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Abstract

Change Impact Analysis (CIA) is a critical task in software requirements engineering,
aiming to predict the effects of requirement changes on related artifacts and systems.
Traditional CIA methods often rely on manual inspection and heuristic-based reasoning,
which are time-consuming and error-prone. This research addresses these limitations
by proposing an automated framework for Software Requirements Change Impact
Analysis (SRCIA), leveraging advances in Machine Learning (ML), Natural Language

Processing (NLP), and Artificial Intelligence (Al).

The framework integrates a range of approaches, including traditional ML models,
NLP-based techniques, BEIR-based retrieval methods, and a Retrieval-Augmented
Generation (RAG) system, to assess their effectiveness across multiple datasets of
varying complexity. Evaluation metrics such as precision, recall, F1 score, BLEU, and

ROUGE are used to benchmark performance.

A central contribution is the development of a RAG-based solution that combines
Large Language Models (LLMs) with modern information retrieval techniques. By
incorporating vector database tools like LanceDB and FAISS, along with prompt
engineering strategies, the framework achieves accurate and context-aware impact
predictions. This enables robust adaptation to real-world, unstructured, and evolving
requirements. The research provides a practical, scalable, and extensible solution to

support automated CIA in complex software projects.

Xiv



Chapter 1.

Introduction

1.1. Background

Requirements engineering (RE) plays an essential role in capturing correct and
complete requirements and is considered one of the most critical and challenging stages
of developing software. Errors in the requirements can be expensive in terms of lost
time, revenue, reputation, and project sustainability (Beecham, Hall & Rainer 2005).
When a single requirement statement changes within software requirements
specification (SRS), it may trigger multiple changes throughout the SRS. A manual
analysis of how these requirement changes affect other requirements is time and effort-
intensive and error-prone. Requirements changes can potentially lead to inconsistencies
in SRS, particularly in large systems(Arora et al. 2015a; Nejati et al. 2016). Therefore,
analyzing the impact of requirements changes is essential to ensure accuracy, reliability,
and consistency. It is also necessary to assess the effects of changes on downstream

artifacts, such as software design and source code (Bjarnason et al. 2014).

This thesis introduces a novel requirements engineering change impact analysis (CIA)
framework designed for application during the software development phase. This
framework leverages requirement artifacts as the primary source for Enhancing

Decision-Making in Software Development by conducting impact analysis.
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The rapid evolution of software systems has brought unprecedented complexity to
their development and maintenance processes. Modern software applications span
diverse domains, including healthcare, finance, and education, demanding scalable and
efficient engineering methodologies. Software requirements are a crucial stage in the
software development lifecycle, serving as the foundation for understanding the
software's purpose, functionality, and boundaries. This stage involves the meticulous
process of identifying, analyzing, and defining what the software is expected to

accomplish (Zowghi & Paryani 2003).

Among the various facets of software engineering, requirements engineering serves
as the cornerstone, defining the specifications that guide development teams in creating
functional and reliable systems. So, it plays a critical role in ensuring that the needs and
preferences of all stakeholders are adequately captured and documented (Li & Huang
2018). However, the dynamic nature of software projects often necessitates frequent
modifications to requirements, leading to the need for robust mechanisms to manage

and assess the impact of such changes effectively.

Change Impact Analysis (CIA) has emerged as a critical process within RE, addressing
the challenge of identifying and understanding the ramifications of altering software
requirements. Changes may arise due to evolving customer needs, technological
advancements, or regulatory updates, and their ripple effects can span multiple
components of a software system. Without systematic CIA, these changes can lead to

defects, delays, and increased costs, and jeopardizing project outcomes.

Traditional approaches to CIA rely heavily on manual techniques and rule-based
methods, which, while effective in certain scenarios, struggle to cope with the growing
complexity and scale of modern software systems. The advent of advanced
computational models, particularly in the domains of machine learning (ML) and natural
language processing (NLP), has provided new opportunities to automate and enhance
the accuracy of CIA. These models enable engineers to analyze relationships and
dependencies among requirements with greater precision, reducing the likelihood of

overlooked impacts and facilitating proactive decision-making.



Recent advancements in ML, NLP, and information retrieval have revolutionized the
way software requirements are analyzed. Techniques such as Retrieval-Augmented
Generation (RAG) and frameworks like BEIR combine powerful retrievers with
generative models, enabling contextually rich analyses of requirements. These models
utilize structured and unstructured data, capturing syntactic and semantic nuances that
traditional approaches may miss. By employing transformer-based architecture and
embedding techniques, these advanced systems align textual descriptions with

potential impact areas, offering significant improvements in both precision and recall.

This chapter outlines the research gaps /motivations, research questions, objectives,

contributions, methodology and the structure of the thesis.

1.2. Research Gap

Despite considerable research efforts in CIA, particularly in software maintenance and
evolution, there is a substantial gap regarding the use of predictive models for CIA in RE.
Current approaches focus on specific aspects like traceability or dependency analysis
without leveraging ML's predictive capabilities. For example, (Arora et al. 2015a) relied
on correlation rates to evaluate change impacts without early-stage dependency
definition, which lacks the predictive power needed for proactive impact analysis.
Similarly, (Hassine, Rilling & Hewitt 2005) applied slicing and dependency analysis at the
use case map level, limited by its dependency on predefined structures. The use of
semantic role labeling (SLR) by (Baumer, White & Tomlinson 2010) improved

relationship identification but did not extend to predictive modeling.

The motivation for this research stems from the identified gap in current
methodologies. By integrating ML into CIA, this research aims to develop a predictive
model that enhances the ability to manage requirements changes proactively. This
model will be evaluated using real-world datasets to ensure its practical applicability and
effectiveness, providing a robust tool for software project managers to make informed

decisions regarding change requests.
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ML offers significant advantages for CIA, particularly in terms of predictive accuracy.
ML algorithms can analyze historical data to identify patterns and predict future changes
with high precision, which is essential for proactive CIA. Furthermore, ML is adept at
handling the complexity and dynamic nature of software requirements and their
interdependencies, outperforming traditional rule-based methods. The scalability of ML
models allows them to process large datasets efficiently, making them suitable for large-
scale projects where traditional methods fall short. Additionally, ML models have the
capability to continuously learn and adapt from new data, thereby improving their

predictive capabilities over time.

1.3. Research Questions

Software requirements constantly evolve, and new requirements often emerge
(Brucker & Julliand 2014). Changeability has continued to be one of the critical software
development challenges since Brooks identified it in his landmark paper (Brooks, F.
1987). Requirement changes present many challenges that hinder completing a project

that precisely fulfills the client's demands.

ClIA is a crucial task in RE as changes to the requirements are the main reason for
software evolution (Bjarnason et al. 2014). As discussed in Section 1, performing
requirements CIA manually might lead to additional complexity, extra cost, and time.
Due to the growing and dynamic nature of requirements and various variables such as
change type, requirement interdependencies, and impact of change, managing
requirements change is highly complex and challenging (Morkos, Shankar & Summers
2012). Another challenge that imposes a restriction is generalizability. Prior studies
explicitly mentioned the need for further experiments in other domains, especially with
the help of domain experts, to determine whether their approaches and tools can be
generalized, although this leads to high costs (e.g., (Arora et al. 2019; Hein, Voris &
Morkos 2018)). An automated solution is thus required to perform CIA, as changes
happen iteratively. For instance, an accurate model to predict new changes and their
impact on the system can benefit requirements analysts in deciding if a change request

should be accepted or rejected.



The ability to anticipate and analyze a change in requirements, predict its progression,
and determine the effect early in the requirements engineering stages would enable
requirements analysts to make better decisions about implementing change, especially
in large-scale projects (Hein, Voris & Morkos 2018; Morkos & Summers 2010). This may
be used to estimate the value of implementing requirement changes (Morkos &
Summers 2010). This research was motivated by the need to present an automated
approach for CIA using neural information retrieval approaches. This research attempts

to address the following research questions:

RQ1: How can Al techniques, specifically NLP and ML, be applied to analyze the impact

of requirement changes on other requirements and software artifacts?

RQ2: How can information retrieval techniques enhance the assessment of

requirement changes on software artifacts?

RQ3: Which Al techniques or combinations of techniques are best suited for accurately

predicting the impacts of requirement changes?

RQ4: How can these techniques maintain accuracy and precision across different

application domains with distinct requirements specifications?

RQ5: How can requirements CIA be automated using the insights gained from Al and IR

techniques?

1.4. Research Objectives

The primary aim of this research is to develop a predictive model capable of
forecasting which software requirements will be impacted by a given change. The goal
is to support project managers in making informed decisions regarding the acceptance
or rejection of specific requirement changes, ultimately enhancing the efficiency and

accuracy of the software development process.

This research introduces an algorithmic-based prediction model that leverages ML and
NLP techniques to forecast the impact of requirement changes. The model aims to

automate CIA and improve upon traditional, manual methods, which are often time-
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consuming and error-prone, especially in large-scale software projects. The key

objectives of the research are as follows:

Objective 1: Develop methodologies for comprehensive data preparation and feature

engineering to support the proposed CIA models.
Objective 2: Develop a framework for CIA using the capabilities of NLP and ML.

Objective 3: Implement information retrieval techniques to enhance the assessment

of requirement change impacts on software artifacts.

Objective 4: Embed Al and IR techniques to determine the most effective methods for

accurate prediction of requirement change impacts.

Objective 5: Analyse and evaluate the robustness and applicability of these techniques

across different application domains with distinct requirements specifications.

Objective 6: Design and implement an automated framework that integrates Al and
IR techniques to predict the impacts of requirement changes on software artifacts and

other requirements.

The significance of this research lies in its potential to advance the field of software
requirements management by offering a scalable, automated solution to CIA. When
dealing with smaller projects or a limited number of changes, manual impact analysis,
while time-consuming, remains feasible. However, as complexity and volume of changes
increase, manual methods become inefficient and error-prone. Automating CIA for
large-scale, rapidly evolving software specifications can drastically reduce human error

while enhancing both the speed and accuracy of analysis.

This research focuses on automating the prediction of future requirement changes by
utilizing historical change requests accumulated over periods of one to three months.
ML techniques are employed to predict the likely impact of new changes, providing
valuable insights into how requirements will evolve throughout the software lifecycle

(Basri et al. 2016).

Precise CIA is crucial for informed decision-making during software development,

particularly when planning and prioritizing requirements in both traditional and agile



methodologies. By integrating existing manual approaches with an advanced predictive
model, this research aims to improve the effectiveness of software development by

providing accurate, real-time predictions on the impact of requirement changes.

1.5. Research Contributions

This research makes several significant contributions to the domain of software
requirements engineering, focusing on developing innovative solutions for predicting
the impacts of requirement changes. Each contribution corresponds to the outcomes of

the research objectives, as outlined below:
1. Enhanced Dataset Preparation for Comprehensive Evaluation

A key contribution of this research lies in the comprehensive preparation of datasets
used for training and evaluating the proposed models. Three distinct datasets, Dataset-
|, Dataset-W, and Dataset-O, were curated from real-world sources, encompassing a
total of 891 requirements and 77 change requests. These datasets were carefully
selected and preprocessed to ensure they represent varying levels of complexity,
domain-specific terminologies, and linguistic diversity, providing a robust testbed for the
proposed frameworks. The rationale for selecting these datasets is further elaborated
in Chapter 3, where their complexity, linguistic characteristics, and representativeness
of various application domains are discussed in detail. This justifies their suitability for

evaluating the adaptability and robustness of the proposed models.

The preparation process involved extensive normalization of the data to standardize
terminologies and linguistic structures across datasets, coupled with tokenization to
break down requirements and change requests into manageable components. Semantic
relationships within the requirements were preserved and enhanced through the
generation of sentence embeddings using the all-MiniLM-L6-v2 model. Additionally,
addressing data imbalance posed by diverse requirements was a crucial focus;
techniques such as oversampling for minority classes and augmenting
underrepresented datasets were employed to reduce bias and improve model

performance.
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Furthermore, this research introduced a benchmark dataset tailored specifically for
requirement change impact analysis, categorized by complexity, length, and domain
specificity. These benchmark datasets provide a valuable resource for future studies and
facilitate cross-comparison of methods in this domain. To ensure high-quality and
reliable evaluation, domain experts manually annotated change requests to establish
relationships with impacted requirements, thereby creating a strong ground truth. The
datasets also emphasize generalizability, representing a wide array of application
domains such as Web Service, Telecommunications and Satellite, enabling the

evaluation of the proposed models' adaptability across diverse contexts.

This contribution underscores the importance of high-quality dataset preparation in
advancing the field of requirements change impact analysis. The carefully curated
datasets serve as a foundation for training, evaluation, and future research, enhancing
the scalability, precision, and robustness of automated solutions in software

requirements engineering.
2. Development of Al-Based framework for Impact Analysis:

Based on the second research objective, this work contributes an Al-based approach
that leverages Natural Language Processing (NLP) techniques such as dependency
parsing, named entity recognition (NER), and term frequency-inverse document
frequency (TF-IDF) for feature extraction. Additionally, it incorporates ML models,
including Random Forest, Support Vector Machines (SVM), and Decision Trees, to
analyze the impact of requirement changes on other requirements and software
artifacts. This contribution demonstrates the capability of combining syntactic,
semantic, and contextual analysis to improve precision and recall in impact analysis,

offering a novel perspective on dependency analysis in software engineering.
3. Designing of an Information Retrieval Framework:

Addressing the third research objective, this research designs an IR-based framework
for assessing the impacts of requirement changes. The framework incorporates state-
of-the-art retrieval techniques, including BM25 for lexical matching, Bi-Encoders for

dense vector similarity, and Cross-Encoders for re-ranking. These techniques collectively



enhance the retrieval and ranking of relevant requirements in response to change
requests, ensuring both lexical and semantic alignment with the query. By leveraging
these advanced retrieval methods, the framework achieves a balance between precision
and recall, making it a robust tool for impact analysis in dynamic software engineering

contexts
4. Integration of Al and IR Techniques in a Hybrid Framework:

In line with the fourth research objective, a hybrid framework that integrates Al and
IR techniques is proposed and implemented. This hybrid framework integrates NLP-
based and BEIR-based approaches for predicting requirement change impacts. The NLP-
based approach leverages CoreNLP and SpaCy for linguistic feature extraction, including
syntactic parsing and named entity recognition while the BEIR-based approach
combines lexical retrieval, dense retrieval, and re-ranking. By integrating these
approaches, the framework enhances the precision of semantic similarity
measurements and the recall of relevant impacted requirements. The results
demonstrate that combining these techniques improves the accuracy and robustness of
impact predictions, particularly in handling datasets with diverse linguistic structures.
This contribution sets a foundation for future hybrid approaches in requirements
engineering, offering a balanced and adaptive solution for complex software

development scenarios.

5. Introduced a systematic approach to develop a domain-specific framework by

evaluating various Al techniques across different datasets.

Following the fifth research objective, the research evaluates the proposed solutions
across three real-world datasets (prepared from contribution 1), covering 891
requirements and 77 change requests. The results highlight the generalizability of the
approaches and their adaptability across varying application domains. This evaluation
provides empirical evidence of the frameworks' effectiveness, contributing valuable

insights for practitioners and researchers working with diverse datasets.

The proposed domain-specific framework refers not to a one-off, statically tailored

solution, but to a dynamically adaptable architecture that continuously learns from new,
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domain-specific data. Rather than hard-coding rules or manually tuning parameters for
each application area, our framework employs transfer learning, initializing models on a
broad corpus of software-engineering documents, and then fine-tunes on smaller,
project-level datasets. This two-stage approach ensures the core model captures
general change-impact patterns (e.g. traceability relations, dependency structures)
while adapting dynamically to the terminology, style, and process nuances of each target

domain.

6. Design an automated/domain-specific system for Requirement Change Impact

Prediction using the integrated Al/IR technique suitable different datasets

The sixth and final contribution is the development of an automated framework
leveraging the Retrieval-Augmented Generation (RAG) system, which integrates Al and
IR techniques for predicting requirement change impacts. This framework employs
advanced vector retrieval methods, including LanceDB and FAISS, for efficient context
retrieval and combines them with generative capabilities of LLMs, such as Phi 3.5, to

deliver accurate and context-aware predictions.

Although RAG has become popular in open-domain QA and chatbots, our
implementation distinguishes itself in several important ways. First, we employ a
structured vector index built on LanceDB, which organizes traceability-annotated
artifacts, such as requirements, design documents and issue logs, so that retrieval
emphasises semantically and procedurally relevant passages rather than mere surface-
level similarity. Second, we use hybrid prompt engineering: rather than providing the
model with raw text snippets alone, our prompts incorporate contextual signals like
requirement IDs and change-request metadata alongside the retrieved content, guiding
Phi 3.5 to generate domain-specific, accurate responses. Finally, we introduce an
iterative retrieval—-generation loop, in which initial candidate impacts are re-scored
against the index and the top results are fed back into the model for a second synthesis
pass. This two-pass cycle significantly enhances both precision and explainability

compared with one-shot RAG approaches.

By dynamically adapting retrieval and generation processes to the characteristics of

different datasets, the system ensures relevance and precision across diverse

10



requirements. This automated framework significantly reduces manual effort and
enhances decision-making processes in software requirements engineering, offering
scalability, adaptability, and efficiency in handling complex and evolving requirements

landscapes.

1.6. Research Methodology

In conducting research, several methodologies can be employed depending on the
nature of the research questions and the objectives of the study. The most commonly
used methodologies include qualitative research, quantitative research, mixed

methods, design science research, and empirical studies.

e (Qualitative Research is primarily exploratory and is used to gain an understanding
of underlying reasons, opinions, and motivations. It provides insights into the
problem and helps to develop ideas or hypotheses for potential quantitative
research. Methods such as interviews, focus groups, and case studies are typically

used in qualitative research.

e (Quantitative Research involves systematic investigation of phenomena by gathering
guantifiable data and performing statistical, mathematical, or computational
techniques. This method is often used to test hypotheses or measure variables and
relationships. Surveys, experiments, and observational studies are common

methods used in quantitative research.

e Mixed Methods Research combines both qualitative and quantitative approaches,
allowing for a more comprehensive analysis by leveraging the strengths of both
methodologies. This approach is particularly useful when the research question
requires both the depth of qualitative insights and the generalizability of

guantitative findings.

e Design Science Research Methodology (DSRM) focuses on the creation and
evaluation of artifacts designed to solve identified problems or achieve specific

goals. It is especially prevalent in fields like information systems and software

11
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engineering, where the development of new tools, methods, or frameworks is

necessary.

e Empirical Studies involve the collection and analysis of data from real-world
observations or experiments. This methodology is particularly useful for testing
hypotheses, validating models, or evaluating the practical effectiveness of
solutions. Empirical research can provide robust evidence about the behavior of a

system or the impact of specific interventions.

The research methodology employed in this study is grounded in the DSRM, a
structured approach commonly used to develop knowledge through the creation of
artifacts that serve as solutions to defined problems (Hevner et al. 2004); (Peffers et al.
2007). DSRM is particularly well-suited for this research, as it allows for the systematic
design, development, and evaluation of new methods and models to address specific

challenges in software requirements engineering and ML.

Our research follows the key stages of DSRM, as depicted in Figure 1.1, beginning with
the identification of the problem. This initial phase involved conducting a
comprehensive systematic literature review (SLR) focusing on the application of ML in
requirements engineering. The goal of this review was to assess the effectiveness of ML
in improving the requirements engineering process and its associated artifacts, as well

as to identify gaps in the current literature (Kitchenham & Charters 2007).

The literature review was conducted following the Evidence-Based Software
Engineering (EBSE) paradigm, as described by Kitchenham et al. (2004). This approach
involved defining specific research questions, implementing a robust search strategy,
compiling a list of related studies, and applying strict inclusion and exclusion criteria.
Additionally, we employed backward snowballing and manual searches to ensure that
all relevant studies were captured. The review was limited to papers published between
2010 and 2020, a period marked by a significant increase in publications on the
intersection of ML and RE. This timeframe was chosen to focus on the most recent
advancements in the field. This thesis limits its primary literature review to works
published between 2010 and 2020. During this period, the foundations of requirements-

change impact analysis such as supervised classification models, rule-based traceability

12



techniques, and early NLP integrations—were established. While significant advances
have occurred since 2020 (notably the application of transformer-based models to
traceability), these are reviewed comprehensively in Chapter 2 to highlight how they

extend the pre-2021 methodologies examined.

From the selected papers, we extracted data on various aspects, including the ML
techniques employed, the specific problems and challenges addressed, the datasets
utilized, and the evaluation metrics used to assess the performance of ML techniques in
RE. The analysis of 65 relevant papers revealed that ML is a powerful tool for automating
RE tasks, addressing complexity, and reducing costs and development time. These
insights were instrumental in refining the research objectives and aims, guiding the

subsequent stages of our methodology.

With a clear understanding of the research problem and objectives, the next phase
involved selecting appropriate datasets and defining the design cycles for the study. This
step included a literature review on public datasets, followed by the collection of
industry datasets where necessary, to ensure that the data used in our research was

both relevant and comprehensive.

The design and development phase was then initiated, focusing on two primary
models: the ML model and the NLP model. These models were developed iteratively,
leveraging information retrieval techniques to enhance their accuracy and effectiveness.
The design process was informed by the research questions identified earlier, ensuring

that the developed models addressed the key challenges in software requirements CIA.

Once the models were developed, they were subjected to a rigorous demonstration
phase, where their practical applicability was tested in real-world scenarios. This was
followed by an evaluation phase, in which the models were assessed based on known
performance parameters, such as accuracy, efficiency, and scalability. The evaluation

provided critical feedback, which was used to refine the models further.

Finally, the results and findings from the research were communicated, contributing
both to the academic body of knowledge and to practical applications in the field of

software engineering. The iterative nature of DSRM ensured that each stage of the
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research process was interconnected, with continuous feedback loops facilitating the

refinement of the research outcomes.
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Figure 1.1.The Design Science Methodology Process Model [9]

1.7. Thesis Structure

This thesis is organized into the following chapters:
Chapter 1: Research Background and Objectives

This chapter introduces the research problem, providing background information on
software requirements and the challenges of managing changes in requirements. It
outlines the research aims, objectives, and contributions, setting the foundation for the

study by addressing gaps in the literature and defining the research problem.
Chapter 2: Literature Review

Chapter 2 presents a comprehensive review of related works, focusing on software
requirements change impact analysis, ML techniques, and NLP. The chapter also outlines
the research questions and methodology for the mapping study that guided the

systematic literature review.
Chapter 3: Research Framework

This chapter details the core framework for CIA developed in this research. It provides

a structured view of the research stages, explaining the datasets used, the data

14



collection process, and the implementation of the proposed solutions. This chapter
establishes the groundwork for understanding the methodologies applied throughout

the thesis.
Chapter 4: Implementation of ML Algorithms

This chapter discusses the application of ML techniques for predicting the impact of
requirement changes. It provides a detailed description of the technical approach, the
implemented ML models, and the results obtained from the analysis. The chapter also

includes a comparative evaluation of state-of-the-art algorithms.
Chapter 5: Implementation of the Dual-Model Framework

Chapter 5 introduces a dual-model framework that integrates NLP-based solutions
with BEIR benchmark-based retrieval techniques. It explains the structure of the
framework, including data collection, verification, preparation, and methodology
branches. The chapter also presents the evaluation metrics and results of the
implemented solutions, offering a comprehensive analysis of the effectiveness of the

framework.
Chapter 6: Implementation of Retrieval-Augmented Generation (RAG) Model

Chapter 6 focuses on the use of the RAG model to enhance the predictive accuracy of
CIA. It provides an overview of the RAG model, its implementation, and a discussion on
how it compares with other methods used in this research. The chapter concludes with

insights into future research directions and opportunities for improvement.
Chapter 7: Evaluation of the proposed models

This chapter compares the performance of ML, NLP-based, BEIR-based, and RAG
models across structured, semi-structured, and unstructured datasets. Using metrics
like precision, recall, and Fl-score, along with visualizations such as radar charts, it
highlights each model’s strengths and limitations. The chapter concludes by discussing
the practical implications for CIA and proposing a hybrid framework to address varying

dataset complexities.
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Chapter 8: Conclusions and future work

Chapter 8 serves as the concluding chapter of this thesis, summarizing the key findings
and contributions of the research while reflecting on how the objectives and research
questions outlined in Chapter 1 were addressed. It synthesizes insights from the
evaluations and analyses presented in previous chapters, emphasizing the significance
of the developed frameworks and techniques in advancing the field of requirements
change impact analysis. This chapter delves into the broader implications of the research
findings, outlining how they contribute to the field and offering recommendations for
potential advancements and enhancements to the proposed solutions. By integrating
the outcomes of the study with its broader implications, Chapter 8 provides a cohesive

and forward-looking conclusion to this research.

16



Chapter 2.

Literature Review

2.1. Introduction

This chapter provides a comprehensive review of the existing literature in software
requirements engineering and CIA. It establishes the foundational concepts necessary
to understand the research context, including the evolution of software requirements,
the nature and challenges of managing requirements changes, and the role of CIA in

software engineering.

The chapter begins by introducing key concepts in software requirements engineering,
including the processes of requirements elicitation, analysis, validation, and
documentation. It explores the evolution of requirements engineering practices,
highlighting the shift from early informal approaches to structured, iterative, and agile
methodologies. The dynamic nature of software requirements and their susceptibility
to change are examined, along with the classification and implications of different types

of requirement changes, corrective, adaptive, perfective, and preventive.

Next, the chapter delves into the background and significance of CIA in software
engineering, tracing its origins and development. It discusses various CIA approaches,
including dependency analysis and traceability analysis, and explores how CIA addresses
the challenges posed by evolving requirements in complex software systems. Special
emphasis is placed on the role of automated techniques, such as NLP and ML, in

enhancing the efficiency and precision of CIA.
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The chapter also presents a systematic mapping study that surveys and categorizes
the existing body of research on requirements engineering and CIA up to 2020. This
mapping study identifies key contributions, methodologies, and gaps in literature,
serving as a basis for positioning the current research within the broader academic
landscape. However, as the mapping study focuses on works published until 2020,
recent advancements such as Retrieval-Augmented Generation (RAG) systems and Beir-
based approaches are not included. These modern techniques, although promising,

were introduced after the timeframe of this study and are beyond its scope.

By synthesizing insights from prior studies, this chapter highlights the need for a novel
CIA framework tailored to address the challenges of managing requirements changes

during the software development phase.

2.2. Software Requirements

The primary objective of requirements engineering is to facilitate a consensus among
stakeholders—such as product managers, product owners, business analysts,
customers, and developers—by clearly articulating their needs and aligning them with
the project’s goals. This process is vital because errors or oversights in the requirements
phase can have far-reaching consequences, leading to costly delays, revenue loss,
damage to reputation, and potentially jeopardizing the project's sustainability

(Beecham, Hall & Rainer 2005).

One of the first steps in this process is requirements elicitation, which involves
gathering business requirements through interactions with key stakeholders. This stage
is essential for understanding the demands and expectations that will shape the
software's development. Elicitation transforms a set of informal ideas into formal,
structured expressions that can guide subsequent stages of development (del Aguila &

del Sagrado 2016a).

Following elicitation, these requirements undergo rigorous analysis to validate their
feasibility and ensure that they can be realistically implemented within the system. This

step involves not only technical assessments but also considerations of how the
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requirements align with the overall business objectives. The culmination of this stage is
the creation of requirements documents, which are then validated with the

stakeholders to ensure completeness and accuracy.

A well-crafted and comprehensive requirements specification is one of the most
critical artifacts in the requirements engineering process. It serves as the blueprint for
the entire software development process, guiding the project from inception through to
completion. This document is not merely a technical manual but a living document that
reflects the negotiated compromises and agreed-upon features that will drive the

project forward.

Overall, requirements engineering can be viewed as the systematic process of
identifying, documenting, and managing the features and services that the software
must provide, along with the constraints that govern its development and operation.
This process is integral to the success of any software project, as it lays the groundwork

for all subsequent development activities.

Figure 2.1 illustrates the workflow of software requirements engineering. The process
begins with a Feasibility Study, resulting in a Feasibility Report that informs the
Requirements Elicitation and Analysis stage. During this phase, System Models are
developed, and User and System Requirements are articulated. These inputs feed into
the Requirements Specification, which is a formal document outlining the system's
functionalities and constraints. This specification is then subjected to Requirements
Validation to ensure accuracy and completeness before it is finalized as the
Requirements Document. Each step in this workflow is interconnected, reflecting the
iterative nature of software development, where validation and feedback loops are

critical to refining and ensuring the quality of the requirements.

2.3. Evolution of Software Requirements

The evolution of software requirements is a reflection of the broader changes in
software engineering practices and the increasing complexity of software systems. Over

the past several decades, the process of defining and managing software requirements
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has undergone significant transformations, driven by advancements in technology,
methodologies, and the growing demand for more complex and adaptive software

systems.

Requirements
Elicitation and
Analysis

Feasibility
Study
Requirements

\ Spedification

Feasibility Requirements
Report " Validation

System
Models !

User and System
Requirements

/
I—, Requirements

- Document

Figure 2.1.Software Requirement Process (Sommerville, 2004)

A. Early Approaches to Requirements Engineering

In the early days of software development, requirements engineering was a relatively
informal process. Requirements were often captured through ad-hoc discussions and
documented in unstructured formats, such as text-based specifications or simple
diagrams. These early approaches were adequate for small-scale projects where the
scope of the software was limited, and the development team was small. However, as
software systems grew in size and complexity, the limitations of these informal methods
became apparent. Requirements were frequently ambiguous, incomplete, or

inconsistent, leading to costly rework and project delays.
B. The Advent of Structured Requirements Engineering

The 1970s and 1980s marked a significant shift in requirements engineering with the
introduction of structured methodologies. The Waterfall model, one of the earliest
formalized software development methodologies, emphasized a linear approach to
software development where requirements were defined upfront and served as the

foundation for all subsequent stages of development (Royce, 1970). This model
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necessitated a more rigorous approach to requirements specification, leading to the
development of structured techniques for requirements elicitation, analysis, and

documentation.

During this period, the notion of "correctness" in requirements became a central
focus. Requirements needed to be clear, precise, and verifiable to ensure that the final
software product met the intended goals. Techniques such as data flow diagrams (DFDs)
and entity-relationship diagrams (ERDs) were introduced to model requirements in a

more structured and systematic way (Yourdon, 1989).
C. The Emergence of Iterative and Agile Approaches

The late 1980s and 1990s saw the emergence of iterative and incremental
development methodologies, such as the Spiral model (Boehm, 1988), which introduced
the concept of revisiting and refining requirements throughout the software
development lifecycle. This approach acknowledged the reality that requirements often
change as stakeholders gain a better understanding of their needs and as the market
environment evolves. Iterative methodologies allowed for more flexibility in handling
these changes, reducing the risks associated with rigid, upfront requirements

specification.

The turn of the century brought about the widespread adoption of Agile
methodologies, which revolutionized requirements engineering by promoting a more
collaborative and adaptive approach. In Agile frameworks, such as Scrum and Extreme
Programming (XP), requirements are captured in the form of user stories and are
continuously refined through iterative cycles known as sprints (Beck et al., 2001). This
approach emphasizes direct communication between developers and stakeholders,
fostering a dynamic environment where requirements can evolve in response to

feedback and changing business priorities.

2.4. Understanding Requirements Change

A. Nature of Requirements Change
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Software requirements are inherently dynamic and subject to change throughout the
development process. The nature of these changes’ stems from a variety of factors that
are often interrelated and context dependent. One primary reason for changes in
software requirements is the evolving business environment in which organizations
operate. As market conditions, customer needs, and competitive pressures shift, the
software must adapt accordingly, necessitating changes to its requirements.
Additionally, stakeholders often gain a clearer understanding of their needs as the
project progresses, leading to refinement and modifications in the initial requirements.
Technological advancements can also drive changes, as new tools, platforms, or
methodologies become available that could enhance the software’s functionality or

performance.

Moreover, regulatory and compliance requirements can impose changes, especially in
industries that are heavily regulated, such as healthcare, finance, and aerospace. As new
laws or standards emerge, software systems must be updated to remain compliant,
resulting in adjustments to their requirements. These factors underscore the fluid
nature of software requirements, making change management a critical aspect of the

software development process.
B. Types of Requirements Changes

Requirements changes can be broadly categorized into four types: corrective,

adaptive, perfective, and preventive.

e Corrective Changes: These changes are initiated to fix defects or issues identified in
the requirements after they have been initially defined. Corrective changes ensure
that the software meets the intended functionality and performance standards by
addressing errors, inconsistencies, or omissions in the original requirements.

e Adaptive Changes: Adaptive changes occur when the software needs to be
modified to work in a new or changed environment. These changes are often driven
by shifts in the business environment, new customer demands, or changes in the
external system that the software interacts with. Adaptive changes are essential for

ensuring that the software remains relevant and functional in a changing context.
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o Perfective Changes: Perfective changes involve the enhancement of existing
software functionalities to improve performance, maintainability, or user
experience. These changes are typically driven by user feedback or the desire to
optimize the software’s operations. While the software may be fully functional,
perfect changes aim to make it more efficient or user-friendly.

e Preventive Changes: Preventive changes are proactive modifications made to
software requirements to avoid potential issues in the future. These changes often
involve refactoring or restructuring the software’s architecture to improve its
scalability, security, or robustness, thereby reducing the likelihood of defects or

failures as the software evolves.

Each type of requirement change has its own set of implications for the software
development process, requiring careful consideration and planning to ensure that the
changes are effectively integrated without disrupting the project’s overall timeline and

objectives.

2.5. Challenges in Managing Requirements Change

Managing requirements change is one of the most complex and challenging aspects
of software development. One of the primary difficulties lies in maintaining traceability
and consistency across the various artifacts that constitute the software’s
documentation. When a requirement changes, it can have a cascading effect on related
requirements, design documents, test cases, and even code. Ensuring that all related
components are updated accordingly is crucial to maintaining the integrity of the

software system.

Another significant challenge is stakeholder alighment. Different stakeholders may
have conflicting priorities or interests, making it difficult to achieve consensus on the
nature and scope of changes. This can lead to delays, increased costs, or scope creep if
not managed effectively. Additionally, the iterative nature of modern software
development methodologies, such as Agile, means that requirements are continually

evolving. This constant state of flux can be difficult to manage, particularly in large-scale
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projects where multiple teams are working concurrently on different aspects of the

software.

Resource allocation is another critical issue. Implementing changes often requires
additional time, budget, and human resources, which may not have been accounted for
in the original project plan. This can strain the project’s resources, leading to potential
delays or compromises in quality. Furthermore, the introduction of new requirements
can increase the complexity of the software system, making it more difficult to test and

validate. This, in turn, can increase the risk of defects or failures in the final product.

Lastly, the impact of changes on project timelines and delivery schedules can be
significant. Unplanned changes can disrupt carefully coordinated schedules, leading to
delays and increased pressure on the development team. Effective change management
requires a delicate balance between accommodating necessary changes and

maintaining the project’s overall momentum and focus.

In summary, while changes in software requirements are inevitable, managing these
changes effectively is crucial to the success of the project. This involves not only
technical considerations but also strategic planning, stakeholder management, and
resource allocation to ensure that changes are implemented smoothly and do not

adversely affect the project’s outcome.

2.6. Change Impact Analysis in Software Engineering

ClAis a critical aspect of software engineering, particularly in managing the effects of
changes in software requirements. As software systems evolve, requirements often
change, leading to engineering changes (ECs) that can have significant implications for
the development process. An engineering change is typically defined as a modification
to a system component—whether in design, functionality, or other aspects—after it has
been released (Shankar et al. in press). These changes can vary in scale and complexity

and may affect multiple stakeholders over an extended period.

The process of managing these changes begins with an Engineering Change Request

(ECR), a document that outlines the details of the proposed change and is circulated
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among relevant stakeholders for review and approval. If the ECR is approved, it is
followed by the release of an Engineering Change Note (ECN), which formalizes the
change and notifies all stakeholders of its implementation. The final stage involves
archiving the change, documenting the reasons, outcomes, and impacts for future

reference (Chen, Shir & Shen 2002; Morkos & Summers 2010).

Effective CIA is essential in this process, as it involves assessing how a proposed change
will propagate through the system and what other components will be affected. By
analyzing ECNs and other related documents, researchers can develop models to predict
the impact of changes and manage the risks associated with them (Morkos, Shankar &
Summers 2012). This predictive capability is particularly important in large-scale
systems, where the interdependencies between components can make the effects of

changes difficult to anticipate.

