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ABSTRACT 

The increasing adoption of distributed energy resources has greatly amplified interest in microgrids, whose effective, reliable and 
resilient operation relies on the performance of their energy management systems (EMS). These systems ensure the economic 
operation and maintain load-generation balance. A practical microgrid EMS (M-EMS) incorporates data monitoring, variable 
forecasting, resource allocation and online supervision to optimise the system while interacting with electricity markets. However, 
in the inherently uncertain environment of both stand-alone and grid-connected microgrids, variations in key variables can 
significantly impact the decision-making outcomes of M-EMS. This review paper explores various sources of uncertainties within 
microgrids, including forecast errors and uncertainties arising from modelling approximations or monitoring inaccuracies. It 
also provides insights into handling these uncertainties by thoroughly reviewing the pertinent literature and exploring strategies 
such as analytical methods and AI-based approaches for capturing them. The eventual goal of handling the uncertainties is to 
enhance system reliability and security through robust energy management solutions. Furthermore, practical measures to mitigate 
uncertainties are discussed. The practical implementation of these concepts is illustrated through a review of commercially 
available M-EMS solutions and real-world projects demonstrating their effectiveness in managing energy resources. This paper 
aims to help both researchers and industry professionals perceive the uncertainties within M-EMS and how to handle them to 
achieve accurate, optimal solutions and avoid unexpected costs. Emerging trends and future research directions are also outlined. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 Introduction 

Energy management systems (EMSs) play a significant role in
the efficient operation of microgrids, particularly in the face of
increasing complexities and uncertainties. An EMS integrates
various components of a microgrid, such as generation sources,
storage systems and loads, to ensure optimal performance and
reliability. Optimisation techniques are employed to balance sup-
ply and demand while optimising objectives like operational costs
and enhancing system reliability. Handling uncertainty is crucial
in this context, as it allows for better decision-making in the face
of variable renewable energy sources (RESs), fluctuating demand
patterns and potential system failures. By effectively managing
This is an open access article under the terms of the Creative Commons Attribution License, which perm
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uncertainty, microgrids can maintain stability and performance, 
ultimately supporting a more resilient and sustainable energy 
future. 

Generally, utilising distributed energy resources (DERs) 
enhances the microgrid’s resilience and reliability, particularly 
during periods of grid isolation [ 1 ]. However, any malfunction in
DERs can pose significant challenges unless a sufficient backup
system is in place. Furthermore, the intermittent nature of
RESs introduces complexities in maintaining a balanced supply 
and demand, given the influence of unpredictable variables 
like weather conditions. It is important to note that RESs are
not the only source of uncertainty within the system. Load
its use, distribution and reproduction in any medium, provided the original work is properly 
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demand, the other source of uncertainty, exhibits variability
due to unforeseeable consumption behaviour across different
operational scenarios of the microgrid. The consumption
is influenced by factors such as electricity pricing, weather
variations, load type, cluster specifics and special events.
Although historical consumer behaviour data aid in capturing
some of these uncertainties, the exact consumption patterns
remain inherently uncertain. Consequently, an effective EMS for
microgrids is imperative not only to incorporate forecasted data
of load, prices and RESs but also to address unforeseen alterations
during microgrid operation. The energy management in this
scope serves as a crucial bridge, managing deviations between
actual and projected data. Therefore, microgrids necessitate
sophisticated EMSs capable of orchestrating both optimal day-
ahead and real-time DER operations [ 2 ]. These systems are
indispensable in meeting the stability and operational requisites
of microgrids [ 1 ]. 

This study aims to bridge critical gaps in the current litera-
ture by systematically examining the sources, propagation and
management of uncertainties within microgrid energy man-
agement systems (M-EMSs). Such uncertainties, arising from
data acquisition, forecasting, modelling and real-time operation,
can propagate across system layers, potentially compromising
the optimality and reliability of energy management decisions.
The methods used to capture and mitigate these uncertainties
differ depending on their source and temporal characteristics.
Unlike previous reviews that primarily emphasise algorithmic
frameworks or isolated system components, this work focuses
on the integration of academic methodologies with real-world
industrial M-EMS implementations, highlighting the operational
complexities associated with real-time decision-making under
uncertainty. In particular, it explores the interaction between
forecasting modules and system-level optimisation, offering a
detailed perspective on how prediction errors and modelling
approximations influence operational outcomes. Furthermore,
the study incorporates an AI-driven perspective, examining the
role of machine learning, probabilistic forecasting and predictive
analytics in enhancing decision-making robustness under uncer-
tain conditions. To ensure a holistic understanding, the review
also provides an overview of commercially deployed M-EMS
solutions, identifying practical challenges, technology trends and
implementation barriers. Table 1 summarises the novel contribu-
tions of this study relative to existing reviews, underscoring how it
extends prior work by combining theoretical advancements with
practical insights from operational and commercial EMSs. 

