution demonstrates the capability of combining syntactic,

semantic, and contextual analysis to improve precision and recall in impact analysis,

offering a novel perspective on dependency analysis in software engineering.

3. Designing of an Information Retrieval Framework:

Addressing the third research objective, this research designs an IR-based framework

for assessing the impacts of requirement changes. The framework incorporates state-

of-the-art retrieval techniques, including BM25 for lexical matching, Bi-Encoders for

dense vector similarity, and Cross-Encoders for re-ranking. These techniques collectively

9

enhance the retrieval and ranking of relevant requirements in response to change

requests, ensuring both lexical and semantic alignment with the query. By leveraging

these advanced retrieval methods, the framework achieves a balance between precision

and recall, making it a robust tool for impact analysis in dynamic software engineering

contexts

4. Integration of AI and IR Techniques in a Hybrid Framework:

In line with the fourth research objective, a hybrid framework that integrates AI and

IR techniques is proposed and implemented. This hybrid framework integrates NLP-

based and BEIR-based approaches for predicting requirement change impacts. The NLP-

based approach leverages CoreNLP and SpaCy for linguistic feature extraction, including

syntactic parsing and named entity recognition while the BEIR-based approach

combines lexical retrieval, dense retrieval, and re-ranking. By integrating these

approaches, the framework enhances the precision of semantic similarity

measurements and the recall of relevant impacted requirements. The results

demonstrate that combining these techniques improves the accuracy and robustness of

impact predictions, particularly in handling datasets with diverse linguistic structures.

This contribution sets a foundation for future hybrid approaches in requirements

engineering, offering a balanced and adaptive solution for complex software

development scenarios.

5. Introduced a systematic approach to develop a domain-specific framework by

evaluating various AI techniques across different datasets.

Following the fifth research objective, the research evaluates the proposed solutions

across three real-world datasets (prepared from contribution 1), covering 891

requirements and 77 change requests. The results highlight the generalizability of the

approaches and their adaptability across varying application domains. This evaluation

provides empirical evidence of the frameworks' effectiveness, contributing valuable

insights for practitioners and researchers working with diverse datasets.

The proposed domain-specific framework refers not to a one-off, statically tailored

solution, but to a dynamically adaptable architecture that continuously learns from new,

Chapter 1

10

domain-specific data. Rather than hard-coding rules or manually tuning parameters for

each application area, our framework employs transfer learning, initializing models on a

broad corpus of software-engineering documents, and then fine-tunes on smaller,

project-level datasets. This two-stage approach ensures the core model captures

general change-impact patterns (e.g. traceability relations, dependency structures)

while adapting dynamically to the terminology, style, and process nuances of each target

domain.

6. Design an automated/domain-specific system for Requirement Change Impact

Prediction using the integrated AI/IR technique suitable different datasets

The sixth and final contribution is the development of an automated framework

leveraging the Retrieval-Augmented Generation (RAG) system, which integrates AI and

IR techniques for predicting requirement change impacts. This framework employs

advanced vector retrieval methods, including LanceDB and FAISS, for efficient context

retrieval and combines them with generative capabilities of LLMs, such as Phi 3.5, to

deliver accurate and context-aware predictions.

Although RAG has become popular in open-domain QA and chatbots, our

implementation distinguishes itself in several important ways. First, we employ a

structured vector index built on LanceDB, which organizes traceability-annotated

artifacts, such as requirements, design documents and issue logs, so that retrieval

emphasises semantically and procedurally relevant passages rather than mere surface-

level similarity. Second, we use hybrid prompt engineering: rather than providing the

model with raw text snippets alone, our prompts incorporate contextual signals like

requirement IDs and change-request metadata alongside the retrieved content, guiding

Phi 3.5 to generate domain-specific, accurate responses. Finally, we introduce an

iterative retrieval–generation loop, in which initial candidate impacts are re-scored

against the index and the top results are fed back into the model for a second synthesis

pass. This two-pass cycle significantly enhances both precision and explainability

compared with one-shot RAG approaches.

By dynamically adapting retrieval and generation processes to the characteristics of

different datasets, the system ensures relevance and precision across diverse

11

requirements. This automated framework significantly reduces manual effort and

enhances decision-making processes in software requirements engineering, offering

scalability, adaptability, and efficiency in handling complex and evolving requirements

landscapes.

1.6. Research Methodology

In conducting research, several methodologies can be employed depending on the

nature of the research questions and the objectives of the study. The most commonly

used methodologies include qualitative research, quantitative research, mixed

methods, design science research, and empirical studies.

• Qualitative Research is primarily exploratory and is used to gain an understanding

of underlying reasons, opinions, and motivations. It provides insights into the

problem and helps to develop ideas or hypotheses for potential quantitative

research. Methods such as interviews, focus groups, and case studies are typically

used in qualitative research.

• Quantitative Research involves systematic investigation of phenomena by gathering

quantifiable data and performing statistical, mathematical, or computational

techniques. This method is often used to test hypotheses or measure variables and

relationships. Surveys, experiments, and observational studies are common

methods used in quantitative research.

• Mixed Methods Research combines both qualitative and quantitative approaches,

allowing for a more comprehensive analysis by leveraging the strengths of both

methodologies. This approach is particularly useful when the research question

requires both the depth of qualitative insights and the generalizability of

quantitative findings.

• Design Science Research Methodology (DSRM) focuses on the creation and

evaluation of artifacts designed to solve identified problems or achieve specific

goals. It is especially prevalent in fields like information systems and software

Chapter 1

12

engineering, where the development of new tools, methods, or frameworks is

necessary.

• Empirical Studies involve the collection and analysis of data from real-world

observations or experiments. This methodology is particularly useful for testing

hypotheses, validating models, or evaluating the practical effectiveness of

solutions. Empirical research can provide robust evidence about the behavior of a

system or the impact of specific interventions.

The research methodology employed in this study is grounded in the DSRM, a

structured approach commonly used to develop knowledge through the creation of

artifacts that serve as solutions to defined problems (Hevner et al. 2004); (Peffers et al.

2007). DSRM is particularly well-suited for this research, as it allows for the systematic

design, development, and evaluation of new methods and models to address specific

challenges in software requirements engineering and ML.

Our research follows the key stages of DSRM, as depicted in Figure 1.1, beginning with

the identification of the problem. This initial phase involved conducting a

comprehensive systematic literature review (SLR) focusing on the application of ML in

requirements engineering. The goal of this review was to assess the effectiveness of ML

in improving the requirements engineering process and its associated artifacts, as well

as to identify gaps in the current literature (Kitchenham & Charters 2007).

The literature review was conducted following the Evidence-Based Software

Engineering (EBSE) paradigm, as described by Kitchenham et al. (2004). This approach

involved defining specific research questions, implementing a robust search strategy,

compiling a list of related studies, and applying strict inclusion and exclusion criteria.

Additionally, we employed backward snowballing and manual searches to ensure that

all relevant studies were captured. The review was limited to papers published between

2010 and 2020, a period marked by a significant increase in publications on the

intersection of ML and RE. This timeframe was chosen to focus on the most recent

advancements in the field. This thesis limits its primary literature review to works

published between 2010 and 2020. During this period, the foundations of requirements-

change impact analysis such as supervised classification models, rule-based traceability

13

techniques, and early NLP integrations—were established. While significant advances

have occurred since 2020 (notably the application of transformer-based models to

traceability), these are reviewed comprehensively in Chapter 2 to highlight how they

extend the pre-2021 methodologies examined.

From the selected papers, we extracted data on various aspects, including the ML

techniques employed, the specific problems and challenges addressed, the datasets

utilized, and the evaluation metrics used to assess the performance of ML techniques in

RE. The analysis of 65 relevant papers revealed that ML is a powerful tool for automating

RE tasks, addressing complexity, and reducing costs and development time. These

insights were instrumental in refining the research objectives and aims, guiding the

subsequent stages of our methodology.

With a clear understanding of the research problem and objectives, the next phase

involved selecting appropriate datasets and defining the design cycles for the study. This

step included a literature review on public datasets, followed by the collection of

industry datasets where necessary, to ensure that the data used in our research was

both relevant and comprehensive.

The design and development phase was then initiated, focusing on two primary

models: the ML model and the NLP model. These models were developed iteratively,

leveraging information retrieval techniques to enhance their accuracy and effectiveness.

The design process was informed by the research questions identified earlier, ensuring

that the developed models addressed the key challenges in software requirements CIA.

Once the models were developed, they were subjected to a rigorous demonstration

phase, where their practical applicability was tested in real-world scenarios. This was

followed by an evaluation phase, in which the models were assessed based on known

performance parameters, such as accuracy, efficiency, and scalability. The evaluation

provided critical feedback, which was used to refine the models further.

Finally, the results and findings from the research were communicated, contributing

both to the academic body of knowledge and to practical applications in the field of

software engineering. The iterative nature of DSRM ensured that each stage of the

Chapter 1

14

research process was interconnected, with continuous feedback loops facilitating the

refinement of the research outcomes.

Figure 1.1.The Design Science Methodology Process Model [9]

1.7. Thesis Structure

This thesis is organized into the following chapters:

Chapter 1: Research Background and Objectives

This chapter introduces the research problem, providing background information on

software requirements and the challenges of managing changes in requirements. It

outlines the research aims, objectives, and contributions, setting the foundation for the

study by addressing gaps in the literature and defining the research problem.

Chapter 2: Literature Review

Chapter 2 presents a comprehensive review of related works, focusing on software

requirements change impact analysis, ML techniques, and NLP. The chapter also outlines

the research questions and methodology for the mapping study that guided the

systematic literature review.

Chapter 3: Research Framework

This chapter details the core framework for CIA developed in this research. It provides

a structured view of the research stages, explaining the datasets used, the data

15

collection process, and the implementation of the proposed solutions. This chapter

establishes the groundwork for understanding the methodologies applied throughout

the thesis.

Chapter 4: Implementation of ML Algorithms

This chapter discusses the application of ML techniques for predicting the impact of

requirement changes. It provides a detailed description of the technical approach, the

implemented ML models, and the results obtained from the analysis. The chapter also

includes a comparative evaluation of state-of-the-art algorithms.

Chapter 5: Implementation of the Dual-Model Framework

Chapter 5 introduces a dual-model framework that integrates NLP-based solutions

with BEIR benchmark-based retrieval techniques. It explains the structure of the

framework, including data collection, verification, preparation, and methodology

branches. The chapter also presents the evaluation metrics and results of the

implemented solutions, offering a comprehensive analysis of the effectiveness of the

framework.

Chapter 6: Implementation of Retrieval-Augmented Generation (RAG) Model

Chapter 6 focuses on the use of the RAG model to enhance the predictive accuracy of

CIA. It provides an overview of the RAG model, its implementation, and a discussion on

how it compares with other methods used in this research. The chapter concludes with

insights into future research directions and opportunities for improvement.

Chapter 7: Evaluation of the proposed models

This chapter compares the performance of ML, NLP-based, BEIR-based, and RAG

models across structured, semi-structured, and unstructured datasets. Using metrics

like precision, recall, and F1-score, along with visualizations such as radar charts, it

highlights each model’s strengths and limitations. The chapter concludes by discussing

the practical implications for CIA and proposing a hybrid framework to address varying

dataset complexities.

Chapter 1

16

Chapter 8: Conclusions and future work

Chapter 8 serves as the concluding chapter of this thesis, summarizing the key findings

and contributions of the research while reflecting on how the objectives and research

questions outlined in Chapter 1 were addressed. It synthesizes insights from the

evaluations and analyses presented in previous chapters, emphasizing the significance

of the developed frameworks and techniques in advancing the field of requirements

change impact analysis. This chapter delves into the broader implications of the research

findings, outlining how they contribute to the field and offering recommendations for

potential advancements and enhancements to the proposed solutions. By integrating

the outcomes of the study with its broader implications, Chapter 8 provides a cohesive

and forward-looking conclusion to this research.

17

Chapter 2.

Literature Review

2.1. Introduction

This chapter provides a comprehensive review of the existing literature in software

requirements engineering and CIA. It establishes the foundational concepts necessary

to understand the research context, including the evolution of software requirements,

the nature and challenges of managing requirements changes, and the role of CIA in

software engineering.

The chapter begins by introducing key concepts in software requirements engineering,

including the processes of requirements elicitation, analysis, validation, and

documentation. It explores the evolution of requirements engineering practices,

highlighting the shift from early informal approaches to structured, iterative, and agile

methodologies. The dynamic nature of software requirements and their susceptibility

to change are examined, along with the classification and implications of different types

of requirement changes, corrective, adaptive, perfective, and preventive.

Next, the chapter delves into the background and significance of CIA in software

engineering, tracing its origins and development. It discusses various CIA approaches,

including dependency analysis and traceability analysis, and explores how CIA addresses

the challenges posed by evolving requirements in complex software systems. Special

emphasis is placed on the role of automated techniques, such as NLP and ML, in

enhancing the efficiency and precision of CIA.

Chapter 2

18

The chapter also presents a systematic mapping study that surveys and categorizes

the existing body of research on requirements engineering and CIA up to 2020. This

mapping study identifies key contributions, methodologies, and gaps in literature,

serving as a basis for positioning the current research within the broader academic

landscape. However, as the mapping study focuses on works published until 2020,

recent advancements such as Retrieval-Augmented Generation (RAG) systems and Beir-

based approaches are not included. These modern techniques, although promising,

were introduced after the timeframe of this study and are beyond its scope.

By synthesizing insights from prior studies, this chapter highlights the need for a novel

CIA framework tailored to address the challenges of managing requirements changes

during the software development phase.

2.2. Software Requirements

The primary objective of requirements engineering is to facilitate a consensus among

stakeholders—such as product managers, product owners, business analysts,

customers, and developers—by clearly articulating their needs and aligning them with

the project’s goals. This process is vital because errors or oversights in the requirements

phase can have far-reaching consequences, leading to costly delays, revenue loss,

damage to reputation, and potentially jeopardizing the project's sustainability

(Beecham, Hall & Rainer 2005).

One of the first steps in this process is requirements elicitation, which involves

gathering business requirements through interactions with key stakeholders. This stage

is essential for understanding the demands and expectations that will shape the

software's development. Elicitation transforms a set of informal ideas into formal,

structured expressions that can guide subsequent stages of development (del Águila &

del Sagrado 2016a).

Following elicitation, these requirements undergo rigorous analysis to validate their

feasibility and ensure that they can be realistically implemented within the system. This

step involves not only technical assessments but also considerations of how the

19

requirements align with the overall business objectives. The culmination of this stage is

the creation of requirements documents, which are then validated with the

stakeholders to ensure completeness and accuracy.

A well-crafted and comprehensive requirements specification is one of the most

critical artifacts in the requirements engineering process. It serves as the blueprint for

the entire software development process, guiding the project from inception through to

completion. This document is not merely a technical manual but a living document that

reflects the negotiated compromises and agreed-upon features that will drive the

project forward.

Overall, requirements engineering can be viewed as the systematic process of

identifying, documenting, and managing the features and services that the software

must provide, along with the constraints that govern its development and operation.

This process is integral to the success of any software project, as it lays the groundwork

for all subsequent development activities.

Figure 2.1 illustrates the workflow of software requirements engineering. The process

begins with a Feasibility Study, resulting in a Feasibility Report that informs the

Requirements Elicitation and Analysis stage. During this phase, System Models are

developed, and User and System Requirements are articulated. These inputs feed into

the Requirements Specification, which is a formal document outlining the system's

functionalities and constraints. This specification is then subjected to Requirements

Validation to ensure accuracy and completeness before it is finalized as the

Requirements Document. Each step in this workflow is interconnected, reflecting the

iterative nature of software development, where validation and feedback loops are

critical to refining and ensuring the quality of the requirements.

2.3. Evolution of Software Requirements

The evolution of software requirements is a reflection of the broader changes in

software engineering practices and the increasing complexity of software systems. Over

the past several decades, the process of defining and managing software requirements

Chapter 2

20

has undergone significant transformations, driven by advancements in technology,

methodologies, and the growing demand for more complex and adaptive software

systems.

Figure 2.1.Software Requirement Process (Sommerville, 2004)

A. Early Approaches to Requirements Engineering

In the early days of software development, requirements engineering was a relatively

informal process. Requirements were often captured through ad-hoc discussions and

documented in unstructured formats, such as text-based specifications or simple

diagrams. These early approaches were adequate for small-scale projects where the

scope of the software was limited, and the development team was small. However, as

software systems grew in size and complexity, the limitations of these informal methods

became apparent. Requirements were frequently ambiguous, incomplete, or

inconsistent, leading to costly rework and project delays.

B. The Advent of Structured Requirements Engineering

The 1970s and 1980s marked a significant shift in requirements engineering with the

introduction of structured methodologies. The Waterfall model, one of the earliest

formalized software development methodologies, emphasized a linear approach to

software development where requirements were defined upfront and served as the

foundation for all subsequent stages of development (Royce, 1970). This model

21

necessitated a more rigorous approach to requirements specification, leading to the

development of structured techniques for requirements elicitation, analysis, and

documentation.

During this period, the notion of "correctness" in requirements became a central

focus. Requirements needed to be clear, precise, and verifiable to ensure that the final

software product met the intended goals. Techniques such as data flow diagrams (DFDs)

and entity-relationship diagrams (ERDs) were introduced to model requirements in a

more structured and systematic way (Yourdon, 1989).

C. The Emergence of Iterative and Agile Approaches

The late 1980s and 1990s saw the emergence of iterative and incremental

development methodologies, such as the Spiral model (Boehm, 1988), which introduced

the concept of revisiting and refining requirements throughout the software

development lifecycle. This approach acknowledged the reality that requirements often

change as stakeholders gain a better understanding of their needs and as the market

environment evolves. Iterative methodologies allowed for more flexibility in handling

these changes, reducing the risks associated with rigid, upfront requirements

specification.

The turn of the century brought about the widespread adoption of Agile

methodologies, which revolutionized requirements engineering by promoting a more

collaborative and adaptive approach. In Agile frameworks, such as Scrum and Extreme

Programming (XP), requirements are captured in the form of user stories and are

continuously refined through iterative cycles known as sprints (Beck et al., 2001). This

approach emphasizes direct communication between developers and stakeholders,

fostering a dynamic environment where requirements can evolve in response to

feedback and changing business priorities.

2.4. Understanding Requirements Change

A. Nature of Requirements Change

Chapter 2

22

Software requirements are inherently dynamic and subject to change throughout the

development process. The nature of these changes’ stems from a variety of factors that

are often interrelated and context dependent. One primary reason for changes in

software requirements is the evolving business environment in which organizations

operate. As market conditions, customer needs, and competitive pressures shift, the

software must adapt accordingly, necessitating changes to its requirements.

Additionally, stakeholders often gain a clearer understanding of their needs as the

project progresses, leading to refinement and modifications in the initial requirements.

Technological advancements can also drive changes, as new tools, platforms, or

methodologies become available that could enhance the software’s functionality or

performance.

Moreover, regulatory and compliance requirements can impose changes, especially in

industries that are heavily regulated, such as healthcare, finance, and aerospace. As new

laws or standards emerge, software systems must be updated to remain compliant,

resulting in adjustments to their requirements. These factors underscore the fluid

nature of software requirements, making change management a critical aspect of the

software development process.

B. Types of Requirements Changes

Requirements changes can be broadly categorized into four types: corrective,

adaptive, perfective, and preventive.

• Corrective Changes: These changes are initiated to fix defects or issues identified in

the requirements after they have been initially defined. Corrective changes ensure

that the software meets the intended functionality and performance standards by

addressing errors, inconsistencies, or omissions in the original requirements.

• Adaptive Changes: Adaptive changes occur when the software needs to be

modified to work in a new or changed environment. These changes are often driven

by shifts in the business environment, new customer demands, or changes in the

external system that the software interacts with. Adaptive changes are essential for

ensuring that the software remains relevant and functional in a changing context.

23

• Perfective Changes: Perfective changes involve the enhancement of existing

software functionalities to improve performance, maintainability, or user

experience. These changes are typically driven by user feedback or the desire to

optimize the software’s operations. While the software may be fully functional,

perfect changes aim to make it more efficient or user-friendly.

• Preventive Changes: Preventive changes are proactive modifications made to

software requirements to avoid potential issues in the future. These changes often

involve refactoring or restructuring the software’s architecture to improve its

scalability, security, or robustness, thereby reducing the likelihood of defects or

failures as the software evolves.

Each type of requirement change has its own set of implications for the software

development process, requiring careful consideration and planning to ensure that the

changes are effectively integrated without disrupting the project’s overall timeline and

objectives.

2.5. Challenges in Managing Requirements Change

Managing requirements change is one of the most complex and challenging aspects

of software development. One of the primary difficulties lies in maintaining traceability

and consistency across the various artifacts that constitute the software’s

documentation. When a requirement changes, it can have a cascading effect on related

requirements, design documents, test cases, and even code. Ensuring that all related

components are updated accordingly is crucial to maintaining the integrity of the

software system.

Another significant challenge is stakeholder alignment. Different stakeholders may

have conflicting priorities or interests, making it difficult to achieve consensus on the

nature and scope of changes. This can lead to delays, increased costs, or scope creep if

not managed effectively. Additionally, the iterative nature of modern software

development methodologies, such as Agile, means that requirements are continually

evolving. This constant state of flux can be difficult to manage, particularly in large-scale

Chapter 2

24

projects where multiple teams are working concurrently on different aspects of the

software.

Resource allocation is another critical issue. Implementing changes often requires

additional time, budget, and human resources, which may not have been accounted for

in the original project plan. This can strain the project’s resources, leading to potential

delays or compromises in quality. Furthermore, the introduction of new requirements

can increase the complexity of the software system, making it more difficult to test and

validate. This, in turn, can increase the risk of defects or failures in the final product.

Lastly, the impact of changes on project timelines and delivery schedules can be

significant. Unplanned changes can disrupt carefully coordinated schedules, leading to

delays and increased pressure on the development team. Effective change management

requires a delicate balance between accommodating necessary changes and

maintaining the project’s overall momentum and focus.

In summary, while changes in software requirements are inevitable, managing these

changes effectively is crucial to the success of the project. This involves not only

technical considerations but also strategic planning, stakeholder management, and

resource allocation to ensure that changes are implemented smoothly and do not

adversely affect the project’s outcome.

2.6. Change Impact Analysis in Software Engineering

CIA is a critical aspect of software engineering, particularly in managing the effects of

changes in software requirements. As software systems evolve, requirements often

change, leading to engineering changes (ECs) that can have significant implications for

the development process. An engineering change is typically defined as a modification

to a system component—whether in design, functionality, or other aspects—after it has

been released (Shankar et al. in press). These changes can vary in scale and complexity

and may affect multiple stakeholders over an extended period.

The process of managing these changes begins with an Engineering Change Request

(ECR), a document that outlines the details of the proposed change and is circulated

25

among relevant stakeholders for review and approval. If the ECR is approved, it is

followed by the release of an Engineering Change Note (ECN), which formalizes the

change and notifies all stakeholders of its implementation. The final stage involves

archiving the change, documenting the reasons, outcomes, and impacts for future

reference (Chen, Shir & Shen 2002; Morkos & Summers 2010).

Effective CIA is essential in this process, as it involves assessing how a proposed change

will propagate through the system and what other components will be affected. By

analyzing ECNs and other related documents, researchers can develop models to predict

the impact of changes and manage the risks associated with them (Morkos, Shankar &

Summers 2012). This predictive capability is particularly important in large-scale

systems, where the interdependencies between components can make the effects of

changes difficult to anticipate.

This thesis introduces a novel requirements engineering CIA framework designed for

application during the software development phase. This framework leverages

requirement artifacts as the primary source for enhancing decision-making in Software

Development by conducting impact analysis.

This chapter outlines the research background, objectives, motivation, contributions,

and the structure of the thesis.

2.7. Change Impact Analysis Background

 CIA was first introduced and studied in 1993 by Arnold and Bohner (Arnold 1996;

Arnold & Bohner 1993). They indicated that impact analysis involves identifying the

possible effects of a change or predicting what needs to be modified to implement a

change. The need to forecast and manage the impact of software changes increases as

software systems become extremely large and complicated. Software CIA gathers the

current data of the software system to identify which components will be affected by

the proposed change or how the components will affect each other. Based on Arnold

and Bohner (Arnold & Bohner 1993), there are two main perspectives for CIA, including

software dependency analysis and traceability analysis (Arnold 1996). Arnold et al.

Chapter 2

26

described three main steps to analyze the change impacts in a system (Arnold & Bohner

1993):

• Analyze change specifications and software artifacts.

• Trace potential impacts

• Implement the requested changes

Changes initiated by a change request involve the change specification and

classification process, which finishes with identifying the change type (Jayatilleke & Lai

2013). Whenever addressing a change, many requirements cannot be considered

independent of other requirements in the SRS, as different types of relationships can

exist between them. As a result, an action performed on one requirement may have

unexpected impacts on another. Therefore, there is a need to identify requirement

interdependencies (Jayatilleke, Lai & Reed 2018). It is essential to investigate how

requirements are dependent when there is no semantic or syntactic similarity between

them. The investigated dependencies between requirements can be used to develop a

predictive model to forecast CIA.

In recent decades, considerable research has focused on reviewing the CIA, especially

in software maintenance and evolution (Alkaf et al. 2019; Jayatilleke & Lai 2018; Lehnert

2011a, 2011b). CIA has been applied to source codes (Brucker & Julliand 2014) and

requirements traceability (Goknil, Kurtev & Berg 2016; Li et al. 2008; Zhang et al. 2014).

Some researchers have reported the effects of requirements changes on data design,

architecture design, and software design (Von Knethen 2002; Yazdanshenas & Moonen

2012). Few researchers have studied the challenges of change verification and validation

(Bjarnason et al. 2014) and co-changing artifacts to gather more information about

software artifact evolution (Antoniol, Rollo & Venturi 2005). Some approaches have

attempted to automate the process of analyzing the change impacts. (Alkaf et al. 2019)

performed an automated CIA approach for User Requirements Notation models. Arora

et al. (Arora et al. 2015a) proposed a strategy based on NLP for analyzing the impact of

change in natural language requirements. (Nejati et al. 2016) proposed an approach to

automatically identify the impact of requirements changes on system design when the

requirements and design elements are expressed using models. Jayatilleke (Jayatilleke,

27

Lai & Reed 2018) presented a technique for requirements change analysis that relied on

changes arising at higher levels. (Bano et al. 2012) performed a systematic literature

review on the causes of requirement change, categorizing them into necessary and

accidental causes. (Aryani et al. 2009) proposed a methodology for analyzing change

propagation in software using the domain-level behavioral model of a system.

In requirement specification, one solution to assess the effect of the change is to look

for the precise accordance of the terms contained in the change and its potential

definitions and expressions in other specifications. Change can progress across

semantically related terms that are not exact matches or relevant syntactic diversities.

In this situation, it is appropriate to apply a relatedness measure that considers phrases

(Arora et al. 2015a). Besides, dependencies in requirements play an essential role in the

analysis of change propagation (Zhang et al. 2014).

Many dependency or interdependency models have been developed to define and

distinguish relationships based on requirements' structural and semantic properties to

find the relationships between requirements (Zhang et al. 2014). However, there has

been no empirical assessment of these dependency forms regarding usefulness and

applicability (Zhang et al. 2014). To define the possible effect of requirement changes

on the overall system, Hassine (Hassine, Rilling & Hewitt 2005) applied both slicing and

dependency analysis at the level of the use case map (rather than between

requirements in natural languages). Baumer (Baumer, White & Tomlinson 2010) showed

that semantic role labeling could improve computational metaphor identification and

more effectively identify relationships with semantic import than typed dependency

parsing.

(Arora et al. 2015a) showed that in their approach, there is no need to define

requirements dependencies in the early stage because the propagation condition can

determine if there is a correlation between a changed requirement and the others. Since

all potential conditions cannot be enumerated, constructing an explicit dependency

graph is difficult. Rather than utilizing typed dependencies, they used correlation rates

to evaluate the impact of changes. Typed dependencies focus on syntactic structure and

Chapter 2

28

grammatical relations, while semantic roles emphasize conceptual and semantic

structure (Baumer, White & Tomlinson 2010; de Marneffe & Manning 2008).

Alsalemi (Alsalemi & Yeoh 2017) performed a systematic literature review focused on

predicting requirements volatility. According to their research, only a few papers have

been published on predicting volatility requirements, and the majority of papers worked

on the causes of requirements change and its effect on project performance. Their work

underlines that more empirical studies need to be carried out to address the practical

aspect of requirements volatility better.

 Dhamija (Dhamija & Sikka 2019) presented a systematic study on the advancement

of CIA techniques. The study's findings exposed a scope of research investigating the

hidden dependency between software requirements that are not clearly visible.

Techniques for identifying hidden dependencies among software objects, such as

specifications, design, and code, need to be proposed. The existing literature focusing

on CIA in RE showed that very few studies presented a prediction model for requirement

change impact, and it is an under-explored area (Yang et al. 2020).

Anjali (Anjali, Dhas & Singh 2022) evaluated various CIA techniques focused on

requirement defects in software development. The study categorizes these methods,

assessing their effectiveness in identifying and mitigating defects. Highlighting the need

for automated CIA tools, the research emphasizes improving accuracy and efficiency in

defect management to maintain software quality and reliability.

Elapolu (Elapolu et al. 2024) proposed a blockchain-based framework for requirement

traceability, integrating a data acquisition template and graph-based visualization for

dual-level traceability (artifact and object levels). By leveraging blockchain, the

framework ensures security, immutability, and enhanced collaboration among

distributed stakeholders. This approach demonstrates significant improvements in

managing dynamic requirements and securing traceability data.

Zhang (Zhang, Tan & Yang 2021) analyzed the impact of requirement changes on

product development progress using system dynamics. The study divides the

development process into three phases—concept development, detail design, and pilot

29

production, and examines how requirement changes cause reworks, affecting the

overall development duration. The authors highlight that requirement changes,

especially in the later phases, significantly increase development time and introduce

uncertainty. By modeling the development process and simulating requirement

changes, the study provides insights into managing these changes to minimize delays

and improve project management.

Akbar (Akbar et al. 2020) investigate the challenges of requirements change

management (RCM) in global software development (GSD) projects. By conducting a

systematic literature review (SLR) and validating the findings through a questionnaire

survey, they identify 25 RCM challenges. These challenges are categorized based on

organization type (client and vendor) and size (small, medium, large), highlighting their

significance in different GSD contexts. The study emphasizes the need for tailored

strategies to manage RCM effectively across diverse organizational settings,

underscoring the complexity and importance of RCM in maintaining software quality

and project success in GSD environments.

Arif (Arif, Mohammad & Sadiq 2023) proposed a method combining UML and the NFR

framework to analyze both functional and non-functional requirements of information

systems. The technique uses UML diagrams (use-case, class, and activity diagrams) for

modeling functional requirements (FRs), while the NFR framework is employed to

handle non-functional requirements (NFRs) using a fuzzy-based approach to deal with

vagueness in soft goal interdependencies. The applicability of this method is

demonstrated through a library information system case study, showcasing how the

integration of these techniques can enhance the precision and comprehensiveness of

requirements analysis.

Anwer (Anwer et al. 2024) introduced BECIA, a behavior engineering-based approach

for CIA. BECIA employs Integrated Behavior Trees (IBT) and Integrated Composition

Trees (ICT) to model system requirements and their dependencies. The approach

includes a Requirements Components Dependency Network (RCDN) and a Change

Impact Indicator (CII) to quantify change impacts using Kolmogorov Complexity. By

automating the transformation of IBTs to ICTs and subsequently to RCDNs, BECIA

Chapter 2

30

enhances the efficiency and accuracy of CIA. The study demonstrates the approach's

applicability through evaluations of student projects, highlighting its potential to

improve change management in software development.

While traditional CIA methods such as rule-based dependency analysis, traceability

matrices, and manual heuristics have proven effective in limited and controlled

environments, they face notable limitations in handling modern software development

complexities. Scalability remains a core challenge, manual and semi-automated

techniques struggle to scale across large and continuously evolving software systems

where thousands of interdependent requirements exist. Moreover, these methods

often rely on structured formats or predefined relationships, making them less effective

when dealing with unstructured or ambiguous textual data, which is common in real-

world requirements specifications. These limitations directly motivate the adoption of

advanced NLP and ML techniques. By leveraging language models and learning-based

approaches, NLP/ML systems can process large volumes of unstructured requirements,

identify latent dependencies, and offer predictive insights that traditional methods

cannot. This transition addresses the need for automation, precision, and adaptability

in CIA, especially in domains characterised by linguistic variability and high change

frequency.

2.8. Machine Learning in CIA

The integration of ML techniques into Requirements Engineering has emerged as a

significant advancement in the software development lifecycle, particularly in

optimizing the extraction, analysis, and prediction of requirements-relevant knowledge.

Classification and regression, two key tasks in supervised learning, are foundational to

this integration. Classification involves predicting discrete labels, such as identifying

whether a requirement is likely to change or remain stable, while regression predicts

continuous values, such as estimating the magnitude of a change’s impact. These tasks

are pivotal in automating decision-making processes in CIA.

In the early stages of software development, system or business analysts must

meticulously capture and document software requirements, which serve as critical input

31

to the Software Requirements Specification (SRS) document. Given the importance of

generating a comprehensive and accurate SRS, optimizing the knowledge extraction

process is paramount (Sandhu et al. 2015). ML techniques have been instrumental in

enhancing the efficiency and accuracy of this process, particularly in dealing with the

vast amount of data contained within requirements documents, which are often written

in natural language (NL). The challenge of transforming these NL requirements into

structured formats amenable to automated analysis has led to the development of

various NLP techniques (Arora et al. 2019). When combined with ML, these techniques

enable automation in requirements analysis, significantly reducing manual effort and

improving the precision of outcomes (Li et al. 2018).

The application of ML in RE encompasses a range of tasks, including requirements

traceability, ambiguity management, and the generation of test cases (Holzinger et al.

2018). By applying learning algorithms to datasets derived from previous projects, ML

models can be trained to recognize patterns and predict outcomes, thereby supporting

requirements analysts in their decision-making processes. This automation is

particularly valuable in large-scale projects where the sheer volume of requirements can

overwhelm traditional manual analysis methods (Lwakatare et al. 2019).

To provide a solid foundation for the algorithms applied in this research, the following

subsections present the mathematical background of key ML methods, including

Decision Trees, Random Forests, Support Vector Machines (SVMs), and Neural

Networks. These methods represent widely adopted approaches to classification and

regression tasks in CIA.

2.8.1. Decision Trees

Decision Trees are supervised learning algorithms that classify data by splitting it into

subsets based on feature values (Boutaba et al. 2018). They use a tree-like structure

where each internal node represents a decision (split), and each leaf node represents a

class label or outcome (Tufail et al. 2023).

𝐼𝐺(𝐷, 𝐴) = 𝐻(𝐷) − ∑
|𝐷𝑉|

|𝐷|𝑣∈𝐴 𝐻(𝐷𝑉) (1)

Chapter 2

32

Where H(D) = − ∑ pi\log2(pI)

k
{i=1} (2) is the entropy of dataset D, and pI is the

probability of class i.

• Gini Index:

Alternatively, the Gini Index measures impurity(Quinlan 1986):

Gini(D) = 1 − ∑ pi
2k

{i=1} . (3)

The algorithm selects the split with the highest Information Gain or lowest Gini Index

to grow the tree.

2.8.2. Random Forests

Random Forests are ensemble learning methods that improve the robustness of

Decision Trees by using Bootstrap Aggregation (Bagging) to train multiple trees and

aggregate their predictions (Breiman 2001).

• Bagging:

Random samples 𝐷𝑖 are drawn with replacement to create diverse training sets.

The final prediction is the aggregate of individual trees:

f{ensemble}(x) =
1

𝑇
∑ ft(x)

T
{t=1} (4)

where 𝑇 is the number of trees.

• Feature Selection:

At each split, a random subset of features is chosen to reduce correlation between

trees, improving generalization and reducing overfitting.

2.8.3. Support Vector Machines (SVMs)

Support Vector Machines are powerful algorithms that find the optimal hyperplane to

separate classes in a high-dimensional space (Christopher J.C. Burges 1998).

• Objective Function:

For linearly separable data, SVMs maximize the margin between classes:

33

minimize (
1

2
) ||w||

2
subject to yi(w ⋅ xi + b) ≥ 1 (5)

where w is the weight vector, b is the bias term, and 𝑦𝑖 is the label.

• Kernel Trick:

For non-linearly separable data, kernels map inputs to higher-dimensional spaces. A

common kernel is the Radial Basis Function (RBF):

K(xi, xj) = exp (−γ ||xi − xj||
2

) (6)

2.8.4. Logistic Regression

Logistic Regression is a supervised learning algorithm used for binary and multi-class

classification tasks. Unlike linear regression, which predicts continuous values, logistic

regression predicts probabilities, transforming the output using the logistic function.

• Logistic Function:

The logistic function is defined as:

𝑃(𝑦 = 1|𝑥) =
1

1+𝑒−𝑧 (7)

where z=w⋅x+b , w is the weight vector, x is the input features, and b is the bias term.

• Log Loss Function:

Logistic Regression optimizes the log-loss (cross-entropy) function to find the best

weights w and bias b:

𝐿 = −
1

𝑁
∑ [𝑦𝑖 log(𝑃(𝑦 = 1|𝑥𝑖)) + (1 − 𝑦𝑖) log(1 − 𝑃(𝑦 = 1|𝑥𝑖))]𝑁

𝑖=1 (8)

where 𝑦𝑖 is the actual class label for sample 𝑖, and 𝑃(𝑦 = 1|𝑥𝑖) is the predicted

probability for the positive class.

Logistic Regression works well for linearly separable data but may struggle with non-

linear relationships unless extended using techniques like polynomial feature

transformations or kernel methods (Tufail et al. 2023).

Chapter 2

34

2.8.5. Gaussian Naive Bayes (NB)

NB is a probabilistic classifier based on Bayes' Theorem. It assumes that features are

conditionally independent given the class label and follow a Gaussian (normal)

distribution.

• Bayes' Theorem:

𝑃(𝐶𝑘|𝑥) =
𝑃(𝑥|𝐶𝑘)𝑃(𝐶𝑘)

𝑃(𝑥)
 (9)

where 𝑃(𝐶𝑘|𝑥) is the posterior probability of class, 𝑃(𝑥|𝐶𝑘) is the likelihood, 𝑃(𝐶𝑘) is

the prior probability of class 𝑃(𝑥) is the evidence.

• Likelihood with Gaussian Distribution:

For Gaussian NB, the likelihood 𝑃(𝑥|𝐶𝑘) is modeled as:

𝑃(𝑥|𝐶𝑘) =
1

√2πσ𝑘
2

𝑒
−

(𝑥−μ𝑘)
2

2σ𝑘
2 (10)

where 𝜇𝑘 and 𝜎𝑘
2 are the Mean and variance of feature 𝑥 for class 𝐶𝑘.

• Decision Rule:

The class prediction is made by selecting the class with the highest posterior

probability:

𝐶predicted = arg max
𝐶𝑘

𝑃 (𝐶𝑘|𝑥) (11)

Gaussian NB is particularly effective for datasets where the features follow a normal

distribution. Its simplicity and efficiency make it a popular choice for text classification,

spam detection, and other real-world problems(Boutaba et al. 2018; Tufail et al. 2023) .

2.9. Natural Language Processing in CIA

NLP has become an increasingly important tool in the domain of CIA, particularly given

the challenges associated with managing and analyzing software requirements, which

are often documented in natural language. Software requirements are typically

expressed in natural language due to its flexibility and ease of use, making them

35

accessible to both technical and non-technical stakeholders. However, this flexibility

also introduces variability, ambiguity, and potential inconsistencies into the

requirements, complicating the process of CIA.

The inherent ambiguity and complexity of natural language pose significant challenges

for automated analysis, making NLP a critical component in enhancing the precision and

effectiveness of CIA processes. NLP techniques are specifically designed to address these

challenges by enabling the automated extraction, interpretation, and processing of

natural language requirements.

NLP can be employed to parse and analyze the textual content of requirements

documents to identify key entities, relationships, and dependencies. This capability is

particularly valuable in CIA, where understanding the relationships between different

requirements is crucial for predicting the impact of changes. By using techniques such

as part-of-speech tagging, named entity recognition, and dependency parsing, NLP helps

structure and clarify the relationships within the requirements, making them more

amenable to further analysis. This structured analysis is essential for ensuring that

changes are accurately assessed and that their impacts are fully understood before

implementation.

This research employs two widely used NLP libraries, SpaCy and CoreNLP, which are

instrumental in implementing robust solutions for analyzing software requirements. The

following subsections explore the technical details and specific functionalities of SpaCy

and CoreNLP and their relevance to the tasks undertaken in this study.

2.9.1. CoreNLP

Stanford CoreNLP is a comprehensive NLP toolkit developed by the Stanford NLP

Group. It offers a wide range of linguistic analysis tools, including tokenization, sentence

splitting, part-of-speech tagging (POS), named entity recognition (NER), lemmatization,

dependency parsing, and coreference resolution. CoreNLP’s strength lies in its ability to

handle complex syntactic and semantic analysis, making it highly suitable for

Chapter 2

36

understanding the grammatical structures present in software requirements (Manning

et al. 2014). Key features of CoreNLP include:

• Tokenization: CoreNLP provides robust tokenization capabilities that handle a wide

variety of text inputs, including multi-word expressions and special symbols.

• Part-of-Speech Tagging: CoreNLP's POS tagging module uses sophisticated models

to ensure high accuracy across diverse datasets.

• Dependency Parsing: CoreNLP employs advanced algorithms, including universal

dependency representations, to analyze syntactic structures. It uses graph-based

dependency parsing. The parser constructs a dependency tree 𝑇 by maximizing the

sum of scores for all edges (Pipit Muliyah, Dyah Aminatun, Sukma Septian Nasution,

Tommy Hastomo, Setiana Sri Wahyuni Sitepu 2020):

𝑇 ∗ = 𝑎𝑟𝑔𝑚𝑎𝑥 (𝑇 ∈ 𝑇)𝛴 𝑠(ℎ, 𝑚) (12)

• 𝑇: The set of all valid dependency trees.

• (ℎ, 𝑚): An edge from the head hhh to the modifier mmm.

• 𝑠(ℎ, 𝑚): A scoring function for each edge.

• Sentiment Analysis and Coreference Resolution: Beyond basic NLP tasks, CoreNLP

offers features such as sentiment analysis and coreference resolution, enabling

more nuanced analysis of text. Coreference resolution in CoreNLP often uses a

probabilistic model to determine whether two mentions 𝑚1 and , 𝑚2 refer to the

same entity (Lee et al. 2013). This can be represented as:

𝑃(𝑐𝑜𝑟𝑒𝑓 | 𝑚1, 𝑚2) = 𝜎(𝑤 ⋅ 𝜑(𝑚1, 𝑚2)) (13)

• 𝜎: The sigmoid function.

• 𝑤: The weight vector learned during training.

• 𝜑(𝑚1, 𝑚2): The feature vector encoding attributes of 𝑚1 and 𝑚2.

2.9.2. SpaCy

SpaCy is an open-source NLP library designed for fast, efficient processing of large

volumes of text. Its pipeline architecture allows easy customization, enabling users to

add components as needed. SpaCy excels in named entity recognition (NER) and

37

provides pre-trained models for multiple languages, making it ideal for global NLP

applications. Its high processing speed and flexibility make it an excellent choice for text

preprocessing and feature extraction. Key features of SpaCy include:

• Tokenization: SpaCy employs a rule-based tokenizer to segment text into tokens,

accounting for language-specific nuances like abbreviations and contractions.

• Part-of-Speech Tagging: Using state-of-the-art statistical models, SpaCy assigns

grammatical roles to each token, facilitating syntactic analysis.

• Dependency Parsing: SpaCy builds dependency trees to represent grammatical

relationships between words in a sentence, enabling a deeper understanding of

sentence structure (Pipit Muliyah, Dyah Aminatun, Sukma Septian Nasution,

Tommy Hastomo, Setiana Sri Wahyuni Sitepu 2020). It uses transition-based

dependency parsing algorithms, which can be represented mathematically as

follows:

The parser operates in a state-transition system:

𝑇 = (𝐶, 𝐴, 𝑡0, 𝑇𝑓) (13)

• 𝐶: The set of all possible configurations.

• 𝐴: The set of actions (e.g., Shift, Reduce, Left-Arc, Right-Arc).

• 𝑡0: The initial configuration of the parser.

• 𝑇𝑓 : The set of terminal configurations.

