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Abstract 

Change Impact Analysis (CIA) is a critical task in software requirements engineering, 

aiming to predict the effects of requirement changes on related artifacts and systems. 

Traditional CIA methods often rely on manual inspection and heuristic-based reasoning, 

which are time-consuming and error-prone. This research addresses these limitations 

by proposing an automated framework for Software Requirements Change Impact 

Analysis (SRCIA), leveraging advances in Machine Learning (ML), Natural Language 

Processing (NLP), and Artificial Intelligence (AI). 

The framework integrates a range of approaches, including traditional ML models, 

NLP-based techniques, BEIR-based retrieval methods, and a Retrieval-Augmented 

Generation (RAG) system, to assess their effectiveness across multiple datasets of 

varying complexity. Evaluation metrics such as precision, recall, F1 score, BLEU, and 

ROUGE are used to benchmark performance. 

A central contribution is the development of a RAG-based solution that combines 

Large Language Models (LLMs) with modern information retrieval techniques. By 

incorporating vector database tools like LanceDB and FAISS, along with prompt 

engineering strategies, the framework achieves accurate and context-aware impact 

predictions. This enables robust adaptation to real-world, unstructured, and evolving 

requirements. The research provides a practical, scalable, and extensible solution to 

support automated CIA in complex software projects. 
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Chapter 1.  

Introduction 

 

 

 

 

1.1. Background 

Requirements engineering (RE) plays an essential role in capturing correct and 

complete requirements and is considered one of the most critical and challenging stages 

of developing software. Errors in the requirements can be expensive in terms of lost 

time, revenue, reputation, and project sustainability (Beecham, Hall & Rainer 2005). 

When a single requirement statement changes within software requirements 

specification (SRS), it may trigger multiple changes throughout the SRS. A manual 

analysis of how these requirement changes affect other requirements is time and effort-

intensive and error-prone. Requirements changes can potentially lead to inconsistencies 

in SRS, particularly in large systems(Arora et al. 2015a; Nejati et al. 2016). Therefore, 

analyzing the impact of requirements changes is essential to ensure accuracy, reliability, 

and consistency. It is also necessary to assess the effects of changes on downstream 

artifacts, such as software design and source code (Bjarnason et al. 2014). 

This thesis introduces a novel requirements engineering change impact analysis (CIA) 

framework designed for application during the software development phase. This 

framework leverages requirement artifacts as the primary source for Enhancing 

Decision-Making in Software Development by conducting impact analysis. 
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The rapid evolution of software systems has brought unprecedented complexity to 

their development and maintenance processes. Modern software applications span 

diverse domains, including healthcare, finance, and education, demanding scalable and 

efficient engineering methodologies. Software requirements are a crucial stage in the 

software development lifecycle, serving as the foundation for understanding the 

software's purpose, functionality, and boundaries. This stage involves the meticulous 

process of identifying, analyzing, and defining what the software is expected to 

accomplish (Zowghi & Paryani 2003).  

 Among the various facets of software engineering, requirements engineering serves 

as the cornerstone, defining the specifications that guide development teams in creating 

functional and reliable systems. So, it plays a critical role in ensuring that the needs and 

preferences of all stakeholders are adequately captured and documented (Li & Huang 

2018). However, the dynamic nature of software projects often necessitates frequent 

modifications to requirements, leading to the need for robust mechanisms to manage 

and assess the impact of such changes effectively. 

Change Impact Analysis (CIA) has emerged as a critical process within RE, addressing 

the challenge of identifying and understanding the ramifications of altering software 

requirements. Changes may arise due to evolving customer needs, technological 

advancements, or regulatory updates, and their ripple effects can span multiple 

components of a software system. Without systematic CIA, these changes can lead to 

defects, delays, and increased costs, and jeopardizing project outcomes. 

Traditional approaches to CIA rely heavily on manual techniques and rule-based 

methods, which, while effective in certain scenarios, struggle to cope with the growing 

complexity and scale of modern software systems. The advent of advanced 

computational models, particularly in the domains of machine learning (ML) and natural 

language processing (NLP), has provided new opportunities to automate and enhance 

the accuracy of CIA. These models enable engineers to analyze relationships and 

dependencies among requirements with greater precision, reducing the likelihood of 

overlooked impacts and facilitating proactive decision-making. 
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Recent advancements in ML, NLP, and information retrieval have revolutionized the 

way software requirements are analyzed. Techniques such as Retrieval-Augmented 

Generation (RAG) and frameworks like BEIR combine powerful retrievers with 

generative models, enabling contextually rich analyses of requirements. These models 

utilize structured and unstructured data, capturing syntactic and semantic nuances that 

traditional approaches may miss. By employing transformer-based architecture and 

embedding techniques, these advanced systems align textual descriptions with 

potential impact areas, offering significant improvements in both precision and recall. 

This chapter outlines the research gaps /motivations, research questions, objectives, 

contributions, methodology and the structure of the thesis. 

1.2. Research Gap 

Despite considerable research efforts in CIA, particularly in software maintenance and 

evolution, there is a substantial gap regarding the use of predictive models for CIA in RE. 

Current approaches focus on specific aspects like traceability or dependency analysis 

without leveraging ML's predictive capabilities. For example, (Arora et al. 2015a) relied 

on correlation rates to evaluate change impacts without early-stage dependency 

definition, which lacks the predictive power needed for proactive impact analysis. 

Similarly, (Hassine, Rilling & Hewitt 2005) applied slicing and dependency analysis at the 

use case map level, limited by its dependency on predefined structures. The use of 

semantic role labeling (SLR) by (Baumer, White & Tomlinson 2010) improved 

relationship identification but did not extend to predictive modeling. 

The motivation for this research stems from the identified gap in current 

methodologies. By integrating ML into CIA, this research aims to develop a predictive 

model that enhances the ability to manage requirements changes proactively. This 

model will be evaluated using real-world datasets to ensure its practical applicability and 

effectiveness, providing a robust tool for software project managers to make informed 

decisions regarding change requests. 
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ML offers significant advantages for CIA, particularly in terms of predictive accuracy. 

ML algorithms can analyze historical data to identify patterns and predict future changes 

with high precision, which is essential for proactive CIA. Furthermore, ML is adept at 

handling the complexity and dynamic nature of software requirements and their 

interdependencies, outperforming traditional rule-based methods. The scalability of ML 

models allows them to process large datasets efficiently, making them suitable for large-

scale projects where traditional methods fall short. Additionally, ML models have the 

capability to continuously learn and adapt from new data, thereby improving their 

predictive capabilities over time. 

1.3. Research Questions 

Software requirements constantly evolve, and new requirements often emerge 

(Brucker & Julliand 2014). Changeability has continued to be one of the critical software 

development challenges since Brooks identified it in his landmark paper (Brooks, F. 

1987). Requirement changes present many challenges that hinder completing a project 

that precisely fulfills the client's demands. 

CIA is a crucial task in RE as changes to the requirements are the main reason for 

software evolution (Bjarnason et al. 2014). As discussed in Section 1, performing 

requirements CIA manually might lead to additional complexity, extra cost, and time. 

Due to the growing and dynamic nature of requirements and various variables such as 

change type, requirement interdependencies, and impact of change, managing 

requirements change is highly complex and challenging (Morkos, Shankar & Summers 

2012). Another challenge that imposes a restriction is generalizability. Prior studies 

explicitly mentioned the need for further experiments in other domains, especially with 

the help of domain experts, to determine whether their approaches and tools can be 

generalized, although this leads to high costs (e.g., (Arora et al. 2019; Hein, Voris & 

Morkos 2018)). An automated solution is thus required to perform CIA, as changes 

happen iteratively. For instance, an accurate model to predict new changes and their 

impact on the system can benefit requirements analysts in deciding if a change request 

should be accepted or rejected. 
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The ability to anticipate and analyze a change in requirements, predict its progression, 

and determine the effect early in the requirements engineering stages would enable 

requirements analysts to make better decisions about implementing change, especially 

in large-scale projects (Hein, Voris & Morkos 2018; Morkos & Summers 2010). This may 

be used to estimate the value of implementing requirement changes (Morkos & 

Summers 2010). This research was motivated by the need to present an automated 

approach for CIA using neural information retrieval approaches. This research attempts 

to address the following research questions: 

RQ1: How can AI techniques, specifically NLP and ML, be applied to analyze the impact 

of requirement changes on other requirements and software artifacts? 

RQ2: How can information retrieval techniques enhance the assessment of 

requirement changes on software artifacts? 

RQ3: Which AI techniques or combinations of techniques are best suited for accurately 

predicting the impacts of requirement changes? 

RQ4: How can these techniques maintain accuracy and precision across different 

application domains with distinct requirements specifications? 

RQ5: How can requirements CIA be automated using the insights gained from AI and IR 

techniques? 

1.4. Research Objectives 

The primary aim of this research is to develop a predictive model capable of 

forecasting which software requirements will be impacted by a given change. The goal 

is to support project managers in making informed decisions regarding the acceptance 

or rejection of specific requirement changes, ultimately enhancing the efficiency and 

accuracy of the software development process. 

This research introduces an algorithmic-based prediction model that leverages ML and 

NLP techniques to forecast the impact of requirement changes. The model aims to 

automate CIA and improve upon traditional, manual methods, which are often time-
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consuming and error-prone, especially in large-scale software projects. The key 

objectives of the research are as follows: 

Objective 1: Develop methodologies for comprehensive data preparation and feature 

engineering to support the proposed CIA models. 

Objective 2: Develop a framework for CIA using the capabilities of NLP and ML. 

Objective 3: Implement information retrieval techniques to enhance the assessment 

of requirement change impacts on software artifacts. 

Objective 4: Embed AI and IR techniques to determine the most effective methods for 

accurate prediction of requirement change impacts. 

Objective 5: Analyse and evaluate the robustness and applicability of these techniques 

across different application domains with distinct requirements specifications. 

Objective 6: Design and implement an automated framework that integrates AI and 

IR techniques to predict the impacts of requirement changes on software artifacts and 

other requirements. 

The significance of this research lies in its potential to advance the field of software 

requirements management by offering a scalable, automated solution to CIA. When 

dealing with smaller projects or a limited number of changes, manual impact analysis, 

while time-consuming, remains feasible. However, as complexity and volume of changes 

increase, manual methods become inefficient and error-prone. Automating CIA for 

large-scale, rapidly evolving software specifications can drastically reduce human error 

while enhancing both the speed and accuracy of analysis. 

This research focuses on automating the prediction of future requirement changes by 

utilizing historical change requests accumulated over periods of one to three months. 

ML techniques are employed to predict the likely impact of new changes, providing 

valuable insights into how requirements will evolve throughout the software lifecycle 

(Basri et al. 2016). 

Precise CIA is crucial for informed decision-making during software development, 

particularly when planning and prioritizing requirements in both traditional and agile 
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methodologies. By integrating existing manual approaches with an advanced predictive 

model, this research aims to improve the effectiveness of software development by 

providing accurate, real-time predictions on the impact of requirement changes. 

1.5. Research Contributions  

This research makes several significant contributions to the domain of software 

requirements engineering, focusing on developing innovative solutions for predicting 

the impacts of requirement changes. Each contribution corresponds to the outcomes of 

the research objectives, as outlined below: 

1. Enhanced Dataset Preparation for Comprehensive Evaluation 

A key contribution of this research lies in the comprehensive preparation of datasets 

used for training and evaluating the proposed models. Three distinct datasets, Dataset-

I, Dataset-W, and Dataset-O, were curated from real-world sources, encompassing a 

total of 891 requirements and 77 change requests. These datasets were carefully 

selected and preprocessed to ensure they represent varying levels of complexity, 

domain-specific terminologies, and linguistic diversity, providing a robust testbed for the 

proposed frameworks. The rationale for selecting these datasets is further elaborated 

in Chapter 3, where their complexity, linguistic characteristics, and representativeness 

of various application domains are discussed in detail. This justifies their suitability for 

evaluating the adaptability and robustness of the proposed models. 

The preparation process involved extensive normalization of the data to standardize 

terminologies and linguistic structures across datasets, coupled with tokenization to 

break down requirements and change requests into manageable components. Semantic 

relationships within the requirements were preserved and enhanced through the 

generation of sentence embeddings using the all-MiniLM-L6-v2 model. Additionally, 

addressing data imbalance posed by diverse requirements was a crucial focus; 

techniques such as oversampling for minority classes and augmenting 

underrepresented datasets were employed to reduce bias and improve model 

performance. 
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Furthermore, this research introduced a benchmark dataset tailored specifically for 

requirement change impact analysis, categorized by complexity, length, and domain 

specificity. These benchmark datasets provide a valuable resource for future studies and 

facilitate cross-comparison of methods in this domain. To ensure high-quality and 

reliable evaluation, domain experts manually annotated change requests to establish 

relationships with impacted requirements, thereby creating a strong ground truth. The 

datasets also emphasize generalizability, representing a wide array of application 

domains such as Web Service, Telecommunications and Satellite, enabling the 

evaluation of the proposed models' adaptability across diverse contexts. 

This contribution underscores the importance of high-quality dataset preparation in 

advancing the field of requirements change impact analysis. The carefully curated 

datasets serve as a foundation for training, evaluation, and future research, enhancing 

the scalability, precision, and robustness of automated solutions in software 

requirements engineering. 

2. Development of AI-Based framework for Impact Analysis: 

Based on the second research objective, this work contributes an AI-based approach 

that leverages Natural Language Processing (NLP) techniques such as dependency 

parsing, named entity recognition (NER), and term frequency-inverse document 

frequency (TF-IDF) for feature extraction. Additionally, it incorporates ML models, 

including Random Forest, Support Vector Machines (SVM), and Decision Trees, to 

analyze the impact of requirement changes on other requirements and software 

artifacts. This contribution demonstrates the capability of combining syntactic, 

semantic, and contextual analysis to improve precision and recall in impact analysis, 

offering a novel perspective on dependency analysis in software engineering. 

3. Designing of an Information Retrieval Framework: 

Addressing the third research objective, this research designs an IR-based framework 

for assessing the impacts of requirement changes. The framework incorporates state-

of-the-art retrieval techniques, including BM25 for lexical matching, Bi-Encoders for 

dense vector similarity, and Cross-Encoders for re-ranking. These techniques collectively 
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enhance the retrieval and ranking of relevant requirements in response to change 

requests, ensuring both lexical and semantic alignment with the query. By leveraging 

these advanced retrieval methods, the framework achieves a balance between precision 

and recall, making it a robust tool for impact analysis in dynamic software engineering 

contexts 

4. Integration of AI and IR Techniques in a Hybrid Framework: 

In line with the fourth research objective, a hybrid framework that integrates AI and 

IR techniques is proposed and implemented. This hybrid framework integrates NLP-

based and BEIR-based approaches for predicting requirement change impacts. The NLP-

based approach leverages CoreNLP and SpaCy for linguistic feature extraction, including 

syntactic parsing and named entity recognition while the BEIR-based approach 

combines lexical retrieval, dense retrieval, and re-ranking. By integrating these 

approaches, the framework enhances the precision of semantic similarity 

measurements and the recall of relevant impacted requirements. The results 

demonstrate that combining these techniques improves the accuracy and robustness of 

impact predictions, particularly in handling datasets with diverse linguistic structures. 

This contribution sets a foundation for future hybrid approaches in requirements 

engineering, offering a balanced and adaptive solution for complex software 

development scenarios.  

5. Introduced a systematic approach to develop a domain-specific framework by 

evaluating various AI techniques across different datasets. 

Following the fifth research objective, the research evaluates the proposed solutions 

across three real-world datasets (prepared from contribution 1), covering 891 

requirements and 77 change requests. The results highlight the generalizability of the 

approaches and their adaptability across varying application domains. This evaluation 

provides empirical evidence of the frameworks' effectiveness, contributing valuable 

insights for practitioners and researchers working with diverse datasets.  

The proposed domain-specific framework refers not to a one-off, statically tailored 

solution, but to a dynamically adaptable architecture that continuously learns from new, 
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domain-specific data. Rather than hard-coding rules or manually tuning parameters for 

each application area, our framework employs transfer learning, initializing models on a 

broad corpus of software-engineering documents, and then fine-tunes on smaller, 

project-level datasets. This two-stage approach ensures the core model captures 

general change-impact patterns (e.g. traceability relations, dependency structures) 

while adapting dynamically to the terminology, style, and process nuances of each target 

domain. 

6. Design an automated/domain-specific system for Requirement Change Impact 

Prediction using the integrated AI/IR technique suitable different datasets  

The sixth and final contribution is the development of an automated framework 

leveraging the Retrieval-Augmented Generation (RAG) system, which integrates AI and 

IR techniques for predicting requirement change impacts. This framework employs 

advanced vector retrieval methods, including LanceDB and FAISS, for efficient context 

retrieval and combines them with generative capabilities of LLMs, such as Phi 3.5, to 

deliver accurate and context-aware predictions.  

Although RAG has become popular in open-domain QA and chatbots, our 

implementation distinguishes itself in several important ways. First, we employ a 

structured vector index built on LanceDB, which organizes traceability-annotated 

artifacts, such as requirements, design documents and issue logs, so that retrieval 

emphasises semantically and procedurally relevant passages rather than mere surface-

level similarity. Second, we use hybrid prompt engineering: rather than providing the 

model with raw text snippets alone, our prompts incorporate contextual signals like 

requirement IDs and change-request metadata alongside the retrieved content, guiding 

Phi 3.5 to generate domain-specific, accurate responses. Finally, we introduce an 

iterative retrieval–generation loop, in which initial candidate impacts are re-scored 

against the index and the top results are fed back into the model for a second synthesis 

pass. This two-pass cycle significantly enhances both precision and explainability 

compared with one-shot RAG approaches. 

By dynamically adapting retrieval and generation processes to the characteristics of 

different datasets, the system ensures relevance and precision across diverse 
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requirements. This automated framework significantly reduces manual effort and 

enhances decision-making processes in software requirements engineering, offering 

scalability, adaptability, and efficiency in handling complex and evolving requirements 

landscapes. 

1.6. Research Methodology 

In conducting research, several methodologies can be employed depending on the 

nature of the research questions and the objectives of the study. The most commonly 

used methodologies include qualitative research, quantitative research, mixed 

methods, design science research, and empirical studies. 

• Qualitative Research is primarily exploratory and is used to gain an understanding 

of underlying reasons, opinions, and motivations. It provides insights into the 

problem and helps to develop ideas or hypotheses for potential quantitative 

research. Methods such as interviews, focus groups, and case studies are typically 

used in qualitative research. 

• Quantitative Research involves systematic investigation of phenomena by gathering 

quantifiable data and performing statistical, mathematical, or computational 

techniques. This method is often used to test hypotheses or measure variables and 

relationships. Surveys, experiments, and observational studies are common 

methods used in quantitative research. 

• Mixed Methods Research combines both qualitative and quantitative approaches, 

allowing for a more comprehensive analysis by leveraging the strengths of both 

methodologies. This approach is particularly useful when the research question 

requires both the depth of qualitative insights and the generalizability of 

quantitative findings. 

• Design Science Research Methodology (DSRM) focuses on the creation and 

evaluation of artifacts designed to solve identified problems or achieve specific 

goals. It is especially prevalent in fields like information systems and software 
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engineering, where the development of new tools, methods, or frameworks is 

necessary. 

• Empirical Studies involve the collection and analysis of data from real-world 

observations or experiments. This methodology is particularly useful for testing 

hypotheses, validating models, or evaluating the practical effectiveness of 

solutions. Empirical research can provide robust evidence about the behavior of a 

system or the impact of specific interventions. 

The research methodology employed in this study is grounded in the DSRM, a 

structured approach commonly used to develop knowledge through the creation of 

artifacts that serve as solutions to defined problems (Hevner et al. 2004); (Peffers et al. 

2007). DSRM is particularly well-suited for this research, as it allows for the systematic 

design, development, and evaluation of new methods and models to address specific 

challenges in software requirements engineering and ML. 

Our research follows the key stages of DSRM, as depicted in Figure 1.1, beginning with 

the identification of the problem. This initial phase involved conducting a 

comprehensive systematic literature review (SLR) focusing on the application of ML in 

requirements engineering. The goal of this review was to assess the effectiveness of ML 

in improving the requirements engineering process and its associated artifacts, as well 

as to identify gaps in the current literature (Kitchenham & Charters 2007). 

The literature review was conducted following the Evidence-Based Software 

Engineering (EBSE) paradigm, as described by Kitchenham et al. (2004). This approach 

involved defining specific research questions, implementing a robust search strategy, 

compiling a list of related studies, and applying strict inclusion and exclusion criteria. 

Additionally, we employed backward snowballing and manual searches to ensure that 

all relevant studies were captured. The review was limited to papers published between 

2010 and 2020, a period marked by a significant increase in publications on the 

intersection of ML and RE. This timeframe was chosen to focus on the most recent 

advancements in the field. This thesis limits its primary literature review to works 

published between 2010 and 2020. During this period, the foundations of requirements-

change impact analysis such as supervised classification models, rule-based traceability 



13 

 

techniques, and early NLP integrations—were established. While significant advances 

have occurred since 2020 (notably the application of transformer-based models to 

traceability), these are reviewed comprehensively in Chapter 2 to highlight how they 

extend the pre-2021 methodologies examined. 

From the selected papers, we extracted data on various aspects, including the ML 

techniques employed, the specific problems and challenges addressed, the datasets 

utilized, and the evaluation metrics used to assess the performance of ML techniques in 

RE. The analysis of 65 relevant papers revealed that ML is a powerful tool for automating 

RE tasks, addressing complexity, and reducing costs and development time. These 

insights were instrumental in refining the research objectives and aims, guiding the 

subsequent stages of our methodology. 

With a clear understanding of the research problem and objectives, the next phase 

involved selecting appropriate datasets and defining the design cycles for the study. This 

step included a literature review on public datasets, followed by the collection of 

industry datasets where necessary, to ensure that the data used in our research was 

both relevant and comprehensive. 

The design and development phase was then initiated, focusing on two primary 

models: the ML model and the NLP model. These models were developed iteratively, 

leveraging information retrieval techniques to enhance their accuracy and effectiveness. 

The design process was informed by the research questions identified earlier, ensuring 

that the developed models addressed the key challenges in software requirements CIA. 

Once the models were developed, they were subjected to a rigorous demonstration 

phase, where their practical applicability was tested in real-world scenarios. This was 

followed by an evaluation phase, in which the models were assessed based on known 

performance parameters, such as accuracy, efficiency, and scalability. The evaluation 

provided critical feedback, which was used to refine the models further. 

Finally, the results and findings from the research were communicated, contributing 

both to the academic body of knowledge and to practical applications in the field of 

software engineering. The iterative nature of DSRM ensured that each stage of the 
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research process was interconnected, with continuous feedback loops facilitating the 

refinement of the research outcomes. 

  

Figure 1.1.The Design Science Methodology Process Model [9] 

1.7. Thesis Structure 

This thesis is organized into the following chapters: 

Chapter 1: Research Background and Objectives 

This chapter introduces the research problem, providing background information on 

software requirements and the challenges of managing changes in requirements. It 

outlines the research aims, objectives, and contributions, setting the foundation for the 

study by addressing gaps in the literature and defining the research problem. 

Chapter 2: Literature Review 

Chapter 2 presents a comprehensive review of related works, focusing on software 

requirements change impact analysis, ML techniques, and NLP. The chapter also outlines 

the research questions and methodology for the mapping study that guided the 

systematic literature review. 

Chapter 3: Research Framework 

This chapter details the core framework for CIA developed in this research. It provides 

a structured view of the research stages, explaining the datasets used, the data 
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collection process, and the implementation of the proposed solutions. This chapter 

establishes the groundwork for understanding the methodologies applied throughout 

the thesis. 

Chapter 4: Implementation of ML Algorithms  

This chapter discusses the application of ML techniques for predicting the impact of 

requirement changes. It provides a detailed description of the technical approach, the 

implemented ML models, and the results obtained from the analysis. The chapter also 

includes a comparative evaluation of state-of-the-art algorithms. 

Chapter 5: Implementation of the Dual-Model Framework  

Chapter 5 introduces a dual-model framework that integrates NLP-based solutions 

with BEIR benchmark-based retrieval techniques. It explains the structure of the 

framework, including data collection, verification, preparation, and methodology 

branches. The chapter also presents the evaluation metrics and results of the 

implemented solutions, offering a comprehensive analysis of the effectiveness of the 

framework. 

Chapter 6: Implementation of Retrieval-Augmented Generation (RAG) Model  

Chapter 6 focuses on the use of the RAG model to enhance the predictive accuracy of 

CIA. It provides an overview of the RAG model, its implementation, and a discussion on 

how it compares with other methods used in this research. The chapter concludes with 

insights into future research directions and opportunities for improvement. 

Chapter 7: Evaluation of the proposed models 

This chapter compares the performance of ML, NLP-based, BEIR-based, and RAG 

models across structured, semi-structured, and unstructured datasets. Using metrics 

like precision, recall, and F1-score, along with visualizations such as radar charts, it 

highlights each model’s strengths and limitations. The chapter concludes by discussing 

the practical implications for CIA and proposing a hybrid framework to address varying 

dataset complexities. 
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Chapter 8: Conclusions and future work 

Chapter 8 serves as the concluding chapter of this thesis, summarizing the key findings 

and contributions of the research while reflecting on how the objectives and research 

questions outlined in Chapter 1 were addressed. It synthesizes insights from the 

evaluations and analyses presented in previous chapters, emphasizing the significance 

of the developed frameworks and techniques in advancing the field of requirements 

change impact analysis. This chapter delves into the broader implications of the research 

findings, outlining how they contribute to the field and offering recommendations for 

potential advancements and enhancements to the proposed solutions. By integrating 

the outcomes of the study with its broader implications, Chapter 8 provides a cohesive 

and forward-looking conclusion to this research. 
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Chapter 2.  

Literature Review  

 

 

 

 

2.1. Introduction 

This chapter provides a comprehensive review of the existing literature in software 

requirements engineering and CIA. It establishes the foundational concepts necessary 

to understand the research context, including the evolution of software requirements, 

the nature and challenges of managing requirements changes, and the role of CIA in 

software engineering. 

The chapter begins by introducing key concepts in software requirements engineering, 

including the processes of requirements elicitation, analysis, validation, and 

documentation. It explores the evolution of requirements engineering practices, 

highlighting the shift from early informal approaches to structured, iterative, and agile 

methodologies. The dynamic nature of software requirements and their susceptibility 

to change are examined, along with the classification and implications of different types 

of requirement changes, corrective, adaptive, perfective, and preventive. 

Next, the chapter delves into the background and significance of CIA in software 

engineering, tracing its origins and development. It discusses various CIA approaches, 

including dependency analysis and traceability analysis, and explores how CIA addresses 

the challenges posed by evolving requirements in complex software systems. Special 

emphasis is placed on the role of automated techniques, such as NLP and ML, in 

enhancing the efficiency and precision of CIA. 
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The chapter also presents a systematic mapping study that surveys and categorizes 

the existing body of research on requirements engineering and CIA up to 2020. This 

mapping study identifies key contributions, methodologies, and gaps in literature, 

serving as a basis for positioning the current research within the broader academic 

landscape. However, as the mapping study focuses on works published until 2020, 

recent advancements such as Retrieval-Augmented Generation (RAG) systems and Beir-

based approaches are not included. These modern techniques, although promising, 

were introduced after the timeframe of this study and are beyond its scope. 

By synthesizing insights from prior studies, this chapter highlights the need for a novel 

CIA framework tailored to address the challenges of managing requirements changes 

during the software development phase. 

2.2. Software Requirements 

The primary objective of requirements engineering is to facilitate a consensus among 

stakeholders—such as product managers, product owners, business analysts, 

customers, and developers—by clearly articulating their needs and aligning them with 

the project’s goals. This process is vital because errors or oversights in the requirements 

phase can have far-reaching consequences, leading to costly delays, revenue loss, 

damage to reputation, and potentially jeopardizing the project's sustainability 

(Beecham, Hall & Rainer 2005). 

One of the first steps in this process is requirements elicitation, which involves 

gathering business requirements through interactions with key stakeholders. This stage 

is essential for understanding the demands and expectations that will shape the 

software's development. Elicitation transforms a set of informal ideas into formal, 

structured expressions that can guide subsequent stages of development (del Águila & 

del Sagrado 2016a). 

Following elicitation, these requirements undergo rigorous analysis to validate their 

feasibility and ensure that they can be realistically implemented within the system. This 

step involves not only technical assessments but also considerations of how the 
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requirements align with the overall business objectives. The culmination of this stage is 

the creation of requirements documents, which are then validated with the 

stakeholders to ensure completeness and accuracy. 

A well-crafted and comprehensive requirements specification is one of the most 

critical artifacts in the requirements engineering process. It serves as the blueprint for 

the entire software development process, guiding the project from inception through to 

completion. This document is not merely a technical manual but a living document that 

reflects the negotiated compromises and agreed-upon features that will drive the 

project forward. 

Overall, requirements engineering can be viewed as the systematic process of 

identifying, documenting, and managing the features and services that the software 

must provide, along with the constraints that govern its development and operation. 

This process is integral to the success of any software project, as it lays the groundwork 

for all subsequent development activities. 

Figure 2.1 illustrates the workflow of software requirements engineering. The process 

begins with a Feasibility Study, resulting in a Feasibility Report that informs the 

Requirements Elicitation and Analysis stage. During this phase, System Models are 

developed, and User and System Requirements are articulated. These inputs feed into 

the Requirements Specification, which is a formal document outlining the system's 

functionalities and constraints. This specification is then subjected to Requirements 

Validation to ensure accuracy and completeness before it is finalized as the 

Requirements Document. Each step in this workflow is interconnected, reflecting the 

iterative nature of software development, where validation and feedback loops are 

critical to refining and ensuring the quality of the requirements. 

2.3. Evolution of Software Requirements 

The evolution of software requirements is a reflection of the broader changes in 

software engineering practices and the increasing complexity of software systems. Over 

the past several decades, the process of defining and managing software requirements 
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has undergone significant transformations, driven by advancements in technology, 

methodologies, and the growing demand for more complex and adaptive software 

systems. 

 

 

Figure 2.1.Software Requirement Process (Sommerville, 2004) 

A. Early Approaches to Requirements Engineering 

In the early days of software development, requirements engineering was a relatively 

informal process. Requirements were often captured through ad-hoc discussions and 

documented in unstructured formats, such as text-based specifications or simple 

diagrams. These early approaches were adequate for small-scale projects where the 

scope of the software was limited, and the development team was small. However, as 

software systems grew in size and complexity, the limitations of these informal methods 

became apparent. Requirements were frequently ambiguous, incomplete, or 

inconsistent, leading to costly rework and project delays. 

B. The Advent of Structured Requirements Engineering 

The 1970s and 1980s marked a significant shift in requirements engineering with the 

introduction of structured methodologies. The Waterfall model, one of the earliest 

formalized software development methodologies, emphasized a linear approach to 

software development where requirements were defined upfront and served as the 

foundation for all subsequent stages of development (Royce, 1970). This model 
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necessitated a more rigorous approach to requirements specification, leading to the 

development of structured techniques for requirements elicitation, analysis, and 

documentation. 

During this period, the notion of "correctness" in requirements became a central 

focus. Requirements needed to be clear, precise, and verifiable to ensure that the final 

software product met the intended goals. Techniques such as data flow diagrams (DFDs) 

and entity-relationship diagrams (ERDs) were introduced to model requirements in a 

more structured and systematic way (Yourdon, 1989). 

C. The Emergence of Iterative and Agile Approaches 

The late 1980s and 1990s saw the emergence of iterative and incremental 

development methodologies, such as the Spiral model (Boehm, 1988), which introduced 

the concept of revisiting and refining requirements throughout the software 

development lifecycle. This approach acknowledged the reality that requirements often 

change as stakeholders gain a better understanding of their needs and as the market 

environment evolves. Iterative methodologies allowed for more flexibility in handling 

these changes, reducing the risks associated with rigid, upfront requirements 

specification. 

The turn of the century brought about the widespread adoption of Agile 

methodologies, which revolutionized requirements engineering by promoting a more 

collaborative and adaptive approach. In Agile frameworks, such as Scrum and Extreme 

Programming (XP), requirements are captured in the form of user stories and are 

continuously refined through iterative cycles known as sprints (Beck et al., 2001). This 

approach emphasizes direct communication between developers and stakeholders, 

fostering a dynamic environment where requirements can evolve in response to 

feedback and changing business priorities. 

2.4. Understanding Requirements Change 

A. Nature of Requirements Change 
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Software requirements are inherently dynamic and subject to change throughout the 

development process. The nature of these changes’ stems from a variety of factors that 

are often interrelated and context dependent. One primary reason for changes in 

software requirements is the evolving business environment in which organizations 

operate. As market conditions, customer needs, and competitive pressures shift, the 

software must adapt accordingly, necessitating changes to its requirements. 

Additionally, stakeholders often gain a clearer understanding of their needs as the 

project progresses, leading to refinement and modifications in the initial requirements. 

Technological advancements can also drive changes, as new tools, platforms, or 

methodologies become available that could enhance the software’s functionality or 

performance. 

Moreover, regulatory and compliance requirements can impose changes, especially in 

industries that are heavily regulated, such as healthcare, finance, and aerospace. As new 

laws or standards emerge, software systems must be updated to remain compliant, 

resulting in adjustments to their requirements. These factors underscore the fluid 

nature of software requirements, making change management a critical aspect of the 

software development process. 

B. Types of Requirements Changes 

Requirements changes can be broadly categorized into four types: corrective, 

adaptive, perfective, and preventive. 

• Corrective Changes: These changes are initiated to fix defects or issues identified in 

the requirements after they have been initially defined. Corrective changes ensure 

that the software meets the intended functionality and performance standards by 

addressing errors, inconsistencies, or omissions in the original requirements. 

• Adaptive Changes: Adaptive changes occur when the software needs to be 

modified to work in a new or changed environment. These changes are often driven 

by shifts in the business environment, new customer demands, or changes in the 

external system that the software interacts with. Adaptive changes are essential for 

ensuring that the software remains relevant and functional in a changing context. 
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• Perfective Changes: Perfective changes involve the enhancement of existing 

software functionalities to improve performance, maintainability, or user 

experience. These changes are typically driven by user feedback or the desire to 

optimize the software’s operations. While the software may be fully functional, 

perfect changes aim to make it more efficient or user-friendly. 

• Preventive Changes: Preventive changes are proactive modifications made to 

software requirements to avoid potential issues in the future. These changes often 

involve refactoring or restructuring the software’s architecture to improve its 

scalability, security, or robustness, thereby reducing the likelihood of defects or 

failures as the software evolves. 

Each type of requirement change has its own set of implications for the software 

development process, requiring careful consideration and planning to ensure that the 

changes are effectively integrated without disrupting the project’s overall timeline and 

objectives. 

2.5. Challenges in Managing Requirements Change 

Managing requirements change is one of the most complex and challenging aspects 

of software development. One of the primary difficulties lies in maintaining traceability 

and consistency across the various artifacts that constitute the software’s 

documentation. When a requirement changes, it can have a cascading effect on related 

requirements, design documents, test cases, and even code. Ensuring that all related 

components are updated accordingly is crucial to maintaining the integrity of the 

software system. 

Another significant challenge is stakeholder alignment. Different stakeholders may 

have conflicting priorities or interests, making it difficult to achieve consensus on the 

nature and scope of changes. This can lead to delays, increased costs, or scope creep if 

not managed effectively. Additionally, the iterative nature of modern software 

development methodologies, such as Agile, means that requirements are continually 

evolving. This constant state of flux can be difficult to manage, particularly in large-scale 
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projects where multiple teams are working concurrently on different aspects of the 

software. 

Resource allocation is another critical issue. Implementing changes often requires 

additional time, budget, and human resources, which may not have been accounted for 

in the original project plan. This can strain the project’s resources, leading to potential 

delays or compromises in quality. Furthermore, the introduction of new requirements 

can increase the complexity of the software system, making it more difficult to test and 

validate. This, in turn, can increase the risk of defects or failures in the final product. 

Lastly, the impact of changes on project timelines and delivery schedules can be 

significant. Unplanned changes can disrupt carefully coordinated schedules, leading to 

delays and increased pressure on the development team. Effective change management 

requires a delicate balance between accommodating necessary changes and 

maintaining the project’s overall momentum and focus. 

In summary, while changes in software requirements are inevitable, managing these 

changes effectively is crucial to the success of the project. This involves not only 

technical considerations but also strategic planning, stakeholder management, and 

resource allocation to ensure that changes are implemented smoothly and do not 

adversely affect the project’s outcome. 

2.6. Change Impact Analysis in Software Engineering 

CIA is a critical aspect of software engineering, particularly in managing the effects of 

changes in software requirements. As software systems evolve, requirements often 

change, leading to engineering changes (ECs) that can have significant implications for 

the development process. An engineering change is typically defined as a modification 

to a system component—whether in design, functionality, or other aspects—after it has 

been released (Shankar et al. in press). These changes can vary in scale and complexity 

and may affect multiple stakeholders over an extended period. 

The process of managing these changes begins with an Engineering Change Request 

(ECR), a document that outlines the details of the proposed change and is circulated 
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among relevant stakeholders for review and approval. If the ECR is approved, it is 

followed by the release of an Engineering Change Note (ECN), which formalizes the 

change and notifies all stakeholders of its implementation. The final stage involves 

archiving the change, documenting the reasons, outcomes, and impacts for future 

reference (Chen, Shir & Shen 2002; Morkos & Summers 2010). 

Effective CIA is essential in this process, as it involves assessing how a proposed change 

will propagate through the system and what other components will be affected. By 

analyzing ECNs and other related documents, researchers can develop models to predict 

the impact of changes and manage the risks associated with them (Morkos, Shankar & 

Summers 2012). This predictive capability is particularly important in large-scale 

systems, where the interdependencies between components can make the effects of 

changes difficult to anticipate. 

This thesis introduces a novel requirements engineering CIA framework designed for 

application during the software development phase. This framework leverages 

requirement artifacts as the primary source for enhancing decision-making in Software 

Development by conducting impact analysis. 

This chapter outlines the research background, objectives, motivation, contributions, 

and the structure of the thesis. 

2.7. Change Impact Analysis Background 

 CIA was first introduced and studied in 1993 by Arnold and Bohner (Arnold 1996; 

Arnold & Bohner 1993). They indicated that impact analysis involves identifying the 

possible effects of a change or predicting what needs to be modified to implement a 

change. The need to forecast and manage the impact of software changes increases as 

software systems become extremely large and complicated. Software CIA gathers the 

current data of the software system to identify which components will be affected by 

the proposed change or how the components will affect each other. Based on Arnold 

and Bohner (Arnold & Bohner 1993), there are two main perspectives for CIA, including 

software dependency analysis and traceability analysis (Arnold 1996). Arnold et al. 
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described three main steps to analyze the change impacts in a system (Arnold & Bohner 

1993): 

• Analyze change specifications and software artifacts. 

• Trace potential impacts 

• Implement the requested changes 

Changes initiated by a change request involve the change specification and 

classification process, which finishes with identifying the change type (Jayatilleke & Lai 

2013). Whenever addressing a change, many requirements cannot be considered 

independent of other requirements in the SRS, as different types of relationships can 

exist between them. As a result, an action performed on one requirement may have 

unexpected impacts on another. Therefore, there is a need to identify requirement 

interdependencies (Jayatilleke, Lai & Reed 2018). It is essential to investigate how 

requirements are dependent when there is no semantic or syntactic similarity between 

them. The investigated dependencies between requirements can be used to develop a 

predictive model to forecast CIA. 

In recent decades, considerable research has focused on reviewing the CIA, especially 

in software maintenance and evolution (Alkaf et al. 2019; Jayatilleke & Lai 2018; Lehnert 

2011a, 2011b). CIA has been applied to source codes (Brucker & Julliand 2014) and 

requirements traceability (Goknil, Kurtev & Berg 2016; Li et al. 2008; Zhang et al. 2014). 