To conduct this review, the IEEE Xplore and Scopus databases
were searched for studies addressing uncertainty management
in microgrid energy systems. Additional relevant studies were
also included to ensure comprehensive coverage of the topic. To
visualise the research scope and dynamics of the field, a key-
word co-occurrence map was generated using VOSviewer, based
on bibliographic data from the reviewed literature. As shown
in Figure 1 , this visualisation highlights the most prominent
and frequently co-occurring terms within the research domain.
Node sizes represent keyword frequency, while colour gradients
indicate the average publication year (2017–2025). To ensure
consistency, keywords with different spellings or abbreviations
representing the same concept were standardised. Larger nodes
correspond to dominant research themes such as ‘microgrid’,
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‘EMS’, ‘DERs’, ‘renewable energy’, like ‘PV’ and ‘wind’, as well as
‘optimisation’, ‘uncertainty’, ‘real-time control’, ‘artificial neural 
networks (ANN)’ and ‘demand response’. Emerging themes, 
including ‘integrated energy systems,’ ‘flexibility,’ ‘hydrogen tech- 
nology,’ ‘rolling horizon strategies,’ ‘deep reinforcement learning’ 
and ‘probabilistic forecasting’ appear in lighter colours, indicat- 
ing recent research attention. The map effectively reveals both
established and evolving trends, offering an intuitive overview of
how key concepts interconnect across the literature and guiding
the thematic organisation of this review. 

In addition, Figure 2 presents the temporal distribution of the
reviewed publications, highlighting research evolution over the 
examined period. Although the review prioritises the most recent
advancements, certain very recent papers were filtered out to
maintain alignment with thematic keywords and the study’s
focus. Consequently, while the number of publications in the
most recent years may appear slightly lower, the selection remains
representative of current and influential work. Figure 3 shows the
top ten most cited journals contributing to the reviewed literature,
underscoring their relevance to the topic. IEEE Transactions on
Smart Grid and Applied Energy emerge as the most influential,
contributing 17 and 11 papers, respectively. 

The remainder of the paper is structured as follows: Section 2
discusses microgrid monitoring systems as a foundation for 
data collection; Section 3 examines forecasting approaches for 
M-EMS applications, comparing deterministic and probabilistic 
methods; Section 4 explores operating timescales relevant to 
uncertainty management; Section 5 outlines practical strategies 
and techniques for handling uncertainties; Section 6 reviews the
state-of-the-art in M-EMS uncertainty management; Section 7 
examines real-world implementations and commercially avail- 
able systems; and finally, Section 8 concludes the study with key
insights and implications. 

2 Microgrid Monitoring Systems 

Monitoring systems are crucial elements of M-EMSs, enabling 
real-time data collection and analysis of various variables and
components. With advancements in technology, monitoring 
systems have evolved significantly, incorporating Internet of 
Things (IoT) devices, cloud computing, supervisory control and 
data acquisition (SCADA) systems and smart meters. These 
innovations enhance the ability to manage and optimise energy
resources, reduce operational costs, improve response times, 
ensure system security and enhance real-time awareness of the
voltage, current, frequency and phase angle [ 14, 15 ]. Particularly,
the development and integration of smart meters have trans-
formed consumer-operator relationships by enabling reliable, 
rapid communication and electronic invoicing. Transitioning 
from automated meter reading to advanced metering infrastruc-
ture has allowed for bidirectional communication and power 
flow, enhancing the efficiency and reliability of distribution
systems. Smart meters equipped with memory chips and software
interfaces enable users to monitor energy consumption and sup-
port distribution automation, improving overall system security 
and reducing power theft. These advancements allow consumers
to manage energy loads more effectively, contributing to cost
savings and efficient energy use. Combining cloud computing 
IET Renewable Power Generation, 2025
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with IoT and smart meter technology creates a robust framework
for real-time microgrid monitoring and management, paving the 
way for more intelligent and efficient energy systems. 

In the literature, particular emphasis is placed on the moni-
toring of photovoltaic (PV) systems [ 16, 17 ] and BESS [ 15, 18 ].
Monitoring these components is vital for assessing operational 
status and performance. Specifically, for batteries, this includes 
monitoring longevity and managing charge and discharge cycles. 
A battery monitoring system includes instruments that measure 
key parameters such as voltage, current and temperature. These
measurements are processed to estimate the battery’s state of
charge (SoC) and state of health. 

Generally, monitoring systems today are faced with challenges 
related to interoperability and the reliability of communication 
networks. Selecting the right communication interface to ensure 
effective interoperability is an important decision that signif-
icantly influences economic costs, maintainability, scalability, 
security and resilience [ 16 ]. 