The algorithm transitions between states using a learned scoring function 𝑠(𝑐, 𝑎),

where 𝑐 ∈ 𝐶 and 𝑎 ∈ 𝐴 .The parser selects actions aaa to maximize the score:

𝑎 ∗ = 𝑎𝑟𝑔𝑚𝑎𝑥 (𝑎 ∈ 𝐴)𝑠(𝑐, 𝑎) (14)

• Named Entity Recognition (NER): SpaCy uses pre-trained models to extract

named entities such as dates, quantities, and system components from text. NER in

SpaCy relies on sequence labeling tasks modeled using Conditional Random Fields

(CRFs) (Song, Zhang & Huang 2019). A CRF assigns a probability to a sequence of labels

𝑌 given a sequence of tokens 𝑋:

𝑃(𝑌 | 𝑋) = exp (𝛴 𝜑(𝑦_(𝑖 − 1), 𝑦_𝑖, 𝑋)) / 𝛴_𝑌′ exp (𝛴 𝜑(𝑦′_(𝑖 − 1), 𝑦′_𝑖, 𝑋)) (15)

Chapter 2

38

Here, 𝜑(𝑦𝑖−1, 𝑦𝑖, 𝑋)is the feature function that scores the compatibility of the label

sequence with the input sequence.

One of the major challenges in CIA is identifying hidden dependencies, relationships

between requirements that are not explicitly stated through keywords or syntactic

structure. Traditional approaches struggle with these implicit links, particularly when

requirements are phrased differently but convey semantically related intentions. NLP

techniques directly address this limitation. For example, dependency parsing enables

the construction of grammatical trees that expose subject–verb–object relations,

helping analysts detect when two requirements act upon the same concept in different

forms. Likewise, NER supports terminology alignment by extracting and normalising

domain-specific terms across diverse requirement expressions. Semantic Role Labeling

further enhances this by framing requirements around action agent object structures,

revealing deep semantic similarities even when vocabulary differs. Together, these NLP

techniques contribute to effective dependency mapping, allowing the framework to

uncover latent links between requirements that would be missed by surface-level

analysis alone. This capability is especially critical in large-scale, heterogeneous systems

where implicit dependencies are common and costly to overlook.

By combining these techniques, our framework goes beyond surface-level text

matching. Dependency parsing uncovers grammatical links, SRL reveals deeper semantic

connections, and NER aligns domain-specific terms, together forming a robust basis for

mapping both explicit and hidden requirement dependencies.

2.10. BEIR: Benchmarking Information Retrieval

The Benchmarking Information Retrieval (BEIR) framework is a comprehensive

platform designed to evaluate information retrieval (IR) systems across diverse datasets

and tasks. BEIR incorporates various retrieval approaches, including lexical retrieval,

dense retrieval, and hybrid methods, enabling the assessment of IR models'

performance in handling a wide range of scenarios. It is particularly relevant in NLP for

evaluating semantic search and similarity-based applications (Thakur et al. 2021).

39

This section outlines the mathematical foundation of the BEIR framework and its

relevance to CIA. The following concepts are integral to BEIR's methodologies: lexical

retrieval with BM25, dense retrieval with vector embeddings, and hybrid models

combining the two approaches.

2.10.1. Lexical Retrieval with BM25

BM25 is a probabilistic scoring function widely used for lexical retrieval. It ranks

documents based on the frequency of query terms, adjusting for document length and

term saturation (Robertson & Zaragoza 2009; Thakur et al. 2021). The BM25 scoring

function is defined as:

𝑆𝑐𝑜𝑟𝑒(𝑞, 𝑑) = 𝛴 [𝐼𝐷𝐹(𝑡) ∗
(𝑓(𝑡,𝑑)∗ (𝑘1 + 1))

(𝑓(𝑡,𝑑)+ 𝑘1 ∗ (1 − 𝑏 + 𝑏 ∗ (
|𝑑|

𝑎𝑣𝑔𝑑𝑙
)))

] (16)

Where:

• 𝑞: Query terms.

• 𝑑: Document.

• 𝑡: A term in the query 𝑞.

• 𝑓(𝑡, 𝑑): Frequency of term 𝑡 in document 𝑑.

• 𝑓(𝑡, 𝑑): Length of document 𝑑.

• 𝑎𝑣𝑔𝑑𝑙: Average document length across the corpus.

• 𝑘1 : Hyperparameter controlling term frequency saturation (typically 𝑘1 =1.2 or

𝑘1 =2.0).

• 𝑏: Hyperparameter controlling the impact of document length normalization

(commonly 𝑏 =0.75).

The Inverse Document Frequency (IDF) measures the importance of a term and is

given by:

𝐼𝐷𝐹(𝑡) = log [
(𝑁 − 𝑛(𝑡)+ 0.5)

(𝑛(𝑡)+ 0.5)
] (17)

Where:

Chapter 2

40

• 𝑁: Total number of documents in the corpus.

• 𝑛(𝑡): Number of documents containing the term 𝑡.

BM25 excels in capturing exact matches between query terms and documents while

adjusting for variations in term frequency and document length.

2.10.2. Dense Retrieval Using Bi-Encoders

Bi-Encoders are used for efficient dense retrieval by encoding the query and

documents independently into a shared embedding space. This method allows for rapid

computation of similarities between queries and a large corpus of documents using

vector operations (Thakur et al. 2021).

A neural network 𝑓 encodes the query 𝑞 and document 𝑑 into dense vectors 𝑞 and

𝑑 , respectively:

𝑞 = 𝑓(𝑞), 𝑑 = 𝑓(𝑑) (18)

Where:

• 𝑓(𝑞): Embedding of the query.

• 𝑓(𝑑):Embedding of the document.

The similarity between the query and document embeddings is computed using cosine

similarity:

𝑆𝑖𝑚(𝑞, 𝑑) =
(𝑞 • 𝑑)

(||𝑞||∗ ||𝑑||)
 (19)

• 𝑞 • 𝑑: Dot product of the query and document embeddings.

• ||𝑞|| and ||𝑑||: Magnitudes (norms) of the respective vectors.

The documents are ranked based on their similarity scores:

𝑅𝑎𝑛𝑘(𝑞) = 𝑎𝑟𝑔𝑠𝑜𝑟𝑡(−𝑆𝑖𝑚(𝑞, 𝑑𝑖)) (20)

Where 𝑎𝑟𝑔𝑠𝑜𝑟𝑡 sorts the documents 𝑑𝑖 in descending order of similarity (Karpukhin

et al. 2020).

41

2.10.3. Re-Ranking with Cross-Encoders

After retrieving a subset of candidate documents using a Bi-Encoder, Cross-Encoders

refine the rankings by jointly encoding the query and each candidate document. This

method captures more nuanced interactions between query and document terms

(Thakur et al. 2021).

A Cross-Encoder takes the concatenation of the query 𝑞 and a document 𝑑 as input

and produces a relevance score 𝑠(𝑞, 𝑑):

𝑠(𝑞, 𝑑) = 𝑓𝑐𝑟𝑜𝑠𝑠([𝑞; 𝑑]) (21)

• 𝑓𝑐𝑟𝑜𝑠𝑠: A neural network (e.g., BERT or RoBERTa) trained for relevance scoring.

• [𝑞; 𝑑]: Concatenation of the query and document as input to the model.

The Cross-Encoder computes a scalar score indicating the relevance of the document

to the query. The final ranking is determined by sorting the candidate documents based

on their relevance scores:

𝑅𝑎𝑛𝑘𝑐𝑟𝑜𝑠𝑠(𝑞) = 𝑎𝑟𝑔𝑠𝑜𝑟𝑡(−𝑠(𝑞, 𝑑𝑖)) (22)

Where:

• 𝑎𝑟𝑔𝑠𝑜𝑟𝑡 sorts the documents 𝑑𝑖in descending order of their relevance scores.

2.11. Large Language Models

Large Language Models (LLMs) have revolutionized the field of NLP by enabling

systems to perform complex language tasks with remarkable accuracy and contextual

understanding. These sophisticated AI systems, such as GPT, BERT, and Phi 3.5, are

designed to process and generate human-like text based on user prompts,

demonstrating capabilities in reasoning, question answering, summarization, and

creative writing (White et al., 2023). LLMs are particularly impactful in tasks requiring

high degrees of linguistic sensitivity and contextual awareness, such as requirements

CIA.

Chapter 2

42

At their core, LLMs operate by modeling the probability distribution of language. Given

an input sequence 𝑥 = (𝑥1 𝑥2, … , 𝑥𝑛), an LLM estimates the likelihood of the next token

𝑥𝑛+1 based on the conditional probability:

𝑃(𝑥_{𝑛 + 1} | 𝑥_1, 𝑥_2, … , 𝑥_𝑛) (23)

This probability is learned through large-scale training on diverse text corpora,

allowing the model to capture both syntactic and semantic relationships in language.

The model’s goal is to minimize the cross-entropy loss during training, defined as:

𝐿 = −
1

𝑁
∑ log 𝑃 (𝑥𝑖 ∣∣ 𝑥<𝑖)𝑁

𝑖=1 (24)

where 𝑁 is the total number of tokens in the dataset, and 𝑃(𝑥𝑖 ∣∣ 𝑥{<𝑖}) is the

predicted probability of the iii-th token given its preceding context.

2.11.1. Transformer Architecture

LLMs are underpinned by transformer-based architectures, which rely on self-

attention mechanisms to process sequential data effectively. Unlike traditional models

like RNNs, transformers process sequences in parallel, enabling greater scalability and

precision. Key components include:

• Self-Attention Mechanism: Each token attends to all other tokens in the sequence

to compute contextual relevance. The attention scores are calculated as:

Attention(𝑄, 𝐾, 𝑉) = softmax (
𝑄𝐾⊤

√𝑑𝑘
) 𝑉 (25)

where 𝑄 (query), 𝐾 (key), and 𝑉 (value) are projections of the input embeddings, and

𝑑𝑘 is the dimensionality of the key vectors. This mechanism enables the model to

capture long-range dependencies (Vaswani et al. 2017).

• Multi-Head Attention: By employing multiple attention heads, the model can focus

on different aspects of the input simultaneously, enhancing its ability to understand

complex patterns (Vaswani et al. 2017).

MultiHead(𝑄, 𝐾, 𝑉) = Concat(head1, … , headℎ)𝑊𝑂 (26)

43

• Feedforward Layers: Position-wise feedforward networks apply non-linear

transformations to each token independently:

𝐹𝐹𝑁(𝑥) = 𝑚𝑎𝑥(0, 𝑥𝑊1 + 𝑏1)𝑊2 + 𝑏2 (27)

These layers enhance the model's ability to learn complex features from the input

data.

• Positional Encoding: Since transformers lack inherent sequence ordering, positional

encodings are added to input embeddings to inject positional information (Vaswani

et al. 2017).

𝑃𝐸(𝑝𝑜𝑠,2𝑖) = sin (
𝑝𝑜𝑠

10000

2𝑖
𝑑model

) (28)

𝑃𝐸(𝑝𝑜𝑠,2𝑖+1) = cos (
𝑝𝑜𝑠

10000

2𝑖
𝑑model

) (29)

2.12. RAG Model

The RAG model represents a significant advancement in NLP by integrating retrieval

and generation components. This approach allows models to draw upon both pre-

trained knowledge and real-time information to respond more accurately to user

queries. Unlike standalone generative models, RAG systems can access external

knowledge bases, making their responses more contextually relevant and precise(Gao

et al. 2023).

A. Information Retrieval in RAG Systems

Information retrieval is a key component of the RAG model, and it is responsible for

locating documents that provide context and support for the input query. Classical IR

techniques, such as BM25, rank documents based on their term frequency-inverse

document frequency (TF-IDF) scores. These techniques are effective for quickly

identifying the most relevant documents within a large corpus. More modern

approaches use vector embeddings and similarity searches to enhance retrieval

precision.

Chapter 2

44

In RAG systems, the retriever acts as a bridge between static pre-trained model

knowledge and dynamic, real-time information. By leveraging indexed data, the

retriever provides the generative model with the most relevant pieces of information,

enriching the generated output (Gao et al. 2023).

The retrieval component identifies the most relevant documents 𝐷 from a large

corpus c for a given input query 𝑞. The goal is to maximize the conditional probability of

retrieving relevant documents given the query:

𝑃(𝐷 | 𝑞) = ∏ 𝑃(𝑑_𝑖 | 𝑞) (30)

Where:

• 𝐷 = {d_1, d_2, ..., d_k}: Set of retrieved documents.

• 𝑃(𝑑_𝑖 | 𝑞): Relevance score for document 𝑑𝑖, computed using similarity

metrics (e.g., cosine similarity of embeddings).

Document embeddings 𝑑𝑖 and query embeddings 𝑞 are generated using dense

retrieval models like Bi-Encoders:

𝑃(𝑑 | 𝑞) ∝ 𝑆𝑖𝑚(𝑞, 𝑑) = (𝑞 • 𝑑) / (||𝑞|| ∗ ||𝑑||) (31)

Where:

• 𝑞: Query embedding.

• 𝑑: Document embedding.

• ||𝑞||and ||𝑑||: Magnitudes of the embeddings.

B. Generative Language Modeling

Generative language models, such as Phi-3.5, are based on transformer architectures

that use attention mechanisms to understand and generate text. These models are pre-

trained on extensive corpora to learn linguistic patterns, enabling them to produce

human-like text based on input prompts (White et al. 2023). However, without real-time

data integration, they are limited by their training cut-off and lack of specific domain

knowledge.

45

By incorporating retrieved documents into the input, the generator can dynamically

access external knowledge, improving the output's specificity and contextual accuracy.

This integration is critical for applications like CIA, where changes in requirements need

to be analyzed with up-to-date contextual understanding.

The generation component uses a conditional language model to generate output 𝑦

based on the query 𝑞 and the retrieved documents 𝐷. The generative process maximizes

the likelihood of the output sequence 𝑦 = { 𝑦 _1, 𝑦 _2, ..., 𝑦 _n}:

𝑃(𝑦 | 𝑞, 𝐷) = ∏ 𝑃(𝑦_𝑡 | 𝑦_ < 𝑡, 𝑞, 𝐷) (32)

Where:

• 𝑦𝑡 : The 𝑡 token in the generated sequence.

• 𝑦<𝑡 : The sequence of tokens generated before 𝑦𝑡 .

• 𝐷: Retrieved documents conditioning the generation.

By incorporating retrieved documents into the input, the generator produces

responses that reflect both pre-trained knowledge and real-time contextual

information.

C. Joint Objective

The RAG model combines the retrieval and generation components to optimize the

joint probability of the output 𝑦 and the retrieved documents 𝐷 given the query 𝑞:

𝑃(𝑦, 𝐷 | 𝑞) = 𝑃(𝐷 | 𝑞) ∗ 𝑃(𝑦 | 𝑞, 𝐷) (33)

The final objective is to maximize this joint probability.

During training, RAG optimizes the following loss function using Maximum Likelihood

Estimation (MLE):

𝑳 = −∑ 𝐥𝐨𝐠 ∑ 𝑷(𝑫 | 𝒒) ∗ 𝑷(𝒚 | 𝒒, 𝑫) (34)

D. Fine-Tuning

In fine-tuning, the retriever and generator are trained jointly or sequentially:

• Retriever Fine-Tuning: Adjusts 𝑃(𝐷 | 𝑞) to improve retrieval quality.

Chapter 2

46

• Generator Fine-Tuning: Updates 𝑃(𝑦 | 𝑞, 𝐷) to better synthesize responses based

on retrieved documents.

2.13. Vector Databases

Vector databases are specialized data management systems designed to store,

retrieve, and query high-dimensional vectors efficiently. Unlike traditional relational

databases focusing on structured data, vector databases are optimized for managing

embedding vectors derived from text, images, or other data types. These embeddings

represent data in a mathematical form that captures semantic relationships, making

vector databases ideal for applications requiring similarity searches, such as RAG

systems.

2.14. Mathematical Heuristics for Optimizing Similarity-Based Analysis

Mathematical heuristics play a significant role in computational systems, particularly

in scenarios where optimizing performance and resource utilization is critical. These

heuristics are especially relevant for tasks involving similarity-based analysis, such as

those in NLP and BEIR-based frameworks. The approaches in this research compute

similarity scores between sentence pairs based on various linguistic features and

contextual information, often leading to computational overhead when processing large

datasets. By applying mathematical heuristics, the research streamlines this process,

ensuring both efficiency and accuracy.

Heuristics operate through approximate methods and predefined rules that guide

decision-making without requiring exhaustive computation. While they do not

guarantee a globally optimal solution, they provide a practical and effective way to

identify high-priority elements from a dataset. For similarity-based analysis, heuristics

enable prioritization and filtering of sentences based on their relevance, reducing the

need to process less significant data points.

Three commonly applied heuristics in this research are score thresholding, significant

drop detection, and relative score proportionality.

47

• Score Thresholding involves setting a baseline threshold to exclude sentences with

similarity scores below a certain level. This baseline is calculated based on the score

distribution across the dataset to ensure only sentences with meaningful similarity

are retained for further analysis.

• Significant Drop Detection identifies substantial drops in similarity scores among

ranked sentences. A sharp decline often indicates the boundary where semantic

alignment diminishes, helping to distinguish between sentences closely aligned in

content and those with reduced relevance.

• Relative Score Proportionality compares each sentence’s similarity score to the

highest score in the dataset. Sentences with scores below a predefined proportion

(e.g., 50%) of the highest score are excluded to focus on the most semantically

relevant results.

Prior research has demonstrated the effectiveness of such heuristics in various

domains. For instance, thresholding techniques have been used in information retrieval

systems to improve relevance ranking, while significant drop detection has been applied

to enhance clustering methods by identifying natural boundaries in data. Similarly,

proportionality-based heuristics have been employed in ranking systems to ensure high-

priority results are emphasized.

This research builds on these established techniques to address the challenges of

sentence similarity analysis in the NLP and BEIR-based frameworks. By integrating these

heuristics, the study not only improves computational efficiency but also ensures the

semantic integrity of the results, providing a robust foundation for further applications

in software requirements engineering.

2.15. Applied Evaluation Metrics

In this research, the performance of different models for CIA is evaluated using a

comprehensive set of metrics, each providing insights into specific aspects of model

performance. These metrics are crucial for assessing the effectiveness and reliability of

the proposed solutions in identifying impacted requirements. This section describes the

evaluation metrics employed in this study, along with their mathematical formulations.

Chapter 2

48

2.15.1. Precision

Precision measures the proportion of correctly identified impacted requirements to

the total number of predicted impacted requirements. It evaluates the accuracy of the

model in minimizing false positives. Precision is mathematically defined as (Powers

2020):

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (35)

Where:

• True Positives (𝑇𝑃): Correctly predicted impacted requirements.

• False Positives (𝐹𝑃): Incorrectly predicted impacted requirements.

2.15.2. Recall

Recall, also known as sensitivity, quantifies the model's ability to identify all relevant

impacted requirements. It assesses the completeness of the model by minimizing false

negatives. Recall is expressed as (Powers 2020):

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (36)

Where:

• False Negatives (𝐹𝑁): Relevant impacted requirements that were not

predicted by the model.

2.15.3. F1 Score

The F1 Score combines precision and recall into a single metric, providing a harmonic

mean. It balances the trade-off between precision and recall, particularly useful when

both metrics are equally important. The F1 Score is given by (Powers 2020; Takahashi et

al. 2022):

𝐹1 𝑆𝑐𝑜𝑟𝑒 = 2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 .𝑅𝑒𝑐𝑎𝑙𝑙

𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+ 𝑅𝑒𝑐𝑎𝑙𝑙
 (37)

49

2.15.4. Mean Reciprocal Rank (MRR)

MRR evaluates the ranking quality of the first correct impacted requirement. It

measures how quickly the most relevant impacted requirement is surfaced. MRR is

calculated as (Yacouby & Axman 2020):

𝑀𝑀𝑅 =
1

𝑁
∑

1

𝑅𝑎𝑛𝑘𝑖

𝑁
{𝑖=1} (38)

Where:

• 𝑅𝑎𝑛𝑘𝑖: Rank position of the first correct prediction for the 𝑖 query.

2.15.5. Normalized Discounted Cumulative Gain (NDCG)

The NDCG measures the ranking quality of predicted impacted requirements, giving

higher weights to items ranked at the top. It is expressed as (Wang et al. 2013):

𝑁𝐷𝐶𝐺 =
𝐷𝐺𝐺

𝐼𝐷𝐶𝐺
 (39)

𝐷𝐺𝐺 = ∑
2𝑟𝑒𝑙𝑖−1

𝑙𝑜𝑔2(𝑖+1)

𝑝
𝑖=1 (40)

Where:

• 𝑟𝑒𝑙𝑖: Relevance score of the 𝑖 item.

• 𝑝: Number of predicted items.

2.15.6. Partial Credit

The Partial Credit metric assigns a score to predictions that are partially correct or

closely related to the ground truth. It provides a nuanced evaluation of the model’s

performance, especially in scenarios with linguistic variability or context-dependent

predictions. A common approach is to assign a score between 0 and 1 based on the

degree of similarity or relevance between the predicted answer 𝑃 and the ground truth

𝐺 (Persson 2023). One such formula is :

Partial Credit (PC) =
Similarity(𝑃,𝐺)

Maximum Possible Similarity
 (41)

Chapter 2

50

2.15.7. Precision@K and Recall@K

Precision@K and Recall@K evaluate the model's performance within the top K results.

They are particularly useful for ranking-based evaluations in scenarios with a high

number of potential matches (Liu et al. 2016; Patel, Tolias & Matas 2022). These metrics

are defined as:

Precision@K =
TP@K

𝐾
 (42)

Recall@K =
TP@K

Total Relevant Items
 (43)

2.15.8. Mean Average Precision (MAP)

The Mean Average Precision (MAP) provides an aggregated measure of precision

across all relevant results. It is computed as (Henderson & Ferrari 2017):

MAP =
1

𝑁
∑

1

|R𝑖|
𝑁
𝑖=1 ∑ Precision@k

|R𝑖|
𝑘=1 (44)

Where:

• 𝑁: Total number of queries.

• |R𝑖|: Number of relevant items for the iii-th query.

2.16. Related Literature Reviews

In this section, we present a sample from the existing SLRs on RE that specifically focus

on ML and NLP in RE. Some of the findings in these studies are not specific to RE and

have covered studies in software engineering (e.g. Haq et al. (Haq et al. 2019)).

Sufian et al. (Sufian et al. 2019) conducted an SLR on software requirements

prioritization techniques. They reviewed 33 studies from 2009 until 2017. They have

covered 40 different requirement prioritizations techniques, among these, one tool uses

ML classification to identify requirements. Dermeval et al. (Dermeval et al. 2016)

performed a systematic review on the applications of ontologies in RE. They reviewed

67 papers from 2007 to 2013. They concluded that ontologies can potentially be used to

deal with several RE issues (e.g. integration between requirements and software

51

architecture, and requirements communication). Their findings revealed that most

studies focused on textual requirements analysis, which involve the use of ML and NLP

techniques. Binkhonain et al. (Binkhonain & Zhao 2019) reviewed the literature in ML

algorithms for the identification and classification of non-functional requirements. The

study considered 24 papers from 2008 to 2019. Águila et al. (del Águila & del Sagrado

2016a) performed a literature review to describe the state of the art in Bayesian

networks for enhancement of RE. The authors reviewed 20 papers from 1999 to 2013.

Haq et al. (Haq et al. 2019) conducted an SLR that identified the use of the expert system

in RE process. They reviewed 22 papers from 1986 to 2019. They concluded that ML

showed significant results in supporting RE activities. At the same time with our conduct

of this mapping study, Zhao et al. (Zhao et al. 2020) have performed a systematic

mapping study on NLP for RE. The authors identified 404 relevant primary studies from

1983 to 2019 concerning the NLP technologies used in RE.

2.17. Mapping Study

Although systematic literature reviews (SLRs) of many aspects of RE have been

published in the last decade (e.g. (Ghozali et al. 2019) (Alsanoosy, Spichkova & Harland

2019) (Horkoff et al. 2019)), none of them focuses specifically on reviewing empirical

studies of ML applications in RE. We are thus motivated to conduct a mapping study to

identify, analyze and summarize the advances in the applications of ML in RE and to

identify the current state of the art. This review also allows us to identify areas that still

need more research and determine the trends of future studies.

The mapping study presented in this chapter provides a systematic and structured

review of the literature related to software requirements engineering and CIA up to the

year 2020. The primary purpose of this study is to gain a comprehensive understanding

of the existing body of work in these domains. By systematically identifying,

categorising, and analysing key research contributions, methodologies, and challenges,

the study highlights research trends, strengths, and gaps. This ensures that the current

research aligns with established knowledge while addressing overlooked challenges,

laying the foundation for the proposed research framework.

Chapter 2

52

2.17.1. Scope and Limitations

The mapping study focuses on literature published up to 2020, covering works that

explore various approaches to managing requirements changes and conducting CIA. This

includes methods involving dependency analysis, traceability techniques, and

automation through NLP and ML. However, it is important to note that newer

advancements, such as Retrieval-Augmented Generation (RAG) systems and Beir-based

approaches, are excluded as they were introduced after the defined timeframe. While

these emerging techniques offer valuable solutions, they fall beyond the scope of this

study.

2.17.2. Mapping Study Planning and Execution

To conduct our mapping study, we followed the guidelines and the procedures of the

evidence-based software engineering paradigm (Kitchenham, B., Budgen, D., & Brereton

2016). The structure of this review process included defining research questions,

conducting a search strategy, making a list of related studies, applying inclusion and

exclusion criteria, developing snowball and manual search for additional relevant

studies, executing quality assessment, data extraction, data synthesis, and analysis.

2.17.3. Search Strategy and Data Sources

Our strategy is composed of two different iterations: primary and secondary search

strategy. In the primary phase, we identified the main search terms based on our

research questions. After applying the alternative spelling and synonyms, developed

search terms were formulated by using Boolean operators (AND, OR, etc.) with search

keywords to define inclusion and exclusion criteria at the title and abstract. We

investigated the following two major terms to execute against the title and abstract for

our searching process: (1) Machine Learning, (2) Software Requirements. The below

query shows our identified alternative terms and their concatenation to make our

search string which we applied to the title and abstract.

53

ON TITLE/ ABSTRACT: (("Machine Learning*” OR “ML*”) AND (“Software

Requirements” OR “Requirements engineering” OR “Requirements elicitation” OR

“Requirements analysis” OR “Requirements specification” OR “Requirements modeling”

OR “Requirements documentation” OR “Requirements validation” OR “Requirements

Management”))

The search string was modified to fit the format of different databases. The modified

search strings applied in the form of automatic searches of selected electronic databases

and conference proceedings including IEEE Xplore, ACM, Science Direct, SpringerLink,

ProQuest, and Scopus. To make sure that we did not miss any important and relevant

papers, we also executed our search query manually in reputable and relevant

conference proceedings, journals, and workshops websites one by one due to their

importance in the respective communities. We prepared a replication package including

the protocol and the details of search strategy and results. A list of all customized search

strings can be found online in our published replication package:

https://zenodo.org/records/5036218

2.17.4. Study Selection Criteria

In the primary stage, these inclusion criteria were applied:

• Articles that are related to our research questions

• Papers that are based on the empirical research method

• Conference, Journal and Workshop papers

The papers with the following criteria were excluded:

• Articles that were not published in English

• Articles that are not in full text

• Articles that are reviews or secondary studies

• Reports, books, book chapters, thesis, general articles, dissertations, editorials, and

position papers

• Duplicate results with the same or similar contents from the same authors

• Articles published before 2010

https://zenodo.org/records/14568906

Chapter 2

54

The main reason for the starting date of 2010 is that there has been a surge of

publications on ML in RE in the last decade and we were interested in more recent work.

We also reviewed random samples of relevant papers published before 2010. This

review did not have any significant impact on our findings.

In this step, we read the titles and abstracts of all studies selected in the primary

search. We excluded some papers based on the criteria. So, from 5158 papers, only 905

papers went through the secondary search step. Table 2.1 shows the number of selected

articles in the primary study before and after applying the exclusion criteria. Following

the search strategy, we conducted a manual search against the top journals of REJ

(Requirements engineering journal), ESEM (Empirical Software Engineering), TOSEM

(Software Engineering and Methodology), TSE (Transactions on Software Engineering),

ASE (Automated Software Engineering) and IST (Information and Software Technology);

as well as conferences and workshops including International requirements engineering

conference (RE), Requirements Engineering: Foundation for Software Quality (REFSQ),

International conference on software engineering (ICSE), International Workshop on

Artificial Intelligence for Requirements Engineering (AIRE), Workshop on NLP for

Requirements Engineering & NLP tool Showcase (NLP4RE) and IEEE International

Workshop on Artificial Intelligence for Requirements Engineering (AIRE) from 2010 to

April 2020. As a result, 10 new references were added to our list from these venues.

Table 2.1.The Number of Resulted Articles

Database Weblink #After Applying

Selection criteria

#Final

Results

ACM Digital Library http://dl.acm.org 72 11

IEEE Explore http://ieeexplore.ieee.org/Xplore 258 10

Science Direct http://www.sciencedirect.com 3 1

SpringerLink https://link.springer.com 398 3

ProQuest http://www.proquest.com 83 20

55

Scopus https://www.scopus.com 78 15

Total 60

In the secondary search phase, we reviewed all the papers identified from the primary

search. If a paper was found to be relevant, the mentioned inclusion and exclusion

criteria were applied to filter out irrelevant ones. We then read complete papers to

make a final decision on their inclusion or exclusion in our mapping study. To complete

the selection task, we performed snowballing procedure developed by Wohlin (Wohlin

2014). Based on the Wohin’s guideline we applied backward snowballing iteratively. The

main purpose of this iteration procedure was to find more relevant studies to include.

To do that we explored the reference list of the selected studies in backward snowballing

and examined the title, abstract, publication venue, author information, and full text in

order to exclude papers that do not fulfill our criteria. This iteration continued until no

new studies were found. Finally, we collected 12 new studies from reference

snowballing.

2.17.5. Quality Assessment criteria

All selected articles (82 studies: 60 papers from primary search, 12 new studies from

snowballing, and 10 new papers from a manual search of journals) were assessed for

their quality to ensure that all outcomes will add a valuable contribution to our mapping

study. We assessed the quality of selected studies by following steps (Kitchenham, B.,

Budgen, D., & Brereton 2016):

Step 1: Evaluate article quality - The quality assessment checklist developed by

Kitchenham (Kitchenham, B., Budgen, D., & Brereton 2016), was independently applied

to all 82 primary studies. By applying the criteria, four articles did not pass the minimum

score of 50%, so this step resulted in 78 studies.

Step 2: Evaluate publisher quality - The quality of each publisher was assessed by ERA

(Excellence of Research in Australia) ranking of 2018. This evaluation framework is

meant to give government, industry, business, and the wider community assurance of

the excellence of research conducted in Australian higher education institutions. The

Chapter 2

56

goal of this assessment step was to generate an extensive overview of the kind and

quality of the resulting papers.

Total results: After the quality assessment, a total number of 65 papers were selected

for this mapping study. Figure 2.2 illustrates the overview of the primary studies

selection process. The full bibliography of these 65 studies can be found in our

replication package.

2.17.6. Data Extraction

To manage citations and references of outcomes, we used Mendeley as a reference

manager. The information below was collected from the results:

• Study type (journal, conference, workshop)

• Name of journal, conference, or workshop

• ERA rank of conference, journal, or workshop

• Study aims and objectives

• Title of the article

• Authors and Publisher details

• Publication year

• Full citation

• Location (the country where it is situated)

57

Figure 2.2.Selection of The Primary Studies

• Research method

• How data was collected and analyzed

• The study quality assessment

• Relevance to RQ1, RQ2, RQ3 or RQ4

2.17.7. Data Synthesis and Analysis

The data synthesis is based on answering our four research questions. We conducted

thematic coding and analysis to answer our RQs (Klaus Krippendorff 2018)(Cruzes & Dyb

2011). While reading the full text of papers, the coding technique was utilized manually

to find the relevant text in 65 studies. To answer RQ1 we analyzed the findings of all

selected studies to extract their outcome of used ML algorithms. Based on the

functionality of algorithms we categorized them into different groups coming from the

relevant coded text by performing thematic coding and analysis. We extracted the list

of challenges of using ML in RE to answer RQ2 and we analyzed them based on the

groups of perspectives that we provided by the included studies. To answer RQ3 we

reviewed the selected papers to investigate the most popular dataset used in RE tasks.

Chapter 2

58

For RQ4 we extracted the information about evaluation metrics and analyzed them

according to ML tasks in RE.

2.17.8. Findings

In this section, we describe the characteristics of our 65 included studies.

Publication sources- Among the 65 included studies, 40 (61.5%) are published in

conference proceedings, 8 papers (12.5%) are published in workshop proceedings, and

the remaining 17 (26%) are journal articles. The majority of these studies are from highly

reputable outlets. All the papers included in our review were those that provided

enough info about the research method and hence rated above 50% in the quality

assessment checklist.

Publication year and study focus- Figure 2.3 presents the number of publications per

year from 2010 to April 2020.

Some of the studies did not explicitly or clearly mention their specific focus. Others

claimed that their study is useful for a special task, but we have deduced 16 different

categories for the selected studies according to their mentioned tasks and this is

presented in Table 2.2.

From Table 2.2 it can be seen that the task to which ML has been applied the most is

classification with 12 studies. It shows extra needs and attention to automate the

classification of requirements written in NL that is not straightforward in the process of

RE (Abad et al. 2017b). ML has been utilized for many classification tasks like

differentiating between users’ requirements and software requirements. Requirements

are often classified as functional (FR) and non-functional (NFR). Hence, separating and

identifying them manually in SRS documents is a time-consuming task, finding an

automated and effective approach to distinguish them has been the focus of several

studies (e.g., (Kurtanovic & Maalej 2017), (Haque, Rahman & Siddik 2019)). Out of 12

studies focused on classification tasks, classifiers used for identifying both FR and NFR

((Kurtanovic & Maalej 2017), (Deocadez, Harrison & Rodriguez 2017), (Dalpiaz,

Dell’Anna, et al. 2019), (Haque, Rahman & Siddik 2019), (Abad et al. 2017a)); to

59

automate the classification of NFRs into sub-categories of usability, availability, or

performance and to pre-process requirements that standardize and normalizes

requirements before applying classification algorithms (Abad et al. 2017a); to classify

NFRs into maintainability, operability, performance, security and usability ((De Bortoli

Fávero, Casanova & Pimentel 2019); to investigate specific and relevant terms in the text

(De Bortoli Fávero, Casanova & Pimentel 2019); to divide specification content elements

into requirements and non-requirements ((Winkler, Gronberg & Vogelsang 2019),

(Winkler & Vogelsang 2017)); To automate classification task using tools (Hayes, Li &

Rahimi 2014) to automate user requests in crowdsourcing RE (Li et al. 2018), and finally

boosting text classification by combining text classification algorithms with semantic

roles ((Rago, Marcos & Diaz-Pace 2018).

Our results indicate that a fair share of studies (eight studies) have been proposed to

address ambiguity. Ambiguity has often been considered a potentially harmful attribute

of requirements that leads to challenging the projects, so the primary objective of

reducing the ambiguity is having requirements with only one possible interpretation

(Boyd, Farroukh & Didar Zowghi 2005). Eight studies focused on improving the

requirements extraction task in order to develop an automated solution for requirement

analysis. Part of the works focused on the identification of efficiently and dynamically

extract and classify requirements-related knowledge properly ((Shakeri et al. 2019),

(Memon & Xiaoling 2019)), to extract requirements dependencies (Deshpande, Arora &

Ruhe 2019), domain model extraction ((Arora et al. 2019), to extract relevant non-

functional requirements (Slankas & Williams 2013), and analyzing the characteristics of

requirement expressions to divide them into system-level requirements and instance

level in pre-processing step (Chen et al. 2010).

The objective of validation was addressed in four studies by automation of fault-

consolidation step (Singh et al. 2018)) and proposing a framework to overcome

inconsistencies for the optimal definition of software development sprints (Belsis,

Koutoumanos & Sgouropoulou 2014)). The main goal of validation is to ensure that all

the documented requirements are correct, complete, and consistent, the designed

Chapter 2

60

solution meets the requirements, and a real-world solution to be built and tested to

prove that it meets the requirements (Maalem & Zarour 2016).

Five studies focused on quality assessment from different perspectives. (Ferrari, Gnesi

& Tolomei 2013) analyzed the structure of the document in the way it is perceived by

the reader, while (Parra et al. 2015) assessed the quality of requirements automatically

according to the quality criteria posed by the domain expert. (Tamai & Anzai 2018)

automated the process of filtering out QR statements from an SRS and classifying them

into the quality characteristic attributes as defined in the ISO/IEC 25000 quality model.

(Dargan, Wasek & Campos-Nanez 2016) defined quality factors to assess, while (Hayes

et al. 2015) addressed requirement testability for understandability and quality. Only

one study focused on each of these topics: verification, model transformation, predict

vulnerabilities, specification, and identifying business requirements while two studies

focused on security and change requests.

According to the data extraction from our set of 65 papers, in this section, we describe

our findings to answer the RQs.

2 2
3

4
6

7 7 7
9

18

0
2
4
6
8

10
12
14
16
18
20

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

Classification
(Abad et al. 2017a), (Baker et al. 2019), (De Bortoli Fávero, Casanova

& Pimentel 2019), (Dalpiaz, Dell’Anna, et al. 2019), (Deocadez, Harrison

& Rodriguez 2017), (Haque, Rahman & Siddik 2019), (Hayes, Li &

12

61

Rahimi 2014), (Kurtanovic & Maalej 2017), (Li et al. 2018), (Rago,

Marcos & Diaz-Pace 2018), (Winkler & Vogelsang 2017), (Winkler,

Gronberg & Vogelsang 2019)

Requirements

Extraction

(Shakeri et al. 2019), (Deshpande, Arora & Ruhe 2019), (Chen et al.

2010), (Memon & Xiaoling 2019), (Slankas & Williams 2013),

(Vogelsang & Borg 2019), (Wang 2015), (Arora et al. 2019)

8

Ambiguity

(Osman & Zaharin 2018), (Richa Sharma, Bhatia & Biswas 2014),

(Sharma, Sharma & Biswas 2016), (Yang et al. 2011), (Yang et al. 2010),

(Dalpiaz, van der Schalk, et al. 2019), (Pal, Sandhu & Pal 2015), (Ferrari

& Esuli 2019)

8

Analysis/

Management

(Wang 2016), (Knauss et al. 2015), (Abualhaija et al. 2019), (Osman

et al. 2019), (Wang & Zhang 2016), (Misra, Sengupta & Podder 2016)
6

Traceability

(Sultanov & Hayes 2013), (Li et al. 2017), (Wang, Li & Yang 2019), (Li

& Huang 2018), (Mezghani & Florence 2019), (Hayes, Payne &

Leppelmeier 2019)

6

Quality
(Ferrari, Gnesi & Tolomei 2013), (Parra et al. 2015), (Tamai & Anzai

2018), (Dargan, Wasek & Campos-Nanez 2016), (Hayes et al. 2015)
5

Validation
(Nardini et al. 2012), (Singh 2018), (Singh et al. 2018), (Baker et al.

2019)
4

Prioritization
(Dhingra et al. 2017), (Singh & Sharma 2014), (Perini, Susi & Avesani

2013), (McZara et al. 2015)
4

Risk Management
(Avesani et al. 2015), (del Águila & del Sagrado 2016b), (Yang et al.

2012)
3

Change requests (Khelifa, Haoues & Sellami 2018), (Arora et al. 2015a) 2

Security (Malhotra et al. 2016), (Riaz et al. 2014) 2

Verification (Winkler, Gronberg & Vogelsang 2019) 1

Model

Transformation
(Chioaşcǎ 2012) 1

Chapter 2

62

• ML techniques/algorithms have been used in RE

In our analysis, we note that the words ‘technique’ and ‘algorithm’ are used

interchangeably. A total of 48 different ML algorithms were identified in our selected

studies. We classified the algorithms into eight principal groups based on their

functionality: Distance-based Methods, Regression, Decision Tree, Bayesian, Kernel

Methods, Associated Role Learning, Ensemble Methods, and Artificial Neural Networks.

We do not claim to cover all the existing methods exhaustively, rather we present those

that are more frequently utilized. Figure 2.4 shows the distribution of algorithm types

based on functional similarity. Analysis of results revealed that Kernel Methods,

Bayesian and Distance-based are the most popular categories of algorithms, as they

were used within 29 and 25 studies, Ensemble Methods is the second in the list with 23,

Decision Tree with 21 and finally Artificial Neural Networks, Regression and Associated

Role Learning with 12, 9 and 3 respectively. The distributions of each category type are

available in our replication package. Figure 2.5 presents a visualization of the data

regarding reported ML algorithms used in different studies. Support Vector Machine

(SVM) is the most frequently used algorithm that has been employed in 17 studies. The

second most used is Naive Bayes (NB), investigated in 14 papers, followed by K-Nearest

Neighbors (KNN) in 11 studies, Decision Tree, and Random Forest in 10 and 8 papers

respectively.

At least 4 studies have used the combination of different algorithms to improve the

accuracy of the results, algorithms’ strengths and overcome their limitations (e.g.,

(McZara et al. 2015), (Rago, Marcos & Diaz-Pace 2018), (Riaz et al. 2014), (Wang, Li &

Predict

vulnerabilities
(Imtiaz & Bhowmik 2018) 1

Specification (van Rooijen et al. 2017) 1

Identifying business (R. Sharma, Bhatia & Biswas 2014) 1

In Total 65

63

Yang 2019)). (McZara et al. 2015) presented a semi-automated approach for challenging

task of requirements prioritization in large scale projects by using NLP tools and an SMT

(Satisfiability Modulo Theories) solver. They mitigate the challenges of variation outputs

by updating the input of the SMT solver with iterative pairwise comparisons. In (Rago,

Marcos & Diaz-Pace 2018), the researchers improved the accuracy of their classifier by

combining the binary relevance and SVM. (Riaz et al. 2014) presented a tool-assisted

process, Security Discoverer (SD) by combining K-NN classifier, Sequential Minimum

Optimizer (SMO), and Naïve Bayes classifiers after comparing the accuracy of other

potential classifiers. (Wang, Li & Yang 2019) proposed a hybrid approach of ML and

Logical Reasoning to improve the feature-engineering process to recover requirements

traceability recovery. 15 studies have employed several algorithms to just compare

them to determine which one outperforms the others based on the specific Dataset-Or

different datasets in their domain ((Abad et al. 2017a), (Baker et al. 2019), (Dargan,

Wasek & Campos-Nanez 2016), (Deshpande, Arora & Ruhe 2019), (Haque, Rahman &

Siddik 2019). (Imtiaz & Bhowmik 2018), (Osman & Zaharin 2018), (Parra et al. 2015),

(Riaz et al. 2014), (R. Sharma, Bhatia & Biswas 2014), (Sharma, Sharma & Biswas 2016),

(Singh 2018), (Singh et al. 2018), (Slankas & Williams 2013), (Wang & Zhang 2016)). 4

studies proposed methods or techniques by modifying either one or a mix of algorithms

to improve the accuracy of results or enhance and optimize the automated models

((Arora et al. 2019), (Li et al. 2018), (Perini, Susi & Avesani 2013), (Ferrari, Gnesi &

Tolomei 2013)).

As for classification, clustering, and regression approaches, 48 studies used just

classification, 8 studies used clustering, 3 of these 8 studies used only clustering ((Baker

et al. 2019), (Ferrari, Gnesi & Tolomei 2013), (Misra, Sengupta & Podder 2016)) while

the other 5 studies ((Richa Sharma, Bhatia & Biswas 2014), (Sharma, Sharma & Biswas

2016), (Mezghani & Florence 2019), (Abad et al. 2017a), (Winkler & Vogelsang 2017))

used the combination of clustering and classification. Five studies did not mention a

specific algorithm, the authors mentioned that they used ML techniques in some steps

of their methodology ((Chen et al. 2010), (Memon & Xiaoling 2019), (Osman et al. 2019),

(Dalpiaz, van der Schalk, et al. 2019), (Pal, Sandhu & Pal 2015)). All the 8 studies that

used Regression categories of BLR, Logistic Regression, and SGD ((Imtiaz & Bhowmik

Chapter 2

64

2018), (Osman & Zaharin 2018), (Singh et al. 2018), (Abualhaija et al. 2019), (Singh 2018),

(Arora et al. 2019), (Winkler & Vogelsang 2017), (Dargan, Wasek & Campos-Nanez

2016)), have employed them as classifiers.

From the ML perspective, the essential steps required to apply ML techniques include

(1) data collection, (2) data pre-processing, (3) building an ML model, (4) training and

testing the model, and (5) evaluation. Figure 2.6 shows the distribution of the algorithms

applied in step 3 building ML models.

In terms of using NLP algorithms in selected studies, we retrieved 40 studies that used

one or more NLP algorithms in a total of 31 different algorithms across reported studies.

The most commonly investigated NLP technique is the tokenization with part of speech

(POS) tagging with 23 studies, followed by chunking and TF- IDF with both in 7 studies.

Two papers did not mention the name of the used algorithms; only reported text-mining

techniques ((Osman & Zaharin 2018), (Deocadez, Harrison & Rodriguez 2017)).