Some researchers have reported the effects of requirements changes on data design, 

architecture design, and software design (Von Knethen 2002; Yazdanshenas & Moonen 

2012). Few researchers have studied the challenges of change verification and validation 

(Bjarnason et al. 2014) and co-changing artifacts to gather more information about 

software artifact evolution (Antoniol, Rollo & Venturi 2005). Some approaches have 

attempted to automate the process of analyzing the change impacts. (Alkaf et al. 2019) 

performed an automated CIA approach for User Requirements Notation models. Arora 

et al. (Arora et al. 2015a) proposed a strategy based on NLP for analyzing the impact of 

change in natural language requirements. (Nejati et al. 2016) proposed an approach to 

automatically identify the impact of requirements changes on system design when the 

requirements and design elements are expressed using models. Jayatilleke (Jayatilleke, 
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Lai & Reed 2018) presented a technique for requirements change analysis that relied on 

changes arising at higher levels. (Bano et al. 2012) performed a systematic literature 

review on the causes of requirement change, categorizing them into necessary and 

accidental causes. (Aryani et al. 2009) proposed a methodology for analyzing change 

propagation in software using the domain-level behavioral model of a system. 

In requirement specification, one solution to assess the effect of the change is to look 

for the precise accordance of the terms contained in the change and its potential 

definitions and expressions in other specifications. Change can progress across 

semantically related terms that are not exact matches or relevant syntactic diversities. 

In this situation, it is appropriate to apply a relatedness measure that considers phrases 

(Arora et al. 2015a). Besides, dependencies in requirements play an essential role in the 

analysis of change propagation (Zhang et al. 2014). 

Many dependency or interdependency models have been developed to define and 

distinguish relationships based on requirements' structural and semantic properties to 

find the relationships between requirements (Zhang et al. 2014). However, there has 

been no empirical assessment of these dependency forms regarding usefulness and 

applicability (Zhang et al. 2014). To define the possible effect of requirement changes 

on the overall system, Hassine (Hassine, Rilling & Hewitt 2005) applied both slicing and 

dependency analysis at the level of the use case map (rather than between 

requirements in natural languages). Baumer (Baumer, White & Tomlinson 2010) showed 

that semantic role labeling could improve computational metaphor identification and 

more effectively identify relationships with semantic import than typed dependency 

parsing. 

(Arora et al. 2015a) showed that in their approach, there is no need to define 

requirements dependencies in the early stage because the propagation condition can 

determine if there is a correlation between a changed requirement and the others. Since 

all potential conditions cannot be enumerated, constructing an explicit dependency 

graph is difficult. Rather than utilizing typed dependencies, they used correlation rates 

to evaluate the impact of changes. Typed dependencies focus on syntactic structure and 
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grammatical relations, while semantic roles emphasize conceptual and semantic 

structure (Baumer, White & Tomlinson 2010; de Marneffe & Manning 2008). 

Alsalemi (Alsalemi & Yeoh 2017) performed a systematic literature review focused on 

predicting requirements volatility. According to their research, only a few papers have 

been published on predicting volatility requirements, and the majority of papers worked 

on the causes of requirements change and its effect on project performance. Their work 

underlines that more empirical studies need to be carried out to address the practical 

aspect of requirements volatility better. 

 Dhamija  (Dhamija & Sikka 2019) presented a systematic study on the advancement 

of CIA techniques. The study's findings exposed a scope of research investigating the 

hidden dependency between software requirements that are not clearly visible. 

Techniques for identifying hidden dependencies among software objects, such as 

specifications, design, and code, need to be proposed. The existing literature focusing 

on CIA in RE showed that very few studies presented a prediction model for requirement 

change impact, and it is an under-explored area (Yang et al. 2020). 

Anjali  (Anjali, Dhas & Singh 2022) evaluated various CIA techniques focused on 

requirement defects in software development. The study categorizes these methods, 

assessing their effectiveness in identifying and mitigating defects. Highlighting the need 

for automated CIA tools, the research emphasizes improving accuracy and efficiency in 

defect management to maintain software quality and reliability. 

Elapolu (Elapolu et al. 2024) proposed a blockchain-based framework for requirement 

traceability, integrating a data acquisition template and graph-based visualization for 

dual-level traceability (artifact and object levels). By leveraging blockchain, the 

framework ensures security, immutability, and enhanced collaboration among 

distributed stakeholders. This approach demonstrates significant improvements in 

managing dynamic requirements and securing traceability data. 

Zhang  (Zhang, Tan & Yang 2021) analyzed the impact of requirement changes on 

product development progress using system dynamics. The study divides the 

development process into three phases—concept development, detail design, and pilot 
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production, and examines how requirement changes cause reworks, affecting the 

overall development duration. The authors highlight that requirement changes, 

especially in the later phases, significantly increase development time and introduce 

uncertainty. By modeling the development process and simulating requirement 

changes, the study provides insights into managing these changes to minimize delays 

and improve project management. 

Akbar (Akbar et al. 2020) investigate the challenges of requirements change 

management (RCM) in global software development (GSD) projects. By conducting a 

systematic literature review (SLR) and validating the findings through a questionnaire 

survey, they identify 25 RCM challenges. These challenges are categorized based on 

organization type (client and vendor) and size (small, medium, large), highlighting their 

significance in different GSD contexts. The study emphasizes the need for tailored 

strategies to manage RCM effectively across diverse organizational settings, 

underscoring the complexity and importance of RCM in maintaining software quality 

and project success in GSD environments. 

Arif  (Arif, Mohammad & Sadiq 2023) proposed a method combining UML and the NFR 

framework to analyze both functional and non-functional requirements of information 

systems. The technique uses UML diagrams (use-case, class, and activity diagrams) for 

modeling functional requirements (FRs), while the NFR framework is employed to 

handle non-functional requirements (NFRs) using a fuzzy-based approach to deal with 

vagueness in soft goal interdependencies. The applicability of this method is 

demonstrated through a library information system case study, showcasing how the 

integration of these techniques can enhance the precision and comprehensiveness of 

requirements analysis. 

Anwer (Anwer et al. 2024) introduced BECIA, a behavior engineering-based approach 

for CIA. BECIA employs Integrated Behavior Trees (IBT) and Integrated Composition 

Trees (ICT) to model system requirements and their dependencies. The approach 

includes a Requirements Components Dependency Network (RCDN) and a Change 

Impact Indicator (CII) to quantify change impacts using Kolmogorov Complexity. By 

automating the transformation of IBTs to ICTs and subsequently to RCDNs, BECIA 
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enhances the efficiency and accuracy of CIA. The study demonstrates the approach's 

applicability through evaluations of student projects, highlighting its potential to 

improve change management in software development. 

While traditional CIA methods such as rule-based dependency analysis, traceability 

matrices, and manual heuristics have proven effective in limited and controlled 

environments, they face notable limitations in handling modern software development 

complexities. Scalability remains a core challenge, manual and semi-automated 

techniques struggle to scale across large and continuously evolving software systems 

where thousands of interdependent requirements exist. Moreover, these methods 

often rely on structured formats or predefined relationships, making them less effective 

when dealing with unstructured or ambiguous textual data, which is common in real-

world requirements specifications. These limitations directly motivate the adoption of 

advanced NLP and ML techniques. By leveraging language models and learning-based 

approaches, NLP/ML systems can process large volumes of unstructured requirements, 

identify latent dependencies, and offer predictive insights that traditional methods 

cannot. This transition addresses the need for automation, precision, and adaptability 

in CIA, especially in domains characterised by linguistic variability and high change 

frequency. 

2.8. Machine Learning in CIA 

The integration of ML techniques into Requirements Engineering has emerged as a 

significant advancement in the software development lifecycle, particularly in 

optimizing the extraction, analysis, and prediction of requirements-relevant knowledge. 

Classification and regression, two key tasks in supervised learning, are foundational to 

this integration. Classification involves predicting discrete labels, such as identifying 

whether a requirement is likely to change or remain stable, while regression predicts 

continuous values, such as estimating the magnitude of a change’s impact. These tasks 

are pivotal in automating decision-making processes in CIA. 

In the early stages of software development, system or business analysts must 

meticulously capture and document software requirements, which serve as critical input 
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to the Software Requirements Specification (SRS) document. Given the importance of 

generating a comprehensive and accurate SRS, optimizing the knowledge extraction 

process is paramount (Sandhu et al. 2015). ML techniques have been instrumental in 

enhancing the efficiency and accuracy of this process, particularly in dealing with the 

vast amount of data contained within requirements documents, which are often written 

in natural language (NL). The challenge of transforming these NL requirements into 

structured formats amenable to automated analysis has led to the development of 

various NLP techniques (Arora et al. 2019). When combined with ML, these techniques 

enable automation in requirements analysis, significantly reducing manual effort and 

improving the precision of outcomes (Li et al. 2018). 

The application of ML in RE encompasses a range of tasks, including requirements 

traceability, ambiguity management, and the generation of test cases (Holzinger et al. 

2018). By applying learning algorithms to datasets derived from previous projects, ML 

models can be trained to recognize patterns and predict outcomes, thereby supporting 

requirements analysts in their decision-making processes. This automation is 

particularly valuable in large-scale projects where the sheer volume of requirements can 

overwhelm traditional manual analysis methods (Lwakatare et al. 2019). 

To provide a solid foundation for the algorithms applied in this research, the following 

subsections present the mathematical background of key ML methods, including 

Decision Trees, Random Forests, Support Vector Machines (SVMs), and Neural 

Networks. These methods represent widely adopted approaches to classification and 

regression tasks in CIA. 

2.8.1. Decision Trees 

Decision Trees are supervised learning algorithms that classify data by splitting it into 

subsets based on feature values (Boutaba et al. 2018). They use a tree-like structure 

where each internal node represents a decision (split), and each leaf node represents a 

class label or outcome (Tufail et al. 2023). 

𝐼𝐺(𝐷, 𝐴) = 𝐻(𝐷) − ∑
|𝐷𝑉|

|𝐷|𝑣∈𝐴 𝐻(𝐷𝑉)  (1) 
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Where  H(D) =  − ∑ pi\log2(pI)

k
{i=1}       (2)  is the entropy of dataset D, and pI is the 

probability of class i. 

• Gini Index: 

Alternatively, the Gini Index measures impurity(Quinlan 1986): 

Gini(D) =  1 −  ∑ pi
2k

{i=1} .  (3) 

The algorithm selects the split with the highest Information Gain or lowest Gini Index 

to grow the tree. 

2.8.2. Random Forests 

Random Forests are ensemble learning methods that improve the robustness of 

Decision Trees by using Bootstrap Aggregation (Bagging) to train multiple trees and 

aggregate their predictions (Breiman 2001). 

• Bagging: 

Random samples 𝐷𝑖   are drawn with replacement to create diverse training sets. 

The final prediction is the aggregate of individual trees: 

f{ensemble}(x) =  
1

𝑇
∑ ft(x)

T
{t=1}  (4) 

where 𝑇 is the number of trees. 

• Feature Selection: 

At each split, a random subset of features is chosen to reduce correlation between 

trees, improving generalization and reducing overfitting. 

2.8.3. Support Vector Machines (SVMs) 

Support Vector Machines are powerful algorithms that find the optimal hyperplane to 

separate classes in a high-dimensional space (Christopher J.C. Burges 1998). 

• Objective Function: 

For linearly separable data, SVMs maximize the margin between classes: 
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minimize (
1

2
) ||w||

2
subject to yi(w ⋅  xi +  b) ≥  1 (5) 

where w is the weight vector, b is the bias term, and 𝑦𝑖 is the label. 

• Kernel Trick: 

For non-linearly separable data, kernels map inputs to higher-dimensional spaces. A 

common kernel is the Radial Basis Function (RBF): 

K(xi, xj) = exp (−γ ||xi −  xj||
2

)  (6) 

2.8.4. Logistic Regression 

Logistic Regression is a supervised learning algorithm used for binary and multi-class 

classification tasks. Unlike linear regression, which predicts continuous values, logistic 

regression predicts probabilities, transforming the output using the logistic function. 

• Logistic Function: 

The logistic function is defined as: 

𝑃(𝑦 = 1|𝑥) =
1

1+𝑒−𝑧 (7) 

where z=w⋅x+b , w is the weight vector, x is the input features, and b is the bias term. 

• Log Loss Function: 

Logistic Regression optimizes the log-loss (cross-entropy) function to find the best 

weights w and bias b: 

𝐿 = −
1

𝑁
∑ [𝑦𝑖 log(𝑃(𝑦 = 1|𝑥𝑖)) + (1 − 𝑦𝑖) log(1 − 𝑃(𝑦 = 1|𝑥𝑖))]𝑁

𝑖=1  (8) 

where 𝑦𝑖 is the actual class label for sample 𝑖, and 𝑃(𝑦 = 1|𝑥𝑖) is the predicted 

probability for the positive class. 

Logistic Regression works well for linearly separable data but may struggle with non-

linear relationships unless extended using techniques like polynomial feature 

transformations or kernel methods (Tufail et al. 2023). 
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2.8.5. Gaussian Naive Bayes (NB) 

NB is a probabilistic classifier based on Bayes' Theorem. It assumes that features are 

conditionally independent given the class label and follow a Gaussian (normal) 

distribution. 

• Bayes' Theorem: 

𝑃(𝐶𝑘|𝑥) =
𝑃(𝑥|𝐶𝑘)𝑃(𝐶𝑘)

𝑃(𝑥)
 (9) 

where 𝑃(𝐶𝑘|𝑥) is the posterior probability of class, 𝑃(𝑥|𝐶𝑘) is the likelihood, 𝑃(𝐶𝑘) is 

the prior probability of class 𝑃(𝑥) is the evidence. 

• Likelihood with Gaussian Distribution: 

For Gaussian NB, the likelihood 𝑃(𝑥|𝐶𝑘) is modeled as: 

𝑃(𝑥|𝐶𝑘) =
1

√2πσ𝑘
2

𝑒
−

(𝑥−μ𝑘)
2

2σ𝑘
2   (10) 

where  𝜇𝑘 and 𝜎𝑘
2 are the Mean and variance of feature 𝑥 for class 𝐶𝑘. 

• Decision Rule: 

The class prediction is made by selecting the class with the highest posterior 

probability: 

𝐶predicted = arg max
𝐶𝑘

𝑃 (𝐶𝑘|𝑥) (11) 

Gaussian NB is particularly effective for datasets where the features follow a normal 

distribution. Its simplicity and efficiency make it a popular choice for text classification, 

spam detection, and other real-world problems(Boutaba et al. 2018; Tufail et al. 2023) . 

2.9. Natural Language Processing in CIA 

NLP has become an increasingly important tool in the domain of CIA, particularly given 

the challenges associated with managing and analyzing software requirements, which 

are often documented in natural language. Software requirements are typically 

expressed in natural language due to its flexibility and ease of use, making them 
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accessible to both technical and non-technical stakeholders. However, this flexibility 

also introduces variability, ambiguity, and potential inconsistencies into the 

requirements, complicating the process of CIA. 

The inherent ambiguity and complexity of natural language pose significant challenges 

for automated analysis, making NLP a critical component in enhancing the precision and 

effectiveness of CIA processes. NLP techniques are specifically designed to address these 

challenges by enabling the automated extraction, interpretation, and processing of 

natural language requirements. 

NLP can be employed to parse and analyze the textual content of requirements 

documents to identify key entities, relationships, and dependencies. This capability is 

particularly valuable in CIA, where understanding the relationships between different 

requirements is crucial for predicting the impact of changes. By using techniques such 

as part-of-speech tagging, named entity recognition, and dependency parsing, NLP helps 

structure and clarify the relationships within the requirements, making them more 

amenable to further analysis. This structured analysis is essential for ensuring that 

changes are accurately assessed and that their impacts are fully understood before 

implementation.  

This research employs two widely used NLP libraries, SpaCy and CoreNLP, which are 

instrumental in implementing robust solutions for analyzing software requirements. The 

following subsections explore the technical details and specific functionalities of SpaCy 

and CoreNLP and their relevance to the tasks undertaken in this study. 

2.9.1. CoreNLP 

Stanford CoreNLP is a comprehensive NLP toolkit developed by the Stanford NLP 

Group. It offers a wide range of linguistic analysis tools, including tokenization, sentence 

splitting, part-of-speech tagging (POS), named entity recognition (NER), lemmatization, 

dependency parsing, and coreference resolution. CoreNLP’s strength lies in its ability to 

handle complex syntactic and semantic analysis, making it highly suitable for 
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understanding the grammatical structures present in software requirements (Manning 

et al. 2014). Key features of CoreNLP include: 

• Tokenization: CoreNLP provides robust tokenization capabilities that handle a wide 

variety of text inputs, including multi-word expressions and special symbols. 

• Part-of-Speech Tagging: CoreNLP's POS tagging module uses sophisticated models 

to ensure high accuracy across diverse datasets. 

• Dependency Parsing: CoreNLP employs advanced algorithms, including universal 

dependency representations, to analyze syntactic structures. It uses graph-based 

dependency parsing. The parser constructs a dependency tree 𝑇 by maximizing the 

sum of scores for all edges (Pipit Muliyah, Dyah Aminatun, Sukma Septian Nasution, 

Tommy Hastomo, Setiana Sri Wahyuni Sitepu 2020): 

𝑇 ∗ =  𝑎𝑟𝑔𝑚𝑎𝑥 (𝑇 ∈  𝑇)𝛴 𝑠(ℎ, 𝑚) (12) 

• 𝑇: The set of all valid dependency trees. 

• (ℎ, 𝑚): An edge from the head hhh to the modifier mmm. 

• 𝑠(ℎ, 𝑚): A scoring function for each edge. 

• Sentiment Analysis and Coreference Resolution: Beyond basic NLP tasks, CoreNLP 

offers features such as sentiment analysis and coreference resolution, enabling 

more nuanced analysis of text. Coreference resolution in CoreNLP often uses a 

probabilistic model to determine whether two mentions 𝑚1 and , 𝑚2 refer to the 

same entity (Lee et al. 2013). This can be represented as: 

𝑃(𝑐𝑜𝑟𝑒𝑓 | 𝑚1, 𝑚2)  =  𝜎(𝑤 ⋅  𝜑(𝑚1, 𝑚2)) (13) 

• 𝜎: The sigmoid function. 

• 𝑤: The weight vector learned during training. 

• 𝜑(𝑚1, 𝑚2): The feature vector encoding attributes of 𝑚1 and 𝑚2. 

2.9.2. SpaCy 

SpaCy is an open-source NLP library designed for fast, efficient processing of large 

volumes of text. Its pipeline architecture allows easy customization, enabling users to 

add components as needed. SpaCy excels in named entity recognition (NER) and 
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provides pre-trained models for multiple languages, making it ideal for global NLP 

applications. Its high processing speed and flexibility make it an excellent choice for text 

preprocessing and feature extraction. Key features of SpaCy include: 

• Tokenization: SpaCy employs a rule-based tokenizer to segment text into tokens, 

accounting for language-specific nuances like abbreviations and contractions. 

• Part-of-Speech Tagging: Using state-of-the-art statistical models, SpaCy assigns 

grammatical roles to each token, facilitating syntactic analysis. 

• Dependency Parsing: SpaCy builds dependency trees to represent grammatical 

relationships between words in a sentence, enabling a deeper understanding of 

sentence structure (Pipit Muliyah, Dyah Aminatun, Sukma Septian Nasution, 

Tommy Hastomo, Setiana Sri Wahyuni Sitepu 2020). It uses transition-based 

dependency parsing algorithms, which can be represented mathematically as 

follows: 

The parser operates in a state-transition system: 

𝑇 =  (𝐶, 𝐴, 𝑡0, 𝑇𝑓)   (13) 

• 𝐶: The set of all possible configurations. 

• 𝐴: The set of actions (e.g., Shift, Reduce, Left-Arc, Right-Arc). 

• 𝑡0: The initial configuration of the parser. 

• 𝑇𝑓 : The set of terminal configurations. 

The algorithm transitions between states using a learned scoring function 𝑠(𝑐, 𝑎), 

where 𝑐 ∈  𝐶 and 𝑎 ∈  𝐴 .The parser selects actions aaa to maximize the score: 

𝑎 ∗ =  𝑎𝑟𝑔𝑚𝑎𝑥 (𝑎 ∈  𝐴)𝑠(𝑐, 𝑎)  (14) 

• Named Entity Recognition (NER): SpaCy uses pre-trained models to extract 

named entities such as dates, quantities, and system components from text. NER in 

SpaCy relies on sequence labeling tasks modeled using Conditional Random Fields 

(CRFs) (Song, Zhang & Huang 2019). A CRF assigns a probability to a sequence of labels 

𝑌 given a sequence of tokens 𝑋: 

𝑃(𝑌 | 𝑋)  =  exp (𝛴 𝜑(𝑦_(𝑖 − 1), 𝑦_𝑖, 𝑋)) / 𝛴_𝑌′ exp (𝛴 𝜑(𝑦′_(𝑖 − 1), 𝑦′_𝑖, 𝑋)) (15) 
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Here, 𝜑(𝑦𝑖−1, 𝑦𝑖, 𝑋)is the feature function that scores the compatibility of the label 

sequence with the input sequence. 

One of the major challenges in CIA is identifying hidden dependencies, relationships 

between requirements that are not explicitly stated through keywords or syntactic 

structure. Traditional approaches struggle with these implicit links, particularly when 

requirements are phrased differently but convey semantically related intentions. NLP 

techniques directly address this limitation. For example, dependency parsing enables 

the construction of grammatical trees that expose subject–verb–object relations, 

helping analysts detect when two requirements act upon the same concept in different 

forms. Likewise, NER supports terminology alignment by extracting and normalising 

domain-specific terms across diverse requirement expressions. Semantic Role Labeling 

further enhances this by framing requirements around action agent object structures, 

revealing deep semantic similarities even when vocabulary differs. Together, these NLP 

techniques contribute to effective dependency mapping, allowing the framework to 

uncover latent links between requirements that would be missed by surface-level 

analysis alone. This capability is especially critical in large-scale, heterogeneous systems 

where implicit dependencies are common and costly to overlook. 

By combining these techniques, our framework goes beyond surface-level text 

matching. Dependency parsing uncovers grammatical links, SRL reveals deeper semantic 

connections, and NER aligns domain-specific terms, together forming a robust basis for 

mapping both explicit and hidden requirement dependencies. 

2.10. BEIR: Benchmarking Information Retrieval 

The Benchmarking Information Retrieval (BEIR) framework is a comprehensive 

platform designed to evaluate information retrieval (IR) systems across diverse datasets 

and tasks. BEIR incorporates various retrieval approaches, including lexical retrieval, 

dense retrieval, and hybrid methods, enabling the assessment of IR models' 

performance in handling a wide range of scenarios. It is particularly relevant in NLP for 

evaluating semantic search and similarity-based applications (Thakur et al. 2021). 
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This section outlines the mathematical foundation of the BEIR framework and its 

relevance to CIA. The following concepts are integral to BEIR's methodologies: lexical 

retrieval with BM25, dense retrieval with vector embeddings, and hybrid models 

combining the two approaches. 

2.10.1. Lexical Retrieval with BM25 

BM25 is a probabilistic scoring function widely used for lexical retrieval. It ranks 

documents based on the frequency of query terms, adjusting for document length and 

term saturation (Robertson & Zaragoza 2009; Thakur et al. 2021). The BM25 scoring 

function is defined as: 

𝑆𝑐𝑜𝑟𝑒(𝑞, 𝑑) =  𝛴 [ 𝐼𝐷𝐹(𝑡) ∗
(𝑓(𝑡,𝑑)∗ (𝑘1 + 1))

(𝑓(𝑡,𝑑)+ 𝑘1 ∗ (1 − 𝑏 + 𝑏 ∗ (
|𝑑|

𝑎𝑣𝑔𝑑𝑙
)))

]  (16) 

Where: 

• 𝑞: Query terms. 

• 𝑑: Document. 

• 𝑡: A term in the query 𝑞. 

• 𝑓(𝑡, 𝑑): Frequency of term 𝑡 in document 𝑑. 

• 𝑓(𝑡, 𝑑): Length of document 𝑑. 

• 𝑎𝑣𝑔𝑑𝑙: Average document length across the corpus. 

• 𝑘1 : Hyperparameter controlling term frequency saturation (typically 𝑘1 =1.2 or 

𝑘1 =2.0). 

• 𝑏: Hyperparameter controlling the impact of document length normalization 

(commonly 𝑏 =0.75). 

The Inverse Document Frequency (IDF) measures the importance of a term and is 

given by: 

𝐼𝐷𝐹(𝑡) = log [
(𝑁 − 𝑛(𝑡)+ 0.5)

(𝑛(𝑡)+ 0.5)
]  (17) 

Where: 
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• 𝑁: Total number of documents in the corpus. 

• 𝑛(𝑡): Number of documents containing the term 𝑡. 

BM25 excels in capturing exact matches between query terms and documents while 

adjusting for variations in term frequency and document length. 

2.10.2. Dense Retrieval Using Bi-Encoders 

Bi-Encoders are used for efficient dense retrieval by encoding the query and 

documents independently into a shared embedding space. This method allows for rapid 

computation of similarities between queries and a large corpus of documents using 

vector operations (Thakur et al. 2021). 

A neural network 𝑓 encodes the query 𝑞 and document 𝑑 into dense vectors 𝑞 and 

𝑑 , respectively:     

𝑞 =  𝑓(𝑞), 𝑑 =  𝑓(𝑑)  (18) 

Where: 

• 𝑓(𝑞): Embedding of the query. 

• 𝑓(𝑑):Embedding of the document. 

The similarity between the query and document embeddings is computed using cosine 

similarity: 

𝑆𝑖𝑚(𝑞, 𝑑) =
(𝑞 • 𝑑)

(||𝑞||∗ ||𝑑||)
  (19) 

• 𝑞 •  𝑑: Dot product of the query and document embeddings. 

• ||𝑞|| and ||𝑑||: Magnitudes (norms) of the respective vectors. 

The documents are ranked based on their similarity scores: 

𝑅𝑎𝑛𝑘(𝑞) =  𝑎𝑟𝑔𝑠𝑜𝑟𝑡(−𝑆𝑖𝑚(𝑞, 𝑑𝑖))  (20) 

Where 𝑎𝑟𝑔𝑠𝑜𝑟𝑡 sorts the documents 𝑑𝑖 in descending order of similarity (Karpukhin 

et al. 2020). 



41 

 

2.10.3. Re-Ranking with Cross-Encoders 

After retrieving a subset of candidate documents using a Bi-Encoder, Cross-Encoders 

refine the rankings by jointly encoding the query and each candidate document. This 

method captures more nuanced interactions between query and document terms 

(Thakur et al. 2021). 

A Cross-Encoder takes the concatenation of the query 𝑞 and a document 𝑑 as input 

and produces a relevance score 𝑠(𝑞, 𝑑): 

𝑠(𝑞, 𝑑) =  𝑓𝑐𝑟𝑜𝑠𝑠([𝑞; 𝑑])  (21) 

• 𝑓𝑐𝑟𝑜𝑠𝑠: A neural network (e.g., BERT or RoBERTa) trained for relevance scoring. 

• [𝑞;  𝑑]: Concatenation of the query and document as input to the model. 

The Cross-Encoder computes a scalar score indicating the relevance of the document 

to the query. The final ranking is determined by sorting the candidate documents based 

on their relevance scores: 

𝑅𝑎𝑛𝑘𝑐𝑟𝑜𝑠𝑠(𝑞) =  𝑎𝑟𝑔𝑠𝑜𝑟𝑡(−𝑠(𝑞, 𝑑𝑖))  (22) 

Where: 

• 𝑎𝑟𝑔𝑠𝑜𝑟𝑡 sorts the documents 𝑑𝑖in descending order of their relevance scores. 

2.11. Large Language Models  

Large Language Models (LLMs) have revolutionized the field of NLP by enabling 

systems to perform complex language tasks with remarkable accuracy and contextual 

understanding. These sophisticated AI systems, such as GPT, BERT, and Phi 3.5, are 

designed to process and generate human-like text based on user prompts, 

demonstrating capabilities in reasoning, question answering, summarization, and 

creative writing (White et al., 2023). LLMs are particularly impactful in tasks requiring 

high degrees of linguistic sensitivity and contextual awareness, such as requirements 

CIA. 
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At their core, LLMs operate by modeling the probability distribution of language. Given 

an input sequence 𝑥 = (𝑥1 𝑥2, … , 𝑥𝑛), an LLM estimates the likelihood of the next token 

𝑥𝑛+1 based on the conditional probability: 

𝑃(𝑥_{𝑛 + 1} | 𝑥_1, 𝑥_2, … , 𝑥_𝑛)  (23) 

This probability is learned through large-scale training on diverse text corpora, 

allowing the model to capture both syntactic and semantic relationships in language. 

The model’s goal is to minimize the cross-entropy loss during training, defined as: 

𝐿 = −
1

𝑁
∑ log 𝑃 ( 𝑥𝑖 ∣∣ 𝑥<𝑖 )𝑁

𝑖=1   (24) 

where 𝑁 is the total number of tokens in the dataset, and 𝑃( 𝑥𝑖 ∣∣ 𝑥{<𝑖} ) is the 

predicted probability of the iii-th token given its preceding context. 

2.11.1. Transformer Architecture 

LLMs are underpinned by transformer-based architectures, which rely on self-

attention mechanisms to process sequential data effectively. Unlike traditional models 

like RNNs, transformers process sequences in parallel, enabling greater scalability and 

precision. Key components include: 

• Self-Attention Mechanism: Each token attends to all other tokens in the sequence 

to compute contextual relevance. The attention scores are calculated as: 

Attention(𝑄, 𝐾, 𝑉) = softmax (
𝑄𝐾⊤

√𝑑𝑘
) 𝑉   (25) 

where 𝑄 (query), 𝐾 (key), and 𝑉 (value) are projections of the input embeddings, and 

𝑑𝑘 is the dimensionality of the key vectors. This mechanism enables the model to 

capture long-range dependencies (Vaswani et al. 2017). 

• Multi-Head Attention: By employing multiple attention heads, the model can focus 

on different aspects of the input simultaneously, enhancing its ability to understand 

complex patterns (Vaswani et al. 2017). 

MultiHead(𝑄, 𝐾, 𝑉) = Concat(head1, … , headℎ)𝑊𝑂  (26) 
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• Feedforward Layers: Position-wise feedforward networks apply non-linear 

transformations to each token independently: 

𝐹𝐹𝑁(𝑥) =  𝑚𝑎𝑥(0, 𝑥𝑊1 +  𝑏1)𝑊2 +  𝑏2   (27) 

These layers enhance the model's ability to learn complex features from the input 

data. 

• Positional Encoding: Since transformers lack inherent sequence ordering, positional 

encodings are added to input embeddings to inject positional information (Vaswani 

et al. 2017). 

𝑃𝐸(𝑝𝑜𝑠,2𝑖) = sin (
𝑝𝑜𝑠

10000

2𝑖
𝑑model

)   (28) 

𝑃𝐸(𝑝𝑜𝑠,2𝑖+1) = cos (
𝑝𝑜𝑠

10000

2𝑖
𝑑model

)  (29) 

2.12. RAG Model 

The RAG model represents a significant advancement in NLP by integrating retrieval 

and generation components. This approach allows models to draw upon both pre-

trained knowledge and real-time information to respond more accurately to user 

queries. Unlike standalone generative models, RAG systems can access external 

knowledge bases, making their responses more contextually relevant and precise(Gao 

et al. 2023). 

A. Information Retrieval in RAG Systems 

Information retrieval is a key component of the RAG model, and it is responsible for 

locating documents that provide context and support for the input query. Classical IR 

techniques, such as BM25, rank documents based on their term frequency-inverse 

document frequency (TF-IDF) scores. These techniques are effective for quickly 

identifying the most relevant documents within a large corpus. More modern 

approaches use vector embeddings and similarity searches to enhance retrieval 

precision. 
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In RAG systems, the retriever acts as a bridge between static pre-trained model 

knowledge and dynamic, real-time information. By leveraging indexed data, the 

retriever provides the generative model with the most relevant pieces of information, 

enriching the generated output (Gao et al. 2023). 

The retrieval component identifies the most relevant documents 𝐷 from a large 

corpus c for a given input query 𝑞. The goal is to maximize the conditional probability of 

retrieving relevant documents given the query: 

𝑃(𝐷 | 𝑞)  =  ∏ 𝑃(𝑑_𝑖 | 𝑞)  (30) 

Where: 

• 𝐷 = {d_1, d_2, ..., d_k}: Set of retrieved documents. 

• 𝑃(𝑑_𝑖 | 𝑞): Relevance score for document 𝑑𝑖, computed using similarity 

metrics (e.g., cosine similarity of embeddings). 

Document embeddings 𝑑𝑖 and query embeddings 𝑞 are generated using dense 

retrieval models like Bi-Encoders: 

𝑃(𝑑 | 𝑞)  ∝  𝑆𝑖𝑚(𝑞, 𝑑)  =  (𝑞 •  𝑑) / (||𝑞||  ∗  ||𝑑||)  (31) 

Where: 

• 𝑞: Query embedding. 

• 𝑑: Document embedding. 

• ||𝑞||and ||𝑑||: Magnitudes of the embeddings. 

B. Generative Language Modeling 

Generative language models, such as Phi-3.5, are based on transformer architectures 

that use attention mechanisms to understand and generate text. These models are pre-

trained on extensive corpora to learn linguistic patterns, enabling them to produce 

human-like text based on input prompts (White et al. 2023). However, without real-time 

data integration, they are limited by their training cut-off and lack of specific domain 

knowledge. 
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By incorporating retrieved documents into the input, the generator can dynamically 

access external knowledge, improving the output's specificity and contextual accuracy. 

This integration is critical for applications like CIA, where changes in requirements need 

to be analyzed with up-to-date contextual understanding. 

The generation component uses a conditional language model to generate output 𝑦 

based on the query 𝑞 and the retrieved documents 𝐷. The generative process maximizes 

the likelihood of the output sequence 𝑦 = { 𝑦 _1, 𝑦 _2, ..., 𝑦 _n}: 

𝑃(𝑦 | 𝑞, 𝐷)  =  ∏ 𝑃(𝑦_𝑡 | 𝑦_ < 𝑡, 𝑞, 𝐷)  (32) 

Where: 

• 𝑦𝑡 : The 𝑡 token in the generated sequence. 

• 𝑦<𝑡 : The sequence of tokens generated before 𝑦𝑡 . 

• 𝐷: Retrieved documents conditioning the generation. 

By incorporating retrieved documents into the input, the generator produces 

responses that reflect both pre-trained knowledge and real-time contextual 

information. 

C. Joint Objective 

The RAG model combines the retrieval and generation components to optimize the 

joint probability of the output 𝑦 and the retrieved documents 𝐷 given the query 𝑞: 

𝑃(𝑦, 𝐷 | 𝑞)  =  𝑃(𝐷 | 𝑞)  ∗  𝑃(𝑦 | 𝑞, 𝐷)   (33) 

The final objective is to maximize this joint probability. 

During training, RAG optimizes the following loss function using Maximum Likelihood 

Estimation (MLE): 

𝑳 =  −∑ 𝐥𝐨𝐠 ∑ 𝑷(𝑫 | 𝒒)  ∗  𝑷(𝒚 | 𝒒, 𝑫)  (34) 

D. Fine-Tuning 

In fine-tuning, the retriever and generator are trained jointly or sequentially: 

• Retriever Fine-Tuning: Adjusts 𝑃(𝐷 | 𝑞) to improve retrieval quality. 
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• Generator Fine-Tuning: Updates 𝑃(𝑦 | 𝑞, 𝐷) to better synthesize responses based 

on retrieved documents. 

2.13. Vector Databases 

Vector databases are specialized data management systems designed to store, 

retrieve, and query high-dimensional vectors efficiently. Unlike traditional relational 

databases focusing on structured data, vector databases are optimized for managing 

embedding vectors derived from text, images, or other data types. These embeddings 

represent data in a mathematical form that captures semantic relationships, making 

vector databases ideal for applications requiring similarity searches, such as RAG 

systems. 

2.14. Mathematical Heuristics for Optimizing Similarity-Based Analysis 

Mathematical heuristics play a significant role in computational systems, particularly 

in scenarios where optimizing performance and resource utilization is critical. These 

heuristics are especially relevant for tasks involving similarity-based analysis, such as 

those in NLP and BEIR-based frameworks. The approaches in this research compute 

similarity scores between sentence pairs based on various linguistic features and 

contextual information, often leading to computational overhead when processing large 

datasets. By applying mathematical heuristics, the research streamlines this process, 

ensuring both efficiency and accuracy. 

Heuristics operate through approximate methods and predefined rules that guide 

decision-making without requiring exhaustive computation. While they do not 

guarantee a globally optimal solution, they provide a practical and effective way to 

identify high-priority elements from a dataset. For similarity-based analysis, heuristics 

enable prioritization and filtering of sentences based on their relevance, reducing the 

need to process less significant data points. 

Three commonly applied heuristics in this research are score thresholding, significant 

drop detection, and relative score proportionality. 
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• Score Thresholding involves setting a baseline threshold to exclude sentences with 

similarity scores below a certain level. This baseline is calculated based on the score 

distribution across the dataset to ensure only sentences with meaningful similarity 

are retained for further analysis. 

• Significant Drop Detection identifies substantial drops in similarity scores among 

ranked sentences. A sharp decline often indicates the boundary where semantic 

alignment diminishes, helping to distinguish between sentences closely aligned in 

content and those with reduced relevance. 

• Relative Score Proportionality compares each sentence’s similarity score to the 

highest score in the dataset. Sentences with scores below a predefined proportion 

(e.g., 50%) of the highest score are excluded to focus on the most semantically 

relevant results. 

Prior research has demonstrated the effectiveness of such heuristics in various 

domains. For instance, thresholding techniques have been used in information retrieval 

systems to improve relevance ranking, while significant drop detection has been applied 

to enhance clustering methods by identifying natural boundaries in data. Similarly, 

proportionality-based heuristics have been employed in ranking systems to ensure high-

priority results are emphasized. 

This research builds on these established techniques to address the challenges of 

sentence similarity analysis in the NLP and BEIR-based frameworks. By integrating these 

heuristics, the study not only improves computational efficiency but also ensures the 

semantic integrity of the results, providing a robust foundation for further applications 

in software requirements engineering. 

2.15. Applied Evaluation Metrics 

In this research, the performance of different models for CIA is evaluated using a 

comprehensive set of metrics, each providing insights into specific aspects of model 

performance. These metrics are crucial for assessing the effectiveness and reliability of 

the proposed solutions in identifying impacted requirements. This section describes the 

evaluation metrics employed in this study, along with their mathematical formulations. 
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2.15.1. Precision 

Precision measures the proportion of correctly identified impacted requirements to 

the total number of predicted impacted requirements. It evaluates the accuracy of the 

model in minimizing false positives. Precision is mathematically defined as (Powers 

2020): 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
   (35) 

Where: 

• True Positives (𝑇𝑃): Correctly predicted impacted requirements. 

• False Positives (𝐹𝑃): Incorrectly predicted impacted requirements. 

2.15.2. Recall 

Recall, also known as sensitivity, quantifies the model's ability to identify all relevant 

impacted requirements. It assesses the completeness of the model by minimizing false 

negatives. Recall is expressed as (Powers 2020): 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
   (36) 

Where: 

• False Negatives (𝐹𝑁): Relevant impacted requirements that were not 

predicted by the model. 

2.15.3. F1 Score 

The F1 Score combines precision and recall into a single metric, providing a harmonic 

mean. It balances the trade-off between precision and recall, particularly useful when 

both metrics are equally important. The F1 Score is given by (Powers 2020; Takahashi et 

al. 2022): 

𝐹1 𝑆𝑐𝑜𝑟𝑒 =  2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 .𝑅𝑒𝑐𝑎𝑙𝑙

𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+ 𝑅𝑒𝑐𝑎𝑙𝑙
   (37) 
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2.15.4. Mean Reciprocal Rank (MRR) 

MRR evaluates the ranking quality of the first correct impacted requirement. It 

measures how quickly the most relevant impacted requirement is surfaced. MRR is 

calculated as (Yacouby & Axman 2020): 

𝑀𝑀𝑅 =
1

𝑁
∑

1

𝑅𝑎𝑛𝑘𝑖

𝑁
{𝑖=1}   (38) 

Where: 

• 𝑅𝑎𝑛𝑘𝑖: Rank position of the first correct prediction for the 𝑖 query. 