2.1 SCADA Systems 

A SCADA system offers an effective solution for monitoring and
managing energy in microgrids across various settings, including 
residential, commercial and industrial buildings. SCADA systems 
consist of two main components: hardware for data collection,
communication, control and operation and software for data stor-
age, elaboration, visualisation, optimisation and management 
[ 19, 20 ]. The hardware component of a SCADA system includes
four major functions. The first is the remote terminal unit (RTU),
which is responsible for gathering data from the microgrid. The
second component is the communication platform that estab- 
lishes data links between devices, ensuring seamless data flow.
The third function involves the programmable logic controller 
(PLC), which is essential for ensuring proper operation of the
microgrid in both grid-connected and islanded modes [ 21, 22 ].
The software component of SCADA, particularly the human- 
machine interface (HMI), is crucial for monitoring and control.
The HMI enables operators to interact with the system, providing
a user-friendly interface for real-time monitoring and control 
of microgrid operations. Typically, the SCADA system follows a
server-client architecture, where the primary SCADA application 
runs on the server and the HMI operates on the client side [ 23 ]. 

SCADA systems serve as middleware in intelligent monitoring
systems, primarily used to read and manage bundled microgrid
data. This data is accessed by the SCADA system and stored
in databases like MySQL for further analysis and optimisation
[ 20 ]. The integration of all four SCADA components, RTU, PLC,
HMI and communication platform, aims to achieve advanced 
energy management objectives, contributing to the intelligent 
and efficient operation of microgrids. 

2.2 IoT-Based Systems 

The IoT represents the evolution of SCADA, serving as a system
for monitoring and controlling operations via Internet con- 
nectivity. IoT represents a significant advancement in network 
IET Renewable Power Generation, 2025
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FIGURE 1 Keyword co-occurrence map of selected publications, generated using VOSviewer (node size indicates keyword frequency, link 
thickness shows co-occurrence strength and colour represents the average year of publication). 
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technology, connecting various entities to the internet for data
creation, gathering, exchange and utilisation. IoT encompasses
a range of technologies, including machine-to-machine and
radio frequency identification, that facilitate object intelligence
communication [ 24 ]. The primary objective of IoT is to create
an intelligent environment where everything is interconnected,
automating processes with minimal human intervention and
enhancing services through comprehensive information fusion.
This involves integrating physical and virtual entities with dis-
tinct identifiers and attributes, enabling autonomous responses
to real-world events and facilitating secure and privacy-conscious
internet-based communication. IoT technology has a trans-
IET Renewable Power Generation, 2025
formative impact on microgrid EMSs, significantly improving 
their efficiency by collecting and analysing data from vari-
ous power sources. This technology allows utilities to perform
operational tasks such as optimising load balancing, detecting 
faults, reducing service costs and restoring services more quickly.
Additionally, IoT enables effective management of DRPs, energy 
collection, sharing and trading, addressing energy conservation 
and management challenges through a continuous energy supply 
and power surge prevention system [ 24 ]. 

One of the crucial features of IoT-based microgrid monitor-
ing systems is real-time data analysis. Various sensors collect
5 of 26
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FIGURE 2 Selected publication trend over the years. 

FIGURE 3 Distribution of publications across the top 10 most frequently cited journals identified in the bibliometric analysis. 
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current, voltage, power and temperature data, which are then
analysed to determine optimal control strategies based on real-
time conditions. This data is stored for subsequent analysis to
develop predictive control techniques, further enhancing system
efficiency and reliability. The integration of IoT technologies
into platforms for data collection, processing and visualisation is
essential for automated distribution and secure DERs adminis-
tration, particularly as the adoption of 5G technology progresses
[ 25 ]. 

Numerous studies have explored different aspects of IoT inte-
gration in microgrid monitoring. Authors in [ 26 ] investigated a
hybrid communication platform for M-EMS, demonstrating its
ability to operate in both central and decentralised modes to
reduce operating expenses despite communication delays. The
study in [ 27 ] emphasised the benefits, challenges and risks of
deploying IoT in intelligent microgrids, highlighting essential
6 of 26
processes and procedures for control and protection. Researchers
in [ 28, 29 ] developed remote IoT-based energy monitoring plat-
forms for companies, integrating various technologies for central 
and decentralised administration, which are aimed at optimising
and conserving energy, reducing energy wastage and providing 
valuable insights into energy consumption patterns. References 
[ 21, 30 ] presented real-time monitoring systems utilising web
server technology, where Ethernet network modules, sensors 
and microcontrollers are employed for data acquisition and 
wireless transmission. An IoT-based battery monitoring system 

has been devised by the authors in [ 18 ] specifically to oversee
the operational and performance aspects of batteries within 
microgrids. This system is comprised of a communication chan-
nel facilitating bidirectional data exchange between intelligent 
electronic devices, a data acquisition algorithm for collecting 
relevant information and an HMI for user interaction and control,
integrating with a cloud system for data storage and management.
IET Renewable Power Generation, 2025
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2.3 Cloud-Based Systems 

The cloud system emerges as an ideal partner for data storage,
especially in IoT applications. Functioning as a third-party
database, the cloud system facilitates data transfer over internet
gateways. Its advantages include expansive data storage capabil-
ities, high reliability, cost-effectiveness and excellent scalability,
capable of accommodating increasing workloads. Industries ben-
efit from cloud systems by reducing costs associated with data
storage facilities and maintenance, while also gaining the ability
to process and analyse data accurately from anywhere, owing
to the vast data repository stored in the cloud. This accessibility
enables faster decision-making processes. 