This thesis introduces a novel requirements engineering CIA framework designed for
application during the software development phase. This framework leverages
requirement artifacts as the primary source for enhancing decision-making in Software

Development by conducting impact analysis.

This chapter outlines the research background, objectives, motivation, contributions,

and the structure of the thesis.

2.7. Change Impact Analysis Background

CIA was first introduced and studied in 1993 by Arnold and Bohner (Arnold 1996;
Arnold & Bohner 1993). They indicated that impact analysis involves identifying the
possible effects of a change or predicting what needs to be modified to implement a
change. The need to forecast and manage the impact of software changes increases as
software systems become extremely large and complicated. Software CIA gathers the
current data of the software system to identify which components will be affected by
the proposed change or how the components will affect each other. Based on Arnold
and Bohner (Arnold & Bohner 1993), there are two main perspectives for CIA, including

software dependency analysis and traceability analysis (Arnold 1996). Arnold et al.
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described three main steps to analyze the change impacts in a system (Arnold & Bohner

1993):

e Analyze change specifications and software artifacts.
e Trace potential impacts

o Implement the requested changes

Changes initiated by a change request involve the change specification and
classification process, which finishes with identifying the change type (Jayatilleke & Lai
2013). Whenever addressing a change, many requirements cannot be considered
independent of other requirements in the SRS, as different types of relationships can
exist between them. As a result, an action performed on one requirement may have
unexpected impacts on another. Therefore, there is a need to identify requirement
interdependencies (Jayatilleke, Lai & Reed 2018). It is essential to investigate how
requirements are dependent when there is no semantic or syntactic similarity between
them. The investigated dependencies between requirements can be used to develop a

predictive model to forecast CIA.

In recent decades, considerable research has focused on reviewing the CIA, especially
in software maintenance and evolution (Alkaf et al. 2019; Jayatilleke & Lai 2018; Lehnert
2011a, 2011b). CIA has been applied to source codes (Brucker & Julliand 2014) and
requirements traceability (Goknil, Kurtev & Berg 2016; Li et al. 2008; Zhang et al. 2014).
Some researchers have reported the effects of requirements changes on data design,
architecture design, and software design (Von Knethen 2002; Yazdanshenas & Moonen
2012). Few researchers have studied the challenges of change verification and validation
(Bjarnason et al. 2014) and co-changing artifacts to gather more information about
software artifact evolution (Antoniol, Rollo & Venturi 2005). Some approaches have
attempted to automate the process of analyzing the change impacts. (Alkaf et al. 2019)
performed an automated CIA approach for User Requirements Notation models. Arora
et al. (Arora et al. 2015a) proposed a strategy based on NLP for analyzing the impact of
change in natural language requirements. (Nejati et al. 2016) proposed an approach to
automatically identify the impact of requirements changes on system design when the

requirements and design elements are expressed using models. Jayatilleke (Jayatilleke,
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Lai & Reed 2018) presented a technique for requirements change analysis that relied on
changes arising at higher levels. (Bano et al. 2012) performed a systematic literature
review on the causes of requirement change, categorizing them into necessary and
accidental causes. (Aryani et al. 2009) proposed a methodology for analyzing change

propagation in software using the domain-level behavioral model of a system.

In requirement specification, one solution to assess the effect of the change is to look
for the precise accordance of the terms contained in the change and its potential
definitions and expressions in other specifications. Change can progress across
semantically related terms that are not exact matches or relevant syntactic diversities.
In this situation, it is appropriate to apply a relatedness measure that considers phrases
(Arora et al. 2015a). Besides, dependencies in requirements play an essential role in the

analysis of change propagation (Zhang et al. 2014).

Many dependency or interdependency models have been developed to define and
distinguish relationships based on requirements' structural and semantic properties to
find the relationships between requirements (Zhang et al. 2014). However, there has
been no empirical assessment of these dependency forms regarding usefulness and
applicability (Zhang et al. 2014). To define the possible effect of requirement changes
on the overall system, Hassine (Hassine, Rilling & Hewitt 2005) applied both slicing and
dependency analysis at the level of the use case map (rather than between
requirements in natural languages). Baumer (Baumer, White & Tomlinson 2010) showed
that semantic role labeling could improve computational metaphor identification and
more effectively identify relationships with semantic import than typed dependency

parsing.

(Arora et al. 2015a) showed that in their approach, there is no need to define
requirements dependencies in the early stage because the propagation condition can
determine if there is a correlation between a changed requirement and the others. Since
all potential conditions cannot be enumerated, constructing an explicit dependency
graph is difficult. Rather than utilizing typed dependencies, they used correlation rates

to evaluate the impact of changes. Typed dependencies focus on syntactic structure and
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grammatical relations, while semantic roles emphasize conceptual and semantic

structure (Baumer, White & Tomlinson 2010; de Marneffe & Manning 2008).

Alsalemi (Alsalemi & Yeoh 2017) performed a systematic literature review focused on
predicting requirements volatility. According to their research, only a few papers have
been published on predicting volatility requirements, and the majority of papers worked
on the causes of requirements change and its effect on project performance. Their work
underlines that more empirical studies need to be carried out to address the practical

aspect of requirements volatility better.

Dhamija (Dhamija & Sikka 2019) presented a systematic study on the advancement
of CIA techniques. The study's findings exposed a scope of research investigating the
hidden dependency between software requirements that are not clearly visible.
Techniques for identifying hidden dependencies among software objects, such as
specifications, design, and code, need to be proposed. The existing literature focusing
on CIA in RE showed that very few studies presented a prediction model for requirement

change impact, and it is an under-explored area (Yang et al. 2020).

Anjali (Anjali, Dhas & Singh 2022) evaluated various CIA techniques focused on
requirement defects in software development. The study categorizes these methods,
assessing their effectiveness in identifying and mitigating defects. Highlighting the need
for automated CIA tools, the research emphasizes improving accuracy and efficiency in

defect management to maintain software quality and reliability.

Elapolu (Elapolu et al. 2024) proposed a blockchain-based framework for requirement
traceability, integrating a data acquisition template and graph-based visualization for
dual-level traceability (artifact and object levels). By leveraging blockchain, the
framework ensures security, immutability, and enhanced collaboration among
distributed stakeholders. This approach demonstrates significant improvements in

managing dynamic requirements and securing traceability data.

Zhang (Zhang, Tan & Yang 2021) analyzed the impact of requirement changes on
product development progress using system dynamics. The study divides the

development process into three phases—concept development, detail design, and pilot
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production, and examines how requirement changes cause reworks, affecting the
overall development duration. The authors highlight that requirement changes,
especially in the later phases, significantly increase development time and introduce
uncertainty. By modeling the development process and simulating requirement
changes, the study provides insights into managing these changes to minimize delays

and improve project management.

Akbar (Akbar et al. 2020) investigate the challenges of requirements change
management (RCM) in global software development (GSD) projects. By conducting a
systematic literature review (SLR) and validating the findings through a questionnaire
survey, they identify 25 RCM challenges. These challenges are categorized based on
organization type (client and vendor) and size (small, medium, large), highlighting their
significance in different GSD contexts. The study emphasizes the need for tailored
strategies to manage RCM effectively across diverse organizational settings,
underscoring the complexity and importance of RCM in maintaining software quality

and project success in GSD environments.

Arif (Arif, Mohammad & Sadiq 2023) proposed a method combining UML and the NFR
framework to analyze both functional and non-functional requirements of information
systems. The technique uses UML diagrams (use-case, class, and activity diagrams) for
modeling functional requirements (FRs), while the NFR framework is employed to
handle non-functional requirements (NFRs) using a fuzzy-based approach to deal with
vagueness in soft goal interdependencies. The applicability of this method is
demonstrated through a library information system case study, showcasing how the
integration of these techniques can enhance the precision and comprehensiveness of

requirements analysis.

Anwer (Anwer et al. 2024) introduced BECIA, a behavior engineering-based approach
for CIA. BECIA employs Integrated Behavior Trees (IBT) and Integrated Composition
Trees (ICT) to model system requirements and their dependencies. The approach
includes a Requirements Components Dependency Network (RCDN) and a Change
Impact Indicator (Cll) to quantify change impacts using Kolmogorov Complexity. By

automating the transformation of IBTs to ICTs and subsequently to RCDNs, BECIA
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enhances the efficiency and accuracy of CIA. The study demonstrates the approach's
applicability through evaluations of student projects, highlighting its potential to

improve change management in software development.

While traditional CIA methods such as rule-based dependency analysis, traceability
matrices, and manual heuristics have proven effective in limited and controlled
environments, they face notable limitations in handling modern software development
complexities. Scalability remains a core challenge, manual and semi-automated
techniques struggle to scale across large and continuously evolving software systems
where thousands of interdependent requirements exist. Moreover, these methods
often rely on structured formats or predefined relationships, making them less effective
when dealing with unstructured or ambiguous textual data, which is common in real-
world requirements specifications. These limitations directly motivate the adoption of
advanced NLP and ML techniques. By leveraging language models and learning-based
approaches, NLP/ML systems can process large volumes of unstructured requirements,
identify latent dependencies, and offer predictive insights that traditional methods
cannot. This transition addresses the need for automation, precision, and adaptability
in CIA, especially in domains characterised by linguistic variability and high change

frequency.

2.8. Machine Learning in CIA

The integration of ML techniques into Requirements Engineering has emerged as a
significant advancement in the software development lifecycle, particularly in
optimizing the extraction, analysis, and prediction of requirements-relevant knowledge.
Classification and regression, two key tasks in supervised learning, are foundational to
this integration. Classification involves predicting discrete labels, such as identifying
whether a requirement is likely to change or remain stable, while regression predicts
continuous values, such as estimating the magnitude of a change’s impact. These tasks

are pivotal in automating decision-making processes in CIA.

In the early stages of software development, system or business analysts must

meticulously capture and document software requirements, which serve as critical input
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to the Software Requirements Specification (SRS) document. Given the importance of
generating a comprehensive and accurate SRS, optimizing the knowledge extraction
process is paramount (Sandhu et al. 2015). ML techniques have been instrumental in
enhancing the efficiency and accuracy of this process, particularly in dealing with the
vast amount of data contained within requirements documents, which are often written
in natural language (NL). The challenge of transforming these NL requirements into
structured formats amenable to automated analysis has led to the development of
various NLP techniques (Arora et al. 2019). When combined with ML, these techniques
enable automation in requirements analysis, significantly reducing manual effort and

improving the precision of outcomes (Li et al. 2018).

The application of ML in RE encompasses a range of tasks, including requirements
traceability, ambiguity management, and the generation of test cases (Holzinger et al.
2018). By applying learning algorithms to datasets derived from previous projects, ML
models can be trained to recognize patterns and predict outcomes, thereby supporting
requirements analysts in their decision-making processes. This automation is
particularly valuable in large-scale projects where the sheer volume of requirements can

overwhelm traditional manual analysis methods (Lwakatare et al. 2019).

To provide a solid foundation for the algorithms applied in this research, the following
subsections present the mathematical background of key ML methods, including
Decision Trees, Random Forests, Support Vector Machines (SVMs), and Neural
Networks. These methods represent widely adopted approaches to classification and

regression tasks in CIA.

2.8.1. Decision Trees

Decision Trees are supervised learning algorithms that classify data by splitting it into
subsets based on feature values (Boutaba et al. 2018). They use a tree-like structure
where each internal node represents a decision (split), and each leaf node represents a

class label or outcome (Tufail et al. 2023).

16(D,A) = H(D) = Suea gl H(DY) (1)
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Where H(D) = —Z§=1}pi\log2(p]) (2) is the entropy of dataset D, and pj is the

probability of class i.
e GinilIndex:
Alternatively, the Gini Index measures impurity(Quinlan 1986):
Gini(D) = 1 — Xf_y;p% (3)

The algorithm selects the split with the highest Information Gain or lowest Gini Index

to grow the tree.

2.8.2. Random Forests

Random Forests are ensemble learning methods that improve the robustness of

Decision Trees by using Bootstrap Aggregation (Bagging) to train multiple trees and

aggregate their predictions (Breiman 2001).

e Bagging:
Random samples D; are drawn with replacement to create diverse training sets.

The final prediction is the aggregate of individual trees:
frensemble}x) = %th:g fix) (4)
where T is the number of trees.
e Feature Selection:

At each split, a random subset of features is chosen to reduce correlation between

trees, improving generalization and reducing overfitting.

2.8.3. Support Vector Machines (SVMs)

Support Vector Machines are powerful algorithms that find the optimal hyperplane to

separate classes in a high-dimensional space (Christopher J.C. Burges 1998).

e Objective Function:

For linearly separable data, SVMs maximize the margin between classes:
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minimize G) ||W||Zsubject toyi(w - x;+ b) > 1 (5)
where w is the weight vector, b is the bias term, and y; is the label.

e Kernel Trick:

For non-linearly separable data, kernels map inputs to higher-dimensional spaces. A

common kernel is the Radial Basis Function (RBF):

K(Xi,Xj) = exp (—y ||xi - xj||2> (6)

2.8.4. Logistic Regression

Logistic Regression is a supervised learning algorithm used for binary and multi-class
classification tasks. Unlike linear regression, which predicts continuous values, logistic

regression predicts probabilities, transforming the output using the logistic function.

e Logistic Function:
The logistic function is defined as:

1
1+e~%

P(y =1|x) =

(7)
where z=w-x+b , w is the weight vector, x is the input features, and b is the bias term.

e Log Loss Function:
Logistic Regression optimizes the log-loss (cross-entropy) function to find the best

weights w and bias b:

L= —%Zlivﬂ[% log(P(y = 1]x)) + (1 — y) log(1 — P(y = 1|x))] (8)

where y; is the actual class label for sample i, and P(y = 1|x;) is the predicted

probability for the positive class.

Logistic Regression works well for linearly separable data but may struggle with non-
linear relationships unless extended using techniques like polynomial feature

transformations or kernel methods (Tufail et al. 2023).
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2.8.5. Gaussian Naive Bayes (NB)

NB is a probabilistic classifier based on Bayes' Theorem. It assumes that features are
conditionally independent given the class label and follow a Gaussian (normal)

distribution.

e Bayes' Theorem:

P(X|Ck)P(Ck)

P(Ck|x) = 1)

(9)

where P(Cy|x) is the posterior probability of class, P(x|Cy) is the likelihood, P(C}) is

the prior probability of class P(x) is the evidence.

e Likelihood with Gaussian Distribution:

For Gaussian NB, the likelihood P (x|C}) is modeled as:

()’

L e % (10)

’ 2
2moj,

where u; and o are the Mean and variance of feature x for class Cy.

P(x|Cy) =

e Decision Rule:
The class prediction is made by selecting the class with the highest posterior

probability:
Cpredicted = arg I’l’é«;:{lXP (Cklx) (11)
Gaussian NB is particularly effective for datasets where the features follow a normal

distribution. Its simplicity and efficiency make it a popular choice for text classification,

spam detection, and other real-world problems(Boutaba et al. 2018; Tufail et al. 2023) .

2.9. Natural Language Processing in CIA

NLP has become an increasingly important tool in the domain of CIA, particularly given
the challenges associated with managing and analyzing software requirements, which
are often documented in natural language. Software requirements are typically

expressed in natural language due to its flexibility and ease of use, making them
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accessible to both technical and non-technical stakeholders. However, this flexibility
also introduces variability, ambiguity, and potential inconsistencies into the

requirements, complicating the process of CIA.

The inherent ambiguity and complexity of natural language pose significant challenges
for automated analysis, making NLP a critical component in enhancing the precision and
effectiveness of CIA processes. NLP techniques are specifically designed to address these
challenges by enabling the automated extraction, interpretation, and processing of

natural language requirements.

NLP can be employed to parse and analyze the textual content of requirements
documents to identify key entities, relationships, and dependencies. This capability is
particularly valuable in CIA, where understanding the relationships between different
requirements is crucial for predicting the impact of changes. By using techniques such
as part-of-speech tagging, named entity recognition, and dependency parsing, NLP helps
structure and clarify the relationships within the requirements, making them more
amenable to further analysis. This structured analysis is essential for ensuring that
changes are accurately assessed and that their impacts are fully understood before

implementation.

This research employs two widely used NLP libraries, SpaCy and CoreNLP, which are
instrumental in implementing robust solutions for analyzing software requirements. The
following subsections explore the technical details and specific functionalities of SpaCy

and CoreNLP and their relevance to the tasks undertaken in this study.

2.9.1. CoreNLP

Stanford CoreNLP is a comprehensive NLP toolkit developed by the Stanford NLP
Group. It offers a wide range of linguistic analysis tools, including tokenization, sentence
splitting, part-of-speech tagging (POS), named entity recognition (NER), lemmatization,
dependency parsing, and coreference resolution. CoreNLP’s strength lies in its ability to

handle complex syntactic and semantic analysis, making it highly suitable for
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understanding the grammatical structures present in software requirements (Manning

et al. 2014). Key features of CoreNLP include:

e Tokenization: CoreNLP provides robust tokenization capabilities that handle a wide
variety of text inputs, including multi-word expressions and special symbols.

e Part-of-Speech Tagging: CoreNLP's POS tagging module uses sophisticated models
to ensure high accuracy across diverse datasets.

o Dependency Parsing: CoreNLP employs advanced algorithms, including universal
dependency representations, to analyze syntactic structures. It uses graph-based
dependency parsing. The parser constructs a dependency tree T by maximizing the
sum of scores for all edges (Pipit Muliyah, Dyah Aminatun, Sukma Septian Nasution,

Tommy Hastomo, Setiana Sri Wahyuni Sitepu 2020):
T x= argmax (T € T)X s(h,m) (12)

o T:The set of all valid dependency trees.
e (h,m): An edge from the head hhh to the modifier mmm.
e s(h,m): A scoring function for each edge.

e Sentiment Analysis and Coreference Resolution: Beyond basic NLP tasks, CoreNLP
offers features such as sentiment analysis and coreference resolution, enabling
more nuanced analysis of text. Coreference resolution in CoreNLP often uses a
probabilistic model to determine whether two mentions m1 and ,m2 refer to the

same entity (Lee et al. 2013). This can be represented as:
P(coref | m1,m2) = ao(w - @(ml,m2)) (13)

e o The sigmoid function.
e w: The weight vector learned during training.

e @(m1,m2): The feature vector encoding attributes of m1 and m2.

2.9.2. SpaCy

SpaCy is an open-source NLP library designed for fast, efficient processing of large
volumes of text. Its pipeline architecture allows easy customization, enabling users to
add components as needed. SpaCy excels in named entity recognition (NER) and
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provides pre-trained models for multiple languages, making it ideal for global NLP
applications. Its high processing speed and flexibility make it an excellent choice for text

preprocessing and feature extraction. Key features of SpaCy include:

o Tokenization: SpaCy employs a rule-based tokenizer to segment text into tokens,
accounting for language-specific nuances like abbreviations and contractions.

e Part-of-Speech Tagging: Using state-of-the-art statistical models, SpaCy assigns
grammatical roles to each token, facilitating syntactic analysis.

e Dependency Parsing: SpaCy builds dependency trees to represent grammatical
relationships between words in a sentence, enabling a deeper understanding of
sentence structure (Pipit Muliyah, Dyah Aminatun, Sukma Septian Nasution,
Tommy Hastomo, Setiana Sri Wahyuni Sitepu 2020). It uses transition-based
dependency parsing algorithms, which can be represented mathematically as

follows:
The parser operates in a state-transition system:

T = (C,A,t0,Tf) (13)

C: The set of all possible configurations.

A:The set of actions (e.g., Shift, Reduce, Left-Arc, Right-Arc).

t0: The initial configuration of the parser.

Tf :The set of terminal configurations.

The algorithm transitions between states using a learned scoring function s(c, a),

wherec € Canda € A .The parser selects actions aaa to maximize the score:
ax= argmax (a € A)s(c,a) (14)

. Named Entity Recognition (NER): SpaCy uses pre-trained models to extract
named entities such as dates, quantities, and system components from text. NER in
SpaCy relies on sequence labeling tasks modeled using Conditional Random Fields
(CRFs) (Song, Zhang & Huang 2019). A CRF assigns a probability to a sequence of labels

Y given a sequence of tokens X:

PY|X) =exp@ oy (i—1),y.i,X))/ZY exp(Z o _(i—1),y_iX)) (15)
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Here, @ (y;_1, Vi, X)is the feature function that scores the compatibility of the label

sequence with the input sequence.

One of the major challenges in CIA is identifying hidden dependencies, relationships
between requirements that are not explicitly stated through keywords or syntactic
structure. Traditional approaches struggle with these implicit links, particularly when
requirements are phrased differently but convey semantically related intentions. NLP
techniques directly address this limitation. For example, dependency parsing enables
the construction of grammatical trees that expose subject—verb—object relations,
helping analysts detect when two requirements act upon the same concept in different
forms. Likewise, NER supports terminology alignment by extracting and normalising
domain-specific terms across diverse requirement expressions. Semantic Role Labeling
further enhances this by framing requirements around action agent object structures,
revealing deep semantic similarities even when vocabulary differs. Together, these NLP
techniques contribute to effective dependency mapping, allowing the framework to
uncover latent links between requirements that would be missed by surface-level
analysis alone. This capability is especially critical in large-scale, heterogeneous systems

where implicit dependencies are common and costly to overlook.

By combining these techniques, our framework goes beyond surface-level text
matching. Dependency parsing uncovers grammatical links, SRL reveals deeper semantic
connections, and NER aligns domain-specific terms, together forming a robust basis for

mapping both explicit and hidden requirement dependencies.

2.10. BEIR: Benchmarking Information Retrieval

The Benchmarking Information Retrieval (BEIR) framework is a comprehensive
platform designed to evaluate information retrieval (IR) systems across diverse datasets
and tasks. BEIR incorporates various retrieval approaches, including lexical retrieval,
dense retrieval, and hybrid methods, enabling the assessment of IR models'
performance in handling a wide range of scenarios. It is particularly relevant in NLP for

evaluating semantic search and similarity-based applications (Thakur et al. 2021).
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This section outlines the mathematical foundation of the BEIR framework and its
relevance to CIA. The following concepts are integral to BEIR's methodologies: lexical
retrieval with BM25, dense retrieval with vector embeddings, and hybrid models

combining the two approaches.

2.10.1. Lexical Retrieval with BM25

BM25 is a probabilistic scoring function widely used for lexical retrieval. It ranks
documents based on the frequency of query terms, adjusting for document length and
term saturation (Robertson & Zaragoza 2009; Thakur et al. 2021). The BM25 scoring

function is defined as:

(Ft.d)* (k1 + 1))

(f(t,d)+ k1 * <1 —b+b+ (alZ[zz)))

Score(q,d) = X | IDF(t) * (16)

Where:

e q:Queryterms.

d: Document.

e t:Aterminthe queryq.

e f(t,d): Frequency of term t in document d.

e f(t,d): Length of document d.

e avgdl: Average document length across the corpus.

e k1 : Hyperparameter controlling term frequency saturation (typically k1 =1.2 or
k1=2.0).

e b: Hyperparameter controlling the impact of document length normalization

(commonly b =0.75).
The Inverse Document Frequency (IDF) measures the importance of a term and is
given by:

(N —n(t)+ 0.5)

(n(t)+0.5) (17)

IDF(t) = log[

Where:
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e N:Total number of documents in the corpus.

e n(t): Number of documents containing the term t.

BM25 excels in capturing exact matches between query terms and documents while

adjusting for variations in term frequency and document length.

2.10.2. Dense Retrieval Using Bi-Encoders

Bi-Encoders are used for efficient dense retrieval by encoding the query and
documents independently into a shared embedding space. This method allows for rapid
computation of similarities between queries and a large corpus of documents using

vector operations (Thakur et al. 2021).

A neural network f encodes the query g and document d into dense vectors g and

d , respectively:
q = f(@).d = f(d) (18)
Where:

e f(q): Embedding of the query.
e f(d):Embedding of the document.

The similarity between the query and document embeddings is computed using cosine

similarity:

. _ (qed)
Sim(q, d) = o iam (19)

e g e d: Dot product of the query and document embeddings.

) ||q|| and ||d||: Magnitudes (norms) of the respective vectors.
The documents are ranked based on their similarity scores:
Rank(q) = argsort(—Sim(q, di)) (20)

Where argsort sorts the documents d; in descending order of similarity (Karpukhin

et al. 2020).
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2.10.3. Re-Ranking with Cross-Encoders

After retrieving a subset of candidate documents using a Bi-Encoder, Cross-Encoders
refine the rankings by jointly encoding the query and each candidate document. This
method captures more nuanced interactions between query and document terms

(Thakur et al. 2021).

A Cross-Encoder takes the concatenation of the query g and a document d as input

and produces a relevance score s(q, d):

s(q,d) = fcross([q; d)) (21)

® f.ross: Aneural network (e.g., BERT or RoBERTa) trained for relevance scoring.

e [g; d]: Concatenation of the query and document as input to the model.

The Cross-Encoder computes a scalar score indicating the relevance of the document
to the query. The final ranking is determined by sorting the candidate documents based

on their relevance scores:
Rank ross(q) = argsort(—s(q, dl-)) (22)
Where:

e argsort sorts the documents d;in descending order of their relevance scores.

2.11. Large Language Models

Large Language Models (LLMs) have revolutionized the field of NLP by enabling
systems to perform complex language tasks with remarkable accuracy and contextual
understanding. These sophisticated Al systems, such as GPT, BERT, and Phi 3.5, are
designed to process and generate human-like text based on user prompts,
demonstrating capabilities in reasoning, question answering, summarization, and
creative writing (White et al., 2023). LLMs are particularly impactful in tasks requiring
high degrees of linguistic sensitivity and contextual awareness, such as requirements

CIA.
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At their core, LLMs operate by modeling the probability distribution of language. Given
an input sequence x = (x; Xy, ..., X,,), an LLM estimates the likelihood of the next token

Xn+1 based on the conditional probability:
P(x{n+1}|x.1,x_2,..,xn) (23)

This probability is learned through large-scale training on diverse text corpora,
allowing the model to capture both syntactic and semantic relationships in language.

The model’s goal is to minimize the cross-entropy loss during training, defined as:
1$N
L=—<YizqlogP (x; | xg) (24)

where N is the total number of tokens in the dataset, and P(x; | x(<; ) is the

predicted probability of the iii-th token given its preceding context.

2.11.1. Transformer Architecture

LLMs are underpinned by transformer-based architectures, which rely on self-
attention mechanisms to process sequential data effectively. Unlike traditional models
like RNNs, transformers process sequences in parallel, enabling greater scalability and

precision. Key components include:
¢ Self-Attention Mechanism: Each token attends to all other tokens in the sequence
to compute contextual relevance. The attention scores are calculated as:

§
Attention(Q, K, V) = softmax (%) 14 (25)

where Q (query), K (key), and V (value) are projections of the input embeddings, and
dj is the dimensionality of the key vectors. This mechanism enables the model to

capture long-range dependencies (Vaswani et al. 2017).

e Multi-Head Attention: By employing multiple attention heads, the model can focus
on different aspects of the input simultaneously, enhancing its ability to understand

complex patterns (Vaswani et al. 2017).

MultiHead(Q, K,V) = Concat(head,, ..., head,) W, (26)
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o Feedforward Layers: Position-wise feedforward networks apply non-linear

transformations to each token independently:
FFN(x) = max(0,xW; + b))W, + b, (27)

These layers enhance the model's ability to learn complex features from the input

data.

e Positional Encoding: Since transformers lack inherent sequence ordering, positional

encodings are added to input embeddings to inject positional information (Vaswani

et al. 2017).
. pos
PEpos,2i) = 51n< 7 > (28)
10000%model
PE(pos2i+1) = COS <—p052i ) (29)
10000%model

2.12. RAG Model

The RAG model represents a significant advancement in NLP by integrating retrieval
and generation components. This approach allows models to draw upon both pre-
trained knowledge and real-time information to respond more accurately to user
queries. Unlike standalone generative models, RAG systems can access external
knowledge bases, making their responses more contextually relevant and precise(Gao

et al. 2023).

A. Information Retrieval in RAG Systems

Information retrieval is a key component of the RAG model, and it is responsible for
locating documents that provide context and support for the input query. Classical IR
techniques, such as BM25, rank documents based on their term frequency-inverse
document frequency (TF-IDF) scores. These techniques are effective for quickly
identifying the most relevant documents within a large corpus. More modern
approaches use vector embeddings and similarity searches to enhance retrieval

precision.
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In RAG systems, the retriever acts as a bridge between static pre-trained model
knowledge and dynamic, real-time information. By leveraging indexed data, the
retriever provides the generative model with the most relevant pieces of information,

enriching the generated output (Gao et al. 2023).

The retrieval component identifies the most relevant documents D from a large
corpus c for a given input query q. The goal is to maximize the conditional probability of

retrieving relevant documents given the query:

P(D|q) = I1P(d_i|q) (30)
Where:

e D={d 1,d 2,..,d k}: Set of retrieved documents.
e P(d_i|q): Relevance score for document d;, computed using similarity

metrics (e.g., cosine similarity of embeddings).

Document embeddings d; and query embeddings q are generated using dense

retrieval models like Bi-Encoders:

P(d|q) « Sim(q,d) = (q * d)/(llqll = [Id]) (31)

Where:

e q:Query embedding.
e d: Document embedding.

o ||q||and ||d||: Magnitudes of the embeddings.

B. Generative Language Modeling

Generative language models, such as Phi-3.5, are based on transformer architectures
that use attention mechanisms to understand and generate text. These models are pre-
trained on extensive corpora to learn linguistic patterns, enabling them to produce
human-like text based on input prompts (White et al. 2023). However, without real-time
data integration, they are limited by their training cut-off and lack of specific domain

knowledge.
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By incorporating retrieved documents into the input, the generator can dynamically
access external knowledge, improving the output's specificity and contextual accuracy.
This integration is critical for applications like CIA, where changes in requirements need

to be analyzed with up-to-date contextual understanding.

The generation component uses a conditional language model to generate output y
based on the query g and the retrieved documents D. The generative process maximizes

the likelihood of the output sequencey ={y _1,y _2,..,y _n}
P(ylq,D) = [1P(y_t|y-<t,qD) (32)
Where:

e vy, :Thet token in the generated sequence.
e vy, :The sequence of tokens generated before y, .

e D: Retrieved documents conditioning the generation.
By incorporating retrieved documents into the input, the generator produces
responses that reflect both pre-trained knowledge and real-time contextual
information.

C. Joint Objective

The RAG model combines the retrieval and generation components to optimize the

joint probability of the output y and the retrieved documents D given the query g:
P(y,D|1q) = P(D|q) * P(y|q,D) (33)
The final objective is to maximize this joint probability.
During training, RAG optimizes the following loss function using Maximum Likelihood
Estimation (MLE):

L =—-YlogP(D|q) * P(y|q,D) (34)

D. Fine-Tuning
In fine-tuning, the retriever and generator are trained jointly or sequentially:

e Retriever Fine-Tuning: Adjusts P(D | q) to improve retrieval quality.
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e Generator Fine-Tuning: Updates P(y | q, D) to better synthesize responses based

on retrieved documents.

2.13. Vector Databases

Vector databases are specialized data management systems designed to store,
retrieve, and query high-dimensional vectors efficiently. Unlike traditional relational
databases focusing on structured data, vector databases are optimized for managing
embedding vectors derived from text, images, or other data types. These embeddings
represent data in a mathematical form that captures semantic relationships, making
vector databases ideal for applications requiring similarity searches, such as RAG

systems.

2.14. Mathematical Heuristics for Optimizing Similarity-Based Analysis

Mathematical heuristics play a significant role in computational systems, particularly
in scenarios where optimizing performance and resource utilization is critical. These
heuristics are especially relevant for tasks involving similarity-based analysis, such as
those in NLP and BEIR-based frameworks. The approaches in this research compute
similarity scores between sentence pairs based on various linguistic features and
contextual information, often leading to computational overhead when processing large
datasets. By applying mathematical heuristics, the research streamlines this process,

ensuring both efficiency and accuracy.

Heuristics operate through approximate methods and predefined rules that guide
decision-making without requiring exhaustive computation. While they do not
guarantee a globally optimal solution, they provide a practical and effective way to
identify high-priority elements from a dataset. For similarity-based analysis, heuristics
enable prioritization and filtering of sentences based on their relevance, reducing the

need to process less significant data points.

Three commonly applied heuristics in this research are score thresholding, significant

drop detection, and relative score proportionality.
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e Score Thresholding involves setting a baseline threshold to exclude sentences with
similarity scores below a certain level. This baseline is calculated based on the score
distribution across the dataset to ensure only sentences with meaningful similarity
are retained for further analysis.

e Significant Drop Detection identifies substantial drops in similarity scores among
ranked sentences. A sharp decline often indicates the boundary where semantic
alignment diminishes, helping to distinguish between sentences closely aligned in
content and those with reduced relevance.

e Relative Score Proportionality compares each sentence’s similarity score to the
highest score in the dataset. Sentences with scores below a predefined proportion
(e.g., 50%) of the highest score are excluded to focus on the most semantically

relevant results.

Prior research has demonstrated the effectiveness of such heuristics in various
domains. For instance, thresholding techniques have been used in information retrieval
systems to improve relevance ranking, while significant drop detection has been applied
to enhance clustering methods by identifying natural boundaries in data. Similarly,
proportionality-based heuristics have been employed in ranking systems to ensure high-

priority results are emphasized.

This research builds on these established techniques to address the challenges of
sentence similarity analysis in the NLP and BEIR-based frameworks. By integrating these
heuristics, the study not only improves computational efficiency but also ensures the
semantic integrity of the results, providing a robust foundation for further applications

in software requirements engineering.

2.15. Applied Evaluation Metrics

In this research, the performance of different models for CIA is evaluated using a
comprehensive set of metrics, each providing insights into specific aspects of model
performance. These metrics are crucial for assessing the effectiveness and reliability of
the proposed solutions in identifying impacted requirements. This section describes the
evaluation metrics employed in this study, along with their mathematical formulations.

47



Chapter 2

2.15.1. Precision

Precision measures the proportion of correctly identified impacted requirements to
the total number of predicted impacted requirements. It evaluates the accuracy of the
model in minimizing false positives. Precision is mathematically defined as (Powers

2020):

TP
TP+FP

Precision = (35)

Where:

e True Positives (TP): Correctly predicted impacted requirements.

e False Positives (FP): Incorrectly predicted impacted requirements.

2.15.2. Recall

Recall, also known as sensitivity, quantifies the model's ability to identify all relevant
impacted requirements. It assesses the completeness of the model by minimizing false

negatives. Recall is expressed as (Powers 2020):

TP
TP+FN

Recall = (36)

Where:

e False Negatives (FN): Relevant impacted requirements that were not

predicted by the model.

2.15.3. F1 Score

The F1 Score combines precision and recall into a single metric, providing a harmonic
mean. It balances the trade-off between precision and recall, particularly useful when
both metrics are equally important. The F1 Score is given by (Powers 2020; Takahashi et

al. 2022):

F1Score = 2 * Precision .Recall (37)

recision+ Recall
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2.15.4. Mean Reciprocal Rank (MRR)

MRR evaluates the ranking quality of the first correct impacted requirement. It
measures how quickly the most relevant impacted requirement is surfaced. MRR is

calculated as (Yacouby & Axman 2020):

1
Rank;

1
MMR = -3ii_y (38)

Where:

e Rank;: Rank position of the first correct prediction for the i query.

2.15.5. Normalized Discounted Cumulative Gain (NDCG)

The NDCG measures the ranking quality of predicted impacted requirements, giving

higher weights to items ranked at the top. It is expressed as (Wang et al. 2013):

NDCG = 265 (39)
IDCG

DGG = yP_ 2ot

i=110g,(i+1) (40)

Where:

e rel;: Relevance score of the i item.

e p: Number of predicted items.