2.15.5. Normalized Discounted Cumulative Gain (NDCG) 

The NDCG measures the ranking quality of predicted impacted requirements, giving 

higher weights to items ranked at the top. It is expressed as (Wang et al. 2013): 

𝑁𝐷𝐶𝐺 =
𝐷𝐺𝐺

𝐼𝐷𝐶𝐺
  (39) 

𝐷𝐺𝐺 =  ∑
2𝑟𝑒𝑙𝑖−1

𝑙𝑜𝑔2(𝑖+1)

𝑝
𝑖=1   (40) 

Where: 

• 𝑟𝑒𝑙𝑖: Relevance score of the 𝑖 item. 

• 𝑝: Number of predicted items. 

2.15.6. Partial Credit 

The Partial Credit metric assigns a score to predictions that are partially correct or 

closely related to the ground truth. It provides a nuanced evaluation of the model’s 

performance, especially in scenarios with linguistic variability or context-dependent 

predictions. A common approach is to assign a score between 0 and 1 based on the 

degree of similarity or relevance between the predicted answer 𝑃 and the ground truth 

𝐺  (Persson 2023). One such formula is : 

Partial Credit (PC) =
Similarity(𝑃,𝐺)

Maximum Possible Similarity
  (41) 



Chapter 2  

 

50 

 

2.15.7. Precision@K and Recall@K 

Precision@K and Recall@K evaluate the model's performance within the top K results. 

They are particularly useful for ranking-based evaluations in scenarios with a high 

number of potential matches (Liu et al. 2016; Patel, Tolias & Matas 2022). These metrics 

are defined as: 

Precision@K =
TP@K

𝐾
    (42) 

Recall@K =
TP@K

Total Relevant Items
  (43) 

2.15.8. Mean Average Precision (MAP) 

The Mean Average Precision (MAP) provides an aggregated measure of precision 

across all relevant results. It is computed as (Henderson & Ferrari 2017): 

MAP =
1

𝑁
∑

1

|R𝑖|
𝑁
𝑖=1 ∑ Precision@k

|R𝑖|
𝑘=1   (44) 

Where: 

• 𝑁: Total number of queries. 

• |R𝑖|: Number of relevant items for the iii-th query. 

2.16. Related Literature Reviews 

In this section, we present a sample from the existing SLRs on RE that specifically focus 

on ML and NLP in RE. Some of the findings in these studies are not specific to RE and 

have covered studies in software engineering (e.g. Haq et al. (Haq et al. 2019)). 

Sufian et al. (Sufian et al. 2019) conducted an SLR on software requirements 

prioritization techniques. They reviewed 33 studies from 2009 until 2017. They have 

covered 40 different requirement prioritizations techniques, among these, one tool uses 

ML classification to identify requirements. Dermeval et al. (Dermeval et al. 2016) 

performed a systematic review on the applications of ontologies in RE. They reviewed 

67 papers from 2007 to 2013. They concluded that ontologies can potentially be used to 

deal with several RE issues (e.g. integration between requirements and software 
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architecture, and requirements communication). Their findings revealed that most 

studies focused on textual requirements analysis, which involve the use of ML and NLP 

techniques. Binkhonain et al. (Binkhonain & Zhao 2019) reviewed the literature in ML 

algorithms for the identification and classification of non-functional requirements. The 

study considered 24 papers from 2008 to 2019. Águila et al. (del Águila & del Sagrado 

2016a) performed a literature review to describe the state of the art in Bayesian 

networks for enhancement of RE. The authors reviewed 20 papers from 1999 to 2013. 

Haq et al. (Haq et al. 2019) conducted an SLR that identified the use of the expert system 

in RE process. They reviewed 22 papers from 1986 to 2019. They concluded that ML 

showed significant results in supporting RE activities. At the same time with our conduct 

of this mapping study, Zhao et al. (Zhao et al. 2020) have performed a systematic 

mapping study on NLP for RE. The authors identified 404 relevant primary studies from 

1983 to 2019 concerning the NLP technologies used in RE.  

2.17. Mapping Study 

Although systematic literature reviews (SLRs) of many aspects of RE have been 

published in the last decade (e.g. (Ghozali et al. 2019) (Alsanoosy, Spichkova & Harland 

2019) (Horkoff et al. 2019)), none of them focuses specifically on reviewing empirical 

studies of ML applications in RE. We are thus motivated to conduct a mapping study to 

identify, analyze and summarize the advances in the applications of ML in RE and to 

identify the current state of the art. This review also allows us to identify areas that still 

need more research and determine the trends of future studies.  

The mapping study presented in this chapter provides a systematic and structured 

review of the literature related to software requirements engineering and CIA up to the 

year 2020. The primary purpose of this study is to gain a comprehensive understanding 

of the existing body of work in these domains. By systematically identifying, 

categorising, and analysing key research contributions, methodologies, and challenges, 

the study highlights research trends, strengths, and gaps. This ensures that the current 

research aligns with established knowledge while addressing overlooked challenges, 

laying the foundation for the proposed research framework. 
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2.17.1. Scope and Limitations 

The mapping study focuses on literature published up to 2020, covering works that 

explore various approaches to managing requirements changes and conducting CIA. This 

includes methods involving dependency analysis, traceability techniques, and 

automation through NLP and ML. However, it is important to note that newer 

advancements, such as Retrieval-Augmented Generation (RAG) systems and Beir-based 

approaches, are excluded as they were introduced after the defined timeframe. While 

these emerging techniques offer valuable solutions, they fall beyond the scope of this 

study. 

2.17.2. Mapping Study Planning and Execution 

To conduct our mapping study, we followed the guidelines and the procedures of the 

evidence-based software engineering paradigm (Kitchenham, B., Budgen, D., & Brereton 

2016). The structure of this review process included defining research questions, 

conducting a search strategy, making a list of related studies, applying inclusion and 

exclusion criteria, developing snowball and manual search for additional relevant 

studies, executing quality assessment, data extraction, data synthesis, and analysis. 

2.17.3. Search Strategy and Data Sources 

Our strategy is composed of two different iterations: primary and secondary search 

strategy. In the primary phase, we identified the main search terms based on our 

research questions. After applying the alternative spelling and synonyms, developed 

search terms were formulated by using Boolean operators (AND, OR, etc.) with search 

keywords to define inclusion and exclusion criteria at the title and abstract. We 

investigated the following two major terms to execute against the title and abstract for 

our searching process: (1) Machine Learning, (2) Software Requirements. The below 

query shows our identified alternative terms and their concatenation to make our 

search string which we applied to the title and abstract. 
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ON TITLE/ ABSTRACT: (("Machine Learning*” OR “ML*”) AND (“Software 

Requirements” OR “Requirements engineering” OR “Requirements elicitation” OR 

“Requirements analysis” OR “Requirements specification” OR “Requirements modeling” 

OR “Requirements documentation” OR “Requirements validation” OR “Requirements 

Management”)) 

The search string was modified to fit the format of different databases. The modified 

search strings applied in the form of automatic searches of selected electronic databases 

and conference proceedings including IEEE Xplore, ACM, Science Direct, SpringerLink, 

ProQuest, and Scopus. To make sure that we did not miss any important and relevant 

papers, we also executed our search query manually in reputable and relevant 

conference proceedings, journals, and workshops websites one by one due to their 

importance in the respective communities. We prepared a replication package including 

the protocol and the details of search strategy and results. A list of all customized search 

strings can be found online in our published replication package: 

https://zenodo.org/records/5036218 

2.17.4. Study Selection Criteria 

In the primary stage, these inclusion criteria were applied: 

• Articles that are related to our research questions  

• Papers that are based on the empirical research method 

• Conference, Journal and Workshop papers  

The papers with the following criteria were excluded: 

• Articles that were not published in English 

• Articles that are not in full text 

• Articles that are reviews or secondary studies 

• Reports, books, book chapters, thesis, general articles, dissertations, editorials, and 

position papers 

• Duplicate results with the same or similar contents from the same authors 

• Articles published before 2010 

https://zenodo.org/records/14568906
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The main reason for the starting date of 2010 is that there has been a surge of 

publications on ML in RE in the last decade and we were interested in more recent work. 

We also reviewed random samples of relevant papers published before 2010. This 

review did not have any significant impact on our findings. 

In this step, we read the titles and abstracts of all studies selected in the primary 

search. We excluded some papers based on the criteria. So, from 5158 papers, only 905 

papers went through the secondary search step. Table 2.1 shows the number of selected 

articles in the primary study before and after applying the exclusion criteria. Following 

the search strategy, we conducted a manual search against the top journals of REJ 

(Requirements engineering journal), ESEM (Empirical Software Engineering), TOSEM 

(Software Engineering and Methodology), TSE (Transactions on Software Engineering), 

ASE (Automated Software Engineering) and IST (Information and Software Technology); 

as well as conferences and workshops including International requirements engineering 

conference (RE), Requirements Engineering: Foundation for Software Quality (REFSQ), 

International conference on software engineering (ICSE), International Workshop on 

Artificial Intelligence for Requirements Engineering (AIRE), Workshop on NLP for 

Requirements Engineering & NLP tool Showcase (NLP4RE) and IEEE International 

Workshop on Artificial Intelligence for Requirements Engineering (AIRE) from 2010 to 

April 2020. As a result, 10 new references were added to our list from these venues.  

Table 2.1.The Number of Resulted Articles 

Database Weblink #After Applying 

Selection criteria 

#Final 

Results 

ACM Digital Library http://dl.acm.org 72 11 

IEEE Explore http://ieeexplore.ieee.org/Xplore 258 10 

Science Direct http://www.sciencedirect.com 3 1 

SpringerLink https://link.springer.com 398 3 

ProQuest  http://www.proquest.com 83 20 
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Scopus https://www.scopus.com 78 15 

Total 60 

In the secondary search phase, we reviewed all the papers identified from the primary 

search. If a paper was found to be relevant, the mentioned inclusion and exclusion 

criteria were applied to filter out irrelevant ones. We then read complete papers to 

make a final decision on their inclusion or exclusion in our mapping study. To complete 

the selection task, we performed snowballing procedure developed by Wohlin (Wohlin 

2014). Based on the Wohin’s guideline we applied backward snowballing iteratively. The 

main purpose of this iteration procedure was to find more relevant studies to include. 

To do that we explored the reference list of the selected studies in backward snowballing 

and examined the title, abstract, publication venue, author information, and full text in 

order to exclude papers that do not fulfill our criteria. This iteration continued until no 

new studies were found. Finally, we collected 12 new studies from reference 

snowballing. 

2.17.5. Quality Assessment criteria 

All selected articles (82 studies: 60 papers from primary search, 12 new studies from 

snowballing, and 10 new papers from a manual search of journals) were assessed for 

their quality to ensure that all outcomes will add a valuable contribution to our mapping 

study. We assessed the quality of selected studies by following steps (Kitchenham, B., 

Budgen, D., & Brereton 2016): 

Step 1: Evaluate article quality - The quality assessment checklist developed by 

Kitchenham (Kitchenham, B., Budgen, D., & Brereton 2016), was independently applied 

to all 82 primary studies. By applying the criteria, four articles did not pass the minimum 

score of 50%, so this step resulted in 78 studies.  

Step 2: Evaluate publisher quality - The quality of each publisher was assessed by ERA 

(Excellence of Research in Australia) ranking of 2018. This evaluation framework is 

meant to give government, industry, business, and the wider community assurance of 

the excellence of research conducted in Australian higher education institutions. The 
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goal of this assessment step was to generate an extensive overview of the kind and 

quality of the resulting papers.  

Total results: After the quality assessment, a total number of 65 papers were selected 

for this mapping study. Figure 2.2 illustrates the overview of the primary studies 

selection process. The full bibliography of these 65 studies can be found in our 

replication package. 

2.17.6. Data Extraction 

To manage citations and references of outcomes, we used Mendeley as a reference 

manager. The information below was collected from the results: 

• Study type (journal, conference, workshop) 

• Name of journal, conference, or workshop 

• ERA rank of conference, journal, or workshop 

• Study aims and objectives 

• Title of the article 

• Authors and Publisher details 

• Publication year 

• Full citation 

• Location (the country where it is situated) 
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Figure 2.2.Selection of The Primary Studies 

• Research method  

• How data was collected and analyzed  

• The study quality assessment 

• Relevance to RQ1, RQ2, RQ3 or RQ4 

2.17.7. Data Synthesis and Analysis 

The data synthesis is based on answering our four research questions. We conducted 

thematic coding and analysis to answer our RQs (Klaus Krippendorff 2018)(Cruzes & Dyb 

2011). While reading the full text of papers, the coding technique was utilized manually 

to find the relevant text in 65 studies. To answer RQ1 we analyzed the findings of all 

selected studies to extract their outcome of used ML algorithms. Based on the 

functionality of algorithms we categorized them into different groups coming from the 

relevant coded text by performing thematic coding and analysis. We extracted the list 

of challenges of using ML in RE to answer RQ2 and we analyzed them based on the 

groups of perspectives that we provided by the included studies. To answer RQ3 we 

reviewed the selected papers to investigate the most popular dataset used in RE tasks. 
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For RQ4 we extracted the information about evaluation metrics and analyzed them 

according to ML tasks in RE. 

2.17.8. Findings 

In this section, we describe the characteristics of our 65 included studies. 

Publication sources- Among the 65 included studies, 40 (61.5%) are published in 

conference proceedings, 8 papers (12.5%) are published in workshop proceedings, and 

the remaining 17 (26%) are journal articles. The majority of these studies are from highly 

reputable outlets. All the papers included in our review were those that provided 

enough info about the research method and hence rated above 50% in the quality 

assessment checklist. 

Publication year and study focus- Figure 2.3 presents the number of publications per 

year from 2010 to April 2020.  

Some of the studies did not explicitly or clearly mention their specific focus. Others 

claimed that their study is useful for a special task, but we have deduced 16 different 

categories for the selected studies according to their mentioned tasks and this is 

presented in Table 2.2. 

From Table 2.2 it can be seen that the task to which ML has been applied the most is 

classification with 12 studies. It shows extra needs and attention to automate the 

classification of requirements written in NL that is not straightforward in the process of 

RE (Abad et al. 2017b). ML has been utilized for many classification tasks like 

differentiating between users’ requirements and software requirements. Requirements 

are often classified as functional (FR) and non-functional (NFR). Hence, separating and 

identifying them manually in SRS documents is a time-consuming task, finding an 

automated and effective approach to distinguish them has been the focus of several 

studies (e.g., (Kurtanovic & Maalej 2017), (Haque, Rahman & Siddik 2019)). Out of 12 

studies focused on classification tasks, classifiers used for identifying both FR and NFR 

((Kurtanovic & Maalej 2017), (Deocadez, Harrison & Rodriguez 2017), (Dalpiaz, 

Dell’Anna, et al. 2019), (Haque, Rahman & Siddik 2019), (Abad et al. 2017a)); to 
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automate the classification of NFRs into sub-categories of usability, availability, or 

performance and to pre-process requirements that standardize and normalizes 

requirements before applying classification algorithms (Abad et al. 2017a); to classify 

NFRs into maintainability, operability, performance, security and usability ((De Bortoli 

Fávero, Casanova & Pimentel 2019); to investigate specific and relevant terms in the text 

(De Bortoli Fávero, Casanova & Pimentel 2019); to divide specification content elements 

into requirements and non-requirements ((Winkler, Gronberg & Vogelsang 2019), 

(Winkler & Vogelsang 2017)); To automate classification task using tools (Hayes, Li & 

Rahimi 2014) to automate user requests in crowdsourcing RE (Li et al. 2018), and finally 

boosting text classification by combining text classification algorithms with semantic 

roles ((Rago, Marcos & Diaz-Pace 2018). 

Our results indicate that a fair share of studies (eight studies) have been proposed to 

address ambiguity. Ambiguity has often been considered a potentially harmful attribute 

of requirements that leads to challenging the projects, so the primary objective of 

reducing the ambiguity is having requirements with only one possible interpretation 

(Boyd, Farroukh & Didar Zowghi 2005).  Eight studies focused on improving the 

requirements extraction task in order to develop an automated solution for requirement 

analysis. Part of the works focused on the identification of efficiently and dynamically 

extract and classify requirements-related knowledge properly ((Shakeri et al. 2019), 

(Memon & Xiaoling 2019)), to extract requirements dependencies (Deshpande, Arora & 

Ruhe 2019), domain model extraction ((Arora et al. 2019), to extract relevant non-

functional requirements (Slankas & Williams 2013), and analyzing the characteristics of 

requirement expressions to divide them into system-level requirements and instance 

level in pre-processing step (Chen et al. 2010).  

The objective of validation was addressed in four studies by automation of fault-

consolidation step (Singh et al. 2018)) and proposing a framework to overcome 

inconsistencies for the optimal definition of software development sprints (Belsis, 

Koutoumanos & Sgouropoulou 2014)). The main goal of validation is to ensure that all 

the documented requirements are correct, complete, and consistent, the designed 
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solution meets the requirements, and a real-world solution to be built and tested to 

prove that it meets the requirements (Maalem & Zarour 2016). 

Five studies focused on quality assessment from different perspectives. (Ferrari, Gnesi 

& Tolomei 2013) analyzed the structure of the document in the way it is perceived by 

the reader, while (Parra et al. 2015) assessed the quality of requirements automatically 

according to the quality criteria posed by the domain expert. (Tamai & Anzai 2018)

automated the process of filtering out QR statements from an SRS and classifying them 

into the quality characteristic attributes as defined in the ISO/IEC 25000 quality model. 

(Dargan, Wasek & Campos-Nanez 2016) defined quality factors to assess, while (Hayes 

et al. 2015) addressed requirement testability for understandability and quality. Only 

one study focused on each of these topics: verification, model transformation, predict 

vulnerabilities, specification, and identifying business requirements while two studies 

focused on security and change requests.  

According to the data extraction from our set of 65 papers, in this section, we describe 

our findings to answer the RQs.
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Rahimi 2014), (Kurtanovic & Maalej 2017), (Li et al. 2018), (Rago, 

Marcos & Diaz-Pace 2018), (Winkler & Vogelsang 2017), (Winkler, 

Gronberg & Vogelsang 2019) 

Requirements 

Extraction 

(Shakeri et al. 2019), (Deshpande, Arora & Ruhe 2019), (Chen et al. 

2010), (Memon & Xiaoling 2019), (Slankas & Williams 2013), 

(Vogelsang & Borg 2019), (Wang 2015), (Arora et al. 2019) 

8 

Ambiguity 

(Osman & Zaharin 2018), (Richa Sharma, Bhatia & Biswas 2014), 

(Sharma, Sharma & Biswas 2016), (Yang et al. 2011), (Yang et al. 2010), 

(Dalpiaz, van der Schalk, et al. 2019), (Pal, Sandhu & Pal 2015), (Ferrari 

& Esuli 2019) 

8 

Analysis/ 

Management 

(Wang 2016), (Knauss et al. 2015), (Abualhaija et al. 2019), (Osman 

et al. 2019), (Wang & Zhang 2016), (Misra, Sengupta & Podder 2016) 
6 

Traceability 

(Sultanov & Hayes 2013), (Li et al. 2017), (Wang, Li & Yang 2019), (Li 

& Huang 2018), (Mezghani & Florence 2019), (Hayes, Payne & 

Leppelmeier 2019) 

6 

Quality 
(Ferrari, Gnesi & Tolomei 2013), (Parra et al. 2015), (Tamai & Anzai 

2018), (Dargan, Wasek & Campos-Nanez 2016), (Hayes et al. 2015) 
5 

Validation 
(Nardini et al. 2012), (Singh 2018), (Singh et al. 2018), (Baker et al. 

2019) 
4 

Prioritization 
(Dhingra et al. 2017), (Singh & Sharma 2014), (Perini, Susi & Avesani 

2013), (McZara et al. 2015) 
4 

Risk Management 
(Avesani et al. 2015), (del Águila & del Sagrado 2016b), (Yang et al. 

2012) 
3 

Change requests (Khelifa, Haoues & Sellami 2018), (Arora et al. 2015a) 2 

Security (Malhotra et al. 2016), (Riaz et al. 2014) 2 

Verification (Winkler, Gronberg & Vogelsang 2019) 1 

Model 

Transformation 
(Chioaşcǎ 2012) 1 
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• ML techniques/algorithms have been used in RE 

In our analysis, we note that the words ‘technique’ and ‘algorithm’ are used 

interchangeably. A total of 48 different ML algorithms were identified in our selected 

studies. We classified the algorithms into eight principal groups based on their 

functionality: Distance-based Methods, Regression, Decision Tree, Bayesian, Kernel 

Methods, Associated Role Learning, Ensemble Methods, and Artificial Neural Networks. 

We do not claim to cover all the existing methods exhaustively, rather we present those 

that are more frequently utilized. Figure 2.4 shows the distribution of algorithm types 

based on functional similarity. Analysis of results revealed that Kernel Methods, 

Bayesian and Distance-based are the most popular categories of algorithms, as they 

were used within 29 and 25 studies, Ensemble Methods is the second in the list with 23, 

Decision Tree with 21 and finally Artificial Neural Networks, Regression and Associated 

Role Learning with 12, 9 and 3 respectively. The distributions of each category type are 

available in our replication package. Figure 2.5 presents a visualization of the data 

regarding reported ML algorithms used in different studies. Support Vector Machine 

(SVM) is the most frequently used algorithm that has been employed in 17 studies. The 

second most used is Naive Bayes (NB), investigated in 14 papers, followed by K-Nearest 

Neighbors (KNN) in 11 studies, Decision Tree, and Random Forest in 10 and 8 papers 

respectively.  

At least 4 studies have used the combination of different algorithms to improve the 

accuracy of the results, algorithms’ strengths and overcome their limitations (e.g., 

(McZara et al. 2015), (Rago, Marcos & Diaz-Pace 2018), (Riaz et al. 2014), (Wang, Li & 

Predict 

vulnerabilities 
(Imtiaz & Bhowmik 2018) 1 

Specification (van Rooijen et al. 2017) 1 

Identifying business (R. Sharma, Bhatia & Biswas 2014) 1 

In Total  65 
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Yang 2019)). (McZara et al. 2015) presented a semi-automated approach for challenging 

task of requirements prioritization in large scale projects by using NLP tools and an SMT 

(Satisfiability Modulo Theories) solver. They mitigate the challenges of variation outputs 

by updating the input of the SMT solver with iterative pairwise comparisons. In (Rago, 

Marcos & Diaz-Pace 2018), the researchers improved the accuracy of their classifier by 

combining the binary relevance and SVM. (Riaz et al. 2014) presented a tool-assisted 

process, Security Discoverer (SD) by combining K-NN classifier, Sequential Minimum 

Optimizer (SMO), and Naïve Bayes classifiers after comparing the accuracy of other 

potential classifiers. (Wang, Li & Yang 2019) proposed a hybrid approach of ML and 

Logical Reasoning to improve the feature-engineering process to recover requirements 

traceability recovery. 15 studies have employed several algorithms to just compare 

them to determine which one outperforms the others based on the specific Dataset-Or 

different datasets in their domain ((Abad et al. 2017a), (Baker et al. 2019), (Dargan, 

Wasek & Campos-Nanez 2016), (Deshpande, Arora & Ruhe 2019), (Haque, Rahman & 

Siddik 2019). (Imtiaz & Bhowmik 2018), (Osman & Zaharin 2018), (Parra et al. 2015), 

(Riaz et al. 2014), (R. Sharma, Bhatia & Biswas 2014), (Sharma, Sharma & Biswas 2016), 

(Singh 2018), (Singh et al. 2018), (Slankas & Williams 2013), (Wang & Zhang 2016)). 4 

studies proposed methods or techniques by modifying either one or a mix of algorithms 

to improve the accuracy of results or enhance and optimize the automated models 

((Arora et al. 2019), (Li et al. 2018), (Perini, Susi & Avesani 2013), (Ferrari, Gnesi & 

Tolomei 2013)). 

As for classification, clustering, and regression approaches, 48 studies used just 

classification, 8 studies used clustering, 3 of these 8 studies used only clustering ((Baker 

et al. 2019), (Ferrari, Gnesi & Tolomei 2013), (Misra, Sengupta & Podder 2016)) while 

the other 5 studies ((Richa Sharma, Bhatia & Biswas 2014), (Sharma, Sharma & Biswas 

2016), (Mezghani & Florence 2019), (Abad et al. 2017a), (Winkler & Vogelsang 2017)) 

used the combination of clustering and classification. Five studies did not mention a 

specific algorithm, the authors mentioned that they used ML techniques in some steps 

of their methodology ((Chen et al. 2010), (Memon & Xiaoling 2019), (Osman et al. 2019), 

(Dalpiaz, van der Schalk, et al. 2019), (Pal, Sandhu & Pal 2015)). All the 8 studies that 

used Regression categories of BLR, Logistic Regression, and SGD ((Imtiaz & Bhowmik 
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2018), (Osman & Zaharin 2018), (Singh et al. 2018), (Abualhaija et al. 2019), (Singh 2018), 

(Arora et al. 2019), (Winkler & Vogelsang 2017), (Dargan, Wasek & Campos-Nanez 

2016)), have employed them as classifiers.

From the ML perspective, the essential steps required to apply ML techniques include 

(1) data collection, (2) data pre-processing, (3) building an ML model, (4) training and 

testing the model, and (5) evaluation. Figure 2.6 shows the distribution of the algorithms 

applied in step 3 building ML models. 

In terms of using NLP algorithms in selected studies, we retrieved 40 studies that used 

one or more NLP algorithms in a total of 31 different algorithms across reported studies. 

The most commonly investigated NLP technique is the tokenization with part of speech 

(POS) tagging with 23 studies, followed by chunking and TF- IDF with both in 7 studies. 

Two papers did not mention the name of the used algorithms; only reported text-mining 

techniques ((Osman & Zaharin 2018), (Deocadez, Harrison & Rodriguez 2017)). 

•

For effective use of ML capabilities in software and applications, it is very important 

to identify the challenges faced in the process of designing suitable ML solutions. 

Knowing the possible issues and challenges and how to address them can help the 
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researchers and analysts to benefit from the usefulness of ML. As a key finding of our 

analysis, the challenges extracted from selected studies were divided into six main 

categories: data related, task related, algorithm related, project related, language 

related, and other challenges. Figure 2.6 demonstrates the frequency of ML challenges 

in the included articles. 

A. Data-related: 

Since many ML strategies are focused on gaining from large datasets, the success of 

ML based research projects strongly relies upon data accessibility, quality, and 

management (Durelli et al. 2019) (Polyzotis et al. 2017). Data related problems were 

faced by 35 studies. In fact, this result was expected, since ML is a method that almost 

always requires data. One of the most important barriers in this category is the lack of 

data. Unfortunately, data is not free or always relevant. The availability of large datasets 

and possibly, the annotated Dataset-Is reported to be a major problem ((Singh 2018). 

An ML algorithm needs a large amount of data to train (Singh 2018). Specifically, deep 

learning algorithms need to be trained on large amounts of data to draw meaningful 

insights ((De Bortoli Fávero, Casanova & Pimentel 2019)). In a more complex project, 

more data is required to achieve trustable results. So, when limited datasets do not 

represent all possible situations, the results are not trustable (Shakeri et al. 2019). 

(Tamai & Anzai 2018) explained that the authors faced difficulty in collecting more SRS 

from a variety of areas that are large enough to use deep learning. Similarly, (Osman & 

Zaharin 2018) reported that the result of their study cannot be generalized to all systems 

because the data used were gathered from just four SRSs that only represent several 

system domains and limited patterns on requirement specification formation. The 

incomplete nature of the source corpus is also the outcome of limited data which will 

affect the accuracy of results (Yang et al. 2012). Imbalanced classes were mentioned in 

the data scope in ML especially in the classification. It occurs in datasets with a 

disproportionate ratio of observations in each class. 12 studies mentioned this problem.  

The other challenges that we identified in the data category were overfitting/ 

underfitting (5 studies), followed by labeling issues (3 studies), dependency issues, 

missing datasets, size of data set, data quality issue, all with 2 studies and the issue of 
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selecting training set with 1 study. Concerning labeling issues, especially for some 

techniques like neural networks that need a large amount of data to train, it is not 

possible to manually check the dataset to determine labels are correct. When different 

people work on an SRS, samples in the dataset may be labeled differently (Winkler, 

Grönberg & Vogelsang 2019) and the important distinction between quality 

requirements and constraints is not properly reflected in the labeling (Abad et al. 

2017a). The issue of the missing data may arise when the data is collected from users’ 

feedbacks or questionnaires since some of the questions may not have been answered. 

Although there are some approaches to overcome this such as approximating the null 

values or calculating the maximum likelihood to minimize the error, all of them need 

time and effort (Baker et al. 2019).  

The main purpose of a reliable ML model is to generalize well to different domains and 

new data that is evaluated for its performance over time as it is learning from training 

data. An ideal model should not suffer from overfitting or underfitting. Three studies, 

(Winkler, Grönberg & Vogelsang 2019), (Yang et al. 2012), and (Winkler & Vogelsang 

2017) reported overfitting issues due to using a relatively small dataset. Overfitting is 

the case when the model produces excellent results on the training data set but cannot 

be employed on any unseen data at an acceptable accuracy level. (Rago, Marcos & Diaz-

Pace 2018), (Kurtanovic & Maalej 2017) mentioned an underfitting problem that occurs 

where the model is too simplistic and has not learned enough from the training data. 

For example, a model trained on fewer or unrepresentative features. 
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B. Task-related 

In this category, we present the challenges that are related to specific ML based tasks 

such as classification or regression that were reported by 10 papers. Five studies 

reported classification problems and misclassification errors for both binary and multi-

label classification ((Abualhaija et al. 2019), (Dalpiaz, Dell’Anna, et al. 2019), (del Águila 

& del Sagrado 2016b), (Wang, Li & Yang 2019), (Shakeri et al. 2019)) that involve 

predicting a class label for a given set of inputs. Although solutions have been offered to 

address these challenges, not all studies have utilized these solutions. Generally, the 

main goal is to train a model with accuracy more than humanly possible. Since a wrong 

prediction during classification (such as true-fault being classified as false-positive), 

would lead to fault slippage that will propagate to later phases. It is expected that by 

using ML algorithm, the highest rate of accuracy can be achieved (Singh 2018). 

Misclassification may be caused by errors in the classification process of the 

requirements by the experts because the classifier can learn incorrect classification and 

replicate the error in the classification of new requirements ((Parra et al. 2015), (Riaz et 

al. 2014)). Misclassification can also manifest itself during classifying specification 

elements into requirements and non-requirements (Winkler, Gronberg & Vogelsang 

2019). Even different ideas on grouping classes and naming them may cause 

misclassification as noticed in (Li et al. 2018). The authors worked on the types of user 

requests as classification targets. They classified user requests manually and they 

mentioned that labeling a large set of data is cumbersome, so using active learning 

techniques might be better. They also reported that investigating the appropriate 

features to represent document items and ML algorithms to train the classifier was a big 

challenge for their approach. 

C. Algorithm- related 

In terms of algorithm related challenges, two studies reported the black box nature of 

ML classifiers like SVM or Neural networks making these algorithms difficult to 

understand. To overcome this challenge (Dalpiaz, Dell’Anna, et al. 2019) employed two 

interpretable tools called RuleMatrix and SkopeRules to facilitate the interpretation of 

ML classifiers by extracting logical rules. RuleMatrix shows which rules are applied to 
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the data by visualizing them so, it helps to understand, explore, and validate predictive 

models. (van Rooijen et al. 2017) noted that although their selected method had the 

black-box problem, in their case due to the lack of methods to learn more about a given 

problem instance, there was no issue to select a black-box optimizer. The authors of 

(Slankas & Williams 2013) reported that their proposed approach, NFR Locator, is 

suitable to extract information from text documents. It is not able to extract information 

from images or tables. 

The structure of text documents might be classified into the NFR category, so they had 

to parse the files in their native format to distinguish the structural parts such as titles, 

section lists, etc. The other challenge investigated in (Ferrari, Gnesi & Tolomei 2013) is 

the necessity of tuning algorithm behavior. They aimed to identify the hidden structure 

of requirements documents in terms of requirements relatedness and section 

independence. Sometimes, their algorithm reported dependency among sections that 

were not related according to the perception of the readers. Moreover, (Chen et al. 

2010) reported that although their approach in pre-processing text-based requirements 

is suitable for goal-oriented requirements, it cannot be used to extract business rules. 

The authors claimed that the sentence patterns that are describing business rules are 

more complex than the domain sentence pattern. Regarding using the semantic role 

labeling method, (Wang 2016) mentioned that the corpus for SLR tasks in SE domain is 

very few, so they need to use the other domain knowledge as rules to improve the 

results. (Dalpiaz, van der Schalk, et al. 2019) reported that to reach better results and 

higher precision in their approach, they need to go beyond domain-independent 

corpora and use domain-specific information. 

D. Project-related 

In this category, we present the project-specific challenges that impose a limit or 

restriction or that prevent approaches from generalizability. Four studies explicitly 

mentioned the need for further experiments in other domains, especially with the help 

of domain experts to determine whether their approaches and tools can be generalized 

((Ferrari, Gnesi & Tolomei 2013), , (Dalpiaz, van der Schalk, et al. 2019), (Knauss et al. 

2015)). Moreover, proposed approaches need to be applied to different scenarios and 
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multiple industry-scale projects (Baker et al. 2019). Although this leads to significant 

costs, it helps to reach a full evaluation (Knauss et al. 2015). 

One study (Dalpiaz, van der Schalk, et al. 2019) that focused on the expectation of 

users and stakeholders mentioned that even accurate algorithms and tools need a 

sufficient level of maturity. This is because any proposed tool that exhibits low usability 

and contains bugs may decrease the interest in applying them in real projects. 

E. Language-related 

The last challenge is related to the writing of the requirements including spelling 

mistakes, structural effectiveness, terminology and vocabulary, and language that have 

been addressed in six articles. Automated classification of requirements into functional 

requirements and non-functional requirements remains a challenge (Ernst & 

Mylopoulos 2010). Stakeholders, as well as requirements engineers, use different 

terminologies and sentence structures to describe the same kind of requirements. The 

high level of inconsistency in documenting requirements makes automated 

classification more complicated and therefore error-prone (Abad et al. 2017b). 

Furthermore, the requirements reviews are written in NL that inherits the scope to 

spelling mistakes (Singh et al. 2018). NL understanding relies on the specification readers 

and writers using the same words for the same concept. This leads to misunderstandings 

because of the ambiguity of NL that is often not discovered until later phases of the 

software process and may then be very expensive to resolve. To overcome these 

problems, writing effective and high-quality requirements will lead to an accurate ML 

result (Singh 2018). Requirements originating from different documents may be quite 

different in terms of language and terminology. In other words, documents may contain 

domain-specific words which are exclusively used in that particular document (Winkler, 

Grönberg & Vogelsang 2019). Moreover, variations may exist between the security 

requirements of software systems, even in the same domain. Thus, the selection of 

documents may influence the type and frequency of identified security-relevant 

sentences (Riaz et al. 2014). Most of the ML research have used requirements that are 

written in English and so there is a bias about generalizing the results to the 

requirements written in other languages (Deocadez, Harrison & Rodriguez 2017). There 
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are also issues related to NLP-models being more accurate and readily available for 

English, as compared to other languages. In addition, investigating if a requirement is 

speculative or not is not an easy task, which is due to the peripheral nature of 

uncertainty language (Yang et al. 2012). 

F. Other challenges 

There were other challenges that we extracted from the included studies that did not 

fit under the above main five categories. For example, since requirements often change 

over time, another challenge is the stability of requirements. Clients might modify 

requirements, so fluidity in software requirements becomes a major problem (McZara 

et al. 2015). Although this is a common problem in RE, when the ML technique is used 

in this process, it becomes a more significant challenge because the model needs to be 

trained again when the requirements change.  Besides, this will be an issue if the labeling 

changes with changes in requirements. 

Negotiation barriers between the client and business analyst or developer on different 

grounds such as language, not using consistent terms, and making assumptions about 

ambiguous requirements is another major challenge that exists in RE tasks (Parra et al. 

2015). 

 

 

• Identification of datasets used for ML in RE  

Investigating the applied datasets and their associated properties allows us to 

determine to what extent we can rely on the performance results, and it can provide 

new insights into why some ML techniques may outperform others. 

As discussed above, the top challenge in implementing ML techniques in RE is related 

to datasets. Since ML algorithms are quantitative, the success of ML related research 

projects strongly depends on having a large enough dataset (Ferrari, Spagnolo & Gnesi 

2017). Many different datasets have been used in the included studies. The terminology 

used by the authors to describe the type of documents involved in the research were of 
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varying degrees of abstraction and level of details, e.g., requirements documents, 

requirements specification, textual requirements, operational requirements, SRSs 

documents, system-related documents, user requirements, high-level requirements, 

and low-level requirements. Some studies used real-world datasets while others used 

sample data that are shared in open-source repositories to use by researchers.  

 To answer this research question, we looked at the frequency of datasets, the type of 

data, their organization, and the number of requirements statements in each study. 

 According to the results, 10 studies did not report any information about their 

dataset. The number of used datasets varied from 1 to 22. Out of the remaining 54 

studies, 22 studies used just one unique dataset, while the biggest number of datasets 

belongs to (Hayes, Li & Rahimi 2014) by 22 different datasets with a total of 2067 user 

stories. The reason why they selected 22 datasets was that their research was based on 

their previous paper that used a single dataset, so they were motivated to increase the 

number of datasets to get more in-depth results and to increase generalizability. The 

second largest is for (Tamai & Anzai 2018) by 13 datasets from local governments or 

other public institutions of industry, medical information, education, library, etc. in 

Japan totaling 11,538 requirements sentences. The trend of frequency was followed by 

nine and eight datasets that were used in (De Bortoli Fávero, Casanova & Pimentel 2019) 

and (Dalpiaz, Dell’Anna, et al. 2019) respectively.  The textual requirements in (De 

Bortoli Fávero, Casanova & Pimentel 2019) were collected from 16 large open-source 

projects in repositories that contained 23,313 user stories. In (Dalpiaz, Dell’Anna, et al. 

2019), data was gathered from eight datasets of PROMISE, ESA Euclid, Dronology, 

ReqView, and Leeds University’s Library online management system, Web Architectures 

for Services Platforms (WASP) application and two private datasets of Helpdesk system 

and bespoke user account request and management application (User mgmt.). A 

considerable number of datasets in this review were reported by (Deocadez, Harrison & 

Rodriguez 2017) about user reviews. The authors collected data from the App Store in 

2015. Since they considered the top paid and free apps from different categories of 

books, education, games, health, lifestyle, navigation, news, productivity, travel, and 
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utilities, they reached 40 apps with a total of 932,388 reviews. The remaining pairs of 

studies (16 studies) considered three datasets or fewer. 

As for the frequency, we observed that the most frequently used Dataset-Is PROMISE1 

that is an open-source Software Engineering Repository that includes a collection of 

publicly available datasets and tools for researchers ((Shakeri et al. 2019), (Slankas & 

Williams 2013), (Malhotra et al. 2016), (Khelifa, Haoues & Sellami 2018), (Abad et al. 

2017a), (Baker et al. 2019), (Dalpiaz, Dell’Anna, et al. 2019), (Haque, Rahman & Siddik 

2019)). It was inspired by the UCI Machine Learning Repository, which has been 

extensively used by researchers in that field. The second frequently utilized Dataset-Is 

Pine by 3 studies ((Sultanov & Hayes 2013), (Li et al. 2017), (Li & Huang 2018)) followed 

with NASA CM-1 by 2 studies ((Sultanov & Hayes 2013), (del Águila & del Sagrado 

2016b)). Pine is a text-based email system developed by the University of Washington 

that includes true links, high-level and low-level requirements (Sultanov & Hayes 2013). 