•

For effective use of ML capabilities in software and applications, it is very important

to identify the challenges faced in the process of designing suitable ML solutions.

Knowing the possible issues and challenges and how to address them can help the

3

9

12

13

21

23

25

25

29

0 5 10 15 20 25 30 35

Associated Role Learning

Regression

Artificial Neural Networks

Others

Decision Tree

Ensemble Methods

Distance-based Methods

Bayesian

Kernel Methods

65

researchers and analysts to benefit from the usefulness of ML. As a key finding of our

analysis, the challenges extracted from selected studies were divided into six main

categories: data related, task related, algorithm related, project related, language

related, and other challenges. Figure 2.6 demonstrates the frequency of ML challenges

in the included articles.

A. Data-related:

Since many ML strategies are focused on gaining from large datasets, the success of

ML based research projects strongly relies upon data accessibility, quality, and

management (Durelli et al. 2019) (Polyzotis et al. 2017). Data related problems were

faced by 35 studies. In fact, this result was expected, since ML is a method that almost

always requires data. One of the most important barriers in this category is the lack of

data. Unfortunately, data is not free or always relevant. The availability of large datasets

and possibly, the annotated Dataset-Is reported to be a major problem ((Singh 2018).

An ML algorithm needs a large amount of data to train (Singh 2018). Specifically, deep

learning algorithms need to be trained on large amounts of data to draw meaningful

insights ((De Bortoli Fávero, Casanova & Pimentel 2019)). In a more complex project,

more data is required to achieve trustable results. So, when limited datasets do not

represent all possible situations, the results are not trustable (Shakeri et al. 2019).

(Tamai & Anzai 2018) explained that the authors faced difficulty in collecting more SRS

from a variety of areas that are large enough to use deep learning. Similarly, (Osman &

Zaharin 2018) reported that the result of their study cannot be generalized to all systems

because the data used were gathered from just four SRSs that only represent several

system domains and limited patterns on requirement specification formation. The

incomplete nature of the source corpus is also the outcome of limited data which will

affect the accuracy of results (Yang et al. 2012). Imbalanced classes were mentioned in

the data scope in ML especially in the classification. It occurs in datasets with a

disproportionate ratio of observations in each class. 12 studies mentioned this problem.

The other challenges that we identified in the data category were overfitting/

underfitting (5 studies), followed by labeling issues (3 studies), dependency issues,

missing datasets, size of data set, data quality issue, all with 2 studies and the issue of

Chapter 2

66

selecting training set with 1 study. Concerning labeling issues, especially for some

techniques like neural networks that need a large amount of data to train, it is not

possible to manually check the dataset to determine labels are correct. When different

people work on an SRS, samples in the dataset may be labeled differently (Winkler,

Grönberg & Vogelsang 2019) and the important distinction between quality

requirements and constraints is not properly reflected in the labeling (Abad et al.

2017a). The issue of the missing data may arise when the data is collected from users’

feedbacks or questionnaires since some of the questions may not have been answered.

Although there are some approaches to overcome this such as approximating the null

values or calculating the maximum likelihood to minimize the error, all of them need

time and effort (Baker et al. 2019).

The main purpose of a reliable ML model is to generalize well to different domains and

new data that is evaluated for its performance over time as it is learning from training

data. An ideal model should not suffer from overfitting or underfitting. Three studies,

(Winkler, Grönberg & Vogelsang 2019), (Yang et al. 2012), and (Winkler & Vogelsang

2017) reported overfitting issues due to using a relatively small dataset. Overfitting is

the case when the model produces excellent results on the training data set but cannot

be employed on any unseen data at an acceptable accuracy level. (Rago, Marcos & Diaz-

Pace 2018), (Kurtanovic & Maalej 2017) mentioned an underfitting problem that occurs

where the model is too simplistic and has not learned enough from the training data.

For example, a model trained on fewer or unrepresentative features.

67

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

2
2
2
2
2
2
2
2
2
2

3
3
3

4
4
4
4

5
5

6
6
6

8
10

11
14

17

0 2 4 6 8 10 12 14 16 18
Single Linkage Clustering

Farthest-First
Theme Based Clustering

Partitional Clustering
Sliding Head-Tail Component (S-HTC)

Binary Logistic Regression (BLR)
REPTree

Extra Tree
Binarized Naive Bayes

GNB
Tree Augmented Naive Bayes

K-Dependent Bayesian
Linear Discriminate Analysis (LDA)

Stochastic Gradient Descent SVM (SGD SVM)
NuSVM (Nu Support Vector Classifier)

Elcat Algorithm
Stacked Generalization (Blending)

Gradient Boosting Machines (GBM)
LogitBoost

Bi-LSTM-CRF neutral network
Feedforward Neural Network (FNN)

OneR(One Rule) for classification
Gradient Descent Ranking (GDRank)
Quality Function Deployment (QFD)

Reinforcement Learning (RL)
SNIPR (Interactive Framework using SMT & NLP)

Genetic algorithm (SMT solver)
Expectation Maximisation (EM)

Hierarchical Clustering
Stochastic Gradient Descent (SGD)

Decision Stump
Multinomial NB (MNB)

Bernoulli NB (BNB)
Binary SVM

Apriori Algorithm
Bootstrapped Aggregation (Bagging)

CBRank
C4.5

Bayesian Network
Radial Basis Function (RBF)

Sequential Minimal Optimization (SMO)
Boosting

Ada Boost (Adaptive boosting)
Artificial Neural Network (ANN)

K-Means
AHP

Logistic Regression
J48 (java implementation of C4.5)

Convolutional Neural Network (CNN)
Decision Tree/ Random tree

Random Forest
K Nearest Neighbor (KNN)

Naive Bayes (NB)
Support Vector Machine (SVM)

2
6

7
8

10
35

Other
Algorithm Related
Language Related

Project Related
Task Related
Data Related

0 10 20 30 40

Chapter 2

68

B. Task-related

In this category, we present the challenges that are related to specific ML based tasks

such as classification or regression that were reported by 10 papers. Five studies

reported classification problems and misclassification errors for both binary and multi-

label classification ((Abualhaija et al. 2019), (Dalpiaz, Dell’Anna, et al. 2019), (del Águila

& del Sagrado 2016b), (Wang, Li & Yang 2019), (Shakeri et al. 2019)) that involve

predicting a class label for a given set of inputs. Although solutions have been offered to

address these challenges, not all studies have utilized these solutions. Generally, the

main goal is to train a model with accuracy more than humanly possible. Since a wrong

prediction during classification (such as true-fault being classified as false-positive),

would lead to fault slippage that will propagate to later phases. It is expected that by

using ML algorithm, the highest rate of accuracy can be achieved (Singh 2018).

Misclassification may be caused by errors in the classification process of the

requirements by the experts because the classifier can learn incorrect classification and

replicate the error in the classification of new requirements ((Parra et al. 2015), (Riaz et

al. 2014)). Misclassification can also manifest itself during classifying specification

elements into requirements and non-requirements (Winkler, Gronberg & Vogelsang

2019). Even different ideas on grouping classes and naming them may cause

misclassification as noticed in (Li et al. 2018). The authors worked on the types of user

requests as classification targets. They classified user requests manually and they

mentioned that labeling a large set of data is cumbersome, so using active learning

techniques might be better. They also reported that investigating the appropriate

features to represent document items and ML algorithms to train the classifier was a big

challenge for their approach.

C. Algorithm- related

In terms of algorithm related challenges, two studies reported the black box nature of

ML classifiers like SVM or Neural networks making these algorithms difficult to

understand. To overcome this challenge (Dalpiaz, Dell’Anna, et al. 2019) employed two

interpretable tools called RuleMatrix and SkopeRules to facilitate the interpretation of

ML classifiers by extracting logical rules. RuleMatrix shows which rules are applied to

69

the data by visualizing them so, it helps to understand, explore, and validate predictive

models. (van Rooijen et al. 2017) noted that although their selected method had the

black-box problem, in their case due to the lack of methods to learn more about a given

problem instance, there was no issue to select a black-box optimizer. The authors of

(Slankas & Williams 2013) reported that their proposed approach, NFR Locator, is

suitable to extract information from text documents. It is not able to extract information

from images or tables.

The structure of text documents might be classified into the NFR category, so they had

to parse the files in their native format to distinguish the structural parts such as titles,

section lists, etc. The other challenge investigated in (Ferrari, Gnesi & Tolomei 2013) is

the necessity of tuning algorithm behavior. They aimed to identify the hidden structure

of requirements documents in terms of requirements relatedness and section

independence. Sometimes, their algorithm reported dependency among sections that

were not related according to the perception of the readers. Moreover, (Chen et al.

2010) reported that although their approach in pre-processing text-based requirements

is suitable for goal-oriented requirements, it cannot be used to extract business rules.

The authors claimed that the sentence patterns that are describing business rules are

more complex than the domain sentence pattern. Regarding using the semantic role

labeling method, (Wang 2016) mentioned that the corpus for SLR tasks in SE domain is

very few, so they need to use the other domain knowledge as rules to improve the

results. (Dalpiaz, van der Schalk, et al. 2019) reported that to reach better results and

higher precision in their approach, they need to go beyond domain-independent

corpora and use domain-specific information.

D. Project-related

In this category, we present the project-specific challenges that impose a limit or

restriction or that prevent approaches from generalizability. Four studies explicitly

mentioned the need for further experiments in other domains, especially with the help

of domain experts to determine whether their approaches and tools can be generalized

((Ferrari, Gnesi & Tolomei 2013), , (Dalpiaz, van der Schalk, et al. 2019), (Knauss et al.

2015)). Moreover, proposed approaches need to be applied to different scenarios and

Chapter 2

70

multiple industry-scale projects (Baker et al. 2019). Although this leads to significant

costs, it helps to reach a full evaluation (Knauss et al. 2015).

One study (Dalpiaz, van der Schalk, et al. 2019) that focused on the expectation of

users and stakeholders mentioned that even accurate algorithms and tools need a

sufficient level of maturity. This is because any proposed tool that exhibits low usability

and contains bugs may decrease the interest in applying them in real projects.

E. Language-related

The last challenge is related to the writing of the requirements including spelling

mistakes, structural effectiveness, terminology and vocabulary, and language that have

been addressed in six articles. Automated classification of requirements into functional

requirements and non-functional requirements remains a challenge (Ernst &

Mylopoulos 2010). Stakeholders, as well as requirements engineers, use different

terminologies and sentence structures to describe the same kind of requirements. The

high level of inconsistency in documenting requirements makes automated

classification more complicated and therefore error-prone (Abad et al. 2017b).

Furthermore, the requirements reviews are written in NL that inherits the scope to

spelling mistakes (Singh et al. 2018). NL understanding relies on the specification readers

and writers using the same words for the same concept. This leads to misunderstandings

because of the ambiguity of NL that is often not discovered until later phases of the

software process and may then be very expensive to resolve. To overcome these

problems, writing effective and high-quality requirements will lead to an accurate ML

result (Singh 2018). Requirements originating from different documents may be quite

different in terms of language and terminology. In other words, documents may contain

domain-specific words which are exclusively used in that particular document (Winkler,

Grönberg & Vogelsang 2019). Moreover, variations may exist between the security

requirements of software systems, even in the same domain. Thus, the selection of

documents may influence the type and frequency of identified security-relevant

sentences (Riaz et al. 2014). Most of the ML research have used requirements that are

written in English and so there is a bias about generalizing the results to the

requirements written in other languages (Deocadez, Harrison & Rodriguez 2017). There

71

are also issues related to NLP-models being more accurate and readily available for

English, as compared to other languages. In addition, investigating if a requirement is

speculative or not is not an easy task, which is due to the peripheral nature of

uncertainty language (Yang et al. 2012).

F. Other challenges

There were other challenges that we extracted from the included studies that did not

fit under the above main five categories. For example, since requirements often change

over time, another challenge is the stability of requirements. Clients might modify

requirements, so fluidity in software requirements becomes a major problem (McZara

et al. 2015). Although this is a common problem in RE, when the ML technique is used

in this process, it becomes a more significant challenge because the model needs to be

trained again when the requirements change. Besides, this will be an issue if the labeling

changes with changes in requirements.

Negotiation barriers between the client and business analyst or developer on different

grounds such as language, not using consistent terms, and making assumptions about

ambiguous requirements is another major challenge that exists in RE tasks (Parra et al.

2015).

• Identification of datasets used for ML in RE

Investigating the applied datasets and their associated properties allows us to

determine to what extent we can rely on the performance results, and it can provide

new insights into why some ML techniques may outperform others.

As discussed above, the top challenge in implementing ML techniques in RE is related

to datasets. Since ML algorithms are quantitative, the success of ML related research

projects strongly depends on having a large enough dataset (Ferrari, Spagnolo & Gnesi

2017). Many different datasets have been used in the included studies. The terminology

used by the authors to describe the type of documents involved in the research were of

Chapter 2

72

varying degrees of abstraction and level of details, e.g., requirements documents,

requirements specification, textual requirements, operational requirements, SRSs

documents, system-related documents, user requirements, high-level requirements,

and low-level requirements. Some studies used real-world datasets while others used

sample data that are shared in open-source repositories to use by researchers.

 To answer this research question, we looked at the frequency of datasets, the type of

data, their organization, and the number of requirements statements in each study.

 According to the results, 10 studies did not report any information about their

dataset. The number of used datasets varied from 1 to 22. Out of the remaining 54

studies, 22 studies used just one unique dataset, while the biggest number of datasets

belongs to (Hayes, Li & Rahimi 2014) by 22 different datasets with a total of 2067 user

stories. The reason why they selected 22 datasets was that their research was based on

their previous paper that used a single dataset, so they were motivated to increase the

number of datasets to get more in-depth results and to increase generalizability. The

second largest is for (Tamai & Anzai 2018) by 13 datasets from local governments or

other public institutions of industry, medical information, education, library, etc. in

Japan totaling 11,538 requirements sentences. The trend of frequency was followed by

nine and eight datasets that were used in (De Bortoli Fávero, Casanova & Pimentel 2019)

and (Dalpiaz, Dell’Anna, et al. 2019) respectively. The textual requirements in (De

Bortoli Fávero, Casanova & Pimentel 2019) were collected from 16 large open-source

projects in repositories that contained 23,313 user stories. In (Dalpiaz, Dell’Anna, et al.

2019), data was gathered from eight datasets of PROMISE, ESA Euclid, Dronology,

ReqView, and Leeds University’s Library online management system, Web Architectures

for Services Platforms (WASP) application and two private datasets of Helpdesk system

and bespoke user account request and management application (User mgmt.). A

considerable number of datasets in this review were reported by (Deocadez, Harrison &

Rodriguez 2017) about user reviews. The authors collected data from the App Store in

2015. Since they considered the top paid and free apps from different categories of

books, education, games, health, lifestyle, navigation, news, productivity, travel, and

73

utilities, they reached 40 apps with a total of 932,388 reviews. The remaining pairs of

studies (16 studies) considered three datasets or fewer.

As for the frequency, we observed that the most frequently used Dataset-Is PROMISE1

that is an open-source Software Engineering Repository that includes a collection of

publicly available datasets and tools for researchers ((Shakeri et al. 2019), (Slankas &

Williams 2013), (Malhotra et al. 2016), (Khelifa, Haoues & Sellami 2018), (Abad et al.

2017a), (Baker et al. 2019), (Dalpiaz, Dell’Anna, et al. 2019), (Haque, Rahman & Siddik

2019)). It was inspired by the UCI Machine Learning Repository, which has been

extensively used by researchers in that field. The second frequently utilized Dataset-Is

Pine by 3 studies ((Sultanov & Hayes 2013), (Li et al. 2017), (Li & Huang 2018)) followed

with NASA CM-1 by 2 studies ((Sultanov & Hayes 2013), (del Águila & del Sagrado

2016b)). Pine is a text-based email system developed by the University of Washington

that includes true links, high-level and low-level requirements (Sultanov & Hayes 2013).

NASA MDP repository includes different datasets which CM1SUB project that concerns

a scientific instrument to be carried on-board a satellite was addressed in our selected

studies.

When extracting data about the types of documents that were used as a data source

for studies, we observed that they include functional requirements, non-functional

requirements, high level, and low-level requirements, Operational Test Reports, user

stories, Wikipedia Pages, design documents, textual use cases, code modules (classes),

correct links, user comments (reviews), user requests and change requests.

Regarding the domain of datasets, healthcare and medical data were used as a data

source by 10 studies. Some of these datasets are open source while the others are

private. (Slankas & Williams 2013) reported the use of OpenEMR2 that is one of the

popular open-source electronic health records and medical practice management

solutions. The other healthcare repository is iTrust that was used by (Slankas & Williams

1 http://promise.site.uottawa.ca/SERepository/

2 https://www.open-emr.org/

http://www.ics.uci.edu/~mlearn/MLRepository.html
http://promise.site.uottawa.ca/SERepository/
https://www.open-emr.org/

Chapter 2

74

2013), is a medical application that maintains patient medical history and records and

permits communication with doctors. It consists of 59 use cases and 11 code modules.

It was written in Java.

Industrial data was utilized by 10 studies. Nine studies built their requirements corpus

by collecting data from academics and educational domains. Our results indicate that

twenty of the studies concerned external corpus as an external reference for the English

language for NLP. The most frequently used external corpus is Wordnet3 by 11 studies.

The next most used corpus is Wikipedia pages that were utilized in six studies. BNC164

(British National Corpus) was used by two while VerbNet was used by one study.

Concerning the language of datasets, all are in English except for (Wang, Li & Yang 2019)

and (Tamai & Anzai 2018). eTour dataset that was used by (Wang, Li & Yang 2019) is in

Italian. It is an electronic touristic guide developed by students in Italy that contain 58

use cases, 174 classes, and 366 correct links. In (Tamai & Anzai 2018) all 13 SRSs that

contained 11,538 requirements sentences were in Japanese.

Since the size of datasets was not reported in all studies, we must categorize them

according to the number of documents or sentences as small, medium, and large size.

We considered datasets more than 20,000 samples as large, between 1000 and 20,000

as medium, and less than 1000 as small. The largest dataset used by (Deocadez, Harrison

& Rodriguez 2017) is 932,388 user reviews carried out of 40 different apps from the app

store. The other significant size belongs to (Winkler, Gronberg & Vogelsang 2019)

dataset that includes 35000 pre-labeled content elements (20000 requirements and

15000 non-requirements). The second largest utilized one is for (Winkler, Grönberg &

Vogelsang 2019) and (De Bortoli Fávero, Casanova & Pimentel 2019) by 27,000

requirements from an automotive domain and 23,313 user stories from 16 large open-

source projects in 9 repositories respectively. Out of the 54 datasets, 11 datasets were

of unknown size, 22 (about 50 percent) were small and 4 datasets were considered large.

3 https://dumps.wikimedia.org/enwiki/

4 http://www.natcorp.ox.ac.uk/

https://dumps.wikimedia.org/enwiki/
http://www.natcorp.ox.ac.uk/

75

2.17.9. Evaluation metrics for ML approaches in RE

Evaluation metrics play a critical role in achieving the optimal ML model by qualifying

its performance (B.Hossin & Sulaiman 2015). Since the performance of ML algorithms

may be affected by tasks and domains, the evaluation metric has been employed to

decide on which technique is the best match by comparing different techniques offline.

It should be noted that selecting an incorrect evaluation metric can lead to select an

unmatched algorithm so, the selection of a suitable metric is an essential part of any

project to discover whether or not the performance is effective. (Gunawardana 2009).

Performance evaluation is tricky for many NLP tasks since there is not easily agreeable

“ground truth” or “gold standard”. Proper performance evaluation is the subject of

much community discussion and even a research topic in its own right. Understanding

the proper performance evaluation and performance metrics is very important to make

informed business decisions.

Out of 65 selected studies, 42 articles used evaluation metrics to determine the

performance of the used algorithms or to investigate which algorithm outperformed the

others in terms of accuracy. We categorized the evaluation metrics employed by the

selected studies into three categories of use for classification, clustering, and regression.

Concerning classification tasks, precision and recall are the most used metrics employed

by 38 studies followed by F1-measure by 29 and Accuracy by 15 studies. Requirements

engineering has adopted information retrieval metrics including precision, recall, and

the F-measure, to assess the effectiveness of any techniques or tools as well as using

them to develop applications for RE tasks (Berry et al. 2017). For imbalanced

classification when recall and precision are not equally important, a weighted F-measure

called Fβ-measure can be used. The result shows that only one study (Winkler, Gronberg

& Vogelsang 2019) used both of them to evaluate and optimize their classification tools.

The authors tried to carry out a reasonable value for β and to tune the tool by this value.

In NLP tools, recall is going to be more important than precision so tool assistance in the

RE should be evaluated by a weighted F-measure (Berry et al. 2017).

 In terms of validation, some authors, such as (Osman & Zaharin 2018), (Yang et al.

2010), (Abad et al. 2017a), (Winkler, Gronberg & Vogelsang 2019), (Deshpande, Arora &

Chapter 2

76

Ruhe 2019), (Sharma, Sharma & Biswas 2016), (Abualhaija et al. 2019), (Dalpiaz,

Dell’Anna, et al. 2019), (R. Sharma, Bhatia & Biswas 2014), (Li et al. 2017) (10 studies)

employed K-fold cross-validation to assess how the classifier will generalize to an

independent data set that is used to determine the performance of the predictive model

to check whether a model is overfitting. The main goal of validation in classification tasks

is to determine how well the classifier will perform on unseen data (Williams, Zander &

Armitage 2006). Even though 37 studies used precision and 15 used accuracy to

discriminate the optimal solution especially for their classifiers, prior studies were

concerned about using popular metrics. Hossin et al. (B.Hossin & Sulaiman 2015)

explained that accuracy still has several instabilities which are less distinctiveness, less

discriminability, less informative, and bias to majority class data. Menzies et al. (Menzies

et al. 2008) argued that accuracy and precision are poor indicators of performance for

data where the target class is so rare. Figure 2.7 shows the distribution of evaluation

metrics for the classification task. Only 10 different metrics were reported to evaluate

the quality of the clustering. Figure 2.8 illustrates the distribution of evaluation metrics

for the clustering task.

2.17.10. Discussion

The results presented from this mapping study reveal that many different ML

algorithms have been applied to RE tasks to improve accuracy and to automate, among

other goals.

 Our analysis shows that we currently do not have any standards or guidelines to help

analysts select the most suitable ML and NLP techniques. Furthermore, it appears that

most studies combine various ML techniques in their research to tackle the existing

challenges. However, hardly any of them explain the reason for choosing their selected

ML algorithms. We believe that it is not clear what kinds of selection criteria have been

applied or need to be considered. In addition, two papers discussed steps such as

hyperparameter optimization, and feature engineering. This also shows that we do not

have a standard template for applying ML on RE problems.

77

By taking a closer look at the reported datasets and repositories, our concern is how

do we decide which Dataset-Is the best match for any ML model? Does the size of the

dataset matter? It is not clear when selecting a Dataset-What sort of criteria should be

applied. We could not find any quantitative or qualitative checklist to assess the selected

datasets. There is no consensus on standard guidelines in the literature for deciding on

the choice of dataset. Some studies reported that their results cannot be generalized

because their approach needs to be tested on larger scenarios and need to be applied

in other domains to improve the results. It is not clear if there is any relationship

between the size of the datasets and the specific domain for their application. We

believe that these concerns and questions need further research.

1
1
1
1
1
1
1
1
2
2
3
4
4
4

10
16

29
38
38

0 5 10 15 20 25 30 35 40 45

Fβ-measure
F mean

MCC
On-way ANOVA

Kruskal-Wallis Q-Q plots
Wald Statistic

Confusion matrix
Cohen Kappa statistic

Probability
Edit distance

G-mean
Specificity

AUC
ROC

K-fold cross validation
Accuracy

F1-measure/F score /F value
Precision

Recall

Classification

0 1 2

Recall
 F1-measure

Purity (P)
Inverse-purity (IP)

Hopkins (H) statistic
Silhouette

Similarity Measures metrics
Squared error function

Precision

Clustering

Chapter 2

78

2.17.11. Emerging Trends and Future Directions

While our systematic mapping study focuses on literature up to 2020, the past few

years have seen rapid advances in large language models (LLMs) that open new

opportunities for CIA. State-of-the-art models such as GPT-4, LLaMA, and PaLM

demonstrate remarkable capabilities in understanding complex, domain-specific text

and synthesizing context-rich responses. Future research should explore fine-tuning

these LLMs on requirements-engineering corpora, as well as hybridizing them with

knowledge‐graph and ontology embedding techniques to capture both procedural and

semantic dependencies. Incorporating such recent LLMs could yield more accurate

impact predictions and enable zero- or few-shot adaptation to novel project artifacts,

thereby extending the dynamic adaptability of our framework beyond the 2010–2020

window.

Moreover, retrieval-augmented generation (RAG) offers a powerful synergy for CIA

tasks. By first retrieving semantically relevant passages, anchored in a structured index

of requirements, design documents, and change-request metadata, and then

conditioning an LLM on these contextual snippets, RAG dynamically adapts its

generation to the precise project context. This two-stage loop not only grounds

predictions in verifiable sources (improving explainability) but also enables the model to

update its “knowledge” in real time as new artefacts are added. Empirically, we

anticipate this will reduce false positives in impact candidates and enhance resilience to

evolving terminology and process changes—key challenges identified in our mapping

study.

2.17.12. Threats to validity

The main validity threat for this mapping study is data collection. Although we chose

our search string carefully and carried out a structured and detailed review of each of

the selected studies, there is a chance that our collection is not complete because of the

risk of not including all relevant studies. Some of the papers may have been written in

another language or maybe not be available online. Therefore, we might have missed

some significant research papers. The other validity threat is related to data extraction

79

because some primary studies did not report a precise explanation of their focus, their

used methods, and data sources. In terms of ML challenges, we observed a lack of a

clear definition of how they tackled the existing challenges. Consequently, this imitation

might affect our outcomes. A possible limitation of our mapping study is related to the

starting date of 2010. The main reason was to investigate the most recent ML for RE

methods and algorithms. To ensure that all relevant studies were located, we manually

applied our search string to some of the data sources before 2010 randomly and the

number of papers found was insignificant.

2.18. Summary

This mapping study has provided an overview of the existing approaches in ML used

for tasks in the RE process. We have presented the results from the analysis of 65

empirical studies published from 2010 to April 2020. The key findings of this mapping

study indicate that there are at least two main gaps in literature, one is about selection

criteria for ML techniques and the other is that more research is needed to investigate

the relevance and appropriateness of datasets for the ML models. Another possibility is

an online repository of ML features engineered in different classification approaches.

This will probably be saturated at some point if the classification task is directly on the

requirements statements or attributes related to SRS. Having such a feature repository

will also guide future research on ML for RE.

In order to attain a detailed overview of the current state of using the proper dataset

to obtain a reliable result, complete criteria need to be developed to assess which

Dataset-Is the best match for which models. It would be beneficial to investigate how

we can decide on the relevance of the dataset to our ML algorithms. Typically, today's

software applications work in a competitive environment where business priorities

frequently change. Therefore, software requirements are constantly evolving, and new

requirements often emerge. The ability to analyze a change in requirements, predict its

progression, and determine the effect early in the design process would enable

engineers to make better decisions about the implementation of changes, especially in

large scale projects. What is important to note here is that CIA has not been the direct

Chapter 2

80

focus of any ML for RE studies and it is the missing piece in the research literature.

Besides, not enough research has been carried out in prediction modeling in RE and it is

an area that is under-explored. In parallel with our mapping study, another study has

been conducted as a systematic mapping study by L. Zhao et al. (Zhao et al. 2020) about

NLP for RE that surveys the landscape of NLP for RE research to understand the state of

the art and identify open problems. This study strengthens some of our findings but

differs from our review on one point. Their mapping study only focuses on NLP while

our work is about ML in RE. Since ML is a generic term that may also include NLP and

deep learning techniques, there are clearly some overlaps between their selected

studies and ours, but we compared, we noted that 46 studies that were included in our

mapping study were not on their list of selected studies (Zhao et al. 2020).

81

Chapter 3.

Software Requirements Change Impact Analysis

(SRCIA) Framework

3.1. Introduction

In this chapter, the SRCIA (Software Requirement Change Impact Analysis) framework

developed for this research is outlined, focusing on the systematic integration of

traditional ML, NLP, Beir and RAG models. These models work together to address the

challenges associated with CIA in software requirements engineering (SRE). The

challenges are specified in chapter 2 section 2.5.

The data sets used in this research are also introduced in this chapter, as they form

the foundation upon which all models and approaches are applied. By consolidating the

core framework and the data in one place, this chapter provides the essential

groundwork that will be referenced throughout the rest of this thesis.

The research is structured in a way that builds upon the lessons learned from earlier

stages, gradually advancing toward more sophisticated solutions. This incremental

approach ensures that each solution is tested and validated against real-world datasets,

ultimately leading to a comprehensive, adaptable framework for CIA.

Chapter 3

82

The framework proposed in this research is designed to automate and improve the

prediction of software requirements changes' impact. This architecture integrates

multiple stages of the CIA process, enabling a flexible and modular approach to its

implementation.

Figure 3.1 illustrates the visual representation of the comprehensive workflow of the

SRCIA framework, detailing the process from initial data collection and preprocessing of

requirements documents and change requests, through the preparation of datasets, to

the ultimate evaluation of impacted requirements within the SRCIA process, culminating

in an approval or disapproval decision

Figure 3.2 illustrates a more granular look into the internal structure of the proposed

framework, from data input to model output, highlighting the interplay between the

different components of the framework corresponding to each CIA stage. This flowchart

provides a visual guide to the system's architecture and how each stage contributes to

overall functionality. At its core, the SRCIA framework employs multiple stages of

analysis, incorporating traditional ML models, advanced NLP techniques, and the latest

developments in LLMs to ensure the system can handle a wide range of use cases, from

basic change impact predictions to more complex, context-aware scenarios.

83

The data flows through the following components:

The first phase of the framework involves gathering data from diverse sources,

including project specifications, requirements documents, change logs, and historical

project data.

The collected data is then preprocessed using NLP techniques to standardize and

cleanse the text, ensuring that it is ready for further analysis.

The framework incorporates ML model, a dual-model of NLP and Beir benchmark-

based solution and a RAG model (that uses the advanced text generation abilities of

LLMs) to predict changes.

The core function of the framework is to predict which requirements will be impacted

by a given change. It returns the most likely affected requirements. These results are

then ranked based on the predicted severity of impact.

Chapter 3

84

5. Feedback Loop and Continuous Learning

A key feature of the framework is its feedback mechanism, which allows users (such

as software engineers) to provide input on the framework’s output. This feedback is

used to improve the accuracy of future analysis, ensuring that the system remains

relevant as requirements and project contexts evolve. This modular architecture

ensures that the framework is adaptable and scalable, allowing for the integration of

new techniques as they emerge in the field.

3.3. The AI models incorporated in the proposed SRCIA Framework

The research outlined in this thesis followed a structured, multi-stage approach, each

stage building upon the previous one to develop a comprehensive framework for

effective CIA in software requirements engineering.

In this research, a comparative evaluation of all the implemented solutions was

conducted. The traditional ML methods, the integrated NLP and BEIR-based solutions,

and the RAG model were all assessed based on their effectiveness, precision, and overall

performance in predicting change impacts. The results of these evaluations provided

valuable insights into the relative strengths and weaknesses of each approach,

ultimately informing recommendations for best practices in CIA for future research and

practical application in software development projects.

• Traditional ML Approaches

Traditional ML models were applied to establish a baseline for predicting a baseline

for predicting the impact of software requirement changes. These models focus on

structured datasets where explicit patterns and dependencies can be identified and

analyzed. In this framework, ML models are implemented by transforming textual

requirements data into numerical features using methods such as TF-IDF and

dependency analysis. The resulting feature sets allow the models to interpret

relationships and dependencies between requirements effectively.

Algorithms such as Random Forest, Support Vector Machines (SVM), and Decision

Trees are employed to predict which requirements are likely to be impacted by a given

85

change. These models are trained using historical data on requirement changes and

their corresponding impacts. Evaluation metrics, including precision, recall, F1-score,

and accuracy, are used to assess model performance. Traditional ML models proved

effective in scenarios where datasets were structured and of moderate complexity,

particularly when clear dependency patterns were present. For example, Random Forest

demonstrated strong predictive performance in datasets with hierarchical relationships

among requirements.

These models are particularly effective for structured datasets, where explicit patterns

and dependencies can be identified and analyzed. Such datasets typically contain well-

organized information, such as dependency mappings or metadata related to

requirement changes.

• Integration of NLP and BEIR Benchmark-Based Solutions

Building on the foundation established by traditional ML models, the following

component of the framework integrates NLP techniques and BEIR benchmark-based

solutions. This approach enhances the semantic understanding and precision of CIA by

leveraging advanced linguistic and retrieval methods.

NLP techniques are applied to extract meaningful linguistic features from

requirements, such as dependency parsing and named entity recognition (NER). These

features are processed further using BEIR solutions, which include BM25 for lexical

retrieval and dense retrieval models, such as Bi-Encoders and Cross-Encoders, for re-

ranking results. By combining lexical and semantic retrieval methods, this phase enables

the framework to rank impacted requirements with higher relevance and accuracy.

This integration is particularly effective for unstructured textual or semi-structured

textual datasets, where relationships between requirements are complex and require

nuanced semantic analysis. The evaluation of this phase uses metrics such as Mean

Reciprocal Rank (MRR) and Normalized Discounted Cumulative Gain (nDCG) to measure

the retrieval performance.

Chapter 3

86

• Incorporation of Large Language Models (LLM) and Retrieval-Augmented

Generation (RAG)

The advanced layer of the SRCIA framework embraces recent advancements in AI by

incorporating LLMs through a RAG approach. This stage combines retrieval-based

methods with the generative capabilities of LLMs, resulting in a highly adaptable and

sophisticated solution for predicting change impacts.

In this phase, vector embeddings generated by LLMs are used to retrieve contextually

relevant data from the requirements repository. The retrieved information is then

processed by the generative component of the RAG model to predict the most likely

impacted requirements, along with explanations or contextual insights.

This approach is particularly effective for large-scale, dynamic, and heterogeneous

datasets, where the complexity of changes demands both retrieval precision and

generative reasoning. Metrics such as BLEU scores and ROUGE scores are used to

evaluate the quality of the generated outputs.

3.4. Novelty of SRCIA

While earlier approaches such as (Arora et al. 2015a) NLP-driven traceability strategy

focused primarily on extracting term correlations or rule-based dependencies between

changed and impacted requirements, the SRCIA framework introduces three key

innovations:

• Predictive Impact Modeling

 Rather than stopping at trace link discovery, SRCIA incorporates supervised ML

classifiers to forecast which requirements will change in response to a given request.

This moves beyond binary link detection to quantitative impact prediction, enabling

proactive resource planning.

• Hybrid IR–Generative Loop

 Existing methods (e.g., pure BEIR pipelines) retrieve relevant passages but do not

synthesize them. SRCIA’s RAG component both retrieves semantically anchored

87

snippets and conditionally generates impact narratives, then re-scores and refines those

narratives in a second pass. This iterative synergy yields higher precision and

explainability than one-shot retrieval or static generation alone.

• Dynamic Domain Adaptation

 Unlike static tailoring approaches, where traceability rules or model parameters are

handcrafted per domain, SRCIA uses transfer learning and domain-tuned prompt

engineering (Phi 3.5) to automatically adapt to new project vocabularies and artifact

structures. This reduces the manual effort of creating bespoke pipelines for each domain

benchmark.

By integrating these elements, SRCIA goes well beyond previous traceability-only or

retrieval-only architectures, offering a unified, adaptive, and predictive solution for CIA

in live software projects.

3.5. Datasets Description

When choosing the datasets for this study, two crucial criteria were established. The

first criterion involves using datasets sourced from varied domains. We sought to avoid

the repeated benchmark bias noted in peer research (Arora et al. 2015a;

Tantithamthavorn, Hassan & Matsumoto 2018), by surveying a wide variety of public

corpora such as PROMISE, Pine, NASA CM-1, PURE, and others. Although theses

established benchmarks have proven valuable for traceability and evolution studies,

they exhibit two key limitations for CIA research: (1) they focus primarily on code or API-

level changes rather than end-to-end requirement–change interactions, and (2) they

often lack rich, real-world change-request metadata needed for impact prediction.

Second, to ensure practical relevance and real-world applicability, we deliberately

selected only industry-sourced SRS and software change notification datasets,

containing authentic requirement statements and change requests from live projects to

overview the changes that may happen during the time.

The raw data were taken from three industrial datasets described below for this study.

Table 3.1 shows detailed information about data input from three industry partners.

Chapter 3

88

• Dataset 1: WASP (Web Architectures for Services Platforms) dataset (Arora et al.

2015a, 2015b). More information about the requirements and the change scenarios

can be found at this link: https://sites.google.com/site/svvnarcia/.

• Dataset 2: A larger real-world dataset from one telecommunication project

containing requirements statements and change requests.

• Dataset 3: A real-world dataset from one industry partner, including requirements

statements and change requests.

Our chosen datasets offer domain diversity, WASP covers web-service platforms, the

Telecom dataset spans large-scale network rollouts, and the industry dataset captures

enterprise application evolution. I addition, each contains both formal SRS entries and

authentic change-request forms with timestamps, authorship, and rationale fields,

unlike PURE’s synthetic or narrowly scoped logs. Dataset 3 includes recently collected

change requests from a live system, something neither PURE nor CM-1 provide—

allowing us to evaluate our SRCIA framework on contemporary engineering practices.

3.6. Data Collection Procedure

For this study, the focus was on obtaining and demarcating a large set of data from

various domains to develop, train, and assess the model. Data from real-world projects

needed to be collected, with at least one expert per project to help interpret and correct

the data. Consequently, three industry projects from web service, telecommunications,

and satellite organizations were chosen. The collected requirements statements and

change requests were formatted as PDF and Excel worksheets, with links to their

embedded word documents containing change information and details.

Table 3.1 illustrates the industry contribution from our industry partners. A total of

891 requirements statements and 77 change requests were collected during the data

collection procedure and were input into our approach.

https://sites.google.com/site/svvnarcia/

89

Table 3.1. The number of data input from three industry partners

Dataset Domain # Requirements Statement # Change request

1 Dataset-W Web Service 72 28

2 Dataset‐O Telecommunications 626 34

3 Dataset-I Satellite 193 15

 Total 891 77

3.7. Data Annotation & Quality Verification

A total of 891 requirements statements and 77 change requests were collected from

three industrial datasets spanning diverse domains. These datasets were manually

labeled in a collaborative effort between the authors and our industry partners, with

domain experts, each possessing extensive experience in requirements engineering and

change management, performing the initial annotations to ensure that all labels were

both accurate and contextually relevant.

To minimize subjectivity and guard against annotation bias, each change request was

independently annotated by two different experts. We tracked inter-annotator

agreement using Cohen’s κ and set a threshold of κ ≥ 0.75 for acceptable consistency;

any annotation batches that fell below this threshold were re-examined and re-

annotated after further refinement of our criteria. We developed explicit annotation

criteria defining how to link change requests to impacted requirements by identifying

shared domain entities (e.g., RequirementsID or ChangeID), semantic overlaps in

phrasing (e.g., “encrypt data” versus “data encryption”), and procedural dependencies

(e.g., authentication workflows). These criteria served as the constant reference point

for all annotators.

Where discrepancies did arise, they were resolved in structured consensus workshops.

In these sessions, the two initial annotators presented their reasoning alongside a third

senior reviewer, who facilitated discussion of each divergent case until a unanimous

Chapter 3

90

decision was reached. This format ensured that all edge cases received thorough

consideration and that consensus decisions were documented for future reference.

Once consensus was achieved, the fully annotated datasets underwent a final

validation step conducted by senior experts from both the research team and our

industry partners. These validators reviewed the agreed annotations to catch any

remaining inconsistencies or errors, providing an additional safeguard against

confirmation bias and further enhancing the reliability of our ground truth.

By combining dual independent annotation, statistical agreement monitoring,

structured consensus meetings, comprehensive guidelines, and senior-level validation,

we established a rigorous, multi-layered process that delivers a high-quality, bias-

resilient dataset for evaluating the SRCIA framework.

3.8. Data Preparation

The input of the solution is a change request, which includes sections such as id, title,

description, type, and the rationale (reason) for the change. To prepare the dataset, NLP

techniques were applied to collect the raw data from the requirements statements and

change request forms. First, the text of the title and the description were cleaned to

remove inconsistencies and ensure accuracy. This step involved normalization,

deduplication, and standardization of the data. Then, the cleaned textual data was

tokenized using standard NLP techniques to collect all the tokens (words). The tokens

were then normalized using stemming and lemmatization. Additionally, casing and

acronyms were normalized. All extracted tokens were transformed into features as

inputs for the model. The details are explained in the implementation section.

Therefore, to ready the data for classification in this pre-processing pipeline, the CSV

files of requirements statements and change requests were cleaned, tokenized, stop

words and punctuation removed, texts stemmed by PorterStemmer, and lemmatized by

WordNetLemmatizer, all with Python codes and libraries.

91

3.9. Implementation

All solutions proposed in this research were implemented using Python, leveraging its

robust libraries and frameworks suitable for NLP, ML, and data analysis. Python's

versatility and wide range of tools enabled the effective development and evaluation of

the proposed models and methodologies.

A comprehensive replication package was prepared and shared publicly on Zenodo,

providing the complete Python codes, detailed requirements statements, change

scenarios, and the corresponding results. This package was designed to facilitate the

replication of the experiments conducted in this research, ensuring transparency and

reproducibility.

The replication package, encompassing all relevant materials, is available on Zenodo

at the following link: https://zenodo.org/records/14568906. By making this package

accessible, the research invites further exploration and validation of the findings by the

broader academic and professional communities.

3.10. Summary

This chapter introduced the Software Requirements Change Impact Analysis (SRCIA)

Framework, a comprehensive approach to predicting the impact of software

requirement changes. The framework integrates ML, NLP, BEIR, and RAG models to

address challenges in requirements engineering, leveraging structured, semi-structured,

and unstructured datasets collected from industry partners. The chapter outlines the

modular architecture of the framework, emphasizing its adaptability, scalability, and

feedback loop for continuous improvement. It details the data collection, quality

verification, and preparation processes, ensuring robust and high-quality datasets for

implementation. The SRCIA framework’s stages, from traditional ML approaches to

advanced LLM-based solutions, highlight its ability to address varying complexities in

requirements change scenarios. Finally, the chapter underscores transparency and

reproducibility by providing a public replication package for further exploration of the

research findings.

https://zenodo.org/records/14568906

92

Chapter 4.

Machine Learning Algorithms for Software

Requirements Change Impact Prediction

4.1. Introduction

This chapter focuses on implementing the traditional ML approach introduced as the

first component of the SRCIA framework in Chapter 3. As outlined in the framework,

traditional ML techniques serve as the foundational layer for predicting the impact of

software requirement changes, particularly for structured datasets where explicit

patterns and dependencies can be identified and analyzed. This chapter builds on the

theoretical groundwork presented in Chapter 3 by applying and evaluating traditional

ML models to demonstrate their practical application and effectiveness in supporting

requirements analysts during CIA. In requirements engineering (RE), ML techniques can

streamline labor-intensive processes, enabling analysts to focus on tasks requiring

domain expertise. The traditional ML models incorporated in the SRCIA framework aim

to automate the identification of impacted requirements by predicting how changes

propagate throughout a system.

Informed by the systematic literature review detailed in Chapter 2, this chapter

addresses the gap in research regarding predictive models for CIA in RE. Unlike existing

approaches that focus broadly on requirements traceability or ambiguity resolution, the

traditional ML methods implemented here are specifically designed to predict the

impact of a given change on existing requirements. This approach aligns with the SRCIA

framework’s goal of creating a modular and scalable solution for CIA.

93

ML has been successfully employed in various software engineering (SE) tasks, such as

requirements traceability and classification (Dalpiaz, Dell’Anna, et al. 2019; Li & Huang

2018), ambiguity management(Yang et al. 2011), test case generation (Ali et al. 2010),

prediction of code changes (Giger, Pinzger & Gall 2012), and software effort estimation

(Basri et al. 2016).

To achieve this, we develop five alternative solutions using supervised ML approaches,

including Random Forest, Support Vector Machines (SVM), and Decision Trees. These

models are trained and evaluated on three real-world datasets containing 891

requirements and 77 change requests. By implementing these models, this chapter

validates the effectiveness of traditional ML techniques as described in Chapter 3.

Comparisons are also drawn with manual approaches, such as keyword-based analysis

of specification documents, to highlight the advantages of ML-based methods in terms

of accuracy and efficiency.

This chapter represents a key step in the realization of the SRCIA framework by

operationalizing its traditional ML component. The results presented here serve as the

foundation for subsequent chapters, which explore the integration of more advanced

techniques, such as NLP and LLMs, in the framework.