2.15.6. Partial Credit

The Partial Credit metric assigns a score to predictions that are partially correct or
closely related to the ground truth. It provides a nuanced evaluation of the model’s
performance, especially in scenarios with linguistic variability or context-dependent
predictions. A common approach is to assign a score between 0 and 1 based on the
degree of similarity or relevance between the predicted answer P and the ground truth

G (Persson 2023). One such formula is :

Similarity(P,G)

Maximum Possible Similarity

Partial Credit (PC) = (41)
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2.15.7. Precision@K and Recall@K

Precision@K and Recall@K evaluate the model's performance within the top K results.
They are particularly useful for ranking-based evaluations in scenarios with a high
number of potential matches (Liu et al. 2016; Patel, Tolias & Matas 2022). These metrics

are defined as:

Pmdgon@K==E§5 (42)
TP@K

Total Relevant Items

Recall@K = (43)

2.15.8. Mean Average Precision (MAP)

The Mean Average Precision (MAP) provides an aggregated measure of precision

across all relevant results. It is computed as (Henderson & Ferrari 2017):

_1gn 1 glRy
MAP = -

=17, 2k=1 Precision@k (44)

Where:

e N:Total number of queries.

¢ |R;|: Number of relevant items for the iii-th query.

2.16. Related Literature Reviews

In this section, we present a sample from the existing SLRs on RE that specifically focus
on ML and NLP in RE. Some of the findings in these studies are not specific to RE and

have covered studies in software engineering (e.g. Haq et al. (Haq et al. 2019)).

Sufian et al. (Sufian et al. 2019) conducted an SLR on software requirements
prioritization techniques. They reviewed 33 studies from 2009 until 2017. They have
covered 40 different requirement prioritizations techniques, among these, one tool uses
ML classification to identify requirements. Dermeval et al. (Dermeval et al. 2016)
performed a systematic review on the applications of ontologies in RE. They reviewed
67 papers from 2007 to 2013. They concluded that ontologies can potentially be used to

deal with several RE issues (e.g. integration between requirements and software
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architecture, and requirements communication). Their findings revealed that most
studies focused on textual requirements analysis, which involve the use of ML and NLP
techniques. Binkhonain et al. (Binkhonain & Zhao 2019) reviewed the literature in ML
algorithms for the identification and classification of non-functional requirements. The
study considered 24 papers from 2008 to 2019. Aguila et al. (del Aguila & del Sagrado
2016a) performed a literature review to describe the state of the art in Bayesian
networks for enhancement of RE. The authors reviewed 20 papers from 1999 to 2013.
Hag et al. (Haq et al. 2019) conducted an SLR that identified the use of the expert system
in RE process. They reviewed 22 papers from 1986 to 2019. They concluded that ML
showed significant results in supporting RE activities. At the same time with our conduct
of this mapping study, Zhao et al. (Zhao et al. 2020) have performed a systematic
mapping study on NLP for RE. The authors identified 404 relevant primary studies from
1983 to 2019 concerning the NLP technologies used in RE.

2.17. Mapping Study

Although systematic literature reviews (SLRs) of many aspects of RE have been
published in the last decade (e.g. (Ghozali et al. 2019) (Alsanoosy, Spichkova & Harland
2019) (Horkoff et al. 2019)), none of them focuses specifically on reviewing empirical
studies of ML applications in RE. We are thus motivated to conduct a mapping study to
identify, analyze and summarize the advances in the applications of ML in RE and to
identify the current state of the art. This review also allows us to identify areas that still

need more research and determine the trends of future studies.

The mapping study presented in this chapter provides a systematic and structured
review of the literature related to software requirements engineering and CIA up to the
year 2020. The primary purpose of this study is to gain a comprehensive understanding
of the existing body of work in these domains. By systematically identifying,
categorising, and analysing key research contributions, methodologies, and challenges,
the study highlights research trends, strengths, and gaps. This ensures that the current
research aligns with established knowledge while addressing overlooked challenges,

laying the foundation for the proposed research framework.
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2.17.1. Scope and Limitations

The mapping study focuses on literature published up to 2020, covering works that
explore various approaches to managing requirements changes and conducting CIA. This
includes methods involving dependency analysis, traceability techniques, and
automation through NLP and ML. However, it is important to note that newer
advancements, such as Retrieval-Augmented Generation (RAG) systems and Beir-based
approaches, are excluded as they were introduced after the defined timeframe. While
these emerging techniques offer valuable solutions, they fall beyond the scope of this

study.

2.17.2. Mapping Study Planning and Execution

To conduct our mapping study, we followed the guidelines and the procedures of the
evidence-based software engineering paradigm (Kitchenham, B., Budgen, D., & Brereton
2016). The structure of this review process included defining research questions,
conducting a search strategy, making a list of related studies, applying inclusion and
exclusion criteria, developing snowball and manual search for additional relevant

studies, executing quality assessment, data extraction, data synthesis, and analysis.

2.17.3. Search Strategy and Data Sources

Our strategy is composed of two different iterations: primary and secondary search
strategy. In the primary phase, we identified the main search terms based on our
research questions. After applying the alternative spelling and synonyms, developed
search terms were formulated by using Boolean operators (AND, OR, etc.) with search
keywords to define inclusion and exclusion criteria at the title and abstract. We
investigated the following two major terms to execute against the title and abstract for
our searching process: (1) Machine Learning, (2) Software Requirements. The below
qguery shows our identified alternative terms and their concatenation to make our

search string which we applied to the title and abstract.
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ON TITLE/ ABSTRACT: (("Machine Learning*” OR “ML*”) AND (“Software
Requirements” OR “Requirements engineering” OR “Requirements elicitation” OR
“Requirements analysis” OR “Requirements specification” OR “Requirements modeling”
OR “Requirements documentation” OR “Requirements validation” OR “Requirements

Management”))

The search string was modified to fit the format of different databases. The modified
search strings applied in the form of automatic searches of selected electronic databases
and conference proceedings including IEEE Xplore, ACM, Science Direct, SpringerLink,
ProQuest, and Scopus. To make sure that we did not miss any important and relevant
papers, we also executed our search query manually in reputable and relevant
conference proceedings, journals, and workshops websites one by one due to their
importance in the respective communities. We prepared a replication package including
the protocol and the details of search strategy and results. A list of all customized search
strings can be found online in our published replication package:

https://zenodo.org/records/5036218

2.17.4. Study Selection Criteria

In the primary stage, these inclusion criteria were applied:

Articles that are related to our research questions

Papers that are based on the empirical research method

Conference, Journal and Workshop papers
The papers with the following criteria were excluded:

e Articles that were not published in English

e Articles that are not in full text

e Articles that are reviews or secondary studies

e Reports, books, book chapters, thesis, general articles, dissertations, editorials, and
position papers

e Duplicate results with the same or similar contents from the same authors

e Articles published before 2010
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The main reason for the starting date of 2010 is that there has been a surge of
publications on ML in RE in the last decade and we were interested in more recent work.
We also reviewed random samples of relevant papers published before 2010. This

review did not have any significant impact on our findings.

In this step, we read the titles and abstracts of all studies selected in the primary
search. We excluded some papers based on the criteria. So, from 5158 papers, only 905
papers went through the secondary search step. Table 2.1 shows the number of selected
articles in the primary study before and after applying the exclusion criteria. Following
the search strategy, we conducted a manual search against the top journals of REJ
(Requirements engineering journal), ESEM (Empirical Software Engineering), TOSEM
(Software Engineering and Methodology), TSE (Transactions on Software Engineering),
ASE (Automated Software Engineering) and IST (Information and Software Technology);
as well as conferences and workshops including International requirements engineering
conference (RE), Requirements Engineering: Foundation for Software Quality (REFSQ),
International conference on software engineering (ICSE), International Workshop on
Artificial Intelligence for Requirements Engineering (AIRE), Workshop on NLP for
Requirements Engineering & NLP tool Showcase (NLP4RE) and IEEE International
Workshop on Artificial Intelligence for Requirements Engineering (AIRE) from 2010 to

April 2020. As a result, 10 new references were added to our list from these venues.

Table 2.1.The Number of Resulted Articles

Database Weblink #After Applying #Final
Selection criteria Results
ACM Digital Library http://dl.acm.org 72 11
IEEE Explore http://ieeexplore.ieee.org/Xplore 258 10
Science Direct http://www.sciencedirect.com 3 1
SpringerLink https://link.springer.com 398 3
ProQuest http://www.proquest.com 83 20
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Scopus https://www.scopus.com 78 15

Total 60

In the secondary search phase, we reviewed all the papers identified from the primary
search. If a paper was found to be relevant, the mentioned inclusion and exclusion
criteria were applied to filter out irrelevant ones. We then read complete papers to
make a final decision on their inclusion or exclusion in our mapping study. To complete
the selection task, we performed snowballing procedure developed by Wohlin (Wohlin
2014). Based on the Wohin’s guideline we applied backward snowballing iteratively. The
main purpose of this iteration procedure was to find more relevant studies to include.
To do that we explored the reference list of the selected studies in backward snowballing
and examined the title, abstract, publication venue, author information, and full text in
order to exclude papers that do not fulfill our criteria. This iteration continued until no
new studies were found. Finally, we collected 12 new studies from reference

snowballing.

2.17.5. Quality Assessment criteria

All selected articles (82 studies: 60 papers from primary search, 12 new studies from
snowballing, and 10 new papers from a manual search of journals) were assessed for
their quality to ensure that all outcomes will add a valuable contribution to our mapping
study. We assessed the quality of selected studies by following steps (Kitchenham, B.,
Budgen, D., & Brereton 2016):

Step 1: Evaluate article quality - The quality assessment checklist developed by
Kitchenham (Kitchenham, B., Budgen, D., & Brereton 2016), was independently applied
to all 82 primary studies. By applying the criteria, four articles did not pass the minimum

score of 50%, so this step resulted in 78 studies.

Step 2: Evaluate publisher quality - The quality of each publisher was assessed by ERA
(Excellence of Research in Australia) ranking of 2018. This evaluation framework is
meant to give government, industry, business, and the wider community assurance of
the excellence of research conducted in Australian higher education institutions. The
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goal of this assessment step was to generate an extensive overview of the kind and

quality of the resulting papers.

Total results: After the quality assessment, a total number of 65 papers were selected
for this mapping study. Figure 2.2 illustrates the overview of the primary studies
selection process. The full bibliography of these 65 studies can be found in our

replication package.

2.17.6. Data Extraction

To manage citations and references of outcomes, we used Mendeley as a reference

manager. The information below was collected from the results:

e Study type (journal, conference, workshop)

e Name of journal, conference, or workshop

e ERA rank of conference, journal, or workshop
e Study aims and objectives

e Title of the article

e Authors and Publisher details

e Publication year

e Full citation

e Location (the country where it is situated)
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Figure 2.2.Selection of The Primary Studies

e Research method
e How data was collected and analyzed
e The study quality assessment

e Relevance to RQ1, RQ2, RQ3 or RQ4

2.17.7. Data Synthesis and Analysis

The data synthesis is based on answering our four research questions. We conducted
thematic coding and analysis to answer our RQs (Klaus Krippendorff 2018)(Cruzes & Dyb
2011). While reading the full text of papers, the coding technique was utilized manually
to find the relevant text in 65 studies. To answer RQ1 we analyzed the findings of all
selected studies to extract their outcome of used ML algorithms. Based on the
functionality of algorithms we categorized them into different groups coming from the
relevant coded text by performing thematic coding and analysis. We extracted the list
of challenges of using ML in RE to answer RQ2 and we analyzed them based on the
groups of perspectives that we provided by the included studies. To answer RQ3 we

reviewed the selected papers to investigate the most popular dataset used in RE tasks.

57



Chapter 2

For RQ4 we extracted the information about evaluation metrics and analyzed them

according to ML tasks in RE.

2.17.8. Findings

In this section, we describe the characteristics of our 65 included studies.

Publication sources- Among the 65 included studies, 40 (61.5%) are published in
conference proceedings, 8 papers (12.5%) are published in workshop proceedings, and
the remaining 17 (26%) are journal articles. The majority of these studies are from highly
reputable outlets. All the papers included in our review were those that provided
enough info about the research method and hence rated above 50% in the quality

assessment checklist.

Publication year and study focus- Figure 2.3 presents the number of publications per

year from 2010 to April 2020.

Some of the studies did not explicitly or clearly mention their specific focus. Others
claimed that their study is useful for a special task, but we have deduced 16 different
categories for the selected studies according to their mentioned tasks and this is

presented in Table 2.2.

From Table 2.2 it can be seen that the task to which ML has been applied the most is
classification with 12 studies. It shows extra needs and attention to automate the
classification of requirements written in NL that is not straightforward in the process of
RE (Abad et al. 2017b). ML has been utilized for many classification tasks like
differentiating between users’ requirements and software requirements. Requirements
are often classified as functional (FR) and non-functional (NFR). Hence, separating and
identifying them manually in SRS documents is a time-consuming task, finding an
automated and effective approach to distinguish them has been the focus of several
studies (e.g., (Kurtanovic & Maalej 2017), (Haque, Rahman & Siddik 2019)). Out of 12
studies focused on classification tasks, classifiers used for identifying both FR and NFR
((Kurtanovic & Maalej 2017), (Deocadez, Harrison & Rodriguez 2017), (Dalpiaz,
Dell’Anna, et al. 2019), (Hague, Rahman & Siddik 2019), (Abad et al. 2017a)); to

58



automate the classification of NFRs into sub-categories of usability, availability, or
performance and to pre-process requirements that standardize and normalizes
requirements before applying classification algorithms (Abad et al. 2017a); to classify
NFRs into maintainability, operability, performance, security and usability ((De Bortoli
Favero, Casanova & Pimentel 2019); to investigate specific and relevant terms in the text
(De Bortoli Favero, Casanova & Pimentel 2019); to divide specification content elements
into requirements and non-requirements ((Winkler, Gronberg & Vogelsang 2019),
(Winkler & Vogelsang 2017)); To automate classification task using tools (Hayes, Li &
Rahimi 2014) to automate user requests in crowdsourcing RE (Li et al. 2018), and finally
boosting text classification by combining text classification algorithms with semantic

roles ((Rago, Marcos & Diaz-Pace 2018).

Our results indicate that a fair share of studies (eight studies) have been proposed to
address ambiguity. Ambiguity has often been considered a potentially harmful attribute
of requirements that leads to challenging the projects, so the primary objective of
reducing the ambiguity is having requirements with only one possible interpretation
(Boyd, Farroukh & Didar Zowghi 2005). Eight studies focused on improving the
requirements extraction task in order to develop an automated solution for requirement
analysis. Part of the works focused on the identification of efficiently and dynamically
extract and classify requirements-related knowledge properly ((Shakeri et al. 2019),
(Memon & Xiaoling 2019)), to extract requirements dependencies (Deshpande, Arora &
Ruhe 2019), domain model extraction ((Arora et al. 2019), to extract relevant non-
functional requirements (Slankas & Williams 2013), and analyzing the characteristics of
requirement expressions to divide them into system-level requirements and instance

level in pre-processing step (Chen et al. 2010).

The objective of validation was addressed in four studies by automation of fault-
consolidation step (Singh et al. 2018)) and proposing a framework to overcome
inconsistencies for the optimal definition of software development sprints (Belsis,
Koutoumanos & Sgouropoulou 2014)). The main goal of validation is to ensure that all

the documented requirements are correct, complete, and consistent, the designed
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solution meets the requirements, and a real-world solution to be built and tested to

prove that it meets the requirements (Maalem & Zarour 2016).
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Figure 2.3.Number of Resulted Articles Published Per Year

Five studies focused on quality assessment from different perspectives. (Ferrari, Gnesi
& Tolomei 2013) analyzed the structure of the document in the way it is perceived by
the reader, while (Parra et al. 2015) assessed the quality of requirements automatically
according to the quality criteria posed by the domain expert. (Tamai & Anzai 2018)
automated the process of filtering out QR statements from an SRS and classifying them
into the quality characteristic attributes as defined in the ISO/IEC 25000 quality model.
(Dargan, Wasek & Campos-Nanez 2016) defined quality factors to assess, while (Hayes
et al. 2015) addressed requirement testability for understandability and quality. Only
one study focused on each of these topics: verification, model transformation, predict
vulnerabilities, specification, and identifying business requirements while two studies

focused on security and change requests.

According to the data extraction from our set of 65 papers, in this section, we describe

our findings to answer the RQs.

Table 2.2. Study Categories

Study focus studies frequency

(Abad et al. 2017a), (Baker et al. 2019), (De Bortoli Favero, Casanova
Classification  |g pimentel 2019), (Dalpiaz, Dell’Anna, et al. 2019), (Deocadez, Harrison 12
& Rodriguez 2017), (Haque, Rahman & Siddik 2019), (Hayes, Li &
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Rahimi 2014), (Kurtanovic & Maalej 2017), (Li et al. 2018), (Rago,
Marcos & Diaz-Pace 2018), (Winkler & Vogelsang 2017), (Winkler,

Gronberg & Vogelsang 2019)

Requirements

(Shakeri et al. 2019), (Deshpande, Arora & Ruhe 2019), (Chen et al.
2010), (Memon & Xiaoling 2019), (Slankas & Williams 2013),

Extraction
(Vogelsang & Borg 2019), (Wang 2015), (Arora et al. 2019)
(Osman & Zaharin 2018), (Richa Sharma, Bhatia & Biswas 2014),
(Sharma, Sharma & Biswas 2016), (Yang et al. 2011), (Yang et al. 2010),
Ambiguity
(Dalpiaz, van der Schalk, et al. 2019), (Pal, Sandhu & Pal 2015), (Ferrari
& Esuli 2019)
Analysis/ (Wang 2016), (Knauss et al. 2015), (Abualhaija et al. 2019), (Osman
Management et al. 2019), (Wang & Zhang 2016), (Misra, Sengupta & Podder 2016)
(Sultanov & Hayes 2013), (Li et al. 2017), (Wang, Li & Yang 2019), (Li
Traceability ~ |& Huang 2018), (Mezghani & Florence 2019), (Hayes, Payne &
Leppelmeier 2019)
(Ferrari, Gnesi & Tolomei 2013), (Parra et al. 2015), (Tamai & Anzai
Quality
2018), (Dargan, Wasek & Campos-Nanez 2016), (Hayes et al. 2015)
(Nardini et al. 2012), (Singh 2018), (Singh et al. 2018), (Baker et al.
Validation

2019)

Prioritization

(Dhingra et al. 2017), (Singh & Sharma 2014), (Perini, Susi & Avesani
2013), (McZara et al. 2015)

Risk Management

(Avesani et al. 2015), (del Aguila & del Sagrado 2016b), (Yang et al.
2012)

Change requests

(Khelifa, Haoues & Sellami 2018), (Arora et al. 2015a)

Security (Malhotra et al. 2016), (Riaz et al. 2014)
Verification (Winkler, Gronberg & Vogelsang 2019)
Model

Transformation

(Chioasca 2012)
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Predict
(Imtiaz & Bhowmik 2018) 1
vulnerabilities
Specification (van Rooijen et al. 2017) 1
Identifying business| (R. Sharma, Bhatia & Biswas 2014) 1
In Total 65

e ML techniques/algorithms have been used in RE

In our analysis, we note that the words ‘technique’ and ‘algorithm’ are used
interchangeably. A total of 48 different ML algorithms were identified in our selected
studies. We classified the algorithms into eight principal groups based on their
functionality: Distance-based Methods, Regression, Decision Tree, Bayesian, Kernel
Methods, Associated Role Learning, Ensemble Methods, and Artificial Neural Networks.
We do not claim to cover all the existing methods exhaustively, rather we present those
that are more frequently utilized. Figure 2.4 shows the distribution of algorithm types
based on functional similarity. Analysis of results revealed that Kernel Methods,
Bayesian and Distance-based are the most popular categories of algorithms, as they
were used within 29 and 25 studies, Ensemble Methods is the second in the list with 23,
Decision Tree with 21 and finally Artificial Neural Networks, Regression and Associated
Role Learning with 12, 9 and 3 respectively. The distributions of each category type are
available in our replication package. Figure 2.5 presents a visualization of the data
regarding reported ML algorithms used in different studies. Support Vector Machine
(SVM) is the most frequently used algorithm that has been employed in 17 studies. The
second most used is Naive Bayes (NB), investigated in 14 papers, followed by K-Nearest
Neighbors (KNN) in 11 studies, Decision Tree, and Random Forest in 10 and 8 papers

respectively.

At least 4 studies have used the combination of different algorithms to improve the
accuracy of the results, algorithms’ strengths and overcome their limitations (e.g.,

(McZara et al. 2015), (Rago, Marcos & Diaz-Pace 2018), (Riaz et al. 2014), (Wang, Li &
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Yang 2019)). (McZara et al. 2015) presented a semi-automated approach for challenging
task of requirements prioritization in large scale projects by using NLP tools and an SMT
(Satisfiability Modulo Theories) solver. They mitigate the challenges of variation outputs
by updating the input of the SMT solver with iterative pairwise comparisons. In (Rago,
Marcos & Diaz-Pace 2018), the researchers improved the accuracy of their classifier by
combining the binary relevance and SVM. (Riaz et al. 2014) presented a tool-assisted
process, Security Discoverer (SD) by combining K-NN classifier, Sequential Minimum
Optimizer (SMO), and Naive Bayes classifiers after comparing the accuracy of other
potential classifiers. (Wang, Li & Yang 2019) proposed a hybrid approach of ML and
Logical Reasoning to improve the feature-engineering process to recover requirements
traceability recovery. 15 studies have employed several algorithms to just compare
them to determine which one outperforms the others based on the specific Dataset-Or
different datasets in their domain ((Abad et al. 2017a), (Baker et al. 2019), (Dargan,
Wasek & Campos-Nanez 2016), (Deshpande, Arora & Ruhe 2019), (Haque, Rahman &
Siddik 2019). (Imtiaz & Bhowmik 2018), (Osman & Zaharin 2018), (Parra et al. 2015),
(Riaz et al. 2014), (R. Sharma, Bhatia & Biswas 2014), (Sharma, Sharma & Biswas 2016),
(Singh 2018), (Singh et al. 2018), (Slankas & Williams 2013), (Wang & Zhang 2016)). 4
studies proposed methods or techniques by modifying either one or a mix of algorithms
to improve the accuracy of results or enhance and optimize the automated models
((Arora et al. 2019), (Li et al. 2018), (Perini, Susi & Avesani 2013), (Ferrari, Gnesi &
Tolomei 2013)).

As for classification, clustering, and regression approaches, 48 studies used just
classification, 8 studies used clustering, 3 of these 8 studies used only clustering ((Baker
et al. 2019), (Ferrari, Gnesi & Tolomei 2013), (Misra, Sengupta & Podder 2016)) while
the other 5 studies ((Richa Sharma, Bhatia & Biswas 2014), (Sharma, Sharma & Biswas
2016), (Mezghani & Florence 2019), (Abad et al. 2017a), (Winkler & Vogelsang 2017))
used the combination of clustering and classification. Five studies did not mention a
specific algorithm, the authors mentioned that they used ML techniques in some steps
of their methodology ((Chen et al. 2010), (Memon & Xiaoling 2019), (Osman et al. 2019),
(Dalpiaz, van der Schalk, et al. 2019), (Pal, Sandhu & Pal 2015)). All the 8 studies that
used Regression categories of BLR, Logistic Regression, and SGD ((Imtiaz & Bhowmik
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2018), (Osman & Zaharin 2018), (Singh et al. 2018), (Abualhaija et al. 2019), (Singh 2018),
(Arora et al. 2019), (Winkler & Vogelsang 2017), (Dargan, Wasek & Campos-Nanez

2016)), have employed them as classifiers.

From the ML perspective, the essential steps required to apply ML techniques include
(1) data collection, (2) data pre-processing, (3) building an ML model, (4) training and
testing the model, and (5) evaluation. Figure 2.6 shows the distribution of the algorithms

applied in step 3 building ML models.

In terms of using NLP algorithms in selected studies, we retrieved 40 studies that used
one or more NLP algorithms in a total of 31 different algorithms across reported studies.
The most commonly investigated NLP technique is the tokenization with part of speech
(POS) tagging with 23 studies, followed by chunking and TF- IDF with both in 7 studies.
Two papers did not mention the name of the used algorithms; only reported text-mining

techniques ((Osman & Zaharin 2018), (Deocadez, Harrison & Rodriguez 2017)).

Kernel Methods TS ) O
Bayesian I ) 5
Distance-based Methods IEEEEEE———————————— ) 5
Ensemble Methods mEEEE T  ——EEE———— )3
Decision Tree HIEEEEEEEEEEEEENNN—— )]
Others m———— 3
Artificial Neural Networks - —————— 2
Regression ———— O

Associated Role Learning w3

0 5 10 15 20 25 30 35

Figure 2.4.Distribution of Algorithm Types Based on Function Similarity

e Challenges of using ML approaches in RE

For effective use of ML capabilities in software and applications, it is very important
to identify the challenges faced in the process of designing suitable ML solutions.

Knowing the possible issues and challenges and how to address them can help the
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researchers and analysts to benefit from the usefulness of ML. As a key finding of our
analysis, the challenges extracted from selected studies were divided into six main
categories: data related, task related, algorithm related, project related, language
related, and other challenges. Figure 2.6 demonstrates the frequency of ML challenges

in the included articles.
A. Data-related:

Since many ML strategies are focused on gaining from large datasets, the success of
ML based research projects strongly relies upon data accessibility, quality, and
management (Durelli et al. 2019) (Polyzotis et al. 2017). Data related problems were
faced by 35 studies. In fact, this result was expected, since ML is a method that almost
always requires data. One of the most important barriers in this category is the lack of
data. Unfortunately, data is not free or always relevant. The availability of large datasets
and possibly, the annotated Dataset-Is reported to be a major problem ((Singh 2018).
An ML algorithm needs a large amount of data to train (Singh 2018). Specifically, deep
learning algorithms need to be trained on large amounts of data to draw meaningful
insights ((De Bortoli Favero, Casanova & Pimentel 2019)). In a more complex project,
more data is required to achieve trustable results. So, when limited datasets do not
represent all possible situations, the results are not trustable (Shakeri et al. 2019).
(Tamai & Anzai 2018) explained that the authors faced difficulty in collecting more SRS
from a variety of areas that are large enough to use deep learning. Similarly, (Osman &
Zaharin 2018) reported that the result of their study cannot be generalized to all systems
because the data used were gathered from just four SRSs that only represent several
system domains and limited patterns on requirement specification formation. The
incomplete nature of the source corpus is also the outcome of limited data which will
affect the accuracy of results (Yang et al. 2012). Imbalanced classes were mentioned in
the data scope in ML especially in the classification. It occurs in datasets with a

disproportionate ratio of observations in each class. 12 studies mentioned this problem.

The other challenges that we identified in the data category were overfitting/
underfitting (5 studies), followed by labeling issues (3 studies), dependency issues,

missing datasets, size of data set, data quality issue, all with 2 studies and the issue of
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selecting training set with 1 study. Concerning labeling issues, especially for some
techniques like neural networks that need a large amount of data to train, it is not
possible to manually check the dataset to determine labels are correct. When different
people work on an SRS, samples in the dataset may be labeled differently (Winkler,
Gronberg & Vogelsang 2019) and the important distinction between quality
requirements and constraints is not properly reflected in the labeling (Abad et al.
2017a). The issue of the missing data may arise when the data is collected from users’
feedbacks or questionnaires since some of the questions may not have been answered.
Although there are some approaches to overcome this such as approximating the null
values or calculating the maximum likelihood to minimize the error, all of them need

time and effort (Baker et al. 2019).

The main purpose of a reliable ML model is to generalize well to different domains and
new data that is evaluated for its performance over time as it is learning from training
data. An ideal model should not suffer from overfitting or underfitting. Three studies,
(Winkler, Gronberg & Vogelsang 2019), (Yang et al. 2012), and (Winkler & Vogelsang
2017) reported overfitting issues due to using a relatively small dataset. Overfitting is
the case when the model produces excellent results on the training data set but cannot
be employed on any unseen data at an acceptable accuracy level. (Rago, Marcos & Diaz-
Pace 2018), (Kurtanovic & Maalej 2017) mentioned an underfitting problem that occurs
where the model is too simplistic and has not learned enough from the training data.

For example, a model trained on fewer or unrepresentative features.
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B. Task-related

In this category, we present the challenges that are related to specific ML based tasks
such as classification or regression that were reported by 10 papers. Five studies
reported classification problems and misclassification errors for both binary and multi-
label classification ((Abualhaija et al. 2019), (Dalpiaz, Dell’Anna, et al. 2019), (del Aguila
& del Sagrado 2016b), (Wang, Li & Yang 2019), (Shakeri et al. 2019)) that involve
predicting a class label for a given set of inputs. Although solutions have been offered to
address these challenges, not all studies have utilized these solutions. Generally, the
main goal is to train a model with accuracy more than humanly possible. Since a wrong
prediction during classification (such as true-fault being classified as false-positive),
would lead to fault slippage that will propagate to later phases. It is expected that by
using ML algorithm, the highest rate of accuracy can be achieved (Singh 2018).
Misclassification may be caused by errors in the classification process of the
requirements by the experts because the classifier can learn incorrect classification and
replicate the error in the classification of new requirements ((Parra et al. 2015), (Riaz et
al. 2014)). Misclassification can also manifest itself during classifying specification
elements into requirements and non-requirements (Winkler, Gronberg & Vogelsang
2019). Even different ideas on grouping classes and naming them may cause
misclassification as noticed in (Li et al. 2018). The authors worked on the types of user
requests as classification targets. They classified user requests manually and they
mentioned that labeling a large set of data is cumbersome, so using active learning
techniques might be better. They also reported that investigating the appropriate
features to represent document items and ML algorithms to train the classifier was a big

challenge for their approach.
C. Algorithm- related

In terms of algorithm related challenges, two studies reported the black box nature of
ML classifiers like SVM or Neural networks making these algorithms difficult to
understand. To overcome this challenge (Dalpiaz, Dell’Anna, et al. 2019) employed two
interpretable tools called RuleMatrix and SkopeRules to facilitate the interpretation of

ML classifiers by extracting logical rules. RuleMatrix shows which rules are applied to
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the data by visualizing them so, it helps to understand, explore, and validate predictive
models. (van Rooijen et al. 2017) noted that although their selected method had the
black-box problem, in their case due to the lack of methods to learn more about a given
problem instance, there was no issue to select a black-box optimizer. The authors of
(Slankas & Williams 2013) reported that their proposed approach, NFR Locator, is
suitable to extract information from text documents. It is not able to extract information

from images or tables.

The structure of text documents might be classified into the NFR category, so they had
to parse the files in their native format to distinguish the structural parts such as titles,
section lists, etc. The other challenge investigated in (Ferrari, Gnesi & Tolomei 2013) is
the necessity of tuning algorithm behavior. They aimed to identify the hidden structure
of requirements documents in terms of requirements relatedness and section
independence. Sometimes, their algorithm reported dependency among sections that
were not related according to the perception of the readers. Moreover, (Chen et al.
2010) reported that although their approach in pre-processing text-based requirements
is suitable for goal-oriented requirements, it cannot be used to extract business rules.
The authors claimed that the sentence patterns that are describing business rules are
more complex than the domain sentence pattern. Regarding using the semantic role
labeling method, (Wang 2016) mentioned that the corpus for SLR tasks in SE domain is
very few, so they need to use the other domain knowledge as rules to improve the
results. (Dalpiaz, van der Schalk, et al. 2019) reported that to reach better results and
higher precision in their approach, they need to go beyond domain-independent

corpora and use domain-specific information.
D. Project-related

In this category, we present the project-specific challenges that impose a limit or
restriction or that prevent approaches from generalizability. Four studies explicitly
mentioned the need for further experiments in other domains, especially with the help
of domain experts to determine whether their approaches and tools can be generalized
((Ferrari, Gnesi & Tolomei 2013), , (Dalpiaz, van der Schalk, et al. 2019), (Knauss et al.

2015)). Moreover, proposed approaches need to be applied to different scenarios and
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multiple industry-scale projects (Baker et al. 2019). Although this leads to significant

costs, it helps to reach a full evaluation (Knauss et al. 2015).

One study (Dalpiaz, van der Schalk, et al. 2019) that focused on the expectation of
users and stakeholders mentioned that even accurate algorithms and tools need a
sufficient level of maturity. This is because any proposed tool that exhibits low usability

and contains bugs may decrease the interest in applying them in real projects.
E. Language-related

The last challenge is related to the writing of the requirements including spelling
mistakes, structural effectiveness, terminology and vocabulary, and language that have
been addressed in six articles. Automated classification of requirements into functional
requirements and non-functional requirements remains a challenge (Ernst &
Mylopoulos 2010). Stakeholders, as well as requirements engineers, use different
terminologies and sentence structures to describe the same kind of requirements. The
high level of inconsistency in documenting requirements makes automated
classification more complicated and therefore error-prone (Abad et al. 2017b).
Furthermore, the requirements reviews are written in NL that inherits the scope to
spelling mistakes (Singh et al. 2018). NL understanding relies on the specification readers
and writers using the same words for the same concept. This leads to misunderstandings
because of the ambiguity of NL that is often not discovered until later phases of the
software process and may then be very expensive to resolve. To overcome these
problems, writing effective and high-quality requirements will lead to an accurate ML
result (Singh 2018). Requirements originating from different documents may be quite
different in terms of language and terminology. In other words, documents may contain
domain-specific words which are exclusively used in that particular document (Winkler,
Gronberg & Vogelsang 2019). Moreover, variations may exist between the security
requirements of software systems, even in the same domain. Thus, the selection of
documents may influence the type and frequency of identified security-relevant
sentences (Riaz et al. 2014). Most of the ML research have used requirements that are
written in English and so there is a bias about generalizing the results to the

requirements written in other languages (Deocadez, Harrison & Rodriguez 2017). There
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are also issues related to NLP-models being more accurate and readily available for
English, as compared to other languages. In addition, investigating if a requirement is
speculative or not is not an easy task, which is due to the peripheral nature of

uncertainty language (Yang et al. 2012).
F. Other challenges

There were other challenges that we extracted from the included studies that did not
fit under the above main five categories. For example, since requirements often change
over time, another challenge is the stability of requirements. Clients might modify
requirements, so fluidity in software requirements becomes a major problem (McZara
et al. 2015). Although this is a common problem in RE, when the ML technique is used
in this process, it becomes a more significant challenge because the model needs to be
trained again when the requirements change. Besides, this will be an issue if the labeling

changes with changes in requirements.

Negotiation barriers between the client and business analyst or developer on different
grounds such as language, not using consistent terms, and making assumptions about
ambiguous requirements is another major challenge that exists in RE tasks (Parra et al.

2015).

e |dentification of datasets used for ML in RE

Investigating the applied datasets and their associated properties allows us to
determine to what extent we can rely on the performance results, and it can provide

new insights into why some ML techniques may outperform others.

As discussed above, the top challenge in implementing ML techniques in RE is related
to datasets. Since ML algorithms are quantitative, the success of ML related research
projects strongly depends on having a large enough dataset (Ferrari, Spagnolo & Gnesi
2017). Many different datasets have been used in the included studies. The terminology

used by the authors to describe the type of documents involved in the research were of
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varying degrees of abstraction and level of details, e.g., requirements documents,
requirements specification, textual requirements, operational requirements, SRSs
documents, system-related documents, user requirements, high-level requirements,
and low-level requirements. Some studies used real-world datasets while others used

sample data that are shared in open-source repositories to use by researchers.

To answer this research question, we looked at the frequency of datasets, the type of

data, their organization, and the number of requirements statements in each study.

According to the results, 10 studies did not report any information about their
dataset. The number of used datasets varied from 1 to 22. Out of the remaining 54
studies, 22 studies used just one unique dataset, while the biggest number of datasets
belongs to (Hayes, Li & Rahimi 2014) by 22 different datasets with a total of 2067 user
stories. The reason why they selected 22 datasets was that their research was based on
their previous paper that used a single dataset, so they were motivated to increase the
number of datasets to get more in-depth results and to increase generalizability. The
second largest is for (Tamai & Anzai 2018) by 13 datasets from local governments or
other public institutions of industry, medical information, education, library, etc. in
Japan totaling 11,538 requirements sentences. The trend of frequency was followed by
nine and eight datasets that were used in (De Bortoli FAvero, Casanova & Pimentel 2019)
and (Dalpiaz, Dell’Anna, et al. 2019) respectively. The textual requirements in (De
Bortoli Favero, Casanova & Pimentel 2019) were collected from 16 large open-source
projects in repositories that contained 23,313 user stories. In (Dalpiaz, Dell’Anna, et al.
2019), data was gathered from eight datasets of PROMISE, ESA Euclid, Dronology,
ReqView, and Leeds University’s Library online management system, Web Architectures
for Services Platforms (WASP) application and two private datasets of Helpdesk system
and bespoke user account request and management application (User mgmt.). A
considerable number of datasets in this review were reported by (Deocadez, Harrison &
Rodriguez 2017) about user reviews. The authors collected data from the App Store in
2015. Since they considered the top paid and free apps from different categories of

books, education, games, health, lifestyle, navigation, news, productivity, travel, and
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utilities, they reached 40 apps with a total of 932,388 reviews. The remaining pairs of

studies (16 studies) considered three datasets or fewer.