NASA MDP repository includes different datasets which CM1SUB project that concerns 

a scientific instrument to be carried on-board a satellite was addressed in our selected 

studies.  

When extracting data about the types of documents that were used as a data source 

for studies, we observed that they include functional requirements, non-functional 

requirements, high level, and low-level requirements, Operational Test Reports, user 

stories, Wikipedia Pages, design documents, textual use cases, code modules (classes), 

correct links, user comments (reviews), user requests and change requests. 

Regarding the domain of datasets, healthcare and medical data were used as a data 

source by 10 studies. Some of these datasets are open source while the others are 

private. (Slankas & Williams 2013) reported the use of OpenEMR2 that is one of the 

popular open-source electronic health records and medical practice management 

solutions. The other healthcare repository is iTrust that was used by (Slankas & Williams 

 

1 http://promise.site.uottawa.ca/SERepository/ 

2 https://www.open-emr.org/ 

http://www.ics.uci.edu/~mlearn/MLRepository.html
http://promise.site.uottawa.ca/SERepository/
https://www.open-emr.org/
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2013), is a medical application that maintains patient medical history and records and 

permits communication with doctors. It consists of 59 use cases and 11 code modules. 

It was written in Java.  

Industrial data was utilized by 10 studies. Nine studies built their requirements corpus 

by collecting data from academics and educational domains. Our results indicate that 

twenty of the studies concerned external corpus as an external reference for the English 

language for NLP. The most frequently used external corpus is Wordnet3 by 11 studies. 

The next most used corpus is Wikipedia pages that were utilized in six studies. BNC164  

(British National Corpus) was used by two while VerbNet was used by one study. 

Concerning the language of datasets, all are in English except for (Wang, Li & Yang 2019) 

and (Tamai & Anzai 2018). eTour dataset that was used by (Wang, Li & Yang 2019) is in 

Italian. It is an electronic touristic guide developed by students in Italy that contain 58 

use cases, 174 classes, and 366 correct links. In (Tamai & Anzai 2018) all 13 SRSs that 

contained 11,538 requirements sentences were in Japanese. 

Since the size of datasets was not reported in all studies, we must categorize them 

according to the number of documents or sentences as small, medium, and large size. 

We considered datasets more than 20,000 samples as large, between 1000 and 20,000 

as medium, and less than 1000 as small. The largest dataset used by (Deocadez, Harrison 

& Rodriguez 2017) is 932,388 user reviews carried out of 40 different apps from the app 

store. The other significant size belongs to (Winkler, Gronberg & Vogelsang 2019) 

dataset that includes 35000 pre-labeled content elements (20000 requirements and 

15000 non-requirements). The second largest utilized one is for (Winkler, Grönberg & 

Vogelsang 2019) and (De Bortoli Fávero, Casanova & Pimentel 2019) by 27,000 

requirements from an automotive domain and 23,313 user stories from 16 large open-

source projects in 9 repositories respectively. Out of the 54 datasets, 11 datasets were 

of unknown size, 22 (about 50 percent) were small and 4 datasets were considered large. 

 

3 https://dumps.wikimedia.org/enwiki/ 

4 http://www.natcorp.ox.ac.uk/ 

https://dumps.wikimedia.org/enwiki/
http://www.natcorp.ox.ac.uk/
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2.17.9. Evaluation metrics for ML approaches in RE 

Evaluation metrics play a critical role in achieving the optimal ML model by qualifying 

its performance (B.Hossin & Sulaiman 2015). Since the performance of ML algorithms 

may be affected by tasks and domains, the evaluation metric has been employed to 

decide on which technique is the best match by comparing different techniques offline. 

It should be noted that selecting an incorrect evaluation metric can lead to select an 

unmatched algorithm so, the selection of a suitable metric is an essential part of any 

project to discover whether or not the performance is effective. (Gunawardana 2009). 

Performance evaluation is tricky for many NLP tasks since there is not easily agreeable 

“ground truth” or “gold standard”. Proper performance evaluation is the subject of 

much community discussion and even a research topic in its own right. Understanding 

the proper performance evaluation and performance metrics is very important to make 

informed business decisions. 

Out of 65 selected studies, 42 articles used evaluation metrics to determine the 

performance of the used algorithms or to investigate which algorithm outperformed the 

others in terms of accuracy. We categorized the evaluation metrics employed by the 

selected studies into three categories of use for classification, clustering, and regression. 

Concerning classification tasks, precision and recall are the most used metrics employed 

by 38 studies followed by F1-measure by 29 and Accuracy by 15 studies. Requirements 

engineering has adopted information retrieval metrics including precision, recall, and 

the F-measure, to assess the effectiveness of any techniques or tools as well as using 

them to develop applications for RE tasks (Berry et al. 2017). For imbalanced 

classification when recall and precision are not equally important, a weighted F-measure 

called Fβ-measure can be used. The result shows that only one study (Winkler, Gronberg 

& Vogelsang 2019) used both of them to evaluate and optimize their classification tools. 

The authors tried to carry out a reasonable value for β and to tune the tool by this value. 

In NLP tools, recall is going to be more important than precision so tool assistance in the 

RE should be evaluated by a weighted F-measure (Berry et al. 2017). 

 In terms of validation, some authors, such as (Osman & Zaharin 2018), (Yang et al. 

2010), (Abad et al. 2017a), (Winkler, Gronberg & Vogelsang 2019), (Deshpande, Arora & 
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Ruhe 2019), (Sharma, Sharma & Biswas 2016), (Abualhaija et al. 2019), (Dalpiaz, 

Dell’Anna, et al. 2019), (R. Sharma, Bhatia & Biswas 2014), (Li et al. 2017) (10 studies) 

employed K-fold cross-validation to assess how the classifier will generalize to an 

independent data set that is used to determine the performance of the predictive model 

to check whether a model is overfitting. The main goal of validation in classification tasks 

is to determine how well the classifier will perform on unseen data (Williams, Zander & 

Armitage 2006). Even though 37 studies used precision and 15 used accuracy to 

discriminate the optimal solution especially for their classifiers, prior studies were 

concerned about using popular metrics. Hossin et al. (B.Hossin & Sulaiman 2015) 

explained that accuracy still has several instabilities which are less distinctiveness, less 

discriminability, less informative, and bias to majority class data. Menzies et al. (Menzies 

et al. 2008) argued that accuracy and precision are poor indicators of performance for 

data where the target class is so rare. Figure 2.7 shows the distribution of evaluation 

metrics for the classification task. Only 10 different metrics were reported to evaluate 

the quality of the clustering. Figure 2.8 illustrates the distribution of evaluation metrics 

for the clustering task.   

2.17.10. Discussion 

The results presented from this mapping study reveal that many different ML 

algorithms have been applied to RE tasks to improve accuracy and to automate, among 

other goals. 

 Our analysis shows that we currently do not have any standards or guidelines to help 

analysts select the most suitable ML and NLP techniques. Furthermore, it appears that 

most studies combine various ML techniques in their research to tackle the existing 

challenges. However, hardly any of them explain the reason for choosing their selected 

ML algorithms. We believe that it is not clear what kinds of selection criteria have been 

applied or need to be considered. In addition, two papers discussed steps such as 

hyperparameter optimization, and feature engineering. This also shows that we do not 

have a standard template for applying ML on RE problems.  
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By taking a closer look at the reported datasets and repositories, our concern is how 

do we decide which Dataset-Is the best match for any ML model? Does the size of the 

dataset matter? It is not clear when selecting a Dataset-What sort of criteria should be 

applied. We could not find any quantitative or qualitative checklist to assess the selected 

datasets. There is no consensus on standard guidelines in the literature for deciding on 

the choice of dataset. Some studies reported that their results cannot be generalized 

because their approach needs to be tested on larger scenarios and need to be applied 

in other domains to improve the results. It is not clear if there is any relationship 

between the size of the datasets and the specific domain for their application. We 

believe that these concerns and questions need further research.
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2.17.11. Emerging Trends and Future Directions 

While our systematic mapping study focuses on literature up to 2020, the past few 

years have seen rapid advances in large language models (LLMs) that open new 

opportunities for CIA. State-of-the-art models such as GPT-4, LLaMA, and PaLM 

demonstrate remarkable capabilities in understanding complex, domain-specific text 

and synthesizing context-rich responses. Future research should explore fine-tuning 

these LLMs on requirements-engineering corpora, as well as hybridizing them with 

knowledge‐graph and ontology embedding techniques to capture both procedural and 

semantic dependencies. Incorporating such recent LLMs could yield more accurate 

impact predictions and enable zero- or few-shot adaptation to novel project artifacts, 

thereby extending the dynamic adaptability of our framework beyond the 2010–2020 

window. 

Moreover, retrieval-augmented generation (RAG) offers a powerful synergy for CIA 

tasks. By first retrieving semantically relevant passages, anchored in a structured index 

of requirements, design documents, and change-request metadata, and then 

conditioning an LLM on these contextual snippets, RAG dynamically adapts its 

generation to the precise project context. This two-stage loop not only grounds 

predictions in verifiable sources (improving explainability) but also enables the model to 

update its “knowledge” in real time as new artefacts are added. Empirically, we 

anticipate this will reduce false positives in impact candidates and enhance resilience to 

evolving terminology and process changes—key challenges identified in our mapping 

study. 

2.17.12. Threats to validity 

The main validity threat for this mapping study is data collection. Although we chose 

our search string carefully and carried out a structured and detailed review of each of 

the selected studies, there is a chance that our collection is not complete because of the 

risk of not including all relevant studies. Some of the papers may have been written in 

another language or maybe not be available online. Therefore, we might have missed 

some significant research papers. The other validity threat is related to data extraction 
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because some primary studies did not report a precise explanation of their focus, their 

used methods, and data sources. In terms of ML challenges, we observed a lack of a 

clear definition of how they tackled the existing challenges. Consequently, this imitation 

might affect our outcomes. A possible limitation of our mapping study is related to the 

starting date of 2010. The main reason was to investigate the most recent ML for RE 

methods and algorithms. To ensure that all relevant studies were located, we manually 

applied our search string to some of the data sources before 2010 randomly and the 

number of papers found was insignificant. 

2.18. Summary 

This mapping study has provided an overview of the existing approaches in ML used 

for tasks in the RE process. We have presented the results from the analysis of 65 

empirical studies published from 2010 to April 2020. The key findings of this mapping 

study indicate that there are at least two main gaps in literature, one is about selection 

criteria for ML techniques and the other is that more research is needed to investigate 

the relevance and appropriateness of datasets for the ML models. Another possibility is 

an online repository of ML features engineered in different classification approaches. 

This will probably be saturated at some point if the classification task is directly on the 

requirements statements or attributes related to SRS. Having such a feature repository 

will also guide future research on ML for RE. 

In order to attain a detailed overview of the current state of using the proper dataset 

to obtain a reliable result, complete criteria need to be developed to assess which 

Dataset-Is the best match for which models. It would be beneficial to investigate how 

we can decide on the relevance of the dataset to our ML algorithms. Typically, today's 

software applications work in a competitive environment where business priorities 

frequently change. Therefore, software requirements are constantly evolving, and new 

requirements often emerge. The ability to analyze a change in requirements, predict its 

progression, and determine the effect early in the design process would enable 

engineers to make better decisions about the implementation of changes, especially in 

large scale projects. What is important to note here is that CIA has not been the direct 
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focus of any ML for RE studies and it is the missing piece in the research literature. 

Besides, not enough research has been carried out in prediction modeling in RE and it is 

an area that is under-explored. In parallel with our mapping study, another study has 

been conducted as a systematic mapping study by L. Zhao et al. (Zhao et al. 2020) about 

NLP for RE that surveys the landscape of NLP for RE research to understand the state of 

the art and identify open problems. This study strengthens some of our findings but 

differs from our review on one point. Their mapping study only focuses on NLP while 

our work is about ML in RE. Since ML is a generic term that may also include NLP and 

deep learning techniques, there are clearly some overlaps between their selected 

studies and ours, but we compared, we noted that 46 studies that were included in our 

mapping study were not on their list of selected studies (Zhao et al. 2020).  
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Chapter 3.  

Software Requirements Change Impact Analysis 

(SRCIA) Framework  

 

 

 

 

 

3.1. Introduction 

In this chapter, the SRCIA (Software Requirement Change Impact Analysis) framework 

developed for this research is outlined, focusing on the systematic integration of 

traditional ML, NLP, Beir and RAG models. These models work together to address the 

challenges associated with CIA in software requirements engineering (SRE). The 

challenges are specified in chapter 2 section 2.5. 

The data sets used in this research are also introduced in this chapter, as they form 

the foundation upon which all models and approaches are applied. By consolidating the 

core framework and the data in one place, this chapter provides the essential 

groundwork that will be referenced throughout the rest of this thesis. 

The research is structured in a way that builds upon the lessons learned from earlier 

stages, gradually advancing toward more sophisticated solutions. This incremental 

approach ensures that each solution is tested and validated against real-world datasets, 

ultimately leading to a comprehensive, adaptable framework for CIA. 
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The framework proposed in this research is designed to automate and improve the 

prediction of software requirements changes' impact. This architecture integrates 

multiple stages of the CIA process, enabling a flexible and modular approach to its 

implementation. 

Figure 3.1 illustrates the visual representation of the comprehensive workflow of the 

SRCIA framework, detailing the process from initial data collection and preprocessing of 

requirements documents and change requests, through the preparation of datasets, to 

the ultimate evaluation of impacted requirements within the SRCIA process, culminating 

in an approval or disapproval decision

Figure 3.2 illustrates a more granular look into the internal structure of the proposed 

framework, from data input to model output, highlighting the interplay between the 

different components of the framework corresponding to each CIA stage. This flowchart 

provides a visual guide to the system's architecture and how each stage contributes to 

overall functionality. At its core, the SRCIA framework employs multiple stages of 

analysis, incorporating traditional ML models, advanced NLP techniques, and the latest 

developments in LLMs to ensure the system can handle a wide range of use cases, from 

basic change impact predictions to more complex, context-aware scenarios. 
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The data flows through the following components:

The first phase of the framework involves gathering data from diverse sources, 

including project specifications, requirements documents, change logs, and historical 

project data.

The collected data is then preprocessed using NLP techniques to standardize and 

cleanse the text, ensuring that it is ready for further analysis. 

The framework incorporates ML model, a dual-model of NLP and Beir benchmark-

based solution and a RAG model (that uses the advanced text generation abilities of 

LLMs) to predict changes.

The core function of the framework is to predict which requirements will be impacted 

by a given change. It returns the most likely affected requirements. These results are 

then ranked based on the predicted severity of impact.
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5. Feedback Loop and Continuous Learning 

A key feature of the framework is its feedback mechanism, which allows users (such 

as software engineers) to provide input on the framework’s output. This feedback is 

used to improve the accuracy of future analysis, ensuring that the system remains 

relevant as requirements and project contexts evolve. This modular architecture 

ensures that the framework is adaptable and scalable, allowing for the integration of 

new techniques as they emerge in the field. 

3.3. The AI models incorporated in the proposed SRCIA Framework 

The research outlined in this thesis followed a structured, multi-stage approach, each 

stage building upon the previous one to develop a comprehensive framework for 

effective CIA in software requirements engineering. 

In this research, a comparative evaluation of all the implemented solutions was 

conducted. The traditional ML methods, the integrated NLP and BEIR-based solutions, 

and the RAG model were all assessed based on their effectiveness, precision, and overall 

performance in predicting change impacts. The results of these evaluations provided 

valuable insights into the relative strengths and weaknesses of each approach, 

ultimately informing recommendations for best practices in CIA for future research and 

practical application in software development projects. 

• Traditional ML Approaches 

Traditional ML models were applied to establish a baseline for predicting a baseline 

for predicting the impact of software requirement changes. These models focus on 

structured datasets where explicit patterns and dependencies can be identified and 

analyzed. In this framework, ML models are implemented by transforming textual 

requirements data into numerical features using methods such as TF-IDF and 

dependency analysis. The resulting feature sets allow the models to interpret 

relationships and dependencies between requirements effectively. 

Algorithms such as Random Forest, Support Vector Machines (SVM), and Decision 

Trees are employed to predict which requirements are likely to be impacted by a given 
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change. These models are trained using historical data on requirement changes and 

their corresponding impacts. Evaluation metrics, including precision, recall, F1-score, 

and accuracy, are used to assess model performance. Traditional ML models proved 

effective in scenarios where datasets were structured and of moderate complexity, 

particularly when clear dependency patterns were present. For example, Random Forest 

demonstrated strong predictive performance in datasets with hierarchical relationships 

among requirements. 

These models are particularly effective for structured datasets, where explicit patterns 

and dependencies can be identified and analyzed. Such datasets typically contain well-

organized information, such as dependency mappings or metadata related to 

requirement changes. 

• Integration of NLP and BEIR Benchmark-Based Solutions 

Building on the foundation established by traditional ML models, the following 

component of the framework integrates NLP techniques and BEIR benchmark-based 

solutions. This approach enhances the semantic understanding and precision of CIA by 

leveraging advanced linguistic and retrieval methods. 

NLP techniques are applied to extract meaningful linguistic features from 

requirements, such as dependency parsing and named entity recognition (NER). These 

features are processed further using BEIR solutions, which include BM25 for lexical 

retrieval and dense retrieval models, such as Bi-Encoders and Cross-Encoders, for re-

ranking results. By combining lexical and semantic retrieval methods, this phase enables 

the framework to rank impacted requirements with higher relevance and accuracy. 

This integration is particularly effective for unstructured textual or semi-structured 

textual datasets, where relationships between requirements are complex and require 

nuanced semantic analysis. The evaluation of this phase uses metrics such as Mean 

Reciprocal Rank (MRR) and Normalized Discounted Cumulative Gain (nDCG) to measure 

the retrieval performance. 
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• Incorporation of Large Language Models (LLM) and Retrieval-Augmented 

Generation (RAG) 

The advanced layer of the SRCIA framework embraces recent advancements in AI by 

incorporating LLMs through a RAG approach. This stage combines retrieval-based 

methods with the generative capabilities of LLMs, resulting in a highly adaptable and 

sophisticated solution for predicting change impacts. 

In this phase, vector embeddings generated by LLMs are used to retrieve contextually 

relevant data from the requirements repository. The retrieved information is then 

processed by the generative component of the RAG model to predict the most likely 

impacted requirements, along with explanations or contextual insights.  

This approach is particularly effective for large-scale, dynamic, and heterogeneous 

datasets, where the complexity of changes demands both retrieval precision and 

generative reasoning. Metrics such as BLEU scores and ROUGE scores are used to 

evaluate the quality of the generated outputs. 

3.4. Novelty of SRCIA 

While earlier approaches such as (Arora et al. 2015a)   NLP-driven traceability strategy 

focused primarily on extracting term correlations or rule-based dependencies between 

changed and impacted requirements, the SRCIA framework introduces three key 

innovations: 

• Predictive Impact Modeling   

   Rather than stopping at trace link discovery, SRCIA incorporates supervised ML 

classifiers to forecast which requirements will change in response to a given request. 

This moves beyond binary link detection to quantitative impact prediction, enabling 

proactive resource planning. 

• Hybrid IR–Generative Loop  

   Existing methods (e.g., pure BEIR pipelines) retrieve relevant passages but do not 

synthesize them. SRCIA’s RAG component both retrieves semantically anchored 
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snippets and conditionally generates impact narratives, then re-scores and refines those 

narratives in a second pass. This iterative synergy yields higher precision and 

explainability than one-shot retrieval or static generation alone. 

• Dynamic Domain Adaptation  

   Unlike static tailoring approaches, where traceability rules or model parameters are 

handcrafted per domain, SRCIA uses transfer learning and domain-tuned prompt 

engineering (Phi 3.5) to automatically adapt to new project vocabularies and artifact 

structures. This reduces the manual effort of creating bespoke pipelines for each domain 

benchmark. 

By integrating these elements, SRCIA goes well beyond previous traceability-only or 

retrieval-only architectures, offering a unified, adaptive, and predictive solution for CIA 

in live software projects.   

3.5. Datasets Description 

When choosing the datasets for this study, two crucial criteria were established. The 

first criterion involves using datasets sourced from varied domains. We sought to avoid 

the repeated benchmark bias noted in peer research (Arora et al. 2015a; 

Tantithamthavorn, Hassan & Matsumoto 2018), by surveying a wide variety of public 

corpora such as PROMISE, Pine, NASA CM-1, PURE, and others. Although theses 

established benchmarks have proven valuable for traceability and evolution studies, 

they exhibit two key limitations for CIA research: (1) they focus primarily on code or API-

level changes rather than end-to-end requirement–change interactions, and (2) they 

often lack rich, real-world change-request metadata needed for impact prediction.  

Second, to ensure practical relevance and real-world applicability, we deliberately 

selected only industry-sourced SRS and software change notification datasets, 

containing authentic requirement statements and change requests from live projects to 

overview the changes that may happen during the time. 

The raw data were taken from three industrial datasets described below for this study. 

Table 3.1 shows detailed information about data input from three industry partners. 
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• Dataset 1: WASP (Web Architectures for Services Platforms) dataset (Arora et al. 

2015a, 2015b). More information about the requirements and the change scenarios 

can be found at this link: https://sites.google.com/site/svvnarcia/. 

• Dataset 2: A larger real-world dataset from one telecommunication project 

containing requirements statements and change requests. 

• Dataset 3: A real-world dataset from one industry partner, including requirements 

statements and change requests. 

Our chosen datasets offer domain diversity, WASP covers web-service platforms, the 

Telecom dataset spans large-scale network rollouts, and the industry dataset captures 

enterprise application evolution.  I addition, each contains both formal SRS entries and 

authentic change-request forms with timestamps, authorship, and rationale fields, 

unlike PURE’s synthetic or narrowly scoped logs. Dataset 3 includes recently collected 

change requests from a live system, something neither PURE nor CM-1 provide—

allowing us to evaluate our SRCIA framework on contemporary engineering practices. 

3.6. Data Collection Procedure 

For this study, the focus was on obtaining and demarcating a large set of data from 

various domains to develop, train, and assess the model. Data from real-world projects 

needed to be collected, with at least one expert per project to help interpret and correct 

the data. Consequently, three industry projects from web service, telecommunications, 

and satellite organizations were chosen. The collected requirements statements and 

change requests were formatted as PDF and Excel worksheets, with links to their 

embedded word documents containing change information and details. 

Table 3.1 illustrates the industry contribution from our industry partners. A total of 

891 requirements statements and 77 change requests were collected during the data 

collection procedure and were input into our approach. 
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Table 3.1. The number of data input from three industry partners 

# Dataset Domain # Requirements Statement # Change request 

1 Dataset-W Web Service 72 28 

2 Dataset‐O Telecommunications 626 34 

3 Dataset-I Satellite 193 15 

 Total 891 77 

3.7. Data Annotation & Quality Verification 

A total of 891 requirements statements and 77 change requests were collected from 

three industrial datasets spanning diverse domains. These datasets were manually 

labeled in a collaborative effort between the authors and our industry partners, with 

domain experts, each possessing extensive experience in requirements engineering and 

change management, performing the initial annotations to ensure that all labels were 

both accurate and contextually relevant. 

To minimize subjectivity and guard against annotation bias, each change request was 

independently annotated by two different experts. We tracked inter-annotator 

agreement using Cohen’s κ and set a threshold of κ ≥ 0.75 for acceptable consistency; 

any annotation batches that fell below this threshold were re-examined and re-

annotated after further refinement of our criteria. We developed explicit annotation 

criteria defining how to link change requests to impacted requirements by identifying 

shared domain entities (e.g., RequirementsID or ChangeID), semantic overlaps in 

phrasing (e.g., “encrypt data” versus “data encryption”), and procedural dependencies 

(e.g., authentication workflows). These criteria served as the constant reference point 

for all annotators. 

Where discrepancies did arise, they were resolved in structured consensus workshops. 

In these sessions, the two initial annotators presented their reasoning alongside a third 

senior reviewer, who facilitated discussion of each divergent case until a unanimous 
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decision was reached. This format ensured that all edge cases received thorough 

consideration and that consensus decisions were documented for future reference. 

Once consensus was achieved, the fully annotated datasets underwent a final 

validation step conducted by senior experts from both the research team and our 

industry partners. These validators reviewed the agreed annotations to catch any 

remaining inconsistencies or errors, providing an additional safeguard against 

confirmation bias and further enhancing the reliability of our ground truth. 

By combining dual independent annotation, statistical agreement monitoring, 

structured consensus meetings, comprehensive guidelines, and senior-level validation, 

we established a rigorous, multi-layered process that delivers a high-quality, bias-

resilient dataset for evaluating the SRCIA framework. 

3.8. Data Preparation 

The input of the solution is a change request, which includes sections such as id, title, 

description, type, and the rationale (reason) for the change. To prepare the dataset, NLP 

techniques were applied to collect the raw data from the requirements statements and 

change request forms. First, the text of the title and the description were cleaned to 

remove inconsistencies and ensure accuracy. This step involved normalization, 

deduplication, and standardization of the data. Then, the cleaned textual data was 

tokenized using standard NLP techniques to collect all the tokens (words). The tokens 

were then normalized using stemming and lemmatization. Additionally, casing and 

acronyms were normalized. All extracted tokens were transformed into features as 

inputs for the model. The details are explained in the implementation section. 

Therefore, to ready the data for classification in this pre-processing pipeline, the CSV 

files of requirements statements and change requests were cleaned, tokenized, stop 

words and punctuation removed, texts stemmed by PorterStemmer, and lemmatized by 

WordNetLemmatizer, all with Python codes and libraries. 
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3.9. Implementation 

All solutions proposed in this research were implemented using Python, leveraging its 

robust libraries and frameworks suitable for NLP, ML, and data analysis. Python's 

versatility and wide range of tools enabled the effective development and evaluation of 

the proposed models and methodologies. 

A comprehensive replication package was prepared and shared publicly on Zenodo, 

providing the complete Python codes, detailed requirements statements, change 

scenarios, and the corresponding results. This package was designed to facilitate the 

replication of the experiments conducted in this research, ensuring transparency and 

reproducibility. 

The replication package, encompassing all relevant materials, is available on Zenodo 

at the following link: https://zenodo.org/records/14568906. By making this package 

accessible, the research invites further exploration and validation of the findings by the 

broader academic and professional communities. 

3.10. Summary 

This chapter introduced the Software Requirements Change Impact Analysis (SRCIA) 

Framework, a comprehensive approach to predicting the impact of software 

requirement changes. The framework integrates ML, NLP, BEIR, and RAG models to 

address challenges in requirements engineering, leveraging structured, semi-structured, 

and unstructured datasets collected from industry partners. The chapter outlines the 

modular architecture of the framework, emphasizing its adaptability, scalability, and 

feedback loop for continuous improvement. It details the data collection, quality 

verification, and preparation processes, ensuring robust and high-quality datasets for 

implementation. The SRCIA framework’s stages, from traditional ML approaches to 

advanced LLM-based solutions, highlight its ability to address varying complexities in 

requirements change scenarios. Finally, the chapter underscores transparency and 

reproducibility by providing a public replication package for further exploration of the 

research findings.

https://zenodo.org/records/14568906
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Chapter 4.  

Machine Learning Algorithms for Software 

Requirements Change Impact Prediction 

 

 

 

 

4.1. Introduction 

This chapter focuses on implementing the traditional ML approach introduced as the 

first component of the SRCIA framework in Chapter 3. As outlined in the framework, 

traditional ML techniques serve as the foundational layer for predicting the impact of 

software requirement changes, particularly for structured datasets where explicit 

patterns and dependencies can be identified and analyzed. This chapter builds on the 

theoretical groundwork presented in Chapter 3 by applying and evaluating traditional 

ML models to demonstrate their practical application and effectiveness in supporting 

requirements analysts during CIA. In requirements engineering (RE), ML techniques can 

streamline labor-intensive processes, enabling analysts to focus on tasks requiring 

domain expertise. The traditional ML models incorporated in the SRCIA framework aim 

to automate the identification of impacted requirements by predicting how changes 

propagate throughout a system. 

Informed by the systematic literature review detailed in Chapter 2, this chapter 

addresses the gap in research regarding predictive models for CIA in RE. Unlike existing 

approaches that focus broadly on requirements traceability or ambiguity resolution, the 

traditional ML methods implemented here are specifically designed to predict the 

impact of a given change on existing requirements. This approach aligns with the SRCIA 

framework’s goal of creating a modular and scalable solution for CIA. 



93 

 

ML has been successfully employed in various software engineering (SE) tasks, such as 

requirements traceability and classification (Dalpiaz, Dell’Anna, et al. 2019; Li & Huang 

2018), ambiguity management(Yang et al. 2011), test case generation (Ali et al. 2010), 

prediction of code changes (Giger, Pinzger & Gall 2012), and software effort estimation 

(Basri et al. 2016). 

To achieve this, we develop five alternative solutions using supervised ML approaches, 

including Random Forest, Support Vector Machines (SVM), and Decision Trees. These 

models are trained and evaluated on three real-world datasets containing 891 

requirements and 77 change requests. By implementing these models, this chapter 

validates the effectiveness of traditional ML techniques as described in Chapter 3. 

Comparisons are also drawn with manual approaches, such as keyword-based analysis 

of specification documents, to highlight the advantages of ML-based methods in terms 

of accuracy and efficiency. 

This chapter represents a key step in the realization of the SRCIA framework by 

operationalizing its traditional ML component. The results presented here serve as the 

foundation for subsequent chapters, which explore the integration of more advanced 

techniques, such as NLP and LLMs, in the framework. 

4.2. Technical Approach and Implementation 

CIA in requirements engineering involves predicting the impact of changes to software 

requirements. This can be framed as a classification problem where each requirement 

change request is classified as either having an impact (class 1) or not having an impact 

(class 0) on other requirements. By transforming the problem into a classification task, 

ML algorithms can be leveraged to predict the likelihood of changes affecting other 

requirements, thereby automating the CIA process. 

The ML approach is summarized in Figure 4.1 and includes five different techniques of 

ML to develop an automated approach to analyze the requirements change impact and 

develop a requirement change impact prediction model. Requirements often manifest 

as textual artifacts represented through models, mathematical specifications, and 
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similar forms. The research focuses specifically on natural language (NL) requirements, 

excluding models or requirements articulated in formal languages. 

The initial phase involves preparing this dataset through text cleansing and pre-

processing using NLP techniques, thus converting the data into a format conducive to 

subsequent computational analysis. Subsequently, an NLP pipeline is applied to pre-

process all requirements documents and change requests, capturing semantic, 

syntactic, and contextual similarities and connections between terms, thereby 

producing annotated (labeled) data integrated into the dataset as metadata. These 

established relationships are utilized in training a ML algorithm to discern dependencies 

between requirements. Ultimately, the algorithm generates a list of affected 

requirements based on the likelihood of each requirement being impacted by a 

requested change.  

This list is ordered from the most to the least affected, aiding analysts in decision-

making, whether to accept or decline a proposed change. The trained ML algorithm can 

potentially furnish a predictive model for anticipating the impact of forthcoming change 

requests. Additionally, the system accommodates user input ('approve' or 'disapprove') 

for a given change, enabling the model to learn from human decisions, thus maintaining 

a human-involved approach in the process. 

 

Figure 4.1.ML Model Approach 
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4.3. Sequential Steps of the ML Approach 

Step 1: Data Collection and Pre-processing 

The initial phase involves collecting and pre-processing historical data on software 

requirements and change requests. Inputs for this phase include requirements 

documents and change requests. Raw data is collected from various sources, including 

requirement specifications, change logs, and impact reports. The pre-processing phase 

involves text cleansing and normalization using NLP techniques. This step includes 

removing noise such as stop words and punctuation, handling missing values, and 

performing initial feature extraction. These pre-processing activities convert the raw 

data into a structured format that is suitable for computational analysis. 

Additionally, the pre-processing phase handles data quality issues by addressing 

inconsistencies and ensuring the data is complete and accurate. This phase is crucial for 

creating a reliable dataset that can be used for further analysis. The output of this phase 

is a clean and pre-processed dataset that provides a solid foundation for subsequent 

analytical steps. 

Step 2: Database Preparation 

Following data pre-processing, the cleaned data is organized into a structured 

database. This database serves as the input for the subsequent pre-processing pipeline, 

which performs more advanced NLP tasks. The structured database ensures that the 

data is efficiently stored and can be easily accessed for further processing. 

In this step, the data is formatted to meet the requirements of the pre-processing 

pipeline. The structured database facilitates the application of semantic, syntactic, and 

contextual analysis, which are essential for understanding the relationships and 

dependencies between different requirements. The output is a well-organized database 

that is ready for detailed NLP analysis. 

Step 3: Advanced Pre-processing Pipeline 

The advanced pre-processing pipeline applies semantic, syntactic, and contextual 

analysis to the data. Semantic analysis captures the meaning of terms, syntactic analysis 
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examines the grammatical structure, and contextual analysis understands the context 

in which terms are used. These analyses help to annotate the data, adding metadata 

that captures the relationships and dependencies between different requirements. 

The annotated data resulting from this pipeline provides a rich representation of the 

requirements, incorporating detailed semantic, syntactic, and contextual information. 

This step is crucial for enhancing the Dataset-With meaningful annotations that will be 

used for ML. The output is an annotated dataset enriched with semantic, syntactic, and 

contextual metadata. 

Step 4: Handling Class Imbalance with Oversampling Methods 

To address the class imbalance in the data, oversampling methods such as the SMOTE 

+ Edited Nearest Neighbors (SMOTEENN) are applied. This step takes the annotated data 

as input and generates a balanced Dataset-Where the minority class is adequately 

represented. Handling class imbalance ensures that the ML models trained in 

subsequent steps do not suffer from biases due to class imbalance. 

This phase involves creating synthetic examples for the minority class to balance the 

class distribution. By doing so, the dataset becomes more suitable for training robust 

ML models that can generalize well to unseen data. The output is a balanced and 

annotated dataset that is ready for feature engineering. 

Step 5: Feature Engineering 

In the feature engineering phase, relevant features are extracted and engineered from 

the balanced dataset. This phase focuses on creating new features or transforming 

existing ones to better capture the characteristics of the requirements and their 

changes. For instance, features such as term frequency-inverse document frequency 

(TF-IDF) and word embeddings are used to represent textual data quantitatively. 

Feature engineering is a critical step in the ML pipeline, as it directly impacts the 

model's performance. Well-engineered features help the model to better understand 

the underlying patterns in the data. The output of this phase is a feature matrix that 

encapsulates the engineered features for each data point. 
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Step 6: Training ML Models 

Using the feature matrix, various ML algorithms are trained, including decision trees, 

random forests, support vector machines, and neural networks. The training phase 

involves splitting the Dataset-Into training and validation sets, optimizing 

hyperparameters through techniques like grid search, and evaluating model 

performance. The goal is to identify the best-performing model based on metrics such 

as precision and recall. 

During this phase, cross-validation techniques are used to ensure that the models 

generalize well to unseen data. Hyperparameter tuning helps find the optimal settings 

for each model, enhancing their predictive capabilities. The output of this phase is a set 

of trained predictive model candidates with robust performance metrics. 

Step 7: Model Testing and Evaluation 

To evaluate the generalization ability of the trained models, they are tested on an 

unseen test dataset. This evaluation phase assesses the models' effectiveness using 

performance metrics. If the precision and recall are low, further tuning is performed to 

improve recall, even if precision is initially compromised. The performance evaluation 

report highlights the strengths and weaknesses of each model, providing insights into 

their suitability for deployment. 

This phase is crucial for validating the models and ensuring that they meet the 

required performance standards. The output is a comprehensive performance report 

that informs the selection of the most efficient model. 

The main aim of our ML process was to introduce and capture which requirements are 

impacted and not impacted by a given change or a set of requested changes. The 

baseline is training our model in a specific domain, and if the resulting precision and 

recall are as expected, the next step is trying it in different domains 

Step 8: Practical Application and User Feedback 

The final phase involves the practical application of the selected predictive model. The 

trained model is integrated into a software tool designed for requirements analysts. This 

tool allows analysts to input change requests and receive a list of impacted 
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requirements, ordered from most to least affected. The system also accommodates user 

feedback by enabling analysts to approve or disapprove changes, which helps refine the 

model over time. 

To improve the precision, the human in the loop is included by the user's input, which 

is to 'approve' or 'disapprove' a given change, enabling the model to learn from human 

responses. So, by incorporating user feedback, the model continuously improves and 

adapts to new data. This human-in-the-loop approach ensures that the tool remains 

relevant and accurate. The output of this phase is a usable software tool for predictive 

CIA, accompanied by comprehensive user documentation and guidelines. 

4.4. Implementation 

This section details the implementation process for applying machine learning 

algorithms to predict the impact of requirement changes. It outlines the critical steps 

taken to prepare the datasets, optimize the models, and enhance their predictive 

performance. The subsections explore the techniques used for feature engineering, 

model training, and evaluation, as well as strategies to address challenges like class 

imbalance and overfitting. Through these steps, this section provides a comprehensive 

view of how the machine learning models were operationalized to achieve the research 

objectives. 

4.4.1. Apply Class Rebalancing Techniques  

 The primary purpose of a reliable ML model is to generalize effectively to various 

domains and to generate new data that is evaluated for its performance over time as it 

learns from training data. The main problem of imbalanced datasets is that they result 

in sub-optimal classification models. It might provide misleading conclusions as the 

distribution of observations in the training set is unequal across the classes (Sikora, 

Tenbergen & Pohl 2012). An ideal model should not suffer from overfitting or 

underfitting (Zamani, Zowghi & Arora 2021). Training with unbalanced Dataset-Is is one 

of the most critical concerns confronting ML research. Imbalanced class distributions 
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have an impact on classifier training, resulting in a negative bias towards the majority 

classes. It could also lead to significant inaccuracy, or even exclusion, of the minority 

classes (Dablain, Krawczyk & Chawla 2022; Galar et al. 2012). 

In this study, the focus is on two-class imbalanced datasets. The initial labeled dataset 

had a class imbalance for the binary classifier since the number of examples belonging 

to class 0 is more than those belonging to class 1. In Dataset-W, 1890 out of 2016 

examples belong to class 0 (93.75%); in the Dataset-I, 98.8% of data belongs to class 0; 

and in the Telecommunications Dataset, the percentage of class 0 is 99.4%. Therefore, 

the predictor almost always predicts any given sample as belonging to class 0, achieving 

very high scores like precision and recall for class 0 and low scores for class 1. Table 4.1 

shows the distribution of classes 1 and 0 in all datasets. 

Table 4.1. Distribution of classes 1 and 0 

Dataset # Requirements Statement # Change request Matrix 

Dataset-W 72 28 

2016 samples 

• 1890 class 0 

• 126 class 1 

Dataset-O 627 34 

21250 samples 

• 21126 class 0 

• 124 class 1 

Dataset-I 193 15 

2895 samples 

• 2862 class 0 

• 33 class 1 

 

Earlier research in ML has repeatedly demonstrated an increase in performance when 

class rebalancing approaches are used (Dablain, Krawczyk & Chawla 2022; Seiffert et al. 

2010; Tantithamthavorn, Hassan & Matsumoto 2018; Wang & Yao 2013). To mitigate 
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the problem, empirical experiments were conducted to systematically test several 

combinations of commonly used rebalancing methods, including over-sampling and 

under-sampling techniques, to determine which one works best for this case. According 

to earlier studies, a combination of oversampling and undersampling techniques has 

proven beneficial and thus can be considered the best solution (Sowjanya & Mrudula 

2022; Tantithamthavorn, Hassan & Matsumoto 2018). To study the impact of 

resampling techniques on the models, Condensed Nearest Neighbors + Tomek Links, 

SMOTE + Tomek Links (SMOTE-Tomek Links), and SMOTE + Edited Nearest Neighbors 

(SMOTEENN) were applied. 