Cloud computing offers an advanced approach to microgrid mon-
itoring by facilitating seamless communication between power
sources and monitoring platforms. In this setup, measurement
units send data directly to the cloud for real-time processing
and analysis, significantly enhancing data transmission quality
and the administration of IoT services. The study by [ 31 ] high-
lights the effectiveness of using remote cloud servers and cloud
computing platforms for real-time grid power system monitoring
and control. These solutions improve response times, control
efficiency and user authentication security while providing a
cost-effective means to meet microgrid computational needs.
Authors in [ 32 ] further emphasise the benefits of cloud-based
remote monitoring units and platforms like Thingspeak, which
facilitate real-time data visualisation and analysis, crucial for
optimal energy management. 

3 Forecasting for M-EMS Applications 

The forecasting module stands as a crucial component within
the M-EMS, furnishing essential data for the optimisation stage
to ensure a consistent and refined power profile. This module is
tasked with delivering projected profiles of influential variables
that guide the optimal decisions of M-EMS, encompassing factors
like electricity market prices, renewable energy source power
generation, load demand and weather information, among others
[ 33–36 ]. A precise forecasting methodology for both generation
and consumption is paramount in maintaining a consistent
power balance. It guarantees that the system can meet demand
while also having sufficient reserves to accommodate unexpected
deviations. Accurate forecasted data can then be leveraged to fine-
tune microgrid operations by reducing the reliance on backup
generators [ 2 ]. 

In power sector forecasting, time scales vary to meet specific
planning and operational needs. Long-term load forecasting,
spanning one to 20 years, guides strategic planning and infras-
tructure development. Medium-term load forecasting, spanning a
week to a year, aids in maintenance scheduling, fuel procurement
and revenue assessment. Short-term load forecasting (STLF),
ranging from an hour to a week, is vital for daily operations, aiding
in generation and transmission scheduling by M-EMS, while ultra
STLF (USTLF), minutes to an hour ahead, supports real-time
decision-making or control, allowing immediate adjustments to
fluctuations to maintain system stability [ 37 ]. The granularity
of the forecasting aligns with the specific timescale of energy
IET Renewable Power Generation, 2025
management, ranging from a few days to intervals as short as five
minutes [ 1 ]. 

3.1 Deterministic Forecasting Approach 

Deterministic forecasting involves predicting future outcomes 
with a single-point estimate, typically based on historical data
and deterministic models. In energy forecasting, deterministic 
methods aim to provide accurate point forecasts of variables
such as load demand, generation output of renewable sources
and electricity market prices. Various categories of deterministic
methods are employed for forecasting, including time series
analysis, regression analysis and machine learning (ML) tech- 
niques. Time series analysis utilises historical data to identify
patterns and trends, which are then extrapolated to forecast
future values. The seasonal autoregressive integrated moving 
average, as a time series forecasting technique, is utilised for M-
EMS [ 38 ]. Regression analysis establishes relationships between
variables such as time, weather conditions and economic indices
to predict future outcomes. ANNs and support vector machines,
among other ML methods, learn patterns from historical data
to make accurate predictions. In recent years, however, neural
network-based forecasting methods, particularly those utilising 
long short-term memory (LSTM) techniques, have garnered sig- 
nificant attention. More specifically, LSTM comprises recurrently 
connected memory blocks to forecast variables in M-EMS appli-
cations [ 39 ]. Each block is equipped with three multiplicative
units: the input gate, output gate and forget gate. The input gate
is responsible for storing either new information or past states of
the network. The forget gate filters out irrelevant and redundant
information from previous iterations. The output gate extracts 
crucial information from the memory. This mechanism ensures
that only pertinent information is retained within the network,
while unnecessary data is discarded [ 40, 41 ]. Moreover, hybrid
forecasting models have been developed to leverage the strengths
of various methods [ 42 ]. 

Deterministic forecasting methods are assessed for accuracy 
using diverse metrics such as R-squared score (R2), mean abso-
lute error (MAE), mean absolute percentage error, mean square
error (MSE), root mean square error (RMSE) and mean biased
error (MBE), among others [ 42 ]. Nevertheless, the forecasting
module is prone to errors and may not be entirely accurate. These
errors are perceived as uncertainties within the M-EMS that
should be addressed effectively, as discussed in the next section.
However, uncertainties may arise from monitoring and data 
collection inaccuracies, highlighting the necessity for probabilis- 
tic forecasting. Unlike deterministic forecasting, which assumes 
certainty in the raw data, probabilistic forecasting incorporates
methods to account for inherent uncertainties. 