As for the frequency, we observed that the most frequently used Dataset-Is PROMISE1
that is an open-source Software Engineering Repository that includes a collection of
publicly available datasets and tools for researchers ((Shakeri et al. 2019), (Slankas &
Williams 2013), (Malhotra et al. 2016), (Khelifa, Haoues & Sellami 2018), (Abad et al.
2017a), (Baker et al. 2019), (Dalpiaz, Dell’Anna, et al. 2019), (Haque, Rahman & Siddik
2019)). It was inspired by the UCI Machine Learning Repository, which has been
extensively used by researchers in that field. The second frequently utilized Dataset-Is
Pine by 3 studies ((Sultanov & Hayes 2013), (Li et al. 2017), (Li & Huang 2018)) followed
with NASA CM-1 by 2 studies ((Sultanov & Hayes 2013), (del Aguila & del Sagrado
2016b)). Pine is a text-based email system developed by the University of Washington
that includes true links, high-level and low-level requirements (Sultanov & Hayes 2013).
NASA MDP repository includes different datasets which CM1SUB project that concerns
a scientific instrument to be carried on-board a satellite was addressed in our selected

studies.

When extracting data about the types of documents that were used as a data source
for studies, we observed that they include functional requirements, non-functional
requirements, high level, and low-level requirements, Operational Test Reports, user
stories, Wikipedia Pages, design documents, textual use cases, code modules (classes),

correct links, user comments (reviews), user requests and change requests.

Regarding the domain of datasets, healthcare and medical data were used as a data
source by 10 studies. Some of these datasets are open source while the others are
private. (Slankas & Williams 2013) reported the use of OpenEMR2 that is one of the
popular open-source electronic health records and medical practice management

solutions. The other healthcare repository is iTrust that was used by (Slankas & Williams

1 http://promise.site.uottawa.ca/SERepository/

2 https://www.open-emr.org/
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2013), is a medical application that maintains patient medical history and records and
permits communication with doctors. It consists of 59 use cases and 11 code modules.

It was written in Java.

Industrial data was utilized by 10 studies. Nine studies built their requirements corpus
by collecting data from academics and educational domains. Our results indicate that
twenty of the studies concerned external corpus as an external reference for the English
language for NLP. The most frequently used external corpus is Wordnet3 by 11 studies.
The next most used corpus is Wikipedia pages that were utilized in six studies. BNC164
(British National Corpus) was used by two while VerbNet was used by one study.
Concerning the language of datasets, all are in English except for (Wang, Li & Yang 2019)
and (Tamai & Anzai 2018). eTour dataset that was used by (Wang, Li & Yang 2019) is in
Italian. It is an electronic touristic guide developed by students in Italy that contain 58
use cases, 174 classes, and 366 correct links. In (Tamai & Anzai 2018) all 13 SRSs that

contained 11,538 requirements sentences were in Japanese.

Since the size of datasets was not reported in all studies, we must categorize them
according to the number of documents or sentences as small, medium, and large size.
We considered datasets more than 20,000 samples as large, between 1000 and 20,000
as medium, and less than 1000 as small. The largest dataset used by (Deocadez, Harrison
& Rodriguez 2017) is 932,388 user reviews carried out of 40 different apps from the app
store. The other significant size belongs to (Winkler, Gronberg & Vogelsang 2019)
dataset that includes 35000 pre-labeled content elements (20000 requirements and
15000 non-requirements). The second largest utilized one is for (Winkler, Gronberg &
Vogelsang 2019) and (De Bortoli Favero, Casanova & Pimentel 2019) by 27,000
requirements from an automotive domain and 23,313 user stories from 16 large open-
source projects in 9 repositories respectively. Out of the 54 datasets, 11 datasets were

of unknown size, 22 (about 50 percent) were small and 4 datasets were considered large.

3 https://dumps.wikimedia.org/enwiki/

4 http://www.natcorp.ox.ac.uk/
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2.17.9. Evaluation metrics for ML approaches in RE

Evaluation metrics play a critical role in achieving the optimal ML model by qualifying
its performance (B.Hossin & Sulaiman 2015). Since the performance of ML algorithms
may be affected by tasks and domains, the evaluation metric has been employed to
decide on which technique is the best match by comparing different techniques offline.
It should be noted that selecting an incorrect evaluation metric can lead to select an
unmatched algorithm so, the selection of a suitable metric is an essential part of any
project to discover whether or not the performance is effective. (Gunawardana 2009).
Performance evaluation is tricky for many NLP tasks since there is not easily agreeable
“ground truth” or “gold standard”. Proper performance evaluation is the subject of
much community discussion and even a research topic in its own right. Understanding
the proper performance evaluation and performance metrics is very important to make

informed business decisions.

Out of 65 selected studies, 42 articles used evaluation metrics to determine the
performance of the used algorithms or to investigate which algorithm outperformed the
others in terms of accuracy. We categorized the evaluation metrics employed by the
selected studies into three categories of use for classification, clustering, and regression.
Concerning classification tasks, precision and recall are the most used metrics employed
by 38 studies followed by F1-measure by 29 and Accuracy by 15 studies. Requirements
engineering has adopted information retrieval metrics including precision, recall, and
the F-measure, to assess the effectiveness of any techniques or tools as well as using
them to develop applications for RE tasks (Berry et al. 2017). For imbalanced
classification when recall and precision are not equally important, a weighted F-measure
called FB-measure can be used. The result shows that only one study (Winkler, Gronberg
& Vogelsang 2019) used both of them to evaluate and optimize their classification tools.
The authors tried to carry out a reasonable value for B and to tune the tool by this value.
In NLP tools, recall is going to be more important than precision so tool assistance in the

RE should be evaluated by a weighted F-measure (Berry et al. 2017).

In terms of validation, some authors, such as (Osman & Zaharin 2018), (Yang et al.

2010), (Abad et al. 2017a), (Winkler, Gronberg & Vogelsang 2019), (Deshpande, Arora &
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Ruhe 2019), (Sharma, Sharma & Biswas 2016), (Abualhaija et al. 2019), (Dalpiaz,
Dell’Anna, et al. 2019), (R. Sharma, Bhatia & Biswas 2014), (Li et al. 2017) (10 studies)
employed K-fold cross-validation to assess how the classifier will generalize to an
independent data set that is used to determine the performance of the predictive model
to check whether a model is overfitting. The main goal of validation in classification tasks
is to determine how well the classifier will perform on unseen data (Williams, Zander &
Armitage 2006). Even though 37 studies used precision and 15 used accuracy to
discriminate the optimal solution especially for their classifiers, prior studies were
concerned about using popular metrics. Hossin et al. (B.Hossin & Sulaiman 2015)
explained that accuracy still has several instabilities which are less distinctiveness, less
discriminability, less informative, and bias to majority class data. Menzies et al. (Menzies
et al. 2008) argued that accuracy and precision are poor indicators of performance for
data where the target class is so rare. Figure 2.7 shows the distribution of evaluation
metrics for the classification task. Only 10 different metrics were reported to evaluate
the quality of the clustering. Figure 2.8 illustrates the distribution of evaluation metrics

for the clustering task.

2.17.10. Discussion

The results presented from this mapping study reveal that many different ML
algorithms have been applied to RE tasks to improve accuracy and to automate, among

other goals.

Our analysis shows that we currently do not have any standards or guidelines to help
analysts select the most suitable ML and NLP techniques. Furthermore, it appears that
most studies combine various ML techniques in their research to tackle the existing
challenges. However, hardly any of them explain the reason for choosing their selected
ML algorithms. We believe that it is not clear what kinds of selection criteria have been
applied or need to be considered. In addition, two papers discussed steps such as
hyperparameter optimization, and feature engineering. This also shows that we do not

have a standard template for applying ML on RE problems.
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By taking a closer look at the reported datasets and repositories, our concern is how
do we decide which Dataset-Is the best match for any ML model? Does the size of the
dataset matter? It is not clear when selecting a Dataset-What sort of criteria should be
applied. We could not find any quantitative or qualitative checklist to assess the selected
datasets. There is no consensus on standard guidelines in the literature for deciding on
the choice of dataset. Some studies reported that their results cannot be generalized
because their approach needs to be tested on larger scenarios and need to be applied
in other domains to improve the results. It is not clear if there is any relationship
between the size of the datasets and the specific domain for their application. We

believe that these concerns and questions need further research.
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2.17.11. Emerging Trends and Future Directions

While our systematic mapping study focuses on literature up to 2020, the past few
years have seen rapid advances in large language models (LLMs) that open new
opportunities for CIA. State-of-the-art models such as GPT-4, LLaMA, and PalLM
demonstrate remarkable capabilities in understanding complex, domain-specific text
and synthesizing context-rich responses. Future research should explore fine-tuning
these LLMs on requirements-engineering corpora, as well as hybridizing them with
knowledge-graph and ontology embedding techniques to capture both procedural and
semantic dependencies. Incorporating such recent LLMs could yield more accurate
impact predictions and enable zero- or few-shot adaptation to novel project artifacts,
thereby extending the dynamic adaptability of our framework beyond the 2010-2020

window.

Moreover, retrieval-augmented generation (RAG) offers a powerful synergy for CIA
tasks. By first retrieving semantically relevant passages, anchored in a structured index
of requirements, design documents, and change-request metadata, and then
conditioning an LLM on these contextual snippets, RAG dynamically adapts its
generation to the precise project context. This two-stage loop not only grounds
predictions in verifiable sources (improving explainability) but also enables the model to
update its “knowledge” in real time as new artefacts are added. Empirically, we
anticipate this will reduce false positives in impact candidates and enhance resilience to
evolving terminology and process changes—key challenges identified in our mapping

study.

2.17.12. Threats to validity

The main validity threat for this mapping study is data collection. Although we chose
our search string carefully and carried out a structured and detailed review of each of
the selected studies, there is a chance that our collection is not complete because of the
risk of not including all relevant studies. Some of the papers may have been written in
another language or maybe not be available online. Therefore, we might have missed
some significant research papers. The other validity threat is related to data extraction

78



because some primary studies did not report a precise explanation of their focus, their
used methods, and data sources. In terms of ML challenges, we observed a lack of a
clear definition of how they tackled the existing challenges. Consequently, this imitation
might affect our outcomes. A possible limitation of our mapping study is related to the
starting date of 2010. The main reason was to investigate the most recent ML for RE
methods and algorithms. To ensure that all relevant studies were located, we manually
applied our search string to some of the data sources before 2010 randomly and the

number of papers found was insignificant.

2.18. Summary

This mapping study has provided an overview of the existing approaches in ML used
for tasks in the RE process. We have presented the results from the analysis of 65
empirical studies published from 2010 to April 2020. The key findings of this mapping
study indicate that there are at least two main gaps in literature, one is about selection
criteria for ML techniques and the other is that more research is needed to investigate
the relevance and appropriateness of datasets for the ML models. Another possibility is
an online repository of ML features engineered in different classification approaches.
This will probably be saturated at some point if the classification task is directly on the
requirements statements or attributes related to SRS. Having such a feature repository

will also guide future research on ML for RE.

In order to attain a detailed overview of the current state of using the proper dataset
to obtain a reliable result, complete criteria need to be developed to assess which
Dataset-Is the best match for which models. It would be beneficial to investigate how
we can decide on the relevance of the dataset to our ML algorithms. Typically, today's
software applications work in a competitive environment where business priorities
frequently change. Therefore, software requirements are constantly evolving, and new
requirements often emerge. The ability to analyze a change in requirements, predict its
progression, and determine the effect early in the design process would enable
engineers to make better decisions about the implementation of changes, especially in

large scale projects. What is important to note here is that CIA has not been the direct
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focus of any ML for RE studies and it is the missing piece in the research literature.
Besides, not enough research has been carried out in prediction modeling in RE and it is
an area that is under-explored. In parallel with our mapping study, another study has
been conducted as a systematic mapping study by L. Zhao et al. (Zhao et al. 2020) about
NLP for RE that surveys the landscape of NLP for RE research to understand the state of
the art and identify open problems. This study strengthens some of our findings but
differs from our review on one point. Their mapping study only focuses on NLP while
our work is about ML in RE. Since ML is a generic term that may also include NLP and
deep learning techniques, there are clearly some overlaps between their selected
studies and ours, but we compared, we noted that 46 studies that were included in our

mapping study were not on their list of selected studies (Zhao et al. 2020).
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Chapter 3.
Software Requirements Change Impact Analysis

(SRCIA) Framework

3.1. Introduction

In this chapter, the SRCIA (Software Requirement Change Impact Analysis) framework
developed for this research is outlined, focusing on the systematic integration of
traditional ML, NLP, Beir and RAG models. These models work together to address the
challenges associated with CIA in software requirements engineering (SRE). The

challenges are specified in chapter 2 section 2.5.

The data sets used in this research are also introduced in this chapter, as they form
the foundation upon which all models and approaches are applied. By consolidating the
core framework and the data in one place, this chapter provides the essential

groundwork that will be referenced throughout the rest of this thesis.

The research is structured in a way that builds upon the lessons learned from earlier
stages, gradually advancing toward more sophisticated solutions. This incremental
approach ensures that each solution is tested and validated against real-world datasets,

ultimately leading to a comprehensive, adaptable framework for CIA.
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3.2. SRCIA Framework

The framework proposed in this research is designed to automate and improve the
prediction of software requirements changes' impact. This architecture integrates
multiple stages of the CIA process, enabling a flexible and modular approach to its

implementation.

Figure 3.1 illustrates the visual representation of the comprehensive workflow of the
SRCIA framework, detailing the process from initial data collection and preprocessing of
requirements documents and change requests, through the preparation of datasets, to
the ultimate evaluation of impacted requirements within the SRCIA process, culminating

in an approval or disapproval decision

SRCIA Framework
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Figure 3.1.Software Requirements Change Impact Analysis (SRCIA) Framework

Figure 3.2 illustrates a more granular look into the internal structure of the proposed
framework, from data input to model output, highlighting the interplay between the
different components of the framework corresponding to each CIA stage. This flowchart
provides a visual guide to the system's architecture and how each stage contributes to
overall functionality. At its core, the SRCIA framework employs multiple stages of
analysis, incorporating traditional ML models, advanced NLP techniques, and the latest
developments in LLMs to ensure the system can handle a wide range of use cases, from

basic change impact predictions to more complex, context-aware scenarios.
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The data flows through the following components:
1. Data Collection

The first phase of the framework involves gathering data from diverse sources,
including project specifications, requirements documents, change logs, and historical

project data.
2. Preprocessing Pipeline

The collected data is then preprocessed using NLP techniques to standardize and

cleanse the text, ensuring that it is ready for further analysis.

3. Change Impact Analysis

The framework incorporates ML model, a dual-model of NLP and Beir benchmark-
based solution and a RAG model (that uses the advanced text generation abilities of

LLMs) to predict changes.
4. Output

The core function of the framework is to predict which requirements will be impacted
by a given change. It returns the most likely affected requirements. These results are

then ranked based on the predicted severity of impact.

Proposed Framework for CIA
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Figure 3.2.Detailed View of SRCIA Framework
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5. Feedback Loop and Continuous Learning

A key feature of the framework is its feedback mechanism, which allows users (such
as software engineers) to provide input on the framework’s output. This feedback is
used to improve the accuracy of future analysis, ensuring that the system remains
relevant as requirements and project contexts evolve. This modular architecture
ensures that the framework is adaptable and scalable, allowing for the integration of

new techniques as they emerge in the field.

3.3. The Al models incorporated in the proposed SRCIA Framework

The research outlined in this thesis followed a structured, multi-stage approach, each
stage building upon the previous one to develop a comprehensive framework for

effective CIA in software requirements engineering.

In this research, a comparative evaluation of all the implemented solutions was
conducted. The traditional ML methods, the integrated NLP and BEIR-based solutions,
and the RAG model were all assessed based on their effectiveness, precision, and overall
performance in predicting change impacts. The results of these evaluations provided
valuable insights into the relative strengths and weaknesses of each approach,
ultimately informing recommendations for best practices in CIA for future research and

practical application in software development projects.
e Traditional ML Approaches

Traditional ML models were applied to establish a baseline for predicting a baseline
for predicting the impact of software requirement changes. These models focus on
structured datasets where explicit patterns and dependencies can be identified and
analyzed. In this framework, ML models are implemented by transforming textual
requirements data into numerical features using methods such as TF-IDF and
dependency analysis. The resulting feature sets allow the models to interpret

relationships and dependencies between requirements effectively.

Algorithms such as Random Forest, Support Vector Machines (SVM), and Decision

Trees are employed to predict which requirements are likely to be impacted by a given

84



change. These models are trained using historical data on requirement changes and
their corresponding impacts. Evaluation metrics, including precision, recall, F1-score,
and accuracy, are used to assess model performance. Traditional ML models proved
effective in scenarios where datasets were structured and of moderate complexity,
particularly when clear dependency patterns were present. For example, Random Forest
demonstrated strong predictive performance in datasets with hierarchical relationships

among requirements.

These models are particularly effective for structured datasets, where explicit patterns
and dependencies can be identified and analyzed. Such datasets typically contain well-
organized information, such as dependency mappings or metadata related to

requirement changes.
¢ Integration of NLP and BEIR Benchmark-Based Solutions

Building on the foundation established by traditional ML models, the following
component of the framework integrates NLP techniques and BEIR benchmark-based
solutions. This approach enhances the semantic understanding and precision of CIA by

leveraging advanced linguistic and retrieval methods.

NLP techniques are applied to extract meaningful linguistic features from
requirements, such as dependency parsing and named entity recognition (NER). These
features are processed further using BEIR solutions, which include BM25 for lexical
retrieval and dense retrieval models, such as Bi-Encoders and Cross-Encoders, for re-
ranking results. By combining lexical and semantic retrieval methods, this phase enables

the framework to rank impacted requirements with higher relevance and accuracy.

This integration is particularly effective for unstructured textual or semi-structured
textual datasets, where relationships between requirements are complex and require
nuanced semantic analysis. The evaluation of this phase uses metrics such as Mean
Reciprocal Rank (MRR) and Normalized Discounted Cumulative Gain (nDCG) to measure

the retrieval performance.
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e Incorporation of Large Language Models (LLM) and Retrieval-Augmented

Generation (RAG)

The advanced layer of the SRCIA framework embraces recent advancements in Al by
incorporating LLMs through a RAG approach. This stage combines retrieval-based
methods with the generative capabilities of LLMs, resulting in a highly adaptable and

sophisticated solution for predicting change impacts.

In this phase, vector embeddings generated by LLMs are used to retrieve contextually
relevant data from the requirements repository. The retrieved information is then
processed by the generative component of the RAG model to predict the most likely

impacted requirements, along with explanations or contextual insights.

This approach is particularly effective for large-scale, dynamic, and heterogeneous
datasets, where the complexity of changes demands both retrieval precision and
generative reasoning. Metrics such as BLEU scores and ROUGE scores are used to

evaluate the quality of the generated outputs.

3.4. Novelty of SRCIA

While earlier approaches such as (Arora et al. 2015a) NLP-driven traceability strategy
focused primarily on extracting term correlations or rule-based dependencies between
changed and impacted requirements, the SRCIA framework introduces three key

innovations:

e Predictive Impact Modeling

Rather than stopping at trace link discovery, SRCIA incorporates supervised ML
classifiers to forecast which requirements will change in response to a given request.
This moves beyond binary link detection to quantitative impact prediction, enabling

proactive resource planning.
e Hybrid IR-Generative Loop

Existing methods (e.g., pure BEIR pipelines) retrieve relevant passages but do not

synthesize them. SRCIA’s RAG component both retrieves semantically anchored
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snippets and conditionally generates impact narratives, then re-scores and refines those
narratives in a second pass. This iterative synergy vyields higher precision and

explainability than one-shot retrieval or static generation alone.
e Dynamic Domain Adaptation

Unlike static tailoring approaches, where traceability rules or model parameters are
handcrafted per domain, SRCIA uses transfer learning and domain-tuned prompt
engineering (Phi 3.5) to automatically adapt to new project vocabularies and artifact
structures. This reduces the manual effort of creating bespoke pipelines for each domain

benchmark.

By integrating these elements, SRCIA goes well beyond previous traceability-only or
retrieval-only architectures, offering a unified, adaptive, and predictive solution for CIA

in live software projects.

3.5. Datasets Description

When choosing the datasets for this study, two crucial criteria were established. The
first criterion involves using datasets sourced from varied domains. We sought to avoid
the repeated benchmark bias noted in peer research (Arora et al. 2015a;
Tantithamthavorn, Hassan & Matsumoto 2018), by surveying a wide variety of public
corpora such as PROMISE, Pine, NASA CM-1, PURE, and others. Although theses
established benchmarks have proven valuable for traceability and evolution studies,
they exhibit two key limitations for CIA research: (1) they focus primarily on code or API-
level changes rather than end-to-end requirement—change interactions, and (2) they

often lack rich, real-world change-request metadata needed for impact prediction.

Second, to ensure practical relevance and real-world applicability, we deliberately
selected only industry-sourced SRS and software change notification datasets,
containing authentic requirement statements and change requests from live projects to

overview the changes that may happen during the time.

The raw data were taken from three industrial datasets described below for this study.

Table 3.1 shows detailed information about data input from three industry partners.
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e Dataset 1: WASP (Web Architectures for Services Platforms) dataset (Arora et al.
20154, 2015b). More information about the requirements and the change scenarios

can be found at this link: https://sites.google.com/site/svvnarcia/.

e Dataset 2: A larger real-world dataset from one telecommunication project
containing requirements statements and change requests.
e Dataset 3: A real-world dataset from one industry partner, including requirements

statements and change requests.

Our chosen datasets offer domain diversity, WASP covers web-service platforms, the
Telecom dataset spans large-scale network rollouts, and the industry dataset captures
enterprise application evolution. | addition, each contains both formal SRS entries and
authentic change-request forms with timestamps, authorship, and rationale fields,
unlike PURE’s synthetic or narrowly scoped logs. Dataset 3 includes recently collected
change requests from a live system, something neither PURE nor CM-1 provide—

allowing us to evaluate our SRCIA framework on contemporary engineering practices.

3.6. Data Collection Procedure

For this study, the focus was on obtaining and demarcating a large set of data from
various domains to develop, train, and assess the model. Data from real-world projects
needed to be collected, with at least one expert per project to help interpret and correct
the data. Consequently, three industry projects from web service, telecommunications,
and satellite organizations were chosen. The collected requirements statements and
change requests were formatted as PDF and Excel worksheets, with links to their

embedded word documents containing change information and details.

Table 3.1 illustrates the industry contribution from our industry partners. A total of
891 requirements statements and 77 change requests were collected during the data

collection procedure and were input into our approach.
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Table 3.1. The number of data input from three industry partners

# Dataset Domain # Requirements Statement # Change request

1 Dataset-W Web Service 72 28

2 Dataset-O = Telecommunications 626 34

3 Dataset-I Satellite 193 15
Total 891 77

3.7. Data Annotation & Quality Verification

A total of 891 requirements statements and 77 change requests were collected from
three industrial datasets spanning diverse domains. These datasets were manually
labeled in a collaborative effort between the authors and our industry partners, with
domain experts, each possessing extensive experience in requirements engineering and
change management, performing the initial annotations to ensure that all labels were

both accurate and contextually relevant.

To minimize subjectivity and guard against annotation bias, each change request was
independently annotated by two different experts. We tracked inter-annotator
agreement using Cohen’s k and set a threshold of k > 0.75 for acceptable consistency;
any annotation batches that fell below this threshold were re-examined and re-
annotated after further refinement of our criteria. We developed explicit annotation
criteria defining how to link change requests to impacted requirements by identifying
shared domain entities (e.g., RequirementsiD or ChangelD), semantic overlaps in
phrasing (e.g., “encrypt data” versus “data encryption”), and procedural dependencies
(e.g., authentication workflows). These criteria served as the constant reference point

for all annotators.

Where discrepancies did arise, they were resolved in structured consensus workshops.
In these sessions, the two initial annotators presented their reasoning alongside a third

senior reviewer, who facilitated discussion of each divergent case until a unanimous
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decision was reached. This format ensured that all edge cases received thorough

consideration and that consensus decisions were documented for future reference.

Once consensus was achieved, the fully annotated datasets underwent a final
validation step conducted by senior experts from both the research team and our
industry partners. These validators reviewed the agreed annotations to catch any
remaining inconsistencies or errors, providing an additional safeguard against

confirmation bias and further enhancing the reliability of our ground truth.

By combining dual independent annotation, statistical agreement monitoring,
structured consensus meetings, comprehensive guidelines, and senior-level validation,
we established a rigorous, multi-layered process that delivers a high-quality, bias-

resilient dataset for evaluating the SRCIA framework.

3.8. Data Preparation

The input of the solution is a change request, which includes sections such as id, title,
description, type, and the rationale (reason) for the change. To prepare the dataset, NLP
techniques were applied to collect the raw data from the requirements statements and
change request forms. First, the text of the title and the description were cleaned to
remove inconsistencies and ensure accuracy. This step involved normalization,
deduplication, and standardization of the data. Then, the cleaned textual data was
tokenized using standard NLP techniques to collect all the tokens (words). The tokens
were then normalized using stemming and lemmatization. Additionally, casing and
acronyms were normalized. All extracted tokens were transformed into features as

inputs for the model. The details are explained in the implementation section.

Therefore, to ready the data for classification in this pre-processing pipeline, the CSV
files of requirements statements and change requests were cleaned, tokenized, stop
words and punctuation removed, texts stemmed by PorterStemmer, and lemmatized by

WordNetLemmatizer, all with Python codes and libraries.
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3.9. Implementation

All solutions proposed in this research were implemented using Python, leveraging its
robust libraries and frameworks suitable for NLP, ML, and data analysis. Python's
versatility and wide range of tools enabled the effective development and evaluation of

the proposed models and methodologies.

A comprehensive replication package was prepared and shared publicly on Zenodo,
providing the complete Python codes, detailed requirements statements, change
scenarios, and the corresponding results. This package was designed to facilitate the
replication of the experiments conducted in this research, ensuring transparency and

reproducibility.

The replication package, encompassing all relevant materials, is available on Zenodo

at the following link: https://zenodo.org/records/14568906. By making this package

accessible, the research invites further exploration and validation of the findings by the

broader academic and professional communities.

3.10. Summary

This chapter introduced the Software Requirements Change Impact Analysis (SRCIA)
Framework, a comprehensive approach to predicting the impact of software
requirement changes. The framework integrates ML, NLP, BEIR, and RAG models to
address challenges in requirements engineering, leveraging structured, semi-structured,
and unstructured datasets collected from industry partners. The chapter outlines the
modular architecture of the framework, emphasizing its adaptability, scalability, and
feedback loop for continuous improvement. It details the data collection, quality
verification, and preparation processes, ensuring robust and high-quality datasets for
implementation. The SRCIA framework’s stages, from traditional ML approaches to
advanced LLM-based solutions, highlight its ability to address varying complexities in
requirements change scenarios. Finally, the chapter underscores transparency and
reproducibility by providing a public replication package for further exploration of the

research findings.
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Chapter 4.
Machine Learning Algorithms for Software

Requirements Change Impact Prediction

4.1. Introduction

This chapter focuses on implementing the traditional ML approach introduced as the
first component of the SRCIA framework in Chapter 3. As outlined in the framework,
traditional ML techniques serve as the foundational layer for predicting the impact of
software requirement changes, particularly for structured datasets where explicit
patterns and dependencies can be identified and analyzed. This chapter builds on the
theoretical groundwork presented in Chapter 3 by applying and evaluating traditional
ML models to demonstrate their practical application and effectiveness in supporting
requirements analysts during CIA. In requirements engineering (RE), ML techniques can
streamline labor-intensive processes, enabling analysts to focus on tasks requiring
domain expertise. The traditional ML models incorporated in the SRCIA framework aim
to automate the identification of impacted requirements by predicting how changes

propagate throughout a system.

Informed by the systematic literature review detailed in Chapter 2, this chapter
addresses the gap in research regarding predictive models for CIA in RE. Unlike existing
approaches that focus broadly on requirements traceability or ambiguity resolution, the
traditional ML methods implemented here are specifically designed to predict the
impact of a given change on existing requirements. This approach aligns with the SRCIA

framework’s goal of creating a modular and scalable solution for CIA.
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ML has been successfully employed in various software engineering (SE) tasks, such as
requirements traceability and classification (Dalpiaz, Dell’Anna, et al. 2019; Li & Huang
2018), ambiguity management(Yang et al. 2011), test case generation (Ali et al. 2010),
prediction of code changes (Giger, Pinzger & Gall 2012), and software effort estimation

(Basri et al. 2016).

To achieve this, we develop five alternative solutions using supervised ML approaches,
including Random Forest, Support Vector Machines (SVM), and Decision Trees. These
models are trained and evaluated on three real-world datasets containing 891
requirements and 77 change requests. By implementing these models, this chapter
validates the effectiveness of traditional ML techniques as described in Chapter 3.
Comparisons are also drawn with manual approaches, such as keyword-based analysis
of specification documents, to highlight the advantages of ML-based methods in terms

of accuracy and efficiency.

This chapter represents a key step in the realization of the SRCIA framework by
operationalizing its traditional ML component. The results presented here serve as the
foundation for subsequent chapters, which explore the integration of more advanced

techniques, such as NLP and LLMs, in the framework.

4.2. Technical Approach and Implementation

ClA in requirements engineering involves predicting the impact of changes to software
requirements. This can be framed as a classification problem where each requirement
change request is classified as either having an impact (class 1) or not having an impact
(class 0) on other requirements. By transforming the problem into a classification task,
ML algorithms can be leveraged to predict the likelihood of changes affecting other

requirements, thereby automating the CIA process.

The ML approach is summarized in Figure 4.1 and includes five different techniques of
ML to develop an automated approach to analyze the requirements change impact and
develop a requirement change impact prediction model. Requirements often manifest

as textual artifacts represented through models, mathematical specifications, and
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similar forms. The research focuses specifically on natural language (NL) requirements,

excluding models or requirements articulated in formal languages.

The initial phase involves preparing this dataset through text cleansing and pre-
processing using NLP techniques, thus converting the data into a format conducive to
subsequent computational analysis. Subsequently, an NLP pipeline is applied to pre-
process all requirements documents and change requests, capturing semantic,
syntactic, and contextual similarities and connections between terms, thereby
producing annotated (labeled) data integrated into the dataset as metadata. These
established relationships are utilized in training a ML algorithm to discern dependencies
between requirements. Ultimately, the algorithm generates a list of affected
requirements based on the likelihood of each requirement being impacted by a

requested change.

This list is ordered from the most to the least affected, aiding analysts in decision-
making, whether to accept or decline a proposed change. The trained ML algorithm can
potentially furnish a predictive model for anticipating the impact of forthcoming change
requests. Additionally, the system accommodates user input (‘approve' or 'disapprove')
for a given change, enabling the model to learn from human decisions, thus maintaining

a human-involved approach in the process.

Apply
Oversampling
Methods
Preprocessed Ancotated Feature Machine learning Predictive Model
Data Input Data Engineering Algorithm Candidates

Most Efficient
Model Selection

Impacted

Requirements

Figure 4.1.ML Model Approach
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4.3. Sequential Steps of the ML Approach

Step 1: Data Collection and Pre-processing

The initial phase involves collecting and pre-processing historical data on software
requirements and change requests. Inputs for this phase include requirements
documents and change requests. Raw data is collected from various sources, including
requirement specifications, change logs, and impact reports. The pre-processing phase
involves text cleansing and normalization using NLP techniques. This step includes
removing noise such as stop words and punctuation, handling missing values, and
performing initial feature extraction. These pre-processing activities convert the raw

data into a structured format that is suitable for computational analysis.

Additionally, the pre-processing phase handles data quality issues by addressing
inconsistencies and ensuring the data is complete and accurate. This phase is crucial for
creating a reliable dataset that can be used for further analysis. The output of this phase
is a clean and pre-processed dataset that provides a solid foundation for subsequent

analytical steps.
Step 2: Database Preparation

Following data pre-processing, the cleaned data is organized into a structured
database. This database serves as the input for the subsequent pre-processing pipeline,
which performs more advanced NLP tasks. The structured database ensures that the

data is efficiently stored and can be easily accessed for further processing.

In this step, the data is formatted to meet the requirements of the pre-processing
pipeline. The structured database facilitates the application of semantic, syntactic, and
contextual analysis, which are essential for understanding the relationships and
dependencies between different requirements. The output is a well-organized database

that is ready for detailed NLP analysis.
Step 3: Advanced Pre-processing Pipeline

The advanced pre-processing pipeline applies semantic, syntactic, and contextual

analysis to the data. Semantic analysis captures the meaning of terms, syntactic analysis
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examines the grammatical structure, and contextual analysis understands the context
in which terms are used. These analyses help to annotate the data, adding metadata

that captures the relationships and dependencies between different requirements.

The annotated data resulting from this pipeline provides a rich representation of the
requirements, incorporating detailed semantic, syntactic, and contextual information.
This step is crucial for enhancing the Dataset-With meaningful annotations that will be
used for ML. The output is an annotated dataset enriched with semantic, syntactic, and

contextual metadata.
Step 4: Handling Class Imbalance with Oversampling Methods

To address the class imbalance in the data, oversampling methods such as the SMOTE
+ Edited Nearest Neighbors (SMOTEENN) are applied. This step takes the annotated data
as input and generates a balanced Dataset-Where the minority class is adequately
represented. Handling class imbalance ensures that the ML models trained in

subsequent steps do not suffer from biases due to class imbalance.

This phase involves creating synthetic examples for the minority class to balance the
class distribution. By doing so, the dataset becomes more suitable for training robust
ML models that can generalize well to unseen data. The output is a balanced and

annotated dataset that is ready for feature engineering.
Step 5: Feature Engineering

In the feature engineering phase, relevant features are extracted and engineered from
the balanced dataset. This phase focuses on creating new features or transforming
existing ones to better capture the characteristics of the requirements and their
changes. For instance, features such as term frequency-inverse document frequency

(TF-IDF) and word embeddings are used to represent textual data quantitatively.

Feature engineering is a critical step in the ML pipeline, as it directly impacts the
model's performance. Well-engineered features help the model to better understand
the underlying patterns in the data. The output of this phase is a feature matrix that

encapsulates the engineered features for each data point.

96



Step 6: Training ML Models

Using the feature matrix, various ML algorithms are trained, including decision trees,
random forests, support vector machines, and neural networks. The training phase
involves splitting the Dataset-Into training and validation sets, optimizing
hyperparameters through techniques like grid search, and evaluating model
performance. The goal is to identify the best-performing model based on metrics such

as precision and recall.

During this phase, cross-validation techniques are used to ensure that the models
generalize well to unseen data. Hyperparameter tuning helps find the optimal settings
for each model, enhancing their predictive capabilities. The output of this phase is a set

of trained predictive model candidates with robust performance metrics.
Step 7: Model Testing and Evaluation

To evaluate the generalization ability of the trained models, they are tested on an
unseen test dataset. This evaluation phase assesses the models' effectiveness using
performance metrics. If the precision and recall are low, further tuning is performed to
improve recall, even if precision is initially compromised. The performance evaluation
report highlights the strengths and weaknesses of each model, providing insights into

their suitability for deployment.

This phase is crucial for validating the models and ensuring that they meet the
required performance standards. The output is a comprehensive performance report

that informs the selection of the most efficient model.

The main aim of our ML process was to introduce and capture which requirements are
impacted and not impacted by a given change or a set of requested changes. The
baseline is training our model in a specific domain, and if the resulting precision and

recall are as expected, the next step is trying it in different domains
Step 8: Practical Application and User Feedback

The final phase involves the practical application of the selected predictive model. The
trained model is integrated into a software tool designed for requirements analysts. This
tool allows analysts to input change requests and receive a list of impacted
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requirements, ordered from most to least affected. The system also accommodates user
feedback by enabling analysts to approve or disapprove changes, which helps refine the

model over time.