Initially, the dataset had a severe class imbalance with a ratio of 1:33, meaning there 

was one instance of the minority class (class 1) for every 33 instances of the majority 

class (class 0). Results reveal that by transforming the data with resampling methods, 

the ratio increased from 1:33 to 1:2668 with a balanced distribution of 2862 in the 

minority class for the Dataset-I. The same increase was observed in the Dataset-W and 

Dataset-O, proving that SMOTEENN, a combined technique that incorporates both over-

sampling and under-sampling methods, outperforms in this case in practice. Table 4.2 

shows the distribution of the data before and after resampling. 

Table 4.2. Class distribution before and after resampling 

Dataset 

Original Dataset Transformed Dataset 

Majority Class Minority Class Majority Class Minority Class 

Dataset-W 1890 126 1767 1394 

Dataset-O 21126 124 21104 20140 

Dataset-I 2862 33 2837 2668 

Evaluating how the class distribution changed before and after SMOTEENN was 

implemented is a critical component of its effectiveness. Pre- and post-resampling class 

distributions were compared using a detailed bar plot created by a Matplotlib-based 
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Python implementation. In Figures 4.2, 4.3, and 4.4, bar charts of the original set of data 

from dataset-W, dataset-O and dataset-I showcased the rebalancing effect of 

SMOTEENN, elucidating its ability to rectify unbalanced class distribution in our data. 

  

Figure 4.2.Dataset-W Class Distribution of Original and 

Resampled Data 

Figure 4.3.Dataset-I Class Distribution of Original 

and Resampled Data 

 

Figure 4.4. Dataset-O Class Distribution of Original and Resampled Data 

4.4.2. The Proposed ML Model 

In this step, an ML classification model was proposed for training. In the development 

of the ML model, its attributes were collected from previous steps. Since existing 

literature proposed multiple alternatives and, there is no evidence to show which 

classifier has the best overall performance in general (Catolino et al. 2018; Yang et al. 

2020), five different classifiers were experimented with, and the results were compared 
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in terms of accuracy and performance. Therefore, the ML method uses five classifiers of 

Decision Tree, Logistic Regression, Support Vector Machine (SVM), Random Forest, and 

Gaussian Naive Bayes (NB), which are the most frequently used algorithms in RE tasks 

based on the result of our published paper (Zamani, Zowghi & Arora 2021). In terms of 

using SVM, prior research showed that utilization of SVMs by gappy n-gram kernels, 

including a non-zero decay factor, would present a highly impressive solution for 

requirements classification (e.g. (Cortes, Haffner & Mohri 2004; Shakeri et al. 2019)). 

Based on the mentioned earlier research, non-contiguous n-gram kernels were used in 

the text of requirements classification and rational kernels and SVM were applied to 

perform this method. All ML algorithms have been implemented in Python with the 

Scikit-Learn Library uploaded in the replication package. 

4.4.3. Identifying the Dependencies 

The identified dependencies in this step are used to train and test the ML classifier. 

Syntactic, semantic, and textual content were considered to identify all existing 

dependencies for the collection of requirements and a given change. Similarity 

measures, both syntactic and semantic, were used to investigate the closeness of a given 

change with each of the existing requirement statements. Given the variety of similarity 

measures available, it is critical to objectively study which one is best suited to a 

particular type or rationale of a change request (Nejati et al. 2016). 

Consequently, the following algorithms were applied to the data: Jaccard, Levenstein, 

Pairwise Cosine Similarity (Bag of Words with Term Frequency (TF) with Cosine 

similarity), Bidirectional Encoder Representations from Transformers (BERT)  

with Cosine similarity, Glove with Cosine similarity, Glove with Word Movers Distance 

(WDM) similarity, CrossEncoder and Infersent.  

To facilitate the application of Cosine similarity, an essential step involved the 

transformation of sentences into vectors. This transformation leveraged all lemmatized 

tokens extracted through our pre-processing pipeline. These tokens were subsequently 

molded into features, serving as inputs for our model. This transformation was achieved 
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via a Bag of Words (BOWs) approach coupled with TF-IDF (term frequency-inverse 

document frequency) or Word Embeddings, enabling a comprehensive representation 

of the textual data. 

These algorithms were implemented using Python, and their implementations are 

available within our comprehensive replication package and are accessible on Zenodo. 

4.4.4. Generating Features 

 To increase the prediction power of the model, additional feature engineering 

techniques were considered. This step involved collecting change request features that 

might have the highest impact on the impact prediction findings. The taxonomy of 

requirements changes was reviewed to assess their practical values in the change 

management process. Prior research showed that domains of the market, organization, 

vision, type, specification, solution, time, type, reason, and origin are the most 

important features in classifying requirements (Catolino et al. 2018; McGee & Greer 

2011; Saher, Baharom & Ghazali 2017).   Since these detailed data are not available in 

most real-world datasets, only the type of changes, including additions, deletions, and 

modifications, were selected as a feature of the ML model. In this stage, efforts were 

made to extract additional valuable features from datasets and feed them to the ML 

model to improve prediction performance. The performance will be evaluated by 

comparing it with a manual approach, which will be considered as a baseline approach. 

4.4.5. Hyperparameters 

Hyperparameters are essential for adjusting the model's behaviour and enhancing its 

prediction power to maximize the performance of ML classifiers. Hyperparameters, 

which are predefined configuration options not discovered through data analysis, were 

carefully utilized to alter the behaviour of classifiers like Random Forest, Support Vector 

Machine (SVM), and Logistic Regression. 

For instance, for the Random Forest classifier, a grid search method (Bergstra & Bengio 

2012) combined with cross-validation was used for evaluation. This approach aimed to 
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improve the model's performance by exploring different combinations of 

hyperparameters, such as the number of trees in the forest (n_estimators) and the 

maximum depth of the tree (max_depth). 

In the case of SVM tuning, the grid search method was employed to find the best 

combination of the regularization parameter (C) and the kernel coefficient (gamma) 

(Hsu, Chang & Lin 2003). These parameters were further adjusted based on domain 

knowledge to ensure contextually relevant optimization. For the Decision Tree model, 

the grid search method was used to adjust hyperparameters such as the maximum 

depth of the tree (max_depth) and the minimum number of samples required to split 

an internal node (min_samples_split). 

In contrast, Gaussian Naive Bayes does not have hyperparameters to tune like the 

other models. Therefore, no hyperparameter optimization was necessary for this 

classifier. 

Furthermore, the implementation of a pipeline employing Synthetic Minority Over-

sampling Technique and Edited Nearest Neighbors (SMOTEENN) resampling techniques 

(Chawla et al. 2002; Tomek 1976) was an essential phase in the optimization process 

across all classifiers. This method ensured that every classifier could handle unbalanced 

class distributions, consequently resolving the class imbalance problem. 

4.4.6. Computational Cost Considerations 

When applying machine learning algorithms for CIA, computational cost is an 

important practical consideration, especially when these models are deployed in 

resource-constrained or real-time environments. In this study, we evaluated the 

computational overhead of the implemented ML models, focusing on aspects such as 

training time, inference speed, and scalability. 

Random Forest, being an ensemble method, is relatively computationally expensive 

due to the creation of multiple decision trees and the need for aggregation during 

inference. However, its training phase can be parallelised, which mitigates the time cost 
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to some extent. In our experiments, Random Forest showed moderate training times 

but relatively fast prediction times once the model was trained. 

SVMs are known for their robust performance, particularly in high-dimensional 

spaces. However, their computational cost increases significantly with larger datasets 

due to the quadratic or cubic complexity involved in solving the optimisation problem 

during training. Training time was the longest for SVMs in our experiments, though 

inference time remained manageable. 

Decision Trees are lightweight models in terms of computational cost. Both training 

and inference are fast, making them suitable for applications requiring quick turnaround 

times. However, they tend to overfit, which may require pruning or ensemble 

techniques like Random Forest to maintain generalizability (Singh 2023) (Idrissi Khaldi et 

al. 2025) 

Logistic Regression is computationally efficient, with relatively low training and 

inference costs. Its simplicity and interpretability make it suitable for baseline 

comparisons, although it may struggle to capture complex patterns in the data. 

Naive Bayes, as a probabilistic classifier, has minimal training overhead and scales well 

with large datasets. Its simplicity results in the lowest computational cost among all 

models tested. However, its assumptions of feature independence may limit its 

effectiveness in capturing intricate dependencies. 

Overall, the trade-off between performance and computational cost must be carefully 

considered. While models like SVM and Random Forest may offer higher predictive 

power, they demand greater computational resources. In contrast, Logistic Regression 

and Naive Bayes offer faster execution but may underperform in complex scenarios. This 

highlights the importance of selecting the appropriate model based on the specific 

needs and constraints of the deployment context (Singh 2023) (Idrissi Khaldi et al. 2025) 
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Table 4.3. ML algorithms results 
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0 0 0 0.5 0.33 0.4 0.33 1 0.5 0.33 1 0.5 0.5 0.67 0.57 
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 2
 

0.13 1 0.24 0.33 1 0.5 0.07 1 0.14 0.07 1 0.14 0.25 1 0.4 

Ca
se

 3
 

0.33 1 0.5 0.1 1 0.17 0.25 1 0.4 0.25 1 0.4 0.29 1 0.45 

Ca
se

 4
 

0.33 0.33 0.33 0.33 0.33 0.33 0.5 0.67 0.57 0.5 0.67 0.57 0.5 0.67 0.57 

Ca
se

 5
 

1 1 1 0.17 1 0.29 0.33 1 0.5 0.33 1 0.5 0.25 1 0.4 

Ca
se

 6
 

1 1 1 0.67 1 0.8 0.67 1 0.8 0.67 1 0.8 1 1 1 
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 7
 

0.67 1 0.8 0.67 1 0.8 0.4 1 0.57 0.4 1 0.57 0.5 1 0.67 
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0.07 1 0.12 0.04 1 0.08 0.06 1 0.11 0.06 1 0.11 0.03 1 0.05 
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1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
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1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
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C1
 1 0.5 0.67 1 0.5 0.67 1 1 1 1 1 1 1 0.5 0.67 

C2
 1 0.22 0.36 1 0.22 0.36 0.67 0.22 0.33 0.67 0.22 0.33 1 0.22 0.36 

C2
7 0.13 1 0.23 0.13 1 0.22 0.08 1 0.15 0.08 1 0.15 0.1 1 0.19 

C2
6 0.8 0.8 0.8 0.13 0.8 0.22 0.44 0.8 0.57 0.44 0.8 0.57 0.5 0.8 0.62 

C2
5 0.14 1 0.25 0.13 1 0.22 0.07 1 0.13 0.07 1 0.13 0.07 1 0.13 

C2
4 0.18 0.86 0.29 0.16 0.86 0.27 0.16 1 0.27 0.16 1 0.27 0.17 1 0.29 

C2
3 0.05 1 0.1 0.05 1 0.09 0.04 1 0.08 0.16 1 0.27 0.04 1 0.07 

C2
2 0.47 1 0.64 0.4 0.75 0.52 0.31 1 0.47 0.31 1 0.47 0.42 1 0.59 

C2
1 0.31 1 0.47 0.2 0.75 0.32 0.25 1 0.4 0.25 1 0.4 0.27 1 0.42 

C2
0 0.5 0.6 0.55 0.38 0.6 0.46 0.36 0.8 0.5 0.36 0.8 0.5 0.39 1 0.56 

C1
9 1 0.33 0.5 0.5 0.33 0.4 0.33 0.67 0.44 0.33 0.67 0.44 0.67 0.67 0.67 

C1
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4.5. Results Analysis and Evaluation   

Table 4.3 presents the evaluation metrics for the classifiers, highlighting three key 

observations. First, there is a significant improvement in recall for all classifiers after 

addressing the class imbalance issue. This finding underscores the effectiveness of 

resolving class imbalance in enhancing the overall performance of the classifiers. 

Second, the Precision-Recall disparities reveal variations in precision and recall values 

across different ML algorithms and datasets. Third, the F1-scores, which provide a 
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harmonic mean of precision and recall, offer a more balanced view of the classifier's 

performance, particularly in the presence of class imbalance. 

The effectiveness of any ML model is determined by measures such as True Positive 

Rate, False Positive Rate, True Negative Rate, and False Negative Rate. Therefore, 

evaluation metrics are used to assess the prediction results. The performance of the 

proposed model is evaluated using standard metrics Precision (P) and Recall (R), as well 

as the F1-score (F1). The inclusion of F1-scores provides additional insights into the 

classifiers' performance, as the F1-score considers both precision and recall and is 

particularly useful in evaluating models on imbalanced datasets. For instance, Random 

Forest exhibited the highest F1-scores in several cases, particularly in the Dataset-I (e.g., 

Case 6 with an F1-score of 1), indicating a strong balance between precision and recall. 

Decision Tree showed moderate F1-scores across datasets, with notable high 

performance in specific cases such as Dataset-W C4 (F1-score of 1). Naive Bayes 

generally showed high recall but varied in precision, leading to fluctuating F1-scores; for 

example, in the Dataset-I Case 3, it achieved an F1-score of 0.4. Logistic Regression 

displayed consistent performance with high F1-scores in multiple cases, such as Dataset-

I Case 6 (F1-score of 0.8), demonstrating its reliability. Support Vector Machines (SVM) 

consistently performed well with balanced F1-scores, especially in the Dataset-O 

CR504335 (F1-score of 0.5). 

Additionally, to evaluate the prediction model, the k-fold Cross-Validation (k = 10) 

technique is utilized to check how well the classifier performs on unseen data. This 

validation technique is one of the most widely used model validation methods in 

imperfection prediction studies (Thakur et al. 2021). 

An 80/20 split of the sample data was employed for training and testing sets for each 

dataset. Since the model was trained on only 80 percent of the sample data, there is a 

significant risk of missing some information, resulting in a high bias that achieves a 

perfect score but fails to predict anything valuable on unseen data. Cross-validation is a 

common and valuable ML validation method for tackling this problem. The basic idea is 

to isolate test data through data sampling to see if the trained model fits new situations 

(Bennin et al. 2018). The k-fold cross-validation method splits the data into k folds of 
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approximately the same size, where each fold contains similar proportions of the 

defective ratio. One-fold is used for testing, and the remaining k-1 folds are used for 

training. The value of k-fold cross-validation is that all data can be used for training and 

testing (Danjuma 2015; Tantithamthavorn, Hassan & Matsumoto 2018). It also reduces 

the bias associated with random training set selection and holds out observations 

(Erdoğan & Namlı 2019). 

There are various methods for performing cross-validation. To sample the annotated 

datasets, a more robust sampling technique, Repeated Stratified K-Fold cross-validation 

(CV) with a split of 10, was used. To examine the effect of each sampling technique on 

the datasets, five different classifiers, as discussed in Section 3 were employed. (Bal & 

Kumar 2020; Barua et al. 2014; Bennin et al. 2018) 

The results presented in Table 4.3 form the basis for the subsequent analysis and 

discussion in this section and the following sections. The inclusion of F1-scores highlights 

that while some algorithms excel in either precision or recall alone, achieving a high F1-

score signifies a more effective overall performance in the presence of imbalanced 

classes. This balanced metric is crucial for understanding the practical applicability of the 

classifiers in real-world scenarios where both precision and recall are important. In 

conclusion, while precision and recall provide insights into specific aspects of the 

classifiers' performance, the F1-score offers a comprehensive evaluation, confirming the 

robustness and reliability of the proposed models across different datasets and 

scenarios. 

4.6. Dataset Validity and Size 

 The datasets used in this study were carefully selected from real-world industrial 

projects across various domains, including software functional and non-functional 

requirements. This diverse selection enhances the validity and generalizability of our 

findings. The sizes of the datasets are sufficient to train and validate the ML models 

effectively. Each data set contains a substantial number of data points, ensuring that the 

models have enough information to learn from and generalize well to new data. The 
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pre-processing and feature extraction steps further ensure that the data is of high 

quality and accurately represents the underlying requirements and their changes. 

Furthermore, all original change requests were considered to ensure comprehensive 

coverage of the dataset. The datasets included a significant percentage of original 

change requests, which were carefully selected and validated. Specifically, all original 

change requests were included in the analysis. This comprehensive inclusion provides a 

representative sample of the data, ensuring that the models are trained and evaluated 

on a broad spectrum of change scenarios. This approach helps capture the variability 

and complexity inherent in real-world change requests, thereby enhancing the 

robustness and applicability of the proposed model. 

4.7. Comparative Analysis with State-of-the-Art Approaches 

 To establish the relative performance and improvement over existing methods, the 

proposed model was compared with state-of-the-art approaches, including those by 

Arora et al. (2015a). The results indicate that the proposed model achieves higher 

precision and recall, demonstrating its effectiveness in predicting the impact of software 

requirements change. This comparative analysis validates the model's performance and 

highlights its contributions to the field. 

4.8. Importance of Precision vs. Recall 

In terms of the relative importance of recall versus precision in this approach, both 

metrics are crucial. Human oversight is included to improve precision. High precision 

means that the prediction is very likely to be correct, making the approach trustworthy. 

However, recall needs to be high even if precision is low; otherwise, the model is 

ineffective. Therefore, the data is fed into multiple ML algorithms, and the algorithm 

that results in the highest recall is selected. The main goal of this study is to identify the 

most impacted requirements and miss as few affected ones as possible. In other words, 

false positives are more critical than false negatives (Aryani et al. 2009). 
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4.9. Threats to Validity 

The threats to the validity of this study are categorized into internal and external 

validity concerns. 

4.9.1. Internal Validity 

One of the primary threats to internal validity in this study is the quality and accuracy 

of the data used, particularly in labelling impacted requirements. The process of 

manually checking the impacted requirements in the change history introduces 

potential errors. Although datasets were selected carefully and structured, detailed 

consultation sessions were conducted with domain experts to ensure an accurate 

understanding of their requirements documents and change history. There remains a 

risk that data collection may not be entirely complete. This incompleteness can stem 

from varying degrees of abstraction and levels of detail in the requirements documents. 

To mitigate this threat, data validation was performed with domain experts who have 

extensive experience in the change management process, reducing the risk of 

inaccuracies. 

Another possible limitation is the stability of requirements over time. Requirements 

frequently change, which poses a challenge for the ML model, as it must be retrained 

with each change in requirements. This fluidity, while a common difficulty in 

requirements engineering, becomes a more severe barrier when applying ML 

techniques. The need to retrain the model with each change can be resource-intensive 

and may affect the model's performance. Additionally, changes in labelling due to 

evolving requirements can introduce inconsistencies and further complicate the training 

process (Zamani, Zowghi & Arora 2021). 

4.9.2. External Validity 

A pivotal threat to external validity is the uncertainty inherent in the data, which forms 

part of the requirements. Despite the primary goal of achieving high precision, recall, 

and accuracy with the ML model, numerous experiments are necessary to ensure that 
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these goals are attainable and that the provided data is sufficient. Uncertainty in data 

quality and completeness can impact the generalizability of the study's findings (Wan et 

al. 2021). 

The generalizability of the datasets represents another possible threat. Although 

efforts were made to ensure the datasets are as broad and representative as possible 

by selecting data from real-world industries across different domains and of various 

sizes, there is still a potential limitation in terms of how well these datasets represent 

the broader landscape. The data included both functional and non-functional software 

requirements to ensure comprehensive coverage. It is important to note that the 

accuracy of the approach does not depend on the specific domain but rather on the 

quality and clarity of the written requirements and change requests. High levels of 

inconsistency in documenting requirements, including spelling mistakes, structural 

differences, terminology, and vocabulary variations, can complicate and introduce 

errors into automated classification processes (Abad et al. 2017a; Zamani, Zowghi & 

Arora 2021). 

4.10. Discussion  

This section provides an in-depth analysis of the proposed solution, addressing its 

strengths, limitations, and performance across different contexts. The discussion 

evaluates the algorithms implemented, highlighting their effectiveness and areas for 

improvement. It also examines the datasets used, considering their role in shaping the 

outcomes and generalizability of the solution. Through these discussions, the section 

aims to present a balanced view of the research findings and their practical implications. 

4.10.1. Limitations of the Proposed Solution 

While the proposed methodology offers several advantages, it also has limitations. 

The model's performance is highly dependent on the quality and quantity of historical 

data. Insufficient or noisy data can adversely affect the model's accuracy, making 

comprehensive data collection and pre-processing crucial. Identifying the most relevant 
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features is critical for model performance; incorrect feature selection can lead to poor 

model predictions, necessitating domain expertise to guide feature engineering. Some 

ML models, such as neural networks, can be complex and require significant 

computational resources for training and inference, which can be a constraint for 

organizations with limited computational capabilities. 

Additionally, the model may perform well on the training data but might not 

generalize to different projects or domains without retraining and fine-tuning, requiring 

continuous evaluation and adaptation. Effective use of the tool requires a certain level 

of expertise in ML and CIA, and users may need additional training to understand the 

tool's functionalities and interpret its outputs accurately. Providing comprehensive 

documentation and user support can help mitigate this limitation. 

4.10.2. Discussion on Algorithms 

Looking at the precision and recall values, there is a noticeable variation across 

different methods and datasets. For instance, in the Random Forest method, there is a 

significant disparity in precision among different cases within the Dataset-W. While 

some cases show high precision (e.g., C2, C1), others exhibit quite low precision scores 

(e.g., C3 and C8). However, in terms of recall, most cases achieve a perfect score of 1.00, 

indicating that when the actual impact occurs, the model identifies it consistently across 

these cases. Moving to Dataset-I, the precision scores are consistently low across the 

cases, indicating a higher rate of false positives. However, the recall varies significantly, 

with some cases achieving a perfect score while others fall below. Dataset-O presents a 

mix of precision scores across different cases, with varied performance. While some 

cases exhibit relatively higher precision (e.g., CR60202), others show lower precision 

scores. Similarly, recall rates also vary, albeit with generally good performance across 

most cases. 

Regarding the other algorithms, similar to previous results, there appears to be a 

trade-off between precision and recall in many cases. While some cases exhibit high 

precision, they often do so at the expense of lower recall and vice versa. This suggests a 

challenge in achieving both high precision and high recall simultaneously across 
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different datasets and cases. Understanding the reasons behind this trade-off and 

optimizing the models to strike a better balance between precision and recall could 

enhance the overall performance of the system in accurately identifying impacted 

requirements during change analysis. 

In general, there seems to be inconsistency in precision across different cases and 

datasets, indicating that the models might encounter challenges in precisely identifying 

the true impact of requirements changes in specific scenarios.  Furthermore, even while 

recall has been shown to perform effectively in identifying true positives, mainly in 

Dataset-W, it is imperative to address the low precision values observed in various cases 

across different datasets.  

The Random Forest algorithm shows some cases with both high precision and recall. 

It revealed the RF effectiveness in accurately predicting impactful changes without 

missing many relevant instances. Besides this, the model struggled for the cases with 

lower scores. SVM showcased relatively similar performance trends to Random Forest 

in capturing relevant instances (recall), although there are discrepancies in precision 

scores between the two models for various cases. The disparities in precision could 

indicate that utilizing SVM to make precise positive predictions in some situations can 

be difficult. 

The Decision Tree results showcase a different performance compared to both 

Random Forest and SVM. It also shows varying performances across different cases. The 

results demonstrate moderate to high precision and recall for some cases, which is a 

sign of having struggles with accurate positive predictions and capturing all relevant 

instances for others. 

Gaussian NB illustrates varying precision scores for some cases compared to SVM, 

Decision Tree, and Random Forest models. And finally, Logistic Regression performs 

consistently with other models when it comes to capturing the most relevant instances 

(recall). However, just like with other algorithms, there are also difficulties in getting 

precise positive predictions for particular circumstances. 
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In summary, when comparing these algorithms in requirements CIA tasks, the 

overview of their performance proved that all of them are high-performing models while 

having challenges in precision, indicating difficulties in making accurate positive 

predictions. 

While different algorithms demonstrated their advantages in particular datasets, 

Support Vector Machines (SVM) was the most effective approach throughout the entire 

investigation. SVM continuously showed strong and well-balanced performance; it was 

especially good at identifying intricate patterns in Dataset-I and holding a lead in 

Dataset-W. Its ability to achieve high recall rates while balancing precision across 

different datasets signifies its suitability for requirements CIA, particularly when working 

with complex and diverse datasets. This emphasizes how crucial it is to choose the best 

algorithm possible while also taking the dataset's unique properties into account. While 

no single technique was shown to be better than the others across all datasets, SVM was 

the most reliable and efficient option for precise requirements change impact estimates. 

Our results are particularly consistent with current research discussions on ML 

techniques' limitations. Some peer studies emphasized that ML algorithms may not be 

able to handle complicated linguistic structures and domain-specific contextual 

comprehension well enough (Adnan & Akbar 2019; Herm et al. 2023; Lin 2020; Paleyes, 

Urma & Lawrence 2022; Sarker 2021; Tufail et al. 2023). Although ML is still a potent 

tool in many fields, including software engineering, there is no one-size-fits-all approach. 

Careful consideration of the complexities of the task and domain-specific requirements 

is crucial before the implementation of ML-based solutions. Consequently, our research 

suggests that the inherent complexities of language and domain-specific subtleties can 

have a variable impact on the efficacy of ML in requirement analysis tasks. 

4.10.3. Discussion on Datasets 

Monitoring the patterns within the results across different datasets can provide 

information about the quality or clearness of the written requirements or change 

requests. Requirements originating from several sources may differ significantly in terms 

of language and terminology(Zamani, Zowghi & Arora 2021). Stakeholders, as well as 
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requirements experts utilize diverse vocabulary and sentence structures. The lack of 

consistency in requirements documentation leads to the complexity and error-

proneness of automated classification(Abad et al. 2017a) 

Based on the provided precision and recall scores across different ML models, Dataset-

W seems to generally yield higher performance rates across various algorithms in 

comparison to Datasets Telecommunications and Satellite. This could suggest that 

Dataset-W might contain clearer or more explicitly outlined requirements, making them 

easier for models to identify. 

Dataset-I showcases a mix of precision and recall values across algorithms, suggesting 

a mix of clear and more complex requirements or change requests. Some cases exhibit 

good performance, especially with SVM, while others show challenges for the 

algorithms, indicating potential variability in the quality or complexity of the 

requirements. 

On the other hand, Dataset-O represents a more challenging environment for 

predictive modelling. The models struggle to achieve high precision and recall 

simultaneously within this dataset. The results display a mix of precision and recall 

values across different algorithms and cases. This variability might indicate a mix of well-

defined and ambiguous requirements or change requests within this dataset. 

The observed patterns in algorithm performance align closely with the inherent 

characteristics of the datasets under study. Dataset-W emerges as a relatively newer 

dataset characterized by clear and meticulously articulated requirements compared to 

its counterparts. This dataset appears to contain well-written and explicit requirements, 

facilitating easier comprehension for algorithms. Conversely, Dataset-O, dating back 

more than a decade, reflects a long history of modifications facilitated by multiple 

experts over the course of 14 years. This prolonged timeline of alterations has likely 

contributed to its inherent ambiguity, stemming from the diverse perspectives and 

modifications introduced by these various experts. Moreover, Dataset-I, spanning over 

six years, exhibits a notable level of complexity owing to its comprehensive mentions of 

numerous hardware systems within its requirements. 
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The findings highlighted the differences and complexities present in each data set. 

Components of the dataset that seemingly have a substantial impact on the quality and 

clarity of requirements include its age, the history of revisions made by different experts, 

and the complexity of the referenced systems that are in the forms of abbreviations in 

SRS. The inclusion of contextual information enhances comprehension of the dataset's 

complexities and establishes a direct correlation with the observed fluctuations in 

algorithmic performance among the datasets. 

4.11. Summary  

In this chapter, an approach was developed to analyze the impacts of software 

requirements, focusing on predicting which of the existing software requirements may 

be affected by a requirement change. The core premise of the suggested approach is to 

learn from the history of change requests automatically, predict the change impact, and 

demonstrate how these predictions could help analysts enhance their decision-making 

to apply or reject an incoming change. The principal motivation was to achieve an 

automated solution to promote improved preparation and prioritization of the 

execution of requirements specifications during the software development of 

conventional and agile methodologies. 

The proposed research was evaluated using five ML algorithms, including Random 

Forest, Decision Tree, Naive Bayes, Logistic Regression, and Support Vector Machines. 

The goal was to assess the effectiveness of these approaches in accurately analyzing 

written requirements. 

Upon analyzing the evaluation results, the ML algorithms exhibited observable 

suboptimal performance, potentially due to the specific needs of highly accurate 

requirement comprehension. Precision and recall were employed as evaluation metrics 

commonly used in text classification and information retrieval tasks. Each algorithm 

showed unique strengths and faced challenges while addressing the complexities of 

precision and recall. Although the proposed models demonstrated proficiency in 

predicting the given change requests with high recall, precision differed between 

algorithms and certain scenarios. It was observed that the precision challenge exists in 
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making precise positive predictions despite capturing relevant instances, which is not 

ideal. Furthermore, all models struggled to achieve a balance between recall and 

precision, highlighting the trade-off. Despite precision issues, recall-strong models were 

crucial to guaranteeing thorough coverage of possible impact changes. 

Although ML has demonstrated impressive capabilities across a range of domains, 

leading to significant attention in various fields, including software engineering, it is 

essential to recognise that its applicability may not be universal for all tasks. Anomalies 

were observed in the research on requirement CIA that highlights the shortcomings of 

ML algorithms when it comes to efficiently managing such complex tasks. The 

complexities inherent in language and the specificity of requirement comprehension 

present challenges that ML algorithms may struggle to address effectively. 

In summary, while ML technologies continue to evolve and have significant upsides, 

caution must be taken when applying them due to their inherent limitations in handling 

complex comprehension and domain-specific contextual understanding tasks. 
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5.1. Introduction 

This chapter introduces a dual-model framework designed to address the complexities 

of requirements CIA by exploring two complementary approaches. The first approach 

leverages NLP techniques, utilizing CoreNLP and SpaCy libraries to analyze textual 

requirements and identify interdependencies. The second approach incorporates the 

Beir benchmark, combining Lexical Retrieval with BM25 (via Elasticsearch), Dense 

Retrieval using Bi-Encoders, and re-ranking with Cross-Encoders. These methodologies 

provide distinct yet synergistic perspectives, offering a comprehensive understanding of 

the challenges in CIA. 

To ensure practical applicability, the framework is validated using industrial datasets, 

enabling insights into real-world scenarios and enhancing decision-making for 

requirements change requests. By comparing the performance and outcomes of these 

dual approaches, this chapter advances our understanding of how emerging 

technologies in NLP and retrieval-based models can effectively address the nuances of 

software requirements engineering. 
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The integration of the Beir benchmark represents a significant step forward in this 

research, introducing diverse information retrieval tasks to enrich the analysis. This 

approach complements the NLP-based solution, creating a robust framework capable of 

handling both semantic and syntactic complexities in requirements change scenarios. 

Through this exploration, we aim to uncover actionable insights and provide project 

managers with a sophisticated tool for predicting and managing the impacts of 

requirements changes in software development. 

Despite significant progress in requirements traceability and change impact analysis, 

most prior approaches suffer from three key limitations. First, rule-based and keyword-

matching techniques (e.g. traceability matrices or regex-driven pipelines) are brittle, 

failing to generalize when stakeholders use varied terminology or complex sentence 

structures. Second, single-model solutions, whether purely ML-based or purely IR-

based, tend to excel on specific datasets but degrade sharply when confronted with 

domain shifts or aging documentation, because they capture only lexical overlap (as in 

BM25) or only statistical patterns (as in classical classifiers) without deeper semantic 

context. Finally, hybrid proposals are scarce, and where they exist, they lack clear 

orchestration strategies to bring together lightweight ML, full-blown NLP parsing, and 

retrieval-augmented generation into a unified pipeline. These gaps leave analysts either 

drowning in false-positive alerts or missing subtle but critical dependencies. By contrast, 

our dual-model framework explicitly combines syntactic/semantic NLP insights with 

retrieval-based evidence and stitches them together via an ensemble and feedback loop, 

to address brittleness, domain variability, and explainability all at once (Hayes, Dekhtyar 

& Sundaram 2006; SHAKIRAT et al. 2021; Thakur et al. 2021). 

5.2. Dual Model Framework  

The structure for this framework is depicted through a structured diagram detailing 

the sequential phases employed to enhance decision-making in software development 

by automating CIA. This process begins with comprehensive data collection, focusing on 

project specification documents and change logs, which form the foundational dataset. 
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The collected data undergoes a thorough preprocessing stage that includes tokenization 

and embedding generation, standardizing the input for subsequent analysis. 

The methodology is bifurcated into two primary branches: an NLP-Based Solution and 

a Beir-Based Solution. The NLP-based approach utilizes CoreNLP for syntactic and 

semantic analysis, while SpaCy is employed for entity recognition tasks. In contrast, the 

Beir-based approach leverages BM25 (via Elasticsearch) for lexical retrieval, Bi-Encoders 

for dense retrieval, and Cross-Encoders for re-ranking retrieved results. Both branches 

operate independently and are evaluated using various performance metrics. 

The dual outputs generated from these branches are then subjected to ensemble 

learning, enhancing the overall robustness and accuracy of the prediction model. The 

final stage involves rigorous evaluation and validation, applying metrics such as 

precision, recall, F1 score, and computational efficiency to assess the performance of 

the dual-model framework. This methodology not only demonstrates the integration of 

advanced NLP and Beir technologies but also illustrates a systematic approach to 

automating CIA in large-scale software development projects.  

5.3. NLP-Based Solution (CoreNLP and SpaCy Integration) 

The NLP-based solution integrates two prominent NLP libraries: CoreNLP and SpaCy. 

In this framework, CoreNLP is primarily employed for syntactic and semantic analysis, 

while SpaCy focuses on entity recognition and linguistic feature extraction. The 

integration of both libraries allows for a comprehensive analysis of software 

requirements documents. CoreNLP's robust parsing features handle intricate sentence 

structures, while SpaCy offers rapid and efficient preprocessing for extracting key 

language elements. Together, these tools enhance the model’s capacity to interpret and 

analyze the natural language used in requirements documents effectively. Figure 5.1 

illustrates the dual-model framework structure: 
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Figure 5.1.Dual-Model Framework 

The combined approach was selected based on the complementary strengths of both 

libraries. CoreNLP’s detailed grammatical parsing is critical for handling the complexity 

of software requirements, while SpaCy’s efficiency in entity recognition and processing 

speed makes it a powerful tool for high-volume data analysis. The integration of these 

two libraries results in a more granular and accurate analysis, improving the model's 

overall performance. 

Additionally, this flexible architecture enables fine-tuning and customization to 

accommodate specific project needs or changes in scope as the dataset evolves. By 

incorporating similarity metrics such as cosine similarity and TF-IDF vectors, the model 

is better equipped to detect semantic relationships between texts rather than relying 

solely on keyword overlap. This enhances the precision of the CIA and provides a more 

nuanced understanding of the connections between software requirements. 

The integration of these techniques achieves an optimal balance between 

computational efficiency and depth of semantic analysis. The ability to customize the 

vectorization process and similarity criteria ensures that the solution can be tailored to 

the unique characteristics of each dataset, ultimately improving the responsiveness and 

accuracy of the CIA model. 

CoreNLP and SpaCy were chosen not just for their robustness but for their ability to 

resolve key CIA pain points. Dependency parsing uncovers hidden syntactic ties by 
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walking the parse tree, we detect when a change in “user authentication” will cascade 

to “session management” through shared grammatical relations, even if no keywords 

overlap. Named-entity recognition then isolates domain concepts, such as “API 

endpoint” or “payment gateway”, so that any modification to these entities immediately 

flags every related requirement, capturing dependencies that simple term-frequency 

methods miss. Finally, CoreNLP’s coreference resolution maintains contextual cohesion 

by mapping pronouns or aliases back to their antecedents; thus, an update to “the 

payment module” also highlights every later occurrence of “it,” ensuring no implicit 

reference is overlooked. 

5.4. Beir-Based Solution 

The Beir-based solution leverages the BEIR benchmark, a heterogeneous benchmark 

designed for information retrieval (IR) tasks. This method incorporates multiple stages 

of retrieval and ranking to improve the relevance and precision of change impact 

predictions. 

• Lexical Retrieval with BM25 (Elasticsearch) 

The first step in the Beir-based solution is lexical retrieval using BM25, implemented 

via Elasticsearch. BM25 is a well-established ranking function used in search engines that 

measures the relevance of documents based on keyword matching. This provides a solid 

foundation for the retrieval process but may have limitations in capturing semantic 

meaning, as it is primarily based on lexical overlap and may miss synonyms or related 

terms. 

• Dense Retrieval Using Bi-Encoders 

To address the limitations of lexical retrieval, the framework employs Bi-Encoders for 

dense retrieval. Bi-Encoders encode both queries and documents into dense vector 

spaces using models such as BERT. This allows the retrieval process to capture deeper 

semantic similarities between the query and the documents. By utilizing dense retrieval, 

the system can retrieve contextually relevant information that goes beyond mere 

keyword matching, enhancing the overall retrieval performance. 
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• Re-ranking with Cross-Encoder 

After dense retrieval, a Cross-Encoder model is applied to re-rank the retrieved 

documents. The Cross-Encoder assesses the interaction between document-query pairs 

and assigns relevance scores based on a more holistic understanding of the context. By 

re-ranking the results, the model significantly improves the precision and relevance of 

the final predictions. The combination of dense retrieval and re-ranking ensures that the 

most contextually relevant documents are prioritized for impact analysis. 

While BM25 provides a solid starting point by ranking on term overlap, it struggles 

with synonyms, paraphrases, and complex phrasing common in requirements. Our two-

stage neural retrieval addresses this directly. First, Bi-Encoders map queries and 

documents into the same dense vector space using a fine-tuned BERT variant, so 

semantically similar texts, like “login process” and “user sign-in flow”, naturally cluster 

together, boosting recall even when no keywords match. Next, Cross-Encoders re-rank 

these candidates by jointly encoding each query–document pair with full attention, 

filtering out loose semantic matches and elevating those with deep contextual 

alignment (Nogueira & Cho 2019; Reimers & Gurevych 2019). 

5.5. Data 

The same real-world datasets utilized in Chapter 4 are employed in this chapter to 

ensure consistency and comparability when evaluating the proposed solutions. These 

datasets consist of project specification documents and change logs from industrial 

software development projects. The data covers a wide range of software requirements 

and their corresponding change requests, providing a robust foundation for analyzing 

the impact of requirement modifications. 

The project specification documents offer detailed descriptions of the software 

requirements, while the change logs record the historical changes made throughout the 

software development lifecycle. Together, these datasets provide a comprehensive view 

of the evolving nature of software requirements and serve as the basis for applying both 

the NLP-based and Beir-based methods within the dual-model framework. 
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The datasets were thoroughly preprocessed to ensure quality and consistency, 

following the steps outlined in Chapter 3. This includes tokenization, embedding 

generation, and verification for completeness and accuracy. By reusing these industrial 

datasets, the study maintains a direct comparison between the two chapters, 

highlighting the enhancements achieved through the dual-model framework presented 

in this chapter. 

5.6. Implementation 

The implementation of the NLP-based solution and the dual-model framework was 

carried out using Python as the primary programming language. The deep learning 

components were developed utilizing libraries such as TensorFlow and PyTorch, while 

Elasticsearch was employed as the backend for information retrieval tasks. 

5.6.1. NLP Solution 

The NLP solution was implemented through a Python script that leverages the 

CoreNLP and SpaCy libraries to process and analyze the data. The primary steps of this 

implementation are outlined as follows: 

Step 1: Preprocessing 

Both datasets—comprising requirements and change scenarios—were loaded and 

preprocessed to ensure that the textual data was clean and ready for subsequent 

analysis. This step involved tokenization, lowercasing, removing stopwords, and other 

standard text preprocessing techniques to ensure consistency across the datasets. 