3.2 Probabilistic Forecasting Approach 

In addition to deterministic forecasting, probabilistic forecasting 
is another approach to data prediction. Table 2 presents key
studies employing deterministic and probabilistic forecasting 
methods, highlighting the forecasted parameters, accuracy eval- 
uation metrics and their applications in M-EMS. In deterministic
forecasting, the goal is to predict a single value for a future
7 of 26
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TABLE 2 Key studies on forecasting for M-EMS applications. 

Ref. 
no. 

Forecasting 
approach 

Forecasting core 
method 

Forecasted 
parameter(s) 

Accuracy 
evaluation metrics M-EMS application 

[ 43 ] Deterministic CNN-LSTM Load demand MAE, MSE, RMSE Small-scale residential 
microgrid 

[ 44 ] Probabilistic Regression trees Solar power MAE, RMSE, MBE, 
CRPS 

Building EMS 

[ 45 ] Deterministic LSTM Wind power N/A Grid-connected microgrid 
[ 46 ] Deterministic LSTM Wind and Solar 

power, Load demand 
MSE, R2 Islanded AC/DC microgrid 

[ 47 ] Probabilistic Seq2Seq-LSTM, 
Seq2Seq-GRU 

Wind and Solar 
power 

CPRS, PICP, MPIW Renewable-based microgrid 

[ 48 ] Probabilistic Seq2Seq-LSTM, GBR Wind and solar 
power, market price 

MAE, RMSE, R2, 
CRPS 

Renewable-based microgrid 

[ 49 ] Deterministic Polynomial ANN Wind speed, Solar 
radiation 

N/A Multi-energy, 
Grid-connected microgrid 

[ 50 ] Deterministic LSTM Load demand MSE Home EMS (HEMS) 

FIGURE 4 The role of probabilistic forecasting and uncertainty- 
handling in dealing with propagated uncertainties in M-EMS. 
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event or variable. This approach relies on historical data and
mathematical models that analyse this data to make predictions.
Deterministic forecasting is sufficient when the future is expected
to be quite similar to the past and there is minimal uncertainty in
the data. However, it falls short when addressing uncertainties
and errors in data monitoring, potentially leading to incorrect
decisions. Figure 4 conceptually illustrates how probabilistic fore-
casting and uncertainty-handling methods function in tandem
to manage uncertainties within M-EMS operations. Probabilis-
tic forecasting captures uncertainties in monitored data, such
as weather conditions that influence demand, generation and
8 of 26
market prices and provides a quantified representation of vari-
ability. In contrast, uncertainty-handling methods incorporate 
these probabilistic inputs into optimisation models to mitigate 
the effects of forecast inaccuracies on operational decisions. 
Nonetheless, actual operating conditions may deviate from 

modelled uncertainties due to unforeseen events or equipment 
failures. Consequently, a real-time control layer is required to
capture residual deviations and enable optimal decision-making 
in dynamically changing environments. 

Probabilistic forecasting stands out as an approach that goes
beyond single-value predictions, offering a range of potential 
outcomes with associated probabilities or confidence levels. This
is crucial in decision-making scenarios that encounter informa-
tion gaps, as it adeptly models uncertainties and forecast errors.
Stakeholders and operators of microgrids rely on these methods to
navigate the uncertainty-surrounding parameters like renewable 
energy generation, customer consumption patterns and electric 
vehicle (EV) charging/discharging behaviours. These models 
help forecasters prioritise critical uncertain factors and empower 
decision-makers to evaluate various operational and planning 
decisions, taking into account various scenarios of renewable 
energy injection and other uncertain variables [ 40 ]. 

Probabilistic forecasting includes a spectrum of techniques, cat- 
egorised into parametric and non-parametric methods, tailored 
to the specific nature of the variables at hand. In parametric
approaches, established probability density functions (PDFs) 
are employed to gauge the distributions of response variables.
These models include familiar tools like linear regression models,
Gaussian and beta distributions and adapted variants of the
logit-normal distribution [ 40, 51 ]. In contrast, non-parametric
methods eliminate the need for predefined PDFs, opting to
construct predictive distributions or quantiles/ensembles based 
on diverse factors or historical data. This category encompasses
models such as random forecast, quantile regression forecast 
like gradient boosting with quantile regression (GBR), kernel 
density estimation (KDE), short-range ensemble forecast and 
IET Renewable Power Generation, 2025
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ANN-based models like sequence-to-sequence (Seq2Seq) gated
recurrent unit (GRU), which can account for autocorrelation and
temporal dependencies in data [ 47, 52–56 ]. Hybrid techniques like
Kalman filters, Gaussian processes and Markov-chain mixture
distribution models are also part of the toolkit for probabilistic
forecasting, with method selection depending on the nature of the
variables, forecasting horizon and data availability. The effective-
ness of a probabilistic forecasting model revolves around two key
attributes: calibration and sharpness [ 40 ]. The accuracy and effec-
tiveness of the probabilistic forecasting models are commonly
evaluated using additional metrics specific to probabilistic fore-
casts, such as the continuous ranked probability score (CRPS), the
Brier score, the prediction interval coverage probability (PICP)
and the mean prediction interval width (MPIW) [ 44, 47 ]. 