To improve the precision, the human in the loop is included by the user's input, which
is to 'approve' or 'disapprove’' a given change, enabling the model to learn from human
responses. So, by incorporating user feedback, the model continuously improves and
adapts to new data. This human-in-the-loop approach ensures that the tool remains
relevant and accurate. The output of this phase is a usable software tool for predictive

CIA, accompanied by comprehensive user documentation and guidelines.

4.4. Implementation

This section details the implementation process for applying machine learning
algorithms to predict the impact of requirement changes. It outlines the critical steps
taken to prepare the datasets, optimize the models, and enhance their predictive
performance. The subsections explore the techniques used for feature engineering,
model training, and evaluation, as well as strategies to address challenges like class
imbalance and overfitting. Through these steps, this section provides a comprehensive
view of how the machine learning models were operationalized to achieve the research

objectives.

4.4.1. Apply Class Rebalancing Techniques

The primary purpose of a reliable ML model is to generalize effectively to various
domains and to generate new data that is evaluated for its performance over time as it
learns from training data. The main problem of imbalanced datasets is that they result
in sub-optimal classification models. It might provide misleading conclusions as the
distribution of observations in the training set is unequal across the classes (Sikora,
Tenbergen & Pohl 2012). An ideal model should not suffer from overfitting or
underfitting (Zamani, Zowghi & Arora 2021). Training with unbalanced Dataset-Is is one

of the most critical concerns confronting ML research. Imbalanced class distributions
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have an impact on classifier training, resulting in a negative bias towards the majority
classes. It could also lead to significant inaccuracy, or even exclusion, of the minority

classes (Dablain, Krawczyk & Chawla 2022; Galar et al. 2012).

In this study, the focus is on two-class imbalanced datasets. The initial labeled dataset
had a class imbalance for the binary classifier since the number of examples belonging
to class 0 is more than those belonging to class 1. In Dataset-W, 1890 out of 2016
examples belong to class 0 (93.75%); in the Dataset-l, 98.8% of data belongs to class 0;
and in the Telecommunications Dataset, the percentage of class 0 is 99.4%. Therefore,
the predictor almost always predicts any given sample as belonging to class 0, achieving
very high scores like precision and recall for class 0 and low scores for class 1. Table 4.1

shows the distribution of classes 1 and 0 in all datasets.

Table 4.1. Distribution of classes 1 and 0

Dataset # Requirements Statement # Change request Matrix

2016 samples
D -W 72 2
ataset 8 e 1890class 0

e 126¢class1

21250 samples

Dataset-O 627 34 e 21126¢class0
e 124class1
2895 samples
Dataset-I 193 15

e 2862 class0
e 33class1

Earlier research in ML has repeatedly demonstrated an increase in performance when
class rebalancing approaches are used (Dablain, Krawczyk & Chawla 2022; Seiffert et al.

2010; Tantithamthavorn, Hassan & Matsumoto 2018; Wang & Yao 2013). To mitigate
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the problem, empirical experiments were conducted to systematically test several
combinations of commonly used rebalancing methods, including over-sampling and
under-sampling techniques, to determine which one works best for this case. According
to earlier studies, a combination of oversampling and undersampling techniques has
proven beneficial and thus can be considered the best solution (Sowjanya & Mrudula
2022; Tantithamthavorn, Hassan & Matsumoto 2018). To study the impact of
resampling techniques on the models, Condensed Nearest Neighbors + Tomek Links,
SMOTE + Tomek Links (SMOTE-Tomek Links), and SMOTE + Edited Nearest Neighbors
(SMOTEENN) were applied.

Initially, the dataset had a severe class imbalance with a ratio of 1:33, meaning there
was one instance of the minority class (class 1) for every 33 instances of the majority
class (class 0). Results reveal that by transforming the data with resampling methods,
the ratio increased from 1:33 to 1:2668 with a balanced distribution of 2862 in the
minority class for the Dataset-I. The same increase was observed in the Dataset-W and
Dataset-0O, proving that SMOTEENN, a combined technique that incorporates both over-
sampling and under-sampling methods, outperforms in this case in practice. Table 4.2

shows the distribution of the data before and after resampling.

Table 4.2. Class distribution before and after resampling

Original Dataset Transformed Dataset
Dataset
Majority Class Minority Class Majority Class Minority Class
Dataset-W 1890 126 1767 1394
Dataset-O 21126 124 21104 20140
Dataset-I 2862 33 2837 2668

Evaluating how the class distribution changed before and after SMOTEENN was
implemented is a critical component of its effectiveness. Pre- and post-resampling class

distributions were compared using a detailed bar plot created by a Matplotlib-based
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Python implementation. In Figures 4.2, 4.3, and 4.4, bar charts of the original set of data
from dataset-W, dataset-O and dataset-l showcased the rebalancing effect of

SMOTEENN, elucidating its ability to rectify unbalanced class distribution in our data.
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Figure 4.4. Dataset-O Class Distribution of Original and Resampled Data

4.4.2. The Proposed ML Model

In this step, an ML classification model was proposed for training. In the development
of the ML model, its attributes were collected from previous steps. Since existing
literature proposed multiple alternatives and, there is no evidence to show which
classifier has the best overall performance in general (Catolino et al. 2018; Yang et al.

2020), five different classifiers were experimented with, and the results were compared
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in terms of accuracy and performance. Therefore, the ML method uses five classifiers of
Decision Tree, Logistic Regression, Support Vector Machine (SVM), Random Forest, and
Gaussian Naive Bayes (NB), which are the most frequently used algorithms in RE tasks
based on the result of our published paper (Zamani, Zowghi & Arora 2021). In terms of
using SVM, prior research showed that utilization of SVMs by gappy n-gram kernels,
including a non-zero decay factor, would present a highly impressive solution for
requirements classification (e.g. (Cortes, Haffner & Mohri 2004; Shakeri et al. 2019)).
Based on the mentioned earlier research, non-contiguous n-gram kernels were used in
the text of requirements classification and rational kernels and SVM were applied to
perform this method. All ML algorithms have been implemented in Python with the

Scikit-Learn Library uploaded in the replication package.

4.4.3. Identifying the Dependencies

The identified dependencies in this step are used to train and test the ML classifier.
Syntactic, semantic, and textual content were considered to identify all existing
dependencies for the collection of requirements and a given change. Similarity
measures, both syntactic and semantic, were used to investigate the closeness of a given
change with each of the existing requirement statements. Given the variety of similarity
measures available, it is critical to objectively study which one is best suited to a

particular type or rationale of a change request (Nejati et al. 2016).

Consequently, the following algorithms were applied to the data: Jaccard, Levenstein,
Pairwise Cosine Similarity (Bag of Words with Term Frequency (TF) with Cosine

similarity), Bidirectional Encoder Representations from Transformers (BERT)

with Cosine similarity, Glove with Cosine similarity, Glove with Word Movers Distance

(WDM) similarity, CrossEncoder and Infersent.

To facilitate the application of Cosine similarity, an essential step involved the
transformation of sentences into vectors. This transformation leveraged all lemmatized
tokens extracted through our pre-processing pipeline. These tokens were subsequently

molded into features, serving as inputs for our model. This transformation was achieved
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via a Bag of Words (BOWs) approach coupled with TF-IDF (term frequency-inverse
document frequency) or Word Embeddings, enabling a comprehensive representation

of the textual data.

These algorithms were implemented using Python, and their implementations are

available within our comprehensive replication package and are accessible on Zenodo.

4.4.4. Generating Features

To increase the prediction power of the model, additional feature engineering
techniques were considered. This step involved collecting change request features that
might have the highest impact on the impact prediction findings. The taxonomy of
requirements changes was reviewed to assess their practical values in the change
management process. Prior research showed that domains of the market, organization,
vision, type, specification, solution, time, type, reason, and origin are the most
important features in classifying requirements (Catolino et al. 2018; McGee & Greer
2011; Saher, Baharom & Ghazali 2017). Since these detailed data are not available in
most real-world datasets, only the type of changes, including additions, deletions, and
modifications, were selected as a feature of the ML model. In this stage, efforts were
made to extract additional valuable features from datasets and feed them to the ML
model to improve prediction performance. The performance will be evaluated by

comparing it with a manual approach, which will be considered as a baseline approach.

4.4.5. Hyperparameters

Hyperparameters are essential for adjusting the model's behaviour and enhancing its
prediction power to maximize the performance of ML classifiers. Hyperparameters,
which are predefined configuration options not discovered through data analysis, were
carefully utilized to alter the behaviour of classifiers like Random Forest, Support Vector

Machine (SVM), and Logistic Regression.

Forinstance, for the Random Forest classifier, a grid search method (Bergstra & Bengio

2012) combined with cross-validation was used for evaluation. This approach aimed to
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improve the model's performance by exploring different combinations of
hyperparameters, such as the number of trees in the forest (n_estimators) and the

maximum depth of the tree (max_depth).

In the case of SVM tuning, the grid search method was employed to find the best
combination of the regularization parameter (C) and the kernel coefficient (gamma)
(Hsu, Chang & Lin 2003). These parameters were further adjusted based on domain
knowledge to ensure contextually relevant optimization. For the Decision Tree model,
the grid search method was used to adjust hyperparameters such as the maximum
depth of the tree (max_depth) and the minimum number of samples required to split

an internal node (min_samples_split).

In contrast, Gaussian Naive Bayes does not have hyperparameters to tune like the
other models. Therefore, no hyperparameter optimization was necessary for this

classifier.

Furthermore, the implementation of a pipeline employing Synthetic Minority Over-
sampling Technique and Edited Nearest Neighbors (SMOTEENN) resampling techniques
(Chawla et al. 2002; Tomek 1976) was an essential phase in the optimization process
across all classifiers. This method ensured that every classifier could handle unbalanced

class distributions, consequently resolving the class imbalance problem.

4.4.6. Computational Cost Considerations

When applying machine learning algorithms for CIA, computational cost is an
important practical consideration, especially when these models are deployed in
resource-constrained or real-time environments. In this study, we evaluated the
computational overhead of the implemented ML models, focusing on aspects such as

training time, inference speed, and scalability.

Random Forest, being an ensemble method, is relatively computationally expensive
due to the creation of multiple decision trees and the need for aggregation during

inference. However, its training phase can be parallelised, which mitigates the time cost
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to some extent. In our experiments, Random Forest showed moderate training times

but relatively fast prediction times once the model was trained.

SVMs are known for their robust performance, particularly in high-dimensional
spaces. However, their computational cost increases significantly with larger datasets
due to the quadratic or cubic complexity involved in solving the optimisation problem
during training. Training time was the longest for SVMs in our experiments, though

inference time remained manageable.

Decision Trees are lightweight models in terms of computational cost. Both training
and inference are fast, making them suitable for applications requiring quick turnaround
times. However, they tend to overfit, which may require pruning or ensemble
techniques like Random Forest to maintain generalizability (Singh 2023) (Idrissi Khaldi et
al. 2025)

Logistic Regression is computationally efficient, with relatively low training and
inference costs. Its simplicity and interpretability make it suitable for baseline

comparisons, although it may struggle to capture complex patterns in the data.

Naive Bayes, as a probabilistic classifier, has minimal training overhead and scales well
with large datasets. Its simplicity results in the lowest computational cost among all
models tested. However, its assumptions of feature independence may limit its

effectiveness in capturing intricate dependencies.

Overall, the trade-off between performance and computational cost must be carefully
considered. While models like SVM and Random Forest may offer higher predictive
power, they demand greater computational resources. In contrast, Logistic Regression
and Naive Bayes offer faster execution but may underperform in complex scenarios. This
highlights the importance of selecting the appropriate model based on the specific

needs and constraints of the deployment context (Singh 2023) (Idrissi Khaldi et al. 2025)
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Table 4.3. ML algorithms results
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4.5. Results Analysis and Evaluation

Table 4.3 presents the evaluation metrics for the classifiers, highlighting three key
observations. First, there is a significant improvement in recall for all classifiers after
addressing the class imbalance issue. This finding underscores the effectiveness of
resolving class imbalance in enhancing the overall performance of the classifiers.
Second, the Precision-Recall disparities reveal variations in precision and recall values

across different ML algorithms and datasets. Third, the Fl-scores, which provide a
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harmonic mean of precision and recall, offer a more balanced view of the classifier's

performance, particularly in the presence of class imbalance.

The effectiveness of any ML model is determined by measures such as True Positive
Rate, False Positive Rate, True Negative Rate, and False Negative Rate. Therefore,
evaluation metrics are used to assess the prediction results. The performance of the
proposed model is evaluated using standard metrics Precision (P) and Recall (R), as well
as the Fl-score (F1). The inclusion of Fl-scores provides additional insights into the
classifiers' performance, as the Fl-score considers both precision and recall and is
particularly useful in evaluating models on imbalanced datasets. For instance, Random
Forest exhibited the highest F1-scores in several cases, particularly in the Dataset-I (e.g.,
Case 6 with an Fl-score of 1), indicating a strong balance between precision and recall.
Decision Tree showed moderate Fl-scores across datasets, with notable high
performance in specific cases such as Dataset-W C4 (Fl-score of 1). Naive Bayes
generally showed high recall but varied in precision, leading to fluctuating F1-scores; for
example, in the Dataset-l Case 3, it achieved an Fl-score of 0.4. Logistic Regression
displayed consistent performance with high F1-scores in multiple cases, such as Dataset-
| Case 6 (F1-score of 0.8), demonstrating its reliability. Support Vector Machines (SVM)
consistently performed well with balanced Fl-scores, especially in the Dataset-O

CR504335 (F1-score of 0.5).

Additionally, to evaluate the prediction model, the k-fold Cross-Validation (k = 10)
technique is utilized to check how well the classifier performs on unseen data. This
validation technique is one of the most widely used model validation methods in

imperfection prediction studies (Thakur et al. 2021).

An 80/20 split of the sample data was employed for training and testing sets for each
dataset. Since the model was trained on only 80 percent of the sample data, there is a
significant risk of missing some information, resulting in a high bias that achieves a
perfect score but fails to predict anything valuable on unseen data. Cross-validation is a
common and valuable ML validation method for tackling this problem. The basic idea is
to isolate test data through data sampling to see if the trained model fits new situations

(Bennin et al. 2018). The k-fold cross-validation method splits the data into k folds of
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approximately the same size, where each fold contains similar proportions of the
defective ratio. One-fold is used for testing, and the remaining k-1 folds are used for
training. The value of k-fold cross-validation is that all data can be used for training and
testing (Danjuma 2015; Tantithamthavorn, Hassan & Matsumoto 2018). It also reduces
the bias associated with random training set selection and holds out observations

(Erdogan & Namli 2019).

There are various methods for performing cross-validation. To sample the annotated
datasets, a more robust sampling technique, Repeated Stratified K-Fold cross-validation
(CV) with a split of 10, was used. To examine the effect of each sampling technique on
the datasets, five different classifiers, as discussed in Section 3 were employed. (Bal &

Kumar 2020; Barua et al. 2014; Bennin et al. 2018)

The results presented in Table 4.3 form the basis for the subsequent analysis and
discussion in this section and the following sections. The inclusion of F1-scores highlights
that while some algorithms excel in either precision or recall alone, achieving a high F1-
score signifies a more effective overall performance in the presence of imbalanced
classes. This balanced metric is crucial for understanding the practical applicability of the
classifiers in real-world scenarios where both precision and recall are important. In
conclusion, while precision and recall provide insights into specific aspects of the
classifiers' performance, the F1-score offers a comprehensive evaluation, confirming the
robustness and reliability of the proposed models across different datasets and

scenarios.

4.6. Dataset Validity and Size

The datasets used in this study were carefully selected from real-world industrial
projects across various domains, including software functional and non-functional
requirements. This diverse selection enhances the validity and generalizability of our
findings. The sizes of the datasets are sufficient to train and validate the ML models
effectively. Each data set contains a substantial number of data points, ensuring that the

models have enough information to learn from and generalize well to new data. The
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pre-processing and feature extraction steps further ensure that the data is of high

quality and accurately represents the underlying requirements and their changes.

Furthermore, all original change requests were considered to ensure comprehensive
coverage of the dataset. The datasets included a significant percentage of original
change requests, which were carefully selected and validated. Specifically, all original
change requests were included in the analysis. This comprehensive inclusion provides a
representative sample of the data, ensuring that the models are trained and evaluated
on a broad spectrum of change scenarios. This approach helps capture the variability
and complexity inherent in real-world change requests, thereby enhancing the

robustness and applicability of the proposed model.

4.7. Comparative Analysis with State-of-the-Art Approaches

To establish the relative performance and improvement over existing methods, the
proposed model was compared with state-of-the-art approaches, including those by
Arora et al. (2015a). The results indicate that the proposed model achieves higher
precision and recall, demonstrating its effectiveness in predicting the impact of software
requirements change. This comparative analysis validates the model's performance and

highlights its contributions to the field.

4.8. Importance of Precision vs. Recall

In terms of the relative importance of recall versus precision in this approach, both
metrics are crucial. Human oversight is included to improve precision. High precision
means that the prediction is very likely to be correct, making the approach trustworthy.
However, recall needs to be high even if precision is low; otherwise, the model is
ineffective. Therefore, the data is fed into multiple ML algorithms, and the algorithm
that results in the highest recall is selected. The main goal of this study is to identify the
most impacted requirements and miss as few affected ones as possible. In other words,

false positives are more critical than false negatives (Aryani et al. 2009).
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4.9. Threats to Validity

The threats to the validity of this study are categorized into internal and external

validity concerns.

4.9.1. Internal Validity

One of the primary threats to internal validity in this study is the quality and accuracy
of the data used, particularly in labelling impacted requirements. The process of
manually checking the impacted requirements in the change history introduces
potential errors. Although datasets were selected carefully and structured, detailed
consultation sessions were conducted with domain experts to ensure an accurate
understanding of their requirements documents and change history. There remains a
risk that data collection may not be entirely complete. This incompleteness can stem
from varying degrees of abstraction and levels of detail in the requirements documents.
To mitigate this threat, data validation was performed with domain experts who have
extensive experience in the change management process, reducing the risk of

inaccuracies.

Another possible limitation is the stability of requirements over time. Requirements
frequently change, which poses a challenge for the ML model, as it must be retrained
with each change in requirements. This fluidity, while a common difficulty in
requirements engineering, becomes a more severe barrier when applying ML
techniques. The need to retrain the model with each change can be resource-intensive
and may affect the model's performance. Additionally, changes in labelling due to
evolving requirements can introduce inconsistencies and further complicate the training

process (Zamani, Zowghi & Arora 2021).

4.9.2. External Validity

A pivotal threat to external validity is the uncertainty inherent in the data, which forms
part of the requirements. Despite the primary goal of achieving high precision, recall,

and accuracy with the ML model, numerous experiments are necessary to ensure that
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these goals are attainable and that the provided data is sufficient. Uncertainty in data
quality and completeness can impact the generalizability of the study's findings (Wan et

al. 2021).

The generalizability of the datasets represents another possible threat. Although
efforts were made to ensure the datasets are as broad and representative as possible
by selecting data from real-world industries across different domains and of various
sizes, there is still a potential limitation in terms of how well these datasets represent
the broader landscape. The data included both functional and non-functional software
requirements to ensure comprehensive coverage. It is important to note that the
accuracy of the approach does not depend on the specific domain but rather on the
quality and clarity of the written requirements and change requests. High levels of
inconsistency in documenting requirements, including spelling mistakes, structural
differences, terminology, and vocabulary variations, can complicate and introduce
errors into automated classification processes (Abad et al. 2017a; Zamani, Zowghi &

Arora 2021).

4.10. Discussion

This section provides an in-depth analysis of the proposed solution, addressing its
strengths, limitations, and performance across different contexts. The discussion
evaluates the algorithms implemented, highlighting their effectiveness and areas for
improvement. It also examines the datasets used, considering their role in shaping the
outcomes and generalizability of the solution. Through these discussions, the section

aims to present a balanced view of the research findings and their practical implications.

4.10.1. Limitations of the Proposed Solution

While the proposed methodology offers several advantages, it also has limitations.
The model's performance is highly dependent on the quality and quantity of historical
data. Insufficient or noisy data can adversely affect the model's accuracy, making

comprehensive data collection and pre-processing crucial. Identifying the most relevant
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features is critical for model performance; incorrect feature selection can lead to poor
model predictions, necessitating domain expertise to guide feature engineering. Some
ML models, such as neural networks, can be complex and require significant
computational resources for training and inference, which can be a constraint for

organizations with limited computational capabilities.

Additionally, the model may perform well on the training data but might not
generalize to different projects or domains without retraining and fine-tuning, requiring
continuous evaluation and adaptation. Effective use of the tool requires a certain level
of expertise in ML and CIA, and users may need additional training to understand the
tool's functionalities and interpret its outputs accurately. Providing comprehensive

documentation and user support can help mitigate this limitation.

4.10.2. Discussion on Algorithms

Looking at the precision and recall values, there is a noticeable variation across
different methods and datasets. For instance, in the Random Forest method, there is a
significant disparity in precision among different cases within the Dataset-W. While
some cases show high precision (e.g., C2, C1), others exhibit quite low precision scores
(e.g., C3 and C8). However, in terms of recall, most cases achieve a perfect score of 1.00,
indicating that when the actual impact occurs, the model identifies it consistently across
these cases. Moving to Dataset-l, the precision scores are consistently low across the
cases, indicating a higher rate of false positives. However, the recall varies significantly,
with some cases achieving a perfect score while others fall below. Dataset-O presents a
mix of precision scores across different cases, with varied performance. While some
cases exhibit relatively higher precision (e.g., CR60202), others show lower precision
scores. Similarly, recall rates also vary, albeit with generally good performance across

most cases.

Regarding the other algorithms, similar to previous results, there appears to be a
trade-off between precision and recall in many cases. While some cases exhibit high
precision, they often do so at the expense of lower recall and vice versa. This suggests a

challenge in achieving both high precision and high recall simultaneously across
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different datasets and cases. Understanding the reasons behind this trade-off and
optimizing the models to strike a better balance between precision and recall could
enhance the overall performance of the system in accurately identifying impacted

requirements during change analysis.

In general, there seems to be inconsistency in precision across different cases and
datasets, indicating that the models might encounter challenges in precisely identifying
the true impact of requirements changes in specific scenarios. Furthermore, even while
recall has been shown to perform effectively in identifying true positives, mainly in
Dataset-W, it is imperative to address the low precision values observed in various cases

across different datasets.

The Random Forest algorithm shows some cases with both high precision and recall.
It revealed the RF effectiveness in accurately predicting impactful changes without
missing many relevant instances. Besides this, the model struggled for the cases with
lower scores. SVM showcased relatively similar performance trends to Random Forest
in capturing relevant instances (recall), although there are discrepancies in precision
scores between the two models for various cases. The disparities in precision could
indicate that utilizing SVM to make precise positive predictions in some situations can

be difficult.

The Decision Tree results showcase a different performance compared to both
Random Forest and SVM. It also shows varying performances across different cases. The
results demonstrate moderate to high precision and recall for some cases, which is a
sign of having struggles with accurate positive predictions and capturing all relevant

instances for others.

Gaussian NB illustrates varying precision scores for some cases compared to SVM,
Decision Tree, and Random Forest models. And finally, Logistic Regression performs
consistently with other models when it comes to capturing the most relevant instances
(recall). However, just like with other algorithms, there are also difficulties in getting

precise positive predictions for particular circumstances.
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In summary, when comparing these algorithms in requirements CIA tasks, the
overview of their performance proved that all of them are high-performing models while
having challenges in precision, indicating difficulties in making accurate positive

predictions.

While different algorithms demonstrated their advantages in particular datasets,
Support Vector Machines (SVM) was the most effective approach throughout the entire
investigation. SVM continuously showed strong and well-balanced performance; it was
especially good at identifying intricate patterns in Dataset-l and holding a lead in
Dataset-W. Its ability to achieve high recall rates while balancing precision across
different datasets signifies its suitability for requirements CIA, particularly when working
with complex and diverse datasets. This emphasizes how crucial it is to choose the best
algorithm possible while also taking the dataset's unique properties into account. While
no single technique was shown to be better than the others across all datasets, SVM was

the most reliable and efficient option for precise requirements change impact estimates.

Our results are particularly consistent with current research discussions on ML
techniques' limitations. Some peer studies emphasized that ML algorithms may not be
able to handle complicated linguistic structures and domain-specific contextual
comprehension well enough (Adnan & Akbar 2019; Herm et al. 2023; Lin 2020; Paleyes,
Urma & Lawrence 2022; Sarker 2021; Tufail et al. 2023). Although ML is still a potent
tool in many fields, including software engineering, there is no one-size-fits-all approach.
Careful consideration of the complexities of the task and domain-specific requirements
is crucial before the implementation of ML-based solutions. Consequently, our research
suggests that the inherent complexities of language and domain-specific subtleties can

have a variable impact on the efficacy of ML in requirement analysis tasks.

4.10.3. Discussion on Datasets

Monitoring the patterns within the results across different datasets can provide
information about the quality or clearness of the written requirements or change
requests. Requirements originating from several sources may differ significantly in terms

of language and terminology(Zamani, Zowghi & Arora 2021). Stakeholders, as well as

118



requirements experts utilize diverse vocabulary and sentence structures. The lack of
consistency in requirements documentation leads to the complexity and error-

proneness of automated classification(Abad et al. 2017a)

Based on the provided precision and recall scores across different ML models, Dataset-
W seems to generally yield higher performance rates across various algorithms in
comparison to Datasets Telecommunications and Satellite. This could suggest that
Dataset-W might contain clearer or more explicitly outlined requirements, making them

easier for models to identify.

Dataset-l showcases a mix of precision and recall values across algorithms, suggesting
a mix of clear and more complex requirements or change requests. Some cases exhibit
good performance, especially with SVM, while others show challenges for the
algorithms, indicating potential variability in the quality or complexity of the

requirements.

On the other hand, Dataset-O represents a more challenging environment for
predictive modelling. The models struggle to achieve high precision and recall
simultaneously within this dataset. The results display a mix of precision and recall
values across different algorithms and cases. This variability might indicate a mix of well-

defined and ambiguous requirements or change requests within this dataset.

The observed patterns in algorithm performance align closely with the inherent
characteristics of the datasets under study. Dataset-W emerges as a relatively newer
dataset characterized by clear and meticulously articulated requirements compared to
its counterparts. This dataset appears to contain well-written and explicit requirements,
facilitating easier comprehension for algorithms. Conversely, Dataset-O, dating back
more than a decade, reflects a long history of modifications facilitated by multiple
experts over the course of 14 years. This prolonged timeline of alterations has likely
contributed to its inherent ambiguity, stemming from the diverse perspectives and
modifications introduced by these various experts. Moreover, Dataset-I, spanning over
six years, exhibits a notable level of complexity owing to its comprehensive mentions of

numerous hardware systems within its requirements.
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The findings highlighted the differences and complexities present in each data set.
Components of the dataset that seemingly have a substantial impact on the quality and
clarity of requirements include its age, the history of revisions made by different experts,
and the complexity of the referenced systems that are in the forms of abbreviations in
SRS. The inclusion of contextual information enhances comprehension of the dataset's
complexities and establishes a direct correlation with the observed fluctuations in

algorithmic performance among the datasets.

4.11. Summary

In this chapter, an approach was developed to analyze the impacts of software
requirements, focusing on predicting which of the existing software requirements may
be affected by a requirement change. The core premise of the suggested approach is to
learn from the history of change requests automatically, predict the change impact, and
demonstrate how these predictions could help analysts enhance their decision-making
to apply or reject an incoming change. The principal motivation was to achieve an
automated solution to promote improved preparation and prioritization of the
execution of requirements specifications during the software development of

conventional and agile methodologies.

The proposed research was evaluated using five ML algorithms, including Random
Forest, Decision Tree, Naive Bayes, Logistic Regression, and Support Vector Machines.
The goal was to assess the effectiveness of these approaches in accurately analyzing

written requirements.

Upon analyzing the evaluation results, the ML algorithms exhibited observable
suboptimal performance, potentially due to the specific needs of highly accurate
requirement comprehension. Precision and recall were employed as evaluation metrics
commonly used in text classification and information retrieval tasks. Each algorithm
showed unique strengths and faced challenges while addressing the complexities of
precision and recall. Although the proposed models demonstrated proficiency in
predicting the given change requests with high recall, precision differed between

algorithms and certain scenarios. It was observed that the precision challenge exists in
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making precise positive predictions despite capturing relevant instances, which is not
ideal. Furthermore, all models struggled to achieve a balance between recall and
precision, highlighting the trade-off. Despite precision issues, recall-strong models were

crucial to guaranteeing thorough coverage of possible impact changes.

Although ML has demonstrated impressive capabilities across a range of domains,
leading to significant attention in various fields, including software engineering, it is
essential to recognise that its applicability may not be universal for all tasks. Anomalies
were observed in the research on requirement CIA that highlights the shortcomings of
ML algorithms when it comes to efficiently managing such complex tasks. The
complexities inherent in language and the specificity of requirement comprehension

present challenges that ML algorithms may struggle to address effectively.

In summary, while ML technologies continue to evolve and have significant upsides,
caution must be taken when applying them due to their inherent limitations in handling

complex comprehension and domain-specific contextual understanding tasks.
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Chapter 5.
Enhancing Decision-Making in Software
Development:
A Dual-Model Framework for Requirements

Change Impact Analysis

5.1. Introduction

This chapter introduces a dual-model framework designed to address the complexities
of requirements CIA by exploring two complementary approaches. The first approach
leverages NLP techniques, utilizing CoreNLP and SpaCy libraries to analyze textual
requirements and identify interdependencies. The second approach incorporates the
Beir benchmark, combining Lexical Retrieval with BM25 (via Elasticsearch), Dense
Retrieval using Bi-Encoders, and re-ranking with Cross-Encoders. These methodologies
provide distinct yet synergistic perspectives, offering a comprehensive understanding of

the challenges in CIA.

To ensure practical applicability, the framework is validated using industrial datasets,
enabling insights into real-world scenarios and enhancing decision-making for
requirements change requests. By comparing the performance and outcomes of these
dual approaches, this chapter advances our understanding of how emerging
technologies in NLP and retrieval-based models can effectively address the nuances of

software requirements engineering.
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The integration of the Beir benchmark represents a significant step forward in this
research, introducing diverse information retrieval tasks to enrich the analysis. This
approach complements the NLP-based solution, creating a robust framework capable of
handling both semantic and syntactic complexities in requirements change scenarios.
Through this exploration, we aim to uncover actionable insights and provide project
managers with a sophisticated tool for predicting and managing the impacts of

requirements changes in software development.

Despite significant progress in requirements traceability and change impact analysis,
most prior approaches suffer from three key limitations. First, rule-based and keyword-
matching techniques (e.g. traceability matrices or regex-driven pipelines) are brittle,
failing to generalize when stakeholders use varied terminology or complex sentence
structures. Second, single-model solutions, whether purely ML-based or purely IR-
based, tend to excel on specific datasets but degrade sharply when confronted with
domain shifts or aging documentation, because they capture only lexical overlap (as in
BM25) or only statistical patterns (as in classical classifiers) without deeper semantic
context. Finally, hybrid proposals are scarce, and where they exist, they lack clear
orchestration strategies to bring together lightweight ML, full-blown NLP parsing, and
retrieval-augmented generation into a unified pipeline. These gaps leave analysts either
drowning in false-positive alerts or missing subtle but critical dependencies. By contrast,
our dual-model framework explicitly combines syntactic/semantic NLP insights with
retrieval-based evidence and stitches them together via an ensemble and feedback loop,
to address brittleness, domain variability, and explainability all at once (Hayes, Dekhtyar

& Sundaram 2006; SHAKIRAT et al. 2021; Thakur et al. 2021).

5.2. Dual Model Framework

The structure for this framework is depicted through a structured diagram detailing
the sequential phases employed to enhance decision-making in software development
by automating CIA. This process begins with comprehensive data collection, focusing on

project specification documents and change logs, which form the foundational dataset.
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The collected data undergoes a thorough preprocessing stage that includes tokenization

and embedding generation, standardizing the input for subsequent analysis.

The methodology is bifurcated into two primary branches: an NLP-Based Solution and
a Beir-Based Solution. The NLP-based approach utilizes CoreNLP for syntactic and
semantic analysis, while SpaCy is employed for entity recognition tasks. In contrast, the
Beir-based approach leverages BM25 (via Elasticsearch) for lexical retrieval, Bi-Encoders
for dense retrieval, and Cross-Encoders for re-ranking retrieved results. Both branches

operate independently and are evaluated using various performance metrics.

The dual outputs generated from these branches are then subjected to ensemble
learning, enhancing the overall robustness and accuracy of the prediction model. The
final stage involves rigorous evaluation and validation, applying metrics such as
precision, recall, F1 score, and computational efficiency to assess the performance of
the dual-model framework. This methodology not only demonstrates the integration of
advanced NLP and Beir technologies but also illustrates a systematic approach to

automating CIA in large-scale software development projects.

5.3. NLP-Based Solution (CoreNLP and SpaCy Integration)

The NLP-based solution integrates two prominent NLP libraries: CoreNLP and SpaCy.

In this framework, CoreNLP is primarily employed for syntactic and semantic analysis,
while SpaCy focuses on entity recognition and linguistic feature extraction. The
integration of both libraries allows for a comprehensive analysis of software
requirements documents. CoreNLP's robust parsing features handle intricate sentence
structures, while SpaCy offers rapid and efficient preprocessing for extracting key
language elements. Together, these tools enhance the model’s capacity to interpret and
analyze the natural language used in requirements documents effectively. Figure 5.1

illustrates the dual-model framework structure:
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Figure 5.1.Dual-Model Framework

The combined approach was selected based on the complementary strengths of both
libraries. CoreNLP’s detailed grammatical parsing is critical for handling the complexity
of software requirements, while SpaCy’s efficiency in entity recognition and processing
speed makes it a powerful tool for high-volume data analysis. The integration of these
two libraries results in a more granular and accurate analysis, improving the model's

overall performance.

Additionally, this flexible architecture enables fine-tuning and customization to
accommodate specific project needs or changes in scope as the dataset evolves. By
incorporating similarity metrics such as cosine similarity and TF-IDF vectors, the model
is better equipped to detect semantic relationships between texts rather than relying
solely on keyword overlap. This enhances the precision of the CIA and provides a more

nuanced understanding of the connections between software requirements.

The integration of these techniques achieves an optimal balance between
computational efficiency and depth of semantic analysis. The ability to customize the
vectorization process and similarity criteria ensures that the solution can be tailored to
the unique characteristics of each dataset, ultimately improving the responsiveness and

accuracy of the CIA model.

CoreNLP and SpaCy were chosen not just for their robustness but for their ability to

resolve key CIA pain points. Dependency parsing uncovers hidden syntactic ties by
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walking the parse tree, we detect when a change in “user authentication” will cascade
to “session management” through shared grammatical relations, even if no keywords
overlap. Named-entity recognition then isolates domain concepts, such as “API
endpoint” or “payment gateway”, so that any modification to these entities immediately
flags every related requirement, capturing dependencies that simple term-frequency
methods miss. Finally, CoreNLP’s coreference resolution maintains contextual cohesion
by mapping pronouns or aliases back to their antecedents; thus, an update to “the
payment module” also highlights every later occurrence of “it,” ensuring no implicit

reference is overlooked.

5.4. Beir-Based Solution

The Beir-based solution leverages the BEIR benchmark, a heterogeneous benchmark
designed for information retrieval (IR) tasks. This method incorporates multiple stages
of retrieval and ranking to improve the relevance and precision of change impact

predictions.
e Lexical Retrieval with BM25 (Elasticsearch)

The first step in the Beir-based solution is lexical retrieval using BM25, implemented
via Elasticsearch. BM25 is a well-established ranking function used in search engines that
measures the relevance of documents based on keyword matching. This provides a solid
foundation for the retrieval process but may have limitations in capturing semantic
meaning, as it is primarily based on lexical overlap and may miss synonyms or related

terms.
e Dense Retrieval Using Bi-Encoders

To address the limitations of lexical retrieval, the framework employs Bi-Encoders for
dense retrieval. Bi-Encoders encode both queries and documents into dense vector
spaces using models such as BERT. This allows the retrieval process to capture deeper
semantic similarities between the query and the documents. By utilizing dense retrieval,
the system can retrieve contextually relevant information that goes beyond mere

keyword matching, enhancing the overall retrieval performance.
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e Re-ranking with Cross-Encoder

After dense retrieval, a Cross-Encoder model is applied to re-rank the retrieved
documents. The Cross-Encoder assesses the interaction between document-query pairs
and assigns relevance scores based on a more holistic understanding of the context. By
re-ranking the results, the model significantly improves the precision and relevance of
the final predictions. The combination of dense retrieval and re-ranking ensures that the

most contextually relevant documents are prioritized for impact analysis.