Step 2: NLP Feature Extraction 

The CoreNLP and SpaCy libraries were employed to extract valuable features for 

predicting the impact of each requirement and change request. The key NLP tasks 

include: 

• Named Entity Recognition (NER) for Terminology Alignment: To identify critical 

entities such as stakeholders, system components, or specific actions. NER 
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extracts domain entities like changeID and normalizes them. When a change 

request mentions an entity that subsequently appears in design-artifact 

descriptions, our pipeline flags all requirements containing that entity as 

candidates for impact analysis 

• Dependency Parsing for Syntactic Dependency Mapping: To analyze sentence 

structure and understand grammatical relationships between words, aiding in 

the interpretation of complex requirement descriptions. By constructing a 

dependency tree for each requirement sentence, we capture head–modifier 

relations (e.g. subject→verb, verb→object). When two requirements share a 

modifier or refer to the same head term via different phrasings (“user login” vs. 

“login by user”), their dependency graphs overlap. We can therefore 

algorithmically detect these overlaps as potential impact links, even when no 

exact term match exists. 

• Part-of-Speech (POS) Tagging: To classify words based on their roles in a 

sentence (e.g., noun, verb), which helps in understanding the context of the 

requirements. 

CoreNLP was utilized for its robust parsing capabilities, including coreference 

resolution, while SpaCy was chosen for its efficiency in entity recognition and ease of 

vectorization through pre-trained models. 

Step 3: Vectorization 

The textual data was converted into numerical vectors to facilitate similarity 

comparisons. TF-IDF (Term Frequency-Inverse Document Frequency) vectorization was 

implemented, transforming the text into a format suitable for ML algorithms. 

Step 4: Similarity Calculation 

Similarity scores between change requests and requirements were calculated based 

on their vectorized representations. Cosine similarity was employed to measure the 

semantic distance between pairs of vectors. Higher similarity scores suggest a higher 

likelihood of impact between a change request and a requirement. 
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Step 5: Predicting Impact 

Based on the calculated similarity scores, predictions were made to determine which 

requirements are likely impacted by each change request. Initially, a rule-based 

approach was adopted, utilizing thresholds on similarity scores to identify potential 

impacts. Further refinement of this step involved integrating additional NLP features to 

improve the precision of the predictions. 

5.6.2. Beir-Based Solution 

The Beir-based solution was implemented using Python, with the full code and 

replication package available on Zenodo. The following steps outline the 

implementation process: 

Step 1: Preprocessing Datasets: 

The datasets were preprocessed to ensure consistency in text format and structure. 

This included tokenization, normalization, and the removal of irrelevant elements such 

as stopwords. The preprocessing phase is essential to ensure that the data is in an 

appropriate format for information retrieval tasks. 

Step 2: Installation of Beir Framework: 

The Beir (Benchmarking Information Retrieval) framework was installed to facilitate 

the evaluation of different information retrieval models. Beir provides a comprehensive 

suite of tools for benchmarking information retrieval tasks and supports various 

retrieval methods such as lexical retrieval and dense retrieval. 

Step 3: Loading Models: 

Three models were loaded for use in the Beir-based solution: 

• BM25 (Elasticsearch): A lexical retrieval model that ranks documents based on 

keyword matches, often serving as a baseline in information retrieval tasks. 

• Bi-Encoders: A dense retrieval model that leverages pre-trained BERT encoders to 

capture semantic similarities between queries and documents, offering enhanced 

retrieval performance compared to traditional lexical methods. 
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• Re-ranked Cross-Encoder: This model refines the initial rankings produced by BM25 

and Bi-Encoders by considering the interaction between document pairs and 

assigning relevance scores. The Cross-Encoder is used to improve precision in the 

final ranking. 

Step 4: Application and Evaluation on Datasets: 

The models were applied to the datasets to evaluate their performance. Metrics such 

as precision, recall, and F1 scores were computed to assess the effectiveness of the Beir-

based solution in identifying impacted requirements for the given change requests. 

Step 5: Searching for New Changes: 

The trained models were used to search for newly introduced changes. This involved 

retrieving relevant requirements from the dataset and ranking them based on their 

similarity to given changes. 

Step 6: Generating Similarity Scores: 

For each change request, similarity scores between the change and the relevant 

requirements were generated. These scores helped prioritize impacted requirements, 

providing valuable insights for decision-making in software development. 

5.7. Application of Mathematical Heuristics 

In this research, mathematical heuristics are implemented within the NLP-based and 

BEIR-based frameworks to optimize the selection process for sentences most relevant 

to a given change. These frameworks compute similarity scores between requirement 

sentences and changes using a combination of linguistic and contextual features. 

Without heuristics, processing the entirety of the resulting similarity scores would lead 

to significant computational overhead. The integration of heuristics addresses this 

challenge by filtering and prioritizing the highest-scoring similarities to maintain 

computational efficiency while preserving accuracy. 

The application of heuristics involves several strategies designed to optimize the 

process of narrowing down the similarity results. One key technique is score 
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thresholding, which eliminates sentences with similarity scores below a predefined 

baseline. This baseline is determined by analyzing the distribution of scores in the 

dataset, ensuring that only sentences with meaningful similarity are considered for 

further analysis. For instance, if the score distribution indicates a natural inflection point 

at 0.3, sentences scoring below this value are excluded, reducing computational costs 

without sacrificing relevance. 

Another essential approach is significant drop detection, which identifies points where 

similarity scores decline sharply among ranked results. A sharp drop in similarity scores 

often marks the boundary between semantically relevant and irrelevant sentences. For 

example, if the ranked scores drop from 0.85 to 0.40 within a few positions, the point of 

decline is used as a cutoff. This heuristic dynamically adapts to variations in score 

distributions across different datasets, ensuring flexibility and efficiency in the selection 

process. 

Relative score proportionality is also applied to retain sentences with similarity scores 

that are at least a certain percentage of the highest score in the dataset. For instance, if 

the highest score in a dataset is 0.9, sentences scoring below 0.45 are excluded, ensuring 

that only sentences with strong semantic alignment are retained. This heuristic further 

refines the results by emphasizing the most relevant sentences based on their proximity 

to the highest-ranked similarity score. 

By leveraging these heuristics, the study effectively narrows down the selection 

process, allowing for the identification of sentences with high semantic relevance to a 

given change. This approach enables dynamic adjustment of similarity evaluations based 

on real-time observations of the score distribution. The integration of heuristics 

facilitates computational efficiency, making it feasible to analyze large datasets while 

maintaining the precision needed for robust CIA. This application demonstrates the 

practical value of heuristics in improving the efficiency and accuracy of NLP and BEIR-

based models within the SRCIA framework. Furthermore, it highlights the role of 

heuristics as a critical component in balancing computational constraints with analytical 

rigor. 
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5.8. Dual Model Evaluation Metrics 

Evaluating information retrieval models in software engineering, particularly in the 

context of requirements CIA, necessitates metrics that assess the correctness, 

relevance, and value of the retrieval results for users. In this study, a range of metrics is 

applied to evaluate the performance of the dual-model framework, which incorporates 

the BEIR Re-ranking-based model. These metrics offer diverse perspectives on the 

model’s effectiveness, providing a comprehensive evaluation. 

5.9. Information Retrieval Models 

To ensure a robust evaluation, the following metrics were selected to assess the 

retrieval model’s performance: 

a) Precision and recall at k 

Precision at k (P@k) and Recall at k (R@k) were employed to evaluate the immediate 

value of the search results. Precision measures the relevance of the retrieved 

requirements impacted by a change, indicating the proportion of relevant results within 

the top k results. In contrast, recall assesses the model's ability to retrieve all impacted 

requirements, ensuring completeness in the retrieval process. 

In the context of software development, these metrics are crucial. Failing to retrieve 

an impacted requirement can lead to significant project delays or errors, while retrieving 

too many irrelevant requirements increases the manual effort required for further 

inspection. Thus, achieving a balance between precision and recall is essential for 

efficient resource allocation and decision-making. 

The choice of k reflects a balance between user expectations and the practicality of 

reviewing retrieved requirements. Based on common stakeholder behaviour in software 

projects and decision-makers’ willingness to engage with a ranked list of results, values 

of k=5 and k=10 were chosen. These values align with standard practices in the 

information retrieval domain and ensure that the model delivers relevant results within 

a manageable scope. 
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b) Normalized Discounted Cumulative Gain (NDCG@k) and Mean Average Precision 

(MAP@k) 

To evaluate the quality of the ranking within the retrieval system, Normalized 

Discounted Cumulative Gain (NDCG@k) and Mean Average Precision (MAP@k) were 

selected as additional metrics. 

MAP@k provides an average precision score independent of rank position by 

calculating precision across various threshold levels, offering a comprehensive view of 

how well the model performs over different ranks. NDCG@k further enhances this 

evaluation by considering the importance of the ranking order, ensuring that the most 

critical impacted requirements appear higher in the list. This is particularly significant in 

software development, where prioritizing high-impact requirements can lead to more 

efficient decision-making processes. 

Both metrics are essential when prioritizing impacted requirements in order to 

optimize the accuracy and efficiency of the impact analysis. By weighting higher-ranked 

results more heavily, NDCG@k ensures that the retrieval system favors more relevant 

and critical requirements, reducing the time and effort required to review irrelevant or 

less significant results. 

Additionally, it is recognized that the binary relevance typically assumed in calculating 

these metrics may not fully capture the varying degrees of impact that a change may 

have on different requirements. To address this complexity, future work will explore 

graded relevance evaluations, which can offer a more nuanced understanding of the 

impact of severity. 

5.10. NLP Model Evaluation 

To thoroughly evaluate the performance of the NLP model, two metrics—MUC 

(Message Understanding Conference) and B³ (B-Cubed)—were utilized. These metrics 

are specifically designed for assessing coreference resolution tasks, providing an in-

depth analysis of how effectively the model identifies and clusters references to the 

same entities across different texts. Given the nature of this research, they were 
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adapted to assess the correctness and completeness of the predicted impact links 

between change requests and software requirements. 

a) MUC (Message Understanding Conference) 

MUC evaluates how well the predicted set of impacted requirements corresponds to 

the actual set, focusing on the correctness and completeness of the links between 

change requests and requirements. In this context, a "link" is defined as the correctly 

identified relationship between a change request and a requirement. MUC primarily 

focuses on whether the model can capture the entire set of impacted requirements and 

whether those predicted links are accurate, giving insight into the overall completeness 

of the prediction. 

b) B³ (B-Cubed) 

The B³ metric was used to compute precision, recall, and F1 scores for each 

requirement's impact prediction. This evaluation method considers the presence or 

absence of a requirement in both the predicted and actual impacted sets. B³ calculates 

precision as the ratio of correctly predicted impacts to the total number of predicted 

impacts and recall as the ratio of correctly predicted impacts to the total number of 

actual impacts. The F1 score is the harmonic means of precision and recall, providing a 

balanced evaluation of the model’s performance. 

To assess the overall effectiveness of the model in predicting impacted requirements, 

the real and predicted impacted sets were extracted for each change scenario. The 

aggregate B³ metrics—Precision, Recall, and F1 Score—were then computed across all 

change scenarios, offering a comprehensive view of the model's predictive accuracy and 

completeness. 

5.11. Results and Findings 

This section outlines the performance of NLP-based and BEIR-based solutions within 

the dual-model framework, highlighting their effectiveness and key findings. The 

following subsections provide detailed results for each approach. 
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5.11.1. NLP Solution Results 

Table 5.1 presents a summary of the overall precision, recall, and F1 score for each 

dataset, offering a comprehensive evaluation of the model's performance. Table 5.2 

details the precision, recall, and F1 scores associated with each change ID within the 

datasets, illustrating the specific impact of individual modifications. The findings 

highlight the varying degrees of success achieved by the combined NLP approach in 

identifying impacted requirements. 

• Dataset-I demonstrated promising results, with a precision of 0.5345, recall of 

0.8389, and an F1 score of 0.6530. The high recall value indicates that the method 

effectively identified a wide range of relevant impacted requirements, though the 

lower precision suggests the inclusion of more false positives. The F1 score reflects 

a reasonable balance between precision and recall, making the method practical for 

this dataset. 

• Dataset-W yielded more modest results, with a precision of 0.4810, a recall of 

0.6236, and an F1 score of 0.5431. Compared to Dataset-I, both precision and recall 

showed a decline, indicating challenges in accurately identifying impacted 

requirements. This suggests that Dataset-W presents unique complexities or 

domain-specific characteristics that pose difficulties for the combined NLP 

approach. 

• Dataset-O exposed the limitations of the method, registering the lowest precision 

(0.2781), recall (0.4922), and F1 score (0.3554) among the datasets. These results 

underscore significant challenges in applying the approach to Dataset-O, potentially 

due to intrinsic features of the dataset that impede effective NLP analysis. The lower 

precision and F1 scores highlight the model's difficulty in maintaining accuracy 

when applied to this dataset. 

Overall, the results reflect that while the combined NLP method performs adequately 

across certain datasets, its efficacy can vary depending on the characteristics of the 

dataset. High recall scores demonstrate the model's strength in identifying a broad 

range of impacted requirements, but lower precision scores suggest the need for further 

refinement to reduce false positives and improve overall accuracy. 
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Table 5.1. The overall evaluation metrics for NLP solution 

Dataset Overall Precision Overall Recall Overall F1 Score 

I 0.5345 0.8389 0.653 

W 0.481 0.6236 0.5431 

O 0.2781 0.4922 0.3554 

 

The chart below, figure 5.2, shows the overall Precision, Recall, and F1-Score of the 

NLP-based model on Datasets I, W, and O, highlighting that Dataset I achieves the 

highest coverage (recall) and balanced performance (F1-Score) despite lower precision, 

while Dataset O shows the greatest drop in all three metrics. 

  

Figure 5.2.Clustered Bar Chart of Precision, Recall, and F1-Score of the NLP-based model 
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Table 5.2. NLP solution results 

Dataset Change ID Precision Recall F1 Score 

I 

Case 1 0.14 0.25 0.18 

Case 2 0.29 1.00 0.44 

Case 3 0.22 1.00 0.36 

Case 4 0.33 0.33 0.33 

Case 5 1.00 1.00 1.00 

Case 6 1.00 1.00 1.00 

Case 7 0.50 1.00 0.67 

Case 8 0.50 0.75 0.60 

Case 9 0.67 1.00 0.80 

Case 10 0.33 0.50 0.40 

Case 11 0.33 0.75 0.46 

Case 12 0.20 1.00 0.33 

Case 13 0.50 1.00 0.67 

Case 14 1.00 1.00 1.00 

Case 15 1.00 1.00 1.00 

W 

C1 1.00 0.50 0.67 

C2 0.60 0.33 0.43 

C3 0.33 1.00 0.50 

C4 1.00 1.00 1.00 

C5 0.67 0.75 0.71 

C6 0.57 0.57 0.57 

C7 0.20 0.25 0.22 

C8 0.50 1.00 0.67 

C9 0.70 0.78 0.74 

C10 0.33 0.67 0.44 

C11 0.50 0.25 0.33 

C12 0.20 0.25 0.22 

C13 0.50 0.83 0.63 

C14 0.00 0.00 0.00 

C15 0.10 0.33 0.15 

C16 0.40 0.67 0.50 

C17 0.50 1.00 0.67 
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C18 0.00 0.00 0.00 

C19 0.20 0.40 0.27 

C20 1.00 0.40 0.57 

C21 0.40 1.00 0.57 

C22 0.60 0.75 0.67 

C23 0.67 1.00 0.80 

C24 0.30 0.43 0.35 

C25 1.00 1.00 1.00 

C26 0.67 0.80 0.73 

C27 0.43 1.00 0.60 

C28 0.10 0.50 0.17 

O 

CR007 0.30 0.43 0.35 

CR503689 0.30 0.75 0.43 

CR503779 0.20 0.50 0.29 

CR504139 0.29 0.29 0.29 

CR504310 0.30 0.50 0.38 

CR504311 0.00 0.00 0.00 

CR504321 0.20 0.67 0.31 

CR504322 0.10 0.25 0.14 

CR504323 0.20 0.67 0.31 

CR504324 0.20 1.00 0.33 

CR504325 0.29 0.50 0.36 

CR504326 0.20 0.50 0.29 

CR504327 0.30 1.00 0.46 

CR504328 0.40 0.67 0.50 

CR504329 0.67 0.67 0.67 

CR504330 0.00 0.00 0.00 

CR504331 0.40 0.57 0.47 

CR504332 1.00 0.50 0.67 

CR504333 0.00 0.00 0.00 

CR504334 0.25 1.00 0.40 

CR504335 0.40 0.67 0.50 

CR504336 0.30 0.75 0.43 

CR504337 0.40 0.80 0.53 

CR504338 0.10 0.50 0.17 
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CR504339 0.00 0.00 0.00 

CR504340 0.20 0.33 0.25 

CR504341 0.00 0.00 0.00 

CR504342 0.20 0.67 0.31 

CR504793 0.30 0.30 0.30 

CR504799 0.30 0.60 0.40 

CR600203 0.33 0.33 0.33 

CR600204 0.33 0.33 0.33 

CR60200 0.00 0.00 0.00 

CR60202 1.00 1.00 1.00 

5.11.2. Beir-Based Results: 

Table 5.3 provides a detailed summary of the evaluation metrics, including Average 

Precision, Average Recall, Average NDCG, and Average MAP, evaluated at cutoff values 

of 5 and 10. These metrics offer a comprehensive view of the Beir-based model's 

performance across the datasets, highlighting its effectiveness in terms of precision, 

recall, and ranking quality. 

Additionally, Table 5.4 illustrates the variation in specific metrics, map_cut_5 and 

ndcg_cut_5, across different datasets. These metrics are particularly useful in evaluating 

the ranking efficiency and precision of the retrieval model within a given threshold. The 

map_cut_5 metric measures the mean average precision of the top 5 results, while 

ndcg_cut_5 focuses on the quality of the ranking within the top 5 most relevant results. 

Together, these metrics provide a reliable indication of how well the Beir-based 

solution applies to real-world software development processes, particularly in terms of 

usefulness, recall, ranking efficacy, and precision. By analyzing these results, it becomes 

evident how the model performs in prioritizing and ranking impacted requirements 

based on their relevance to a given change request. 
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Table 5.3. Beir-based average results 

D
at

as
e

t Average 

Precision@5 

Average 

Recall@5 

Average 

NDCG@5 

Average 

MAP@5 

Average 

Precision@10 

Average 

Recall@10 

Average 

NDCG@10 

Average 

MAP@10 

W 0.6643 0.8049 0.9075 0.7819 0.3643 0.8454 0.8775 0.8141 

I 0.44 0.9667 0.9689 0.9556 0.22 0.9667 0.9689 0.9556 

O 0.5706 0.7815 0.8486 0.7449 0.3235 0.8345 0.8443 0.7935 

 

Figure 5.3 shows the BEIR-based average metrics at cutoff 5, Precision@5, Recall@5, 

NDCG@5, and MAP@5, for Datasets W, I, and O, illustrating that Dataset I delivers near-

perfect recall and ranking quality, Dataset W offers the best precision-recall balance, 

and Dataset O falls in between. 

 

Figure 5.3.Clustered Bar Chart of Average Metrics of the BEIR-based model 

 

 

 

 

 



Chapter 5  

 

142 

 

Table 5.4. Beir-based results 

Dataset Change Request map_cut_5  Scores ndcg_cut_5 Scores 

I 

Case 1 1.00 1.00 

Case 2 1.00 1.00 

Case 3 1.00 1.00 

Case 4 1.00 1.00 

Case 5 1.00 1.00 

Case 6 1.00 1.00 

Case 7 1.00 1.00 

Case 8 1.00 1.00 

Case 9 0.50 0.61 

Case 10 1.00 1.00 

Case 11 1.00 1.00 

Case 12 0.83 0.92 

Case 13 1.00 1.00 

Case 14 1.00 1.00 

Case 15 1.00 1.00 

W 

C1 1.00 1.00 

C2 0.33 0.72 

C3 0.71 0.83 

C4 1.00 1.00 

C5 0.56 1.00 

C6 1.00 1.00 

C7 1.00 1.00 

C8 1.00 1.00 

C9 0.44 0.87 

C10 0.67 0.77 

C11 1.00 1.00 

C12 0.34 0.70 

C13 0.83 1.00 

C14 0.50 0.61 

C15 1.00 1.00 

C16 0.83 1.00 

C17 0.80 0.87 
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C18 1.00 1.00 

C19 0.40 0.55 

C20 1.00 1.00 

C21 0.95 0.98 

C22 0.63 1.00 

C23 0.75 0.88 

C24 0.54 0.85 

C25 1.00 1.00 

C26 0.80 0.87 

C27 0.81 0.91 

C28 1.00 1.00 

O 

CR007 0.71 1.00 

CR503689 1.00 1.00 

CR503779 0.25 0.41 

CR504139 0.71 1.00 

CR504310 0.83 1.00 

CR504311 0.35 0.65 

CR504321 0.67 0.77 

CR504322 0.75 0.83 

CR504323 1.00 1.00 

CR504324 1.00 1.00 

CR504325 0.68 0.76 

CR504326 1.00 1.00 

CR504327 1.00 1.00 

CR504328 0.83 1.00 

CR504329 1.00 1.00 

CR504330 1.00 1.00 

CR504331 0.71 1.00 

CR504332 1.00 1.00 

CR504333 0.50 0.61 

CR504334 1.00 1.00 

CR504335 0.67 0.77 

CR504336 0.75 0.83 

CR504337 0.80 0.87 

CR504338 1.00 1.00 
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CR504339 1.00 1.00 

CR504340 0.67 0.87 

CR504341 1.00 1.00 

CR504342 0.70 0.85 

CR504793 0.26 0.68 

CR504799 0.40 0.55 

CR600203 0.00 0.00 

CR600204 0.83 1.00 

CR60200 0.25 0.39 

CR60202 1.00 1.00 

5.12.  Discussion 

This section analyses the results of the proposed solutions, with subsections focusing 

on the NLP-based and Beir-based approaches. 

Different project contexts demand different balances between catching every possible 

impacted requirement (high recall) and minimizing false alarms (high precision). For 

safety-critical or regulatory systems, missing even a single dependency could have 

severe consequences; in such cases, configuring the dual-model pipeline for higher 

recall, even at the expense of more manual review, is justified. Conversely, for fast-

moving agile teams where throughput is paramount, prioritizing precision reduces 

analyst overhead, accepting that a few subtle impacts may be caught later in the 

iteration cycle. By exposing confidence thresholds in both the NLP and BEIR stages, our 

framework allows teams to tune this balance according to risk tolerance and available 

review effort. 

5.12.1. Discussion on the NLP Solution Results 

A detailed review of the outcomes for each specific change request has yielded 

significant insights. Certain change requests, particularly those related to core 

functionalities or critical components of the system, consistently demonstrated 

improved precision and recall. This suggests that the NLP method is particularly effective 
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at identifying and assessing the impact of changes that are well-defined or central to the 

system's operations. 

In contrast, other change requests produced lower scores, likely due to several factors, 

including ambiguous requirement descriptions, insufficient context in the change 

requests, or the inherent limitations of NLP technologies in handling complex semantic 

relationships without additional contextual information. These challenges emphasize 

the importance of clarity in the description of requirements and change requests to 

facilitate more accurate impact analysis. 

The overall results from the datasets present a mixed but informative picture. Dataset-

I demonstrated the highest success, achieving strong precision and recall scores, which 

may be attributed to the specific characteristics of the dataset—such as its domain focus 

and the well-defined nature of its requirements. This alignment with the NLP solution's 

strengths indicates that the model performs particularly well in environments with 

structured, domain-specific data. 

In contrast, Dataset-O encountered significant challenges, reflected in its lower 

performance across all metrics. This disparity highlights the sensitivity of NLP techniques 

to the linguistic and structural characteristics of the data being processed. It suggests 

that the effectiveness of the NLP solution is highly dependent on the quality and 

specificity of the dataset. Consequently, this points to the need for tailored NLP 

strategies that are adapted to different domains or types of software documentation to 

enhance the model’s performance. 

5.12.2. Beir-Based Results Discussion 

This subsection provides details of the results of the Beir-based approach for each 

dataset. 

(a) Discussion on Dataset-W:  

The evaluation of the dual-model framework for requirements CIA on Dataset-W 

yielded insightful results, demonstrating how well the model can extract and rank 

relevant requirements. The implementation achieved a notable balance between recall, 
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precision, and ranking efficiency, with the Bi-Encoder re-ranking mechanism 

contributing significantly to this outcome. 

A Precision@5 score of 0.6643 indicates that, on average, 66.43% of the top 5 returned 

documents were relevant to the given change requests (C1 to C28). This level of accuracy 

in the top results highlights the model's ability to prioritize the most relevant 

requirements, addressing the needs of stakeholders who typically focus on the top-

ranked results. 

Despite this strong performance, the Recall@5 score of 0.8049 suggests that the 

model could further improve its ability to retrieve a broader set of relevant 

requirements in the top 5. This balance between capturing the most critical 

requirements and excluding irrelevant ones presents a challenge in maintaining 

precision while improving recall. 

When expanding the evaluation to the top 10 requirements, Precision@10 dropped 

to 0.3643, indicating the trade-off between increasing the result set size and reducing 

precision. Nevertheless, the Recall@10 score rose to 0.8454, reflecting broader 

coverage and the inclusion of more relevant requirements, albeit at the cost of 

introducing some irrelevant ones. 

The NDCG scores of 0.9075 (for 5 results) and 0.8775 (for 10 results) highlight the 

model's ability to rank relevant requirements effectively. The slight decline from 5 to 10 

indicates the challenge of maintaining ranking quality as the result set grows. 

Moreover, the MAP scores showed a positive trend, improving from 0.7819 (at 5 

results) to 0.8141 (at 10 results), suggesting that the model preserves ranking precision 

across a broader range of requirements. This indicates the model's utility when users 

are prepared to explore a more extensive set of results. 

(b) Discussion on Dataset-I:  

The evaluation of the dual-model framework on Dataset-I yielded distinct results, 

shedding light on the dataset's characteristics and areas where the model both excels 

and faces challenges. Unlike Dataset-W, Dataset-I produced a high recall at the expense 

of lower precision. 
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With a Precision@5 score of 0.4400, the model was less precise in retrieving top 

results. However, the exceptionally high Recall@5 score of 0.9667 demonstrates that 

the model was highly successful in retrieving nearly all relevant requirements within the 

top 5, albeit with the inclusion of non-relevant documents that lowered precision. 

Similarly, Precision@10 and Recall@10 scores followed this trend, with values of 

0.2200 and 0.9667, respectively, showing that the model maintained its ability to 

capture nearly all relevant requirements, though more non-relevant results were 

included as the result set size increased. 

The NDCG@5 and MAP@5 scores—0.9689 and 0.9556, respectively—demonstrate 

the model's strong ranking performance and precision at the top of the result set. Even 

as the result set size doubled, the model maintained these scores at NDCG@10 and 

MAP@10, reflecting its ability to rank relevant requirements effectively across different 

result set sizes. 

These results confirm the model’s ability to retrieve relevant requirements with near-

perfect recall, a valuable strength in software development environments where 

missing critical requirements can be costly. However, the lower precision suggests the 

need to refine the retrieval process to reduce irrelevant data while maintaining recall. 

(c) Discussion on Dataset-O 

For Dataset-O, the Precision@5 score of 0.5706 and the Recall@5 score of 0.7815 

indicate a strong initial performance in retrieving relevant requirements within the top 

5 results. This balance suggests that a significant portion of relevant requirements is 

correctly prioritized, making it suitable for users focused on the top results. 

As more results are considered, there is a trade-off between relevance and quantity, 

reflected by the drop in Precision@10 to 0.3235 and the increase in Recall@10 to 

0.8345. This trade-off illustrates the challenge of expanding result sets while maintaining 

precision. 

The NDCG@5 score of 0.8486 and the NDCG@10 score of 0.8443 highlight the model's 

effectiveness in accurately ranking the retrieved requirements, with only a slight decline 
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in ranking quality as the number of results increases. This consistency suggests that the 

model's ranking mechanism is robust even with a more extensive result set. 

The MAP scores also showed an improvement from 0.7449 (at 5 results) to 0.7935 (at 

10 results), indicating that the model effectively maintains precision even as more 

requirements are reviewed. 

The performance on Dataset-O highlights the model's ability to capture relevant 

requirements while ranking them effectively. However, the decline in precision as the 

number of retrieved requirements grows underscores the need for further refinement, 

particularly in improving the re-ranking process to balance precision and recall. 

Conclusion- The evaluation of Dataset-O provides valuable insights into the dual-

model framework’s strengths in requirements CIA. While the model excels in recall and 

ranking quality, future enhancements should focus on improving precision without 

sacrificing recall. This balance is essential for supporting informed decision-making in 

software development processes. 

5.12.3. Comparison Between NLP-Based and Rule-Based CIA 

Approaches 

In the context of software requirements Change Impact Analysis (CIA), NLP-based and 

rule-based approaches offer fundamentally different strengths and limitations. While 

both aim to identify the relationships between change requests and potentially 

impacted requirements, their underlying methodologies and adaptability diverge 

significantly. 

NLP-based models rely on advanced natural language processing techniques to 

understand the semantics, syntax, and context of textual requirements. These models, 

particularly when enhanced with tools such as CoreNLP and SpaCy, can interpret varied 

sentence structures and terminologies. This flexibility allows them to perform effectively 

across diverse datasets and evolving documentation styles. By contrast, rule-based 

systems are grounded in fixed patterns, often defined through keyword matching, 

regular expressions, or pre-set dependency rules. As a result, they are inherently rigid. 
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Any deviation from predefined patterns, such as novel phrasing or unexpected 

terminology, typically requires manual rule adjustments, limiting their ability to 

generalize (Arora et al. 2015a). 

Scalability is another critical factor distinguishing these two approaches. NLP-based 

methods scale well to large datasets, even those with heterogeneous language use, 

because their models can adaptively learn from data distributions. In contrast, rule-

based methods tend to degrade in performance as the volume and variability of the 

dataset grow. This makes them more suitable for smaller or highly structured domains 

where language use is predictable and controlled (Arora et al. 2015a). 

From a performance standpoint, rule-based systems may deliver high precision within 

narrowly defined contexts, since they trigger only when specific criteria are met. 

However, this narrow targeting often results in lower recall, as many impacted 

requirements fall outside the rigid rule definitions. NLP models, on the other hand, tend 

to strike a better balance between precision and recall. Their semantic capabilities allow 

them to identify relevant impacts even when textual expressions differ significantly, as 

demonstrated by higher recall values observed in the evaluations on Dataset-I and 

Dataset-W (Arora et al. 2015a; Goknil, Kurtev & Berg 2016). 

Finally, maintainability sets these approaches further apart. Rule-based systems 

demand frequent manual updates to stay current with new requirement styles or 

domain shifts. This creates an ongoing maintenance burden for requirements engineers. 

NLP-based systems, however, can evolve through model retraining or fine-tuning 

without changing the underlying logic or architecture. This adaptability makes them 

more sustainable in dynamic development environments where requirements evolve 

over time (Goknil, Kurtev & Berg 2016). 

In summary, while rule-based approaches remain valuable in constrained scenarios 

requiring high precision and interpretability, NLP-based CIA methods offer superior 

flexibility, scalability, and adaptability. Their capacity to handle unstructured language 

and generalise across varied datasets positions them as more robust solutions for 

modern software engineering projects involving large-scale or frequently changing 

requirements. 
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5.12.4. Dataset-Specific Challenges & Remedies 

Dataset-O proved the most difficult of our three datasets. Having been edited by 

multiple authors over more than 14 years, it contains inconsistent terminology, uneven 

levels of detail, and sparse contextual cues. These characteristics lead to noisy 

embeddings, poor lexical overlap, and fractured dependency graphs, which explain the 

lower Precision, Recall, and F1 scores we observed. 

To address these issues, first we recommend domain-adaptive fine-tuning of our 

neural retrievers on a small, manually validated subset of Dataset-O. By exposing the Bi-

Encoder and Cross-Encoder models to the dataset’s idiosyncratic vocabulary and 

phrasing, we can improve their ability to capture its unique semantics. Second, 

integrating a lightweight domain ontology mapping, like “subscriber endpoint” to “user 

API”, can augment embeddings with explicit concept links and boost semantic coverage 

where raw vectors fall short. Third, an active-learning loop that flags low-confidence 

predictions for human review can help surface edge-case dependencies. These 

annotations both improve model retraining and focus our efforts on the most 

challenging examples. Finally, layering in a simple rule-based post-filter for critical entity 

patterns (such as “credit module” or “payment gateway”) can catch high-risk 

dependencies that might slip past even a well-tuned neural parser. 

Together, these dataset-tailored refinements will help our dual-model framework 

adapt not only to generic requirements text but also to the quirks of older, highly 

evolved repositories like Dataset-O. 

5.13. Summary 

This research proposed an approach to analyze the impacts of software requirements 

change requests, focusing on identifying which existing requirements would be affected 

by a new change. The primary objective was to design a reliable framework to enhance 

planning and prioritization in the execution of requirements changes within agile 

software development environments. 
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Two approaches were employed to evaluate the proposed research: an NLP-based 

solution using CoreNLP and SpaCy, and a Beir-based solution leveraging BM25 via 

Elasticsearch, with Bi-Encoders and Cross-Encoders for dense retrieval and ranking. Both 

methods were assessed across three real-world datasets (W, I, and O), each presenting 

unique linguistic and domain-specific characteristics. 

The NLP-based approach demonstrated significant efficacy in Dataset-I, achieving an 

overall F1 Score of 0.653, indicating a strong capacity to identify the impacts of 

requirements changes while maintaining a balance between precision and recall. This 

underscores the suitability of the NLP-based method when dealing with datasets that 

align well with linguistic models, highlighting its utility in cases where syntactic and 

semantic interactions are crucial for predicting impacted requirements. 

Conversely, the Beir-based method excelled in Dataset-W, showcasing its superior 

precision in identifying the top 5 impacted requirements. With an Average Recall@5 of 

0.8049 and an Average Precision@5 of 0.6643, the Beir-based solution proved highly 

effective in quickly retrieving the most relevant impacted requirements. A notable 

observation was the method's performance in Dataset-I, where its ability to capture a 

broader range of potential impacts was reflected in high recall scores. However, the 0.22 

Average Precision@10 score highlights a trade-off with precision, emphasizing the 

method’s tendency to introduce more false positives while maintaining comprehensive 

coverage. 

A comparison of the two approaches provides deeper insights into their respective 

strengths. The NLP-based method outperforms the Beir-based solution in Dataset-I, 

where it adeptly captures nuanced interactions between syntactic structures and 

semantic meaning. This balance between precision and recall makes the NLP-based 

approach a more reliable predictor of impacted requirements when the data aligns with 

its linguistic processing capabilities. In contrast, the Beir-based approach excels in recall, 

particularly in Dataset-I, owing to its utilization of BM25 and advanced encoder 

techniques. While the Beir model may introduce more false positives, its ability to 

retrieve a larger set of potentially impacted requirements makes it an invaluable tool for 

ensuring comprehensive coverage in CIA. 
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In summary, the dual-model framework presented in this research offers a promising 

solution for improving decision-making in software development through efficient 

requirements CIA. By combining BM25 for initial retrieval with Bi-Encoders and Cross-

Encoders for semantic understanding and re-ranking, the framework addresses both 

precision and recall, providing a balanced and comprehensive approach to managing 

requirements changes. Future research may explore further enhancements to refine 

precision while maintaining the recall strengths demonstrated by the Beir-based 

method. 
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Chapter 6.  

Implementation of Retrieval-Augmented 

Generation (RAG) Model for Predicting 

Requirement Change Impact 

 

 

 

 

 

 

6.1. Introduction 

This chapter introduces the implementation of the RAG model, a critical component 

of the SRCIA framework described in Chapter 3. The RAG model integrates information 

retrieval and generative language models, providing a sophisticated solution for 

enhancing decision-making in software requirement CIA. As the SRCIA framework 

outlines, the RAG model represents an advanced layer designed to handle large-scale, 

dynamic, and heterogeneous datasets where deep contextual understanding is 

essential. 

Implementing the RAG model marks a significant contribution to the SRCIA 

framework. It leverages the retrieval capabilities of vector-based embedding techniques 

to identify relevant requirements. It combines them with the generative reasoning of 

LLMs to predict and explain the potential impacts of changes. This chapter details the 

RAG model's conceptual framework, technical architecture, and implementation 

specifics, as well as its integration within the SRCIA framework. It also highlights the 
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enhancements made to standard RAG implementations tailored to the unique 

challenges of requirements engineering. 

Despite advances in requirements traceability and change impact analysis, most prior 

solutions suffer from three core limitations. First, rule-based and keyword-matching 

pipelines break down whenever stakeholders use varied terminology or complex 

sentence constructions, yielding brittle coverage and high false-negative rates. Second, 

single-model approaches, whether classical ML classifiers or dense-retrieval systems, 

tend to excel only in narrow, well-structured datasets and degrade sharply under 

domain shifts or unstructured text. Finally, where hybrid or ensemble strategies have 

been proposed, they often lack a clear mechanism for integrating retrieval evidence with 

generative reasoning, leaving analysts without coherent explanations or fine-grained 

confidence measures. These gaps motivate our RAG design, which combines robust 

vector retrieval with LLM-powered generation to deliver both high recall and human-

readable impact predictions. 

One of the primary contributions of this research is adapting the RAG model to the 

context of CIA for software requirements. This includes combining retrieval-based 

methods with fine-tuned generative models to create a hybrid approach that optimally 

balances precision and contextual understanding. Additionally, modifications were 

made to the retrieval mechanism to align with the semantic structures commonly 

observed in software requirements documents. These customizations enhance the 

model's relevance ranking and ensure compatibility with the datasets used in the SRCIA 

framework. 

The chapter also illustrates how the RAG model complements the NLP and BEIR-based 

solutions previously implemented in the SRCIA framework. While the NLP and BEIR-

based methods focus on semantic and lexical similarity for structured and semi-

structured datasets, the RAG model extends this capability by providing deeper 

contextual insights and explaining predicted impacts. This advancement addresses a gap 

in the framework by enabling more nuanced analysis for complex and unstructured 

datasets, such as lengthy requirements specifications and dynamic change logs. 
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By implementing and refining the RAG model, this research contributes a novel 

approach to integrating state-of-the-art AI techniques within the SRCIA framework. The 

chapter concludes with an evaluation of the RAG model's performance, highlighting its 

effectiveness in improving accuracy, scalability, and contextual understanding in 

predicting software requirement change impacts. 

6.2. Applications of LLMs in CIA 

LLMs play a pivotal role in automating CIA within software requirements engineering. 

Their ability to process and interpret large volumes of unstructured data with contextual 

sensitivity makes them uniquely suited for this task. In this research, LLMs were 

leveraged within a Retrieval-Augmented Generation (RAG) system, combining retrieval 

and generative capabilities to address the complexities of CIA. 

The LLM component of the RAG system serves as the generative backbone, producing 

contextually informed predictions based on retrieved requirements. One of the 

significant applications of LLMs is their ability to analyze the context and semantics of 

requirements, identifying intricate dependencies that traditional models may overlook. 

This capability ensures a more comprehensive and accurate identification of impacted 

requirements. Additionally, by leveraging fine-tuned LLMs such as Phi 3.5, the system 

demonstrates predictive modeling capabilities, allowing it to predict the impacts of 

changes with high precision, even in datasets characterized by linguistic variability and 

unstructured text. 

LLMs also contribute significantly to enhancing stakeholder communication. Their 

generative capabilities enable the creation of natural language explanations for 

predicted impacts, improving clarity and facilitating informed decision-making among 

stakeholders. Furthermore, LLMs augment the retrieval process by ensuring that 

retrieved documents are contextually aligned with the query, which enhances the 

overall accuracy and relevance of the results. Finally, LLMs' adaptability allows their 

application across diverse domains, such as finance, healthcare, and manufacturing, 

broadening the scope and applicability of CIA methodologies. 
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6.3. Architecture and Functionality of LLMs 

The core architecture of modern LLMs relies on the Transformer model, particularly 

its self-attention mechanism, which enhances the model's ability to process sequential 

data effectively. Through self-attention, LLMs can identify the relationships between 

individual words in a sentence and the broader contextual relationships among 

sentences. This mechanism is critical in enabling the model to generate coherent, 

contextually aligned responses, an essential feature for processing complex 

requirements in CIA. 