4 EM Timesframe in an Uncertain Environment 

4.1 Day-Ahead EM vs Real-Time EM 

Day-ahead (DA) and real-time energy management represent two
distinct approaches within EMSs for microgrids. The former is
also known as offline energy management for the next day and
the latter is referred to as online energy management. Day-ahead
energy management, or offline energy management, focuses on
planning decisions and scheduling actions for the following day
or a longer period. This is based on forecasts and predictions of
energy supply and demand [ 13, 39 ]. While day-ahead scheduling
may yield the globally optimal solution, slight discrepancies
between actual and forecasted values due to inevitable forecast
errors can make achieving expected outcomes challenging [ 10 ].
Concerning this matter, real-time energy management entails
making swift decisions and adjustments based on the immedi-
ate operating conditions and available data. Real-time energy
management is particularly effective in handling uncertainties
linked to RESs and load demand. By doing so, it mitigates the
influence of uncertainties on the EMS and simplifies its design
[ 10 ]; however, this impact persists within the system and needs to
be addressed effectively. 

The importance of real-time energy management becomes evi-
dent when considering the challenges involved in validation,
demonstrations and testing. Developing an embedded system
for real-time operation is a complex task, where offline simu-
lation outcomes might not be entirely trustworthy due to the
unavailability or inadequacy of detailed component models [ 57 ].
However, real-time energy management poses several challenges
to the system compared with day-ahead energy management: 

∙ Limited response time: Real-time decisions require quick
response, sometimes within seconds or minutes. This
demands highly efficient algorithms and systems capable of
processing and acting on data rapidly. Real-time optimisation
problems can be more complex due to the need to incorporate
numerous variables and constraints while making quick
decisions. 

∙ Data quality and availability: Real-time management relies
heavily on the availability and accuracy of real-time data.
Inaccurate or missing data can lead to suboptimal decisions
and potentially disrupt the energy system. 
IET Renewable Power Generation, 2025
∙ Very short-time forecasting and errors: Forecasting RESs, 
load demand, or market price, which can be highly variable,
into real-time operations requires advanced forecasting and 
control strategies. Real-time management must deal with the 
immediate and often unpredictable fluctuations in energy 
demand and supply. This includes sudden changes in weather
conditions affecting renewable energy generation, unexpected 
equipment failures, or rapid changes in consumer behaviour, 
which pose uncertainty in the system. 

∙ Dynamic constraints: Real-time operations may face 
dynamic operational limits, including equipment constraints 
and voltage and line flow constraints. These constraints
change frequently and need to be continuously monitored 
and adjusted. 

∙ Cost considerations: Real-time decisions may have cost 
implications due to the need for fast-responding resources.
Balancing cost-effectiveness with the need for rapid response
is a constant challenge. 

∙ Safety and reliability: Real-time decisions directly impact 
the security and reliability of the energy system. Errors or
delays in decision-making can lead to disruptions, blackouts, 
or even damage to equipment. 

∙ Regulatory and market constraints: Real-time operations 
must adhere to regulatory requirements and market rules.
Complying with these constraints while making rapid deci- 
sions adds another layer of complexity. 

∙ Cybersecurity and resilience: Real-time energy systems 
are exposed to cyber threats that can potentially disrupt
operations. Ensuring the cybersecurity and resilience of the 
system is crucial. 

∙ Human-Machine Interaction: Operators play a critical role 
in real-time energy management. Ensuring effective training, 
situational awareness and decision support tools for operators
is vital. 

Addressing these challenges requires a combination of advanced 
technology, sophisticated algorithms, robust data infrastructure, 
skilled operators and a deep understanding of the complexities of
real-time energy systems. 