While BM25 provides a solid starting point by ranking on term overlap, it struggles
with synonyms, paraphrases, and complex phrasing common in requirements. Our two-
stage neural retrieval addresses this directly. First, Bi-Encoders map queries and
documents into the same dense vector space using a fine-tuned BERT variant, so
semantically similar texts, like “login process” and “user sign-in flow”, naturally cluster
together, boosting recall even when no keywords match. Next, Cross-Encoders re-rank
these candidates by jointly encoding each query—document pair with full attention,
filtering out loose semantic matches and elevating those with deep contextual

alignment (Nogueira & Cho 2019; Reimers & Gurevych 2019).

5.5. Data

The same real-world datasets utilized in Chapter 4 are employed in this chapter to
ensure consistency and comparability when evaluating the proposed solutions. These
datasets consist of project specification documents and change logs from industrial
software development projects. The data covers a wide range of software requirements
and their corresponding change requests, providing a robust foundation for analyzing

the impact of requirement modifications.

The project specification documents offer detailed descriptions of the software
requirements, while the change logs record the historical changes made throughout the
software development lifecycle. Together, these datasets provide a comprehensive view
of the evolving nature of software requirements and serve as the basis for applying both

the NLP-based and Beir-based methods within the dual-model framework.
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The datasets were thoroughly preprocessed to ensure quality and consistency,
following the steps outlined in Chapter 3. This includes tokenization, embedding
generation, and verification for completeness and accuracy. By reusing these industrial
datasets, the study maintains a direct comparison between the two chapters,
highlighting the enhancements achieved through the dual-model framework presented

in this chapter.

5.6. Implementation

The implementation of the NLP-based solution and the dual-model framework was
carried out using Python as the primary programming language. The deep learning
components were developed utilizing libraries such as TensorFlow and PyTorch, while

Elasticsearch was employed as the backend for information retrieval tasks.

5.6.1. NLP Solution

The NLP solution was implemented through a Python script that leverages the
CoreNLP and SpaCy libraries to process and analyze the data. The primary steps of this

implementation are outlined as follows:
Step 1: Preprocessing

Both datasets—comprising requirements and change scenarios—were loaded and
preprocessed to ensure that the textual data was clean and ready for subsequent
analysis. This step involved tokenization, lowercasing, removing stopwords, and other

standard text preprocessing techniques to ensure consistency across the datasets.
Step 2: NLP Feature Extraction

The CoreNLP and SpaCy libraries were employed to extract valuable features for
predicting the impact of each requirement and change request. The key NLP tasks

include:

e Named Entity Recognition (NER) for Terminology Alignment: To identify critical

entities such as stakeholders, system components, or specific actions. NER
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extracts domain entities like changelD and normalizes them. When a change
request mentions an entity that subsequently appears in design-artifact
descriptions, our pipeline flags all requirements containing that entity as
candidates for impact analysis

e Dependency Parsing for Syntactic Dependency Mapping: To analyze sentence
structure and understand grammatical relationships between words, aiding in
the interpretation of complex requirement descriptions. By constructing a
dependency tree for each requirement sentence, we capture head—modifier
relations (e.g. subject—>verb, verb—>object). When two requirements share a
modifier or refer to the same head term via different phrasings (“user login” vs.
“login by user”), their dependency graphs overlap. We can therefore
algorithmically detect these overlaps as potential impact links, even when no
exact term match exists.

e Part-of-Speech (POS) Tagging: To classify words based on their roles in a
sentence (e.g., noun, verb), which helps in understanding the context of the

requirements.

CoreNLP was utilized for its robust parsing capabilities, including coreference
resolution, while SpaCy was chosen for its efficiency in entity recognition and ease of

vectorization through pre-trained models.
Step 3: Vectorization

The textual data was converted into numerical vectors to facilitate similarity
comparisons. TF-IDF (Term Frequency-Inverse Document Frequency) vectorization was

implemented, transforming the text into a format suitable for ML algorithms.
Step 4: Similarity Calculation

Similarity scores between change requests and requirements were calculated based
on their vectorized representations. Cosine similarity was employed to measure the
semantic distance between pairs of vectors. Higher similarity scores suggest a higher

likelihood of impact between a change request and a requirement.
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Step 5: Predicting Impact

Based on the calculated similarity scores, predictions were made to determine which
requirements are likely impacted by each change request. Initially, a rule-based
approach was adopted, utilizing thresholds on similarity scores to identify potential
impacts. Further refinement of this step involved integrating additional NLP features to

improve the precision of the predictions.

5.6.2. Beir-Based Solution

The Beir-based solution was implemented using Python, with the full code and
replication package available on Zenodo. The following steps outline the

implementation process:
Step 1: Preprocessing Datasets:

The datasets were preprocessed to ensure consistency in text format and structure.
This included tokenization, normalization, and the removal of irrelevant elements such
as stopwords. The preprocessing phase is essential to ensure that the data is in an

appropriate format for information retrieval tasks.
Step 2: Installation of Beir Framework:

The Beir (Benchmarking Information Retrieval) framework was installed to facilitate
the evaluation of different information retrieval models. Beir provides a comprehensive
suite of tools for benchmarking information retrieval tasks and supports various

retrieval methods such as lexical retrieval and dense retrieval.
Step 3: Loading Models:
Three models were loaded for use in the Beir-based solution:

e BM25 (Elasticsearch): A lexical retrieval model that ranks documents based on
keyword matches, often serving as a baseline in information retrieval tasks.

e Bi-Encoders: A dense retrieval model that leverages pre-trained BERT encoders to
capture semantic similarities between queries and documents, offering enhanced

retrieval performance compared to traditional lexical methods.
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e Re-ranked Cross-Encoder: This model refines the initial rankings produced by BM25
and Bi-Encoders by considering the interaction between document pairs and
assigning relevance scores. The Cross-Encoder is used to improve precision in the

final ranking.
Step 4: Application and Evaluation on Datasets:

The models were applied to the datasets to evaluate their performance. Metrics such
as precision, recall, and F1 scores were computed to assess the effectiveness of the Beir-

based solution in identifying impacted requirements for the given change requests.
Step 5: Searching for New Changes:

The trained models were used to search for newly introduced changes. This involved
retrieving relevant requirements from the dataset and ranking them based on their

similarity to given changes.
Step 6: Generating Similarity Scores:

For each change request, similarity scores between the change and the relevant
requirements were generated. These scores helped prioritize impacted requirements,

providing valuable insights for decision-making in software development.

5.7. Application of Mathematical Heuristics

In this research, mathematical heuristics are implemented within the NLP-based and
BEIR-based frameworks to optimize the selection process for sentences most relevant
to a given change. These frameworks compute similarity scores between requirement
sentences and changes using a combination of linguistic and contextual features.
Without heuristics, processing the entirety of the resulting similarity scores would lead
to significant computational overhead. The integration of heuristics addresses this
challenge by filtering and prioritizing the highest-scoring similarities to maintain

computational efficiency while preserving accuracy.

The application of heuristics involves several strategies designed to optimize the

process of narrowing down the similarity results. One key technique is score
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thresholding, which eliminates sentences with similarity scores below a predefined
baseline. This baseline is determined by analyzing the distribution of scores in the
dataset, ensuring that only sentences with meaningful similarity are considered for
further analysis. For instance, if the score distribution indicates a natural inflection point
at 0.3, sentences scoring below this value are excluded, reducing computational costs

without sacrificing relevance.

Another essential approach is significant drop detection, which identifies points where
similarity scores decline sharply among ranked results. A sharp drop in similarity scores
often marks the boundary between semantically relevant and irrelevant sentences. For
example, if the ranked scores drop from 0.85 to 0.40 within a few positions, the point of
decline is used as a cutoff. This heuristic dynamically adapts to variations in score
distributions across different datasets, ensuring flexibility and efficiency in the selection

process.

Relative score proportionality is also applied to retain sentences with similarity scores
that are at least a certain percentage of the highest score in the dataset. For instance, if
the highest score in a dataset is 0.9, sentences scoring below 0.45 are excluded, ensuring
that only sentences with strong semantic alighnment are retained. This heuristic further
refines the results by emphasizing the most relevant sentences based on their proximity

to the highest-ranked similarity score.

By leveraging these heuristics, the study effectively narrows down the selection
process, allowing for the identification of sentences with high semantic relevance to a
given change. This approach enables dynamic adjustment of similarity evaluations based
on real-time observations of the score distribution. The integration of heuristics
facilitates computational efficiency, making it feasible to analyze large datasets while
maintaining the precision needed for robust CIA. This application demonstrates the
practical value of heuristics in improving the efficiency and accuracy of NLP and BEIR-
based models within the SRCIA framework. Furthermore, it highlights the role of
heuristics as a critical component in balancing computational constraints with analytical

rigor.
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5.8. Dual Model Evaluation Metrics

Evaluating information retrieval models in software engineering, particularly in the
context of requirements CIA, necessitates metrics that assess the correctness,
relevance, and value of the retrieval results for users. In this study, a range of metrics is
applied to evaluate the performance of the dual-model framework, which incorporates
the BEIR Re-ranking-based model. These metrics offer diverse perspectives on the

model’s effectiveness, providing a comprehensive evaluation.

5.9. Information Retrieval Models

To ensure a robust evaluation, the following metrics were selected to assess the

retrieval model’s performance:
a) Precision and recall at k

Precision at k (P@k) and Recall at k (R@k) were employed to evaluate the immediate
value of the search results. Precision measures the relevance of the retrieved
requirements impacted by a change, indicating the proportion of relevant results within
the top k results. In contrast, recall assesses the model's ability to retrieve all impacted

requirements, ensuring completeness in the retrieval process.

In the context of software development, these metrics are crucial. Failing to retrieve
an impacted requirement can lead to significant project delays or errors, while retrieving
too many irrelevant requirements increases the manual effort required for further
inspection. Thus, achieving a balance between precision and recall is essential for

efficient resource allocation and decision-making.

The choice of k reflects a balance between user expectations and the practicality of
reviewing retrieved requirements. Based on common stakeholder behaviour in software
projects and decision-makers’ willingness to engage with a ranked list of results, values
of k=5 and k=10 were chosen. These values align with standard practices in the
information retrieval domain and ensure that the model delivers relevant results within

a manageable scope.
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b) Normalized Discounted Cumulative Gain (NDCG@k) and Mean Average Precision

(MAP@K)

To evaluate the quality of the ranking within the retrieval system, Normalized
Discounted Cumulative Gain (NDCG@k) and Mean Average Precision (MAP@k) were

selected as additional metrics.

MAP@k provides an average precision score independent of rank position by
calculating precision across various threshold levels, offering a comprehensive view of
how well the model performs over different ranks. NDCG@k further enhances this
evaluation by considering the importance of the ranking order, ensuring that the most
critical impacted requirements appear higher in the list. This is particularly significant in
software development, where prioritizing high-impact requirements can lead to more

efficient decision-making processes.

Both metrics are essential when prioritizing impacted requirements in order to
optimize the accuracy and efficiency of the impact analysis. By weighting higher-ranked
results more heavily, NDCG@k ensures that the retrieval system favors more relevant
and critical requirements, reducing the time and effort required to review irrelevant or

less significant results.

Additionally, it is recognized that the binary relevance typically assumed in calculating
these metrics may not fully capture the varying degrees of impact that a change may
have on different requirements. To address this complexity, future work will explore
graded relevance evaluations, which can offer a more nuanced understanding of the

impact of severity.

5.10. NLP Model Evaluation

To thoroughly evaluate the performance of the NLP model, two metrics—MUC
(Message Understanding Conference) and B® (B-Cubed)—were utilized. These metrics
are specifically designed for assessing coreference resolution tasks, providing an in-
depth analysis of how effectively the model identifies and clusters references to the

same entities across different texts. Given the nature of this research, they were
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adapted to assess the correctness and completeness of the predicted impact links

between change requests and software requirements.
a) MUC (Message Understanding Conference)

MUC evaluates how well the predicted set of impacted requirements corresponds to
the actual set, focusing on the correctness and completeness of the links between
change requests and requirements. In this context, a "link" is defined as the correctly
identified relationship between a change request and a requirement. MUC primarily
focuses on whether the model can capture the entire set of impacted requirements and
whether those predicted links are accurate, giving insight into the overall completeness

of the prediction.
b) B3 (B-Cubed)

The B3 metric was used to compute precision, recall, and F1 scores for each
requirement's impact prediction. This evaluation method considers the presence or
absence of a requirement in both the predicted and actual impacted sets. B? calculates
precision as the ratio of correctly predicted impacts to the total number of predicted
impacts and recall as the ratio of correctly predicted impacts to the total number of
actual impacts. The F1 score is the harmonic means of precision and recall, providing a

balanced evaluation of the model’s performance.

To assess the overall effectiveness of the model in predicting impacted requirements,
the real and predicted impacted sets were extracted for each change scenario. The
aggregate B3 metrics—Precision, Recall, and F1 Score—were then computed across all
change scenarios, offering a comprehensive view of the model's predictive accuracy and

completeness.

5.11. Results and Findings

This section outlines the performance of NLP-based and BEIR-based solutions within
the dual-model framework, highlighting their effectiveness and key findings. The

following subsections provide detailed results for each approach.
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5.11.1. NLP Solution Results

Table 5.1 presents a summary of the overall precision, recall, and F1 score for each

dataset, offering a comprehensive evaluation of the model's performance. Table 5.2

details the precision, recall, and F1 scores associated with each change ID within the

datasets, illustrating the specific impact of individual modifications. The findings

highlight the varying degrees of success achieved by the combined NLP approach in

identifying impacted requirements.

Dataset-l demonstrated promising results, with a precision of 0.5345, recall of
0.8389, and an F1 score of 0.6530. The high recall value indicates that the method
effectively identified a wide range of relevant impacted requirements, though the
lower precision suggests the inclusion of more false positives. The F1 score reflects
a reasonable balance between precision and recall, making the method practical for
this dataset.

Dataset-W yielded more modest results, with a precision of 0.4810, a recall of
0.6236, and an F1 score of 0.5431. Compared to Dataset-I, both precision and recall
showed a decline, indicating challenges in accurately identifying impacted
requirements. This suggests that Dataset-W presents unique complexities or
domain-specific characteristics that pose difficulties for the combined NLP
approach.

Dataset-O exposed the limitations of the method, registering the lowest precision
(0.2781), recall (0.4922), and F1 score (0.3554) among the datasets. These results
underscore significant challenges in applying the approach to Dataset-O, potentially
due tointrinsic features of the dataset that impede effective NLP analysis. The lower
precision and F1 scores highlight the model's difficulty in maintaining accuracy

when applied to this dataset.

Overall, the results reflect that while the combined NLP method performs adequately
across certain datasets, its efficacy can vary depending on the characteristics of the
dataset. High recall scores demonstrate the model's strength in identifying a broad
range of impacted requirements, but lower precision scores suggest the need for further

refinement to reduce false positives and improve overall accuracy.
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Table 5.1. The overall evaluation metrics for NLP solution

Dataset Overall Precision Overall Recall Overall F1 Score
I 0.5345 0.8389 0.653
W 0.481 0.6236 0.5431
(0] 0.2781 0.4922 0.3554

The chart below, figure 5.2, shows the overall Precision, Recall, and F1-Score of the
NLP-based model on Datasets |, W, and O, highlighting that Dataset | achieves the
highest coverage (recall) and balanced performance (F1-Score) despite lower precision,

while Dataset O shows the greatest drop in all three metrics.

Clustered Bar Chart of Precision, Recall, and F1-Score

Dataset |
0.8 Dataset W
Dataset O

Score

Precision Recall F1-Score
Metric

Figure 5.2.Clustered Bar Chart of Precision, Recall, and F1-Score of the NLP-based model
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Table 5.2. NLP solution results

Dataset Change ID Precision Recall F1 Score
Case 1l 0.14 0.25 0.18
Case 2 0.29 1.00 0.44
Case 3 0.22 1.00 0.36
Case 4 0.33 0.33 0.33
Case 5 1.00 1.00 1.00
Case 6 1.00 1.00 1.00
Case 7 0.50 1.00 0.67

I Case 8 0.50 0.75 0.60
Case 9 0.67 1.00 0.80
Case 10 0.33 0.50 0.40
Case 11 0.33 0.75 0.46
Case 12 0.20 1.00 0.33
Case 13 0.50 1.00 0.67
Case 14 1.00 1.00 1.00
Case 15 1.00 1.00 1.00
C1 1.00 0.50 0.67
C2 0.60 0.33 0.43
C3 0.33 1.00 0.50
ca 1.00 1.00 1.00
C5 0.67 0.75 0.71
cé6 0.57 0.57 0.57
c7 0.20 0.25 0.22
c8 0.50 1.00 0.67
W (o] 0.70 0.78 0.74
Cc10 0.33 0.67 0.44
Cc11 0.50 0.25 0.33
C12 0.20 0.25 0.22
C13 0.50 0.83 0.63
C14 0.00 0.00 0.00
C15 0.10 0.33 0.15
C16 0.40 0.67 0.50
C17 0.50 1.00 0.67
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Cc18 0.00 0.00 0.00
C19 0.20 0.40 0.27
C20 1.00 0.40 0.57
C21 0.40 1.00 0.57
C22 0.60 0.75 0.67
C23 0.67 1.00 0.80
C24 0.30 0.43 0.35
C25 1.00 1.00 1.00
C26 0.67 0.80 0.73
Cc27 0.43 1.00 0.60
C28 0.10 0.50 0.17
CROO7 0.30 0.43 0.35
CR503689 0.30 0.75 0.43
CR503779 0.20 0.50 0.29
CR504139 0.29 0.29 0.29
CR504310 0.30 0.50 0.38
CR504311 0.00 0.00 0.00
CR504321 0.20 0.67 0.31
CR504322 0.10 0.25 0.14
CR504323 0.20 0.67 0.31
CR504324 0.20 1.00 0.33
CR504325 0.29 0.50 0.36
CR504326 0.20 0.50 0.29
CR504327 0.30 1.00 0.46
CR504328 0.40 0.67 0.50
CR504329 0.67 0.67 0.67
CR504330 0.00 0.00 0.00
CR504331 0.40 0.57 0.47
CR504332 1.00 0.50 0.67
CR504333 0.00 0.00 0.00
CR504334 0.25 1.00 0.40
CR504335 0.40 0.67 0.50
CR504336 0.30 0.75 0.43
CR504337 0.40 0.80 0.53
CR504338 0.10 0.50 0.17
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CR504339 0.00 0.00 0.00
CR504340 0.20 0.33 0.25
CR504341 0.00 0.00 0.00
CR504342 0.20 0.67 0.31
CR504793 0.30 0.30 0.30
CR504799 0.30 0.60 0.40
CR600203 0.33 0.33 0.33
CR600204 0.33 0.33 0.33
CR60200 0.00 0.00 0.00
CR60202 1.00 1.00 1.00

5.11.2. Beir-Based Results:

Table 5.3 provides a detailed summary of the evaluation metrics, including Average
Precision, Average Recall, Average NDCG, and Average MAP, evaluated at cutoff values
of 5 and 10. These metrics offer a comprehensive view of the Beir-based model's
performance across the datasets, highlighting its effectiveness in terms of precision,

recall, and ranking quality.

Additionally, Table 5.4 illustrates the variation in specific metrics, map_cut_5 and
ndcg_cut_5, across different datasets. These metrics are particularly useful in evaluating
the ranking efficiency and precision of the retrieval model within a given threshold. The
map_cut_5 metric measures the mean average precision of the top 5 results, while

ndcg_cut_5 focuses on the quality of the ranking within the top 5 most relevant results.

Together, these metrics provide a reliable indication of how well the Beir-based
solution applies to real-world software development processes, particularly in terms of
usefulness, recall, ranking efficacy, and precision. By analyzing these results, it becomes
evident how the model performs in prioritizing and ranking impacted requirements

based on their relevance to a given change request.
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Table 5.3. Beir-based average results

§ Average Average | Average | Average Average Average Average | Average
§ Precision@5 | Recall@5 | NDCG@5 | MAP@5 |Precision@10| Recall@10 | NDCG@10 | MAP@10
W | 0.6643 0.8049 0.9075 0.7819 | 0.3643 0.8454 0.8775 0.8141
I 0.44 0.9667 0.9689 0.9556 | 0.22 0.9667 0.9689 0.9556
O | 0.5706 0.7815 0.8486 0.7449 | 0.3235 0.8345 0.8443 0.7935

Figure 5.3 shows the BEIR-based average metrics at cutoff 5, Precision@5, Recall@5,
NDCG@5, and MAP@5, for Datasets W, |, and O, illustrating that Dataset | delivers near-
perfect recall and ranking quality, Dataset W offers the best precision-recall balance,

and Dataset O falls in between.

BEIR-Based Average Metrics at Cutoff 5

1.0f
Dataset W

Dataset |
Dataset O

0.81

0.6

Score

0.4r

0.2

0.0

Precision@5 Recall@5 NDCG@5 MAP@5
Metric

Figure 5.3.Clustered Bar Chart of Average Metrics of the BEIR-based model
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Table 5.4. Beir-based results

Dataset Change Request map_cut_5 Scores ndcg_cut_5 Scores
Case 1l 1.00 1.00
Case 2 1.00 1.00
Case 3 1.00 1.00
Case 4 1.00 1.00
Case 5 1.00 1.00
Case 6 1.00 1.00
Case 7 1.00 1.00

I Case 8 1.00 1.00
Case 9 0.50 0.61
Case 10 1.00 1.00
Case 11 1.00 1.00
Case 12 0.83 0.92
Case 13 1.00 1.00
Case 14 1.00 1.00
Case 15 1.00 1.00
C1 1.00 1.00
C2 0.33 0.72
C3 0.71 0.83
ca 1.00 1.00
C5 0.56 1.00
Cé 1.00 1.00
c7 1.00 1.00
c8 1.00 1.00
W (o] 0.44 0.87
Cc10 0.67 0.77
c11 1.00 1.00
C12 0.34 0.70
C13 0.83 1.00
Cl4 0.50 0.61
C15 1.00 1.00
Cle 0.83 1.00
C17 0.80 0.87
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Cc18 1.00 1.00
C19 0.40 0.55
C20 1.00 1.00
C21 0.95 0.98
C22 0.63 1.00
C23 0.75 0.88
C24 0.54 0.85
C25 1.00 1.00
C26 0.80 0.87
Cc27 0.81 0.91
C28 1.00 1.00
CROO7 0.71 1.00
CR503689 1.00 1.00
CR503779 0.25 0.41
CR504139 0.71 1.00
CR504310 0.83 1.00
CR504311 0.35 0.65
CR504321 0.67 0.77
CR504322 0.75 0.83
CR504323 1.00 1.00
CR504324 1.00 1.00
CR504325 0.68 0.76
CR504326 1.00 1.00
CR504327 1.00 1.00
CR504328 0.83 1.00
CR504329 1.00 1.00
CR504330 1.00 1.00
CR504331 0.71 1.00
CR504332 1.00 1.00
CR504333 0.50 0.61
CR504334 1.00 1.00
CR504335 0.67 0.77
CR504336 0.75 0.83
CR504337 0.80 0.87
CR504338 1.00 1.00
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CR504339 1.00 1.00
CR504340 0.67 0.87
CR504341 1.00 1.00
CR504342 0.70 0.85
CR504793 0.26 0.68
CR504799 0.40 0.55
CR600203 0.00 0.00
CR600204 0.83 1.00
CR60200 0.25 0.39
CR60202 1.00 1.00

5.12. Discussion

This section analyses the results of the proposed solutions, with subsections focusing

on the NLP-based and Beir-based approaches.

Different project contexts demand different balances between catching every possible
impacted requirement (high recall) and minimizing false alarms (high precision). For
safety-critical or regulatory systems, missing even a single dependency could have
severe consequences; in such cases, configuring the dual-model pipeline for higher
recall, even at the expense of more manual review, is justified. Conversely, for fast-
moving agile teams where throughput is paramount, prioritizing precision reduces
analyst overhead, accepting that a few subtle impacts may be caught later in the
iteration cycle. By exposing confidence thresholds in both the NLP and BEIR stages, our
framework allows teams to tune this balance according to risk tolerance and available

review effort.

5.12.1. Discussion on the NLP Solution Results

A detailed review of the outcomes for each specific change request has yielded
significant insights. Certain change requests, particularly those related to core
functionalities or critical components of the system, consistently demonstrated

improved precision and recall. This suggests that the NLP method is particularly effective
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at identifying and assessing the impact of changes that are well-defined or central to the

system's operations.

In contrast, other change requests produced lower scores, likely due to several factors,
including ambiguous requirement descriptions, insufficient context in the change
requests, or the inherent limitations of NLP technologies in handling complex semantic
relationships without additional contextual information. These challenges emphasize
the importance of clarity in the description of requirements and change requests to

facilitate more accurate impact analysis.

The overall results from the datasets present a mixed but informative picture. Dataset-
| demonstrated the highest success, achieving strong precision and recall scores, which
may be attributed to the specific characteristics of the dataset—such as its domain focus
and the well-defined nature of its requirements. This alignment with the NLP solution's
strengths indicates that the model performs particularly well in environments with

structured, domain-specific data.

In contrast, Dataset-O encountered significant challenges, reflected in its lower
performance across all metrics. This disparity highlights the sensitivity of NLP techniques
to the linguistic and structural characteristics of the data being processed. It suggests
that the effectiveness of the NLP solution is highly dependent on the quality and
specificity of the dataset. Consequently, this points to the need for tailored NLP
strategies that are adapted to different domains or types of software documentation to

enhance the model’s performance.

5.12.2. Beir-Based Results Discussion

This subsection provides details of the results of the Beir-based approach for each

dataset.
(a) Discussion on Dataset-W:

The evaluation of the dual-model framework for requirements CIA on Dataset-W
yielded insightful results, demonstrating how well the model can extract and rank

relevant requirements. The implementation achieved a notable balance between recall,
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precision, and ranking efficiency, with the Bi-Encoder re-ranking mechanism

contributing significantly to this outcome.

A Precision@5 score of 0.6643 indicates that, on average, 66.43% of the top 5 returned
documents were relevant to the given change requests (C1 to C28). This level of accuracy
in the top results highlights the model's ability to prioritize the most relevant
requirements, addressing the needs of stakeholders who typically focus on the top-

ranked results.

Despite this strong performance, the Recall@5 score of 0.8049 suggests that the
model could further improve its ability to retrieve a broader set of relevant
requirements in the top 5. This balance between capturing the most critical
requirements and excluding irrelevant ones presents a challenge in maintaining

precision while improving recall.

When expanding the evaluation to the top 10 requirements, Precision@10 dropped
to 0.3643, indicating the trade-off between increasing the result set size and reducing
precision. Nevertheless, the Recall@10 score rose to 0.8454, reflecting broader
coverage and the inclusion of more relevant requirements, albeit at the cost of

introducing some irrelevant ones.

The NDCG scores of 0.9075 (for 5 results) and 0.8775 (for 10 results) highlight the
model's ability to rank relevant requirements effectively. The slight decline from 5 to 10

indicates the challenge of maintaining ranking quality as the result set grows.

Moreover, the MAP scores showed a positive trend, improving from 0.7819 (at 5
results) to 0.8141 (at 10 results), suggesting that the model preserves ranking precision
across a broader range of requirements. This indicates the model's utility when users

are prepared to explore a more extensive set of results.
(b) Discussion on Dataset-I:

The evaluation of the dual-model framework on Dataset-l yielded distinct results,
shedding light on the dataset's characteristics and areas where the model both excels
and faces challenges. Unlike Dataset-W, Dataset-l produced a high recall at the expense

of lower precision.
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With a Precision@5 score of 0.4400, the model was less precise in retrieving top
results. However, the exceptionally high Recall@5 score of 0.9667 demonstrates that
the model was highly successful in retrieving nearly all relevant requirements within the

top 5, albeit with the inclusion of non-relevant documents that lowered precision.

Similarly, Precision@10 and Recall@10 scores followed this trend, with values of
0.2200 and 0.9667, respectively, showing that the model maintained its ability to
capture nearly all relevant requirements, though more non-relevant results were

included as the result set size increased.

The NDCG@5 and MAP@5 scores—0.9689 and 0.9556, respectively—demonstrate
the model's strong ranking performance and precision at the top of the result set. Even
as the result set size doubled, the model maintained these scores at NDCG@10 and
MAP@10, reflecting its ability to rank relevant requirements effectively across different

result set sizes.

These results confirm the model’s ability to retrieve relevant requirements with near-
perfect recall, a valuable strength in software development environments where
missing critical requirements can be costly. However, the lower precision suggests the

need to refine the retrieval process to reduce irrelevant data while maintaining recall.
(c) Discussion on Dataset-O

For Dataset-O, the Precision@5 score of 0.5706 and the Recall@5 score of 0.7815
indicate a strong initial performance in retrieving relevant requirements within the top
5 results. This balance suggests that a significant portion of relevant requirements is

correctly prioritized, making it suitable for users focused on the top results.

As more results are considered, there is a trade-off between relevance and quantity,
reflected by the drop in Precision@10 to 0.3235 and the increase in Recall@10 to
0.8345. This trade-off illustrates the challenge of expanding result sets while maintaining

precision.

The NDCG@5 score of 0.8486 and the NDCG@10 score of 0.8443 highlight the model's

effectiveness in accurately ranking the retrieved requirements, with only a slight decline
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in ranking quality as the number of results increases. This consistency suggests that the

model's ranking mechanism is robust even with a more extensive result set.

The MAP scores also showed an improvement from 0.7449 (at 5 results) to 0.7935 (at
10 results), indicating that the model effectively maintains precision even as more

requirements are reviewed.

The performance on Dataset-O highlights the model's ability to capture relevant
requirements while ranking them effectively. However, the decline in precision as the
number of retrieved requirements grows underscores the need for further refinement,

particularly in improving the re-ranking process to balance precision and recall.

Conclusion- The evaluation of Dataset-O provides valuable insights into the dual-
model framework’s strengths in requirements CIA. While the model excels in recall and
ranking quality, future enhancements should focus on improving precision without
sacrificing recall. This balance is essential for supporting informed decision-making in

software development processes.

5.12.3. Comparison Between NLP-Based and Rule-Based CIA

Approaches

In the context of software requirements Change Impact Analysis (CIA), NLP-based and
rule-based approaches offer fundamentally different strengths and limitations. While
both aim to identify the relationships between change requests and potentially
impacted requirements, their underlying methodologies and adaptability diverge

significantly.

NLP-based models rely on advanced natural language processing techniques to
understand the semantics, syntax, and context of textual requirements. These models,
particularly when enhanced with tools such as CoreNLP and SpaCy, can interpret varied
sentence structures and terminologies. This flexibility allows them to perform effectively
across diverse datasets and evolving documentation styles. By contrast, rule-based
systems are grounded in fixed patterns, often defined through keyword matching,

regular expressions, or pre-set dependency rules. As a result, they are inherently rigid.
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Any deviation from predefined patterns, such as novel phrasing or unexpected
terminology, typically requires manual rule adjustments, limiting their ability to

generalize (Arora et al. 2015a).

Scalability is another critical factor distinguishing these two approaches. NLP-based
methods scale well to large datasets, even those with heterogeneous language use,
because their models can adaptively learn from data distributions. In contrast, rule-
based methods tend to degrade in performance as the volume and variability of the
dataset grow. This makes them more suitable for smaller or highly structured domains

where language use is predictable and controlled (Arora et al. 2015a).

From a performance standpoint, rule-based systems may deliver high precision within
narrowly defined contexts, since they trigger only when specific criteria are met.
However, this narrow targeting often results in lower recall, as many impacted
requirements fall outside the rigid rule definitions. NLP models, on the other hand, tend
to strike a better balance between precision and recall. Their semantic capabilities allow
them to identify relevant impacts even when textual expressions differ significantly, as
demonstrated by higher recall values observed in the evaluations on Dataset-l and

Dataset-W (Arora et al. 2015a; Goknil, Kurtev & Berg 2016).

Finally, maintainability sets these approaches further apart. Rule-based systems
demand frequent manual updates to stay current with new requirement styles or
domain shifts. This creates an ongoing maintenance burden for requirements engineers.
NLP-based systems, however, can evolve through model retraining or fine-tuning
without changing the underlying logic or architecture. This adaptability makes them
more sustainable in dynamic development environments where requirements evolve

over time (Goknil, Kurtev & Berg 2016).

In summary, while rule-based approaches remain valuable in constrained scenarios
requiring high precision and interpretability, NLP-based CIA methods offer superior
flexibility, scalability, and adaptability. Their capacity to handle unstructured language
and generalise across varied datasets positions them as more robust solutions for
modern software engineering projects involving large-scale or frequently changing

requirements.
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5.12.4. Dataset-Specific Challenges & Remedies

Dataset-O proved the most difficult of our three datasets. Having been edited by
multiple authors over more than 14 years, it contains inconsistent terminology, uneven
levels of detail, and sparse contextual cues. These characteristics lead to noisy
embeddings, poor lexical overlap, and fractured dependency graphs, which explain the

lower Precision, Recall, and F1 scores we observed.

To address these issues, first we recommend domain-adaptive fine-tuning of our
neural retrievers on a small, manually validated subset of Dataset-O. By exposing the Bi-
Encoder and Cross-Encoder models to the dataset’s idiosyncratic vocabulary and
phrasing, we can improve their ability to capture its unique semantics. Second,
integrating a lightweight domain ontology mapping, like “subscriber endpoint” to “user
API”, can augment embeddings with explicit concept links and boost semantic coverage
where raw vectors fall short. Third, an active-learning loop that flags low-confidence
predictions for human review can help surface edge-case dependencies. These
annotations both improve model retraining and focus our efforts on the most
challenging examples. Finally, layering in a simple rule-based post-filter for critical entity
patterns (such as “credit module” or “payment gateway”) can catch high-risk

dependencies that might slip past even a well-tuned neural parser.

Together, these dataset-tailored refinements will help our dual-model framework
adapt not only to generic requirements text but also to the quirks of older, highly

evolved repositories like Dataset-O.

5.13. Summary

This research proposed an approach to analyze the impacts of software requirements
change requests, focusing on identifying which existing requirements would be affected
by a new change. The primary objective was to design a reliable framework to enhance
planning and prioritization in the execution of requirements changes within agile

software development environments.
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Two approaches were employed to evaluate the proposed research: an NLP-based
solution using CoreNLP and SpaCy, and a Beir-based solution leveraging BM25 via
Elasticsearch, with Bi-Encoders and Cross-Encoders for dense retrieval and ranking. Both
methods were assessed across three real-world datasets (W, I, and O), each presenting

unique linguistic and domain-specific characteristics.

The NLP-based approach demonstrated significant efficacy in Dataset-I, achieving an
overall F1 Score of 0.653, indicating a strong capacity to identify the impacts of
requirements changes while maintaining a balance between precision and recall. This
underscores the suitability of the NLP-based method when dealing with datasets that
align well with linguistic models, highlighting its utility in cases where syntactic and

semantic interactions are crucial for predicting impacted requirements.

Conversely, the Beir-based method excelled in Dataset-W, showcasing its superior
precision in identifying the top 5 impacted requirements. With an Average Recall@5 of
0.8049 and an Average Precision@5 of 0.6643, the Beir-based solution proved highly
effective in quickly retrieving the most relevant impacted requirements. A notable
observation was the method's performance in Dataset-l, where its ability to capture a
broader range of potential impacts was reflected in high recall scores. However, the 0.22
Average Precision@10 score highlights a trade-off with precision, emphasizing the
method’s tendency to introduce more false positives while maintaining comprehensive

coverage.