In the RAG system, the self-attention mechanism plays a pivotal role, allowing the 

model to incorporate immediate lexical meaning and deeper semantic relationships. 

This dual focus on linguistic and semantic layers enhances the system’s ability to deliver 

responses that reflect not only the content of specific requirements but also their 

underlying dependencies and broader context(Zheng et al. 2023). 

6.4. LLMs as a Reasoning Engine in the RAG Framework 

Within the RAG framework, the LLM functions as the primary reasoning engine, 

synthesizing information from retrieved requirements and generating responses that 

predict impacted requirements. This capability is crucial for the requirements CIA, where 

nuanced interpretations and comprehensive understanding are required to identify 

potential implications accurately. By combining retrieval-based input with generative 

reasoning, the LLM component of the RAG model enables a more contextually aware 

and responsive system. 

In this thesis, the LLMs are also employed as benchmarks to evaluate the generated 

responses’ quality and alignment with intended outcomes, a process referred to as 

"LLM-as-a-judge." This benchmarking approach provides further interpretative depth, 

capturing the semantic quality of generated text beyond syntactic accuracy. 
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6.5. Selected LLMs and Their Roles 

For this research, multiple LLMs such as Phi 3.5, GPT-3, T5, BERT and Flan-T5 were 

incorporated, each serving distinct functions to optimize the framework's performance. 

The chosen LLMs include Phi 3.5, among others, selected for their specific capabilities in 

reasoning, contextual inference, and adaptability across varying requirements datasets. 

These models collectively contribute to achieving high precision and recall in identifying 

impacted requirements, particularly in unstructured or semi-structured datasets (Abdin 

et al. 2024). 

6.6. RAG Architecture 

The architecture of a RAG model consists of two main components: the retriever 

component and the generator component, each playing a distinct role in the pipeline. 

Figure 6.1 illustrates the RAG model pipeline, which consists of the query being passed 

through the retriever to find relevant documents, followed by the generator producing 

a contextually informed response. 

 

Figure 6.1.The Architecture of RAG Model 
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6.6.1. Retriever Component 

The retriever component is essential for identifying and selecting documents or data 

segments that provide relevant context for a query. It operates by searching a pre-

indexed knowledge base or database and scoring documents based on their relevance 

to the query. 

• Indexing: The knowledge base is pre-processed to create an index, allowing for 

efficient searching. In this implementation, BM25 is used as the primary retrieval 

algorithm due to its effectiveness in text-based search. 

• Query Processing: The input query is tokenized and standardized to align with the 

retrieval model’s input format. Tokenization ensures that the query is processed 

consistently with the indexed data. 

• Scoring and Ranking: The retriever ranks documents using scoring functions, such 

as TF-IDF or vector similarity measures, to determine relevance. The top-k results 

are selected based on their scores. 

The retriever component offers several notable benefits. One of the primary 

advantages is its speed and efficiency, as indexed search enables quick retrieval of 

relevant context from large datasets. Additionally, the retriever is highly customizable, 

allowing it to be adapted to various retrieval methods, including embedding-based 

searches that leverage vector similarity for enhanced precision. This flexibility ensures 

that the retriever can be tailored to meet specific requirements across different use 

cases and domains. 

6.6.2. Generator Component 

The generator component takes the output of the retriever and integrates it into the 

response generation process. It employs a transformer-based language model, such as 

Phi-3.5, to produce informed, contextually aware responses. 
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• Contextual Input: The input to the generator includes both the original query and 

the retrieved documents. This combined input enriches the model’s understanding 

and guides the response generation. 

• Transformer Architecture: The Phi-3.5 model employs a multi-layered attention 

mechanism that allows the model to weigh different parts of the input context, 

ensuring that the response is coherent and relevant. 

• Prompt Structuring: To maximize the model’s performance, input prompts are 

carefully structured to guide the model’s response. This can include pre-processing 

techniques that tailor the input format to emphasize critical points (White et al. 

2023). 

• Memory Optimization: Implementing quantization techniques, such as 8-bit 

quantization using BitsAndBytesConfig, optimizes the model’s memory usage, 

making it more suitable for practical deployment on hardware with limited 

resources. 

The generator component brings significant benefits to the RAG system. By 

incorporating context retrieved from the knowledge base, the generator produces 

responses that are more precise and informative, enhancing the relevance of its 

outputs. Additionally, the generator is highly flexible, as it can be fine-tuned or adapted 

to cater to different types of output requirements. Whether the desired response 

format is explanatory text, concise bullet points, or in-depth analysis, the generator can 

be customized to meet specific needs, making it a versatile tool for various applications. 

6.7. RAG Applications in CIA 

In the context of CIA, RAG models retrieve relevant requirement documents for a 

given change request and generate predictions on how the requirements are impacted. 

The retrieval component ensures that only contextually relevant information is 

considered, while the generation component provides explanations and predictions 

based on this retrieved context. 



Chapter 6  

 

160 

 

6.8. Scalability of the RAG Framework for Enterprise-Level Software 

Systems 

Scalability is a crucial consideration when implementing Retrieval-Augmented 

Generation (RAG) frameworks within enterprise-level software systems, given the 

substantial volume, complexity, and dynamic nature of data in such environments. 

Enterprise software typically involves extensive and continuously evolving repositories 

of documentation, requirements, change logs, and stakeholder communications. As 

such, ensuring that the RAG model can efficiently manage, retrieve, and generate 

contextually accurate responses from large datasets is paramount for practical 

adoption. 

The RAG framework implemented in this research demonstrates considerable 

scalability due to its inherently modular design, consisting of distinct retrieval and 

generation components. The retrieval component, employing vector-based databases 

like LanceDB and high-performance indexing tools such as FAISS, is particularly 

conducive to scalable implementations. LanceDB’s efficient handling of high-

dimensional vectors and FAISS’s rapid approximate nearest-neighbour searches ensure 

low latency and swift performance, even as the data scales into millions of embeddings. 

This combination allows the RAG framework to maintain effective retrieval speeds, 

ensuring practical applicability in environments with extensive documentation and rapid 

query-response cycles (Johnson, Douze & Jegou 2021). 

Another critical factor enhancing scalability is the use of dense embeddings generated 

through models like all-MiniLM-L6-v2, which facilitate compact yet semantically rich 

representations of textual data. These embeddings significantly reduce the 

computational overhead during retrieval by enabling efficient vector-based similarity 

searches. Additionally, the retriever's architecture can be horizontally scaled by 

deploying multiple instances or shards, allowing parallel querying of extensive vector 

datasets. Such horizontal scalability ensures that even as enterprise data repositories 

expand, retrieval performance remains robust and responsive. 
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The generator component, based on transformer models such as Phi-3.5, also presents 

opportunities and challenges regarding scalability. Transformer-based LLMs, while 

powerful, are computationally demanding due to their large parameter sets and 

intensive attention mechanisms. However, this research addresses these concerns 

through advanced memory optimisation strategies, including 8-bit quantisation 

techniques via BitsAndBytesConfig. These optimisations substantially reduce memory 

usage and computational requirements, enabling deployment on enterprise hardware 

resources without significantly compromising generation accuracy or response quality 

(Jiang et al. 2025). 

Moreover, the modular nature of the RAG architecture enables independent scaling 

of the retrieval and generation components, allowing tailored resource allocation based 

on enterprise needs. For instance, the retrieval component can be scaled aggressively 

to handle very large datasets, while the generation component can utilise smaller, 

optimised language models to manage computational resource constraints effectively 

(Lewis et al. 2020). 

Enterprise integration further enhances the scalability of the RAG framework through 

the potential use of distributed processing and cloud infrastructure. Deploying the RAG 

system within a cloud-based environment leveraging containerisation technologies 

(such as Docker and Kubernetes) facilitates dynamic scaling, load balancing, and efficient 

resource management. This deployment model allows organisations to rapidly scale 

computational resources up or down based on demand fluctuations, ensuring consistent 

performance and reliability during peak usage periods (Jiang et al. 2025). 

Lastly, scalability also extends to ongoing maintenance and adaptability. Unlike 

traditional rule-based systems, which require manual updates and can quickly become 

burdensome at scale, the RAG framework can efficiently adapt through retraining or 

incremental fine-tuning. This capability significantly reduces long-term maintenance 

overhead and ensures the system remains accurate and relevant as enterprise 

documentation and requirements evolve. 

In summary, the RAG framework implemented in this research is well-suited for 

scaling in enterprise-level software systems due to its modular design, efficient vector-
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based retrieval, computationally optimized generative models, and compatibility with 

scalable deployment environments. Its adaptability in handling dynamic, large-scale 

datasets positions it effectively for real-world enterprise applications, offering robust 

performance, reduced maintenance requirements, and practical scalability. 

6.9. Implementation Challenges & Limitations 

While the RAG framework offers powerful retrieval and generation capabilities, it also 

introduces non-trivial computational and operational overhead. Fine-tuning and serving 

large LLMs such as Phi 3.5 or GPT-3 requires substantial GPU memory and inference 

costs: for example, running Phi 3.5 in 16-bit precision can consume upwards of 12–16 

GB of VRAM per instance, and pay-as-you-go hosting of GPT-3 can accumulate 

thousands of dollars per month under heavy query loads. Although 8-bit quantization 

and model sharding mitigate some of this cost, teams must carefully budget for both 

peak GPU requirements and ongoing throughput expenses when deploying RAG in 

production. 

The retriever and generator components each come with distinct scalability 

bottlenecks. BM25 indexing scales linearly with corpus size, making sub second retrieval 

challenging once you exceed millions of documents—at which point approximate 

nearest-neighbor indexes (FAISS) become essential but introduce recall and precision 

trade-offs. Likewise, the transformer-based generator’s self-attention mechanism 

grows quadratically with input length, so feeding in large top-k contexts can double or 

triple inference latency. In practice, we found that capping the retrieved context to 3–5 

passages and using batched generation improved throughput by 2× with only a 5–10 % 

drop in F1 (Nogueira & Cho 2019). 

Maintaining vector databases at enterprise scale also presents integration headaches. 

Systems like LanceDB must support live updates as requirements evolve, yet re-indexing 

millions of embeddings on every push is impractical. We addressed this by batching 

nightly refreshes and using rolling shards, but this adds operational complexity and 

temporary staleness in the retrieval index. Monitoring vector-store health and 

periodically validating vector similarity thresholds is crucial to avoid silent degradation. 
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Finally, our choice of all-MiniLM-L6-v2 embeddings and the LanceDB+FAISS stack 

reflects a balance of speed, accuracy, and ease of integration. We compared 

alternatives—such as embed-all-mpnet and Milvus—but found that all-MiniLM offers 2–

3× faster encoding with only a 2–3 % hit in retrieval recall, and LanceDB’s Pythonic API 

simplified our data pipeline compared to lower-level options. FAISS’s mature ANN 

algorithms likewise outperformed newer frameworks in query latency under high 

concurrency. By calling out these trade-offs explicitly, teams can see why our particular 

embedding and indexing toolkit was the best fit for large-scale CIA. 

6.10. Vector Databases in RAG Systems 

This section explores the integration and significance of vector databases within the 

RAG framework. 

6.10.1. Role of Vector Databases in the RAG Framework 

In the RAG system, vector databases are an essential component of the retriever. They 

enable the efficient storage and retrieval of embedding vectors generated during pre-

processing, allowing the system to identify semantically similar items to the query. 

The workflow within a vector database in the RAG framework typically involves several 

steps. First, text data, such as requirements and queries, is transformed into dense 

vector representations using embedding models like all-MiniLM-L6-v2. These 

embeddings capture semantic meaning and relationships within the data. Once 

generated, the embeddings are indexed using advanced techniques such as 

Approximate Nearest Neighbor (ANN) algorithms. This indexing process accelerates 

similarity searches by creating structures that allow efficient querying of high-

dimensional data. When a query embedding is provided, the vector database performs 

a similarity search to retrieve the most relevant embeddings. This search often uses 

metrics like cosine similarity or Euclidean distance to rank results by relevance. Finally, 

the retrieved embeddings are passed to the generator component of the RAG model, 

enriching the context for generating accurate and contextually relevant responses. 
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6.10.2. Advantages of Using Vector Databases 

Vector databases offer several advantages that make them suitable for RAG systems. 

They can handle large-scale embedding datasets efficiently, enabling rapid similarity 

searches across millions of vectors. Their advanced indexing and search algorithms 

ensure low-latency responses, making them ideal for real-time applications. 

Furthermore, vector databases support various similarity metrics and retrieval 

configurations, allowing customization for specific use cases. Additionally, many vector 

databases, such as LanceDB and FAISS, integrate seamlessly with ML pipelines and 

frameworks, simplifying implementation in modern workflows. 

6.11. LanceDB and FAISS in this Research 

In this thesis, LanceDB and FAISS were employed as the vector database components 

within the RAG system. LanceDB was used to manage and store embedding vectors, 

providing a flexible and efficient database platform optimized for high-dimensional data. 

Its support for schema customization and integration with Python libraries facilitates 

seamless interaction with the embedding models. FAISS (Facebook AI Similarity Search) 

served as the indexing and search engine. By implementing Approximate Nearest 

Neighbor (ANN) techniques, FAISS performed high-speed similarity searches on the 

stored embeddings. Its capability to handle large-scale data ensures efficient and 

accurate retrieval, even with extensive requirements datasets. 

6.12. Relevance to Requirements CIA 

The adoption of vector databases in the RAG system enhances the framework’s ability 

to manage and retrieve contextually rich information efficiently. This capability is critical 

for requirements CIA, as the system must navigate large, unstructured datasets to 

identify relevant impacted requirements. By leveraging LanceDB and FAISS, the RAG 

model achieves high retrieval accuracy and scalability, meeting the demands of complex, 

dynamic software engineering environments. 
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6.13. Prompt Engineering Technique in the RAG Framework 

Prompt engineering is a critical element of the RAG framework, enabling the seamless 

integration of retrieved context with generative language modeling. In this 

implementation, prompt engineering was designed to dynamically structure and enrich 

the input for the language model, ensuring precise and contextually relevant responses 

for requirements CIA. This section details the techniques employed to optimize the 

prompts for effective utilization of the Phi-3.5 language model within the RAG system. 

6.14. Implementation of the RAG-Based Solution 

The RAG-based solution was implemented using Python, with the following detailed 

steps outlining the process: 

Step 1: Preprocessing Datasets 

The requirements and change request datasets were preprocessed to ensure a 

consistent format: 

• Tokenization: The text was tokenized using NLTK to prepare for embedding and 

retrieval. 

• Normalization: Text data was converted to lowercase, and punctuation was 

removed for uniformity. 

• Embedding Preparation: Sentence embeddings were generated using the all-

MiniLM-L6-v2 model from the SentenceTransformer library to capture semantic 

relationships between text elements. 

Step 2: Storing Embeddings in LanceDB 

LanceDB was used to store the embeddings generated from the requirements dataset: 

• Embedding Creation: Each requirement description was embedded and stored in 

a PyArrow table for easy access and management. 

• Database Connection: LanceDB was initialized to manage the vector data 

efficiently. 
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• Table Creation: A table was created in LanceDB to store the requirement IDs, 

descriptions, and corresponding embeddings. 

LanceDB offers several key benefits, making it an effective solution for vector data 

management. One of its main advantages is its scalability, allowing it to handle large-

scale vector data storage efficiently, ensuring smooth performance even as the dataset 

grows. Additionally, LanceDB provides seamless integration, simplifying storing and 

querying embeddings. This ease of integration enhances the manageability of the 

retrieval component, contributing to a more efficient and streamlined workflow in 

retrieval-based applications. 

 

Step 3: Indexing with FAISS 

FAISS was used to create an index for the stored embeddings to enable fast similarity 

searches: 

• Embedding Extraction: Embeddings were loaded from LanceDB into a NumPy 

array for indexing. 

• FAISS Index Initialization: A FAISS index using L2 distance (Euclidean distance) was 

created and populated with the embeddings. 

• Dynamic k Search: The index was configured to allow dynamic k-value searches 

based on the actual impact set size for each change request. 

FAISS offers notable benefits that make it a powerful tool for similarity search in large-

scale applications. One of its primary advantages is its high performance, as it is 

optimized to conduct fast similarity searches even on extensive datasets, ensuring quick 

and efficient retrieval operations. Additionally, FAISS provides flexibility by supporting 

various distance metrics, which enhances the accuracy of retrieval tasks by allowing 

customization based on the specific needs of the application. 

Step 4: Implementing the Retrieval Component 

The retrieval component was implemented using FAISS: 
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• Query Embedding: Change request descriptions were embedded using the 

SentenceTransformer model. 

• Vector Search: FAISS searched the top-k relevant requirements based on the 

query embedding, returning the results for use in the generative phase. 

Step 5: Configuring the Generative Model 

The Phi-3.5 model was configured to generate outputs using the retrieved context: 

• Model Setup: The model was loaded with CUDA support for GPU acceleration, 

using float16 precision for optimized performance. 

• Pipeline Creation: A text generation pipeline was defined to integrate the model 

and tokenizer, enabling seamless generation of responses. 

Step 6: Generating Context-Aware Responses 

The response generation process involved: 

• Context Construction: The retrieved requirements were combined to form a 

context for the model. 

• Generation: The model processed the context and the change request 

description to generate detailed responses, predicting impacted requirements. 

Step 7: Processing Change Requests and Storing Results 

The model was used to process each change request in the dataset: 

• Output Generation: Each change request was passed through the RAG system, 

and the generated response was stored in a CSV file. 

• Evaluation: The generated outputs were evaluated using precision, recall, and 

F1 scores to measure the model's effectiveness. 

6.15. Evaluation of the RAG System 

Evaluating the RAG system requires a thorough analysis of both the retrieval and 

generation components to ensure the responses address the change requests 

accurately and identify the correct impacted requirements. To assess the quality of 

retrieval, metrics such as Recall and Precision are used. Recall here is crucial for 
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understanding how well the system covers all necessary information regarding a change 

request. A higher recall indicates that the system effectively retrieves most, if not all, of 

the relevant requirements. On the other hand, precision quantifies the proportion of 

retrieved requirements that are truly relevant. This metric helps evaluate the accuracy 

of the retrieval process by showing how many of the retrieved documents are relevant. 

A high precision score implies that the system retrieves mostly relevant documents, 

minimizing noise in the output. 

For the generation component, the BLEU and ROUGE scores are utilized to measure 

the overlap between the generated responses and the manually created ground truth. 

The BLEU (Bilingual Evaluation Understudy) score assesses how similar the generated 

text is to the reference text by examining the n-gram overlap. BLEU is particularly useful 

for evaluating fluency and word choice in the generated response. A higher BLEU score 

indicates that the generated text closely matches the reference, suggesting that the 

model has effectively captured the desired content (Gou et al. 2023; Yan 2023). ROUGE 

(Recall-Oriented Understudy for Gisting Evaluation) scores are another set of metrics 

used to evaluate the quality of text by comparing n-grams, word sequences, and word 

pairs with the reference text. ROUGE-1 measures the overlap of unigrams (individual 

words) between the generated text and the reference, while ROUGE-L considers the 

longest common subsequence between the texts, emphasizing the overall structure and 

coherence of the response. Higher ROUGE scores indicate better alignment with the 

ground truth, signifying that the generated text includes important and relevant 

information (Lin 2004). 

In addition to quantitative metrics, human evaluation can be conducted to further 

assess the generation quality. In this process, domain experts or evaluators rate each 

response based on various aspects such as accuracy, relevance, and completeness. 

Evaluators can use a scale (e.g., 1-5) to rate how well the generated response addresses 

the change request and includes appropriate impacted requirements. This step provides 

qualitative feedback and allows for a more nuanced understanding of the system's 

performance, capturing aspects that automated metrics might overlook. 
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To compute the BLEU score, the generated text is compared with the ground truth by 

analyzing the overlap of n-grams. The BLEU score ranges from 0 to 1, where a score 

closer to 1 indicates a higher similarity between the generated text and the reference. 

For example, in evaluating a response where the ground truth states, "The impacted 

requirements include stability and performance improvements," and the generated 

response states, "The impacted requirements are related to stability and performance," 

a high BLEU score would suggest strong alignment in content. The ROUGE score similarly 

evaluates the text by comparing n-grams and sequences, assessing the generated 

content's informativeness and coherence. The use of both BLEU and ROUGE allows for 

a comprehensive evaluation of how well the model performs in generating relevant and 

coherent responses (Ganesan 2018; Yu et al. 2024). 

Overall, an end-to-end evaluation can be performed by combining the retrieval and 

generation results. The average recall and precision scores provide insights into how 

well the retrieval process captures relevant requirements, while the average BLEU and 

ROUGE scores assess the fluency and coherence of the generated text. If human 

evaluation is conducted, the ratings from domain experts can be summarized to present 

an overview of how well the system meets the practical requirements of the task. This 

combined analysis helps identify strengths and areas for improvement, ensuring that 

the RAG system is effective and reliable for addressing change requests and determining 

impacted requirements. 

6.16. Results and Discussion 

The evaluation results of the RAG model are summarized in Tables 6.1 and 6.2. Table 

6.1 provides the average performance metrics of the model across the three datasets—

Dataset-W, Dataset-I, and Dataset-O—including Precision, Recall, F1 Score, Mean 

Reciprocal Rank (MRR), Partial Credit, Precision@5, Recall@5, Precision@10, and 

Recall@10. Table 6.2 presents the detailed results for individual change requests in 

Dataset-W, including additional metrics such as BLEU and ROUGE. These tables 

collectively provide a comprehensive overview of the RAG model’s performance across 

datasets and individual change requests. 
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A) Dataset-W: Moderate Performance with Balanced Precision and Recall 

Dataset-W demonstrated a balanced yet moderate performance in Precision and 

Recall, with averages of 0.55 and 0.67, respectively, resulting in an F1 Score of 0.59. 

These values suggest that while the RAG model managed to retrieve a considerable 

portion of relevant impacted requirements, it also included a number of irrelevant 

results. This trade-off between precision and recall highlights the RAG model’s attempt 

to balance completeness with accuracy in retrieval for Dataset-W. The inclusion of BLEU 

and ROUGE metrics provides additional insights into the model’s lexical and contextual 

alignment capabilities. 

High Recall values for specific change requests, such as C1, C3, and C14, indicate that 

the RAG model was effective in capturing all relevant impacted requirements for these 

changes. This high recall may be attributed to clearer linguistic patterns or less 

ambiguous wording in the change descriptions. BLEU scores for these requests were 

relatively higher, suggesting a better lexical overlap with ground truth in these cases. 

Similarly, ROUGE1 (0.5) and ROUGEL (0.5) metrics reflect moderate overlaps in unigram 

and sequential matching, further supporting the model’s ability to retrieve contextually 

relevant requirements for less ambiguous cases. Conversely, the lower Precision scores 

observed for requests such as C7 and C18 (both with Precision scores of 0.26) suggest 

instances of over-retrieval. This over-retrieval is likely due to ambiguous or loosely 

defined requirements, which the model struggled to differentiate accurately. The BLEU 

scores for these cases were also low, indicating a lack of lexical alignment with the 

ground truth, and the ROUGE2 scores (average 0.25) reveal challenges in capturing 

meaningful bigram overlaps for such complex change requests. 

The Mean Reciprocal Rank (MRR) for Dataset-W, averaging 0.69, highlights the 

model’s ability to rank relevant requirements fairly high, though not consistently at the 

very top. The Partial Credit metric of 0.88 suggests that even if exact matches were not 

retrieved, the model was reasonably effective in retrieving closely related requirements. 

BLEU and ROUGE metrics further substantiate this observation, with BLEU scores 

emphasizing limitations in lexical precision and ROUGE1 metrics indicating moderate 

structural coherence in the retrieved results. Interestingly, the Precision@5 (0.45) and 
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Recall@5 (0.59) values underline the model's challenges in consistently retrieving the 

most relevant requirements within the top 5 results. This limitation is evident in the 

variability of BLEU and ROUGE scores across change requests, which reflect 

inconsistencies in lexical and structural alignment. While the RAG model demonstrated 

a fair ability to rank relevant results near the top, the linguistic variability within Dataset-

W limited its overall retrieval effectiveness. 

Dataset-W highlights the RAG model’s strengths and weaknesses in dealing with 

moderate complexity. The high Recall for specific change requests with clearer linguistic 

patterns showcases the RAG model's capability to capture relevant impacted 

requirements comprehensively. However, the low BLEU scores for specific change 

requests emphasize the need for better lexical alignment, and precision inconsistencies 

across change requests point to challenges in managing over-retrieval for linguistically 

diverse or ambiguous requirements. To improve performance on datasets like Dataset-

W, additional preprocessing steps, such as linguistic normalization and domain-specific 

synonym replacement, could enhance BLEU and ROUGE scores by improving lexical and 

structural alignment. Further, refining the retrieval component by integrating advanced 

embeddings or hybrid scoring mechanisms may improve precision while maintaining 

high recall. 

In summary, Dataset-W demonstrates the RAG model’s ability to achieve a reasonable 

balance between precision and recall. BLEU and ROUGE metrics reveal moderate lexical 

and contextual alignment, with room for improvement in addressing linguistic 

inconsistencies. The dataset’s moderate complexity aligns well with the model’s 

capabilities, but further refinements are required to enhance precision and retrieval 

effectiveness in similar datasets. 

B) Dataset-I: High Performance in Structured and Consistent Data 

Dataset-I displayed the strongest performance metrics across all evaluated datasets, 

with averages for Precision and Recall at 0.79 and 0.87, respectively, resulting in an F1 

Score of 0.78. These scores underscore the RAG model’s effectiveness in accurately and 

comprehensively retrieving relevant requirements. This high performance is likely 

attributed to the structured format and consistent linguistic patterns in Dataset-I, which 
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facilitated the RAG model’s ability to capture and interpret the requirements with high 

precision and recall. 

Adding BLEU and ROUGE metrics further highlights the model’s lexical and contextual 

alignment. BLEU scores, averaging 0.18, indicate moderate overlap between predicted 

and ground-truth requirements at a token level. In contrast, ROUGE1 (0.8125), ROUGE2 

(0.733333), and ROUGEL (0.8125) scores emphasize strong n-gram and sequential 

alignment in the retrieved outputs. These results reflect the RAG model’s capacity to 

produce semantically and lexically aligned responses in a well-structured dataset. 

Certain cases in Dataset-I, such as Case 1, Case 12, and Case 15, achieved perfect or 

near-perfect Recall and Precision scores, illustrating the model’s ability to perform 

optimally in environments with minimal linguistic variation and consistent terminology. 

These cases also reported high BLEU and ROUGE scores, indicating semantic and lexical 

alignment with the ground truth. The Mean Reciprocal Rank (MRR) of 0.83 further 

suggests that relevant requirements were often ranked at or near the top, which is 

critical for scenarios requiring prioritized retrieval. 

The Partial Credit score for Dataset-I averaged 0.95, reflecting the model’s robust 

accuracy in capturing relevant items even when exact matches were not retrieved. The 

high ROUGE2 scores across cases further validate the model’s ability to identify 

semantically related requirements by capturing meaningful bigram overlaps. 

Precision@5 (0.4) and Recall@5 (0.75) demonstrate the model’s ability to retrieve 

relevant top-ranked items, though Precision@5 slightly suffers from the inclusion of 

some irrelevant results. BLEU scores for these cases reinforce this observation, 

indicating occasional mismatches in token-level alignment, likely due to over-retrieval 

in a few ambiguous cases. 

Overall, Dataset-I’s results affirm the RAG model’s strength in environments with 

minimal linguistic variation and a high degree of structure. The structured nature of the 

dataset allowed the model to maximize its retrieval precision and recall while 

maintaining strong lexical alignment, as reflected in the BLEU and ROUGE scores. These 

findings demonstrate that RAG models perform exceptionally well in predictable data 
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environments with well-defined language patterns, offering practical utility in 

structured and controlled use cases. 

C) Dataset-O: Challenges in Handling Complexity and Linguistic Variability 

Dataset-O, the most complex and historically diverse dataset, presented significant 

challenges for the RAG model, as evidenced by its lowest average Precision (0.45) and 

Recall (0.53) compared to other datasets. The F1 Score of 0.47 indicates that while the 

RAG model could retrieve some relevant impacted requirements, the high degree of 

linguistic variability and dataset complexity reduced its precision and recall 

effectiveness. These findings are further validated through the BLEU and ROUGE 

metrics, which offer additional insights into the model's ability to align its outputs with 

ground truth. 

The dataset’s historical nature, spanning over many years and involving contributions 

from multiple analysts, likely contributed to the linguistic inconsistencies observed. 

BLEU scores for Dataset-O were generally low, with an average of 0.11, indicating limited 

lexical alignment between predicted and ground-truth requirements. Similarly, the 

ROUGE1 (0.65), ROUGE2 (0.41), and ROUGEL (0.58) scores reflect moderate overlap in 

unigram, bigram, and sequence-based evaluations, respectively. While the RAG model 

demonstrated some capability in identifying semantically related items, these metrics 

reveal its limitations in generating text that closely matches the structure and wording 

of ground truth. 

The Partial Credit score of 0.92 suggests that the model was able to retrieve items 

related to the relevant impacted requirements, even if exact matches were not always 

achieved. However, the lower Precision@5 (0.31) and Recall@5 (0.50) metrics 

underscore the model's difficulty in consistently retrieving the most relevant 

requirements within the top positions. BLEU and ROUGE metrics further highlight the 

model’s struggles with textual precision and recall as they emphasize word- and 

sequence-level alignment. 

Interestingly, specific individual change requests in Dataset-O, such as CR504326 and 

CR504342, yielded high Precision and Recall and relatively strong BLEU and ROUGE 
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scores. These results indicate that the model can still perform well when the language 

or context is less ambiguous or where the requirements exhibit more precise semantic 

relationships. However, the model's performance suffered for change requests with 

higher linguistic complexity or ambiguous phrasing. This is particularly evident in the 

significant variability in BLEU scores, with some change requests achieving near-zero 

values, emphasizing the model’s struggle with lexical alignment in challenging scenarios. 

The findings from Dataset-O reinforce the importance of dataset structure and 

consistency when using RAG-based approaches, as these factors significantly influence 

retrieval and generation accuracy. For datasets of this nature, additional preprocessing 

steps, such as clustering or segmentation of data based on linguistic features, may be 

required to enhance retrieval performance. Moreover, fine-tuning the generative model 

on domain-specific datasets could improve its ability to generate lexically and 

contextually accurate outputs, thereby addressing the limitations highlighted by BLEU 

and ROUGE evaluations. 

Overall, while the RAG model demonstrates some strengths in handling complex 

datasets, these results underscore the need for further optimization, particularly in 

addressing linguistic variability and ensuring alignment between generated outputs and 

ground-truth requirements. 

Table 6.1. RAG Average Results 

 Precision Recall F1_Score MMR Partial_Credit Precision@5 Recall@5 Precision@10 Recall@10 
 
 

Dataset-

W 
0.55 0.67 0.59 0.69 0.88 0.45 0.59 0.28 0.65  

Dataset-

I 
0.71 0.87 0.78 0.83 0.95 0.36 0.86 0.18 0.86  

Dataset-

O 
0.45 0.53 0.47 0.64 0.92 0.31 0.50 0.16 0.52  
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Table 6.2. RAG Solution Results 
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C1 0.7 1 0.84 1 0.91 0.4 1 0.2 1 0.14 0.8 0 0.8 

C2 0.7 0.7 0.7 0.33 0.93 0.6 0.33 0.6 0.67 0.08 0.67 0.25 0.67 

C3 0.35 1 0.53 0.33 0.82 0.2 1 0.1 1 0.11 0.5 0 0.5 

C4 0.35 1 0.53 0.5 0.81 0.2 1 0.1 1 0.11 0.5 0 0.5 

C5 0.66 0.66 0.66 1 0.95 0.8 0.5 0.5 0.63 0.07 0.82 0.13 0.59 

C6 0.75 0.75 0.75 0.5 0.93 0.6 0.43 0.5 0.71 0.19 0.71 0.33 0.71 

C7 0.26 0.26 0.26 0.25 0.79 0.2 0.25 0.1 0.25 0.08 0.25 0 0.25 

C8 0.42 0.42 0.42 1 0.84 0.4 0.4 0.2 0.4 0.06 0.4 0 0.4 

C9 0.7 0.7 0.7 0.5 0.93 0.6 0.4 0.6 0.67 0.35 0.67 0.5 0.67 

C10 0.7 0.7 0.7 1 0.91 0.4 0.67 0.2 0.67 0.24 0.67 0.5 0.67 

C11 0.53 0.53 0.53 0.5 0.91 0.4 0.5 0.2 0.5 0.1 0.5 0 0.5 

C12 0.39 0.39 0.39 0.5 0.88 0.4 0.25 0.3 0.38 0.04 0.38 0 0.38 

C13 0.7 0.7 0.7 1 0.92 0.8 0.67 0.4 0.67 0.22 0.67 0.4 0.67 

C14 0.7 1 0.84 0.5 0.91 0.4 1 0.2 1 0.14 0.8 0 0.8 

C15 0.35 0.35 0.35 1 0.8 0.2 0.33 0.1 0.33 0.11 0.33 0 0.33 

C16 0.18 0.18 0.18 0.25 0.8 0.2 0.17 0.1 0.17 0.04 0.17 0 0.17 

C17 0.42 0.42 0.42 0.33 0.87 0.4 0.4 0.2 0.4 0.11 0.4 0.25 0.4 

C18 0.26 0.26 0.26 0.33 0.81 0.2 0.25 0.1 0.25 0.08 0.25 0 0.25 

C19 0.63 0.63 0.63 1 0.93 0.6 0.6 0.3 0.6 0.07 0.77 0 0.46 

C20 0.42 0.42 0.42 1 0.88 0.4 0.4 0.2 0.4 0.06 0.4 0 0.4 

C21 0.53 0.53 0.53 0.5 0.87 0.4 0.5 0.2 0.5 0.1 0.5 0 0.5 

C22 0.92 0.92 0.92 0.5 0.97 0.8 0.5 0.7 0.88 0.84 0.88 0.86 0.88 

C23 0.7 1 0.84 1 0.91 0.4 1 0.2 1 0.14 0.8 0 0.4 

C24 0.9 0.9 0.9 1 0.97 1 0.71 0.6 0.86 0.09 0.86 0.17 0.43 

C25 0.35 1 0.53 0.5 0.81 0.2 1 0.1 1 0.11 0.5 0 0.5 

C26 0.63 0.63 0.63 1 0.91 0.6 0.6 0.3 0.6 0.13 0.6 0.25 0.6 

C27 0.7 0.7 0.7 1 0.9 0.4 0.67 0.2 0.67 0.14 0.67 0 0.67 

C28 0.53 1 0.7 1 0.84 0.4 1 0.2 1 0.17 0.67 0.5 0.67 

I 
Case 1 0.79 0.79 0.79 0.5 0.96 0.6 0.75 0.3 0.75 0.19 0.81 0.73 0.81 

Case 2 0.7 1 0.84 0.5 0.95 0.4 1 0.2 1 0.24 0.8 0.78 0.8 
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Case 3 0.53 0.53 0.53 1 0.89 0.2 0.5 0.1 0.5 0.15 0.63 0.43 0.63 

Case 4 0.7 0.7 0.7 0.5 0.97 0.4 0.67 0.2 0.67 0.24 0.75 0.64 0.75 

Case 5 0.53 1 0.7 0.5 0.97 0.2 1 0.1 1 0.15 0.67 0.6 0.67 

Case 6 0.7 1 0.84 1 0.92 0.4 1 0.2 1 0.24 0.75 0.71 0.75 

Case 7 0.7 1 0.84 1 0.97 0.4 1 0.2 1 0.24 0.8 0.77 0.8 

Case 8 0.53 0.53 0.53 0.5 0.96 0.4 0.5 0.2 0.5 0.1 0.88 0.73 0.69 

Case 9 0.7 1 0.84 1 0.97 0.4 1 0.2 1 0.14 0.8 0.67 0.6 

Case 10 0.7 1 0.84 1 0.86 0.4 1 0.2 1 0.14 0.8 0.78 0.8 

Case 11 0.7 0.53 0.6 1 0.93 0.4 0.5 0.2 0.5 0.1 0.71 0.62 0.71 

Case 12 0.7 1 0.84 1 0.97 0.4 1 0.2 1 0.24 0.8 0.77 0.8 

Case 13 0.7 1 0.84 0.5 0.98 0.4 1 0.2 1 0.14 0.8 0.78 0.8 

Case 14 1 1 1 1 1 0.2 1 0.1 1 0.18 1 1 1 

Case 15 1 1 1 1 1 0.2 1 0.1 1 0.18 1 1 1 

O 

CR007 0.3 0.3 0.3 0.5 0.93 0.4 0.29 0.2 0.29 0.04 0.73 0.43 0.61 

CR503689 0.26 0.26 0.26 0.5 0.94 0.2 0.25 0.1 0.25 0.08 0.81 0.56 0.52 

CR503779 0.42 0.53 0.47 0.33 0.9 0.4 0.5 0.2 0.5 0.06 0.65 0.41 0.58 

CR504139 0.42 0.3 0.35 0.5 0.96 0.4 0.29 0.2 0.29 0.04 0.55 0.37 0.5 

CR504310 0.53 0.53 0.53 0.33 0.91 0.4 0.33 0.3 0.5 0.05 0.65 0.46 0.54 

CR504311 0.18 0.18 0.18 0.5 0.89 0.2 0.17 0.1 0.17 0.04 0.59 0.29 0.38 

CR504321 0.35 0.35 0.35 0.33 0.95 0.2 0.33 0.1 0.33 0.11 0.67 0.5 0.67 

CR504322 0.53 0.53 0.53 1 0.94 0.4 0.5 0.2 0.5 0.1 0.69 0.58 0.62 

CR504323 0.7 0.7 0.7 1 0.99 0.4 0.67 0.2 0.67 0.14 0.73 0.6 0.73 

CR504324 0.35 0.53 0.42 0.33 0.87 0.2 0.5 0.1 0.5 0.11 0.74 0.71 0.63 

CR504325 0.53 0.53 0.53 1 0.93 0.4 0.5 0.2 0.5 0.1 0.75 0.45 0.5 

CR504326 0.79 0.79 0.79 1 0.99 0.6 0.75 0.3 0.75 0.4 0.92 0.82 0.92 

CR504327 0.35 0.35 0.35 1 0.89 0.2 0.33 0.1 0.33 0.11 0.7 0.57 0.7 

CR504328 0.42 0.35 0.38 0.33 0.96 0.4 0.33 0.2 0.33 0.09 0.67 0.45 0.48 

CR504329 0.7 0.7 0.7 1 0.99 0.4 0.67 0.2 0.67 0.24 0.89 0.63 0.67 

CR504330 0.35 0.35 0.35 0.5 0.91 0.2 0.33 0.1 0.33 0.11 0.56 0.38 0.44 

CR504331 0.53 0.45 0.48 1 0.98 0.4 0.29 0.3 0.43 0.05 0.78 0.62 0.73 

CR504332 0.7 1 0.84 1 0.96 0.4 1 0.2 1 0.24 0.8 0.77 0.8 

CR504333 0.35 0.53 0.42 0.33 0.91 0.2 0.5 0.1 0.5 0.11 0.59 0.4 0.47 

CR504334 0.35 1 0.53 0.33 0.81 0.2 1 0.1 1 0.11 0.57 0.5 0.57 

CR504335 0.7 0.7 0.7 0.5 0.98 0.4 0.67 0.2 0.67 0.14 0.84 0.82 0.84 

CR504336 0.53 0.53 0.53 1 0.92 0.4 0.5 0.2 0.5 0.17 0.69 0.42 0.69 
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CR504337 0.84 0.84 0.84 1 0.94 0.8 0.8 0.4 0.8 0.29 0.89 0.82 0.83 

CR504338 0.35 0.53 0.42 0.5 0.87 0.2 0.5 0.1 0.5 0.11 0.59 0.27 0.35 

CR504339 0.35 1 0.53 0.33 0.82 0.2 1 0.1 1 0.11 0.5 0.4 0.5 

CR504340 0.26 0.18 0.21 1 0.92 0.2 0.17 0.1 0.17 0.05 0.65 0.44 0.59 

CR504341 0.35 1 0.53 0.33 0.88 0.2 1 0.1 1 0.11 0.53 0.46 0.53 

CR504342 1 0.7 0.84 1 1 0.4 0.67 0.2 0.67 0.19 0.8 0.77 0.8 

CR504793 0.23 0.21 0.22 0.17 0.87 0 0 0.2 0.2 0.03 0.6 0.24 0.53 

CR504799 0.21 0.21 0.21 0.25 0.9 0.2 0.2 0.1 0.2 0.05 0.65 0.34 0.59 

CR600203 0.35 0.35 0.35 1 0.96 0.2 0.33 0.1 0.33 0.11 0.67 0.42 0.38 

CR600204 0.21 0.18 0.19 0.5 0.88 0.2 0.17 0.1 0.17 0.04 0.61 0.41 0.5 

CR60200 0.35 0.53 0.42 0.5 0.89 0.2 0.5 0.1 0.5 0.11 0.74 0.59 0.63 

CR60202 0.35 1 0.53 1 0.91 0.2 1 0.1 1 0.11 0.5 0.4 0.5 

6.17. Practical Implications of Precision and Recall Trade-Offs 

In real-world CIA, the choice between higher recall (catching every possible impacted 

requirement) and higher precision (minimizing false alarms) directly affects how 

analysts allocate time and manage risk. In safety-critical domains (e.g., medical or 

aerospace software), missing even a single impacted requirement can have severe 

consequences, so teams will tune the RAG system toward high recall, accepting more 

false positives that can be quickly filtered by domain experts. Conversely, in fast-paced 

agile environments with tight release schedules, excessive false positives can 

overwhelm developers, so precision is prioritized even if a few edge-case impacts slip 

through and get caught in later iterations. By surface-ranking confidence scores and 

allowing threshold adjustments in both retrieval and generation phases, our RAG 

implementation gives stakeholders clear knobs to balance these trade-offs. This 

tunability ensures that the same core model can serve diverse projects from zero-

tolerance safety pipelines to high-velocity feature sprints by simply shifting the precision 

and recall operating point to match each team’s risk tolerance and review capacity. 
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6.18. Summary 

Comparing the results across Dataset-W, Dataset-I, and Dataset-O, a clear pattern 

emerges: the RAG model's performance is significantly influenced by the structure and 

linguistic consistency of the datasets. Dataset-I, characterized by its structured format 

and consistent linguistic patterns, enabled the RAG model to achieve the highest 

precision (0.79) and recall (0.87), resulting in an F1 Score of 0.78. The additional BLEU 

and ROUGE metrics for Dataset-I, with BLEU averaging 0.18 and ROUGE1, ROUGE2, and 

ROUGEL averaging 0.81, 0.73, and 0.81 respectively, further highlight the model's 

superior lexical and semantic alignment in structured environments. These results 

demonstrate the system's optimal performance in predictable data settings with 

minimal variability. 