4.2. Technical Approach and Implementation

CIA in requirements engineering involves predicting the impact of changes to software

requirements. This can be framed as a classification problem where each requirement

change request is classified as either having an impact (class 1) or not having an impact

(class 0) on other requirements. By transforming the problem into a classification task,

ML algorithms can be leveraged to predict the likelihood of changes affecting other

requirements, thereby automating the CIA process.

The ML approach is summarized in Figure 4.1 and includes five different techniques of

ML to develop an automated approach to analyze the requirements change impact and

develop a requirement change impact prediction model. Requirements often manifest

as textual artifacts represented through models, mathematical specifications, and

Chapter 4

94

similar forms. The research focuses specifically on natural language (NL) requirements,

excluding models or requirements articulated in formal languages.

The initial phase involves preparing this dataset through text cleansing and pre-

processing using NLP techniques, thus converting the data into a format conducive to

subsequent computational analysis. Subsequently, an NLP pipeline is applied to pre-

process all requirements documents and change requests, capturing semantic,

syntactic, and contextual similarities and connections between terms, thereby

producing annotated (labeled) data integrated into the dataset as metadata. These

established relationships are utilized in training a ML algorithm to discern dependencies

between requirements. Ultimately, the algorithm generates a list of affected

requirements based on the likelihood of each requirement being impacted by a

requested change.

This list is ordered from the most to the least affected, aiding analysts in decision-

making, whether to accept or decline a proposed change. The trained ML algorithm can

potentially furnish a predictive model for anticipating the impact of forthcoming change

requests. Additionally, the system accommodates user input ('approve' or 'disapprove')

for a given change, enabling the model to learn from human decisions, thus maintaining

a human-involved approach in the process.

Figure 4.1.ML Model Approach

95

4.3. Sequential Steps of the ML Approach

Step 1: Data Collection and Pre-processing

The initial phase involves collecting and pre-processing historical data on software

requirements and change requests. Inputs for this phase include requirements

documents and change requests. Raw data is collected from various sources, including

requirement specifications, change logs, and impact reports. The pre-processing phase

involves text cleansing and normalization using NLP techniques. This step includes

removing noise such as stop words and punctuation, handling missing values, and

performing initial feature extraction. These pre-processing activities convert the raw

data into a structured format that is suitable for computational analysis.

Additionally, the pre-processing phase handles data quality issues by addressing

inconsistencies and ensuring the data is complete and accurate. This phase is crucial for

creating a reliable dataset that can be used for further analysis. The output of this phase

is a clean and pre-processed dataset that provides a solid foundation for subsequent

analytical steps.

Step 2: Database Preparation

Following data pre-processing, the cleaned data is organized into a structured

database. This database serves as the input for the subsequent pre-processing pipeline,

which performs more advanced NLP tasks. The structured database ensures that the

data is efficiently stored and can be easily accessed for further processing.

In this step, the data is formatted to meet the requirements of the pre-processing

pipeline. The structured database facilitates the application of semantic, syntactic, and

contextual analysis, which are essential for understanding the relationships and

dependencies between different requirements. The output is a well-organized database

that is ready for detailed NLP analysis.

Step 3: Advanced Pre-processing Pipeline

The advanced pre-processing pipeline applies semantic, syntactic, and contextual

analysis to the data. Semantic analysis captures the meaning of terms, syntactic analysis

Chapter 4

96

examines the grammatical structure, and contextual analysis understands the context

in which terms are used. These analyses help to annotate the data, adding metadata

that captures the relationships and dependencies between different requirements.

The annotated data resulting from this pipeline provides a rich representation of the

requirements, incorporating detailed semantic, syntactic, and contextual information.

This step is crucial for enhancing the Dataset-With meaningful annotations that will be

used for ML. The output is an annotated dataset enriched with semantic, syntactic, and

contextual metadata.

Step 4: Handling Class Imbalance with Oversampling Methods

To address the class imbalance in the data, oversampling methods such as the SMOTE

+ Edited Nearest Neighbors (SMOTEENN) are applied. This step takes the annotated data

as input and generates a balanced Dataset-Where the minority class is adequately

represented. Handling class imbalance ensures that the ML models trained in

subsequent steps do not suffer from biases due to class imbalance.

This phase involves creating synthetic examples for the minority class to balance the

class distribution. By doing so, the dataset becomes more suitable for training robust

ML models that can generalize well to unseen data. The output is a balanced and

annotated dataset that is ready for feature engineering.

Step 5: Feature Engineering

In the feature engineering phase, relevant features are extracted and engineered from

the balanced dataset. This phase focuses on creating new features or transforming

existing ones to better capture the characteristics of the requirements and their

changes. For instance, features such as term frequency-inverse document frequency

(TF-IDF) and word embeddings are used to represent textual data quantitatively.

Feature engineering is a critical step in the ML pipeline, as it directly impacts the

model's performance. Well-engineered features help the model to better understand

the underlying patterns in the data. The output of this phase is a feature matrix that

encapsulates the engineered features for each data point.

97

Step 6: Training ML Models

Using the feature matrix, various ML algorithms are trained, including decision trees,

random forests, support vector machines, and neural networks. The training phase

involves splitting the Dataset-Into training and validation sets, optimizing

hyperparameters through techniques like grid search, and evaluating model

performance. The goal is to identify the best-performing model based on metrics such

as precision and recall.

During this phase, cross-validation techniques are used to ensure that the models

generalize well to unseen data. Hyperparameter tuning helps find the optimal settings

for each model, enhancing their predictive capabilities. The output of this phase is a set

of trained predictive model candidates with robust performance metrics.

Step 7: Model Testing and Evaluation

To evaluate the generalization ability of the trained models, they are tested on an

unseen test dataset. This evaluation phase assesses the models' effectiveness using

performance metrics. If the precision and recall are low, further tuning is performed to

improve recall, even if precision is initially compromised. The performance evaluation

report highlights the strengths and weaknesses of each model, providing insights into

their suitability for deployment.

This phase is crucial for validating the models and ensuring that they meet the

required performance standards. The output is a comprehensive performance report

that informs the selection of the most efficient model.

The main aim of our ML process was to introduce and capture which requirements are

impacted and not impacted by a given change or a set of requested changes. The

baseline is training our model in a specific domain, and if the resulting precision and

recall are as expected, the next step is trying it in different domains

Step 8: Practical Application and User Feedback

The final phase involves the practical application of the selected predictive model. The

trained model is integrated into a software tool designed for requirements analysts. This

tool allows analysts to input change requests and receive a list of impacted

Chapter 4

98

requirements, ordered from most to least affected. The system also accommodates user

feedback by enabling analysts to approve or disapprove changes, which helps refine the

model over time.

To improve the precision, the human in the loop is included by the user's input, which

is to 'approve' or 'disapprove' a given change, enabling the model to learn from human

responses. So, by incorporating user feedback, the model continuously improves and

adapts to new data. This human-in-the-loop approach ensures that the tool remains

relevant and accurate. The output of this phase is a usable software tool for predictive

CIA, accompanied by comprehensive user documentation and guidelines.

4.4. Implementation

This section details the implementation process for applying machine learning

algorithms to predict the impact of requirement changes. It outlines the critical steps

taken to prepare the datasets, optimize the models, and enhance their predictive

performance. The subsections explore the techniques used for feature engineering,

model training, and evaluation, as well as strategies to address challenges like class

imbalance and overfitting. Through these steps, this section provides a comprehensive

view of how the machine learning models were operationalized to achieve the research

objectives.

4.4.1. Apply Class Rebalancing Techniques

 The primary purpose of a reliable ML model is to generalize effectively to various

domains and to generate new data that is evaluated for its performance over time as it

learns from training data. The main problem of imbalanced datasets is that they result

in sub-optimal classification models. It might provide misleading conclusions as the

distribution of observations in the training set is unequal across the classes (Sikora,

Tenbergen & Pohl 2012). An ideal model should not suffer from overfitting or

underfitting (Zamani, Zowghi & Arora 2021). Training with unbalanced Dataset-Is is one

of the most critical concerns confronting ML research. Imbalanced class distributions

99

have an impact on classifier training, resulting in a negative bias towards the majority

classes. It could also lead to significant inaccuracy, or even exclusion, of the minority

classes (Dablain, Krawczyk & Chawla 2022; Galar et al. 2012).

In this study, the focus is on two-class imbalanced datasets. The initial labeled dataset

had a class imbalance for the binary classifier since the number of examples belonging

to class 0 is more than those belonging to class 1. In Dataset-W, 1890 out of 2016

examples belong to class 0 (93.75%); in the Dataset-I, 98.8% of data belongs to class 0;

and in the Telecommunications Dataset, the percentage of class 0 is 99.4%. Therefore,

the predictor almost always predicts any given sample as belonging to class 0, achieving

very high scores like precision and recall for class 0 and low scores for class 1. Table 4.1

shows the distribution of classes 1 and 0 in all datasets.

Table 4.1. Distribution of classes 1 and 0

Dataset # Requirements Statement # Change request Matrix

Dataset-W 72 28

2016 samples

• 1890 class 0

• 126 class 1

Dataset-O 627 34

21250 samples

• 21126 class 0

• 124 class 1

Dataset-I 193 15

2895 samples

• 2862 class 0

• 33 class 1

Earlier research in ML has repeatedly demonstrated an increase in performance when

class rebalancing approaches are used (Dablain, Krawczyk & Chawla 2022; Seiffert et al.

2010; Tantithamthavorn, Hassan & Matsumoto 2018; Wang & Yao 2013). To mitigate

Chapter 4

100

the problem, empirical experiments were conducted to systematically test several

combinations of commonly used rebalancing methods, including over-sampling and

under-sampling techniques, to determine which one works best for this case. According

to earlier studies, a combination of oversampling and undersampling techniques has

proven beneficial and thus can be considered the best solution (Sowjanya & Mrudula

2022; Tantithamthavorn, Hassan & Matsumoto 2018). To study the impact of

resampling techniques on the models, Condensed Nearest Neighbors + Tomek Links,

SMOTE + Tomek Links (SMOTE-Tomek Links), and SMOTE + Edited Nearest Neighbors

(SMOTEENN) were applied.

Initially, the dataset had a severe class imbalance with a ratio of 1:33, meaning there

was one instance of the minority class (class 1) for every 33 instances of the majority

class (class 0). Results reveal that by transforming the data with resampling methods,

the ratio increased from 1:33 to 1:2668 with a balanced distribution of 2862 in the

minority class for the Dataset-I. The same increase was observed in the Dataset-W and

Dataset-O, proving that SMOTEENN, a combined technique that incorporates both over-

sampling and under-sampling methods, outperforms in this case in practice. Table 4.2

shows the distribution of the data before and after resampling.

Table 4.2. Class distribution before and after resampling

Dataset

Original Dataset Transformed Dataset

Majority Class Minority Class Majority Class Minority Class

Dataset-W 1890 126 1767 1394

Dataset-O 21126 124 21104 20140

Dataset-I 2862 33 2837 2668

Evaluating how the class distribution changed before and after SMOTEENN was

implemented is a critical component of its effectiveness. Pre- and post-resampling class

distributions were compared using a detailed bar plot created by a Matplotlib-based

101

Python implementation. In Figures 4.2, 4.3, and 4.4, bar charts of the original set of data

from dataset-W, dataset-O and dataset-I showcased the rebalancing effect of

SMOTEENN, elucidating its ability to rectify unbalanced class distribution in our data.

Figure 4.2.Dataset-W Class Distribution of Original and

Resampled Data

Figure 4.3.Dataset-I Class Distribution of Original

and Resampled Data

Figure 4.4. Dataset-O Class Distribution of Original and Resampled Data

4.4.2. The Proposed ML Model

In this step, an ML classification model was proposed for training. In the development

of the ML model, its attributes were collected from previous steps. Since existing

literature proposed multiple alternatives and, there is no evidence to show which

classifier has the best overall performance in general (Catolino et al. 2018; Yang et al.

2020), five different classifiers were experimented with, and the results were compared

Chapter 4

102

in terms of accuracy and performance. Therefore, the ML method uses five classifiers of

Decision Tree, Logistic Regression, Support Vector Machine (SVM), Random Forest, and

Gaussian Naive Bayes (NB), which are the most frequently used algorithms in RE tasks

based on the result of our published paper (Zamani, Zowghi & Arora 2021). In terms of

using SVM, prior research showed that utilization of SVMs by gappy n-gram kernels,

including a non-zero decay factor, would present a highly impressive solution for

requirements classification (e.g. (Cortes, Haffner & Mohri 2004; Shakeri et al. 2019)).

Based on the mentioned earlier research, non-contiguous n-gram kernels were used in

the text of requirements classification and rational kernels and SVM were applied to

perform this method. All ML algorithms have been implemented in Python with the

Scikit-Learn Library uploaded in the replication package.

4.4.3. Identifying the Dependencies

The identified dependencies in this step are used to train and test the ML classifier.

Syntactic, semantic, and textual content were considered to identify all existing

dependencies for the collection of requirements and a given change. Similarity

measures, both syntactic and semantic, were used to investigate the closeness of a given

change with each of the existing requirement statements. Given the variety of similarity

measures available, it is critical to objectively study which one is best suited to a

particular type or rationale of a change request (Nejati et al. 2016).

Consequently, the following algorithms were applied to the data: Jaccard, Levenstein,

Pairwise Cosine Similarity (Bag of Words with Term Frequency (TF) with Cosine

similarity), Bidirectional Encoder Representations from Transformers (BERT)

with Cosine similarity, Glove with Cosine similarity, Glove with Word Movers Distance

(WDM) similarity, CrossEncoder and Infersent.

To facilitate the application of Cosine similarity, an essential step involved the

transformation of sentences into vectors. This transformation leveraged all lemmatized

tokens extracted through our pre-processing pipeline. These tokens were subsequently

molded into features, serving as inputs for our model. This transformation was achieved

103

via a Bag of Words (BOWs) approach coupled with TF-IDF (term frequency-inverse

document frequency) or Word Embeddings, enabling a comprehensive representation

of the textual data.

These algorithms were implemented using Python, and their implementations are

available within our comprehensive replication package and are accessible on Zenodo.

4.4.4. Generating Features

 To increase the prediction power of the model, additional feature engineering

techniques were considered. This step involved collecting change request features that

might have the highest impact on the impact prediction findings. The taxonomy of

requirements changes was reviewed to assess their practical values in the change

management process. Prior research showed that domains of the market, organization,

vision, type, specification, solution, time, type, reason, and origin are the most

important features in classifying requirements (Catolino et al. 2018; McGee & Greer

2011; Saher, Baharom & Ghazali 2017). Since these detailed data are not available in

most real-world datasets, only the type of changes, including additions, deletions, and

modifications, were selected as a feature of the ML model. In this stage, efforts were

made to extract additional valuable features from datasets and feed them to the ML

model to improve prediction performance. The performance will be evaluated by

comparing it with a manual approach, which will be considered as a baseline approach.

4.4.5. Hyperparameters

Hyperparameters are essential for adjusting the model's behaviour and enhancing its

prediction power to maximize the performance of ML classifiers. Hyperparameters,

which are predefined configuration options not discovered through data analysis, were

carefully utilized to alter the behaviour of classifiers like Random Forest, Support Vector

Machine (SVM), and Logistic Regression.

For instance, for the Random Forest classifier, a grid search method (Bergstra & Bengio

2012) combined with cross-validation was used for evaluation. This approach aimed to

Chapter 4

104

improve the model's performance by exploring different combinations of

hyperparameters, such as the number of trees in the forest (n_estimators) and the

maximum depth of the tree (max_depth).

In the case of SVM tuning, the grid search method was employed to find the best

combination of the regularization parameter (C) and the kernel coefficient (gamma)

(Hsu, Chang & Lin 2003). These parameters were further adjusted based on domain

knowledge to ensure contextually relevant optimization. For the Decision Tree model,

the grid search method was used to adjust hyperparameters such as the maximum

depth of the tree (max_depth) and the minimum number of samples required to split

an internal node (min_samples_split).

In contrast, Gaussian Naive Bayes does not have hyperparameters to tune like the

other models. Therefore, no hyperparameter optimization was necessary for this

classifier.

Furthermore, the implementation of a pipeline employing Synthetic Minority Over-

sampling Technique and Edited Nearest Neighbors (SMOTEENN) resampling techniques

(Chawla et al. 2002; Tomek 1976) was an essential phase in the optimization process

across all classifiers. This method ensured that every classifier could handle unbalanced

class distributions, consequently resolving the class imbalance problem.

4.4.6. Computational Cost Considerations

When applying machine learning algorithms for CIA, computational cost is an

important practical consideration, especially when these models are deployed in

resource-constrained or real-time environments. In this study, we evaluated the

computational overhead of the implemented ML models, focusing on aspects such as

training time, inference speed, and scalability.

Random Forest, being an ensemble method, is relatively computationally expensive

due to the creation of multiple decision trees and the need for aggregation during

inference. However, its training phase can be parallelised, which mitigates the time cost

105

to some extent. In our experiments, Random Forest showed moderate training times

but relatively fast prediction times once the model was trained.

SVMs are known for their robust performance, particularly in high-dimensional

spaces. However, their computational cost increases significantly with larger datasets

due to the quadratic or cubic complexity involved in solving the optimisation problem

during training. Training time was the longest for SVMs in our experiments, though

inference time remained manageable.

Decision Trees are lightweight models in terms of computational cost. Both training

and inference are fast, making them suitable for applications requiring quick turnaround

times. However, they tend to overfit, which may require pruning or ensemble

techniques like Random Forest to maintain generalizability (Singh 2023) (Idrissi Khaldi et

al. 2025)

Logistic Regression is computationally efficient, with relatively low training and

inference costs. Its simplicity and interpretability make it suitable for baseline

comparisons, although it may struggle to capture complex patterns in the data.

Naive Bayes, as a probabilistic classifier, has minimal training overhead and scales well

with large datasets. Its simplicity results in the lowest computational cost among all

models tested. However, its assumptions of feature independence may limit its

effectiveness in capturing intricate dependencies.

Overall, the trade-off between performance and computational cost must be carefully

considered. While models like SVM and Random Forest may offer higher predictive

power, they demand greater computational resources. In contrast, Logistic Regression

and Naive Bayes offer faster execution but may underperform in complex scenarios. This

highlights the importance of selecting the appropriate model based on the specific

needs and constraints of the deployment context (Singh 2023) (Idrissi Khaldi et al. 2025)

Chapter 4

106

Table 4.3. ML algorithms results

 RandomForest DecisionTree NaiveBayers Logistic Regression SVM
Da

ta
se

t

Ch
an

ge
 ID

Pr
ec

isi
on

Re
ca

ll

F1
-S

co
re

Pr
ec

isi
on

Re
ca

ll

F1
-S

co
re

Pr
ec

isi
on

Re
ca

ll

F1
-S

co
re

Pr
ec

isi
on

Re
ca

ll

F1
-S

co
re

Pr
ec

isi
on

Re
ca

ll

F1
-S

co
re

Da
ta

se
t-

I

Ca
se

 1

0 0 0 0.5 0.33 0.4 0.33 1 0.5 0.33 1 0.5 0.5 0.67 0.57

Ca
se

 2

0.13 1 0.24 0.33 1 0.5 0.07 1 0.14 0.07 1 0.14 0.25 1 0.4

Ca
se

 3

0.33 1 0.5 0.1 1 0.17 0.25 1 0.4 0.25 1 0.4 0.29 1 0.45

Ca
se

 4

0.33 0.33 0.33 0.33 0.33 0.33 0.5 0.67 0.57 0.5 0.67 0.57 0.5 0.67 0.57

Ca
se

 5

1 1 1 0.17 1 0.29 0.33 1 0.5 0.33 1 0.5 0.25 1 0.4

Ca
se

 6

1 1 1 0.67 1 0.8 0.67 1 0.8 0.67 1 0.8 1 1 1

Ca
se

 7

0.67 1 0.8 0.67 1 0.8 0.4 1 0.57 0.4 1 0.57 0.5 1 0.67

Ca
se

 8

0.07 1 0.12 0.04 1 0.08 0.06 1 0.11 0.06 1 0.11 0.03 1 0.05

Ca
se

 9

0.4 1 0.57 0.18 1 0.31 0.33 1 0.5 0.33 1 0.5 0.5 1 0.67

Ca
se

 1
0

0.5 0.5 0.5 0.5 1 0.67 0.33 0.5 0.4 0.25 0.5 0.33 0.5 0.5 0.5

Ca
se

 1
1

0.09 0.75 0.16 0.08 0.75 0.14 0.07 0.75 0.13 0.07 0.75 0.13 0.03 1 0.05

Ca
se

 1
2

0.33 1 0.5 0.33 1 0.5 0.33 1 0.5 0.33 1 0.5 0.33 1 0.5

Ca
se

 1
3

1 1 1 1 1 1 0.67 1 0.8 0.67 1 0.8 1 1 1

Ca
se

 1
4

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Ca
se

 1
5

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

107

Da
ta

se
t-

W

C1
 1 0.5 0.67 1 0.5 0.67 1 1 1 1 1 1 1 0.5 0.67

C2
 1 0.22 0.36 1 0.22 0.36 0.67 0.22 0.33 0.67 0.22 0.33 1 0.22 0.36

C2
7 0.13 1 0.23 0.13 1 0.22 0.08 1 0.15 0.08 1 0.15 0.1 1 0.19

C2
6 0.8 0.8 0.8 0.13 0.8 0.22 0.44 0.8 0.57 0.44 0.8 0.57 0.5 0.8 0.62

C2
5 0.14 1 0.25 0.13 1 0.22 0.07 1 0.13 0.07 1 0.13 0.07 1 0.13

C2
4 0.18 0.86 0.29 0.16 0.86 0.27 0.16 1 0.27 0.16 1 0.27 0.17 1 0.29

C2
3 0.05 1 0.1 0.05 1 0.09 0.04 1 0.08 0.16 1 0.27 0.04 1 0.07

C2
2 0.47 1 0.64 0.4 0.75 0.52 0.31 1 0.47 0.31 1 0.47 0.42 1 0.59

C2
1 0.31 1 0.47 0.2 0.75 0.32 0.25 1 0.4 0.25 1 0.4 0.27 1 0.42

C2
0 0.5 0.6 0.55 0.38 0.6 0.46 0.36 0.8 0.5 0.36 0.8 0.5 0.39 1 0.56

C1
9 1 0.33 0.5 0.5 0.33 0.4 0.33 0.67 0.44 0.33 0.67 0.44 0.67 0.67 0.67

C1
8 0.33 0.25 0.29 0.11 0.25 0.15 0.5 0.25 0.33 0.5 0.25 0.33 0.5 0.5 0.5

C1
7 0.56 1 0.72 0.33 1 0.5 0.42 1 0.59 0.42 1 0.59 0.42 1 0.59

C1
6 0.19 0.67 0.3 0.17 0.67 0.27 0.17 0.83 0.28 0.17 0.83 0.28 0.13 0.83 0.22

C1
5 0.23 1 0.38 0.18 1 0.3 0.17 1 0.29 0.17 1 0.29 0.14 1 0.25

C1
4 0.14 0.5 0.22 1 1 1 0.25 1 0.4 0.25 1 0.4 0.29 1 0.45

C1
3 0.29 0.83 0.44 0.19 0.83 0.31 0.25 1 0.4 0.25 1 0.4 0.26 1 0.41

C1
2 0.06 0.13 0.08 0.05 0.13 0.07 0.05 0.13 0.07 0.05 0.13 0.07 0.17 0.5 0.25

C1
1 0.22 1 0.36 0.11 1 0.2 0.15 1 0.26 0.15 1 0.26 0.14 1 0.24

C1
0 0.25 0.33 0.29 0.2 0.33 0.25 0.2 0.67 0.31 0.2 0.67 0.31 0.29 0.67 0.4

C9
 0.56 0.56 0.56 0.67 0.67 0.67 0.3 0.78 0.44 0.3 0.78 0.44 0.43 0.67 0.52

C8
 0.23 1 0.37 0.19 1 0.32 0.21 1 0.34 0.21 1 0.34 0.16 1 0.28

C7
 0.38 0.75 0.5 0.33 0.75 0.46 0.14 0.75 0.24 0.14 0.75 0.24 0.18 0.75 0.29

C6
 0.36 0.71 0.48 0.42 0.71 0.53 0.28 1 0.44 0.28 1 0.44 0.33 1 0.5

C5
 0.6 0.86 0.71 0.25 0.29 0.27 0.4 0.86 0.55 0.4 0.86 0.55 0.5 0.86 0.63

C4
 1 1 1 1 1 1 0.5 1 0.67 0.5 1 0.67 1 1 1

C3
 0.17 1 0.29 0.14 1 0.25 0.1 1 0.18 0.1 1 0.18 0.11 1 0.2

C2
8 0 0 0 0 0 0 0.03 0.5 0.05 0.03 0.5 0.05 0 0 0

Da
ta

se
t-

O

CR
 0

07

0.05 1 0.09 0.05 1 0.09 0.04 1 0.08 0.04 1 0.07 0.04 1 0.07

Chapter 4

108

CR
 5

04
34

0

0.09 0.71 0.17 0.09 0.71 0.17 0.1 0.71 0.18 0.12 0.71 0.2 0.1 0.71 0.18

CR
 5

04
33

4

0.03 1 0.05 0.02 1 0.04 0.03 1 0.05 0.02 1 0.03 0.02 1 0.03

CR
 5

04
33

5

0.19 1 0.32 0.19 1 0.32 0.21 1 0.35 0.33 1 0.5 0.33 1 0.5

CR
 5

04
33

6

0.05 1 0.1 0.04 1 0.08 0.04 1 0.08 0.04 1 0.08 0.05 1 0.1

CR
 5

04
33

7

0.08 1 0.14 0.08 1 0.14 0.14 0.8 0.24 0.11 1 0.19 0.11 1 0.21

CR
 5

04
33

8

0.04 1 0.07 0.04 1 0.07 0.07 1 0.12 0.05 1 0.09 0.04 1 0.07

CR
 5

04
33

9

0.02 1 0.05 0.02 1 0.05 0.03 1 0.06 0.02 1 0.04 0.02 1 0.03

CR
 5

04
34

1

0.01 1 0.01 0.01 1 0.01 0.01 1 0.02 0.01 1 0.02 0.01 1 0.01

CR
 5

03
68

9

0.1 1 0.17 0.09 1 0.17 0.08 1 0.15 0.2 1 0.33 0.2 1 0.33

CR
 5

04
34

2

0.2 1 0.33 0.21 1 0.35 0.19 1 0.32 0.17 1 0.29 0.18 1 0.3

CR
 5

04
79

3

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

CR
 5

04
79

9

0.09 1 0.17 0.09 1 0.17 0.11 0.8 0.19 0.07 0.8 0.12 0.08 1 0.14

109

CR
 6

00
20

3

0.33 0.33 0.33 0.02 0.56 0.04 0.5 0.33 0.4 0.33 0.33 0.33 0.2 0.33 0.25

CR
 6

00
20

4

0.03 1 0.06 0.03 1 0.06 0.03 1 0.05 0.03 1 0.05 0.03 1 0.05

CR
 6

02
00

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

CR
 5

04
33

3

0.01 0.5 0.02 0.01 0.5 0.02 0.01 0.5 0.02 0.01 0.5 0.02 0.01 0.5 0.03

CR
 5

04
33

2

0.03 1 0.06 0.03 1 0.06 0.04 1 0.08 0.04 1 0.08 0.04 1 0.08

CR
 5

04
33

1

0.09 1 0.17 0.09 1 0.17 0.1 1 0.19 0.07 1 0.13 0.07 1 0.13

CR
 5

04
33

0

0.03 1 0.05 0.02 1 0.05 0.02 1 0.05 0.02 1 0.04 0.02 1 0.04

CR
 5

04
32

9

0.16 1 0.27 0.16 1 0.27 0.1 1 0.18 0.14 1 0.25 0.17 1 0.29

CR
 5

04
32

8

0.04 1 0.07 0.04 1 0.07 0.03 1 0.06 0.04 1 0.07 0.03 1 0.07

CR
 5

04
32

7

0.17 1 0.29 0.17 1 0.29 0.09 1 0.16 0.38 1 0.55 0.25 1 0.4

CR
 5

04
32

6

0.1 1 0.18 0.1 1 0.18 0.06 1 0.11 0.09 1 0.16 0.07 1 0.13

CR
 5

04
32

5

0.14 1 0.24 0.14 1 0.24 0.09 1 0.16 0.11 1 0.2 0.1 1 0.18

Chapter 4

110

CR
 5

04
32

4

0.01 1 0.02 0.01 1 0.02 0.01 1 0.02 0.01 1 0.02 0.01 1 0.02

CR
 5

04
32

3

0.08 1 0.15 0.08 1 0.15 0.04 1 0.08 0.08 1 0.14 0.14 1 0.25

CR
 5

04
32

2

0.33 0.4 0.36 0.33 0.4 0.36 0.11 0.4 0.17 0.67 0.4 0.5 1 0.4 0.57

CR
 5

04
32

1

0.02 1 0.05 0.03 1 0.05 0.02 1 0.04 0.02 1 0.04 0.02 1 0.04

CR
 5

04
31

1

0.02 0.33 0.03 0.02 0.33 0.03 0.02 0.5 0.04 0.02 0.67 0.04 0.03 0.67 0.05

CR
 5

04
31

0

0.02 1 0.04 0.02 1 0.04 0.02 1 0.03 0.02 1 0.04 0.02 1 0.04

CR
 5

04
13

9

0.09 1 0.17 0.09 1 0.17 0.06 1 0.11 0.12 0.57 0.2 0.1 0.57 0.17

CR
 5

03
77

9

0.05 0.75 0.09 0.04 0.75 0.07 0.04 0.75 0.08 0.06 0.5 0.1 0.05 0.5 0.09

CR
 6

02
02

1 1 1 0.01 1 0.02 1 1 1 0.5 1 0.67 0.5 1 0.67

4.5. Results Analysis and Evaluation

Table 4.3 presents the evaluation metrics for the classifiers, highlighting three key

observations. First, there is a significant improvement in recall for all classifiers after

addressing the class imbalance issue. This finding underscores the effectiveness of

resolving class imbalance in enhancing the overall performance of the classifiers.

Second, the Precision-Recall disparities reveal variations in precision and recall values

across different ML algorithms and datasets. Third, the F1-scores, which provide a

111

harmonic mean of precision and recall, offer a more balanced view of the classifier's

performance, particularly in the presence of class imbalance.

The effectiveness of any ML model is determined by measures such as True Positive

Rate, False Positive Rate, True Negative Rate, and False Negative Rate. Therefore,

evaluation metrics are used to assess the prediction results. The performance of the

proposed model is evaluated using standard metrics Precision (P) and Recall (R), as well

as the F1-score (F1). The inclusion of F1-scores provides additional insights into the

classifiers' performance, as the F1-score considers both precision and recall and is

particularly useful in evaluating models on imbalanced datasets. For instance, Random

Forest exhibited the highest F1-scores in several cases, particularly in the Dataset-I (e.g.,

Case 6 with an F1-score of 1), indicating a strong balance between precision and recall.

Decision Tree showed moderate F1-scores across datasets, with notable high

performance in specific cases such as Dataset-W C4 (F1-score of 1). Naive Bayes

generally showed high recall but varied in precision, leading to fluctuating F1-scores; for

example, in the Dataset-I Case 3, it achieved an F1-score of 0.4. Logistic Regression

displayed consistent performance with high F1-scores in multiple cases, such as Dataset-

I Case 6 (F1-score of 0.8), demonstrating its reliability. Support Vector Machines (SVM)

consistently performed well with balanced F1-scores, especially in the Dataset-O

CR504335 (F1-score of 0.5).

Additionally, to evaluate the prediction model, the k-fold Cross-Validation (k = 10)

technique is utilized to check how well the classifier performs on unseen data. This

validation technique is one of the most widely used model validation methods in

imperfection prediction studies (Thakur et al. 2021).

An 80/20 split of the sample data was employed for training and testing sets for each

dataset. Since the model was trained on only 80 percent of the sample data, there is a

significant risk of missing some information, resulting in a high bias that achieves a

perfect score but fails to predict anything valuable on unseen data. Cross-validation is a

common and valuable ML validation method for tackling this problem. The basic idea is

to isolate test data through data sampling to see if the trained model fits new situations

(Bennin et al. 2018). The k-fold cross-validation method splits the data into k folds of

Chapter 4

112

approximately the same size, where each fold contains similar proportions of the

defective ratio. One-fold is used for testing, and the remaining k-1 folds are used for

training. The value of k-fold cross-validation is that all data can be used for training and

testing (Danjuma 2015; Tantithamthavorn, Hassan & Matsumoto 2018). It also reduces

the bias associated with random training set selection and holds out observations

(Erdoğan & Namlı 2019).

There are various methods for performing cross-validation. To sample the annotated

datasets, a more robust sampling technique, Repeated Stratified K-Fold cross-validation

(CV) with a split of 10, was used. To examine the effect of each sampling technique on

the datasets, five different classifiers, as discussed in Section 3 were employed. (Bal &

Kumar 2020; Barua et al. 2014; Bennin et al. 2018)

The results presented in Table 4.3 form the basis for the subsequent analysis and

discussion in this section and the following sections. The inclusion of F1-scores highlights

that while some algorithms excel in either precision or recall alone, achieving a high F1-

score signifies a more effective overall performance in the presence of imbalanced

classes. This balanced metric is crucial for understanding the practical applicability of the

classifiers in real-world scenarios where both precision and recall are important. In

conclusion, while precision and recall provide insights into specific aspects of the

classifiers' performance, the F1-score offers a comprehensive evaluation, confirming the

robustness and reliability of the proposed models across different datasets and

scenarios.

4.6. Dataset Validity and Size

 The datasets used in this study were carefully selected from real-world industrial

projects across various domains, including software functional and non-functional

requirements. This diverse selection enhances the validity and generalizability of our

findings. The sizes of the datasets are sufficient to train and validate the ML models

effectively. Each data set contains a substantial number of data points, ensuring that the

models have enough information to learn from and generalize well to new data. The

113

pre-processing and feature extraction steps further ensure that the data is of high

quality and accurately represents the underlying requirements and their changes.

Furthermore, all original change requests were considered to ensure comprehensive

coverage of the dataset. The datasets included a significant percentage of original

change requests, which were carefully selected and validated. Specifically, all original

change requests were included in the analysis. This comprehensive inclusion provides a

representative sample of the data, ensuring that the models are trained and evaluated

on a broad spectrum of change scenarios. This approach helps capture the variability

and complexity inherent in real-world change requests, thereby enhancing the

robustness and applicability of the proposed model.

4.7. Comparative Analysis with State-of-the-Art Approaches

 To establish the relative performance and improvement over existing methods, the

proposed model was compared with state-of-the-art approaches, including those by

Arora et al. (2015a). The results indicate that the proposed model achieves higher

precision and recall, demonstrating its effectiveness in predicting the impact of software

requirements change. This comparative analysis validates the model's performance and

highlights its contributions to the field.

4.8. Importance of Precision vs. Recall

In terms of the relative importance of recall versus precision in this approach, both

metrics are crucial. Human oversight is included to improve precision. High precision

means that the prediction is very likely to be correct, making the approach trustworthy.

However, recall needs to be high even if precision is low; otherwise, the model is

ineffective. Therefore, the data is fed into multiple ML algorithms, and the algorithm

that results in the highest recall is selected. The main goal of this study is to identify the

most impacted requirements and miss as few affected ones as possible. In other words,

false positives are more critical than false negatives (Aryani et al. 2009).

Chapter 4

114

4.9. Threats to Validity

The threats to the validity of this study are categorized into internal and external

validity concerns.

4.9.1. Internal Validity

One of the primary threats to internal validity in this study is the quality and accuracy

of the data used, particularly in labelling impacted requirements. The process of

manually checking the impacted requirements in the change history introduces

potential errors. Although datasets were selected carefully and structured, detailed

consultation sessions were conducted with domain experts to ensure an accurate

understanding of their requirements documents and change history. There remains a

risk that data collection may not be entirely complete. This incompleteness can stem

from varying degrees of abstraction and levels of detail in the requirements documents.

To mitigate this threat, data validation was performed with domain experts who have

extensive experience in the change management process, reducing the risk of

inaccuracies.

Another possible limitation is the stability of requirements over time. Requirements

frequently change, which poses a challenge for the ML model, as it must be retrained

with each change in requirements. This fluidity, while a common difficulty in

requirements engineering, becomes a more severe barrier when applying ML

techniques. The need to retrain the model with each change can be resource-intensive

and may affect the model's performance. Additionally, changes in labelling due to

evolving requirements can introduce inconsistencies and further complicate the training

process (Zamani, Zowghi & Arora 2021).

4.9.2. External Validity

A pivotal threat to external validity is the uncertainty inherent in the data, which forms

part of the requirements. Despite the primary goal of achieving high precision, recall,

and accuracy with the ML model, numerous experiments are necessary to ensure that

115

these goals are attainable and that the provided data is sufficient. Uncertainty in data

quality and completeness can impact the generalizability of the study's findings (Wan et

al. 2021).

The generalizability of the datasets represents another possible threat. Although

efforts were made to ensure the datasets are as broad and representative as possible

by selecting data from real-world industries across different domains and of various

sizes, there is still a potential limitation in terms of how well these datasets represent

the broader landscape. The data included both functional and non-functional software

requirements to ensure comprehensive coverage. It is important to note that the

accuracy of the approach does not depend on the specific domain but rather on the

quality and clarity of the written requirements and change requests. High levels of

inconsistency in documenting requirements, including spelling mistakes, structural

differences, terminology, and vocabulary variations, can complicate and introduce

errors into automated classification processes (Abad et al. 2017a; Zamani, Zowghi &

Arora 2021).

4.10. Discussion

This section provides an in-depth analysis of the proposed solution, addressing its

strengths, limitations, and performance across different contexts. The discussion

evaluates the algorithms implemented, highlighting their effectiveness and areas for

improvement. It also examines the datasets used, considering their role in shaping the

outcomes and generalizability of the solution. Through these discussions, the section

aims to present a balanced view of the research findings and their practical implications.

4.10.1. Limitations of the Proposed Solution

While the proposed methodology offers several advantages, it also has limitations.

The model's performance is highly dependent on the quality and quantity of historical

data. Insufficient or noisy data can adversely affect the model's accuracy, making

comprehensive data collection and pre-processing crucial. Identifying the most relevant

Chapter 4

116

features is critical for model performance; incorrect feature selection can lead to poor

model predictions, necessitating domain expertise to guide feature engineering. Some

ML models, such as neural networks, can be complex and require significant

computational resources for training and inference, which can be a constraint for

organizations with limited computational capabilities.

Additionally, the model may perform well on the training data but might not

generalize to different projects or domains without retraining and fine-tuning, requiring

continuous evaluation and adaptation. Effective use of the tool requires a certain level

of expertise in ML and CIA, and users may need additional training to understand the

tool's functionalities and interpret its outputs accurately. Providing comprehensive

documentation and user support can help mitigate this limitation.

4.10.2. Discussion on Algorithms

Looking at the precision and recall values, there is a noticeable variation across

different methods and datasets. For instance, in the Random Forest method, there is a

significant disparity in precision among different cases within the Dataset-W. While

some cases show high precision (e.g., C2, C1), others exhibit quite low precision scores

(e.g., C3 and C8). However, in terms of recall, most cases achieve a perfect score of 1.00,

indicating that when the actual impact occurs, the model identifies it consistently across

these cases. Moving to Dataset-I, the precision scores are consistently low across the

cases, indicating a higher rate of false positives. However, the recall varies significantly,

with some cases achieving a perfect score while others fall below. Dataset-O presents a

mix of precision scores across different cases, with varied performance. While some

cases exhibit relatively higher precision (e.g., CR60202), others show lower precision

scores. Similarly, recall rates also vary, albeit with generally good performance across

most cases.

Regarding the other algorithms, similar to previous results, there appears to be a

trade-off between precision and recall in many cases. While some cases exhibit high

precision, they often do so at the expense of lower recall and vice versa. This suggests a

challenge in achieving both high precision and high recall simultaneously across

117

different datasets and cases. Understanding the reasons behind this trade-off and

optimizing the models to strike a better balance between precision and recall could

enhance the overall performance of the system in accurately identifying impacted

requirements during change analysis.

In general, there seems to be inconsistency in precision across different cases and

datasets, indicating that the models might encounter challenges in precisely identifying

the true impact of requirements changes in specific scenarios. Furthermore, even while

recall has been shown to perform effectively in identifying true positives, mainly in

Dataset-W, it is imperative to address the low precision values observed in various cases

across different datasets.

The Random Forest algorithm shows some cases with both high precision and recall.

It revealed the RF effectiveness in accurately predicting impactful changes without

missing many relevant instances. Besides this, the model struggled for the cases with

lower scores. SVM showcased relatively similar performance trends to Random Forest

in capturing relevant instances (recall), although there are discrepancies in precision

scores between the two models for various cases. The disparities in precision could

indicate that utilizing SVM to make precise positive predictions in some situations can

be difficult.

The Decision Tree results showcase a different performance compared to both

Random Forest and SVM. It also shows varying performances across different cases. The

results demonstrate moderate to high precision and recall for some cases, which is a

sign of having struggles with accurate positive predictions and capturing all relevant

instances for others.

Gaussian NB illustrates varying precision scores for some cases compared to SVM,

Decision Tree, and Random Forest models. And finally, Logistic Regression performs

consistently with other models when it comes to capturing the most relevant instances

(recall). However, just like with other algorithms, there are also difficulties in getting

precise positive predictions for particular circumstances.

Chapter 4

118

In summary, when comparing these algorithms in requirements CIA tasks, the

overview of their performance proved that all of them are high-performing models while

having challenges in precision, indicating difficulties in making accurate positive

predictions.

While different algorithms demonstrated their advantages in particular datasets,

Support Vector Machines (SVM) was the most effective approach throughout the entire

investigation. SVM continuously showed strong and well-balanced performance; it was

especially good at identifying intricate patterns in Dataset-I and holding a lead in

Dataset-W. Its ability to achieve high recall rates while balancing precision across

different datasets signifies its suitability for requirements CIA, particularly when working

with complex and diverse datasets. This emphasizes how crucial it is to choose the best

algorithm possible while also taking the dataset's unique properties into account. While

no single technique was shown to be better than the others across all datasets, SVM was

the most reliable and efficient option for precise requirements change impact estimates.

Our results are particularly consistent with current research discussions on ML

techniques' limitations. Some peer studies emphasized that ML algorithms may not be

able to handle complicated linguistic structures and domain-specific contextual

comprehension well enough (Adnan & Akbar 2019; Herm et al. 2023; Lin 2020; Paleyes,

Urma & Lawrence 2022; Sarker 2021; Tufail et al. 2023). Although ML is still a potent

tool in many fields, including software engineering, there is no one-size-fits-all approach.

Careful consideration of the complexities of the task and domain-specific requirements

is crucial before the implementation of ML-based solutions. Consequently, our research

suggests that the inherent complexities of language and domain-specific subtleties can

have a variable impact on the efficacy of ML in requirement analysis tasks.

4.10.3. Discussion on Datasets

Monitoring the patterns within the results across different datasets can provide

information about the quality or clearness of the written requirements or change

requests. Requirements originating from several sources may differ significantly in terms

of language and terminology(Zamani, Zowghi & Arora 2021). Stakeholders, as well as

119

requirements experts utilize diverse vocabulary and sentence structures. The lack of

consistency in requirements documentation leads to the complexity and error-

proneness of automated classification(Abad et al. 2017a)

Based on the provided precision and recall scores across different ML models, Dataset-

W seems to generally yield higher performance rates across various algorithms in

comparison to Datasets Telecommunications and Satellite. This could suggest that

Dataset-W might contain clearer or more explicitly outlined requirements, making them

easier for models to identify.

Dataset-I showcases a mix of precision and recall values across algorithms, suggesting

a mix of clear and more complex requirements or change requests. Some cases exhibit

good performance, especially with SVM, while others show challenges for the

algorithms, indicating potential variability in the quality or complexity of the

requirements.

On the other hand, Dataset-O represents a more challenging environment for

predictive modelling. The models struggle to achieve high precision and recall

simultaneously within this dataset. The results display a mix of precision and recall

values across different algorithms and cases. This variability might indicate a mix of well-

defined and ambiguous requirements or change requests within this dataset.

The observed patterns in algorithm performance align closely with the inherent

characteristics of the datasets under study. Dataset-W emerges as a relatively newer

dataset characterized by clear and meticulously articulated requirements compared to

its counterparts. This dataset appears to contain well-written and explicit requirements,

facilitating easier comprehension for algorithms. Conversely, Dataset-O, dating back

more than a decade, reflects a long history of modifications facilitated by multiple

experts over the course of 14 years. This prolonged timeline of alterations has likely

contributed to its inherent ambiguity, stemming from the diverse perspectives and

modifications introduced by these various experts. Moreover, Dataset-I, spanning over

six years, exhibits a notable level of complexity owing to its comprehensive mentions of

numerous hardware systems within its requirements.