4.2 Electricity Market Interactions 

From an uncertainty handling perspective, EMS interact with 
wholesale electricity markets across various timescales—day- 
ahead, intraday and real-time—to enhance operational flexibility 
and grid reliability. In the day-ahead market, the EMS utilises
forecasted prices to schedule generation and demand, sub-
mitting bids for both energy and reserve capacity to address
anticipated supply-demand conditions. Real-time markets, on 
the other hand, accommodate immediate fluctuations through 
short-interval trading (e.g., 5–30 min), allowing the EMS to
respond dynamically to real-world deviations and to participate in
ancillary services like frequency regulation and voltage support,
often via demand response aggregators [ 58, 59 ]. As illustrated in
Figure 5 , the intraday market (i.e., intraday adjusting market)
bridges these two by enabling continuous adjustments within the
day, thereby helping microgrids mitigate forecast errors, avoid 
9 of 26
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FIGURE 5 M-EMS uncertainty handling via market interactions. 

FIGURE 6 The RTH conceptual diagram. 
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imbalance penalties and respond to sudden changes in renewable
generation or demand [ 60, 61 ]. Through participation in these
interconnected market structures, the EMS not only ensures local
balance and economic efficiency but also strengthens resilience
against uncertainties in both load and renewable energy forecasts,
supporting a stable and reliable grid [ 59 ]. 

4.3 Rolling Time Horizon (RTH) and Model 
Predictive Control (MPC) for RT EM 

In energy management optimisation, the RTH method is one
of the most widely adopted techniques for real-time decision-
making. As illustrated in Figure 6 , in this method, the scheduling
horizon is divided into discrete intervals and optimisation is
performed sequentially for each interval. At each step, the system
re-optimises the scheduling problem using the most recent data,
implementing only the decision corresponding to the current
interval, while future intervals are updated as new information
becomes available [ 39 ]. In practice, this technique is closely linked
with the model-predictive control approach, which is commonly
used in the literature for real-time energy management. MPC is
emerging as a valuable real-time energy management strategy
in microgrid systems. It utilises a feedback mechanism to adapt
the initial dispatch solution based on changes in uncertain
decision variables. MPC functions within discrete time intervals,
solving an open-loop optimal control problem for a selected
horizon at each step [ 62, 63 ]. This approach leverages models
with controllable variables to minimise the deviation between
reference and controlled values, determining the optimal action
for the subsequent period. MPC benefits from its ability to
incorporate constraints and disturbances in forecasted control
decisions, making it adaptable to the dynamic performance of
the system’s components, particularly models for battery charging
10 of 26
and discharging [ 9 ]. Therefore, MPC is advantageous in handling
multivariable systems and reducing the impact of uncertainties.
However, it is crucial to carefully select the prediction horizon
to balance performance with computational complexity, as larger 
horizons can lead to increased computational demands. In 
addition, the effectiveness of MPC is directly influenced by the
quality and precision of the predictive model, which poses a
challenge when implementing the MPC scheme. For real-time 
EMS applications, MPC should be implemented in a closed-loop
system to continuously receive feedback from the monitoring
system and adjust its control actions based on this feedback [ 64 ].

4.4 Real-Time Control for Uncertainty Handling 

Several researchers have proposed that during real-time energy 
management, uncertainty is inherently captured, thus eliminat- 
ing the necessity for additional uncertainty-capturing methods 
[ 65–67 ]. However, despite the benefits of real-time approaches
in mitigating uncertainties, there remains a requirement for 
employing uncertainty-capturing methods. This need arises from 

the inherent uncertainties associated with forecasting errors and 
also the approximation in the system model, which persists
even within real-time operations. Therefore, while real-time 
strategies address some aspects of uncertainty, the utilisation
of uncertainty-capturing methods remains crucial for effectively 
managing and mitigating uncertainties arising from forecast 
inaccuracies. 

5 Handling Uncertainties in M-EMS 

Within M-EMS, addressing uncertainties is particularly crucial. 
Generally, in uncertain environments, variations in uncertain 
variables can significantly affect the outcomes of decisions, 
resulting in actual results that might be better or worse than
expected [ 68 ]. Various sources of uncertainties in forecasts,
including PV and wind turbine (WT) power generation, load and
EV demand and electricity prices, are considered in the literature
[ 9 ]. Solar and wind energy, the most prevalent RESs in microgrid
applications, are subject to fluctuations based on factors like
weather conditions. This intermittent and unpredictable nature is 
compounded by consumer load variability, which will be further
complicated by including demand response strategies and EV 

charging. As depicted in Figure 7 , uncertainties affecting M-EMSs
can be broadly classified into several categories. These include
topological parameters related to network configuration, moni- 
toring and forecasting uncertainties (as detailed in Section 3 ) and
modelling inaccuracies arising from simplified or approximate 
IET Renewable Power Generation, 2025
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FIGURE 7 Sources of uncertainty within a microgrid. 
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optimisation formulations. The subsequent subsections elaborate
on these uncertainty sources and their implications for system
performance and control strategy design. 

This high level of unpredictability creates an environment of oper-
ational uncertainties for microgrids. Consequently, effectively
managing the uncertainties is a primary challenge. Achieving
precise modelling of uncertainties related to parameters and com-
ponents significantly impacts the operational cost of a microgrid
[ 69 ]. However, accurately modelling uncertainties is a persistent
challenge, leading to the employment of diverse approaches tai-
lored to specific applications. The subsequent subsections delve
into pertinent research and varied methodologies for handling
uncertainties within M-EMSs. 