In contrast, Dataset-O’s complexity and historical variability led to the lowest 

performance, with precision at 0.45 and recall at 0.53, resulting in an F1 Score of 0.47. 

While the BLEU scores for Dataset-O remained modest, the Partial Credit metric (0.92) 

and ROUGE scores (averaging around 0.65 for ROUGE1, ROUGE2, and ROUGEL) suggest 

that the RAG model could still retrieve items related to the relevant impacted 

requirements, even if exact matches were not consistently achieved. The results 

highlight the challenges the model faces in datasets with substantial linguistic variation 

and inconsistent terminology, where over-retrieval and ambiguous matches can dilute 

precision. 

Dataset-W presented balanced yet moderate results, with precision and recall 

averaging 0.55 and 0.67, respectively, and an F1 Score of 0.59. The BLEU scores for 

Dataset-W averaged around 0.13, while ROUGE1, ROUGE2, and ROUGEL metrics 

averaged 0.77, 0.70, and 0.77, respectively, indicating moderate semantic and lexical 

alignment. These results reflect the model's effort to balance completeness and 

accuracy in retrieval. Dataset-W’s variability limited the effectiveness of retrieval 

precision, as shown by lower Precision@5 (0.45) and Recall@5 (0.59) compared to 

Dataset-I. 

The MRR scores across all datasets highlight the model’s ability to rank relevant 

requirements near the top, with Dataset-I achieving the highest MRR (0.83), followed by 
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Dataset-W (0.69) and Dataset-O (0.64). These values reinforce the RAG model’s 

capability in structured datasets, where ranking relevant items effectively is crucial. 

Meanwhile, the Partial Credit metric, which ranged from 0.88 to 0.95 across all datasets, 

indicates that even when exact matches were not retrieved, the model could still 

identify semantically related requirements, offering practical utility in many scenarios. 

Including the BLEU and ROUGE metrics offers additional depth in assessing the RAG 

model's performance. High ROUGE scores for Dataset-I underscore its strength in 

structured environments, while the relatively lower BLEU and ROUGE metrics for 

Dataset-O highlight the challenges in handling linguistic variability. 

In summary, the evaluation results emphasize the RAG model's strengths in structured 

and consistent data environments while revealing its limitations with datasets exhibiting 

high variability and inconsistency. To improve the model's adaptability to complex 

datasets like Dataset-O, future efforts could focus on fine-tuning the embedding models, 

integrating domain-specific language models, and employing advanced preprocessing 

techniques to address linguistic variability. These enhancements could enable the RAG 

system to handle diverse datasets better, ultimately enhancing its reliability and 

effectiveness in real-world applications for requirement impact analysis. 

 

 

 

 

 

 

 

 



180 

 

Chapter 7.  

Evaluation of the Proposed Models 

 

 

 

 

7.1. Introduction 

This chapter presents a comprehensive evaluation of the implemented models, 

including ML models, NLP-based solutions, BEIR-based approach and the RAG solution. 

The primary objective is to assess each model's performance using standardized 

evaluation metrics, identify their strengths and limitations, and determine their 

effectiveness in automating CIA in software requirements engineering. The evaluation 

is carried out systematically across different datasets to assess the models' 

generalizability, precision, recall, and overall effectiveness. 

7.2. Model Setup 

The evaluation was conducted using three datasets—Dataset-I, Dataset-W, and 

Dataset-O, each that were described in chapter 3, representing varying levels of 

complexity and domain-specific features. The datasets encompass different 

requirements change scenarios, providing a comprehensive test environment for the 

models. 

The evaluation process involved training and testing each model using these datasets 

to analyze their generalizability and adaptability across different domains. A consistent 

approach was taken to optimize the hyperparameters for each model based on initial 

testing, ensuring an equitable comparison. Below is a detailed description of the setup 

for each model: 
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ML Models: Traditional ML techniques, including Random Forest, Support Vector 

Machines (SVM), and Decision Trees, were employed. These models were trained on 

datasets with features engineered from syntactic, semantic, and contextual information 

derived from requirements documents. Emphasis was placed on selecting optimal 

features, such as term frequency, dependency parsing outputs, and entity relationships, 

to improve model precision and recall. 

NLP-Based Solution: This solution integrated CoreNLP and SpaCy libraries to perform 

linguistic feature extraction and syntactic parsing. A combination of TF-IDF vectorization 

and cosine similarity calculations was employed to measure the similarity between 

change requests and requirements. The model utilized named entity recognition (NER) 

and dependency parsing to enhance the quality of extracted features, aiming for a 

robust and contextually accurate representation of the requirements. 

BEIR-Based Solution: The BEIR framework combined BM25 (via Elasticsearch) for 

lexical retrieval, Bi-Encoders for dense retrieval, and Cross-Encoders for re-ranking. This 

multi-layered approach aimed to achieve context-aware ranking, enabling a 

comprehensive understanding of the relationships between requirements and changes. 

By leveraging these advanced methods, the model was designed to cover a broad range 

of scenarios, capturing lexical and semantic similarities. 

RAG Solution: The RAG model combines semantic retrieval with a generative language 

model to provide enhanced predictions of impacted requirements in complex and 

unstructured data scenarios. For this implementation, the RAG system leverages the Phi 

3.5 language model as the generative component and LanceDB with FAISS as the 

retrieval layer. The setup involves embedding requirements and change descriptions 

using the all-MiniLM-L6-v2 model from the Sentence Transformers library. These 

embeddings are stored in LanceDB and indexed by FAISS to allow efficient similarity 

search. 

The RAG solution operates in two primary stages: 

Retrieval Stage: For each change request, the system retrieves a set of semantically 

similar requirements based on vector similarity using FAISS. This retrieval process is 
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dynamically adjusted to ensure the inclusion of relevant items by adapting the retrieval 

threshold according to the size and characteristics of each impact set. 

Generation Stage: The Phi 3.5 model takes the retrieved requirements as contextual 

input and generates a response to predict impacted requirements. This generative step 

enables the model to capture nuanced dependencies and deeper relationships in the 

requirements' descriptions, going beyond lexical similarity to include contextual and 

semantic relevance. 

Hyperparameter Optimization: For each model family, we conducted systematic 

hyperparameter searches on a held-out validation fold to avoid overfitting and to gauge 

generalizability. For Random Forest, we varied the number of trees (n_estimators ∈ {50, 

100, 200}) and maximum tree depth (max_depth ∈ {None, 10, 20}), finding that 100 

trees with max_depth=20 offered the best trade-off between performance and training 

time on all three datasets—deeper forests improved F1 by only 1–2 points but doubled 

training time. SVM parameters (C ∈ {0.1, 1, 10}, kernel ∈ {linear, rbf}) were selected via 

grid search; a linear kernel with C=1 generalized most stably across domains, whereas 

RBF kernels over-fit the smallest dataset (Dataset-I). For the BEIR bi-encoder, we tuned 

the embedding dimension reduction threshold and re-ranking top-k (k ∈ {5, 10, 20}), 

balancing higher recall (from larger k) against increased latency. In our RAG pipeline, 

beam sizes (beam_width ∈ {1, 3, 5}) and max_output_tokens (128 vs. 256) were 

evaluated: beam_width=3 and max_output_tokens=128 yielded <10% drop in 

BLEU/ROUGE while halving generation latency compared to beam_width=5. By driving 

these choices with validation-based grid searches, rather than ad-hoc defaults, we 

ensure each model’s settings are data-driven and maximally generalizable across 

domains. 

7.3. Model Evaluation 

A comprehensive set of evaluation metrics was employed to assess the performance 

of each model, including the ML models, NLP-based solutions, BEIR-based approach, and 

the RAG system. These metrics provide insight into the precision, completeness, ranking 
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quality, and relevance of each model's predictions in identifying impacted requirements 

in response to change requests: 

• Precision 

• Recall 

• F1 Score:  

• MRR 

• Partial Credit 

• Precision@5 and Recall@5 

• Precision@10 and Recall@10 

• NDCG  

These metrics collectively provide a holistic view of each model's performance, 

helping to highlight the specific strengths of models in capturing semantic relationships 

and their adaptability in varied datasets. Through these evaluations, a comprehensive 

comparison across models can be made, reflecting their applicability to different 

requirements and change scenarios. 

7.4. Results Analysis 

7.4.1.  ML Models 

The ML models, notably the Random Forest algorithm, demonstrated consistent and 

balanced performance across the datasets. On Dataset-I, the Random Forest model 

achieved an F1 score of 0.72, with a precision of 0.68 and a recall of 0.75. These results 

indicate a strong ability to detect relevant impacts while minimizing false positives, 

suggesting its utility in structured and moderately complex datasets. The SVM and 

Decision Trees models showed moderate effectiveness, but they did not reach the 

precision levels of Random Forest, particularly when managing more complex data 

patterns. 

As illustrated in Figure 7.1, the performance variations of ML models across datasets 

are visually evident. The Random Forest model exhibits a higher F1 score and balanced 
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precision and recall on Dataset-I but demonstrates a noticeable decline in Dataset-O, as 

reflected in its reduced precision and recall metrics. 

In Dataset-W, the performance of the ML models declined, with the Random Forest 

model achieving an F1 score of 0.61. While the precision remained relatively stable, 

recall dropped significantly. This highlights the increased difficulty these models face 

when encountering Dataset-W's varied linguistic patterns and complexities. In Dataset-

O, a dataset with high variability and linguistic inconsistencies, the precision of the 

Random Forest model was notably lower at 0.47, resulting in an F1 score of 0.55. These 

findings underscore the limitations of traditional ML models in handling datasets that 

lack structured language and contain heterogeneous data. 

 

Figure 7.1.Performance Comparison of ML Models Across Datasets 

7.4.2. NLP-Based Solution 

The NLP-based solution, combining CoreNLP for syntactic parsing and SpaCy for 

Named Entity Recognition (NER), performed effectively in structured environments but 
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showed limitations with linguistic variability. As illustrated in figure 7.2, the radar chart 

provides a comparative visualization of the NLP model’s overall performance across 

precision, recall, and F1 score for the three datasetsOn Dataset-I, this model achieved 

high precision (0.82) but lower recall (0.61), resulting in an F1 score of 0.69. This result 

indicates that while the NLP approach is highly effective at identifying accurate impacts 

in structured datasets, it may miss relevant information when syntax and context vary. 

For Dataset-W, the F1 score dropped to 0.58, mainly due to a decrease in recall. This 

suggests that the NLP model is sensitive to language and sentence structure variations, 

leading to challenges in comprehensively capturing all impacted requirements in 

linguistically diverse datasets. However, the relatively high precision observed across 

the datasets indicates that the NLP model excels in environments where requirements 

exhibit consistent terminology and syntax. This approach is particularly valuable in cases 

where the documentation follows a predictable format, although its adaptability to less 

structured documentation remains limited. 

 

Figure 7.2.NLP Model Performance Across Datasets 
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7.4.3. BEIR-Based Solution 

The BEIR-based solution exhibited strong recall capabilities, particularly on Dataset-I, 

where it achieved a recall score of 0.91, , as evident in figure 7.3. This high recall 

indicates the model's effectiveness in capturing a broad spectrum of potential impacts, 

showcasing its ability to perform thorough retrieval in structured datasets. However, the 

model's precision was lower at 0.48, resulting in an F1 score of 0.63. This suggests that 

while the BEIR approach comprehensively identifies impacted requirements, it 

generates false positives, potentially increasing manual verification efforts. 

In Dataset-W, the BEIR model maintained a high recall, but its precision decreased 

further, underscoring the challenges of balancing specificity with broad coverage when 

expanding its retrieval scope. On Dataset-O, the BEIR solution achieved more balanced 

scores, with precision and recall, around 0.65. This result suggests that the BEIR 

approach can adapt to larger, more varied datasets, but it may require further 

refinement to improve specificity, particularly in complex, linguistically inconsistent 

environments. 

Figure 7.3 provides a comprehensive comparison of BEIR-based solution metrics, 

including Average Precision@5, Recall@5, and NDCG@5 and @10, across the three 

datasets. This visualization emphasizes the BEIR approach's strong recall and 

adaptability while highlighting areas for refinement, such as precision improvement at 

different ranking thresholds. 



187 

 

 

Figure 7.3.Performance Metrics of BEIR-Based Solution Across Datasets 

7.4.4. RAG System 

The RAG system, which combines retrieval and generative capabilities through a RAG 

framework, presented unique strengths, particularly in datasets with complex and 

unstructured requirements. Figure 7.4 illustrates the overall performance metrics of the 

RAG model across the three datasets (Dataset-I, Dataset-W, and Dataset-O), highlighting 

its capabilities in various aspects, including Precision, Recall, F1 Score, MMR, and other 

key metrics. 

On Dataset-I, the RAG model achieved an F1 score of 0.7875, with a precision of 0.79 

and recall of 0.87, showcasing its ability to retrieve relevant requirements while 

capturing contextual relationships within the text. BLEU and ROUGE metrics further 

validated this performance, with BLEU averaging 0.18 and ROUGE1, ROUGE2, and 

ROUGEL scores averaging 0.81, 0.73, and 0.81, respectively. These results highlight the 
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model's strong lexical and semantic alignment in structured and consistent datasets, 

reinforcing its advantage in dealing with semi-structured data and complex 

requirements. 

In Dataset-W, the RAG model’s recall remained robust at 0.67, though its precision 

dropped to 0.55, resulting in an F1 score of 0.59. The BLEU score for this dataset 

averaged around 0.13, while the ROUGE metrics (ROUGE1, ROUGE2, and ROUGEL) 

showed moderate alignment at 0.77, 0.70, and 0.77, respectively. The RAG model's 

ability to maintain decent recall, even in datasets with varied linguistic patterns and 

terminologies, reflects its semantic understanding capabilities. However, the lower 

precision in this dataset points to the challenges the model faces in balancing 

completeness and relevance when encountering linguistic variability. 

Dataset-O, the most complex and variable dataset, posed significant challenges for the 

RAG system. The model achieved an F1 score of 0.47, with precision and recall averaging 

0.45 and 0.53, respectively. Despite these modest scores, the BLEU and ROUGE metrics 

offered additional insights: BLEU scores were generally lower, reflecting the difficulty in 

achieving precise lexical matches, while ROUGE metrics (ROUGE1, ROUGE2, and 

ROUGEL) averaged around 0.65, demonstrating the model's ability to capture some level 

of semantic alignment even in a highly variable dataset. The Partial Credit score of 0.92 

highlights that the model successfully retrieved semantically related items even when 

exact matches were not achieved. Additionally, Recall@10 scores underscored the RAG 

model's nuanced approach to matching impacted requirements, emphasizing its utility 

in real-world applications with unstructured data.  

Across all datasets, the MRR scores were consistently high, with Dataset-I achieving 

the highest MRR (0.83), followed by Dataset-W (0.69) and Dataset-O (0.64). These 

results demonstrate the RAG model's effectiveness in ranking relevant requirements 

near the top of its output, an essential feature for prioritizing impacted requirements in 

practical settings. The BLEU and ROUGE metrics provide further granularity in evaluating 

the RAG model's performance, highlighting its strengths in structured datasets like 

Dataset-I while revealing its challenges with datasets exhibiting higher linguistic 

variability, such as Dataset-O. 
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Figure 7.4.RAG Model Performance Comparison Across Dataset 

7.4.5. Practical Implications & Performance Drivers 

In practical CIA workflows, the choice of operating point on the precision and recall 

curve directly maps to stakeholder risk tolerance and review effort. High recall settings 

(favoring fewer missed impacts) are essential in safety-critical or heavily audited 

projects, even if teams must sift through more false positives. Conversely, feature-

driven agile squads may lean toward high precision accepting that a few subtle 

dependencies will be caught in later reviews. Ranking metrics like MRR and Precision@5 

further guide teams on how many top hits to inspect: a high MRR means analysts can 

trust the top few results and allocate limited time effectively. 

Traditional ML models underperform on Dataset-W and Dataset-O largely because 

they rely on surface patterns (term frequencies and shallow dependency counts) that 

break down amid varied syntax, paraphrasing, and inconsistent vocabulary. When 
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requirements use domain-specific context or complex sentence structures, tree-based 

or linear classifiers misclassify latent dependencies. To overcome this, hybridizing ML 

with richer semantic features (e.g., embedding-based cluster centroids or ontology-

driven term normalization) can boost recall without incurring the full cost of neural 

retrieval. 

Our NLP pipeline (CoreNLP + SpaCy) excels at precise syntactic relations in controlled 

text but struggles when sentences deviate from canonical grammar or introduce run-on 

clauses and bullet lists common in real specs. One remedy is to augment parsing with 

chunk-based co-occurrence features or lightweight neural entity linking to capture 

fragmented contexts. Another is to pipeline a fallback dense-retriever pass for any 

requirement snippet that yields low parse-confidence scores, ensuring key impacts 

aren’t lost. 

Finally, the BEIR approach’s high recall comes with precision drop-offs because BM25 

and Bi-Encoders cast a wide net that pulls in loosely related documents. To tighten 

specificity, we can introduce a lightweight relevance classifier on the top-k candidates 

(e.g., a small fine-tuned Cross-Encoder) or apply dynamic thresholding on token-overlap 

ratios. These refinements prune false positives while preserving the broad coverage that 

makes BEIR ideal for initial exploratory CIA searches. 

7.4.6. Adaptability Across Software Domains 

To evaluate the adaptability of the proposed SRCIA framework, all implemented 

models were tested on three datasets representing diverse software domains: 

enterprise information systems (Dataset-I), public sector applications (Dataset-W), and 

telecommunications systems (Dataset-O). These datasets exhibit varying degrees of 

complexity, linguistic structure, and documentation style, providing a comprehensive 

basis for assessing the generalizability of the framework. 

Each domain introduces its own challenges: Dataset-I features well-structured and 

formally written requirements typical of enterprise environments; Dataset-W contains 

linguistically diverse and moderately structured public sector documents; Dataset-O 
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includes highly variable, historical data commonly found in telecommunications 

systems. The consistent application of the models across these datasets enables a 

comparative evaluation of their adaptability. 

Table 7.1. RAG Model's F1-Scores Across the Three Domains 

Software Domain Dataset F1 Score Observations 

Enterprise Systems Dataset-I 0.78 
Structured syntax and clear relationships 

supported strong performance 

Public Sector Applications Dataset-W 0.59 
Moderate performance due to sentence 

variation and inconsistent structure 

Telecommunications 

Systems 
Dataset-O 0.47 

Complex, unstructured data presented 

challenges in precision and recall 

These results demonstrate the SRCIA framework’s adaptability across diverse 

domains, particularly its capacity to maintain reasonable performance in environments 

with different requirements structures. While performance tends to be stronger in 

structured datasets, the results confirm that the framework, especially the RAG solution, 

can generalize to more complex or unstructured domains with minimal adjustment. 

Comparative performance also highlights potential areas for improvement, such as 

domain-specific fine-tuning of the retrieval and generative components to enhance 

adaptability further. 

7.5. Comparative Analysis 

The comparative analysis of the models provides a nuanced view of each approach’s 

strengths and limitations in handling varied datasets for CIA. Each model demonstrates 

unique capabilities suited to different dataset structures and requirements 

complexities. The accompanying radar charts (figures 7.5, 7.6 and 7.7) provide a visual 

representation of key trends in precision, recall, and F1-score across Dataset-I, Dataset-

W, and Dataset-O. 

ML Models: Traditional ML models, particularly Random Forest (RF), are quick and 

computationally efficient, making them suitable for initial impact analysis, especially 
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with structured datasets like Dataset-I. As shown in the radar chart for Dataset-I (Figure 

7.4), RF clearly displays strong performance in terms of precision and recall, resulting in 

a high F1-score. However, as shown in the spider charts for Dataset-W and Dataset-O, 

the performance of RF and other ML models, including Decision Tree (DT) and SVM, 

declines significantly when encountering datasets with complex or ambiguous 

requirements. These datasets, characterized by varied linguistic structures and 

contextual subtleties, highlight the limitations of ML models in achieving sufficient 

precision and recall, ultimately leading to reduced F1-scores. This indicates that while 

ML models are useful for straightforward analysis, they lack the depth needed for more 

intricate requirements change scenarios. 

NLP-Based Solution: The NLP-based solution is highly precise and effective when 

applied to datasets with structured and consistent language. By using CoreNLP for 

parsing and SpaCy for named entity recognition, this model effectively identifies 

patterns within controlled, well-defined requirements data. The radar chart for Dataset-

I demonstrates its high precision, supported by strong recall, resulting in a competitive 

F1-score. However, the grouped bar charts for Dataset-W and Dataset-O clearly show a 

decline in recall, leading to a drop in F1-scores. This decline is particularly evident in 

Dataset-W, where diverse language patterns and syntax challenge the model's 

generalization ability. The spider chart emphasizes this limitation, highlighting the NLP 

model’s need for adaptability to handle unstructured data and varied syntax to 

comprehensively capture all relevant impacts. 

BEIR-Based Solution: Combining lexical and dense retrieval techniques, the BEIR-

based solution achieves high recall across different datasets, excelling in comprehensive 

impact identification. The grouped bar charts for all datasets reveal that BEIR 

consistently outperforms other models in recall, which is a testament to its layered 

retrieval framework using BM25 for lexical matches and Bi-Encoders for dense retrieval. 

However, as the radar charts illustrate, this high recall often comes at the cost of 

precision, resulting in moderate F1-scores. The spider chart for Dataset-O demonstrates 

BEIR’s ability to handle complex datasets, with strong Recall@5 and Recall@10 metrics 

reflecting its strength in capturing a broad spectrum of impacted requirements. Despite 
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this, the charts also highlight the model's tendency to produce false positives, indicating 

the need for further refinement to improve specificity and ranking relevance. 

RAG Solution: The RAG model represents an advanced approach by integrating 

retrieval with generation, leveraging LanceDB for vector retrieval and a LLM (Phi 3.5) for 

contextual and semantic understanding. The radar chart for Dataset-I display its strong 

balance between precision and recall, resulting in the highest F1-score among all models 

for structured datasets. In Dataset-W, as shown in the radar and spider charts, the RAG 

system maintains robust recall but struggles with precision, leading to moderate F1-

scores. Dataset-O, the most complex dataset, highlights the model’s adaptability, as it 

achieves competitive Recall@10 and Partial Credit metrics despite the challenging 

variability of the dataset. The spider charts emphasize the RAG system’s strong MMR 

(Mean Reciprocal Rank) and ability to rank relevant items at the top, making it a valuable 

tool for prioritizing impacted requirements in real-world scenarios. However, its reliance 

on computational resources and storage makes it best suited for use cases where high 

performance outweighs resource constraints. 

In summary, each model offers distinct advantages and challenges based on the 

context: 

ML Models provide efficient initial analysis for structured data, with limited 

adaptability in complex or unstructured environments. 

NLP Solutions are highly precise in controlled datasets with uniform language but 

struggle to generalize to datasets with diverse syntax. 

BEIR Models excel in recall and comprehensiveness, making them suitable for 

exhaustive searches, though improvements in specificity would enhance their precision. 

RAG Systems deliver a balanced, adaptive framework for dynamic requirements 

scenarios, excelling in precision and recall but requiring high resources and technical 

expertise. 

The comparative analysis indicates that while each model has standalone merits, their 

effectiveness varies significantly depending on the dataset complexity and 

requirements. A hybrid approach that combines the NLP-based model’s precision, BEIR’s 
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extensive recall, and the RAG model’s adaptability could yield a more robust and 

context-aware framework for CIA, addressing the demands of both structured and 

unstructured datasets in requirements engineering. 

 

Figure 7.5.Model Comparison on Dataset-W (Linguistically Diverse Dataset) 
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Figure 7.6.Model Comparison on Dataset-I (Structured Dataset) 

 

 

Figure 7.7.Model Comparison on Dataset-O (Complex and Unstructured Dataset 
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7.6. Summary 

This chapter provided a detailed evaluation of four advanced models—Machine ML 

models, NLP-based solutions, BEIR-based methods, and the RAG system—for 

automating CIA in software requirements engineering. These models were assessed 

using three datasets: Dataset-I, representing structured and consistent requirements; 

Dataset-W, characterized by linguistic diversity; and Dataset-O, showcasing complex and 

unstructured data. 

The evaluation highlighted each model's strengths and limitations. ML models, 

particularly Random Forest, demonstrated efficiency and balanced performance in 

structured datasets but struggled with precision and recall in more complex scenarios. 

The NLP-based solution excelled in precision, effectively handling structured language 

but faced challenges with diverse and unstructured datasets, leading to reduced recall. 

The BEIR-based solution stood out for its high recall across all datasets, though it often 

produced false positives, resulting in moderate F1 scores. The RAG system combined 

retrieval and generation capabilities, showing adaptability across datasets with strong 

F1 scores in structured contexts and competitive recall in unstructured scenarios. 

However, its computational demands and reduced precision in highly variable datasets 

were noted as areas for improvement. 

The findings were visually represented using radar and spider charts, emphasizing 

performance trends across models and datasets. These visualizations provided a 

comprehensive understanding of how each model balanced precision, recall, and other 

metrics, underscoring the nuanced trade-offs involved. 

Overall, the evaluation underscored that while each model has standalone strengths, 

a hybrid approach integrating the precision of NLP-based models, the recall efficiency of 

BEIR, and the adaptability of the RAG system could address diverse CIA requirements. 

This chapter concludes with a strong foundation for discussing future directions and 

broader implications in the subsequent chapter. 
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Chapter 8.  

Conclusions and Future Works 

 

 

 

 

8.1. Introduction 

This chapter consolidates the findings and contributions of this research, presenting a 

comprehensive overview of the advancements achieved in automating CIA for software 

requirements engineering. Building upon the evaluations and results presented in 

Chapter 7, this chapter discusses the key contributions of the study, highlighting how 

the objectives outlined at the beginning of this research were addressed. 

The chapter also provides a detailed conclusion, synthesizing the insights gained from 

the comparative analysis of the proposed models. By reflecting on the strengths and 

limitations of each approach, it underscores the implications of the findings for the field 

of software requirements engineering. Finally, the chapter outlines avenues for future 

research, emphasizing the potential for further refinement and expansion of the 

proposed methodologies to enhance their applicability and robustness across diverse 

domains. This chapter serves as a culmination of the research, offering a comprehensive 

narrative that ties together the theoretical and practical contributions of this study 

8.2. Addressing Research Objectives 

This research set out to achieve five key objectives aimed at advancing the field of 

Change Impact Analysis (CIA) in software requirements engineering. Below is a summary 

of how each objective has been addressed in this thesis: 
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Objective 1: Develop methodologies for comprehensive data preparation and feature 

engineering to support the proposed CIA models. 

Achieved: This objective focused on detailed data preparation and feature 

engineering to support the proposed models for CIA. Techniques such as linguistic 

normalization, dependency parsing, and entity extraction were employed to ensure 

high-quality datasets. Feature engineering captured both semantic and syntactic 

structures, forming a robust foundation for implementing AI and IR techniques. The 

impact of these efforts was evident in the enhanced performance of the predictive 

models across diverse datasets, as discussed in Chapters 3 and 4. 

• Objective 2: Develop a framework for CIA using the capabilities of NLP and ML. 

Achieved: A robust framework integrating NLP and Machine Learning ML was 

proposed and implemented, as detailed in Chapter 4 and 5. The framework leverages 

NLP techniques such as CoreNLP and SpaCy for linguistic feature extraction, combined 

with ML models like Random Forest and SVM for predictive analysis. This integration 

demonstrated significant improvements in precision and recall in structured datasets, 

as discussed in Section 7.5. 

• Objective 3: Implement information retrieval techniques to enhance the assessment 

of requirement change impacts on software artifacts. 

Achieved: Information retrieval techniques were extensively used to retrieve and rank 

relevant software artifacts. The BEIR framework employed in this research combined 

BM25 for lexical retrieval and Bi-Encoders for dense retrieval, as described in Section 

5.6.2. The results showcased the effectiveness of IR techniques in capturing relevant 

impacts with high recall, especially in diverse datasets, as highlighted in Section 7.4.3. 

• Objective 4: Embed AI and IR techniques to determine the most effective methods 

for accurate prediction of requirement change impacts. 

Achieved: This objective focused on exploring and embedding AI and IR techniques to 

identify the most effective approaches for predicting requirement change impacts. The 

research tested various combinations of AI and IR methods, such as combining retrieval 

mechanisms with generative models, to enhance precision and recall. The 
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implementation of the RAG system in Chapter 6 demonstrated how AI techniques like 

generative modeling and IR methods like dense retrieval could jointly improve 

prediction accuracy, particularly for unstructured datasets. This evaluation provided 

insights into the comparative effectiveness of different techniques, as discussed in 

Chapter 6 and Section 7.4.4. 

• Objective 5: Analyse and evaluate the robustness and applicability of these 

techniques across different application domains with distinct requirements 

specifications. 

Achieved: The robustness and applicability of the proposed techniques were analysed 

across three datasets representing distinct application domains: Dataset-I (structured 

requirements), Dataset-W (semi-structured), and Dataset-O (unstructured). The 

evaluation, presented in Section 7.5, demonstrated the adaptability of the proposed 

framework, with RAG emerging as the most versatile solution for varying domain 

complexities. 

• Objective 6: Design and implement an automated framework that integrates AI and 

IR techniques to predict the impacts of requirement changes on software artifacts 

and other requirements. 

Achieved: Building on the findings from Objective 4, this objective focused on the 

practical design and implementation of a fully automated framework. The framework 

incorporated the most effective AI and IR techniques, as identified in the earlier 

objective, to create a scalable, domain-agnostic solution. The RAG system, developed as 

part of this objective, exemplified how automation can reduce manual effort, improve 

efficiency, and deliver high recall and F1 scores across diverse datasets, as detailed in 

Chapter 6 and Section 7.5. 

8.3. Conclusions 

The comprehensive evaluation of the implemented models—ML models, the NLP-

based solution, the BEIR-based approach, and the RAG system—highlights the unique 
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strengths and limitations of each approach in automating CIA in software requirements 

engineering. 

The ML models, particularly Random Forest, demonstrated reliable performance in 

handling structured datasets, showing a balanced precision and recall on datasets with 

well-defined patterns. However, their performance declines with increased data 

complexity, as seen in datasets with varied linguistic structures, limiting their utility in 

diverse and unstructured requirements scenarios. 

The NLP-based solution, which leverages CoreNLP and SpaCy for linguistic feature 

extraction, proved highly precise in datasets with consistent language. This approach is 

efficient in structured environments where requirements follow predictable syntactic 

patterns. However, its precision-focused nature comes at the expense of recall, resulting 

in lower completeness when applied to datasets with variable syntax and diverse 

terminologies. 

The BEIR-based approach, combining BM25 and Bi-Encoders for dense retrieval, excels 

in recall across all datasets. This solution is advantageous for identifying a 

comprehensive set of potential impacts, especially in cases where thoroughness is 

prioritized over precision. However, the BEIR model’s lower precision suggests a 

tendency to yield false positives, making it more suitable for scenarios where high recall 

is essential, but specific ranking relevance is less critical. 

The RAG system, combining retrieval and generative capabilities, showcased a strong 

balance between precision and recall across all datasets. Particularly effective in 

handling unstructured and complex requirements, the RAG model leveraged LanceDB 

and FAISS for efficient retrieval and the Phi 3.5 language model for contextually rich 

generation. The RAG system’s ability to adapt dynamically to different datasets and 

context-specific requirements was demonstrated through high F1 scores and MRR, 

marking it the most versatile solution among the evaluated models. 

In conclusion, each model displayed unique strengths tailored to specific dataset 

structures and complexity levels. The ML models are best suited for initial, quick 

analyses in structured environments, while the NLP-based solution provides high 
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precision in controlled, consistent datasets. The BEIR-based approach offers extensive 

recall, making it ideal for exhaustive searches, though it requires refinement to improve 

specificity. With its combined retrieval and generation framework, the RAG system 

emerged as the most adaptable solution, capable of handling both structured and 

unstructured data, albeit with higher computational demands. 

We used validation-driven grid searches to tune each model’s key parameters (see 

Section 7.2). This ensured data-driven choices that balance performance gains against 

computational costs and generalize across all three datasets. 

8.4. Research Limitations 

Despite our efforts to use three industrial datasets of varying structure and age, they 

do not capture the full spectrum of requirement styles found in today’s heterogeneous 

software ecosystems. For instance, we did not include “living” agile backlogs or 

embedded-system specifications with domain‐specific notations, which may exhibit 

different linguistic patterns. As a result, our findings should be validated further before 

generalizing to radically different contexts, such as real-time systems or safety‐critical 

regulated domains. 

Throughout the project, several methodological challenges arose. Early on, tuning 

RAG’s retrieval thresholds led to either overwhelming false positives or brittle recall. We 

addressed this with adaptive thresholding based on impact‐set size, a compromise that 

could obscure rare but critical dependencies. Similarly, integrating diverse tools (SpaCy, 

CoreNLP, FAISS, LanceDB, Phi 3.5) required repeated pipeline rewrites to align 

tokenization schemes and embedding formats, underscoring the engineering overhead 

of hybrid systems. 

For practitioners deciding which model to apply, context is key. In environments with 

well‐structured, stable requirements such as enterprise or regulated domains—

traditional ML techniques (like Random Forest or SVM) or our NLP‐based solution offer 

fast, precise predictions with minimal computational cost, making them ideal for routine 

CIAs. When exhaustive coverage is critical such as in safety analyses or regulatory audits 
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a BEIR‐based pipeline provides high recall, although at the expense of more manual 

filtering to remove false positives. Finally, in highly dynamic or unstructured settings—

such as open‐source projects or rapidly evolving change logs, the RAG approach delivers 

the richest semantic insights and balanced performance, provided that teams can 

accommodate its greater computing and storage demands. 

While RAG unlocks powerful context‐aware reasoning, it comes at a cost. Generative 

inference with models like Phi 3.5 can require tens of gigabytes of GPU memory and 

incur per‐request latencies on the order of hundreds of milliseconds, making it 

unsuitable for sub‐second, on‐device CIAs. We mitigated some of this through 8-bit 

quantization and batched processing, but stakeholders must weigh these overheads 

against the value of deep contextual analysis. In scenarios demanding near-real‐time 

performance, a hybrid strategy using fast ML/NLP filters to triage changes and invoking 

RAG only for the highest-risk cases can strike an effective balance between speed, cost, 

and analytical depth. 

8.5. Future Works 

This research provides a robust framework for addressing requirements CIA using 

innovative models and methodologies. However, there are several avenues for future 

work to refine and extend the outcomes of this thesis. 

One potential direction is the enhanced integration of models with domain-specific 

knowledge bases and advanced retrieval methods, such as hybrid vector and symbolic 

reasoning systems, to improve applicability and precision. Exploring the fusion of the 

RAG framework with specialized ontologies or domain-adapted pre-trained models 

could further enhance its capabilities. Additionally, scalability and performance 

optimization remain key challenges, particularly due to the computational demands of 

the RAG model. Future work could focus on lightweight architecture or model distillation 

techniques to maintain performance while reducing resource requirements, ensuring 

scalability for larger datasets and real-time applications. 
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Another important avenue is the exploration of federated learning (FL) to improve the 

framework’s adaptability across different software domains while preserving data 

privacy. FL enables collaborative training across decentralized and confidential 

datasets—such as those in healthcare, finance, and defense, without the need to 

transfer sensitive data to a central server. This approach would allow the framework to 

benefit from a wider range of domain-specific data, enhancing generalizability and 

robustness while addressing privacy concerns. Integrating FL with retrieval and 

generation components in the RAG pipeline, or with the embedding models used for 

similarity computation, could enable continuous learning from distributed 

environments without compromising confidentiality. 

Further, tailoring the methodology to accommodate domain-specific terminologies 

and data structures could significantly broaden its impact. While BLEU and ROUGE 

metrics provided valuable insights into linguistic alignment, incorporating additional 

evaluation metrics like METEOR or BERTScore could enable a more comprehensive 

understanding of semantic nuances and model effectiveness in complex, unstructured 

datasets. 

Developing interactive and explainable models is another promising direction. Such 

models could enhance user trust and utility by providing clear justifications for predicted 

impacts, thereby facilitating informed decision-making processes. Similarly, exploring 

hybrid approaches that combine the strengths of traditional ML models, NLP 

techniques, and advanced generative AI frameworks could result in a more dynamic 

solution capable of adapting to varying dataset complexities and requirements 

structures. 

Longitudinal studies to evaluate the robustness of the proposed models over time and 

in evolving datasets would also provide valuable insights into their real-world 

applicability and reliability. Finally, advanced preprocessing techniques, such as dynamic 

clustering or linguistic segmentation, could be explored to improve model performance 

on datasets with high variability. 

By addressing these areas, including federated learning for domain scalability and 

privacy-preserving collaboration, future work can build on the foundation laid by this 
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thesis to create more effective, scalable, and adaptable solutions for requirements CIA, 

advancing the state of the art in software engineering and related fields. 
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