Chapter 4

120

The findings highlighted the differences and complexities present in each data set.

Components of the dataset that seemingly have a substantial impact on the quality and

clarity of requirements include its age, the history of revisions made by different experts,

and the complexity of the referenced systems that are in the forms of abbreviations in

SRS. The inclusion of contextual information enhances comprehension of the dataset's

complexities and establishes a direct correlation with the observed fluctuations in

algorithmic performance among the datasets.

4.11. Summary

In this chapter, an approach was developed to analyze the impacts of software

requirements, focusing on predicting which of the existing software requirements may

be affected by a requirement change. The core premise of the suggested approach is to

learn from the history of change requests automatically, predict the change impact, and

demonstrate how these predictions could help analysts enhance their decision-making

to apply or reject an incoming change. The principal motivation was to achieve an

automated solution to promote improved preparation and prioritization of the

execution of requirements specifications during the software development of

conventional and agile methodologies.

The proposed research was evaluated using five ML algorithms, including Random

Forest, Decision Tree, Naive Bayes, Logistic Regression, and Support Vector Machines.

The goal was to assess the effectiveness of these approaches in accurately analyzing

written requirements.

Upon analyzing the evaluation results, the ML algorithms exhibited observable

suboptimal performance, potentially due to the specific needs of highly accurate

requirement comprehension. Precision and recall were employed as evaluation metrics

commonly used in text classification and information retrieval tasks. Each algorithm

showed unique strengths and faced challenges while addressing the complexities of

precision and recall. Although the proposed models demonstrated proficiency in

predicting the given change requests with high recall, precision differed between

algorithms and certain scenarios. It was observed that the precision challenge exists in

121

making precise positive predictions despite capturing relevant instances, which is not

ideal. Furthermore, all models struggled to achieve a balance between recall and

precision, highlighting the trade-off. Despite precision issues, recall-strong models were

crucial to guaranteeing thorough coverage of possible impact changes.

Although ML has demonstrated impressive capabilities across a range of domains,

leading to significant attention in various fields, including software engineering, it is

essential to recognise that its applicability may not be universal for all tasks. Anomalies

were observed in the research on requirement CIA that highlights the shortcomings of

ML algorithms when it comes to efficiently managing such complex tasks. The

complexities inherent in language and the specificity of requirement comprehension

present challenges that ML algorithms may struggle to address effectively.

In summary, while ML technologies continue to evolve and have significant upsides,

caution must be taken when applying them due to their inherent limitations in handling

complex comprehension and domain-specific contextual understanding tasks.

122

Chapter 5.

Enhancing Decision-Making in Software

Development:

A Dual-Model Framework for Requirements

Change Impact Analysis

5.1. Introduction

This chapter introduces a dual-model framework designed to address the complexities

of requirements CIA by exploring two complementary approaches. The first approach

leverages NLP techniques, utilizing CoreNLP and SpaCy libraries to analyze textual

requirements and identify interdependencies. The second approach incorporates the

Beir benchmark, combining Lexical Retrieval with BM25 (via Elasticsearch), Dense

Retrieval using Bi-Encoders, and re-ranking with Cross-Encoders. These methodologies

provide distinct yet synergistic perspectives, offering a comprehensive understanding of

the challenges in CIA.

To ensure practical applicability, the framework is validated using industrial datasets,

enabling insights into real-world scenarios and enhancing decision-making for

requirements change requests. By comparing the performance and outcomes of these

dual approaches, this chapter advances our understanding of how emerging

technologies in NLP and retrieval-based models can effectively address the nuances of

software requirements engineering.

123

The integration of the Beir benchmark represents a significant step forward in this

research, introducing diverse information retrieval tasks to enrich the analysis. This

approach complements the NLP-based solution, creating a robust framework capable of

handling both semantic and syntactic complexities in requirements change scenarios.

Through this exploration, we aim to uncover actionable insights and provide project

managers with a sophisticated tool for predicting and managing the impacts of

requirements changes in software development.

Despite significant progress in requirements traceability and change impact analysis,

most prior approaches suffer from three key limitations. First, rule-based and keyword-

matching techniques (e.g. traceability matrices or regex-driven pipelines) are brittle,

failing to generalize when stakeholders use varied terminology or complex sentence

structures. Second, single-model solutions, whether purely ML-based or purely IR-

based, tend to excel on specific datasets but degrade sharply when confronted with

domain shifts or aging documentation, because they capture only lexical overlap (as in

BM25) or only statistical patterns (as in classical classifiers) without deeper semantic

context. Finally, hybrid proposals are scarce, and where they exist, they lack clear

orchestration strategies to bring together lightweight ML, full-blown NLP parsing, and

retrieval-augmented generation into a unified pipeline. These gaps leave analysts either

drowning in false-positive alerts or missing subtle but critical dependencies. By contrast,

our dual-model framework explicitly combines syntactic/semantic NLP insights with

retrieval-based evidence and stitches them together via an ensemble and feedback loop,

to address brittleness, domain variability, and explainability all at once (Hayes, Dekhtyar

& Sundaram 2006; SHAKIRAT et al. 2021; Thakur et al. 2021).

5.2. Dual Model Framework

The structure for this framework is depicted through a structured diagram detailing

the sequential phases employed to enhance decision-making in software development

by automating CIA. This process begins with comprehensive data collection, focusing on

project specification documents and change logs, which form the foundational dataset.

Chapter 5

124

The collected data undergoes a thorough preprocessing stage that includes tokenization

and embedding generation, standardizing the input for subsequent analysis.

The methodology is bifurcated into two primary branches: an NLP-Based Solution and

a Beir-Based Solution. The NLP-based approach utilizes CoreNLP for syntactic and

semantic analysis, while SpaCy is employed for entity recognition tasks. In contrast, the

Beir-based approach leverages BM25 (via Elasticsearch) for lexical retrieval, Bi-Encoders

for dense retrieval, and Cross-Encoders for re-ranking retrieved results. Both branches

operate independently and are evaluated using various performance metrics.

The dual outputs generated from these branches are then subjected to ensemble

learning, enhancing the overall robustness and accuracy of the prediction model. The

final stage involves rigorous evaluation and validation, applying metrics such as

precision, recall, F1 score, and computational efficiency to assess the performance of

the dual-model framework. This methodology not only demonstrates the integration of

advanced NLP and Beir technologies but also illustrates a systematic approach to

automating CIA in large-scale software development projects.

5.3. NLP-Based Solution (CoreNLP and SpaCy Integration)

The NLP-based solution integrates two prominent NLP libraries: CoreNLP and SpaCy.

In this framework, CoreNLP is primarily employed for syntactic and semantic analysis,

while SpaCy focuses on entity recognition and linguistic feature extraction. The

integration of both libraries allows for a comprehensive analysis of software

requirements documents. CoreNLP's robust parsing features handle intricate sentence

structures, while SpaCy offers rapid and efficient preprocessing for extracting key

language elements. Together, these tools enhance the model’s capacity to interpret and

analyze the natural language used in requirements documents effectively. Figure 5.1

illustrates the dual-model framework structure:

125

Figure 5.1.Dual-Model Framework

The combined approach was selected based on the complementary strengths of both

libraries. CoreNLP’s detailed grammatical parsing is critical for handling the complexity

of software requirements, while SpaCy’s efficiency in entity recognition and processing

speed makes it a powerful tool for high-volume data analysis. The integration of these

two libraries results in a more granular and accurate analysis, improving the model's

overall performance.

Additionally, this flexible architecture enables fine-tuning and customization to

accommodate specific project needs or changes in scope as the dataset evolves. By

incorporating similarity metrics such as cosine similarity and TF-IDF vectors, the model

is better equipped to detect semantic relationships between texts rather than relying

solely on keyword overlap. This enhances the precision of the CIA and provides a more

nuanced understanding of the connections between software requirements.

The integration of these techniques achieves an optimal balance between

computational efficiency and depth of semantic analysis. The ability to customize the

vectorization process and similarity criteria ensures that the solution can be tailored to

the unique characteristics of each dataset, ultimately improving the responsiveness and

accuracy of the CIA model.

CoreNLP and SpaCy were chosen not just for their robustness but for their ability to

resolve key CIA pain points. Dependency parsing uncovers hidden syntactic ties by

Chapter 5

126

walking the parse tree, we detect when a change in “user authentication” will cascade

to “session management” through shared grammatical relations, even if no keywords

overlap. Named-entity recognition then isolates domain concepts, such as “API

endpoint” or “payment gateway”, so that any modification to these entities immediately

flags every related requirement, capturing dependencies that simple term-frequency

methods miss. Finally, CoreNLP’s coreference resolution maintains contextual cohesion

by mapping pronouns or aliases back to their antecedents; thus, an update to “the

payment module” also highlights every later occurrence of “it,” ensuring no implicit

reference is overlooked.

5.4. Beir-Based Solution

The Beir-based solution leverages the BEIR benchmark, a heterogeneous benchmark

designed for information retrieval (IR) tasks. This method incorporates multiple stages

of retrieval and ranking to improve the relevance and precision of change impact

predictions.

• Lexical Retrieval with BM25 (Elasticsearch)

The first step in the Beir-based solution is lexical retrieval using BM25, implemented

via Elasticsearch. BM25 is a well-established ranking function used in search engines that

measures the relevance of documents based on keyword matching. This provides a solid

foundation for the retrieval process but may have limitations in capturing semantic

meaning, as it is primarily based on lexical overlap and may miss synonyms or related

terms.

• Dense Retrieval Using Bi-Encoders

To address the limitations of lexical retrieval, the framework employs Bi-Encoders for

dense retrieval. Bi-Encoders encode both queries and documents into dense vector

spaces using models such as BERT. This allows the retrieval process to capture deeper

semantic similarities between the query and the documents. By utilizing dense retrieval,

the system can retrieve contextually relevant information that goes beyond mere

keyword matching, enhancing the overall retrieval performance.

127

• Re-ranking with Cross-Encoder

After dense retrieval, a Cross-Encoder model is applied to re-rank the retrieved

documents. The Cross-Encoder assesses the interaction between document-query pairs

and assigns relevance scores based on a more holistic understanding of the context. By

re-ranking the results, the model significantly improves the precision and relevance of

the final predictions. The combination of dense retrieval and re-ranking ensures that the

most contextually relevant documents are prioritized for impact analysis.

While BM25 provides a solid starting point by ranking on term overlap, it struggles

with synonyms, paraphrases, and complex phrasing common in requirements. Our two-

stage neural retrieval addresses this directly. First, Bi-Encoders map queries and

documents into the same dense vector space using a fine-tuned BERT variant, so

semantically similar texts, like “login process” and “user sign-in flow”, naturally cluster

together, boosting recall even when no keywords match. Next, Cross-Encoders re-rank

these candidates by jointly encoding each query–document pair with full attention,

filtering out loose semantic matches and elevating those with deep contextual

alignment (Nogueira & Cho 2019; Reimers & Gurevych 2019).

5.5. Data

The same real-world datasets utilized in Chapter 4 are employed in this chapter to

ensure consistency and comparability when evaluating the proposed solutions. These

datasets consist of project specification documents and change logs from industrial

software development projects. The data covers a wide range of software requirements

and their corresponding change requests, providing a robust foundation for analyzing

the impact of requirement modifications.

The project specification documents offer detailed descriptions of the software

requirements, while the change logs record the historical changes made throughout the

software development lifecycle. Together, these datasets provide a comprehensive view

of the evolving nature of software requirements and serve as the basis for applying both

the NLP-based and Beir-based methods within the dual-model framework.

Chapter 5

128

The datasets were thoroughly preprocessed to ensure quality and consistency,

following the steps outlined in Chapter 3. This includes tokenization, embedding

generation, and verification for completeness and accuracy. By reusing these industrial

datasets, the study maintains a direct comparison between the two chapters,

highlighting the enhancements achieved through the dual-model framework presented

in this chapter.

5.6. Implementation

The implementation of the NLP-based solution and the dual-model framework was

carried out using Python as the primary programming language. The deep learning

components were developed utilizing libraries such as TensorFlow and PyTorch, while

Elasticsearch was employed as the backend for information retrieval tasks.

5.6.1. NLP Solution

The NLP solution was implemented through a Python script that leverages the

CoreNLP and SpaCy libraries to process and analyze the data. The primary steps of this

implementation are outlined as follows:

Step 1: Preprocessing

Both datasets—comprising requirements and change scenarios—were loaded and

preprocessed to ensure that the textual data was clean and ready for subsequent

analysis. This step involved tokenization, lowercasing, removing stopwords, and other

standard text preprocessing techniques to ensure consistency across the datasets.

Step 2: NLP Feature Extraction

The CoreNLP and SpaCy libraries were employed to extract valuable features for

predicting the impact of each requirement and change request. The key NLP tasks

include:

• Named Entity Recognition (NER) for Terminology Alignment: To identify critical

entities such as stakeholders, system components, or specific actions. NER

129

extracts domain entities like changeID and normalizes them. When a change

request mentions an entity that subsequently appears in design-artifact

descriptions, our pipeline flags all requirements containing that entity as

candidates for impact analysis

• Dependency Parsing for Syntactic Dependency Mapping: To analyze sentence

structure and understand grammatical relationships between words, aiding in

the interpretation of complex requirement descriptions. By constructing a

dependency tree for each requirement sentence, we capture head–modifier

relations (e.g. subject→verb, verb→object). When two requirements share a

modifier or refer to the same head term via different phrasings (“user login” vs.

“login by user”), their dependency graphs overlap. We can therefore

algorithmically detect these overlaps as potential impact links, even when no

exact term match exists.

• Part-of-Speech (POS) Tagging: To classify words based on their roles in a

sentence (e.g., noun, verb), which helps in understanding the context of the

requirements.

CoreNLP was utilized for its robust parsing capabilities, including coreference

resolution, while SpaCy was chosen for its efficiency in entity recognition and ease of

vectorization through pre-trained models.

Step 3: Vectorization

The textual data was converted into numerical vectors to facilitate similarity

comparisons. TF-IDF (Term Frequency-Inverse Document Frequency) vectorization was

implemented, transforming the text into a format suitable for ML algorithms.

Step 4: Similarity Calculation

Similarity scores between change requests and requirements were calculated based

on their vectorized representations. Cosine similarity was employed to measure the

semantic distance between pairs of vectors. Higher similarity scores suggest a higher

likelihood of impact between a change request and a requirement.

Chapter 5

130

Step 5: Predicting Impact

Based on the calculated similarity scores, predictions were made to determine which

requirements are likely impacted by each change request. Initially, a rule-based

approach was adopted, utilizing thresholds on similarity scores to identify potential

impacts. Further refinement of this step involved integrating additional NLP features to

improve the precision of the predictions.

5.6.2. Beir-Based Solution

The Beir-based solution was implemented using Python, with the full code and

replication package available on Zenodo. The following steps outline the

implementation process:

Step 1: Preprocessing Datasets:

The datasets were preprocessed to ensure consistency in text format and structure.

This included tokenization, normalization, and the removal of irrelevant elements such

as stopwords. The preprocessing phase is essential to ensure that the data is in an

appropriate format for information retrieval tasks.

Step 2: Installation of Beir Framework:

The Beir (Benchmarking Information Retrieval) framework was installed to facilitate

the evaluation of different information retrieval models. Beir provides a comprehensive

suite of tools for benchmarking information retrieval tasks and supports various

retrieval methods such as lexical retrieval and dense retrieval.

Step 3: Loading Models:

Three models were loaded for use in the Beir-based solution:

• BM25 (Elasticsearch): A lexical retrieval model that ranks documents based on

keyword matches, often serving as a baseline in information retrieval tasks.

• Bi-Encoders: A dense retrieval model that leverages pre-trained BERT encoders to

capture semantic similarities between queries and documents, offering enhanced

retrieval performance compared to traditional lexical methods.

131

• Re-ranked Cross-Encoder: This model refines the initial rankings produced by BM25

and Bi-Encoders by considering the interaction between document pairs and

assigning relevance scores. The Cross-Encoder is used to improve precision in the

final ranking.

Step 4: Application and Evaluation on Datasets:

The models were applied to the datasets to evaluate their performance. Metrics such

as precision, recall, and F1 scores were computed to assess the effectiveness of the Beir-

based solution in identifying impacted requirements for the given change requests.

Step 5: Searching for New Changes:

The trained models were used to search for newly introduced changes. This involved

retrieving relevant requirements from the dataset and ranking them based on their

similarity to given changes.

Step 6: Generating Similarity Scores:

For each change request, similarity scores between the change and the relevant

requirements were generated. These scores helped prioritize impacted requirements,

providing valuable insights for decision-making in software development.

5.7. Application of Mathematical Heuristics

In this research, mathematical heuristics are implemented within the NLP-based and

BEIR-based frameworks to optimize the selection process for sentences most relevant

to a given change. These frameworks compute similarity scores between requirement

sentences and changes using a combination of linguistic and contextual features.

Without heuristics, processing the entirety of the resulting similarity scores would lead

to significant computational overhead. The integration of heuristics addresses this

challenge by filtering and prioritizing the highest-scoring similarities to maintain

computational efficiency while preserving accuracy.

The application of heuristics involves several strategies designed to optimize the

process of narrowing down the similarity results. One key technique is score

Chapter 5

132

thresholding, which eliminates sentences with similarity scores below a predefined

baseline. This baseline is determined by analyzing the distribution of scores in the

dataset, ensuring that only sentences with meaningful similarity are considered for

further analysis. For instance, if the score distribution indicates a natural inflection point

at 0.3, sentences scoring below this value are excluded, reducing computational costs

without sacrificing relevance.

Another essential approach is significant drop detection, which identifies points where

similarity scores decline sharply among ranked results. A sharp drop in similarity scores

often marks the boundary between semantically relevant and irrelevant sentences. For

example, if the ranked scores drop from 0.85 to 0.40 within a few positions, the point of

decline is used as a cutoff. This heuristic dynamically adapts to variations in score

distributions across different datasets, ensuring flexibility and efficiency in the selection

process.

Relative score proportionality is also applied to retain sentences with similarity scores

that are at least a certain percentage of the highest score in the dataset. For instance, if

the highest score in a dataset is 0.9, sentences scoring below 0.45 are excluded, ensuring

that only sentences with strong semantic alignment are retained. This heuristic further

refines the results by emphasizing the most relevant sentences based on their proximity

to the highest-ranked similarity score.

By leveraging these heuristics, the study effectively narrows down the selection

process, allowing for the identification of sentences with high semantic relevance to a

given change. This approach enables dynamic adjustment of similarity evaluations based

on real-time observations of the score distribution. The integration of heuristics

facilitates computational efficiency, making it feasible to analyze large datasets while

maintaining the precision needed for robust CIA. This application demonstrates the

practical value of heuristics in improving the efficiency and accuracy of NLP and BEIR-

based models within the SRCIA framework. Furthermore, it highlights the role of

heuristics as a critical component in balancing computational constraints with analytical

rigor.

133

5.8. Dual Model Evaluation Metrics

Evaluating information retrieval models in software engineering, particularly in the

context of requirements CIA, necessitates metrics that assess the correctness,

relevance, and value of the retrieval results for users. In this study, a range of metrics is

applied to evaluate the performance of the dual-model framework, which incorporates

the BEIR Re-ranking-based model. These metrics offer diverse perspectives on the

model’s effectiveness, providing a comprehensive evaluation.

5.9. Information Retrieval Models

To ensure a robust evaluation, the following metrics were selected to assess the

retrieval model’s performance:

a) Precision and recall at k

Precision at k (P@k) and Recall at k (R@k) were employed to evaluate the immediate

value of the search results. Precision measures the relevance of the retrieved

requirements impacted by a change, indicating the proportion of relevant results within

the top k results. In contrast, recall assesses the model's ability to retrieve all impacted

requirements, ensuring completeness in the retrieval process.

In the context of software development, these metrics are crucial. Failing to retrieve

an impacted requirement can lead to significant project delays or errors, while retrieving

too many irrelevant requirements increases the manual effort required for further

inspection. Thus, achieving a balance between precision and recall is essential for

efficient resource allocation and decision-making.

The choice of k reflects a balance between user expectations and the practicality of

reviewing retrieved requirements. Based on common stakeholder behaviour in software

projects and decision-makers’ willingness to engage with a ranked list of results, values

of k=5 and k=10 were chosen. These values align with standard practices in the

information retrieval domain and ensure that the model delivers relevant results within

a manageable scope.

Chapter 5

134

b) Normalized Discounted Cumulative Gain (NDCG@k) and Mean Average Precision

(MAP@k)

To evaluate the quality of the ranking within the retrieval system, Normalized

Discounted Cumulative Gain (NDCG@k) and Mean Average Precision (MAP@k) were

selected as additional metrics.

MAP@k provides an average precision score independent of rank position by

calculating precision across various threshold levels, offering a comprehensive view of

how well the model performs over different ranks. NDCG@k further enhances this

evaluation by considering the importance of the ranking order, ensuring that the most

critical impacted requirements appear higher in the list. This is particularly significant in

software development, where prioritizing high-impact requirements can lead to more

efficient decision-making processes.

Both metrics are essential when prioritizing impacted requirements in order to

optimize the accuracy and efficiency of the impact analysis. By weighting higher-ranked

results more heavily, NDCG@k ensures that the retrieval system favors more relevant

and critical requirements, reducing the time and effort required to review irrelevant or

less significant results.

Additionally, it is recognized that the binary relevance typically assumed in calculating

these metrics may not fully capture the varying degrees of impact that a change may

have on different requirements. To address this complexity, future work will explore

graded relevance evaluations, which can offer a more nuanced understanding of the

impact of severity.

5.10. NLP Model Evaluation

To thoroughly evaluate the performance of the NLP model, two metrics—MUC

(Message Understanding Conference) and B³ (B-Cubed)—were utilized. These metrics

are specifically designed for assessing coreference resolution tasks, providing an in-

depth analysis of how effectively the model identifies and clusters references to the

same entities across different texts. Given the nature of this research, they were

135

adapted to assess the correctness and completeness of the predicted impact links

between change requests and software requirements.

a) MUC (Message Understanding Conference)

MUC evaluates how well the predicted set of impacted requirements corresponds to

the actual set, focusing on the correctness and completeness of the links between

change requests and requirements. In this context, a "link" is defined as the correctly

identified relationship between a change request and a requirement. MUC primarily

focuses on whether the model can capture the entire set of impacted requirements and

whether those predicted links are accurate, giving insight into the overall completeness

of the prediction.

b) B³ (B-Cubed)

The B³ metric was used to compute precision, recall, and F1 scores for each

requirement's impact prediction. This evaluation method considers the presence or

absence of a requirement in both the predicted and actual impacted sets. B³ calculates

precision as the ratio of correctly predicted impacts to the total number of predicted

impacts and recall as the ratio of correctly predicted impacts to the total number of

actual impacts. The F1 score is the harmonic means of precision and recall, providing a

balanced evaluation of the model’s performance.

To assess the overall effectiveness of the model in predicting impacted requirements,

the real and predicted impacted sets were extracted for each change scenario. The

aggregate B³ metrics—Precision, Recall, and F1 Score—were then computed across all

change scenarios, offering a comprehensive view of the model's predictive accuracy and

completeness.

5.11. Results and Findings

This section outlines the performance of NLP-based and BEIR-based solutions within

the dual-model framework, highlighting their effectiveness and key findings. The

following subsections provide detailed results for each approach.

Chapter 5

136

5.11.1. NLP Solution Results

Table 5.1 presents a summary of the overall precision, recall, and F1 score for each

dataset, offering a comprehensive evaluation of the model's performance. Table 5.2

details the precision, recall, and F1 scores associated with each change ID within the

datasets, illustrating the specific impact of individual modifications. The findings

highlight the varying degrees of success achieved by the combined NLP approach in

identifying impacted requirements.

• Dataset-I demonstrated promising results, with a precision of 0.5345, recall of

0.8389, and an F1 score of 0.6530. The high recall value indicates that the method

effectively identified a wide range of relevant impacted requirements, though the

lower precision suggests the inclusion of more false positives. The F1 score reflects

a reasonable balance between precision and recall, making the method practical for

this dataset.

• Dataset-W yielded more modest results, with a precision of 0.4810, a recall of

0.6236, and an F1 score of 0.5431. Compared to Dataset-I, both precision and recall

showed a decline, indicating challenges in accurately identifying impacted

requirements. This suggests that Dataset-W presents unique complexities or

domain-specific characteristics that pose difficulties for the combined NLP

approach.

• Dataset-O exposed the limitations of the method, registering the lowest precision

(0.2781), recall (0.4922), and F1 score (0.3554) among the datasets. These results

underscore significant challenges in applying the approach to Dataset-O, potentially

due to intrinsic features of the dataset that impede effective NLP analysis. The lower

precision and F1 scores highlight the model's difficulty in maintaining accuracy

when applied to this dataset.

Overall, the results reflect that while the combined NLP method performs adequately

across certain datasets, its efficacy can vary depending on the characteristics of the

dataset. High recall scores demonstrate the model's strength in identifying a broad

range of impacted requirements, but lower precision scores suggest the need for further

refinement to reduce false positives and improve overall accuracy.

137

Table 5.1. The overall evaluation metrics for NLP solution

Dataset Overall Precision Overall Recall Overall F1 Score

I 0.5345 0.8389 0.653

W 0.481 0.6236 0.5431

O 0.2781 0.4922 0.3554

The chart below, figure 5.2, shows the overall Precision, Recall, and F1-Score of the

NLP-based model on Datasets I, W, and O, highlighting that Dataset I achieves the

highest coverage (recall) and balanced performance (F1-Score) despite lower precision,

while Dataset O shows the greatest drop in all three metrics.

Figure 5.2.Clustered Bar Chart of Precision, Recall, and F1-Score of the NLP-based model

Chapter 5

138

Table 5.2. NLP solution results

Dataset Change ID Precision Recall F1 Score

I

Case 1 0.14 0.25 0.18

Case 2 0.29 1.00 0.44

Case 3 0.22 1.00 0.36

Case 4 0.33 0.33 0.33

Case 5 1.00 1.00 1.00

Case 6 1.00 1.00 1.00

Case 7 0.50 1.00 0.67

Case 8 0.50 0.75 0.60

Case 9 0.67 1.00 0.80

Case 10 0.33 0.50 0.40

Case 11 0.33 0.75 0.46

Case 12 0.20 1.00 0.33

Case 13 0.50 1.00 0.67

Case 14 1.00 1.00 1.00

Case 15 1.00 1.00 1.00

W

C1 1.00 0.50 0.67

C2 0.60 0.33 0.43

C3 0.33 1.00 0.50

C4 1.00 1.00 1.00

C5 0.67 0.75 0.71

C6 0.57 0.57 0.57

C7 0.20 0.25 0.22

C8 0.50 1.00 0.67

C9 0.70 0.78 0.74

C10 0.33 0.67 0.44

C11 0.50 0.25 0.33

C12 0.20 0.25 0.22

C13 0.50 0.83 0.63

C14 0.00 0.00 0.00

C15 0.10 0.33 0.15

C16 0.40 0.67 0.50

C17 0.50 1.00 0.67

139

C18 0.00 0.00 0.00

C19 0.20 0.40 0.27

C20 1.00 0.40 0.57

C21 0.40 1.00 0.57

C22 0.60 0.75 0.67

C23 0.67 1.00 0.80

C24 0.30 0.43 0.35

C25 1.00 1.00 1.00

C26 0.67 0.80 0.73

C27 0.43 1.00 0.60

C28 0.10 0.50 0.17

O

CR007 0.30 0.43 0.35

CR503689 0.30 0.75 0.43

CR503779 0.20 0.50 0.29

CR504139 0.29 0.29 0.29

CR504310 0.30 0.50 0.38

CR504311 0.00 0.00 0.00

CR504321 0.20 0.67 0.31

CR504322 0.10 0.25 0.14

CR504323 0.20 0.67 0.31

CR504324 0.20 1.00 0.33

CR504325 0.29 0.50 0.36

CR504326 0.20 0.50 0.29

CR504327 0.30 1.00 0.46

CR504328 0.40 0.67 0.50

CR504329 0.67 0.67 0.67

CR504330 0.00 0.00 0.00

CR504331 0.40 0.57 0.47

CR504332 1.00 0.50 0.67

CR504333 0.00 0.00 0.00

CR504334 0.25 1.00 0.40

CR504335 0.40 0.67 0.50

CR504336 0.30 0.75 0.43

CR504337 0.40 0.80 0.53

CR504338 0.10 0.50 0.17

Chapter 5

140

CR504339 0.00 0.00 0.00

CR504340 0.20 0.33 0.25

CR504341 0.00 0.00 0.00

CR504342 0.20 0.67 0.31

CR504793 0.30 0.30 0.30

CR504799 0.30 0.60 0.40

CR600203 0.33 0.33 0.33

CR600204 0.33 0.33 0.33

CR60200 0.00 0.00 0.00

CR60202 1.00 1.00 1.00

5.11.2. Beir-Based Results:

Table 5.3 provides a detailed summary of the evaluation metrics, including Average

Precision, Average Recall, Average NDCG, and Average MAP, evaluated at cutoff values

of 5 and 10. These metrics offer a comprehensive view of the Beir-based model's

performance across the datasets, highlighting its effectiveness in terms of precision,

recall, and ranking quality.

Additionally, Table 5.4 illustrates the variation in specific metrics, map_cut_5 and

ndcg_cut_5, across different datasets. These metrics are particularly useful in evaluating

the ranking efficiency and precision of the retrieval model within a given threshold. The

map_cut_5 metric measures the mean average precision of the top 5 results, while

ndcg_cut_5 focuses on the quality of the ranking within the top 5 most relevant results.

Together, these metrics provide a reliable indication of how well the Beir-based

solution applies to real-world software development processes, particularly in terms of

usefulness, recall, ranking efficacy, and precision. By analyzing these results, it becomes

evident how the model performs in prioritizing and ranking impacted requirements

based on their relevance to a given change request.

141

Table 5.3. Beir-based average results

D
at

as
e

t Average

Precision@5

Average

Recall@5

Average

NDCG@5

Average

MAP@5

Average

Precision@10

Average

Recall@10

Average

NDCG@10

Average

MAP@10

W 0.6643 0.8049 0.9075 0.7819 0.3643 0.8454 0.8775 0.8141

I 0.44 0.9667 0.9689 0.9556 0.22 0.9667 0.9689 0.9556

O 0.5706 0.7815 0.8486 0.7449 0.3235 0.8345 0.8443 0.7935

Figure 5.3 shows the BEIR-based average metrics at cutoff 5, Precision@5, Recall@5,

NDCG@5, and MAP@5, for Datasets W, I, and O, illustrating that Dataset I delivers near-

perfect recall and ranking quality, Dataset W offers the best precision-recall balance,

and Dataset O falls in between.

Figure 5.3.Clustered Bar Chart of Average Metrics of the BEIR-based model

Chapter 5

142

Table 5.4. Beir-based results

Dataset Change Request map_cut_5 Scores ndcg_cut_5 Scores

I

Case 1 1.00 1.00

Case 2 1.00 1.00

Case 3 1.00 1.00

Case 4 1.00 1.00

Case 5 1.00 1.00

Case 6 1.00 1.00

Case 7 1.00 1.00

Case 8 1.00 1.00

Case 9 0.50 0.61

Case 10 1.00 1.00

Case 11 1.00 1.00

Case 12 0.83 0.92

Case 13 1.00 1.00

Case 14 1.00 1.00

Case 15 1.00 1.00

W

C1 1.00 1.00

C2 0.33 0.72

C3 0.71 0.83

C4 1.00 1.00

C5 0.56 1.00

C6 1.00 1.00

C7 1.00 1.00

C8 1.00 1.00

C9 0.44 0.87

C10 0.67 0.77

C11 1.00 1.00

C12 0.34 0.70

C13 0.83 1.00

C14 0.50 0.61

C15 1.00 1.00

C16 0.83 1.00

C17 0.80 0.87

143

C18 1.00 1.00

C19 0.40 0.55

C20 1.00 1.00

C21 0.95 0.98

C22 0.63 1.00

C23 0.75 0.88

C24 0.54 0.85

C25 1.00 1.00

C26 0.80 0.87

C27 0.81 0.91

C28 1.00 1.00

O

CR007 0.71 1.00

CR503689 1.00 1.00

CR503779 0.25 0.41

CR504139 0.71 1.00

CR504310 0.83 1.00

CR504311 0.35 0.65

CR504321 0.67 0.77

CR504322 0.75 0.83

CR504323 1.00 1.00

CR504324 1.00 1.00

CR504325 0.68 0.76

CR504326 1.00 1.00

CR504327 1.00 1.00

CR504328 0.83 1.00

CR504329 1.00 1.00

CR504330 1.00 1.00

CR504331 0.71 1.00

CR504332 1.00 1.00

CR504333 0.50 0.61

CR504334 1.00 1.00

CR504335 0.67 0.77

CR504336 0.75 0.83

CR504337 0.80 0.87

CR504338 1.00 1.00

Chapter 5

144

CR504339 1.00 1.00

CR504340 0.67 0.87

CR504341 1.00 1.00

CR504342 0.70 0.85

CR504793 0.26 0.68

CR504799 0.40 0.55

CR600203 0.00 0.00

CR600204 0.83 1.00

CR60200 0.25 0.39

CR60202 1.00 1.00

5.12. Discussion

This section analyses the results of the proposed solutions, with subsections focusing

on the NLP-based and Beir-based approaches.

Different project contexts demand different balances between catching every possible

impacted requirement (high recall) and minimizing false alarms (high precision). For

safety-critical or regulatory systems, missing even a single dependency could have

severe consequences; in such cases, configuring the dual-model pipeline for higher

recall, even at the expense of more manual review, is justified. Conversely, for fast-

moving agile teams where throughput is paramount, prioritizing precision reduces

analyst overhead, accepting that a few subtle impacts may be caught later in the

iteration cycle. By exposing confidence thresholds in both the NLP and BEIR stages, our

framework allows teams to tune this balance according to risk tolerance and available

review effort.

5.12.1. Discussion on the NLP Solution Results

A detailed review of the outcomes for each specific change request has yielded

significant insights. Certain change requests, particularly those related to core

functionalities or critical components of the system, consistently demonstrated

improved precision and recall. This suggests that the NLP method is particularly effective

145

at identifying and assessing the impact of changes that are well-defined or central to the

system's operations.

In contrast, other change requests produced lower scores, likely due to several factors,

including ambiguous requirement descriptions, insufficient context in the change

requests, or the inherent limitations of NLP technologies in handling complex semantic

relationships without additional contextual information. These challenges emphasize

the importance of clarity in the description of requirements and change requests to

facilitate more accurate impact analysis.

The overall results from the datasets present a mixed but informative picture. Dataset-

I demonstrated the highest success, achieving strong precision and recall scores, which

may be attributed to the specific characteristics of the dataset—such as its domain focus

and the well-defined nature of its requirements. This alignment with the NLP solution's

strengths indicates that the model performs particularly well in environments with

structured, domain-specific data.

In contrast, Dataset-O encountered significant challenges, reflected in its lower

performance across all metrics. This disparity highlights the sensitivity of NLP techniques

to the linguistic and structural characteristics of the data being processed. It suggests

that the effectiveness of the NLP solution is highly dependent on the quality and

specificity of the dataset. Consequently, this points to the need for tailored NLP

strategies that are adapted to different domains or types of software documentation to

enhance the model’s performance.

5.12.2. Beir-Based Results Discussion

This subsection provides details of the results of the Beir-based approach for each

dataset.

(a) Discussion on Dataset-W:

The evaluation of the dual-model framework for requirements CIA on Dataset-W

yielded insightful results, demonstrating how well the model can extract and rank

relevant requirements. The implementation achieved a notable balance between recall,

Chapter 5

146

precision, and ranking efficiency, with the Bi-Encoder re-ranking mechanism

contributing significantly to this outcome.

A Precision@5 score of 0.6643 indicates that, on average, 66.43% of the top 5 returned

documents were relevant to the given change requests (C1 to C28). This level of accuracy

in the top results highlights the model's ability to prioritize the most relevant

requirements, addressing the needs of stakeholders who typically focus on the top-

ranked results.

Despite this strong performance, the Recall@5 score of 0.8049 suggests that the

model could further improve its ability to retrieve a broader set of relevant

requirements in the top 5. This balance between capturing the most critical

requirements and excluding irrelevant ones presents a challenge in maintaining

precision while improving recall.

When expanding the evaluation to the top 10 requirements, Precision@10 dropped

to 0.3643, indicating the trade-off between increasing the result set size and reducing

precision. Nevertheless, the Recall@10 score rose to 0.8454, reflecting broader

coverage and the inclusion of more relevant requirements, albeit at the cost of

introducing some irrelevant ones.

The NDCG scores of 0.9075 (for 5 results) and 0.8775 (for 10 results) highlight the

model's ability to rank relevant requirements effectively. The slight decline from 5 to 10

indicates the challenge of maintaining ranking quality as the result set grows.

Moreover, the MAP scores showed a positive trend, improving from 0.7819 (at 5

results) to 0.8141 (at 10 results), suggesting that the model preserves ranking precision

across a broader range of requirements. This indicates the model's utility when users

are prepared to explore a more extensive set of results.

(b) Discussion on Dataset-I:

The evaluation of the dual-model framework on Dataset-I yielded distinct results,

shedding light on the dataset's characteristics and areas where the model both excels

and faces challenges. Unlike Dataset-W, Dataset-I produced a high recall at the expense

of lower precision.

147

With a Precision@5 score of 0.4400, the model was less precise in retrieving top

results. However, the exceptionally high Recall@5 score of 0.9667 demonstrates that

the model was highly successful in retrieving nearly all relevant requirements within the

top 5, albeit with the inclusion of non-relevant documents that lowered precision.

Similarly, Precision@10 and Recall@10 scores followed this trend, with values of

0.2200 and 0.9667, respectively, showing that the model maintained its ability to

capture nearly all relevant requirements, though more non-relevant results were

included as the result set size increased.

The NDCG@5 and MAP@5 scores—0.9689 and 0.9556, respectively—demonstrate

the model's strong ranking performance and precision at the top of the result set. Even

as the result set size doubled, the model maintained these scores at NDCG@10 and

MAP@10, reflecting its ability to rank relevant requirements effectively across different

result set sizes.

These results confirm the model’s ability to retrieve relevant requirements with near-

perfect recall, a valuable strength in software development environments where

missing critical requirements can be costly. However, the lower precision suggests the

need to refine the retrieval process to reduce irrelevant data while maintaining recall.

(c) Discussion on Dataset-O

For Dataset-O, the Precision@5 score of 0.5706 and the Recall@5 score of 0.7815

indicate a strong initial performance in retrieving relevant requirements within the top

5 results. This balance suggests that a significant portion of relevant requirements is

correctly prioritized, making it suitable for users focused on the top results.

As more results are considered, there is a trade-off between relevance and quantity,

reflected by the drop in Precision@10 to 0.3235 and the increase in Recall@10 to

0.8345. This trade-off illustrates the challenge of expanding result sets while maintaining

precision.

The NDCG@5 score of 0.8486 and the NDCG@10 score of 0.8443 highlight the model's

effectiveness in accurately ranking the retrieved requirements, with only a slight decline

Chapter 5

148

in ranking quality as the number of results increases. This consistency suggests that the

model's ranking mechanism is robust even with a more extensive result set.

The MAP scores also showed an improvement from 0.7449 (at 5 results) to 0.7935 (at

10 results), indicating that the model effectively maintains precision even as more

requirements are reviewed.

The performance on Dataset-O highlights the model's ability to capture relevant

requirements while ranking them effectively. However, the decline in precision as the

number of retrieved requirements grows underscores the need for further refinement,

particularly in improving the re-ranking process to balance precision and recall.

Conclusion- The evaluation of Dataset-O provides valuable insights into the dual-

model framework’s strengths in requirements CIA. While the model excels in recall and

ranking quality, future enhancements should focus on improving precision without

sacrificing recall. This balance is essential for supporting informed decision-making in

software development processes.

5.12.3. Comparison Between NLP-Based and Rule-Based CIA

Approaches

In the context of software requirements Change Impact Analysis (CIA), NLP-based and

rule-based approaches offer fundamentally different strengths and limitations. While

both aim to identify the relationships between change requests and potentially

impacted requirements, their underlying methodologies and adaptability diverge

significantly.

NLP-based models rely on advanced natural language processing techniques to

understand the semantics, syntax, and context of textual requirements. These models,

particularly when enhanced with tools such as CoreNLP and SpaCy, can interpret varied

sentence structures and terminologies. This flexibility allows them to perform effectively

across diverse datasets and evolving documentation styles. By contrast, rule-based

systems are grounded in fixed patterns, often defined through keyword matching,

regular expressions, or pre-set dependency rules. As a result, they are inherently rigid.

149

Any deviation from predefined patterns, such as novel phrasing or unexpected

terminology, typically requires manual rule adjustments, limiting their ability to

generalize (Arora et al. 2015a).

Scalability is another critical factor distinguishing these two approaches. NLP-based

methods scale well to large datasets, even those with heterogeneous language use,

because their models can adaptively learn from data distributions. In contrast, rule-

based methods tend to degrade in performance as the volume and variability of the

dataset grow. This makes them more suitable for smaller or highly structured domains

where language use is predictable and controlled (Arora et al. 2015a).

From a performance standpoint, rule-based systems may deliver high precision within

narrowly defined contexts, since they trigger only when specific criteria are met.

However, this narrow targeting often results in lower recall, as many impacted

requirements fall outside the rigid rule definitions. NLP models, on the other hand, tend

to strike a better balance between precision and recall. Their semantic capabilities allow

them to identify relevant impacts even when textual expressions differ significantly, as

demonstrated by higher recall values observed in the evaluations on Dataset-I and

Dataset-W (Arora et al. 2015a; Goknil, Kurtev & Berg 2016).

Finally, maintainability sets these approaches further apart. Rule-based systems

demand frequent manual updates to stay current with new requirement styles or

domain shifts. This creates an ongoing maintenance burden for requirements engineers.

NLP-based systems, however, can evolve through model retraining or fine-tuning

without changing the underlying logic or architecture. This adaptability makes them

more sustainable in dynamic development environments where requirements evolve

over time (Goknil, Kurtev & Berg 2016).

In summary, while rule-based approaches remain valuable in constrained scenarios

requiring high precision and interpretability, NLP-based CIA methods offer superior

flexibility, scalability, and adaptability. Their capacity to handle unstructured language

and generalise across varied datasets positions them as more robust solutions for

modern software engineering projects involving large-scale or frequently changing

requirements.

Chapter 5

150

5.12.4. Dataset-Specific Challenges & Remedies

Dataset-O proved the most difficult of our three datasets. Having been edited by

multiple authors over more than 14 years, it contains inconsistent terminology, uneven

levels of detail, and sparse contextual cues. These characteristics lead to noisy

embeddings, poor lexical overlap, and fractured dependency graphs, which explain the

lower Precision, Recall, and F1 scores we observed.

To address these issues, first we recommend domain-adaptive fine-tuning of our

neural retrievers on a small, manually validated subset of Dataset-O. By exposing the Bi-

Encoder and Cross-Encoder models to the dataset’s idiosyncratic vocabulary and

phrasing, we can improve their ability to capture its unique semantics. Second,

integrating a lightweight domain ontology mapping, like “subscriber endpoint” to “user

API”, can augment embeddings with explicit concept links and boost semantic coverage

where raw vectors fall short. Third, an active-learning loop that flags low-confidence

predictions for human review can help surface edge-case dependencies. These

annotations both improve model retraining and focus our efforts on the most

challenging examples. Finally, layering in a simple rule-based post-filter for critical entity

patterns (such as “credit module” or “payment gateway”) can catch high-risk

dependencies that might slip past even a well-tuned neural parser.

Together, these dataset-tailored refinements will help our dual-model framework

adapt not only to generic requirements text but also to the quirks of older, highly

evolved repositories like Dataset-O.

5.13. Summary

This research proposed an approach to analyze the impacts of software requirements

change requests, focusing on identifying which existing requirements would be affected

by a new change. The primary objective was to design a reliable framework to enhance

planning and prioritization in the execution of requirements changes within agile

software development environments.

151

Two approaches were employed to evaluate the proposed research: an NLP-based

solution using CoreNLP and SpaCy, and a Beir-based solution leveraging BM25 via

Elasticsearch, with Bi-Encoders and Cross-Encoders for dense retrieval and ranking. Both

methods were assessed across three real-world datasets (W, I, and O), each presenting

unique linguistic and domain-specific characteristics.

The NLP-based approach demonstrated significant efficacy in Dataset-I, achieving an

overall F1 Score of 0.653, indicating a strong capacity to identify the impacts of

requirements changes while maintaining a balance between precision and recall. This

underscores the suitability of the NLP-based method when dealing with datasets that

align well with linguistic models, highlighting its utility in cases where syntactic and

semantic interactions are crucial for predicting impacted requirements.