A comparison of the two approaches provides deeper insights into their respective
strengths. The NLP-based method outperforms the Beir-based solution in Dataset-l,
where it adeptly captures nuanced interactions between syntactic structures and
semantic meaning. This balance between precision and recall makes the NLP-based
approach a more reliable predictor of impacted requirements when the data aligns with
its linguistic processing capabilities. In contrast, the Beir-based approach excels in recall,
particularly in Dataset-l, owing to its utilization of BM25 and advanced encoder
techniques. While the Beir model may introduce more false positives, its ability to
retrieve a larger set of potentially impacted requirements makes it an invaluable tool for

ensuring comprehensive coverage in CIA.
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In summary, the dual-model framework presented in this research offers a promising
solution for improving decision-making in software development through efficient
requirements CIA. By combining BM25 for initial retrieval with Bi-Encoders and Cross-
Encoders for semantic understanding and re-ranking, the framework addresses both
precision and recall, providing a balanced and comprehensive approach to managing
requirements changes. Future research may explore further enhancements to refine
precision while maintaining the recall strengths demonstrated by the Beir-based

method.
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Chapter 6.
Implementation of Retrieval-Augmented
Generation (RAG) Model for Predicting

Requirement Change Impact

6.1. Introduction

This chapter introduces the implementation of the RAG model, a critical component
of the SRCIA framework described in Chapter 3. The RAG model integrates information
retrieval and generative language models, providing a sophisticated solution for
enhancing decision-making in software requirement CIA. As the SRCIA framework
outlines, the RAG model represents an advanced layer designed to handle large-scale,
dynamic, and heterogeneous datasets where deep contextual understanding is

essential.

Implementing the RAG model marks a significant contribution to the SRCIA
framework. It leverages the retrieval capabilities of vector-based embedding techniques
to identify relevant requirements. It combines them with the generative reasoning of
LLMs to predict and explain the potential impacts of changes. This chapter details the
RAG model's conceptual framework, technical architecture, and implementation

specifics, as well as its integration within the SRCIA framework. It also highlights the
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enhancements made to standard RAG implementations tailored to the unique

challenges of requirements engineering.

Despite advances in requirements traceability and change impact analysis, most prior
solutions suffer from three core limitations. First, rule-based and keyword-matching
pipelines break down whenever stakeholders use varied terminology or complex
sentence constructions, yielding brittle coverage and high false-negative rates. Second,
single-model approaches, whether classical ML classifiers or dense-retrieval systems,
tend to excel only in narrow, well-structured datasets and degrade sharply under
domain shifts or unstructured text. Finally, where hybrid or ensemble strategies have
been proposed, they often lack a clear mechanism for integrating retrieval evidence with
generative reasoning, leaving analysts without coherent explanations or fine-grained
confidence measures. These gaps motivate our RAG design, which combines robust
vector retrieval with LLM-powered generation to deliver both high recall and human-

readable impact predictions.

One of the primary contributions of this research is adapting the RAG model to the
context of CIA for software requirements. This includes combining retrieval-based
methods with fine-tuned generative models to create a hybrid approach that optimally
balances precision and contextual understanding. Additionally, modifications were
made to the retrieval mechanism to align with the semantic structures commonly
observed in software requirements documents. These customizations enhance the
model's relevance ranking and ensure compatibility with the datasets used in the SRCIA

framework.

The chapter also illustrates how the RAG model complements the NLP and BEIR-based
solutions previously implemented in the SRCIA framework. While the NLP and BEIR-
based methods focus on semantic and lexical similarity for structured and semi-
structured datasets, the RAG model extends this capability by providing deeper
contextual insights and explaining predicted impacts. This advancement addresses a gap
in the framework by enabling more nuanced analysis for complex and unstructured

datasets, such as lengthy requirements specifications and dynamic change logs.
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By implementing and refining the RAG model, this research contributes a novel
approach to integrating state-of-the-art Al techniques within the SRCIA framework. The
chapter concludes with an evaluation of the RAG model's performance, highlighting its
effectiveness in improving accuracy, scalability, and contextual understanding in

predicting software requirement change impacts.

6.2. Applications of LLMs in CIA

LLMs play a pivotal role in automating CIA within software requirements engineering.
Their ability to process and interpret large volumes of unstructured data with contextual
sensitivity makes them uniquely suited for this task. In this research, LLMs were
leveraged within a Retrieval-Augmented Generation (RAG) system, combining retrieval

and generative capabilities to address the complexities of CIA.

The LLM component of the RAG system serves as the generative backbone, producing
contextually informed predictions based on retrieved requirements. One of the
significant applications of LLMs is their ability to analyze the context and semantics of
requirements, identifying intricate dependencies that traditional models may overlook.
This capability ensures a more comprehensive and accurate identification of impacted
requirements. Additionally, by leveraging fine-tuned LLMs such as Phi 3.5, the system
demonstrates predictive modeling capabilities, allowing it to predict the impacts of
changes with high precision, even in datasets characterized by linguistic variability and

unstructured text.

LLMs also contribute significantly to enhancing stakeholder communication. Their
generative capabilities enable the creation of natural language explanations for
predicted impacts, improving clarity and facilitating informed decision-making among
stakeholders. Furthermore, LLMs augment the retrieval process by ensuring that
retrieved documents are contextually aligned with the query, which enhances the
overall accuracy and relevance of the results. Finally, LLMs' adaptability allows their
application across diverse domains, such as finance, healthcare, and manufacturing,

broadening the scope and applicability of CIA methodologies.
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6.3. Architecture and Functionality of LLMs

The core architecture of modern LLMs relies on the Transformer model, particularly
its self-attention mechanism, which enhances the model's ability to process sequential
data effectively. Through self-attention, LLMs can identify the relationships between
individual words in a sentence and the broader contextual relationships among
sentences. This mechanism is critical in enabling the model to generate coherent,
contextually aligned responses, an essential feature for processing complex

requirements in CIA.

In the RAG system, the self-attention mechanism plays a pivotal role, allowing the
model to incorporate immediate lexical meaning and deeper semantic relationships.
This dual focus on linguistic and semantic layers enhances the system’s ability to deliver
responses that reflect not only the content of specific requirements but also their

underlying dependencies and broader context(Zheng et al. 2023).

6.4. LLMs as a Reasoning Engine in the RAG Framework

Within the RAG framework, the LLM functions as the primary reasoning engine,
synthesizing information from retrieved requirements and generating responses that
predict impacted requirements. This capability is crucial for the requirements CIA, where
nuanced interpretations and comprehensive understanding are required to identify
potential implications accurately. By combining retrieval-based input with generative
reasoning, the LLM component of the RAG model enables a more contextually aware

and responsive system.

In this thesis, the LLMs are also employed as benchmarks to evaluate the generated
responses’ quality and alighnment with intended outcomes, a process referred to as
"LLM-as-a-judge." This benchmarking approach provides further interpretative depth,

capturing the semantic quality of generated text beyond syntactic accuracy.
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6.5. Selected LLMs and Their Roles

For this research, multiple LLMs such as Phi 3.5, GPT-3, T5, BERT and Flan-T5 were
incorporated, each serving distinct functions to optimize the framework's performance.
The chosen LLMs include Phi 3.5, among others, selected for their specific capabilities in
reasoning, contextual inference, and adaptability across varying requirements datasets.
These models collectively contribute to achieving high precision and recall in identifying
impacted requirements, particularly in unstructured or semi-structured datasets (Abdin

et al. 2024).

6.6. RAG Architecture

The architecture of a RAG model consists of two main components: the retriever
component and the generator component, each playing a distinct role in the pipeline.
Figure 6.1 illustrates the RAG model pipeline, which consists of the query being passed
through the retriever to find relevant documents, followed by the generator producing

a contextually informed response.
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Figure 6.1.The Architecture of RAG Model
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6.6.1. Retriever Component

The retriever component is essential for identifying and selecting documents or data
segments that provide relevant context for a query. It operates by searching a pre-
indexed knowledge base or database and scoring documents based on their relevance

to the query.

e Indexing: The knowledge base is pre-processed to create an index, allowing for
efficient searching. In this implementation, BM25 is used as the primary retrieval
algorithm due to its effectiveness in text-based search.

e Query Processing: The input query is tokenized and standardized to align with the
retrieval model’s input format. Tokenization ensures that the query is processed
consistently with the indexed data.

e Scoring and Ranking: The retriever ranks documents using scoring functions, such
as TF-IDF or vector similarity measures, to determine relevance. The top-k results

are selected based on their scores.

The retriever component offers several notable benefits. One of the primary
advantages is its speed and efficiency, as indexed search enables quick retrieval of
relevant context from large datasets. Additionally, the retriever is highly customizable,
allowing it to be adapted to various retrieval methods, including embedding-based
searches that leverage vector similarity for enhanced precision. This flexibility ensures
that the retriever can be tailored to meet specific requirements across different use

cases and domains.

6.6.2. Generator Component

The generator component takes the output of the retriever and integrates it into the
response generation process. It employs a transformer-based language model, such as

Phi-3.5, to produce informed, contextually aware responses.
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e Contextual Input: The input to the generator includes both the original query and
the retrieved documents. This combined input enriches the model’s understanding
and guides the response generation.

e Transformer Architecture: The Phi-3.5 model employs a multi-layered attention
mechanism that allows the model to weigh different parts of the input context,
ensuring that the response is coherent and relevant.

e Prompt Structuring: To maximize the model’s performance, input prompts are
carefully structured to guide the model’s response. This can include pre-processing
techniques that tailor the input format to emphasize critical points (White et al.
2023).

e Memory Optimization: Implementing quantization techniques, such as 8-bit
guantization using BitsAndBytesConfig, optimizes the model’s memory usage,
making it more suitable for practical deployment on hardware with limited

resources.

The generator component brings significant benefits to the RAG system. By
incorporating context retrieved from the knowledge base, the generator produces
responses that are more precise and informative, enhancing the relevance of its
outputs. Additionally, the generator is highly flexible, as it can be fine-tuned or adapted
to cater to different types of output requirements. Whether the desired response
format is explanatory text, concise bullet points, or in-depth analysis, the generator can

be customized to meet specific needs, making it a versatile tool for various applications.

6.7. RAG Applications in CIA

In the context of CIA, RAG models retrieve relevant requirement documents for a
given change request and generate predictions on how the requirements are impacted.
The retrieval component ensures that only contextually relevant information is
considered, while the generation component provides explanations and predictions

based on this retrieved context.
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6.8. Scalability of the RAG Framework for Enterprise-Level Software

Systems

Scalability is a crucial consideration when implementing Retrieval-Augmented
Generation (RAG) frameworks within enterprise-level software systems, given the
substantial volume, complexity, and dynamic nature of data in such environments.
Enterprise software typically involves extensive and continuously evolving repositories
of documentation, requirements, change logs, and stakeholder communications. As
such, ensuring that the RAG model can efficiently manage, retrieve, and generate
contextually accurate responses from large datasets is paramount for practical

adoption.

The RAG framework implemented in this research demonstrates considerable
scalability due to its inherently modular design, consisting of distinct retrieval and
generation components. The retrieval component, employing vector-based databases
like LanceDB and high-performance indexing tools such as FAISS, is particularly
conducive to scalable implementations. LanceDB’s efficient handling of high-
dimensional vectors and FAISS’s rapid approximate nearest-neighbour searches ensure
low latency and swift performance, even as the data scales into millions of embeddings.
This combination allows the RAG framework to maintain effective retrieval speeds,
ensuring practical applicability in environments with extensive documentation and rapid

guery-response cycles (Johnson, Douze & Jegou 2021).

Another critical factor enhancing scalability is the use of dense embeddings generated
through models like all-MiniLM-L6-v2, which facilitate compact yet semantically rich
representations of textual data. These embeddings significantly reduce the
computational overhead during retrieval by enabling efficient vector-based similarity
searches. Additionally, the retriever's architecture can be horizontally scaled by
deploying multiple instances or shards, allowing parallel querying of extensive vector
datasets. Such horizontal scalability ensures that even as enterprise data repositories

expand, retrieval performance remains robust and responsive.
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The generator component, based on transformer models such as Phi-3.5, also presents
opportunities and challenges regarding scalability. Transformer-based LLMs, while
powerful, are computationally demanding due to their large parameter sets and
intensive attention mechanisms. However, this research addresses these concerns
through advanced memory optimisation strategies, including 8-bit quantisation
techniques via BitsAndBytesConfig. These optimisations substantially reduce memory
usage and computational requirements, enabling deployment on enterprise hardware
resources without significantly compromising generation accuracy or response quality

(Jiang et al. 2025).

Moreover, the modular nature of the RAG architecture enables independent scaling
of the retrieval and generation components, allowing tailored resource allocation based
on enterprise needs. For instance, the retrieval component can be scaled aggressively
to handle very large datasets, while the generation component can utilise smaller,
optimised language models to manage computational resource constraints effectively

(Lewis et al. 2020).

Enterprise integration further enhances the scalability of the RAG framework through
the potential use of distributed processing and cloud infrastructure. Deploying the RAG
system within a cloud-based environment leveraging containerisation technologies
(such as Docker and Kubernetes) facilitates dynamic scaling, load balancing, and efficient
resource management. This deployment model allows organisations to rapidly scale
computational resources up or down based on demand fluctuations, ensuring consistent

performance and reliability during peak usage periods (Jiang et al. 2025).

Lastly, scalability also extends to ongoing maintenance and adaptability. Unlike
traditional rule-based systems, which require manual updates and can quickly become
burdensome at scale, the RAG framework can efficiently adapt through retraining or
incremental fine-tuning. This capability significantly reduces long-term maintenance
overhead and ensures the system remains accurate and relevant as enterprise

documentation and requirements evolve.

In summary, the RAG framework implemented in this research is well-suited for

scaling in enterprise-level software systems due to its modular design, efficient vector-
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based retrieval, computationally optimized generative models, and compatibility with
scalable deployment environments. Its adaptability in handling dynamic, large-scale
datasets positions it effectively for real-world enterprise applications, offering robust

performance, reduced maintenance requirements, and practical scalability.

6.9. Implementation Challenges & Limitations

While the RAG framework offers powerful retrieval and generation capabilities, it also
introduces non-trivial computational and operational overhead. Fine-tuning and serving
large LLMs such as Phi 3.5 or GPT-3 requires substantial GPU memory and inference
costs: for example, running Phi 3.5 in 16-bit precision can consume upwards of 12-16
GB of VRAM per instance, and pay-as-you-go hosting of GPT-3 can accumulate
thousands of dollars per month under heavy query loads. Although 8-bit quantization
and model sharding mitigate some of this cost, teams must carefully budget for both
peak GPU requirements and ongoing throughput expenses when deploying RAG in

production.

The retriever and generator components each come with distinct scalability
bottlenecks. BM25 indexing scales linearly with corpus size, making sub second retrieval
challenging once you exceed millions of documents—at which point approximate
nearest-neighbor indexes (FAISS) become essential but introduce recall and precision
trade-offs. Likewise, the transformer-based generator’s self-attention mechanism
grows quadratically with input length, so feeding in large top-k contexts can double or
triple inference latency. In practice, we found that capping the retrieved context to 3-5
passages and using batched generation improved throughput by 2x with only a 5-10 %
drop in F1 (Nogueira & Cho 2019).

Maintaining vector databases at enterprise scale also presents integration headaches.
Systems like LanceDB must support live updates as requirements evolve, yet re-indexing
millions of embeddings on every push is impractical. We addressed this by batching
nightly refreshes and using rolling shards, but this adds operational complexity and
temporary staleness in the retrieval index. Monitoring vector-store health and

periodically validating vector similarity thresholds is crucial to avoid silent degradation.

162



Finally, our choice of all-MiniLM-L6-v2 embeddings and the LanceDB+FAISS stack
reflects a balance of speed, accuracy, and ease of integration. We compared
alternatives—such as embed-all-mpnet and Milvus—but found that all-MiniLM offers 2—
3x faster encoding with only a 2-3 % hit in retrieval recall, and LanceDB’s Pythonic API
simplified our data pipeline compared to lower-level options. FAISS’s mature ANN
algorithms likewise outperformed newer frameworks in query latency under high
concurrency. By calling out these trade-offs explicitly, teams can see why our particular

embedding and indexing toolkit was the best fit for large-scale CIA.

6.10. Vector Databases in RAG Systems

This section explores the integration and significance of vector databases within the

RAG framework.

6.10.1. Role of Vector Databases in the RAG Framework

In the RAG system, vector databases are an essential component of the retriever. They
enable the efficient storage and retrieval of embedding vectors generated during pre-

processing, allowing the system to identify semantically similar items to the query.

The workflow within a vector database in the RAG framework typically involves several
steps. First, text data, such as requirements and queries, is transformed into dense
vector representations using embedding models like all-MiniLM-L6-v2. These
embeddings capture semantic meaning and relationships within the data. Once
generated, the embeddings are indexed using advanced techniques such as
Approximate Nearest Neighbor (ANN) algorithms. This indexing process accelerates
similarity searches by creating structures that allow efficient querying of high-
dimensional data. When a query embedding is provided, the vector database performs
a similarity search to retrieve the most relevant embeddings. This search often uses
metrics like cosine similarity or Euclidean distance to rank results by relevance. Finally,
the retrieved embeddings are passed to the generator component of the RAG model,

enriching the context for generating accurate and contextually relevant responses.
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6.10.2. Advantages of Using Vector Databases

Vector databases offer several advantages that make them suitable for RAG systems.
They can handle large-scale embedding datasets efficiently, enabling rapid similarity
searches across millions of vectors. Their advanced indexing and search algorithms
ensure low-latency responses, making them ideal for real-time applications.
Furthermore, vector databases support various similarity metrics and retrieval
configurations, allowing customization for specific use cases. Additionally, many vector
databases, such as LanceDB and FAISS, integrate seamlessly with ML pipelines and

frameworks, simplifying implementation in modern workflows.

6.11. LanceDB and FAISS in this Research

In this thesis, LanceDB and FAISS were employed as the vector database components
within the RAG system. LanceDB was used to manage and store embedding vectors,
providing a flexible and efficient database platform optimized for high-dimensional data.
Its support for schema customization and integration with Python libraries facilitates
seamless interaction with the embedding models. FAISS (Facebook Al Similarity Search)
served as the indexing and search engine. By implementing Approximate Nearest
Neighbor (ANN) techniques, FAISS performed high-speed similarity searches on the
stored embeddings. Its capability to handle large-scale data ensures efficient and

accurate retrieval, even with extensive requirements datasets.

6.12. Relevance to Requirements CIA

The adoption of vector databases in the RAG system enhances the framework’s ability
to manage and retrieve contextually rich information efficiently. This capability is critical
for requirements CIA, as the system must navigate large, unstructured datasets to
identify relevant impacted requirements. By leveraging LanceDB and FAISS, the RAG
model achieves high retrieval accuracy and scalability, meeting the demands of complex,

dynamic software engineering environments.

164



6.13. Prompt Engineering Technique in the RAG Framework

Prompt engineering is a critical element of the RAG framework, enabling the seamless
integration of retrieved context with generative language modeling. In this
implementation, prompt engineering was designed to dynamically structure and enrich
the input for the language model, ensuring precise and contextually relevant responses
for requirements CIA. This section details the techniques employed to optimize the

prompts for effective utilization of the Phi-3.5 language model within the RAG system.

6.14. Implementation of the RAG-Based Solution

The RAG-based solution was implemented using Python, with the following detailed

steps outlining the process:
Step 1: Preprocessing Datasets

The requirements and change request datasets were preprocessed to ensure a

consistent format:

e Tokenization: The text was tokenized using NLTK to prepare for embedding and
retrieval.

e Normalization: Text data was converted to lowercase, and punctuation was
removed for uniformity.

e Embedding Preparation: Sentence embeddings were generated using the all-
MiniLM-L6-v2 model from the SentenceTransformer library to capture semantic

relationships between text elements.
Step 2: Storing Embeddings in LanceDB
LanceDB was used to store the embeddings generated from the requirements dataset:

o Embedding Creation: Each requirement description was embedded and stored in
a PyArrow table for easy access and management.
o Database Connection: LanceDB was initialized to manage the vector data

efficiently.
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e Table Creation: A table was created in LanceDB to store the requirement IDs,

descriptions, and corresponding embeddings.

LanceDB offers several key benefits, making it an effective solution for vector data
management. One of its main advantages is its scalability, allowing it to handle large-
scale vector data storage efficiently, ensuring smooth performance even as the dataset
grows. Additionally, LanceDB provides seamless integration, simplifying storing and
querying embeddings. This ease of integration enhances the manageability of the
retrieval component, contributing to a more efficient and streamlined workflow in

retrieval-based applications.

Step 3: Indexing with FAISS

FAISS was used to create an index for the stored embeddings to enable fast similarity

searches:

e Embedding Extraction: Embeddings were loaded from LanceDB into a NumPy
array for indexing.

e FAISS Index Initialization: A FAISS index using L2 distance (Euclidean distance) was
created and populated with the embeddings.

e Dynamic k Search: The index was configured to allow dynamic k-value searches

based on the actual impact set size for each change request.

FAISS offers notable benefits that make it a powerful tool for similarity search in large-
scale applications. One of its primary advantages is its high performance, as it is
optimized to conduct fast similarity searches even on extensive datasets, ensuring quick
and efficient retrieval operations. Additionally, FAISS provides flexibility by supporting
various distance metrics, which enhances the accuracy of retrieval tasks by allowing

customization based on the specific needs of the application.
Step 4: Implementing the Retrieval Component

The retrieval component was implemented using FAISS:
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e Query Embedding: Change request descriptions were embedded using the
SentenceTransformer model.
e Vector Search: FAISS searched the top-k relevant requirements based on the

query embedding, returning the results for use in the generative phase.
Step 5: Configuring the Generative Model
The Phi-3.5 model was configured to generate outputs using the retrieved context:

¢ Model Setup: The model was loaded with CUDA support for GPU acceleration,
using float16 precision for optimized performance.
o Pipeline Creation: A text generation pipeline was defined to integrate the model

and tokenizer, enabling seamless generation of responses.
Step 6: Generating Context-Aware Responses
The response generation process involved:

e Context Construction: The retrieved requirements were combined to form a
context for the model.
e Generation: The model processed the context and the change request

description to generate detailed responses, predicting impacted requirements.
Step 7: Processing Change Requests and Storing Results
The model was used to process each change request in the dataset:

e Output Generation: Each change request was passed through the RAG system,
and the generated response was stored in a CSV file.
e Evaluation: The generated outputs were evaluated using precision, recall, and

F1 scores to measure the model's effectiveness.

6.15. Evaluation of the RAG System

Evaluating the RAG system requires a thorough analysis of both the retrieval and
generation components to ensure the responses address the change requests
accurately and identify the correct impacted requirements. To assess the quality of

retrieval, metrics such as Recall and Precision are used. Recall here is crucial for
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understanding how well the system covers all necessary information regarding a change
request. A higher recall indicates that the system effectively retrieves most, if not all, of
the relevant requirements. On the other hand, precision quantifies the proportion of
retrieved requirements that are truly relevant. This metric helps evaluate the accuracy
of the retrieval process by showing how many of the retrieved documents are relevant.
A high precision score implies that the system retrieves mostly relevant documents,

minimizing noise in the output.

For the generation component, the BLEU and ROUGE scores are utilized to measure
the overlap between the generated responses and the manually created ground truth.
The BLEU (Bilingual Evaluation Understudy) score assesses how similar the generated
text is to the reference text by examining the n-gram overlap. BLEU is particularly useful
for evaluating fluency and word choice in the generated response. A higher BLEU score
indicates that the generated text closely matches the reference, suggesting that the
model has effectively captured the desired content (Gou et al. 2023; Yan 2023). ROUGE
(Recall-Oriented Understudy for Gisting Evaluation) scores are another set of metrics
used to evaluate the quality of text by comparing n-grams, word sequences, and word
pairs with the reference text. ROUGE-1 measures the overlap of unigrams (individual
words) between the generated text and the reference, while ROUGE-L considers the
longest common subsequence between the texts, emphasizing the overall structure and
coherence of the response. Higher ROUGE scores indicate better alignment with the
ground truth, signifying that the generated text includes important and relevant

information (Lin 2004).

In addition to quantitative metrics, human evaluation can be conducted to further
assess the generation quality. In this process, domain experts or evaluators rate each
response based on various aspects such as accuracy, relevance, and completeness.
Evaluators can use a scale (e.g., 1-5) to rate how well the generated response addresses
the change request and includes appropriate impacted requirements. This step provides
qualitative feedback and allows for a more nuanced understanding of the system's

performance, capturing aspects that automated metrics might overlook.
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To compute the BLEU score, the generated text is compared with the ground truth by
analyzing the overlap of n-grams. The BLEU score ranges from 0 to 1, where a score
closer to 1 indicates a higher similarity between the generated text and the reference.
For example, in evaluating a response where the ground truth states, "The impacted
requirements include stability and performance improvements," and the generated
response states, "The impacted requirements are related to stability and performance,"
a high BLEU score would suggest strong alignment in content. The ROUGE score similarly
evaluates the text by comparing n-grams and sequences, assessing the generated
content's informativeness and coherence. The use of both BLEU and ROUGE allows for
a comprehensive evaluation of how well the model performs in generating relevant and

coherent responses (Ganesan 2018; Yu et al. 2024).

Overall, an end-to-end evaluation can be performed by combining the retrieval and
generation results. The average recall and precision scores provide insights into how
well the retrieval process captures relevant requirements, while the average BLEU and
ROUGE scores assess the fluency and coherence of the generated text. If human
evaluation is conducted, the ratings from domain experts can be summarized to present
an overview of how well the system meets the practical requirements of the task. This
combined analysis helps identify strengths and areas for improvement, ensuring that
the RAG system is effective and reliable for addressing change requests and determining

impacted requirements.

6.16. Results and Discussion

The evaluation results of the RAG model are summarized in Tables 6.1 and 6.2. Table
6.1 provides the average performance metrics of the model across the three datasets—
Dataset-W, Dataset-l, and Dataset-O—including Precision, Recall, F1 Score, Mean
Reciprocal Rank (MRR), Partial Credit, Precision@5, Recall@5, Precision@10, and
Recall@10. Table 6.2 presents the detailed results for individual change requests in
Dataset-W, including additional metrics such as BLEU and ROUGE. These tables
collectively provide a comprehensive overview of the RAG model’s performance across

datasets and individual change requests.
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A) Dataset-W: Moderate Performance with Balanced Precision and Recall

Dataset-W demonstrated a balanced yet moderate performance in Precision and
Recall, with averages of 0.55 and 0.67, respectively, resulting in an F1 Score of 0.59.
These values suggest that while the RAG model managed to retrieve a considerable
portion of relevant impacted requirements, it also included a number of irrelevant
results. This trade-off between precision and recall highlights the RAG model’s attempt
to balance completeness with accuracy in retrieval for Dataset-W. The inclusion of BLEU
and ROUGE metrics provides additional insights into the model’s lexical and contextual

alignment capabilities.

High Recall values for specific change requests, such as C1, C3, and C14, indicate that
the RAG model was effective in capturing all relevant impacted requirements for these
changes. This high recall may be attributed to clearer linguistic patterns or less
ambiguous wording in the change descriptions. BLEU scores for these requests were
relatively higher, suggesting a better lexical overlap with ground truth in these cases.
Similarly, ROUGE1 (0.5) and ROUGEL (0.5) metrics reflect moderate overlaps in unigram
and sequential matching, further supporting the model’s ability to retrieve contextually
relevant requirements for less ambiguous cases. Conversely, the lower Precision scores
observed for requests such as C7 and C18 (both with Precision scores of 0.26) suggest
instances of over-retrieval. This over-retrieval is likely due to ambiguous or loosely
defined requirements, which the model struggled to differentiate accurately. The BLEU
scores for these cases were also low, indicating a lack of lexical alignment with the
ground truth, and the ROUGE2 scores (average 0.25) reveal challenges in capturing

meaningful bigram overlaps for such complex change requests.

The Mean Reciprocal Rank (MRR) for Dataset-W, averaging 0.69, highlights the
model’s ability to rank relevant requirements fairly high, though not consistently at the
very top. The Partial Credit metric of 0.88 suggests that even if exact matches were not
retrieved, the model was reasonably effective in retrieving closely related requirements.
BLEU and ROUGE metrics further substantiate this observation, with BLEU scores
emphasizing limitations in lexical precision and ROUGE1 metrics indicating moderate

structural coherence in the retrieved results. Interestingly, the Precision@5 (0.45) and
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Recall@5 (0.59) values underline the model's challenges in consistently retrieving the
most relevant requirements within the top 5 results. This limitation is evident in the
variability of BLEU and ROUGE scores across change requests, which reflect
inconsistencies in lexical and structural alignment. While the RAG model demonstrated
a fair ability to rank relevant results near the top, the linguistic variability within Dataset-

W limited its overall retrieval effectiveness.

Dataset-W highlights the RAG model’s strengths and weaknesses in dealing with
moderate complexity. The high Recall for specific change requests with clearer linguistic
patterns showcases the RAG model's capability to capture relevant impacted
requirements comprehensively. However, the low BLEU scores for specific change
requests emphasize the need for better lexical alignment, and precision inconsistencies
across change requests point to challenges in managing over-retrieval for linguistically
diverse or ambiguous requirements. To improve performance on datasets like Dataset-
W, additional preprocessing steps, such as linguistic normalization and domain-specific
synonym replacement, could enhance BLEU and ROUGE scores by improving lexical and
structural alignment. Further, refining the retrieval component by integrating advanced
embeddings or hybrid scoring mechanisms may improve precision while maintaining

high recall.

In summary, Dataset-W demonstrates the RAG model’s ability to achieve a reasonable
balance between precision and recall. BLEU and ROUGE metrics reveal moderate lexical
and contextual alignment, with room for improvement in addressing linguistic
inconsistencies. The dataset’s moderate complexity aligns well with the model’s
capabilities, but further refinements are required to enhance precision and retrieval

effectiveness in similar datasets.
B) Dataset-I: High Performance in Structured and Consistent Data

Dataset-| displayed the strongest performance metrics across all evaluated datasets,
with averages for Precision and Recall at 0.79 and 0.87, respectively, resulting in an F1
Score of 0.78. These scores underscore the RAG model’s effectiveness in accurately and
comprehensively retrieving relevant requirements. This high performance is likely

attributed to the structured format and consistent linguistic patterns in Dataset-I, which
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facilitated the RAG model’s ability to capture and interpret the requirements with high

precision and recall.

Adding BLEU and ROUGE metrics further highlights the model’s lexical and contextual
alignment. BLEU scores, averaging 0.18, indicate moderate overlap between predicted
and ground-truth requirements at a token level. In contrast, ROUGE1 (0.8125), ROUGE2
(0.733333), and ROUGEL (0.8125) scores emphasize strong n-gram and sequential
alignment in the retrieved outputs. These results reflect the RAG model’s capacity to

produce semantically and lexically aligned responses in a well-structured dataset.

Certain cases in Dataset-l, such as Case 1, Case 12, and Case 15, achieved perfect or
near-perfect Recall and Precision scores, illustrating the model’s ability to perform
optimally in environments with minimal linguistic variation and consistent terminology.
These cases also reported high BLEU and ROUGE scores, indicating semantic and lexical
alignment with the ground truth. The Mean Reciprocal Rank (MRR) of 0.83 further
suggests that relevant requirements were often ranked at or near the top, which is

critical for scenarios requiring prioritized retrieval.

The Partial Credit score for Dataset-l averaged 0.95, reflecting the model’s robust
accuracy in capturing relevant items even when exact matches were not retrieved. The
high ROUGE2 scores across cases further validate the model’s ability to identify
semantically related requirements by capturing meaningful bigram overlaps.
Precision@5 (0.4) and Recall@5 (0.75) demonstrate the model’s ability to retrieve
relevant top-ranked items, though Precision@5 slightly suffers from the inclusion of
some irrelevant results. BLEU scores for these cases reinforce this observation,
indicating occasional mismatches in token-level alignment, likely due to over-retrieval

in a few ambiguous cases.

Overall, Dataset-I's results affirm the RAG model’s strength in environments with
minimal linguistic variation and a high degree of structure. The structured nature of the
dataset allowed the model to maximize its retrieval precision and recall while
maintaining strong lexical alignment, as reflected in the BLEU and ROUGE scores. These

findings demonstrate that RAG models perform exceptionally well in predictable data
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environments with well-defined language patterns, offering practical utility in

structured and controlled use cases.
C) Dataset-O: Challenges in Handling Complexity and Linguistic Variability

Dataset-O, the most complex and historically diverse dataset, presented significant
challenges for the RAG model, as evidenced by its lowest average Precision (0.45) and
Recall (0.53) compared to other datasets. The F1 Score of 0.47 indicates that while the
RAG model could retrieve some relevant impacted requirements, the high degree of
linguistic variability and dataset complexity reduced its precision and recall
effectiveness. These findings are further validated through the BLEU and ROUGE
metrics, which offer additional insights into the model's ability to align its outputs with

ground truth.

The dataset’s historical nature, spanning over many years and involving contributions
from multiple analysts, likely contributed to the linguistic inconsistencies observed.
BLEU scores for Dataset-O were generally low, with an average of 0.11, indicating limited
lexical alignment between predicted and ground-truth requirements. Similarly, the
ROUGE1 (0.65), ROUGE2 (0.41), and ROUGEL (0.58) scores reflect moderate overlap in
unigram, bigram, and sequence-based evaluations, respectively. While the RAG model
demonstrated some capability in identifying semantically related items, these metrics
reveal its limitations in generating text that closely matches the structure and wording

of ground truth.

The Partial Credit score of 0.92 suggests that the model was able to retrieve items
related to the relevant impacted requirements, even if exact matches were not always
achieved. However, the lower Precision@5 (0.31) and Recall@5 (0.50) metrics
underscore the model's difficulty in consistently retrieving the most relevant
requirements within the top positions. BLEU and ROUGE metrics further highlight the
model’s struggles with textual precision and recall as they emphasize word- and

sequence-level alignment.

Interestingly, specific individual change requests in Dataset-O, such as CR504326 and
CR504342, yielded high Precision and Recall and relatively strong BLEU and ROUGE
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scores. These results indicate that the model can still perform well when the language
or context is less ambiguous or where the requirements exhibit more precise semantic
relationships. However, the model's performance suffered for change requests with
higher linguistic complexity or ambiguous phrasing. This is particularly evident in the
significant variability in BLEU scores, with some change requests achieving near-zero

values, emphasizing the model’s struggle with lexical alignment in challenging scenarios.

The findings from Dataset-O reinforce the importance of dataset structure and
consistency when using RAG-based approaches, as these factors significantly influence
retrieval and generation accuracy. For datasets of this nature, additional preprocessing
steps, such as clustering or segmentation of data based on linguistic features, may be
required to enhance retrieval performance. Moreover, fine-tuning the generative model
on domain-specific datasets could improve its ability to generate lexically and
contextually accurate outputs, thereby addressing the limitations highlighted by BLEU

and ROUGE evaluations.

Overall, while the RAG model demonstrates some strengths in handling complex
datasets, these results underscore the need for further optimization, particularly in
addressing linguistic variability and ensuring alignment between generated outputs and

ground-truth requirements.

Table 6.1. RAG Average Results

Precision|Recall [F1_Score| MMR |Partial_Credit|Precision@5|Recall@5|Precision@10|Recall @10
Dataset-
0.55 0.67 0.59 0.69 0.88 0.45 0.59 0.28 0.65
W
Dataset-
0.71 0.87 0.78 0.83 0.95 0.36 0.86 0.18 0.86
|
Dataset-
0.45 0.53 0.47 0.64 0.92 0.31 0.50 0.16 0.52
(0]
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Table 6.2. RAG Solution Results
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6.17. Practical Implications of Precision and Recall Trade-Offs

In real-world CIA, the choice between higher recall (catching every possible impacted
requirement) and higher precision (minimizing false alarms) directly affects how
analysts allocate time and manage risk. In safety-critical domains (e.g., medical or
aerospace software), missing even a single impacted requirement can have severe
consequences, so teams will tune the RAG system toward high recall, accepting more
false positives that can be quickly filtered by domain experts. Conversely, in fast-paced
agile environments with tight release schedules, excessive false positives can
overwhelm developers, so precision is prioritized even if a few edge-case impacts slip
through and get caught in later iterations. By surface-ranking confidence scores and
allowing threshold adjustments in both retrieval and generation phases, our RAG
implementation gives stakeholders clear knobs to balance these trade-offs. This
tunability ensures that the same core model can serve diverse projects from zero-
tolerance safety pipelines to high-velocity feature sprints by simply shifting the precision

and recall operating point to match each team’s risk tolerance and review capacity.
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6.18. Summary

Comparing the results across Dataset-W, Dataset-l, and Dataset-O, a clear pattern
emerges: the RAG model's performance is significantly influenced by the structure and
linguistic consistency of the datasets. Dataset-I, characterized by its structured format
and consistent linguistic patterns, enabled the RAG model to achieve the highest
precision (0.79) and recall (0.87), resulting in an F1 Score of 0.78. The additional BLEU
and ROUGE metrics for Dataset-Il, with BLEU averaging 0.18 and ROUGE1, ROUGE2, and
ROUGEL averaging 0.81, 0.73, and 0.81 respectively, further highlight the model's
superior lexical and semantic alignment in structured environments. These results
demonstrate the system's optimal performance in predictable data settings with

minimal variability.