Conversely, the Beir-based method excelled in Dataset-W, showcasing its superior

precision in identifying the top 5 impacted requirements. With an Average Recall@5 of

0.8049 and an Average Precision@5 of 0.6643, the Beir-based solution proved highly

effective in quickly retrieving the most relevant impacted requirements. A notable

observation was the method's performance in Dataset-I, where its ability to capture a

broader range of potential impacts was reflected in high recall scores. However, the 0.22

Average Precision@10 score highlights a trade-off with precision, emphasizing the

method’s tendency to introduce more false positives while maintaining comprehensive

coverage.

A comparison of the two approaches provides deeper insights into their respective

strengths. The NLP-based method outperforms the Beir-based solution in Dataset-I,

where it adeptly captures nuanced interactions between syntactic structures and

semantic meaning. This balance between precision and recall makes the NLP-based

approach a more reliable predictor of impacted requirements when the data aligns with

its linguistic processing capabilities. In contrast, the Beir-based approach excels in recall,

particularly in Dataset-I, owing to its utilization of BM25 and advanced encoder

techniques. While the Beir model may introduce more false positives, its ability to

retrieve a larger set of potentially impacted requirements makes it an invaluable tool for

ensuring comprehensive coverage in CIA.

Chapter 5

152

In summary, the dual-model framework presented in this research offers a promising

solution for improving decision-making in software development through efficient

requirements CIA. By combining BM25 for initial retrieval with Bi-Encoders and Cross-

Encoders for semantic understanding and re-ranking, the framework addresses both

precision and recall, providing a balanced and comprehensive approach to managing

requirements changes. Future research may explore further enhancements to refine

precision while maintaining the recall strengths demonstrated by the Beir-based

method.

153

Chapter 6.

Implementation of Retrieval-Augmented

Generation (RAG) Model for Predicting

Requirement Change Impact

6.1. Introduction

This chapter introduces the implementation of the RAG model, a critical component

of the SRCIA framework described in Chapter 3. The RAG model integrates information

retrieval and generative language models, providing a sophisticated solution for

enhancing decision-making in software requirement CIA. As the SRCIA framework

outlines, the RAG model represents an advanced layer designed to handle large-scale,

dynamic, and heterogeneous datasets where deep contextual understanding is

essential.

Implementing the RAG model marks a significant contribution to the SRCIA

framework. It leverages the retrieval capabilities of vector-based embedding techniques

to identify relevant requirements. It combines them with the generative reasoning of

LLMs to predict and explain the potential impacts of changes. This chapter details the

RAG model's conceptual framework, technical architecture, and implementation

specifics, as well as its integration within the SRCIA framework. It also highlights the

Chapter 6

154

enhancements made to standard RAG implementations tailored to the unique

challenges of requirements engineering.

Despite advances in requirements traceability and change impact analysis, most prior

solutions suffer from three core limitations. First, rule-based and keyword-matching

pipelines break down whenever stakeholders use varied terminology or complex

sentence constructions, yielding brittle coverage and high false-negative rates. Second,

single-model approaches, whether classical ML classifiers or dense-retrieval systems,

tend to excel only in narrow, well-structured datasets and degrade sharply under

domain shifts or unstructured text. Finally, where hybrid or ensemble strategies have

been proposed, they often lack a clear mechanism for integrating retrieval evidence with

generative reasoning, leaving analysts without coherent explanations or fine-grained

confidence measures. These gaps motivate our RAG design, which combines robust

vector retrieval with LLM-powered generation to deliver both high recall and human-

readable impact predictions.

One of the primary contributions of this research is adapting the RAG model to the

context of CIA for software requirements. This includes combining retrieval-based

methods with fine-tuned generative models to create a hybrid approach that optimally

balances precision and contextual understanding. Additionally, modifications were

made to the retrieval mechanism to align with the semantic structures commonly

observed in software requirements documents. These customizations enhance the

model's relevance ranking and ensure compatibility with the datasets used in the SRCIA

framework.

The chapter also illustrates how the RAG model complements the NLP and BEIR-based

solutions previously implemented in the SRCIA framework. While the NLP and BEIR-

based methods focus on semantic and lexical similarity for structured and semi-

structured datasets, the RAG model extends this capability by providing deeper

contextual insights and explaining predicted impacts. This advancement addresses a gap

in the framework by enabling more nuanced analysis for complex and unstructured

datasets, such as lengthy requirements specifications and dynamic change logs.

155

By implementing and refining the RAG model, this research contributes a novel

approach to integrating state-of-the-art AI techniques within the SRCIA framework. The

chapter concludes with an evaluation of the RAG model's performance, highlighting its

effectiveness in improving accuracy, scalability, and contextual understanding in

predicting software requirement change impacts.

6.2. Applications of LLMs in CIA

LLMs play a pivotal role in automating CIA within software requirements engineering.

Their ability to process and interpret large volumes of unstructured data with contextual

sensitivity makes them uniquely suited for this task. In this research, LLMs were

leveraged within a Retrieval-Augmented Generation (RAG) system, combining retrieval

and generative capabilities to address the complexities of CIA.

The LLM component of the RAG system serves as the generative backbone, producing

contextually informed predictions based on retrieved requirements. One of the

significant applications of LLMs is their ability to analyze the context and semantics of

requirements, identifying intricate dependencies that traditional models may overlook.

This capability ensures a more comprehensive and accurate identification of impacted

requirements. Additionally, by leveraging fine-tuned LLMs such as Phi 3.5, the system

demonstrates predictive modeling capabilities, allowing it to predict the impacts of

changes with high precision, even in datasets characterized by linguistic variability and

unstructured text.

LLMs also contribute significantly to enhancing stakeholder communication. Their

generative capabilities enable the creation of natural language explanations for

predicted impacts, improving clarity and facilitating informed decision-making among

stakeholders. Furthermore, LLMs augment the retrieval process by ensuring that

retrieved documents are contextually aligned with the query, which enhances the

overall accuracy and relevance of the results. Finally, LLMs' adaptability allows their

application across diverse domains, such as finance, healthcare, and manufacturing,

broadening the scope and applicability of CIA methodologies.

Chapter 6

156

6.3. Architecture and Functionality of LLMs

The core architecture of modern LLMs relies on the Transformer model, particularly

its self-attention mechanism, which enhances the model's ability to process sequential

data effectively. Through self-attention, LLMs can identify the relationships between

individual words in a sentence and the broader contextual relationships among

sentences. This mechanism is critical in enabling the model to generate coherent,

contextually aligned responses, an essential feature for processing complex

requirements in CIA.

In the RAG system, the self-attention mechanism plays a pivotal role, allowing the

model to incorporate immediate lexical meaning and deeper semantic relationships.

This dual focus on linguistic and semantic layers enhances the system’s ability to deliver

responses that reflect not only the content of specific requirements but also their

underlying dependencies and broader context(Zheng et al. 2023).

6.4. LLMs as a Reasoning Engine in the RAG Framework

Within the RAG framework, the LLM functions as the primary reasoning engine,

synthesizing information from retrieved requirements and generating responses that

predict impacted requirements. This capability is crucial for the requirements CIA, where

nuanced interpretations and comprehensive understanding are required to identify

potential implications accurately. By combining retrieval-based input with generative

reasoning, the LLM component of the RAG model enables a more contextually aware

and responsive system.

In this thesis, the LLMs are also employed as benchmarks to evaluate the generated

responses’ quality and alignment with intended outcomes, a process referred to as

"LLM-as-a-judge." This benchmarking approach provides further interpretative depth,

capturing the semantic quality of generated text beyond syntactic accuracy.

157

6.5. Selected LLMs and Their Roles

For this research, multiple LLMs such as Phi 3.5, GPT-3, T5, BERT and Flan-T5 were

incorporated, each serving distinct functions to optimize the framework's performance.

The chosen LLMs include Phi 3.5, among others, selected for their specific capabilities in

reasoning, contextual inference, and adaptability across varying requirements datasets.

These models collectively contribute to achieving high precision and recall in identifying

impacted requirements, particularly in unstructured or semi-structured datasets (Abdin

et al. 2024).

6.6. RAG Architecture

The architecture of a RAG model consists of two main components: the retriever

component and the generator component, each playing a distinct role in the pipeline.

Figure 6.1 illustrates the RAG model pipeline, which consists of the query being passed

through the retriever to find relevant documents, followed by the generator producing

a contextually informed response.

Figure 6.1.The Architecture of RAG Model

Chapter 6

158

6.6.1. Retriever Component

The retriever component is essential for identifying and selecting documents or data

segments that provide relevant context for a query. It operates by searching a pre-

indexed knowledge base or database and scoring documents based on their relevance

to the query.

• Indexing: The knowledge base is pre-processed to create an index, allowing for

efficient searching. In this implementation, BM25 is used as the primary retrieval

algorithm due to its effectiveness in text-based search.

• Query Processing: The input query is tokenized and standardized to align with the

retrieval model’s input format. Tokenization ensures that the query is processed

consistently with the indexed data.

• Scoring and Ranking: The retriever ranks documents using scoring functions, such

as TF-IDF or vector similarity measures, to determine relevance. The top-k results

are selected based on their scores.

The retriever component offers several notable benefits. One of the primary

advantages is its speed and efficiency, as indexed search enables quick retrieval of

relevant context from large datasets. Additionally, the retriever is highly customizable,

allowing it to be adapted to various retrieval methods, including embedding-based

searches that leverage vector similarity for enhanced precision. This flexibility ensures

that the retriever can be tailored to meet specific requirements across different use

cases and domains.

6.6.2. Generator Component

The generator component takes the output of the retriever and integrates it into the

response generation process. It employs a transformer-based language model, such as

Phi-3.5, to produce informed, contextually aware responses.

159

• Contextual Input: The input to the generator includes both the original query and

the retrieved documents. This combined input enriches the model’s understanding

and guides the response generation.

• Transformer Architecture: The Phi-3.5 model employs a multi-layered attention

mechanism that allows the model to weigh different parts of the input context,

ensuring that the response is coherent and relevant.

• Prompt Structuring: To maximize the model’s performance, input prompts are

carefully structured to guide the model’s response. This can include pre-processing

techniques that tailor the input format to emphasize critical points (White et al.

2023).

• Memory Optimization: Implementing quantization techniques, such as 8-bit

quantization using BitsAndBytesConfig, optimizes the model’s memory usage,

making it more suitable for practical deployment on hardware with limited

resources.

The generator component brings significant benefits to the RAG system. By

incorporating context retrieved from the knowledge base, the generator produces

responses that are more precise and informative, enhancing the relevance of its

outputs. Additionally, the generator is highly flexible, as it can be fine-tuned or adapted

to cater to different types of output requirements. Whether the desired response

format is explanatory text, concise bullet points, or in-depth analysis, the generator can

be customized to meet specific needs, making it a versatile tool for various applications.

6.7. RAG Applications in CIA

In the context of CIA, RAG models retrieve relevant requirement documents for a

given change request and generate predictions on how the requirements are impacted.

The retrieval component ensures that only contextually relevant information is

considered, while the generation component provides explanations and predictions

based on this retrieved context.

Chapter 6

160

6.8. Scalability of the RAG Framework for Enterprise-Level Software

Systems

Scalability is a crucial consideration when implementing Retrieval-Augmented

Generation (RAG) frameworks within enterprise-level software systems, given the

substantial volume, complexity, and dynamic nature of data in such environments.

Enterprise software typically involves extensive and continuously evolving repositories

of documentation, requirements, change logs, and stakeholder communications. As

such, ensuring that the RAG model can efficiently manage, retrieve, and generate

contextually accurate responses from large datasets is paramount for practical

adoption.

The RAG framework implemented in this research demonstrates considerable

scalability due to its inherently modular design, consisting of distinct retrieval and

generation components. The retrieval component, employing vector-based databases

like LanceDB and high-performance indexing tools such as FAISS, is particularly

conducive to scalable implementations. LanceDB’s efficient handling of high-

dimensional vectors and FAISS’s rapid approximate nearest-neighbour searches ensure

low latency and swift performance, even as the data scales into millions of embeddings.

This combination allows the RAG framework to maintain effective retrieval speeds,

ensuring practical applicability in environments with extensive documentation and rapid

query-response cycles (Johnson, Douze & Jegou 2021).

Another critical factor enhancing scalability is the use of dense embeddings generated

through models like all-MiniLM-L6-v2, which facilitate compact yet semantically rich

representations of textual data. These embeddings significantly reduce the

computational overhead during retrieval by enabling efficient vector-based similarity

searches. Additionally, the retriever's architecture can be horizontally scaled by

deploying multiple instances or shards, allowing parallel querying of extensive vector

datasets. Such horizontal scalability ensures that even as enterprise data repositories

expand, retrieval performance remains robust and responsive.

161

The generator component, based on transformer models such as Phi-3.5, also presents

opportunities and challenges regarding scalability. Transformer-based LLMs, while

powerful, are computationally demanding due to their large parameter sets and

intensive attention mechanisms. However, this research addresses these concerns

through advanced memory optimisation strategies, including 8-bit quantisation

techniques via BitsAndBytesConfig. These optimisations substantially reduce memory

usage and computational requirements, enabling deployment on enterprise hardware

resources without significantly compromising generation accuracy or response quality

(Jiang et al. 2025).

Moreover, the modular nature of the RAG architecture enables independent scaling

of the retrieval and generation components, allowing tailored resource allocation based

on enterprise needs. For instance, the retrieval component can be scaled aggressively

to handle very large datasets, while the generation component can utilise smaller,

optimised language models to manage computational resource constraints effectively

(Lewis et al. 2020).

Enterprise integration further enhances the scalability of the RAG framework through

the potential use of distributed processing and cloud infrastructure. Deploying the RAG

system within a cloud-based environment leveraging containerisation technologies

(such as Docker and Kubernetes) facilitates dynamic scaling, load balancing, and efficient

resource management. This deployment model allows organisations to rapidly scale

computational resources up or down based on demand fluctuations, ensuring consistent

performance and reliability during peak usage periods (Jiang et al. 2025).

Lastly, scalability also extends to ongoing maintenance and adaptability. Unlike

traditional rule-based systems, which require manual updates and can quickly become

burdensome at scale, the RAG framework can efficiently adapt through retraining or

incremental fine-tuning. This capability significantly reduces long-term maintenance

overhead and ensures the system remains accurate and relevant as enterprise

documentation and requirements evolve.

In summary, the RAG framework implemented in this research is well-suited for

scaling in enterprise-level software systems due to its modular design, efficient vector-

Chapter 6

162

based retrieval, computationally optimized generative models, and compatibility with

scalable deployment environments. Its adaptability in handling dynamic, large-scale

datasets positions it effectively for real-world enterprise applications, offering robust

performance, reduced maintenance requirements, and practical scalability.

6.9. Implementation Challenges & Limitations

While the RAG framework offers powerful retrieval and generation capabilities, it also

introduces non-trivial computational and operational overhead. Fine-tuning and serving

large LLMs such as Phi 3.5 or GPT-3 requires substantial GPU memory and inference

costs: for example, running Phi 3.5 in 16-bit precision can consume upwards of 12–16

GB of VRAM per instance, and pay-as-you-go hosting of GPT-3 can accumulate

thousands of dollars per month under heavy query loads. Although 8-bit quantization

and model sharding mitigate some of this cost, teams must carefully budget for both

peak GPU requirements and ongoing throughput expenses when deploying RAG in

production.

The retriever and generator components each come with distinct scalability

bottlenecks. BM25 indexing scales linearly with corpus size, making sub second retrieval

challenging once you exceed millions of documents—at which point approximate

nearest-neighbor indexes (FAISS) become essential but introduce recall and precision

trade-offs. Likewise, the transformer-based generator’s self-attention mechanism

grows quadratically with input length, so feeding in large top-k contexts can double or

triple inference latency. In practice, we found that capping the retrieved context to 3–5

passages and using batched generation improved throughput by 2× with only a 5–10 %

drop in F1 (Nogueira & Cho 2019).

Maintaining vector databases at enterprise scale also presents integration headaches.

Systems like LanceDB must support live updates as requirements evolve, yet re-indexing

millions of embeddings on every push is impractical. We addressed this by batching

nightly refreshes and using rolling shards, but this adds operational complexity and

temporary staleness in the retrieval index. Monitoring vector-store health and

periodically validating vector similarity thresholds is crucial to avoid silent degradation.

163

Finally, our choice of all-MiniLM-L6-v2 embeddings and the LanceDB+FAISS stack

reflects a balance of speed, accuracy, and ease of integration. We compared

alternatives—such as embed-all-mpnet and Milvus—but found that all-MiniLM offers 2–

3× faster encoding with only a 2–3 % hit in retrieval recall, and LanceDB’s Pythonic API

simplified our data pipeline compared to lower-level options. FAISS’s mature ANN

algorithms likewise outperformed newer frameworks in query latency under high

concurrency. By calling out these trade-offs explicitly, teams can see why our particular

embedding and indexing toolkit was the best fit for large-scale CIA.

6.10. Vector Databases in RAG Systems

This section explores the integration and significance of vector databases within the

RAG framework.

6.10.1. Role of Vector Databases in the RAG Framework

In the RAG system, vector databases are an essential component of the retriever. They

enable the efficient storage and retrieval of embedding vectors generated during pre-

processing, allowing the system to identify semantically similar items to the query.

The workflow within a vector database in the RAG framework typically involves several

steps. First, text data, such as requirements and queries, is transformed into dense

vector representations using embedding models like all-MiniLM-L6-v2. These

embeddings capture semantic meaning and relationships within the data. Once

generated, the embeddings are indexed using advanced techniques such as

Approximate Nearest Neighbor (ANN) algorithms. This indexing process accelerates

similarity searches by creating structures that allow efficient querying of high-

dimensional data. When a query embedding is provided, the vector database performs

a similarity search to retrieve the most relevant embeddings. This search often uses

metrics like cosine similarity or Euclidean distance to rank results by relevance. Finally,

the retrieved embeddings are passed to the generator component of the RAG model,

enriching the context for generating accurate and contextually relevant responses.

Chapter 6

164

6.10.2. Advantages of Using Vector Databases

Vector databases offer several advantages that make them suitable for RAG systems.

They can handle large-scale embedding datasets efficiently, enabling rapid similarity

searches across millions of vectors. Their advanced indexing and search algorithms

ensure low-latency responses, making them ideal for real-time applications.

Furthermore, vector databases support various similarity metrics and retrieval

configurations, allowing customization for specific use cases. Additionally, many vector

databases, such as LanceDB and FAISS, integrate seamlessly with ML pipelines and

frameworks, simplifying implementation in modern workflows.

6.11. LanceDB and FAISS in this Research

In this thesis, LanceDB and FAISS were employed as the vector database components

within the RAG system. LanceDB was used to manage and store embedding vectors,

providing a flexible and efficient database platform optimized for high-dimensional data.

Its support for schema customization and integration with Python libraries facilitates

seamless interaction with the embedding models. FAISS (Facebook AI Similarity Search)

served as the indexing and search engine. By implementing Approximate Nearest

Neighbor (ANN) techniques, FAISS performed high-speed similarity searches on the

stored embeddings. Its capability to handle large-scale data ensures efficient and

accurate retrieval, even with extensive requirements datasets.

6.12. Relevance to Requirements CIA

The adoption of vector databases in the RAG system enhances the framework’s ability

to manage and retrieve contextually rich information efficiently. This capability is critical

for requirements CIA, as the system must navigate large, unstructured datasets to

identify relevant impacted requirements. By leveraging LanceDB and FAISS, the RAG

model achieves high retrieval accuracy and scalability, meeting the demands of complex,

dynamic software engineering environments.

165

6.13. Prompt Engineering Technique in the RAG Framework

Prompt engineering is a critical element of the RAG framework, enabling the seamless

integration of retrieved context with generative language modeling. In this

implementation, prompt engineering was designed to dynamically structure and enrich

the input for the language model, ensuring precise and contextually relevant responses

for requirements CIA. This section details the techniques employed to optimize the

prompts for effective utilization of the Phi-3.5 language model within the RAG system.

6.14. Implementation of the RAG-Based Solution

The RAG-based solution was implemented using Python, with the following detailed

steps outlining the process:

Step 1: Preprocessing Datasets

The requirements and change request datasets were preprocessed to ensure a

consistent format:

• Tokenization: The text was tokenized using NLTK to prepare for embedding and

retrieval.

• Normalization: Text data was converted to lowercase, and punctuation was

removed for uniformity.

• Embedding Preparation: Sentence embeddings were generated using the all-

MiniLM-L6-v2 model from the SentenceTransformer library to capture semantic

relationships between text elements.

Step 2: Storing Embeddings in LanceDB

LanceDB was used to store the embeddings generated from the requirements dataset:

• Embedding Creation: Each requirement description was embedded and stored in

a PyArrow table for easy access and management.

• Database Connection: LanceDB was initialized to manage the vector data

efficiently.

Chapter 6

166

• Table Creation: A table was created in LanceDB to store the requirement IDs,

descriptions, and corresponding embeddings.

LanceDB offers several key benefits, making it an effective solution for vector data

management. One of its main advantages is its scalability, allowing it to handle large-

scale vector data storage efficiently, ensuring smooth performance even as the dataset

grows. Additionally, LanceDB provides seamless integration, simplifying storing and

querying embeddings. This ease of integration enhances the manageability of the

retrieval component, contributing to a more efficient and streamlined workflow in

retrieval-based applications.

Step 3: Indexing with FAISS

FAISS was used to create an index for the stored embeddings to enable fast similarity

searches:

• Embedding Extraction: Embeddings were loaded from LanceDB into a NumPy

array for indexing.

• FAISS Index Initialization: A FAISS index using L2 distance (Euclidean distance) was

created and populated with the embeddings.

• Dynamic k Search: The index was configured to allow dynamic k-value searches

based on the actual impact set size for each change request.

FAISS offers notable benefits that make it a powerful tool for similarity search in large-

scale applications. One of its primary advantages is its high performance, as it is

optimized to conduct fast similarity searches even on extensive datasets, ensuring quick

and efficient retrieval operations. Additionally, FAISS provides flexibility by supporting

various distance metrics, which enhances the accuracy of retrieval tasks by allowing

customization based on the specific needs of the application.

Step 4: Implementing the Retrieval Component

The retrieval component was implemented using FAISS:

167

• Query Embedding: Change request descriptions were embedded using the

SentenceTransformer model.

• Vector Search: FAISS searched the top-k relevant requirements based on the

query embedding, returning the results for use in the generative phase.

Step 5: Configuring the Generative Model

The Phi-3.5 model was configured to generate outputs using the retrieved context:

• Model Setup: The model was loaded with CUDA support for GPU acceleration,

using float16 precision for optimized performance.

• Pipeline Creation: A text generation pipeline was defined to integrate the model

and tokenizer, enabling seamless generation of responses.

Step 6: Generating Context-Aware Responses

The response generation process involved:

• Context Construction: The retrieved requirements were combined to form a

context for the model.

• Generation: The model processed the context and the change request

description to generate detailed responses, predicting impacted requirements.

Step 7: Processing Change Requests and Storing Results

The model was used to process each change request in the dataset:

• Output Generation: Each change request was passed through the RAG system,

and the generated response was stored in a CSV file.

• Evaluation: The generated outputs were evaluated using precision, recall, and

F1 scores to measure the model's effectiveness.

6.15. Evaluation of the RAG System

Evaluating the RAG system requires a thorough analysis of both the retrieval and

generation components to ensure the responses address the change requests

accurately and identify the correct impacted requirements. To assess the quality of

retrieval, metrics such as Recall and Precision are used. Recall here is crucial for

Chapter 6

168

understanding how well the system covers all necessary information regarding a change

request. A higher recall indicates that the system effectively retrieves most, if not all, of

the relevant requirements. On the other hand, precision quantifies the proportion of

retrieved requirements that are truly relevant. This metric helps evaluate the accuracy

of the retrieval process by showing how many of the retrieved documents are relevant.

A high precision score implies that the system retrieves mostly relevant documents,

minimizing noise in the output.

For the generation component, the BLEU and ROUGE scores are utilized to measure

the overlap between the generated responses and the manually created ground truth.

The BLEU (Bilingual Evaluation Understudy) score assesses how similar the generated

text is to the reference text by examining the n-gram overlap. BLEU is particularly useful

for evaluating fluency and word choice in the generated response. A higher BLEU score

indicates that the generated text closely matches the reference, suggesting that the

model has effectively captured the desired content (Gou et al. 2023; Yan 2023). ROUGE

(Recall-Oriented Understudy for Gisting Evaluation) scores are another set of metrics

used to evaluate the quality of text by comparing n-grams, word sequences, and word

pairs with the reference text. ROUGE-1 measures the overlap of unigrams (individual

words) between the generated text and the reference, while ROUGE-L considers the

longest common subsequence between the texts, emphasizing the overall structure and

coherence of the response. Higher ROUGE scores indicate better alignment with the

ground truth, signifying that the generated text includes important and relevant

information (Lin 2004).

In addition to quantitative metrics, human evaluation can be conducted to further

assess the generation quality. In this process, domain experts or evaluators rate each

response based on various aspects such as accuracy, relevance, and completeness.

Evaluators can use a scale (e.g., 1-5) to rate how well the generated response addresses

the change request and includes appropriate impacted requirements. This step provides

qualitative feedback and allows for a more nuanced understanding of the system's

performance, capturing aspects that automated metrics might overlook.

169

To compute the BLEU score, the generated text is compared with the ground truth by

analyzing the overlap of n-grams. The BLEU score ranges from 0 to 1, where a score

closer to 1 indicates a higher similarity between the generated text and the reference.

For example, in evaluating a response where the ground truth states, "The impacted

requirements include stability and performance improvements," and the generated

response states, "The impacted requirements are related to stability and performance,"

a high BLEU score would suggest strong alignment in content. The ROUGE score similarly

evaluates the text by comparing n-grams and sequences, assessing the generated

content's informativeness and coherence. The use of both BLEU and ROUGE allows for

a comprehensive evaluation of how well the model performs in generating relevant and

coherent responses (Ganesan 2018; Yu et al. 2024).

Overall, an end-to-end evaluation can be performed by combining the retrieval and

generation results. The average recall and precision scores provide insights into how

well the retrieval process captures relevant requirements, while the average BLEU and

ROUGE scores assess the fluency and coherence of the generated text. If human

evaluation is conducted, the ratings from domain experts can be summarized to present

an overview of how well the system meets the practical requirements of the task. This

combined analysis helps identify strengths and areas for improvement, ensuring that

the RAG system is effective and reliable for addressing change requests and determining

impacted requirements.

6.16. Results and Discussion

The evaluation results of the RAG model are summarized in Tables 6.1 and 6.2. Table

6.1 provides the average performance metrics of the model across the three datasets—

Dataset-W, Dataset-I, and Dataset-O—including Precision, Recall, F1 Score, Mean

Reciprocal Rank (MRR), Partial Credit, Precision@5, Recall@5, Precision@10, and

Recall@10. Table 6.2 presents the detailed results for individual change requests in

Dataset-W, including additional metrics such as BLEU and ROUGE. These tables

collectively provide a comprehensive overview of the RAG model’s performance across

datasets and individual change requests.

Chapter 6

170

A) Dataset-W: Moderate Performance with Balanced Precision and Recall

Dataset-W demonstrated a balanced yet moderate performance in Precision and

Recall, with averages of 0.55 and 0.67, respectively, resulting in an F1 Score of 0.59.

These values suggest that while the RAG model managed to retrieve a considerable

portion of relevant impacted requirements, it also included a number of irrelevant

results. This trade-off between precision and recall highlights the RAG model’s attempt

to balance completeness with accuracy in retrieval for Dataset-W. The inclusion of BLEU

and ROUGE metrics provides additional insights into the model’s lexical and contextual

alignment capabilities.

High Recall values for specific change requests, such as C1, C3, and C14, indicate that

the RAG model was effective in capturing all relevant impacted requirements for these

changes. This high recall may be attributed to clearer linguistic patterns or less

ambiguous wording in the change descriptions. BLEU scores for these requests were

relatively higher, suggesting a better lexical overlap with ground truth in these cases.

Similarly, ROUGE1 (0.5) and ROUGEL (0.5) metrics reflect moderate overlaps in unigram

and sequential matching, further supporting the model’s ability to retrieve contextually

relevant requirements for less ambiguous cases. Conversely, the lower Precision scores

observed for requests such as C7 and C18 (both with Precision scores of 0.26) suggest

instances of over-retrieval. This over-retrieval is likely due to ambiguous or loosely

defined requirements, which the model struggled to differentiate accurately. The BLEU

scores for these cases were also low, indicating a lack of lexical alignment with the

ground truth, and the ROUGE2 scores (average 0.25) reveal challenges in capturing

meaningful bigram overlaps for such complex change requests.

The Mean Reciprocal Rank (MRR) for Dataset-W, averaging 0.69, highlights the

model’s ability to rank relevant requirements fairly high, though not consistently at the

very top. The Partial Credit metric of 0.88 suggests that even if exact matches were not

retrieved, the model was reasonably effective in retrieving closely related requirements.

BLEU and ROUGE metrics further substantiate this observation, with BLEU scores

emphasizing limitations in lexical precision and ROUGE1 metrics indicating moderate

structural coherence in the retrieved results. Interestingly, the Precision@5 (0.45) and

171

Recall@5 (0.59) values underline the model's challenges in consistently retrieving the

most relevant requirements within the top 5 results. This limitation is evident in the

variability of BLEU and ROUGE scores across change requests, which reflect

inconsistencies in lexical and structural alignment. While the RAG model demonstrated

a fair ability to rank relevant results near the top, the linguistic variability within Dataset-

W limited its overall retrieval effectiveness.

Dataset-W highlights the RAG model’s strengths and weaknesses in dealing with

moderate complexity. The high Recall for specific change requests with clearer linguistic

patterns showcases the RAG model's capability to capture relevant impacted

requirements comprehensively. However, the low BLEU scores for specific change

requests emphasize the need for better lexical alignment, and precision inconsistencies

across change requests point to challenges in managing over-retrieval for linguistically

diverse or ambiguous requirements. To improve performance on datasets like Dataset-

W, additional preprocessing steps, such as linguistic normalization and domain-specific

synonym replacement, could enhance BLEU and ROUGE scores by improving lexical and

structural alignment. Further, refining the retrieval component by integrating advanced

embeddings or hybrid scoring mechanisms may improve precision while maintaining

high recall.

In summary, Dataset-W demonstrates the RAG model’s ability to achieve a reasonable

balance between precision and recall. BLEU and ROUGE metrics reveal moderate lexical

and contextual alignment, with room for improvement in addressing linguistic

inconsistencies. The dataset’s moderate complexity aligns well with the model’s

capabilities, but further refinements are required to enhance precision and retrieval

effectiveness in similar datasets.

B) Dataset-I: High Performance in Structured and Consistent Data

Dataset-I displayed the strongest performance metrics across all evaluated datasets,

with averages for Precision and Recall at 0.79 and 0.87, respectively, resulting in an F1

Score of 0.78. These scores underscore the RAG model’s effectiveness in accurately and

comprehensively retrieving relevant requirements. This high performance is likely

attributed to the structured format and consistent linguistic patterns in Dataset-I, which

Chapter 6

172

facilitated the RAG model’s ability to capture and interpret the requirements with high

precision and recall.

Adding BLEU and ROUGE metrics further highlights the model’s lexical and contextual

alignment. BLEU scores, averaging 0.18, indicate moderate overlap between predicted

and ground-truth requirements at a token level. In contrast, ROUGE1 (0.8125), ROUGE2

(0.733333), and ROUGEL (0.8125) scores emphasize strong n-gram and sequential

alignment in the retrieved outputs. These results reflect the RAG model’s capacity to

produce semantically and lexically aligned responses in a well-structured dataset.

Certain cases in Dataset-I, such as Case 1, Case 12, and Case 15, achieved perfect or

near-perfect Recall and Precision scores, illustrating the model’s ability to perform

optimally in environments with minimal linguistic variation and consistent terminology.

These cases also reported high BLEU and ROUGE scores, indicating semantic and lexical

alignment with the ground truth. The Mean Reciprocal Rank (MRR) of 0.83 further

suggests that relevant requirements were often ranked at or near the top, which is

critical for scenarios requiring prioritized retrieval.

The Partial Credit score for Dataset-I averaged 0.95, reflecting the model’s robust

accuracy in capturing relevant items even when exact matches were not retrieved. The

high ROUGE2 scores across cases further validate the model’s ability to identify

semantically related requirements by capturing meaningful bigram overlaps.

Precision@5 (0.4) and Recall@5 (0.75) demonstrate the model’s ability to retrieve

relevant top-ranked items, though Precision@5 slightly suffers from the inclusion of

some irrelevant results. BLEU scores for these cases reinforce this observation,

indicating occasional mismatches in token-level alignment, likely due to over-retrieval

in a few ambiguous cases.

Overall, Dataset-I’s results affirm the RAG model’s strength in environments with

minimal linguistic variation and a high degree of structure. The structured nature of the

dataset allowed the model to maximize its retrieval precision and recall while

maintaining strong lexical alignment, as reflected in the BLEU and ROUGE scores. These

findings demonstrate that RAG models perform exceptionally well in predictable data

173

environments with well-defined language patterns, offering practical utility in

structured and controlled use cases.

C) Dataset-O: Challenges in Handling Complexity and Linguistic Variability

Dataset-O, the most complex and historically diverse dataset, presented significant

challenges for the RAG model, as evidenced by its lowest average Precision (0.45) and

Recall (0.53) compared to other datasets. The F1 Score of 0.47 indicates that while the

RAG model could retrieve some relevant impacted requirements, the high degree of

linguistic variability and dataset complexity reduced its precision and recall

effectiveness. These findings are further validated through the BLEU and ROUGE

metrics, which offer additional insights into the model's ability to align its outputs with

ground truth.

The dataset’s historical nature, spanning over many years and involving contributions

from multiple analysts, likely contributed to the linguistic inconsistencies observed.

BLEU scores for Dataset-O were generally low, with an average of 0.11, indicating limited

lexical alignment between predicted and ground-truth requirements. Similarly, the

ROUGE1 (0.65), ROUGE2 (0.41), and ROUGEL (0.58) scores reflect moderate overlap in

unigram, bigram, and sequence-based evaluations, respectively. While the RAG model

demonstrated some capability in identifying semantically related items, these metrics

reveal its limitations in generating text that closely matches the structure and wording

of ground truth.

The Partial Credit score of 0.92 suggests that the model was able to retrieve items

related to the relevant impacted requirements, even if exact matches were not always

achieved. However, the lower Precision@5 (0.31) and Recall@5 (0.50) metrics

underscore the model's difficulty in consistently retrieving the most relevant

requirements within the top positions. BLEU and ROUGE metrics further highlight the

model’s struggles with textual precision and recall as they emphasize word- and

sequence-level alignment.

Interestingly, specific individual change requests in Dataset-O, such as CR504326 and

CR504342, yielded high Precision and Recall and relatively strong BLEU and ROUGE

Chapter 6

174

scores. These results indicate that the model can still perform well when the language

or context is less ambiguous or where the requirements exhibit more precise semantic

relationships. However, the model's performance suffered for change requests with

higher linguistic complexity or ambiguous phrasing. This is particularly evident in the

significant variability in BLEU scores, with some change requests achieving near-zero

values, emphasizing the model’s struggle with lexical alignment in challenging scenarios.

The findings from Dataset-O reinforce the importance of dataset structure and

consistency when using RAG-based approaches, as these factors significantly influence

retrieval and generation accuracy. For datasets of this nature, additional preprocessing

steps, such as clustering or segmentation of data based on linguistic features, may be

required to enhance retrieval performance. Moreover, fine-tuning the generative model

on domain-specific datasets could improve its ability to generate lexically and

contextually accurate outputs, thereby addressing the limitations highlighted by BLEU

and ROUGE evaluations.

Overall, while the RAG model demonstrates some strengths in handling complex

datasets, these results underscore the need for further optimization, particularly in

addressing linguistic variability and ensuring alignment between generated outputs and

ground-truth requirements.

Table 6.1. RAG Average Results

 Precision Recall F1_Score MMR Partial_Credit Precision@5 Recall@5 Precision@10 Recall@10

Dataset-

W
0.55 0.67 0.59 0.69 0.88 0.45 0.59 0.28 0.65

Dataset-

I
0.71 0.87 0.78 0.83 0.95 0.36 0.86 0.18 0.86

Dataset-

O
0.45 0.53 0.47 0.64 0.92 0.31 0.50 0.16 0.52

175

Table 6.2. RAG Solution Results

Da
ta

se
t

Ch
an

ge
_I

D

Pr
ec

isi
on

Re
ca

ll

F1
_S

co
re

M
M

R

Pa
rt

ia
l_

Cr
ed

it

Pr
ec

isi
on

@
5

Re
ca

ll@
5

Pr
ec

isi
on

@
10

Re
ca

ll@
10

Bl
eu

Ro
ug

e1

Ro
ug

e2

Ro
ug

eL

W

C1 0.7 1 0.84 1 0.91 0.4 1 0.2 1 0.14 0.8 0 0.8

C2 0.7 0.7 0.7 0.33 0.93 0.6 0.33 0.6 0.67 0.08 0.67 0.25 0.67

C3 0.35 1 0.53 0.33 0.82 0.2 1 0.1 1 0.11 0.5 0 0.5

C4 0.35 1 0.53 0.5 0.81 0.2 1 0.1 1 0.11 0.5 0 0.5

C5 0.66 0.66 0.66 1 0.95 0.8 0.5 0.5 0.63 0.07 0.82 0.13 0.59

C6 0.75 0.75 0.75 0.5 0.93 0.6 0.43 0.5 0.71 0.19 0.71 0.33 0.71

C7 0.26 0.26 0.26 0.25 0.79 0.2 0.25 0.1 0.25 0.08 0.25 0 0.25

C8 0.42 0.42 0.42 1 0.84 0.4 0.4 0.2 0.4 0.06 0.4 0 0.4

C9 0.7 0.7 0.7 0.5 0.93 0.6 0.4 0.6 0.67 0.35 0.67 0.5 0.67

C10 0.7 0.7 0.7 1 0.91 0.4 0.67 0.2 0.67 0.24 0.67 0.5 0.67

C11 0.53 0.53 0.53 0.5 0.91 0.4 0.5 0.2 0.5 0.1 0.5 0 0.5

C12 0.39 0.39 0.39 0.5 0.88 0.4 0.25 0.3 0.38 0.04 0.38 0 0.38

C13 0.7 0.7 0.7 1 0.92 0.8 0.67 0.4 0.67 0.22 0.67 0.4 0.67

C14 0.7 1 0.84 0.5 0.91 0.4 1 0.2 1 0.14 0.8 0 0.8

C15 0.35 0.35 0.35 1 0.8 0.2 0.33 0.1 0.33 0.11 0.33 0 0.33

C16 0.18 0.18 0.18 0.25 0.8 0.2 0.17 0.1 0.17 0.04 0.17 0 0.17

C17 0.42 0.42 0.42 0.33 0.87 0.4 0.4 0.2 0.4 0.11 0.4 0.25 0.4

C18 0.26 0.26 0.26 0.33 0.81 0.2 0.25 0.1 0.25 0.08 0.25 0 0.25

C19 0.63 0.63 0.63 1 0.93 0.6 0.6 0.3 0.6 0.07 0.77 0 0.46

C20 0.42 0.42 0.42 1 0.88 0.4 0.4 0.2 0.4 0.06 0.4 0 0.4

C21 0.53 0.53 0.53 0.5 0.87 0.4 0.5 0.2 0.5 0.1 0.5 0 0.5

C22 0.92 0.92 0.92 0.5 0.97 0.8 0.5 0.7 0.88 0.84 0.88 0.86 0.88

C23 0.7 1 0.84 1 0.91 0.4 1 0.2 1 0.14 0.8 0 0.4

C24 0.9 0.9 0.9 1 0.97 1 0.71 0.6 0.86 0.09 0.86 0.17 0.43

C25 0.35 1 0.53 0.5 0.81 0.2 1 0.1 1 0.11 0.5 0 0.5

C26 0.63 0.63 0.63 1 0.91 0.6 0.6 0.3 0.6 0.13 0.6 0.25 0.6

C27 0.7 0.7 0.7 1 0.9 0.4 0.67 0.2 0.67 0.14 0.67 0 0.67

C28 0.53 1 0.7 1 0.84 0.4 1 0.2 1 0.17 0.67 0.5 0.67

I
Case 1 0.79 0.79 0.79 0.5 0.96 0.6 0.75 0.3 0.75 0.19 0.81 0.73 0.81

Case 2 0.7 1 0.84 0.5 0.95 0.4 1 0.2 1 0.24 0.8 0.78 0.8

Chapter 6

176

Case 3 0.53 0.53 0.53 1 0.89 0.2 0.5 0.1 0.5 0.15 0.63 0.43 0.63

Case 4 0.7 0.7 0.7 0.5 0.97 0.4 0.67 0.2 0.67 0.24 0.75 0.64 0.75

Case 5 0.53 1 0.7 0.5 0.97 0.2 1 0.1 1 0.15 0.67 0.6 0.67

Case 6 0.7 1 0.84 1 0.92 0.4 1 0.2 1 0.24 0.75 0.71 0.75

Case 7 0.7 1 0.84 1 0.97 0.4 1 0.2 1 0.24 0.8 0.77 0.8

Case 8 0.53 0.53 0.53 0.5 0.96 0.4 0.5 0.2 0.5 0.1 0.88 0.73 0.69

Case 9 0.7 1 0.84 1 0.97 0.4 1 0.2 1 0.14 0.8 0.67 0.6

Case 10 0.7 1 0.84 1 0.86 0.4 1 0.2 1 0.14 0.8 0.78 0.8

Case 11 0.7 0.53 0.6 1 0.93 0.4 0.5 0.2 0.5 0.1 0.71 0.62 0.71

Case 12 0.7 1 0.84 1 0.97 0.4 1 0.2 1 0.24 0.8 0.77 0.8

Case 13 0.7 1 0.84 0.5 0.98 0.4 1 0.2 1 0.14 0.8 0.78 0.8

Case 14 1 1 1 1 1 0.2 1 0.1 1 0.18 1 1 1

Case 15 1 1 1 1 1 0.2 1 0.1 1 0.18 1 1 1

O

CR007 0.3 0.3 0.3 0.5 0.93 0.4 0.29 0.2 0.29 0.04 0.73 0.43 0.61

CR503689 0.26 0.26 0.26 0.5 0.94 0.2 0.25 0.1 0.25 0.08 0.81 0.56 0.52

CR503779 0.42 0.53 0.47 0.33 0.9 0.4 0.5 0.2 0.5 0.06 0.65 0.41 0.58

CR504139 0.42 0.3 0.35 0.5 0.96 0.4 0.29 0.2 0.29 0.04 0.55 0.37 0.5

CR504310 0.53 0.53 0.53 0.33 0.91 0.4 0.33 0.3 0.5 0.05 0.65 0.46 0.54

CR504311 0.18 0.18 0.18 0.5 0.89 0.2 0.17 0.1 0.17 0.04 0.59 0.29 0.38

CR504321 0.35 0.35 0.35 0.33 0.95 0.2 0.33 0.1 0.33 0.11 0.67 0.5 0.67

CR504322 0.53 0.53 0.53 1 0.94 0.4 0.5 0.2 0.5 0.1 0.69 0.58 0.62

CR504323 0.7 0.7 0.7 1 0.99 0.4 0.67 0.2 0.67 0.14 0.73 0.6 0.73

CR504324 0.35 0.53 0.42 0.33 0.87 0.2 0.5 0.1 0.5 0.11 0.74 0.71 0.63

CR504325 0.53 0.53 0.53 1 0.93 0.4 0.5 0.2 0.5 0.1 0.75 0.45 0.5

CR504326 0.79 0.79 0.79 1 0.99 0.6 0.75 0.3 0.75 0.4 0.92 0.82 0.92

CR504327 0.35 0.35 0.35 1 0.89 0.2 0.33 0.1 0.33 0.11 0.7 0.57 0.7

CR504328 0.42 0.35 0.38 0.33 0.96 0.4 0.33 0.2 0.33 0.09 0.67 0.45 0.48

CR504329 0.7 0.7 0.7 1 0.99 0.4 0.67 0.2 0.67 0.24 0.89 0.63 0.67

CR504330 0.35 0.35 0.35 0.5 0.91 0.2 0.33 0.1 0.33 0.11 0.56 0.38 0.44

CR504331 0.53 0.45 0.48 1 0.98 0.4 0.29 0.3 0.43 0.05 0.78 0.62 0.73

CR504332 0.7 1 0.84 1 0.96 0.4 1 0.2 1 0.24 0.8 0.77 0.8

CR504333 0.35 0.53 0.42 0.33 0.91 0.2 0.5 0.1 0.5 0.11 0.59 0.4 0.47

CR504334 0.35 1 0.53 0.33 0.81 0.2 1 0.1 1 0.11 0.57 0.5 0.57

CR504335 0.7 0.7 0.7 0.5 0.98 0.4 0.67 0.2 0.67 0.14 0.84 0.82 0.84

CR504336 0.53 0.53 0.53 1 0.92 0.4 0.5 0.2 0.5 0.17 0.69 0.42 0.69

177

CR504337 0.84 0.84 0.84 1 0.94 0.8 0.8 0.4 0.8 0.29 0.89 0.82 0.83

CR504338 0.35 0.53 0.42 0.5 0.87 0.2 0.5 0.1 0.5 0.11 0.59 0.27 0.35

CR504339 0.35 1 0.53 0.33 0.82 0.2 1 0.1 1 0.11 0.5 0.4 0.5

CR504340 0.26 0.18 0.21 1 0.92 0.2 0.17 0.1 0.17 0.05 0.65 0.44 0.59

CR504341 0.35 1 0.53 0.33 0.88 0.2 1 0.1 1 0.11 0.53 0.46 0.53

CR504342 1 0.7 0.84 1 1 0.4 0.67 0.2 0.67 0.19 0.8 0.77 0.8

CR504793 0.23 0.21 0.22 0.17 0.87 0 0 0.2 0.2 0.03 0.6 0.24 0.53

CR504799 0.21 0.21 0.21 0.25 0.9 0.2 0.2 0.1 0.2 0.05 0.65 0.34 0.59

CR600203 0.35 0.35 0.35 1 0.96 0.2 0.33 0.1 0.33 0.11 0.67 0.42 0.38

CR600204 0.21 0.18 0.19 0.5 0.88 0.2 0.17 0.1 0.17 0.04 0.61 0.41 0.5

CR60200 0.35 0.53 0.42 0.5 0.89 0.2 0.5 0.1 0.5 0.11 0.74 0.59 0.63

CR60202 0.35 1 0.53 1 0.91 0.2 1 0.1 1 0.11 0.5 0.4 0.5

6.17. Practical Implications of Precision and Recall Trade-Offs

In real-world CIA, the choice between higher recall (catching every possible impacted

requirement) and higher precision (minimizing false alarms) directly affects how

analysts allocate time and manage risk. In safety-critical domains (e.g., medical or

aerospace software), missing even a single impacted requirement can have severe

consequences, so teams will tune the RAG system toward high recall, accepting more

false positives that can be quickly filtered by domain experts. Conversely, in fast-paced

agile environments with tight release schedules, excessive false positives can

overwhelm developers, so precision is prioritized even if a few edge-case impacts slip

through and get caught in later iterations. By surface-ranking confidence scores and

allowing threshold adjustments in both retrieval and generation phases, our RAG

implementation gives stakeholders clear knobs to balance these trade-offs. This

tunability ensures that the same core model can serve diverse projects from zero-

tolerance safety pipelines to high-velocity feature sprints by simply shifting the precision

and recall operating point to match each team’s risk tolerance and review capacity.