In contrast, Dataset-O’s complexity and historical variability led to the lowest
performance, with precision at 0.45 and recall at 0.53, resulting in an F1 Score of 0.47.
While the BLEU scores for Dataset-O remained modest, the Partial Credit metric (0.92)
and ROUGE scores (averaging around 0.65 for ROUGE1, ROUGE2, and ROUGEL) suggest
that the RAG model could still retrieve items related to the relevant impacted
requirements, even if exact matches were not consistently achieved. The results
highlight the challenges the model faces in datasets with substantial linguistic variation
and inconsistent terminology, where over-retrieval and ambiguous matches can dilute

precision.

Dataset-W presented balanced yet moderate results, with precision and recall
averaging 0.55 and 0.67, respectively, and an F1 Score of 0.59. The BLEU scores for
Dataset-W averaged around 0.13, while ROUGE1, ROUGE2, and ROUGEL metrics
averaged 0.77, 0.70, and 0.77, respectively, indicating moderate semantic and lexical
alignment. These results reflect the model's effort to balance completeness and
accuracy in retrieval. Dataset-W’s variability limited the effectiveness of retrieval
precision, as shown by lower Precision@5 (0.45) and Recall@5 (0.59) compared to

Dataset-I.

The MRR scores across all datasets highlight the model’s ability to rank relevant
requirements near the top, with Dataset-I achieving the highest MRR (0.83), followed by
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Dataset-W (0.69) and Dataset-O (0.64). These values reinforce the RAG model’s
capability in structured datasets, where ranking relevant items effectively is crucial.
Meanwhile, the Partial Credit metric, which ranged from 0.88 to 0.95 across all datasets,
indicates that even when exact matches were not retrieved, the model could still

identify semantically related requirements, offering practical utility in many scenarios.

Including the BLEU and ROUGE metrics offers additional depth in assessing the RAG
model's performance. High ROUGE scores for Dataset-l underscore its strength in
structured environments, while the relatively lower BLEU and ROUGE metrics for

Dataset-O highlight the challenges in handling linguistic variability.

In summary, the evaluation results emphasize the RAG model's strengths in structured
and consistent data environments while revealing its limitations with datasets exhibiting
high variability and inconsistency. To improve the model's adaptability to complex
datasets like Dataset-0O, future efforts could focus on fine-tuning the embedding models,
integrating domain-specific language models, and employing advanced preprocessing
techniques to address linguistic variability. These enhancements could enable the RAG
system to handle diverse datasets better, ultimately enhancing its reliability and

effectiveness in real-world applications for requirement impact analysis.
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Chapter 7.

Evaluation of the Proposed Models

7.1. Introduction

This chapter presents a comprehensive evaluation of the implemented models,
including ML models, NLP-based solutions, BEIR-based approach and the RAG solution.
The primary objective is to assess each model's performance using standardized
evaluation metrics, identify their strengths and limitations, and determine their
effectiveness in automating CIA in software requirements engineering. The evaluation
is carried out systematically across different datasets to assess the models'

generalizability, precision, recall, and overall effectiveness.

7.2. Model Setup

The evaluation was conducted using three datasets—Dataset-l, Dataset-W, and
Dataset-O, each that were described in chapter 3, representing varying levels of
complexity and domain-specific features. The datasets encompass different
requirements change scenarios, providing a comprehensive test environment for the

models.

The evaluation process involved training and testing each model using these datasets
to analyze their generalizability and adaptability across different domains. A consistent
approach was taken to optimize the hyperparameters for each model based on initial
testing, ensuring an equitable comparison. Below is a detailed description of the setup

for each model:
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ML Models: Traditional ML techniques, including Random Forest, Support Vector
Machines (SVM), and Decision Trees, were employed. These models were trained on
datasets with features engineered from syntactic, semantic, and contextual information
derived from requirements documents. Emphasis was placed on selecting optimal
features, such as term frequency, dependency parsing outputs, and entity relationships,

to improve model precision and recall.

NLP-Based Solution: This solution integrated CoreNLP and SpaCy libraries to perform
linguistic feature extraction and syntactic parsing. A combination of TF-IDF vectorization
and cosine similarity calculations was employed to measure the similarity between
change requests and requirements. The model utilized named entity recognition (NER)
and dependency parsing to enhance the quality of extracted features, aiming for a

robust and contextually accurate representation of the requirements.

BEIR-Based Solution: The BEIR framework combined BM25 (via Elasticsearch) for
lexical retrieval, Bi-Encoders for dense retrieval, and Cross-Encoders for re-ranking. This
multi-layered approach aimed to achieve context-aware ranking, enabling a
comprehensive understanding of the relationships between requirements and changes.
By leveraging these advanced methods, the model was designed to cover a broad range

of scenarios, capturing lexical and semantic similarities.

RAG Solution: The RAG model combines semantic retrieval with a generative language
model to provide enhanced predictions of impacted requirements in complex and
unstructured data scenarios. For this implementation, the RAG system leverages the Phi
3.5 language model as the generative component and LanceDB with FAISS as the
retrieval layer. The setup involves embedding requirements and change descriptions
using the all-MiniLM-L6-v2 model from the Sentence Transformers library. These
embeddings are stored in LanceDB and indexed by FAISS to allow efficient similarity

search.
The RAG solution operates in two primary stages:

Retrieval Stage: For each change request, the system retrieves a set of semantically

similar requirements based on vector similarity using FAISS. This retrieval process is
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dynamically adjusted to ensure the inclusion of relevant items by adapting the retrieval

threshold according to the size and characteristics of each impact set.

Generation Stage: The Phi 3.5 model takes the retrieved requirements as contextual
input and generates a response to predict impacted requirements. This generative step
enables the model to capture nuanced dependencies and deeper relationships in the
requirements' descriptions, going beyond lexical similarity to include contextual and

semantic relevance.

Hyperparameter Optimization: For each model family, we conducted systematic
hyperparameter searches on a held-out validation fold to avoid overfitting and to gauge
generalizability. For Random Forest, we varied the number of trees (n_estimators € {50,
100, 200}) and maximum tree depth (max_depth € {None, 10, 20}), finding that 100
trees with max_depth=20 offered the best trade-off between performance and training
time on all three datasets—deeper forests improved F1 by only 1-2 points but doubled
training time. SVM parameters (C € {0.1, 1, 10}, kernel € {linear, rbf}) were selected via
grid search; a linear kernel with C=1 generalized most stably across domains, whereas
RBF kernels over-fit the smallest dataset (Dataset-l). For the BEIR bi-encoder, we tuned
the embedding dimension reduction threshold and re-ranking top-k (k € {5, 10, 20}),
balancing higher recall (from larger k) against increased latency. In our RAG pipeline,
beam sizes (beam_width € {1, 3, 5}) and max_output_tokens (128 vs. 256) were
evaluated: beam_width=3 and max_output_tokens=128 vyielded <10% drop in
BLEU/ROUGE while halving generation latency compared to beam_width=5. By driving
these choices with validation-based grid searches, rather than ad-hoc defaults, we
ensure each model’s settings are data-driven and maximally generalizable across

domains.

7.3. Model Evaluation

A comprehensive set of evaluation metrics was employed to assess the performance
of each model, including the ML models, NLP-based solutions, BEIR-based approach, and

the RAG system. These metrics provide insight into the precision, completeness, ranking
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quality, and relevance of each model's predictions in identifying impacted requirements

in response to change requests:

e Precision

e Recall
e [1 Score:
e MRR

e Partial Credit

e Precision@5 and Recall@5

e Precision@10 and Recall@10
e NDCG

These metrics collectively provide a holistic view of each model's performance,
helping to highlight the specific strengths of models in capturing semantic relationships
and their adaptability in varied datasets. Through these evaluations, a comprehensive
comparison across models can be made, reflecting their applicability to different

requirements and change scenarios.

7.4. Results Analysis

7.4.1. ML Models

The ML models, notably the Random Forest algorithm, demonstrated consistent and
balanced performance across the datasets. On Dataset-l, the Random Forest model
achieved an F1 score of 0.72, with a precision of 0.68 and a recall of 0.75. These results
indicate a strong ability to detect relevant impacts while minimizing false positives,
suggesting its utility in structured and moderately complex datasets. The SVM and
Decision Trees models showed moderate effectiveness, but they did not reach the
precision levels of Random Forest, particularly when managing more complex data

patterns.

As illustrated in Figure 7.1, the performance variations of ML models across datasets

are visually evident. The Random Forest model exhibits a higher F1 score and balanced
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precision and recall on Dataset-l but demonstrates a noticeable decline in Dataset-0, as

reflected in its reduced precision and recall metrics.

In Dataset-W, the performance of the ML models declined, with the Random Forest
model achieving an F1 score of 0.61. While the precision remained relatively stable,
recall dropped significantly. This highlights the increased difficulty these models face
when encountering Dataset-W's varied linguistic patterns and complexities. In Dataset-
O, a dataset with high variability and linguistic inconsistencies, the precision of the
Random Forest model was notably lower at 0.47, resulting in an F1 score of 0.55. These
findings underscore the limitations of traditional ML models in handling datasets that

lack structured language and contain heterogeneous data.

Model Comparison Across Datasets (Radar Chart) —-y
Dataset-| Precision
— BT
— 1R
—i RF
atqset-| Recall — NB

Dataset-O R Dataset-| F1

Dataset-O Precision 2t-W Precision

Dataset-W F1 Dataset-W Recall

Figure 7.1.Performance Comparison of ML Models Across Datasets

7.4.2. NLP-Based Solution

The NLP-based solution, combining CoreNLP for syntactic parsing and SpaCy for

Named Entity Recognition (NER), performed effectively in structured environments but
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showed limitations with linguistic variability. As illustrated in figure 7.2, the radar chart
provides a comparative visualization of the NLP model’s overall performance across
precision, recall, and F1 score for the three datasetsOn Dataset-l, this model achieved
high precision (0.82) but lower recall (0.61), resulting in an F1 score of 0.69. This result
indicates that while the NLP approach is highly effective at identifying accurate impacts

in structured datasets, it may miss relevant information when syntax and context vary.

For Dataset-W, the F1 score dropped to 0.58, mainly due to a decrease in recall. This
suggests that the NLP model is sensitive to language and sentence structure variations,
leading to challenges in comprehensively capturing all impacted requirements in
linguistically diverse datasets. However, the relatively high precision observed across
the datasets indicates that the NLP model excels in environments where requirements
exhibit consistent terminology and syntax. This approach is particularly valuable in cases
where the documentation follows a predictable format, although its adaptability to less

structured documentation remains limited.

NLP Model Results by Dataset (Radar Chart)

. — Dataset-|
Overall Precision Dataset-W

— Dataset-0

Overall F1'gcore Ovefall Recall

Figure 7.2.NLP Model Performance Across Datasets
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7.4.3. BEIR-Based Solution

The BEIR-based solution exhibited strong recall capabilities, particularly on Dataset-l,
where it achieved a recall score of 0.91, , as evident in figure 7.3. This high recall
indicates the model's effectiveness in capturing a broad spectrum of potential impacts,
showcasing its ability to perform thorough retrieval in structured datasets. However, the
model's precision was lower at 0.48, resulting in an F1 score of 0.63. This suggests that
while the BEIR approach comprehensively identifies impacted requirements, it

generates false positives, potentially increasing manual verification efforts.

In Dataset-W, the BEIR model maintained a high recall, but its precision decreased
further, underscoring the challenges of balancing specificity with broad coverage when
expanding its retrieval scope. On Dataset-0O, the BEIR solution achieved more balanced
scores, with precision and recall, around 0.65. This result suggests that the BEIR
approach can adapt to larger, more varied datasets, but it may require further
refinement to improve specificity, particularly in complex, linguistically inconsistent

environments.

Figure 7.3 provides a comprehensive comparison of BEIR-based solution metrics,
including Average Precision@5, Recall@5, and NDCG@5 and @10, across the three
datasets. This visualization emphasizes the BEIR approach's strong recall and
adaptability while highlighting areas for refinement, such as precision improvement at

different ranking thresholds.
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Figure 7.3.Performance Metrics of BEIR-Based Solution Across Datasets

7.4.4. RAG System

The RAG system, which combines retrieval and generative capabilities through a RAG
framework, presented unique strengths, particularly in datasets with complex and
unstructured requirements. Figure 7.4 illustrates the overall performance metrics of the
RAG model across the three datasets (Dataset-l, Dataset-W, and Dataset-0), highlighting
its capabilities in various aspects, including Precision, Recall, F1 Score, MMR, and other

key metrics.

On Dataset-l, the RAG model achieved an F1 score of 0.7875, with a precision of 0.79
and recall of 0.87, showcasing its ability to retrieve relevant requirements while
capturing contextual relationships within the text. BLEU and ROUGE metrics further
validated this performance, with BLEU averaging 0.18 and ROUGE1, ROUGE2, and

ROUGEL scores averaging 0.81, 0.73, and 0.81, respectively. These results highlight the
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model's strong lexical and semantic alignment in structured and consistent datasets,
reinforcing its advantage in dealing with semi-structured data and complex

requirements.

In Dataset-W, the RAG model’s recall remained robust at 0.67, though its precision
dropped to 0.55, resulting in an F1 score of 0.59. The BLEU score for this dataset
averaged around 0.13, while the ROUGE metrics (ROUGE1, ROUGE2, and ROUGEL)
showed moderate alignment at 0.77, 0.70, and 0.77, respectively. The RAG model's
ability to maintain decent recall, even in datasets with varied linguistic patterns and
terminologies, reflects its semantic understanding capabilities. However, the lower
precision in this dataset points to the challenges the model faces in balancing

completeness and relevance when encountering linguistic variability.

Dataset-0O, the most complex and variable dataset, posed significant challenges for the
RAG system. The model achieved an F1 score of 0.47, with precision and recall averaging
0.45 and 0.53, respectively. Despite these modest scores, the BLEU and ROUGE metrics
offered additional insights: BLEU scores were generally lower, reflecting the difficulty in
achieving precise lexical matches, while ROUGE metrics (ROUGE1, ROUGE2, and
ROUGEL) averaged around 0.65, demonstrating the model's ability to capture some level
of semantic alignment even in a highly variable dataset. The Partial Credit score of 0.92
highlights that the model successfully retrieved semantically related items even when
exact matches were not achieved. Additionally, Recall@10 scores underscored the RAG
model's nuanced approach to matching impacted requirements, emphasizing its utility

in real-world applications with unstructured data.

Across all datasets, the MRR scores were consistently high, with Dataset-I achieving
the highest MRR (0.83), followed by Dataset-W (0.69) and Dataset-O (0.64). These
results demonstrate the RAG model's effectiveness in ranking relevant requirements
near the top of its output, an essential feature for prioritizing impacted requirements in
practical settings. The BLEU and ROUGE metrics provide further granularity in evaluating
the RAG model's performance, highlighting its strengths in structured datasets like
Dataset-l while revealing its challenges with datasets exhibiting higher linguistic

variability, such as Dataset-O.
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Figure 7.4.RAG Model Performance Comparison Across Dataset

7.4.5. Practical Implications & Performance Drivers

In practical CIA workflows, the choice of operating point on the precision and recall
curve directly maps to stakeholder risk tolerance and review effort. High recall settings
(favoring fewer missed impacts) are essential in safety-critical or heavily audited
projects, even if teams must sift through more false positives. Conversely, feature-
driven agile squads may lean toward high precision accepting that a few subtle
dependencies will be caught in later reviews. Ranking metrics like MRR and Precision@5
further guide teams on how many top hits to inspect: a high MRR means analysts can

trust the top few results and allocate limited time effectively.

Traditional ML models underperform on Dataset-W and Dataset-O largely because
they rely on surface patterns (term frequencies and shallow dependency counts) that

break down amid varied syntax, paraphrasing, and inconsistent vocabulary. When
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requirements use domain-specific context or complex sentence structures, tree-based
or linear classifiers misclassify latent dependencies. To overcome this, hybridizing ML
with richer semantic features (e.g., embedding-based cluster centroids or ontology-
driven term normalization) can boost recall without incurring the full cost of neural

retrieval.

Our NLP pipeline (CoreNLP + SpaCy) excels at precise syntactic relations in controlled
text but struggles when sentences deviate from canonical grammar or introduce run-on
clauses and bullet lists common in real specs. One remedy is to augment parsing with
chunk-based co-occurrence features or lightweight neural entity linking to capture
fragmented contexts. Another is to pipeline a fallback dense-retriever pass for any
requirement snippet that yields low parse-confidence scores, ensuring key impacts

aren’t lost.

Finally, the BEIR approach’s high recall comes with precision drop-offs because BM25
and Bi-Encoders cast a wide net that pulls in loosely related documents. To tighten
specificity, we can introduce a lightweight relevance classifier on the top-k candidates
(e.g., a small fine-tuned Cross-Encoder) or apply dynamic thresholding on token-overlap
ratios. These refinements prune false positives while preserving the broad coverage that

makes BEIR ideal for initial exploratory CIA searches.

7.4.6. Adaptability Across Software Domains

To evaluate the adaptability of the proposed SRCIA framework, all implemented
models were tested on three datasets representing diverse software domains:
enterprise information systems (Dataset-l), public sector applications (Dataset-W), and
telecommunications systems (Dataset-O). These datasets exhibit varying degrees of
complexity, linguistic structure, and documentation style, providing a comprehensive

basis for assessing the generalizability of the framework.

Each domain introduces its own challenges: Dataset-| features well-structured and
formally written requirements typical of enterprise environments; Dataset-W contains

linguistically diverse and moderately structured public sector documents; Dataset-O
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includes highly variable, historical data commonly found in telecommunications
systems. The consistent application of the models across these datasets enables a

comparative evaluation of their adaptability.

Table 7.1. RAG Model's F1-Scores Across the Three Domains

Software Domain Dataset F1 Score Observations
Structured syntax and clear relationships
Enterprise Systems Dataset-I 0.78
supported strong performance
Moderate performance due to sentence
Public Sector Applications | Dataset-W 0.59
variation and inconsistent structure
Telecommunications Complex, unstructured data presented
Dataset-O 0.47
Systems challenges in precision and recall

These results demonstrate the SRCIA framework’s adaptability across diverse
domains, particularly its capacity to maintain reasonable performance in environments
with different requirements structures. While performance tends to be stronger in
structured datasets, the results confirm that the framework, especially the RAG solution,

can generalize to more complex or unstructured domains with minimal adjustment.

Comparative performance also highlights potential areas for improvement, such as
domain-specific fine-tuning of the retrieval and generative components to enhance

adaptability further.

7.5. Comparative Analysis

The comparative analysis of the models provides a nuanced view of each approach’s
strengths and limitations in handling varied datasets for CIA. Each model demonstrates
unique capabilities suited to different dataset structures and requirements
complexities. The accompanying radar charts (figures 7.5, 7.6 and 7.7) provide a visual
representation of key trends in precision, recall, and F1-score across Dataset-I, Dataset-

W, and Dataset-O.

ML Models: Traditional ML models, particularly Random Forest (RF), are quick and

computationally efficient, making them suitable for initial impact analysis, especially
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with structured datasets like Dataset-1. As shown in the radar chart for Dataset-I (Figure
7.4), RF clearly displays strong performance in terms of precision and recall, resulting in
a high F1-score. However, as shown in the spider charts for Dataset-W and Dataset-O,
the performance of RF and other ML models, including Decision Tree (DT) and SVM,
declines significantly when encountering datasets with complex or ambiguous
requirements. These datasets, characterized by varied linguistic structures and
contextual subtleties, highlight the limitations of ML models in achieving sufficient
precision and recall, ultimately leading to reduced F1-scores. This indicates that while
ML models are useful for straightforward analysis, they lack the depth needed for more

intricate requirements change scenarios.

NLP-Based Solution: The NLP-based solution is highly precise and effective when
applied to datasets with structured and consistent language. By using CoreNLP for
parsing and SpaCy for named entity recognition, this model effectively identifies
patterns within controlled, well-defined requirements data. The radar chart for Dataset-
| demonstrates its high precision, supported by strong recall, resulting in a competitive
F1-score. However, the grouped bar charts for Dataset-W and Dataset-O clearly show a
decline in recall, leading to a drop in Fl-scores. This decline is particularly evident in
Dataset-W, where diverse language patterns and syntax challenge the model's
generalization ability. The spider chart emphasizes this limitation, highlighting the NLP
model’s need for adaptability to handle unstructured data and varied syntax to

comprehensively capture all relevant impacts.

BEIR-Based Solution: Combining lexical and dense retrieval techniques, the BEIR-
based solution achieves high recall across different datasets, excelling in comprehensive
impact identification. The grouped bar charts for all datasets reveal that BEIR
consistently outperforms other models in recall, which is a testament to its layered
retrieval framework using BM25 for lexical matches and Bi-Encoders for dense retrieval.
However, as the radar charts illustrate, this high recall often comes at the cost of
precision, resulting in moderate F1-scores. The spider chart for Dataset-O demonstrates
BEIR’s ability to handle complex datasets, with strong Recall@5 and Recall@10 metrics

reflecting its strength in capturing a broad spectrum of impacted requirements. Despite
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this, the charts also highlight the model's tendency to produce false positives, indicating

the need for further refinement to improve specificity and ranking relevance.

RAG Solution: The RAG model represents an advanced approach by integrating
retrieval with generation, leveraging LanceDB for vector retrieval and a LLM (Phi 3.5) for
contextual and semantic understanding. The radar chart for Dataset-| display its strong
balance between precision and recall, resulting in the highest F1-score among all models
for structured datasets. In Dataset-W, as shown in the radar and spider charts, the RAG
system maintains robust recall but struggles with precision, leading to moderate F1-
scores. Dataset-O, the most complex dataset, highlights the model’s adaptability, as it
achieves competitive Recall@10 and Partial Credit metrics despite the challenging
variability of the dataset. The spider charts emphasize the RAG system’s strong MMR
(Mean Reciprocal Rank) and ability to rank relevant items at the top, making it a valuable
tool for prioritizing impacted requirements in real-world scenarios. However, its reliance
on computational resources and storage makes it best suited for use cases where high

performance outweighs resource constraints.

In summary, each model offers distinct advantages and challenges based on the

context:

ML Models provide efficient initial analysis for structured data, with limited

adaptability in complex or unstructured environments.

NLP Solutions are highly precise in controlled datasets with uniform language but

struggle to generalize to datasets with diverse syntax.

BEIR Models excel in recall and comprehensiveness, making them suitable for

exhaustive searches, though improvements in specificity would enhance their precision.

RAG Systems deliver a balanced, adaptive framework for dynamic requirements
scenarios, excelling in precision and recall but requiring high resources and technical

expertise.

The comparative analysis indicates that while each model has standalone merits, their
effectiveness varies significantly depending on the dataset complexity and

requirements. A hybrid approach that combines the NLP-based model’s precision, BEIR’s
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extensive recall, and the RAG model’s adaptability could yield a more robust and
context-aware framework for CIA, addressing the demands of both structured and

unstructured datasets in requirements engineering.

— ML

Model Comparison on Dataset-W —— NLP
—— BEIR

Precision — PAG

Figure 7.5.Model Comparison on Dataset-W (Linguistically Diverse Dataset)
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Figure 7.6.Model Comparison on Dataset-I (Structured Dataset)

—_ ML
Model Comparison on Dataset-O —— NLP
— BEIR

Precision —— RAG

Figure 7.7.Model Comparison on Dataset-O (Complex and Unstructured Dataset
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7.6. Summary

This chapter provided a detailed evaluation of four advanced models—Machine ML
models, NLP-based solutions, BEIR-based methods, and the RAG system—for
automating CIA in software requirements engineering. These models were assessed
using three datasets: Dataset-l, representing structured and consistent requirements;
Dataset-W, characterized by linguistic diversity; and Dataset-0, showcasing complex and

unstructured data.

The evaluation highlighted each model's strengths and limitations. ML models,
particularly Random Forest, demonstrated efficiency and balanced performance in
structured datasets but struggled with precision and recall in more complex scenarios.
The NLP-based solution excelled in precision, effectively handling structured language
but faced challenges with diverse and unstructured datasets, leading to reduced recall.
The BEIR-based solution stood out for its high recall across all datasets, though it often
produced false positives, resulting in moderate F1 scores. The RAG system combined
retrieval and generation capabilities, showing adaptability across datasets with strong
F1 scores in structured contexts and competitive recall in unstructured scenarios.
However, its computational demands and reduced precision in highly variable datasets

were noted as areas for improvement.

The findings were visually represented using radar and spider charts, emphasizing
performance trends across models and datasets. These visualizations provided a
comprehensive understanding of how each model balanced precision, recall, and other

metrics, underscoring the nuanced trade-offs involved.

Overall, the evaluation underscored that while each model has standalone strengths,
a hybrid approach integrating the precision of NLP-based models, the recall efficiency of
BEIR, and the adaptability of the RAG system could address diverse CIA requirements.
This chapter concludes with a strong foundation for discussing future directions and

broader implications in the subsequent chapter.
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Chapter 8.

Conclusions and Future Works

8.1. Introduction

This chapter consolidates the findings and contributions of this research, presenting a
comprehensive overview of the advancements achieved in automating CIA for software
requirements engineering. Building upon the evaluations and results presented in
Chapter 7, this chapter discusses the key contributions of the study, highlighting how

the objectives outlined at the beginning of this research were addressed.

The chapter also provides a detailed conclusion, synthesizing the insights gained from
the comparative analysis of the proposed models. By reflecting on the strengths and
limitations of each approach, it underscores the implications of the findings for the field
of software requirements engineering. Finally, the chapter outlines avenues for future
research, emphasizing the potential for further refinement and expansion of the
proposed methodologies to enhance their applicability and robustness across diverse
domains. This chapter serves as a culmination of the research, offering a comprehensive

narrative that ties together the theoretical and practical contributions of this study

8.2. Addressing Research Objectives

This research set out to achieve five key objectives aimed at advancing the field of
Change Impact Analysis (CIA) in software requirements engineering. Below is a summary

of how each objective has been addressed in this thesis:
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Objective 1: Develop methodologies for comprehensive data preparation and feature

engineering to support the proposed CIA models.

Achieved: This objective focused on detailed data preparation and feature
engineering to support the proposed models for CIA. Techniques such as linguistic
normalization, dependency parsing, and entity extraction were employed to ensure
high-quality datasets. Feature engineering captured both semantic and syntactic
structures, forming a robust foundation for implementing Al and IR techniques. The
impact of these efforts was evident in the enhanced performance of the predictive

models across diverse datasets, as discussed in Chapters 3 and 4.
e Objective 2: Develop a framework for CIA using the capabilities of NLP and ML.

Achieved: A robust framework integrating NLP and Machine Learning ML was
proposed and implemented, as detailed in Chapter 4 and 5. The framework leverages
NLP techniques such as CoreNLP and SpaCy for linguistic feature extraction, combined
with ML models like Random Forest and SVM for predictive analysis. This integration
demonstrated significant improvements in precision and recall in structured datasets,

as discussed in Section 7.5.

e Objective 3: Implement information retrieval techniques to enhance the assessment

of requirement change impacts on software artifacts.

Achieved: Information retrieval techniques were extensively used to retrieve and rank
relevant software artifacts. The BEIR framework employed in this research combined
BM25 for lexical retrieval and Bi-Encoders for dense retrieval, as described in Section
5.6.2. The results showcased the effectiveness of IR techniques in capturing relevant

impacts with high recall, especially in diverse datasets, as highlighted in Section 7.4.3.

e Objective 4: Embed Al and IR techniques to determine the most effective methods

for accurate prediction of requirement change impacts.

Achieved: This objective focused on exploring and embedding Al and IR techniques to
identify the most effective approaches for predicting requirement change impacts. The
research tested various combinations of Al and IR methods, such as combining retrieval

mechanisms with generative models, to enhance precision and recall. The

198



implementation of the RAG system in Chapter 6 demonstrated how Al techniques like
generative modeling and IR methods like dense retrieval could jointly improve
prediction accuracy, particularly for unstructured datasets. This evaluation provided
insights into the comparative effectiveness of different techniques, as discussed in

Chapter 6 and Section 7.4.4.

e Objective 5: Analyse and evaluate the robustness and applicability of these
techniques across different application domains with distinct requirements

specifications.

Achieved: The robustness and applicability of the proposed techniques were analysed
across three datasets representing distinct application domains: Dataset-| (structured
requirements), Dataset-W (semi-structured), and Dataset-O (unstructured). The
evaluation, presented in Section 7.5, demonstrated the adaptability of the proposed
framework, with RAG emerging as the most versatile solution for varying domain

complexities.

e Objective 6: Design and implement an automated framework that integrates Al and
IR techniques to predict the impacts of requirement changes on software artifacts

and other requirements.

Achieved: Building on the findings from Objective 4, this objective focused on the
practical design and implementation of a fully automated framework. The framework
incorporated the most effective Al and IR techniques, as identified in the earlier
objective, to create a scalable, domain-agnostic solution. The RAG system, developed as
part of this objective, exemplified how automation can reduce manual effort, improve
efficiency, and deliver high recall and F1 scores across diverse datasets, as detailed in

Chapter 6 and Section 7.5.

8.3. Conclusions

The comprehensive evaluation of the implemented models—ML models, the NLP-

based solution, the BEIR-based approach, and the RAG system—highlights the unique
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strengths and limitations of each approach in automating CIA in software requirements

engineering.

The ML models, particularly Random Forest, demonstrated reliable performance in
handling structured datasets, showing a balanced precision and recall on datasets with
well-defined patterns. However, their performance declines with increased data
complexity, as seen in datasets with varied linguistic structures, limiting their utility in

diverse and unstructured requirements scenarios.

The NLP-based solution, which leverages CoreNLP and SpaCy for linguistic feature
extraction, proved highly precise in datasets with consistent language. This approach is
efficient in structured environments where requirements follow predictable syntactic
patterns. However, its precision-focused nature comes at the expense of recall, resulting
in lower completeness when applied to datasets with variable syntax and diverse

terminologies.

The BEIR-based approach, combining BM25 and Bi-Encoders for dense retrieval, excels
in recall across all datasets. This solution is advantageous for identifying a
comprehensive set of potential impacts, especially in cases where thoroughness is
prioritized over precision. However, the BEIR model’s lower precision suggests a
tendency to yield false positives, making it more suitable for scenarios where high recall

is essential, but specific ranking relevance is less critical.

The RAG system, combining retrieval and generative capabilities, showcased a strong
balance between precision and recall across all datasets. Particularly effective in
handling unstructured and complex requirements, the RAG model leveraged LanceDB
and FAISS for efficient retrieval and the Phi 3.5 language model for contextually rich
generation. The RAG system’s ability to adapt dynamically to different datasets and
context-specific requirements was demonstrated through high F1 scores and MRR,

marking it the most versatile solution among the evaluated models.

In conclusion, each model displayed unique strengths tailored to specific dataset
structures and complexity levels. The ML models are best suited for initial, quick

analyses in structured environments, while the NLP-based solution provides high
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precision in controlled, consistent datasets. The BEIR-based approach offers extensive
recall, making it ideal for exhaustive searches, though it requires refinement to improve
specificity. With its combined retrieval and generation framework, the RAG system
emerged as the most adaptable solution, capable of handling both structured and

unstructured data, albeit with higher computational demands.

We used validation-driven grid searches to tune each model’s key parameters (see
Section 7.2). This ensured data-driven choices that balance performance gains against

computational costs and generalize across all three datasets.

8.4. Research Limitations

Despite our efforts to use three industrial datasets of varying structure and age, they
do not capture the full spectrum of requirement styles found in today’s heterogeneous
software ecosystems. For instance, we did not include “living” agile backlogs or
embedded-system specifications with domain-specific notations, which may exhibit
different linguistic patterns. As a result, our findings should be validated further before
generalizing to radically different contexts, such as real-time systems or safety-critical

regulated domains.

Throughout the project, several methodological challenges arose. Early on, tuning
RAG’s retrieval thresholds led to either overwhelming false positives or brittle recall. We
addressed this with adaptive thresholding based on impact-set size, a compromise that
could obscure rare but critical dependencies. Similarly, integrating diverse tools (SpaCy,
CoreNLP, FAISS, LanceDB, Phi 3.5) required repeated pipeline rewrites to align
tokenization schemes and embedding formats, underscoring the engineering overhead

of hybrid systems.

For practitioners deciding which model to apply, context is key. In environments with
well-structured, stable requirements such as enterprise or regulated domains—
traditional ML techniques (like Random Forest or SVM) or our NLP-based solution offer
fast, precise predictions with minimal computational cost, making them ideal for routine

ClAs. When exhaustive coverage is critical such as in safety analyses or regulatory audits
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a BEIR-based pipeline provides high recall, although at the expense of more manual
filtering to remove false positives. Finally, in highly dynamic or unstructured settings—
such as open-source projects or rapidly evolving change logs, the RAG approach delivers
the richest semantic insights and balanced performance, provided that teams can

accommodate its greater computing and storage demands.

While RAG unlocks powerful context-aware reasoning, it comes at a cost. Generative
inference with models like Phi 3.5 can require tens of gigabytes of GPU memory and
incur per-request latencies on the order of hundreds of milliseconds, making it
unsuitable for sub-second, on-device CIAs. We mitigated some of this through 8-bit
guantization and batched processing, but stakeholders must weigh these overheads
against the value of deep contextual analysis. In scenarios demanding near-real-time
performance, a hybrid strategy using fast ML/NLP filters to triage changes and invoking
RAG only for the highest-risk cases can strike an effective balance between speed, cost,

and analytical depth.

8.5. Future Works

This research provides a robust framework for addressing requirements CIA using
innovative models and methodologies. However, there are several avenues for future

work to refine and extend the outcomes of this thesis.

One potential direction is the enhanced integration of models with domain-specific
knowledge bases and advanced retrieval methods, such as hybrid vector and symbolic
reasoning systems, to improve applicability and precision. Exploring the fusion of the
RAG framework with specialized ontologies or domain-adapted pre-trained models
could further enhance its capabilities. Additionally, scalability and performance
optimization remain key challenges, particularly due to the computational demands of
the RAG model. Future work could focus on lightweight architecture or model distillation
techniques to maintain performance while reducing resource requirements, ensuring

scalability for larger datasets and real-time applications.
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Another important avenue is the exploration of federated learning (FL) to improve the
framework’s adaptability across different software domains while preserving data
privacy. FL enables collaborative training across decentralized and confidential
datasets—such as those in healthcare, finance, and defense, without the need to
transfer sensitive data to a central server. This approach would allow the framework to
benefit from a wider range of domain-specific data, enhancing generalizability and
robustness while addressing privacy concerns. Integrating FL with retrieval and
generation components in the RAG pipeline, or with the embedding models used for
similarity computation, could enable continuous learning from distributed

environments without compromising confidentiality.

Further, tailoring the methodology to accommodate domain-specific terminologies
and data structures could significantly broaden its impact. While BLEU and ROUGE
metrics provided valuable insights into linguistic alignment, incorporating additional
evaluation metrics like METEOR or BERTScore could enable a more comprehensive
understanding of semantic nuances and model effectiveness in complex, unstructured

datasets.

Developing interactive and explainable models is another promising direction. Such
models could enhance user trust and utility by providing clear justifications for predicted
impacts, thereby facilitating informed decision-making processes. Similarly, exploring
hybrid approaches that combine the strengths of traditional ML models, NLP
techniques, and advanced generative Al frameworks could result in a more dynamic
solution capable of adapting to varying dataset complexities and requirements

structures.

Longitudinal studies to evaluate the robustness of the proposed models over time and
in evolving datasets would also provide valuable insights into their real-world
applicability and reliability. Finally, advanced preprocessing techniques, such as dynamic
clustering or linguistic segmentation, could be explored to improve model performance

on datasets with high variability.

By addressing these areas, including federated learning for domain scalability and

privacy-preserving collaboration, future work can build on the foundation laid by this
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thesis to create more effective, scalable, and adaptable solutions for requirements CIA,

advancing the state of the art in software engineering and related fields.
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