Chapter 6

178

6.18. Summary

Comparing the results across Dataset-W, Dataset-I, and Dataset-O, a clear pattern

emerges: the RAG model's performance is significantly influenced by the structure and

linguistic consistency of the datasets. Dataset-I, characterized by its structured format

and consistent linguistic patterns, enabled the RAG model to achieve the highest

precision (0.79) and recall (0.87), resulting in an F1 Score of 0.78. The additional BLEU

and ROUGE metrics for Dataset-I, with BLEU averaging 0.18 and ROUGE1, ROUGE2, and

ROUGEL averaging 0.81, 0.73, and 0.81 respectively, further highlight the model's

superior lexical and semantic alignment in structured environments. These results

demonstrate the system's optimal performance in predictable data settings with

minimal variability.

In contrast, Dataset-O’s complexity and historical variability led to the lowest

performance, with precision at 0.45 and recall at 0.53, resulting in an F1 Score of 0.47.

While the BLEU scores for Dataset-O remained modest, the Partial Credit metric (0.92)

and ROUGE scores (averaging around 0.65 for ROUGE1, ROUGE2, and ROUGEL) suggest

that the RAG model could still retrieve items related to the relevant impacted

requirements, even if exact matches were not consistently achieved. The results

highlight the challenges the model faces in datasets with substantial linguistic variation

and inconsistent terminology, where over-retrieval and ambiguous matches can dilute

precision.

Dataset-W presented balanced yet moderate results, with precision and recall

averaging 0.55 and 0.67, respectively, and an F1 Score of 0.59. The BLEU scores for

Dataset-W averaged around 0.13, while ROUGE1, ROUGE2, and ROUGEL metrics

averaged 0.77, 0.70, and 0.77, respectively, indicating moderate semantic and lexical

alignment. These results reflect the model's effort to balance completeness and

accuracy in retrieval. Dataset-W’s variability limited the effectiveness of retrieval

precision, as shown by lower Precision@5 (0.45) and Recall@5 (0.59) compared to

Dataset-I.

The MRR scores across all datasets highlight the model’s ability to rank relevant

requirements near the top, with Dataset-I achieving the highest MRR (0.83), followed by

179

Dataset-W (0.69) and Dataset-O (0.64). These values reinforce the RAG model’s

capability in structured datasets, where ranking relevant items effectively is crucial.

Meanwhile, the Partial Credit metric, which ranged from 0.88 to 0.95 across all datasets,

indicates that even when exact matches were not retrieved, the model could still

identify semantically related requirements, offering practical utility in many scenarios.

Including the BLEU and ROUGE metrics offers additional depth in assessing the RAG

model's performance. High ROUGE scores for Dataset-I underscore its strength in

structured environments, while the relatively lower BLEU and ROUGE metrics for

Dataset-O highlight the challenges in handling linguistic variability.

In summary, the evaluation results emphasize the RAG model's strengths in structured

and consistent data environments while revealing its limitations with datasets exhibiting

high variability and inconsistency. To improve the model's adaptability to complex

datasets like Dataset-O, future efforts could focus on fine-tuning the embedding models,

integrating domain-specific language models, and employing advanced preprocessing

techniques to address linguistic variability. These enhancements could enable the RAG

system to handle diverse datasets better, ultimately enhancing its reliability and

effectiveness in real-world applications for requirement impact analysis.

180

Chapter 7.

Evaluation of the Proposed Models

7.1. Introduction

This chapter presents a comprehensive evaluation of the implemented models,

including ML models, NLP-based solutions, BEIR-based approach and the RAG solution.

The primary objective is to assess each model's performance using standardized

evaluation metrics, identify their strengths and limitations, and determine their

effectiveness in automating CIA in software requirements engineering. The evaluation

is carried out systematically across different datasets to assess the models'

generalizability, precision, recall, and overall effectiveness.

7.2. Model Setup

The evaluation was conducted using three datasets—Dataset-I, Dataset-W, and

Dataset-O, each that were described in chapter 3, representing varying levels of

complexity and domain-specific features. The datasets encompass different

requirements change scenarios, providing a comprehensive test environment for the

models.

The evaluation process involved training and testing each model using these datasets

to analyze their generalizability and adaptability across different domains. A consistent

approach was taken to optimize the hyperparameters for each model based on initial

testing, ensuring an equitable comparison. Below is a detailed description of the setup

for each model:

181

ML Models: Traditional ML techniques, including Random Forest, Support Vector

Machines (SVM), and Decision Trees, were employed. These models were trained on

datasets with features engineered from syntactic, semantic, and contextual information

derived from requirements documents. Emphasis was placed on selecting optimal

features, such as term frequency, dependency parsing outputs, and entity relationships,

to improve model precision and recall.

NLP-Based Solution: This solution integrated CoreNLP and SpaCy libraries to perform

linguistic feature extraction and syntactic parsing. A combination of TF-IDF vectorization

and cosine similarity calculations was employed to measure the similarity between

change requests and requirements. The model utilized named entity recognition (NER)

and dependency parsing to enhance the quality of extracted features, aiming for a

robust and contextually accurate representation of the requirements.

BEIR-Based Solution: The BEIR framework combined BM25 (via Elasticsearch) for

lexical retrieval, Bi-Encoders for dense retrieval, and Cross-Encoders for re-ranking. This

multi-layered approach aimed to achieve context-aware ranking, enabling a

comprehensive understanding of the relationships between requirements and changes.

By leveraging these advanced methods, the model was designed to cover a broad range

of scenarios, capturing lexical and semantic similarities.

RAG Solution: The RAG model combines semantic retrieval with a generative language

model to provide enhanced predictions of impacted requirements in complex and

unstructured data scenarios. For this implementation, the RAG system leverages the Phi

3.5 language model as the generative component and LanceDB with FAISS as the

retrieval layer. The setup involves embedding requirements and change descriptions

using the all-MiniLM-L6-v2 model from the Sentence Transformers library. These

embeddings are stored in LanceDB and indexed by FAISS to allow efficient similarity

search.

The RAG solution operates in two primary stages:

Retrieval Stage: For each change request, the system retrieves a set of semantically

similar requirements based on vector similarity using FAISS. This retrieval process is

Chapter 7

182

dynamically adjusted to ensure the inclusion of relevant items by adapting the retrieval

threshold according to the size and characteristics of each impact set.

Generation Stage: The Phi 3.5 model takes the retrieved requirements as contextual

input and generates a response to predict impacted requirements. This generative step

enables the model to capture nuanced dependencies and deeper relationships in the

requirements' descriptions, going beyond lexical similarity to include contextual and

semantic relevance.

Hyperparameter Optimization: For each model family, we conducted systematic

hyperparameter searches on a held-out validation fold to avoid overfitting and to gauge

generalizability. For Random Forest, we varied the number of trees (n_estimators ∈ {50,

100, 200}) and maximum tree depth (max_depth ∈ {None, 10, 20}), finding that 100

trees with max_depth=20 offered the best trade-off between performance and training

time on all three datasets—deeper forests improved F1 by only 1–2 points but doubled

training time. SVM parameters (C ∈ {0.1, 1, 10}, kernel ∈ {linear, rbf}) were selected via

grid search; a linear kernel with C=1 generalized most stably across domains, whereas

RBF kernels over-fit the smallest dataset (Dataset-I). For the BEIR bi-encoder, we tuned

the embedding dimension reduction threshold and re-ranking top-k (k ∈ {5, 10, 20}),

balancing higher recall (from larger k) against increased latency. In our RAG pipeline,

beam sizes (beam_width ∈ {1, 3, 5}) and max_output_tokens (128 vs. 256) were

evaluated: beam_width=3 and max_output_tokens=128 yielded <10% drop in

BLEU/ROUGE while halving generation latency compared to beam_width=5. By driving

these choices with validation-based grid searches, rather than ad-hoc defaults, we

ensure each model’s settings are data-driven and maximally generalizable across

domains.

7.3. Model Evaluation

A comprehensive set of evaluation metrics was employed to assess the performance

of each model, including the ML models, NLP-based solutions, BEIR-based approach, and

the RAG system. These metrics provide insight into the precision, completeness, ranking

183

quality, and relevance of each model's predictions in identifying impacted requirements

in response to change requests:

• Precision

• Recall

• F1 Score:

• MRR

• Partial Credit

• Precision@5 and Recall@5

• Precision@10 and Recall@10

• NDCG

These metrics collectively provide a holistic view of each model's performance,

helping to highlight the specific strengths of models in capturing semantic relationships

and their adaptability in varied datasets. Through these evaluations, a comprehensive

comparison across models can be made, reflecting their applicability to different

requirements and change scenarios.

7.4. Results Analysis

7.4.1. ML Models

The ML models, notably the Random Forest algorithm, demonstrated consistent and

balanced performance across the datasets. On Dataset-I, the Random Forest model

achieved an F1 score of 0.72, with a precision of 0.68 and a recall of 0.75. These results

indicate a strong ability to detect relevant impacts while minimizing false positives,

suggesting its utility in structured and moderately complex datasets. The SVM and

Decision Trees models showed moderate effectiveness, but they did not reach the

precision levels of Random Forest, particularly when managing more complex data

patterns.

As illustrated in Figure 7.1, the performance variations of ML models across datasets

are visually evident. The Random Forest model exhibits a higher F1 score and balanced

Chapter 7

184

precision and recall on Dataset-I but demonstrates a noticeable decline in Dataset-O, as

reflected in its reduced precision and recall metrics.

In Dataset-W, the performance of the ML models declined, with the Random Forest

model achieving an F1 score of 0.61. While the precision remained relatively stable,

recall dropped significantly. This highlights the increased difficulty these models face

when encountering Dataset-W's varied linguistic patterns and complexities. In Dataset-

O, a dataset with high variability and linguistic inconsistencies, the precision of the

Random Forest model was notably lower at 0.47, resulting in an F1 score of 0.55. These

findings underscore the limitations of traditional ML models in handling datasets that

lack structured language and contain heterogeneous data.

Figure 7.1.Performance Comparison of ML Models Across Datasets

7.4.2. NLP-Based Solution

The NLP-based solution, combining CoreNLP for syntactic parsing and SpaCy for

Named Entity Recognition (NER), performed effectively in structured environments but

185

showed limitations with linguistic variability. As illustrated in figure 7.2, the radar chart

provides a comparative visualization of the NLP model’s overall performance across

precision, recall, and F1 score for the three datasetsOn Dataset-I, this model achieved

high precision (0.82) but lower recall (0.61), resulting in an F1 score of 0.69. This result

indicates that while the NLP approach is highly effective at identifying accurate impacts

in structured datasets, it may miss relevant information when syntax and context vary.

For Dataset-W, the F1 score dropped to 0.58, mainly due to a decrease in recall. This

suggests that the NLP model is sensitive to language and sentence structure variations,

leading to challenges in comprehensively capturing all impacted requirements in

linguistically diverse datasets. However, the relatively high precision observed across

the datasets indicates that the NLP model excels in environments where requirements

exhibit consistent terminology and syntax. This approach is particularly valuable in cases

where the documentation follows a predictable format, although its adaptability to less

structured documentation remains limited.

Figure 7.2.NLP Model Performance Across Datasets

Chapter 7

186

7.4.3. BEIR-Based Solution

The BEIR-based solution exhibited strong recall capabilities, particularly on Dataset-I,

where it achieved a recall score of 0.91, , as evident in figure 7.3. This high recall

indicates the model's effectiveness in capturing a broad spectrum of potential impacts,

showcasing its ability to perform thorough retrieval in structured datasets. However, the

model's precision was lower at 0.48, resulting in an F1 score of 0.63. This suggests that

while the BEIR approach comprehensively identifies impacted requirements, it

generates false positives, potentially increasing manual verification efforts.

In Dataset-W, the BEIR model maintained a high recall, but its precision decreased

further, underscoring the challenges of balancing specificity with broad coverage when

expanding its retrieval scope. On Dataset-O, the BEIR solution achieved more balanced

scores, with precision and recall, around 0.65. This result suggests that the BEIR

approach can adapt to larger, more varied datasets, but it may require further

refinement to improve specificity, particularly in complex, linguistically inconsistent

environments.

Figure 7.3 provides a comprehensive comparison of BEIR-based solution metrics,

including Average Precision@5, Recall@5, and NDCG@5 and @10, across the three

datasets. This visualization emphasizes the BEIR approach's strong recall and

adaptability while highlighting areas for refinement, such as precision improvement at

different ranking thresholds.

187

Figure 7.3.Performance Metrics of BEIR-Based Solution Across Datasets

7.4.4. RAG System

The RAG system, which combines retrieval and generative capabilities through a RAG

framework, presented unique strengths, particularly in datasets with complex and

unstructured requirements. Figure 7.4 illustrates the overall performance metrics of the

RAG model across the three datasets (Dataset-I, Dataset-W, and Dataset-O), highlighting

its capabilities in various aspects, including Precision, Recall, F1 Score, MMR, and other

key metrics.

On Dataset-I, the RAG model achieved an F1 score of 0.7875, with a precision of 0.79

and recall of 0.87, showcasing its ability to retrieve relevant requirements while

capturing contextual relationships within the text. BLEU and ROUGE metrics further

validated this performance, with BLEU averaging 0.18 and ROUGE1, ROUGE2, and

ROUGEL scores averaging 0.81, 0.73, and 0.81, respectively. These results highlight the

Chapter 7

188

model's strong lexical and semantic alignment in structured and consistent datasets,

reinforcing its advantage in dealing with semi-structured data and complex

requirements.

In Dataset-W, the RAG model’s recall remained robust at 0.67, though its precision

dropped to 0.55, resulting in an F1 score of 0.59. The BLEU score for this dataset

averaged around 0.13, while the ROUGE metrics (ROUGE1, ROUGE2, and ROUGEL)

showed moderate alignment at 0.77, 0.70, and 0.77, respectively. The RAG model's

ability to maintain decent recall, even in datasets with varied linguistic patterns and

terminologies, reflects its semantic understanding capabilities. However, the lower

precision in this dataset points to the challenges the model faces in balancing

completeness and relevance when encountering linguistic variability.

Dataset-O, the most complex and variable dataset, posed significant challenges for the

RAG system. The model achieved an F1 score of 0.47, with precision and recall averaging

0.45 and 0.53, respectively. Despite these modest scores, the BLEU and ROUGE metrics

offered additional insights: BLEU scores were generally lower, reflecting the difficulty in

achieving precise lexical matches, while ROUGE metrics (ROUGE1, ROUGE2, and

ROUGEL) averaged around 0.65, demonstrating the model's ability to capture some level

of semantic alignment even in a highly variable dataset. The Partial Credit score of 0.92

highlights that the model successfully retrieved semantically related items even when

exact matches were not achieved. Additionally, Recall@10 scores underscored the RAG

model's nuanced approach to matching impacted requirements, emphasizing its utility

in real-world applications with unstructured data.

Across all datasets, the MRR scores were consistently high, with Dataset-I achieving

the highest MRR (0.83), followed by Dataset-W (0.69) and Dataset-O (0.64). These

results demonstrate the RAG model's effectiveness in ranking relevant requirements

near the top of its output, an essential feature for prioritizing impacted requirements in

practical settings. The BLEU and ROUGE metrics provide further granularity in evaluating

the RAG model's performance, highlighting its strengths in structured datasets like

Dataset-I while revealing its challenges with datasets exhibiting higher linguistic

variability, such as Dataset-O.

189

Figure 7.4.RAG Model Performance Comparison Across Dataset

7.4.5. Practical Implications & Performance Drivers

In practical CIA workflows, the choice of operating point on the precision and recall

curve directly maps to stakeholder risk tolerance and review effort. High recall settings

(favoring fewer missed impacts) are essential in safety-critical or heavily audited

projects, even if teams must sift through more false positives. Conversely, feature-

driven agile squads may lean toward high precision accepting that a few subtle

dependencies will be caught in later reviews. Ranking metrics like MRR and Precision@5

further guide teams on how many top hits to inspect: a high MRR means analysts can

trust the top few results and allocate limited time effectively.

Traditional ML models underperform on Dataset-W and Dataset-O largely because

they rely on surface patterns (term frequencies and shallow dependency counts) that

break down amid varied syntax, paraphrasing, and inconsistent vocabulary. When

Chapter 7

190

requirements use domain-specific context or complex sentence structures, tree-based

or linear classifiers misclassify latent dependencies. To overcome this, hybridizing ML

with richer semantic features (e.g., embedding-based cluster centroids or ontology-

driven term normalization) can boost recall without incurring the full cost of neural

retrieval.

Our NLP pipeline (CoreNLP + SpaCy) excels at precise syntactic relations in controlled

text but struggles when sentences deviate from canonical grammar or introduce run-on

clauses and bullet lists common in real specs. One remedy is to augment parsing with

chunk-based co-occurrence features or lightweight neural entity linking to capture

fragmented contexts. Another is to pipeline a fallback dense-retriever pass for any

requirement snippet that yields low parse-confidence scores, ensuring key impacts

aren’t lost.

Finally, the BEIR approach’s high recall comes with precision drop-offs because BM25

and Bi-Encoders cast a wide net that pulls in loosely related documents. To tighten

specificity, we can introduce a lightweight relevance classifier on the top-k candidates

(e.g., a small fine-tuned Cross-Encoder) or apply dynamic thresholding on token-overlap

ratios. These refinements prune false positives while preserving the broad coverage that

makes BEIR ideal for initial exploratory CIA searches.

7.4.6. Adaptability Across Software Domains

To evaluate the adaptability of the proposed SRCIA framework, all implemented

models were tested on three datasets representing diverse software domains:

enterprise information systems (Dataset-I), public sector applications (Dataset-W), and

telecommunications systems (Dataset-O). These datasets exhibit varying degrees of

complexity, linguistic structure, and documentation style, providing a comprehensive

basis for assessing the generalizability of the framework.

Each domain introduces its own challenges: Dataset-I features well-structured and

formally written requirements typical of enterprise environments; Dataset-W contains

linguistically diverse and moderately structured public sector documents; Dataset-O

191

includes highly variable, historical data commonly found in telecommunications

systems. The consistent application of the models across these datasets enables a

comparative evaluation of their adaptability.

Table 7.1. RAG Model's F1-Scores Across the Three Domains

Software Domain Dataset F1 Score Observations

Enterprise Systems Dataset-I 0.78
Structured syntax and clear relationships

supported strong performance

Public Sector Applications Dataset-W 0.59
Moderate performance due to sentence

variation and inconsistent structure

Telecommunications

Systems
Dataset-O 0.47

Complex, unstructured data presented

challenges in precision and recall

These results demonstrate the SRCIA framework’s adaptability across diverse

domains, particularly its capacity to maintain reasonable performance in environments

with different requirements structures. While performance tends to be stronger in

structured datasets, the results confirm that the framework, especially the RAG solution,

can generalize to more complex or unstructured domains with minimal adjustment.

Comparative performance also highlights potential areas for improvement, such as

domain-specific fine-tuning of the retrieval and generative components to enhance

adaptability further.

7.5. Comparative Analysis

The comparative analysis of the models provides a nuanced view of each approach’s

strengths and limitations in handling varied datasets for CIA. Each model demonstrates

unique capabilities suited to different dataset structures and requirements

complexities. The accompanying radar charts (figures 7.5, 7.6 and 7.7) provide a visual

representation of key trends in precision, recall, and F1-score across Dataset-I, Dataset-

W, and Dataset-O.

ML Models: Traditional ML models, particularly Random Forest (RF), are quick and

computationally efficient, making them suitable for initial impact analysis, especially

Chapter 7

192

with structured datasets like Dataset-I. As shown in the radar chart for Dataset-I (Figure

7.4), RF clearly displays strong performance in terms of precision and recall, resulting in

a high F1-score. However, as shown in the spider charts for Dataset-W and Dataset-O,

the performance of RF and other ML models, including Decision Tree (DT) and SVM,

declines significantly when encountering datasets with complex or ambiguous

requirements. These datasets, characterized by varied linguistic structures and

contextual subtleties, highlight the limitations of ML models in achieving sufficient

precision and recall, ultimately leading to reduced F1-scores. This indicates that while

ML models are useful for straightforward analysis, they lack the depth needed for more

intricate requirements change scenarios.

NLP-Based Solution: The NLP-based solution is highly precise and effective when

applied to datasets with structured and consistent language. By using CoreNLP for

parsing and SpaCy for named entity recognition, this model effectively identifies

patterns within controlled, well-defined requirements data. The radar chart for Dataset-

I demonstrates its high precision, supported by strong recall, resulting in a competitive

F1-score. However, the grouped bar charts for Dataset-W and Dataset-O clearly show a

decline in recall, leading to a drop in F1-scores. This decline is particularly evident in

Dataset-W, where diverse language patterns and syntax challenge the model's

generalization ability. The spider chart emphasizes this limitation, highlighting the NLP

model’s need for adaptability to handle unstructured data and varied syntax to

comprehensively capture all relevant impacts.

BEIR-Based Solution: Combining lexical and dense retrieval techniques, the BEIR-

based solution achieves high recall across different datasets, excelling in comprehensive

impact identification. The grouped bar charts for all datasets reveal that BEIR

consistently outperforms other models in recall, which is a testament to its layered

retrieval framework using BM25 for lexical matches and Bi-Encoders for dense retrieval.

However, as the radar charts illustrate, this high recall often comes at the cost of

precision, resulting in moderate F1-scores. The spider chart for Dataset-O demonstrates

BEIR’s ability to handle complex datasets, with strong Recall@5 and Recall@10 metrics

reflecting its strength in capturing a broad spectrum of impacted requirements. Despite

193

this, the charts also highlight the model's tendency to produce false positives, indicating

the need for further refinement to improve specificity and ranking relevance.

RAG Solution: The RAG model represents an advanced approach by integrating

retrieval with generation, leveraging LanceDB for vector retrieval and a LLM (Phi 3.5) for

contextual and semantic understanding. The radar chart for Dataset-I display its strong

balance between precision and recall, resulting in the highest F1-score among all models

for structured datasets. In Dataset-W, as shown in the radar and spider charts, the RAG

system maintains robust recall but struggles with precision, leading to moderate F1-

scores. Dataset-O, the most complex dataset, highlights the model’s adaptability, as it

achieves competitive Recall@10 and Partial Credit metrics despite the challenging

variability of the dataset. The spider charts emphasize the RAG system’s strong MMR

(Mean Reciprocal Rank) and ability to rank relevant items at the top, making it a valuable

tool for prioritizing impacted requirements in real-world scenarios. However, its reliance

on computational resources and storage makes it best suited for use cases where high

performance outweighs resource constraints.

In summary, each model offers distinct advantages and challenges based on the

context:

ML Models provide efficient initial analysis for structured data, with limited

adaptability in complex or unstructured environments.

NLP Solutions are highly precise in controlled datasets with uniform language but

struggle to generalize to datasets with diverse syntax.

BEIR Models excel in recall and comprehensiveness, making them suitable for

exhaustive searches, though improvements in specificity would enhance their precision.

RAG Systems deliver a balanced, adaptive framework for dynamic requirements

scenarios, excelling in precision and recall but requiring high resources and technical

expertise.

The comparative analysis indicates that while each model has standalone merits, their

effectiveness varies significantly depending on the dataset complexity and

requirements. A hybrid approach that combines the NLP-based model’s precision, BEIR’s

Chapter 7

194

extensive recall, and the RAG model’s adaptability could yield a more robust and

context-aware framework for CIA, addressing the demands of both structured and

unstructured datasets in requirements engineering.

Figure 7.5.Model Comparison on Dataset-W (Linguistically Diverse Dataset)

195

Figure 7.6.Model Comparison on Dataset-I (Structured Dataset)

Figure 7.7.Model Comparison on Dataset-O (Complex and Unstructured Dataset

Chapter 7

196

7.6. Summary

This chapter provided a detailed evaluation of four advanced models—Machine ML

models, NLP-based solutions, BEIR-based methods, and the RAG system—for

automating CIA in software requirements engineering. These models were assessed

using three datasets: Dataset-I, representing structured and consistent requirements;

Dataset-W, characterized by linguistic diversity; and Dataset-O, showcasing complex and

unstructured data.

The evaluation highlighted each model's strengths and limitations. ML models,

particularly Random Forest, demonstrated efficiency and balanced performance in

structured datasets but struggled with precision and recall in more complex scenarios.

The NLP-based solution excelled in precision, effectively handling structured language

but faced challenges with diverse and unstructured datasets, leading to reduced recall.

The BEIR-based solution stood out for its high recall across all datasets, though it often

produced false positives, resulting in moderate F1 scores. The RAG system combined

retrieval and generation capabilities, showing adaptability across datasets with strong

F1 scores in structured contexts and competitive recall in unstructured scenarios.

However, its computational demands and reduced precision in highly variable datasets

were noted as areas for improvement.

The findings were visually represented using radar and spider charts, emphasizing

performance trends across models and datasets. These visualizations provided a

comprehensive understanding of how each model balanced precision, recall, and other

metrics, underscoring the nuanced trade-offs involved.

Overall, the evaluation underscored that while each model has standalone strengths,

a hybrid approach integrating the precision of NLP-based models, the recall efficiency of

BEIR, and the adaptability of the RAG system could address diverse CIA requirements.

This chapter concludes with a strong foundation for discussing future directions and

broader implications in the subsequent chapter.

197

Chapter 8.

Conclusions and Future Works

8.1. Introduction

This chapter consolidates the findings and contributions of this research, presenting a

comprehensive overview of the advancements achieved in automating CIA for software

requirements engineering. Building upon the evaluations and results presented in

Chapter 7, this chapter discusses the key contributions of the study, highlighting how

the objectives outlined at the beginning of this research were addressed.

The chapter also provides a detailed conclusion, synthesizing the insights gained from

the comparative analysis of the proposed models. By reflecting on the strengths and

limitations of each approach, it underscores the implications of the findings for the field

of software requirements engineering. Finally, the chapter outlines avenues for future

research, emphasizing the potential for further refinement and expansion of the

proposed methodologies to enhance their applicability and robustness across diverse

domains. This chapter serves as a culmination of the research, offering a comprehensive

narrative that ties together the theoretical and practical contributions of this study

8.2. Addressing Research Objectives

This research set out to achieve five key objectives aimed at advancing the field of

Change Impact Analysis (CIA) in software requirements engineering. Below is a summary

of how each objective has been addressed in this thesis:

Chapter 8

198

Objective 1: Develop methodologies for comprehensive data preparation and feature

engineering to support the proposed CIA models.

Achieved: This objective focused on detailed data preparation and feature

engineering to support the proposed models for CIA. Techniques such as linguistic

normalization, dependency parsing, and entity extraction were employed to ensure

high-quality datasets. Feature engineering captured both semantic and syntactic

structures, forming a robust foundation for implementing AI and IR techniques. The

impact of these efforts was evident in the enhanced performance of the predictive

models across diverse datasets, as discussed in Chapters 3 and 4.

• Objective 2: Develop a framework for CIA using the capabilities of NLP and ML.

Achieved: A robust framework integrating NLP and Machine Learning ML was

proposed and implemented, as detailed in Chapter 4 and 5. The framework leverages

NLP techniques such as CoreNLP and SpaCy for linguistic feature extraction, combined

with ML models like Random Forest and SVM for predictive analysis. This integration

demonstrated significant improvements in precision and recall in structured datasets,

as discussed in Section 7.5.

• Objective 3: Implement information retrieval techniques to enhance the assessment

of requirement change impacts on software artifacts.

Achieved: Information retrieval techniques were extensively used to retrieve and rank

relevant software artifacts. The BEIR framework employed in this research combined

BM25 for lexical retrieval and Bi-Encoders for dense retrieval, as described in Section

5.6.2. The results showcased the effectiveness of IR techniques in capturing relevant

impacts with high recall, especially in diverse datasets, as highlighted in Section 7.4.3.

• Objective 4: Embed AI and IR techniques to determine the most effective methods

for accurate prediction of requirement change impacts.

Achieved: This objective focused on exploring and embedding AI and IR techniques to

identify the most effective approaches for predicting requirement change impacts. The

research tested various combinations of AI and IR methods, such as combining retrieval

mechanisms with generative models, to enhance precision and recall. The

199

implementation of the RAG system in Chapter 6 demonstrated how AI techniques like

generative modeling and IR methods like dense retrieval could jointly improve

prediction accuracy, particularly for unstructured datasets. This evaluation provided

insights into the comparative effectiveness of different techniques, as discussed in

Chapter 6 and Section 7.4.4.

• Objective 5: Analyse and evaluate the robustness and applicability of these

techniques across different application domains with distinct requirements

specifications.

Achieved: The robustness and applicability of the proposed techniques were analysed

across three datasets representing distinct application domains: Dataset-I (structured

requirements), Dataset-W (semi-structured), and Dataset-O (unstructured). The

evaluation, presented in Section 7.5, demonstrated the adaptability of the proposed

framework, with RAG emerging as the most versatile solution for varying domain

complexities.

• Objective 6: Design and implement an automated framework that integrates AI and

IR techniques to predict the impacts of requirement changes on software artifacts

and other requirements.

Achieved: Building on the findings from Objective 4, this objective focused on the

practical design and implementation of a fully automated framework. The framework

incorporated the most effective AI and IR techniques, as identified in the earlier

objective, to create a scalable, domain-agnostic solution. The RAG system, developed as

part of this objective, exemplified how automation can reduce manual effort, improve

efficiency, and deliver high recall and F1 scores across diverse datasets, as detailed in

Chapter 6 and Section 7.5.

8.3. Conclusions

The comprehensive evaluation of the implemented models—ML models, the NLP-

based solution, the BEIR-based approach, and the RAG system—highlights the unique

Chapter 8

200

strengths and limitations of each approach in automating CIA in software requirements

engineering.

The ML models, particularly Random Forest, demonstrated reliable performance in

handling structured datasets, showing a balanced precision and recall on datasets with

well-defined patterns. However, their performance declines with increased data

complexity, as seen in datasets with varied linguistic structures, limiting their utility in

diverse and unstructured requirements scenarios.

The NLP-based solution, which leverages CoreNLP and SpaCy for linguistic feature

extraction, proved highly precise in datasets with consistent language. This approach is

efficient in structured environments where requirements follow predictable syntactic

patterns. However, its precision-focused nature comes at the expense of recall, resulting

in lower completeness when applied to datasets with variable syntax and diverse

terminologies.

The BEIR-based approach, combining BM25 and Bi-Encoders for dense retrieval, excels

in recall across all datasets. This solution is advantageous for identifying a

comprehensive set of potential impacts, especially in cases where thoroughness is

prioritized over precision. However, the BEIR model’s lower precision suggests a

tendency to yield false positives, making it more suitable for scenarios where high recall

is essential, but specific ranking relevance is less critical.

The RAG system, combining retrieval and generative capabilities, showcased a strong

balance between precision and recall across all datasets. Particularly effective in

handling unstructured and complex requirements, the RAG model leveraged LanceDB

and FAISS for efficient retrieval and the Phi 3.5 language model for contextually rich

generation. The RAG system’s ability to adapt dynamically to different datasets and

context-specific requirements was demonstrated through high F1 scores and MRR,

marking it the most versatile solution among the evaluated models.

In conclusion, each model displayed unique strengths tailored to specific dataset

structures and complexity levels. The ML models are best suited for initial, quick

analyses in structured environments, while the NLP-based solution provides high

201

precision in controlled, consistent datasets. The BEIR-based approach offers extensive

recall, making it ideal for exhaustive searches, though it requires refinement to improve

specificity. With its combined retrieval and generation framework, the RAG system

emerged as the most adaptable solution, capable of handling both structured and

unstructured data, albeit with higher computational demands.

We used validation-driven grid searches to tune each model’s key parameters (see

Section 7.2). This ensured data-driven choices that balance performance gains against

computational costs and generalize across all three datasets.

8.4. Research Limitations

Despite our efforts to use three industrial datasets of varying structure and age, they

do not capture the full spectrum of requirement styles found in today’s heterogeneous

software ecosystems. For instance, we did not include “living” agile backlogs or

embedded-system specifications with domain‐specific notations, which may exhibit

different linguistic patterns. As a result, our findings should be validated further before

generalizing to radically different contexts, such as real-time systems or safety‐critical

regulated domains.

Throughout the project, several methodological challenges arose. Early on, tuning

RAG’s retrieval thresholds led to either overwhelming false positives or brittle recall. We

addressed this with adaptive thresholding based on impact‐set size, a compromise that

could obscure rare but critical dependencies. Similarly, integrating diverse tools (SpaCy,

CoreNLP, FAISS, LanceDB, Phi 3.5) required repeated pipeline rewrites to align

tokenization schemes and embedding formats, underscoring the engineering overhead

of hybrid systems.

For practitioners deciding which model to apply, context is key. In environments with

well‐structured, stable requirements such as enterprise or regulated domains—

traditional ML techniques (like Random Forest or SVM) or our NLP‐based solution offer

fast, precise predictions with minimal computational cost, making them ideal for routine

CIAs. When exhaustive coverage is critical such as in safety analyses or regulatory audits

Chapter 8

202

a BEIR‐based pipeline provides high recall, although at the expense of more manual

filtering to remove false positives. Finally, in highly dynamic or unstructured settings—

such as open‐source projects or rapidly evolving change logs, the RAG approach delivers

the richest semantic insights and balanced performance, provided that teams can

accommodate its greater computing and storage demands.

While RAG unlocks powerful context‐aware reasoning, it comes at a cost. Generative

inference with models like Phi 3.5 can require tens of gigabytes of GPU memory and

incur per‐request latencies on the order of hundreds of milliseconds, making it

unsuitable for sub‐second, on‐device CIAs. We mitigated some of this through 8-bit

quantization and batched processing, but stakeholders must weigh these overheads

against the value of deep contextual analysis. In scenarios demanding near-real‐time

performance, a hybrid strategy using fast ML/NLP filters to triage changes and invoking

RAG only for the highest-risk cases can strike an effective balance between speed, cost,

and analytical depth.

8.5. Future Works

This research provides a robust framework for addressing requirements CIA using

innovative models and methodologies. However, there are several avenues for future

work to refine and extend the outcomes of this thesis.

One potential direction is the enhanced integration of models with domain-specific

knowledge bases and advanced retrieval methods, such as hybrid vector and symbolic

reasoning systems, to improve applicability and precision. Exploring the fusion of the

RAG framework with specialized ontologies or domain-adapted pre-trained models

could further enhance its capabilities. Additionally, scalability and performance

optimization remain key challenges, particularly due to the computational demands of

the RAG model. Future work could focus on lightweight architecture or model distillation

techniques to maintain performance while reducing resource requirements, ensuring

scalability for larger datasets and real-time applications.

203

Another important avenue is the exploration of federated learning (FL) to improve the

framework’s adaptability across different software domains while preserving data

privacy. FL enables collaborative training across decentralized and confidential

datasets—such as those in healthcare, finance, and defense, without the need to

transfer sensitive data to a central server. This approach would allow the framework to

benefit from a wider range of domain-specific data, enhancing generalizability and

robustness while addressing privacy concerns. Integrating FL with retrieval and

generation components in the RAG pipeline, or with the embedding models used for

similarity computation, could enable continuous learning from distributed

environments without compromising confidentiality.

Further, tailoring the methodology to accommodate domain-specific terminologies

and data structures could significantly broaden its impact. While BLEU and ROUGE

metrics provided valuable insights into linguistic alignment, incorporating additional

evaluation metrics like METEOR or BERTScore could enable a more comprehensive

understanding of semantic nuances and model effectiveness in complex, unstructured

datasets.

Developing interactive and explainable models is another promising direction. Such

models could enhance user trust and utility by providing clear justifications for predicted

impacts, thereby facilitating informed decision-making processes. Similarly, exploring

hybrid approaches that combine the strengths of traditional ML models, NLP

techniques, and advanced generative AI frameworks could result in a more dynamic

solution capable of adapting to varying dataset complexities and requirements

structures.

Longitudinal studies to evaluate the robustness of the proposed models over time and

in evolving datasets would also provide valuable insights into their real-world

applicability and reliability. Finally, advanced preprocessing techniques, such as dynamic

clustering or linguistic segmentation, could be explored to improve model performance

on datasets with high variability.

By addressing these areas, including federated learning for domain scalability and

privacy-preserving collaboration, future work can build on the foundation laid by this

Chapter 8

204

thesis to create more effective, scalable, and adaptable solutions for requirements CIA,

advancing the state of the art in software engineering and related fields.

205

References
Abad, Z.S.H., Karras, O., Ghazi, P., Glinz, M., Ruhe, G. & Schneider, K. 2017a, ‘What Works

Better? A Study of Classifying Requirements’, IEEE 25th International Requirements

Engineering Conference, The Institute of Electrical and Electronics Engineers, Inc. (IEEE),

Piscataway, pp. 496–501.

Abad, Z.S.H., Karras, O., Ghazi, P., Glinz, M., Ruhe, G. & Schneider, K. 2017b, ‘What Works

Better? A Study of Classifying Requirements’, IEEE 25th International Requirements

Engineering Conference, The Institute of Electrical and Electronics Engineers, Inc. (IEEE),

Piscataway, pp. 496–501.

Abdin, M., Aneja, J., Awadalla, H., Awadallah, A., Awan, A.A., Bach, N., Bahree, A., Bakhtiari,

A., Bao, J., Behl, H., Benhaim, A., Bilenko, M., Bjorck, J., Bubeck, S., Cai, M., Cai, Q.,

Chaudhary, V., Chen, Dong, Chen, Dongdong, Chen, W., Chen, Y.-C., Chen, Y.-L., Cheng,

H., Chopra, P., Dai, X., Dixon, M., Eldan, R., Fragoso, V., Gao, J., Gao, Mei, Gao, Min, Garg,

A., Del Giorno, A., Goswami, A., Gunasekar, S., Haider, E., Hao, J., Hewett, R.J., Hu, W.,

Huynh, J., Iter, D., Jacobs, S.A., Javaheripi, M., Jin, X., Karampatziakis, N., Kauffmann, P.,

Khademi, M., Kim, D., Kim, Y.J., Kurilenko, L., Lee, J.R., Lee, Y.T., Li, Yuanzhi, Li, Yunsheng,

Liang, C., Liden, L., Lin, X., Lin, Z., Liu, C., Liu, L., Liu, M., Liu, W., Liu, X., Luo, C., Madan,

P., Mahmoudzadeh, A., Majercak, D., Mazzola, M., Mendes, C.C.T., Mitra, A., Modi, H.,

Nguyen, A., Norick, B., Patra, B., Perez-Becker, D., Portet, T., Pryzant, R., Qin, H.,

Radmilac, M., Ren, L., de Rosa, G., Rosset, C., Roy, S., Ruwase, O., Saarikivi, O., Saied, A.,

Salim, A., Santacroce, M., Shah, S., Shang, N., Sharma, H., Shen, Y., Shukla, S., Song, X.,

Tanaka, M., Tupini, A., Vaddamanu, P., Wang, C., Wang, G., Wang, L., Wang, S., Wang,

X., Wang, Y., Ward, R., Wen, W., Witte, P., Wu, H., Wu, X., Wyatt, M., Xiao, B., Xu, C., Xu,

J., Xu, W., Xue, J., Yadav, S., Yang, F., Yang, J., Yang, Y., Yang, Z., Yu, D., Yuan, L., Zhang,

Chenruidong, Zhang, Cyril, Zhang, J., Zhang, L.L., Zhang, Yi, Zhang, Yue, Zhang, Yunan &

Zhou, X. 2024, ‘Phi-3 Technical Report: A Highly Capable Language Model Locally on Your

Phone’, arXiv, vol. 2, no. arxiv.org/abs/2404.14219, viewed 30 August 2024,

<http://arxiv.org/abs/2404.14219>.

Abualhaija, S., Arora, C., Sabetzadeh, M., Briand, L.C. & Vaz, E. 2019, ‘A Machine Learning-

Based Approach for Demarcating Requirements in Textual Specifications’, IEEE

206

Conference Proceedings, The Institute of Electrical and Electronics Engineers, Inc. (IEEE),

University of Luxembourg ; University of Luxembourg; University of Ottawa ; QRA Corp.,

pp. 51–62.

Adnan, K. & Akbar, R. 2019, ‘Limitations of information extraction methods and

techniques for heterogeneous unstructured big data’, International Journal of

Engineering Business Management, SAGE Publications Inc.

del Águila, I.M. & del Sagrado, J. 2016a, ‘Bayesian networks for enhancement of

requirements engineering: a literature review’, Requirements Engineering, vol. 21,

no. 4, pp. 461–80.

del Águila, I.M. & del Sagrado, J. 2016b, ‘Bayesian networks for enhancement of

requirements engineering: a literature review’, Requirements Engineering, vol. 21, no.

4, pp. 461–80.

Akbar, M.A., Mahmood, S., Alsanad, A., Shafiq, M., Gumaei, A. & Alsanad, A.A.A. 2020,

‘Organization Type and Size Based Identification of Requirements Change Management

Challenges in Global Software Development’, IEEE Access, vol. 8, pp. 94089–111.

Ali, S., Briand, L.C., Hemmati, H. & Panesar-Walawege, R.K. 2010, ‘A systematic review of the

application and empirical investigation of search-based test case generation’, IEEE

Transactions on Software Engineering, vol. 36, no. 6, pp. 742–62.

Alkaf, H., Hassine, J., Binalialhag, T. & Amyot, D. 2019, ‘An automated change impact

analysis approach for User Requirements Notation models’, Journal of Systems and

Software, vol. 157.

Alsalemi, A.M. & Yeoh, E. 2017, ‘A Systematic Literature Review of Requirements Volatility

Prediction’, 2017 International Conference on Current Trends in Computer, Electrical,

Electronics and Communication (CTCEEC), pp. 55–64.

Alsanoosy, T., Spichkova, M. & Harland, J. 2019, ‘Cultural influence on requirements

engineering activities: a systematic literature review and analysis’, Requirements

Engineering, no. 0123456789.

207

Anjali, C., Dhas, J.P.M. & Singh, J.A.P. 2022, ‘A study of Change Impact Analysis

Techniques based on Requirement Defects during the Software Development

Process’, SPICES 2022 - IEEE International Conference on Signal Processing,

Informatics, Communication and Energy Systems, pp. 174–9.

Antoniol, G., Rollo, V.F. & Venturi, G. 2005, ‘Detecting groups of co-changing files in CVS

repositories’, International Workshop on Principles of Software Evolution (IWPSE), vol.

2005, pp. 23–32.

Anwer, S., Wen, L., Zhang, S., Wang, Z. & Sun, Y. 2024, ‘BECIA: a behaviour engineering-

based approach for change impact analysis’, International Journal of Information

Technology (Singapore), vol. 16, no. 1, pp. 159–68.

Arif, M., Mohammad, C.W. & Sadiq, M. 2023, ‘UML and NFR-framework based method for

the analysis of the requirements of an information system’, International Journal of

Information Technology (Singapore), vol. 15, no. 1, pp. 411–22.

Arnold, R. 1996, Software Change Impact Analysis.

Arnold, R.S. & Bohner, S.A. 1993, ‘Impact Analysis - Towards A Framework for

Comparison’, Conference on Software Maintenance, Montreal, Quebec, Canada,

pp. 292–301.

Arora, C., Sabetzadeh, M., Goknil, A., Briand, L.C. & Zimmer, F. 2015a, ‘Change impact analysis

for Natural Language requirements: An NLP approach’, IEEE 23rd International

Requirements Engineering Conference, RE 2015, pp. 6–15.

Arora, C., Sabetzadeh, M., Goknil, A., Briand, L.C. & Zimmer, F. 2015b, ‘NARCIA: An

automated tool for change impact analysis in natural language requirements’, 2015

10th Joint Meeting of the European Software Engineering Conference and the ACM

SIGSOFT Symposium on the Foundations of Software Engineering, ESEC/FSE 2015 -

Proceedings, pp. 962–5.

Arora, C., Sabetzadeh, M., Nejati, S. & Briand, L. 2019, ‘An active learning approach for

improving the accuracy of automated domain model extraction’, ACM Transactions on

Software Engineering and Methodology, vol. 28, no. 1, pp. 1–34.

208

Aryani, A., Peake, I.D., Hamilton, M., Schmidt, H. & Winikoff, M. 2009, ‘Change propagation

analysis using domain information’, Proceedings of the Australian Software Engineering

Conference, ASWEC, pp. 34–43.

Avesani, P., Perini, A., Siena, A. & Susi, A. 2015, ‘Goals at risk? Machine learning at support of

early assessment’, 2015 IEEE 23rd International Requirements Engineering Conference,

RE 2015 - Proceedings, pp. 252–5.

Baker, C., Deng, L., Chakraborty, S. & Dehlinger, J. 2019, ‘Automatic multi-class non-

functional software requirements classification using neural networks’,

Proceedings - International Computer Software and Applications Conference, vol. 2,

pp. 610–5.

Bal, P.R. & Kumar, S. 2020, ‘WR-ELM: Weighted Regularization Extreme Learning Machine for

Imbalance Learning in Software Fault Prediction’, IEEE Transactions on Reliability, vol.

69, no. 4, pp. 1355–75.

Bano, M., Imtiaz, S., Ikram, N., Niazi, M. & Usman, M. 2012, ‘Causes of requirement

change - A systematic literature review’, IET Seminar Digest, vol. 2012, pp. 22–31.

Barua, S., Islam, M.M., Yao, X. & Murase, K. 2014, ‘MWMOTE - Majority weighted minority

oversampling technique for imbalanced data set learning’, IEEE Transactions on

Knowledge and Data Engineering, vol. 26, no. 2, pp. 405–25.

Basri, S., Kama, N., Sarkan, H.M., Adli, S. & Haneem, F. 2016, ‘An Algorithmic-Based

Change Effort Estimation Model for Software Development’, Proceedings - Asia-

Pacific Software Engineering Conference, APSEC, vol. 0, pp. 177–84.

Baumer, E.P.S., White, J.P. & Tomlinson, B. 2010, ‘Comparing Semantic Role Labeling with

Typed Dependency Parsing in Computational Metaphor Identification’, Second

Workshop on Computational Approaches to Linguistic Creativity - North American

Chapter of the Association of Computational Linguistics, no. June, pp. 14–22.

Beecham, S., Hall, T. & Rainer, A. 2005, ‘Defining a Requirements Process Improvement

Model’, Software Quality Journal, vol. 13, no. 3, pp. 247–79.

209

Belsis, P., Koutoumanos, A. & Sgouropoulou, C. 2014, ‘PBURC: A patterns-based,

unsupervised requirements clustering framework for distributed agile software

development’, Requirements Engineering, vol. 19, no. 2, pp. 213–25.

Bennin, K.E., Keung, J., Phannachitta, P., Monden, A. & Mensah, S. 2018, ‘MAHAKIL:

Diversity based oversampling approach to alleviate the class imbalance issue in

software defect prediction’, Proceedings - International Conference on Software

Engineering, vol. 44, no. 6, p. 699.

Berry, D.M., Cleland-huang, J., Mylopoulos, J., Ferrari, A., Maalej, W. & Zowghi, D. 2017,

Panel : Context-Dependent Evaluation of Tools for NL RE Tasks : Recall vs . Precision , and

Beyond, pp. 14–7.

B.Hossin, M. & Sulaiman, M.N. 2015, ‘A review on evalution metrics for data clasiification

evaluations’, International Journal of Data Mining & Knowledge Management Process

(IJDKP), vol. 5, no. 2, pp. 1–11.

A review of machine learning algorithms for identification and classification of non-

functional requirements 2019 (Expert Systems with Applications: X).

Bjarnason, E., Runeson, P., Borg, M., Unterkalmsteiner, M., Engström, E., Regnell, B.,

Sabaliauskaite, G., Loconsole, A., Gorschek, T. & Feldt, R. 2014, ‘Challenges and

practices in aligning requirements with verification and validation: a case study of

six companies’, Empirical Software Engineering, vol. 19, no. 6, pp. 1809–55.

De Bortoli Fávero, E.M., Casanova, D. & Pimentel, A.R. 2019, ‘EmbSE: A Word Embeddings

Model Oriented Towards Software Engineering Domain’, Proceedings of the XXXIII

Brazilian Symposium on Software EngineeringSBES 2019, Association for Computing

Machinery, New York, NY, USA, pp. 172–180.

Boutaba, R., Salahuddin, M.A., Limam, N., Ayoubi, S., Shahriar, N., Estrada-Solano, F. &

Caicedo, O.M. 2018, ‘A comprehensive survey on machine learning for networking:

evolution, applications and research opportunities’, Journal of Internet Services and

Applications, vol. 9, no. 1.

Boyd, S., Farroukh, A. & Didar Zowghi 2005, Measuring the Expressiveness of a

Constrained Natural Language : An Empirical Study.

210

Breiman, L. 2001, ‘Random Forests’, Machine Learning, vol. 45, no. 1, pp. 5–32.

Brooks, F. 1987, ‘No Silver Bullet: Essence and Accidents of Software Engineering’, Computer,

vol. 20, no. 4, pp. 10–9.

Brucker, A.D. & Julliand, J. 2014, ‘A survey of code-based change impact analysis techniques’,

Software Testing Verification and Reliability, vol. 24, no. 8, pp. 591–2.

Catolino, G., Palomba, F., De Lucia, A., Ferrucci, F. & Zaidman, A. 2018, ‘Enhancing change

prediction models using developer-related factors’, Journal of Systems and Software,

vol. 143, pp. 14–28.

Chawla, N. V., Bowyer, K.W., Hall, L.O. & Kegelmeyer, W.P. 2002, ‘snopes.com: Two-Striped

Telamonia Spider’, Journal of Artificial Intelligence Research, vol. 16, no. Sept. 28, pp.

321–57.

Chen, H., He, K., Liang, P. & Li, R. 2010, ‘Text-based requirements preprocessing using

nature language processing techniques’, 2010 International Conference on

Computer Design and Applications, ICCDA 2010, vol. 1, no. Iccda, pp. V1-14-V1-18.

Chioaşcǎ, E.V. 2012, ‘Using machine learning to enhance automated requirements

model transformation’, Proceedings - International Conference on Software

Engineering, pp. 1487–90.

Christopher J.C. Burges 1998, ‘A Tutorial on Support Vector Machines for Pattern

Recognition’, Data Mining and Knowledge Discovery, vol. 2, pp. 121–67.

Cortes, C., Haffner, P. & Mohri, M. 2004, ‘Rational Kernels: Theory and Algorithms’, Journal

of Machine Learning Research, vol. 5, pp. 1035–62.

Cruzes, D.S. & Dyb, T. 2011, ‘Research synthesis in software engineering: A tertiary study’,

Information and Software Technology, vol. 53, no. 5, pp. 440–55.

Dablain, D., Krawczyk, B. & Chawla, N. V. 2022, ‘DeepSMOTE: Fusing Deep Learning and

SMOTE for Imbalanced Data’, IEEE Transactions on Neural Networks and Learning

Systems, vol. PP, pp. 1–15.

Dalpiaz, F., Dell’Anna, D., Aydemir, F.B. & Çevikol, S. 2019, ‘Requirements classification

with interpretable machine learning and dependency parsing’, Proceedings of the

211

IEEE International Conference on Requirements Engineering, vol. 2019- Septe, pp.

142–52.

Dalpiaz, F., van der Schalk, I., Brinkkemper, S., Aydemir, F.B. & Lucassen, G. 2019, ‘Detecting

terminological ambiguity in user stories: Tool and experimentation’, Information and

Software Technology, vol. 110, no. December 2018, pp. 3–16.

Danjuma, K.J. 2015, ‘Performance Evaluation of Machine Learning Algorithms in Post-

operative Life Expectancy in the Lung Cancer Patients’, International Journal of

Computer Science Issues (IJCSI), vol. 12, no. 2, pp. 189-199.

Dargan, J.L., Wasek, J.S. & Campos-Nanez, E. 2016, ‘Systems performance prediction using

requirements quality attributes classification’, Requirements Engineering, vol. 21, no. 4,

pp. 553–72.

Deocadez, R., Harrison, R. & Rodriguez, D. 2017, ‘Automatically classifying requirements from

app stores: A preliminary study’, Proceedings - 2017 IEEE 25th International

Requirements Engineering Conference Workshops, REW 2017, pp. 367–71.

Dermeval, D., Vilela, J., Bittencourt, I.I., Castro, J., Isotani, S., Brito, P. & Silva, A. 2016,

‘Applications of ontologies in requirements engineering: a systematic review of the

literature’, Requirements Engineering, vol. 21, no. 4, pp. 405–37.

Deshpande, G., Arora, C. & Ruhe, G. 2019, ‘Data-driven Elicitation and Optimization of

Dependencies between Requirements’, 2019 IEEE 27th International Requirements

Engineering Conference (RE), pp. 416–21.

Dhamija, A. & Sikka, S. 2019, ‘A Systematic Study of Advancements in Change Impact Analysis

Techniques’, International Journal of Innovative Technology and Exploring Engineering

(IJITEE), vol. 8, no. 8, pp. 435–43.

Dhingra, S., Savithri, G., Madan, M. & Manjula, R. 2017, ‘Selection of prioritization

technique for software requirement using Fuzzy Logic and Decision Tree’,

Proceedings of 2016 Online International Conference on Green Engineering and

Technologies, IC-GET 2016, pp. 1–11.

212

Durelli, V.H.S., Durelli, R.S., Borges, S.S., Endo, A.T., Eler, M.M., Dias, D.R.C. & Guimarães, M.P.

2019, ‘Machine learning applied to software testing: A systematic mapping study’, IEEE

Transactions on Reliability, vol. 68, no. 3, pp. 1189–212.

Elapolu, M.S.R., Rai, R., Gorsich, D.J., Rizzo, D., Rapp, S. & Castanier, M.P. 2024, ‘Blockchain

technology for requirement traceability in systems engineering’, Information Systems,

vol. 123, no. March, p. 102384.

Erdoğan, Z. & Namlı, E. 2019, ‘A living environment prediction model using ensemble machine

learning techniques based on quality of life index’, Journal of Ambient Intelligence and

Humanized Computing, no. Michalos 2014.

Ernst, N.A. & Mylopoulos, J. 2010, ‘On the perception of software quality requirements

during the project lifecycle’, Lecture Notes in Computer Science, vol. 6182 LNCS, pp.

143–57.

Ferrari, A. & Esuli, A. 2019, ‘An NLP approach for cross-domain ambiguity detection in

requirements engineering’, Automated Software Engineering, vol. 26, no. 3, pp. 559–98.

Ferrari, A., Gnesi, S. & Tolomei, G. 2013, ‘Using clustering to improve the structure of natural

language requirements documents’, Lecture Notes in Computer Science (including

subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol.

7830 LNCS, pp. 34–49.

Ferrari, A., Spagnolo, G.O. & Gnesi, S. 2017, ‘Towards a dataset for natural language

requirements processing’, CEUR Workshop Proceedings, vol. 1796.

Galar, M., Fern, A., Barrenechea, E. & Bustince, H. 2012, A Review on Ensembles for the Class

Imbalance Problem: Bagging-, Boosting-, and Hybrid-Based Approaches, vol. 42, no. 4,

pp. 463–84.

Ganesan, K. 2018, ROUGE 2.0: Updated and Improved Measures for Evaluation of

Summarization Tasks, pp. 1–8.

Gao, Y., Xiong, Y., Gao, X., Jia, K., Pan, J., Bi, Y., Dai, Y., Sun, J., Wang, M. & Wang, H. 2023,

Retrieval-Augmented Generation for Large Language Models: A Survey, pp. 1–21.

213

Ghozali, R.P., Saputra, H., Apriadin Nuriawan, M., Suharjito, Utama, D.N. & Nugroho, A. 2019,

‘Systematic literature review on decision-making of requirement engineering from agile

software development’, Procedia Computer Science, vol. 157, pp. 274–81.

Giger, E., Pinzger, M. & Gall, H.C. 2012, ‘Can we predict types of code changes? An empirical

analysis’, IEEE International Working Conference on Mining Software Repositories, no.

May, pp. 217–26.

Goknil, A., Kurtev, I. & Berg, K. van den 2016, A Rule-Based Change Impact Analysis Approach

in Software Architecture for Requirements Changes.

Gou, Q., Xia, Z., Yu, B., Yu, H., Huang, F., Li, Y. & Nguyen, C.T. 2023, ‘Diversify Question

Generation with Retrieval-Augmented Style Transfer’, EMNLP 2023 - 2023 Conference

on Empirical Methods in Natural Language Processing, Proceedings, no. Figure 1, pp.

1677–90.

Gunawardana, A. 2009, ‘A Survey of Accuracy Evaluation Metrics of Recommendation Tasks’,

Journal ofMachine Learning Research, vol. 10, pp. 2935–62.

Haq, B., Nadeem, M., Ali, I., Ali, K., Raza, M. & Rehmanr, M.U. 2019, ‘Use of Expert System in

Requirements Engineering Process A Systematic Literature Review’, 2019 UK/China

Emerging Technologies, UCET 2019, Glasgow, United Kingdom, pp. 1–5.

Haque, A., Rahman, A. & Siddik, S. 2019, ‘Non-Functional Requirements Classification with

Feature Extraction and Machine Learning : An Empirical Study’, 1st International

Conference on Advances in Science, Engineering and Robotics Technology 2019 (ICASERT

2019), vol. 2019, no. Icasert.

Hassine, J., Rilling, J. & Hewitt, J. 2005, ‘Change Impact Analysis for Requirement Evolution

using Use Case Maps’, Eighth International Workshop on Principles of Software Evolution

(IWPSE’05).

Hayes, J.H., Dekhtyar, A. & Sundaram, S.K. 2006, ‘Advancing candidate link generation for

requirements tracing: The study of methods’, IEEE Transactions on Software

Engineering, vol. 32, no. 1, pp. 4–19.

214

Hayes, J.H., Li, W. & Rahimi, M. 2014, ‘Weka meets TraceLab: Toward convenient

classification: Machine learning for requirements engineering problems: A position

paper’, 2014 IEEE 1st International Workshop on Artificial Intelligence for

Requirements Engineering, AIRE 2014 - Proceedings, pp. 9–12.

Hayes, J.H., Li, W., Yu, T., Han, X., Hays, M. & Woodson, C. 2015, ‘Measuring

Requirement Quality to Predict Testability’, The Institute of Electrical and

Electronics Engineers, Inc. (IEEE) Conference Proceedings, The Institute of Electrical

and Electronics Engineers, Inc. (IEEE), Piscataway, pp. 1–8.

Hayes, J.H., Payne, J. & Leppelmeier, M. 2019, ‘Toward Improved Artificial Intelligence in

Requirements Engineering: Metadata for Tracing Datasets’, The Institute of Electrical

and Electronics Engineers, Inc. (IEEE) Conference Proceedings, The Institute of Electrical

and Electronics Engineers, Inc. (IEEE), University of Kentucky, pp. 256–62.

Hein, P.H., Voris, N. & Morkos, B. 2018, ‘Predicting requirement change propagation through

investigation of physical and functional domains’, Research in Engineering Design, vol.

29, no. 2, pp. 309–28.

Henderson, P. & Ferrari, V. 2017, ‘End-to-end training of object class detectors for mean

average precision’, Lecture Notes in Computer Science (including subseries Lecture Notes

in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 10115 LNCS, pp. 198–

213.

Herm, L.V., Heinrich, K., Wanner, J. & Janiesch, C. 2023, ‘Stop ordering machine learning

algorithms by their explainability! A user-centered investigation of performance

and explainability’, International Journal of Information Management, vol. 69.

Hevner, A.R., March, S.T., Park, J. & Ram, S. 2004, ‘Design Sceince in Information Systems’,

MIS Quarterly, vol. 28, no. 1, pp. 75–105.

Horkoff, J., Aydemir, F.B., Cardoso, E., Li, T., Maté, A., Paja, E., Salnitri, M., Piras, L.,

Mylopoulos, J. & Giorgini, P. 2019, ‘Goal-oriented requirements engineering: an

extended systematic mapping study’, Requirements Engineering, vol. 24, no. 2, pp. 133–

60.

215

Hsu, C.-W., Chang, C.-C. & Lin, C.-J. 2003, ‘A Practical Guide to Support Vector Classification’,

Technical Report, Department of Computer Science and Information Engineering,

University of National Taiwan, Taipei, vol. 1, no. 1, pp. 1–12.

Idrissi Khaldi, M., Erraissi, A., Hain, M. & Banane, M. 2025, Comparative Analysis of

Supervised Machine Learning Classification Models, Lecture Notes in Networks and

Systems, vol. 1353 LNNS, Springer Nature Switzerland.

Imtiaz, S.M.S.M. & Bhowmik, T. 2018, ‘Towards Data-Driven Vulnerability Prediction for

Requirements’, Proceedings of the 2018 26th ACM Joint Meeting on European

Software Engineering Conference and Symposium on the Foundations of Software

EngineeringESEC/FSE 2018, Association for Computing Machinery, New York, NY,

USA, pp. 744–748.

Jayatilleke, S. & Lai, R. 2013, ‘A Method of Specifying and Classifying Requirements Change’,

22nd Australian Conference on Software Engineering(ASWEC), Melbourne, VIC, pp. 175–

80.

Jayatilleke, S. & Lai, R. 2018, ‘A systematic review of requirements change management’,

Information and Software Technology, vol. 93, pp. 163–85.

Jayatilleke, S., Lai, R. & Reed, K. 2018, ‘A method of requirements change analysis’,

Requirements Engineering, vol. 23, no. 4, pp. 493–508.

Jiang, W., Subramanian, S., Graves, C., Alonso, G., Yazdanbakhsh, A. & Dadu, V. 2025,

RAGO: Systematic Performance Optimization for Retrieval-Augmented Generation

Serving, Proceedings of Preprint, vol. 1, Association for Computing Machinery.

Johnson, J., Douze, M. & Jegou, H. 2021, ‘Billion-Scale Similarity Search with GPUs’, IEEE

Transactions on Big Data, vol. 7, no. 3, pp. 535–47.

Karpukhin, V., Oğuz, B., Min, S., Lewis, P., Wu, L., Edunov, S., Chen, D. & Yih, W.T. 2020, ‘Dense

passage retrieval for open-domain question answering’, EMNLP 2020 - 2020 Conference

on Empirical Methods in Natural Language Processing, Proceedings of the Conference,

pp. 6769–81.

216

Khelifa, A., Haoues, M. & Sellami, A. 2018, ‘Towards a software requirements change

classification using support vector machine’, CEUR Workshop Proceedings, vol. 2279.

Kitchenham, B., Budgen, D., & Brereton, P. 2016, Evidence-Based Software Engineering

and Systematic Reviews, Chapman and Hall/CRC (ed.), 1st editio.

Kitchenham, B.A. & Charters, S. 2007, ‘Guidelines for performing systematic literature

reviews in software engineering’, Keele University and University of Durham Joint

Technical Report, 2007.

Klaus Krippendorff 2018, ‘Content Analysis: An Introduction to Its Methodology, 4th’,

Beaverton: Ringgold Inc., Ringgold Inc, Beaverton.

Knauss, E., Damian, D., Cleland-Huang, J. & Helms, R. 2015, ‘Patterns of continuous

requirements clarification’, Requirements Engineering, vol. 20, no. 4, pp. 383–403.

Von Knethen, A. 2002, ‘Change-oriented requirements traceability. Support for evolution of

embedded systems’, Conference on Software Maintenance, pp. 482–5.

Kurtanovic, Z. & Maalej, W. 2017, ‘Automatically Classifying Functional and Non-

functional Requirements Using Supervised Machine Learning’, Proceedings - 2017

IEEE 25th International Requirements Engineering Conference, RE 2017, pp. 490–5.

Lee, H., Chang, A., Peirsman, Y., Chambers, N., Surdeanu, M. & Jurafsky, D. 2013,

‘Deterministic Coreference Resolution Based on Entity-Centric, Precision-Ranked Rules’,

Computational Linguistics, vol. 39, no. 4, pp. 885–916.

Lehnert, S. 2011a, ‘A Review of Software Change Impact Analysis’, Technology, p. 39.

Lehnert, S. 2011b, ‘A taxonomy for software change impact analysis’, IWPSE-EVOL’11 -

Proceedings of the 12th International Workshop on Principles on Software

Evolution, no. 1, pp. 41–50.

Lewis, P., Perez, E., Piktus, A., Petroni, F., Karpukhin, V., Goyal, N., Küttler, H., Lewis, M., Yih,

W.T., Rocktäschel, T., Riedel, S. & Kiela, D. 2020, ‘Retrieval-augmented generation for

knowledge-intensive NLP tasks’, Advances in Neural Information Processing Systems,

vol. 2020- Decem.

217

Li, C., Huang, L., Ge, J., Luo, B. & Ng, V. 2018, ‘Automatically classifying user requests in

crowdsourcing requirements engineering’, Journal of Systems and Software, vol.

138, pp. 108–23.

Li, Y., Li, J., Yang, Y. & Li, M. 2008, ‘Requirement-centric traceability for change impact

analysis: A case study’, Lecture Notes in Computer Science (including subseries Lecture

Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 5007 LNCS, pp.

100–11.

Li, Z., Chen, M., Huang, L., Ng, V. & Geng, R. 2017, ‘Tracing requirements in software design’,

Proceedings of the 2017 International Conference on Software and System Process -

ICSSP 2017, vol. Part F1287, ACM Press, New York, New York, USA, pp. 25–9.

Li, Z. & Huang, L. 2018, ‘Tracing Requirements as a Problem of Machine Learning’,

International Journal of Software Engineering & Applications, vol. 9, no. 4, pp. 21–36.

Lin, C.-Y. 2004, ‘Looking for a Few Good Metrics: ROUGE and its Evaluation’, NTCIR Workshop,

no. June, pp. 1–8.

Lin, Z. 2020, ‘A Methodological Review of Machine Learning in Applied Linguistics’, English

Language Teaching, vol. 14, no. 1, p. 74.

Liu, L.P., Dietterich, T.G., Li, N. & Zhou, Z.H. 2016, ‘Transductive optimization of top k

precision’, IJCAI International Joint Conference on Artificial Intelligence, vol. 2016- Janua,

pp. 1781–7.

Maalem, S. & Zarour, N. 2016, ‘Challenge of validation in requirements engineering’, Journal

of Innovation in Digital Ecosystems, vol. 3, no. 1, pp. 15–21.

Malhotra, R., Chug, A., Hayrapetian, A. & Raje, R. 2016, ‘Analyzing and evaluating security

features in software requirements’, The Institute of Electrical and Electronics Engineers,

Inc. (IEEE) Conference Proceedings., pp. 26–30.

Manning, C.D., Surdeanu, M., Bauer, J., Finkel, J., Bethard, S.J. & McClosky, D. 2014, ‘The

stanford CoreNLP natural language processing toolkit’, Proceedings of the Annual

Meeting of the Association for Computational Linguistics, vol. 2014- June, pp. 55–60.

218

de Marneffe, M.-C. & Manning, C.D. 2008, The Stanford typed dependencies representation,

no. June, pp. 1–8.

McGee, S. & Greer, D. 2011, ‘Software requirements change taxonomy: Evaluation by

case study’, Proceedings of the 2011 IEEE 19th International Requirements

Engineering Conference, RE 2011, pp. 25–34.

McZara, J., Sarkani, S., Holzer, T. & Eveleigh, T. 2015, ‘Software requirements prioritization

and selection using linguistic tools and constraint solvers—a controlled experiment’,

Empirical Software Engineering, vol. 20, no. 6, pp. 1721–61.

Memon, K.A. & Xiaoling, X. 2019, ‘Deciphering and Analyzing Software Requirements

Employing the Techniques of Natural Language Processing’, Proceedings of the 2019 4th

International Conference on Mathematics and Artificial IntelligenceICMAI 2019,

Association for Computing Machinery, New York, NY, USA, pp. 153–156.

Menzies, T., Turhan, B., Bener, A., Gay, G., Cukic, B. & Jiang, Y. 2008, ‘Implications of ceiling

effects in defect predictors’, Proceedings - International Conference on Software

Engineering, no. i, pp. 47–54.

Mezghani, M. & Florence, S. 2019, ‘Clustering for traceability managing in system

specifications’, 2019 IEEE 27th International Requirements Engineering Conference

(RE), pp. 257–64.

Misra, J., Sengupta, S. & Podder, S. 2016, ‘Topic Cohesion Preserving Requirements

Clustering’, Proceedings of the 5th International Workshop on Realizing Artificial

Intelligence Synergies in Software EngineeringRAISE ’16, Association for Computing

Machinery, New York, NY, USA, pp. 22–28.

Morkos, B., Shankar, P. & Summers, J.D. 2012, ‘Predicting requirement change propagation,

using higher order design structure matrices: an industry case study’, Journal of

Engineering Design, vol. 23, no. 12, pp. 905–26.

Morkos, B. & Summers, J.D. 2010, ‘Requirement change propagation prediction

approach: Results from an industry case study’, Proceedings of the ASME Design

Engineering Technical Conference, vol. 1, no. PARTS A AND B, pp. 111–21.

219

Nardini, M., Ciambra, F., Garzoli, F., Croce, D., De Cao, D. & Basili, R. 2012, ‘Machine learning

technologies for the requirements analysis in complex systems’, 22nd Annual

International Symposium of the International Council on Systems Engineering, INCOSE

2012 and the 8th Biennial European Systems Engineering Conference 2012, EuSEC 2012,

vol. 1, pp. 372–86.

Nejati, S., Sabetzadeh, M., Arora, C., Briand, L.C. & Mandoux, F. 2016, ‘Automated Change

Impact Analysis between SysML Models of Requirements and Design’, Proceedings of

the 2016 24th ACM SIGSOFT International Symposium on Foundations of Software

EngineeringFSE 2016, Association for Computing Machinery, New York, NY, USA, pp.

242–253.

Nogueira, R. & Cho, K. 2019, Passage Re-ranking with BERT, pp. 1–5.

Osman, M.H. & Zaharin, M.F. 2018, ‘Ambiguous Software Requirement Specification

Detection: An Automated Approach’, Proceedings of the 5th International

Workshop on Requirements Engineering and TestingRET ’18, Association for

Computing Machinery, New York, NY, USA, pp. 33–40.

Osman, M.S., Alabwaini, N.Z., Jaber, T.B. & Alrawashdeh, T. 2019, ‘Generate use case from

the requirements written in a natural language using machine learning’, 2019 IEEE

Jordan International Joint Conference on Electrical Engineering and Information

Technology, JEEIT 2019 - Proceedings, pp. 748–51.

Pal, P., Sandhu, G. & Pal, S. 2015, ‘Applying Machine Learning to Conflict Management

in Software Requirement’, International Journal of Computer Applications, no.

Cognition, pp. 14–6.

Paleyes, A., Urma, R.G. & Lawrence, N.D. 2022, ‘Challenges in Deploying Machine Learning:

A Survey of Case Studies’, ACM Computing Surveys, vol. 55, no. 6.

Parra, E., Dimou, C., Llorens, J., Moreno, V. & Fraga, A. 2015, ‘A methodology for the

classification of quality of requirements using machine learning techniques’,

Information and Software Technology, vol. 67, pp. 180–95.

220

Patel, Y., Tolias, G. & Matas, J. 2022, ‘Recall@k Surrogate Loss with Large Batches and

Similarity Mixup’, Proceedings of the IEEE Computer Society Conference on Computer

Vision and Pattern Recognition, vol. 2022- June, pp. 7492–501.

Peffers, K., Tuunanen, T., Rothenberger, M.A. & Chatterjee, S. 2007, ‘A design science

research methodology for information systems research’, Journal of Management

Information Systems, vol. 24, no. 3, pp. 45–77.

Perini, A., Susi, A. & Avesani, P. 2013, ‘A Machine Learning Approach to Software

Requirements Prioritization’, IEEE Transactions on Software Engineering, vol. 39, no. 4,

pp. 445–61.

Persson, R.A.X. 2023, ‘Theoretical evaluation of partial credit scoring of the multiple-choice

test item’, Metron, vol. 81, no. 2, pp. 143–61.

Pipit Muliyah, Dyah Aminatun, Sukma Septian Nasution, Tommy Hastomo, Setiana Sri

Wahyuni Sitepu, T. 2020, Dependency Parsing, Journal GEEJ, vol. 7.

Polyzotis, N., Roy, S., Whang, S.E. & Zinkevich, M. 2017, ‘Data management challenges in

production machine learning’, Proceedings of the ACM SIGMOD International

Conference on Management of Data, vol. Part F1277, pp. 1723–6.

Powers, D.M.W. 2020, Evaluation: from precision, recall and F-measure to ROC,

informedness, markedness and correlation, pp. 37–63.

Quinlan, J.R. 1986, ‘Induction of decision trees’, Machine Learning, vol. 1, no. 1, pp. 81–106.

Rago, A., Marcos, C. & Diaz-Pace, J.A. 2018, ‘Using semantic roles to improve text

classification in the requirements domain’, Language Resources and Evaluation,

vol. 52, no. 3, pp. 801–37.

Reimers, N. & Gurevych, I. 2019, ‘Sentence-BERT: Sentence embeddings using siamese

BERT-networks’, EMNLP-IJCNLP 2019 - 2019 Conference on Empirical Methods in

Natural Language Processing and 9th International Joint Conference on Natural

Language Processing, Proceedings of the Conference, pp. 3982–92.

221

Riaz, M., King, J., Slankas, J. & Williams, L. 2014, ‘Hidden in plain sight: Automatically

identifying security requirements from natural language artifacts’, 2014 IEEE 22nd

International Requirements Engineering Conference, RE 2014 - Proceedings, pp. 183–92.

Robertson, S. & Zaragoza, H. 2009, The probabilistic relevance framework: BM25 and beyond,

Foundations and Trends in Information Retrieval, vol. 3.

van Rooijen, L., Baumer, F.S., Platenius, M.C., Geierhos, M., Hamann, H. & Engels, G. 2017,

‘From User Demand to Software Service: Using Machine Learning to Automate the

Requirements Specification Process’, 2017 IEEE 25th International Requirements

Engineering Conference Workshops (REW), IEEE, pp. 379–85.

Saher, N., Baharom, F. & Ghazali, O. 2017, ‘Requirement change taxonomy and categorization

in agile software development’, 6th International Conference on Electrical Engineering

and Informatics (ICEEI), pp. 1–6.

Sarker, I.H. 2021, ‘Machine Learning: Algorithms, Real-World Applications and Research

Directions’, SN Computer Science, Springer.

Seiffert, C., Khoshgoftaar, T.M., Van Hulse, J. & Napolitano, A. 2010, ‘RUSBoost: A hybrid

approach to alleviating class imbalance’, IEEE Transactions on Systems, Man, and

Cybernetics Part A:Systems and Humans, vol. 40, no. 1, pp. 185–97.

Shakeri, Z., Abad, H., Gervasi, V., Zowghi, D. & Far, B.H. 2019, ‘Supporting Analysts by

Dynamic Extraction and Classification of Requirements-Related Knowledge’, 2019

IEEE/ACM 41st International Conference on Software Engineering (ICSE)

Supporting.

SHAKIRAT, Y., BAJEH, A., Aro, T.O. & ADEWOLE, K. 2021, ‘Improving the Accuracy of Static

Source Code Based Software Change Impact Analysis Through Hybrid Techniques: A

Review’, International Journal of Software Engineering and Computer Systems, vol. 7,

no. 1, pp. 57–66.

Sharma, R., Bhatia, J. & Biswas, K.K. 2014, ‘Automated identification of business rules in

requirements documents’, Souvenir of the 2014 IEEE International Advance

Computing Conference, IACC 2014, pp. 1442–7.

222

Sharma, Richa, Bhatia, J. & Biswas, K.K. 2014, ‘Machine Learning for Constituency Test

of Coordinating Conjunctions in Requirements Specifications’, Proceedings of the

3rd International Workshop on Realizing Artificial Intelligence Synergies in Software

EngineeringRAISE 2014, Association for Computing Machinery, New York, NY, USA,

pp. 25–31.

Sharma, R., Sharma, N. & Biswas, K.K. 2016, ‘Machine Learning for Detecting Pronominal

Anaphora Ambiguity in NL Requirements’, 2016 4th Intl Conf on Applied Computing and

Information Technology/3rd Intl Conf on Computational Science/Intelligence and

Applied Informatics/1st Intl Conf on Big Data, Cloud Computing, Data Science &

Engineering (ACIT-CSII-BCD), IEEE, pp. 177–82.

Sikora, E., Tenbergen, B. & Pohl, K. 2012, ‘Industry needs and research directions in

requirements engineering for embedded systems’, Requirements Engineering, vol.

17, no. 1, pp. 57–78.

Singh, D. & Sharma, A. 2014, ‘Software requirement prioritization using machine learning’,

Proceedings of the International Conference on Software Engineering and Knowledge

Engineering, SEKE, vol. 2014-Janua, no. January, pp. 701–4.

Singh, J. 2023, Computational Complexity and Analysis of Supervised Machine Learning

Algorithms, Lecture Notes in Networks and Systems, vol. 445, Springer Nature Singapore.

Singh, M. 2018, ‘Automated Validation of Requirement Reviews: A Machine Learning

Approach’, 2018 IEEE 26th International Requirements Engineering Conference (RE),

IEEE, pp. 460–5.

Singh, M., Anu, V., Walia, G.S.G.S. & Goswami, A. 2018, ‘Validating Requirements Reviews by

Introducing Fault-Type Level Granularity: A Machine Learning Approach’, Proceedings of

the 11th Innovations in Software Engineering ConferenceISEC ’18, Association for

Computing Machinery, New York, NY, USA.

Slankas, J. & Williams, L. 2013, ‘Automated extraction of non-functional requirements in

available documentation’, 2013 1st International Workshop on Natural Language

Analysis in Software Engineering, NaturaLiSE 2013 - Proceedings, pp. 9–16.

223

Song, S., Zhang, N. & Huang, H. 2019, ‘Named entity recognition based on conditional

random fields’, Cluster Computing, vol. 22, no. s3, pp. 5195–206.

Sowjanya, A.M. & Mrudula, O. 2022, ‘Effective treatment of imbalanced datasets in health

care using modified SMOTE coupled with stacked deep learning algorithms’, Applied

Nanoscience (Switzerland), no. 0123456789.

Sufian, M., Khan, Z., Rehman, S. & Haider Butt, W. 2019, ‘A systematic literature review:

Software requirements prioritization techniques’, Proceedings - 2018 International

Conference on Frontiers of Information Technology, FIT 2018, pp. 35–40.

Sultanov, H. & Hayes, J.H.J.H. 2013, ‘Application of reinforcement learning to

requirements engineering: Requirements tracing’, 2013 21st IEEE International

Requirements Engineering Conference, RE 2013 - Proceedings, pp. 52–61.

Takahashi, K., Yamamoto, K., Kuchiba, A. & Koyama, T. 2022, ‘Confidence interval for micro-

averaged F 1 and macro-averaged F 1 scores’, Applied Intelligence, vol. 52, no. 5, pp.

4961–72.

Tamai, T. & Anzai, T. 2018, ‘Quality requirements analysis with machine learning’, ENASE

2018 - Proceedings of the 13th International Conference on Evaluation of Novel

Approaches to Software Engineering, vol. 2018-March, pp. 241–8.

Tantithamthavorn, C., Hassan, A.E. & Matsumoto, K. 2018, ‘The Impact of Class Rebalancing

Techniques on the Performance and Interpretation of Defect Prediction Models’, IEEE

Transactions on Software Engineering, vol. 46, no. 11, pp. 1200–19.

Thakur, N., Reimers, N., Rücklé, A., Srivastava, A. & Gurevych, I. 2021, BEIR: A Heterogenous

Benchmark for Zero-shot Evaluation of Information Retrieval Models.

Tomek, I. 1976, ‘Tomek Link: Two Modifications of CNN’, IEEE Trans. Systems, Man and

Cybernetics, pp. 769–72.

Tufail, S., Riggs, H., Tariq, M. & Sarwat, A.I. 2023, ‘Advancements and Challenges in Machine

Learning: A Comprehensive Review of Models, Libraries, Applications, and Algorithms’,

Electronics (Switzerland), MDPI.

224

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł. &

Polosukhin, I. 2017, ‘Attention is all you need’, Advances in Neural Information

Processing Systems, vol. 2017-Decem, no. Nips, pp. 5999–6009.

Vogelsang, A. & Borg, M. 2019, ‘Requirements Engineering for Machine Learning:

Perspectives from Data Scientists’, The Institute of Electrical and Electronics Engineers,

Inc. (IEEE) Conference Proceedings, pp. 245–51.

Wan, Z., Xia, X., Lo, D. & Murphy, G.C. 2021, ‘How does machine learning change

software development practices?’, IEEE Transactions on Software Engineering, vol.

47, no. 9, pp. 1857–71.

Wang, S., Li, T. & Yang, Z. 2019, ‘Exploring Semantics of Software Artifacts to Improve

Requirements Traceability Recovery: A Hybrid Approach’, The Institute of Electrical and

Electronics Engineers, Inc. (IEEE) Conference Proceedings, The Institute of Electrical and

Electronics Engineers, Inc. (IEEE), Beijing University of Technology, China, pp. 39–46.

Wang, S. & Yao, X. 2013, ‘Using class imbalance learning for software defect prediction’,

IEEE Transactions on Reliability, vol. 62, no. 2, pp. 434–43.

Wang, Y. 2015, ‘Semantic information extraction for software requirements using semantic

role labeling’, The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Conference

Proceedings., pp. 332–7.

Wang, Y. 2016, ‘Automatic semantic analysis of software requirements through machine

learning and ontology approach’, Journal of Shanghai Jiaotong University, vol. 21, no. 6,

pp. 692–701.

Wang, Y., Wang, L., Li, Y., He, D., Chen, W. & Liu, T.Y. 2013, ‘A theoretical analysis of NDCG

ranking measures’, Journal of Machine Learning Research, vol. 30, pp. 25–54.

Wang, Y. & Zhang, J. 2016, ‘Experiment on automatic functional requirements analysis with

the EFRF’s semantic cases’, The Institute of Electrical and Electronics Engineers, Inc.

(IEEE) Conference Proceedings, The Institute of Electrical and Electronics Engineers, Inc.

(IEEE), Piscataway, pp. 636–42.

225

White, J., Fu, Q., Hays, S., Sandborn, M., Olea, C., Gilbert, H., Elnashar, A., Spencer-Smith,

J. & Schmidt, D.C. 2023, A Prompt Pattern Catalog to Enhance Prompt Engineering

with ChatGPT.

Williams, N., Zander, S. & Armitage, G. 2006, ‘Evaluating Machine Learning Algorithms for

Automated Network Application Identification’, Centre for Advanced Internet

Architectures (CAIA). Technical Report 060410B, no. March, pp. 1–14.

Winkler, J., Grönberg, J. & Vogelsang, A. 2019, ‘Predicting How to Test Requirements :

An Automated Approach’, 2019 IEEE 27th International Requirements Engineering

Conference (RE) Predicting, pp. 120–30.

Winkler, J. & Vogelsang, A. 2017, ‘Automatic Classification of Requirements Based on

Convolutional Neural Networks’, 2016 IEEE 24th International Requirements

Engineering Conference Workshops (REW), pp. 39–45.

Winkler, J.P., Gronberg, J. & Vogelsang, A. 2019, ‘Optimizing for Recall in Automatic

Requirements Classification: An Empirical Study’, The Institute of Electrical and

Electronics Engineers, Inc. (IEEE) Conference Proceedings, The Institute of Electrical and

Electronics Engineers, Inc. (IEEE), TU Berlin, pp. 40–50.

Wohlin, C. 2014, ‘Guidelines for snowballing in systematic literature studies and a replication

in software engineering’, ACM International Conference Proceeding Series.

Yacouby, R. & Axman, D. 2020, Probabilistic Extension of Precision, Recall, and F1 Score for

More Thorough Evaluation of Classification Models, pp. 79–91.

Yan, S. 2023, ‘Automatic Evaluation of Machine Translation Based on Linguistic

Knowledge’, 2023 IEEE 4th Annual Flagship India Council International Subsections

Conference: Computational Intelligence and Learning Systems, INDISCON 2023, no.

1, pp. 1–5.

Yang, H., de Roeck, A., Gervasi, V., Willis, A. & Nuseibeh, B. 2011, ‘Analysing anaphoric

ambiguity in natural language requirements’, Requirements Engineering, vol. 16, no. 3,

pp. 163–9.

226

Yang, H., De Roeck, A., Gervasi, V., Willis, A. & Nuseibeh, B. 2012, ‘Speculative requirements:

Automatic detection of uncertainty in natural language requirements’, 2012 20th IEEE

International Requirements Engineering Conference, RE 2012 - Proceedings, pp. 11–20.

Yang, H., Willis, A., De Roeck, A. & Nuseibeh, B. 2010, ‘Automatic Detection of Nocuous

Coordination Ambiguities in Natural Language Requirements’, Proceedings of the

IEEE/ACM International Conference on Automated Software EngineeringASE ’10,

Association for Computing Machinery, New York, NY, USA, pp. 53–62.

Yang, Y., Xia, X., Lo, D., Bi, T., Grundy, J. & Yang, X. 2020, Predictive Models in Software

Engineering: Challenges and Opportunities, vol. 1, no. 1.

Yazdanshenas, A.R. & Moonen, L. 2012, ‘Fine-grained change impact analysis for component-

based product families’, IEEE International Conference on Software Maintenance, ICSM,

pp. 119–28.

Yu, H., Gan, A., Zhang, K., Tong, S., Liu, Q. & Liu, Z. 2024, Evaluation of Retrieval-Augmented

Generation: A Survey, pp. 1–21.

Zamani, K., Zowghi, D. & Arora, C. 2021, ‘Machine Learning in Requirements

Engineering: A Mapping Study’, 2021 IEEE 29th International Requirements

Engineering Conference Workshops (REW), pp. 116–25.

Zhang, H., Li, J., Zhu, L., Jeffery, R., Liu, Y., Wang, Q. & Li, M. 2014, ‘Investigating dependencies

in software requirements for change propagation analysis’, Information and Software

Technology, vol. 56, no. 1, pp. 40–53.

Zhang, X., Tan, Y. & Yang, Z. 2021, ‘Analysis of Impact of Requirement Change on Product

Development Progress Based on System Dynamics’, IEEE Access, vol. 9, pp. 445–57.

Zhao, L., Alhoshan, W., Ferrari, A., Letsholo, K., Ajagbe, M.A., Chioasca, E.-V. & Batista-

Navarro, R. 2020, ‘Natural Language Processing (NLP) for Requirements Engineering: A

Systematic Mapping Study’, ArXiv, vol. abs/2004.0.

Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing,

E.P., Zhang, H., Gonzalez, J.E. & Stoica, I. 2023, Judging LLM-as-a-Judge with MT-

Bench and Chatbot Arena, no. NeurIPS, pp. 1–29.

227

Zowghi, D. & Paryani, S. 2003, ‘Teaching Requirements engineering through Role Playing:

Leason Learnt’, 11th IEEE International Requirements Engineering Conference, pp. 3–11.