5.1 Uncertainty-Capturing Approaches 

Various methods are employed to address uncertainties in micro-
grid energy management. From a technical standpoint, these
methods can be broadly classified into two categories: exact or
analytical methods and approximate methods [ 70, 71 ]. Analytical
methods utilise mathematical analysis to derive closed-form
expressions describing system behaviour under uncertainties. For
instance, sensitivity analysis evaluates how changes in input
parameters affect system outputs, while probabilistic analysis
assesses the likelihood of different outcomes based on uncertain
variables. 

In contrast, approximate methods encompass a set of compu-
tational techniques used when analytical models are infeasible,
typically due to large-scale data or significant uncertainty. These
methods focus on deriving near-optimal or practically accept-
able solutions rather than exact outcomes. AI-driven methods
are commonly considered part of this category. Approximate
methods, such as fuzzy logic, simplify complex stochastic pro-
cesses, making them computationally manageable while preserv-
ing the essential characteristics of uncertainty. These methods
enable efficient decision-making by providing estimates of sys-
IET Renewable Power Generation, 2025
tem performance and risk under varying operating conditions. 
Additionally, Monte Carlo simulations (MCSs) generate random 

samples from probability distributions, such as normal or uni-
form distributions, to model uncertain parameters like renewable 
energy generation or load demand. Table 3 presents a variety
of techniques and strategies utilised in the literature to handle
uncertainties either through real-time energy management or 
by employing uncertainty-capturing methods. As shown in the 
table, studies focusing on DA operations typically adopt a 1-hour
time resolution, whereas RT energy management is conducted 
with finer resolutions, sometimes as short as 1 min. Among the
approaches used for RT operation, MPC and RL, particularly deep
Q-networks (DQNs), are the most prominent solutions. In this
context, the strategy refers to the control action implemented
by the controller to adapt to actual system conditions, while the
technique denotes the modelling approach used to formulate and
execute these actions. To mathematically capture uncertainties, 
mainly in renewable generation and load demand, various meth-
ods have been employed across the literature, as reflected in the
studies summarised in the table. 

5.1.1 Analytical Approach to Handle EMS 
Uncertainties 

Analytical methods are mathematical techniques used to solve 
problems by deriving solutions through analytical expressions, 
equations, or algorithms. Stochastic programming (SP), robust 
programming (RP), information-gap decision theory (IGDT), 
chance-constrained programming (CCP) and sensitivity analysis 
(SA) are addressed in the current study. 

5.1.1.1 Stochastic Programming. SP represents a key 
methodology employed in devising energy management strate- 
gies for microgrids under uncertainty. In this approach, some
or all parameters of the optimisation problem are treated as
random variables characterised by known probability distribu- 
tions, which is why it is sometimes referred to as probabilistic
optimisation. A major challenge in SP is the need for accurate
PDFs for these uncertain parameters. Several techniques are com-
monly used within the SP framework, including point estimate
methods (PEMs), MCS-based methods, scenario-based modelling 
approaches and approximate analytical techniques [ 9, 83, 111 ].
In general, stochastic methods rely on generating numerous
scenarios to model uncertainty, often through techniques such as
MCS, which can lead to significant computational overhead. MCS
effectively captures the randomness of uncertain variables by 
generating a large number of random samples based on specified
probability distributions, providing an effective framework for 
handling uncertain variables such as PV generation, wind power
output and load demand [ 9, 70 ]. Although computationally inten-
sive, MCS remains one of the most accurate and widely adopted
methods for uncertainty quantification in energy systems. To 
address the computational challenges of full-scale stochastic 
simulations, PEMs have been developed as efficient alternatives. 
PEMs approximate the statistical moments of system outputs by
evaluating the system at a limited number of carefully chosen
points, offering a balance between computational efficiency and 
modelling accuracy. They are well-suited for estimating power 
exchanges and optimal strategies under uncertainty with less
computational effort [ 9, 33 ]. 
11 of 26
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TABLE 3 Operation timeframe and uncertainty-capturing methods in the literature. 

Real-time EM Timescale Uncertainty capturing 

Ref. 
no. Year Strategy Technique 

Time 
horizon 

Time 
resolution 

Uncertainty- 
capturing 
method 

Uncertain 

variables 

[ 72 ] 2022 BESS ch/dch to maintain 
load/generation balance 

Load shifting 
mechanism 

DA 1 h N/A N/A 

[ 73 ] 2022 N/A N/A DA 1 h RL N/A 

[ 33 ] 2021 Control BESS energy level Battery virtual 
queue 

RT 1 min 3-PEM N/A 

[ 74 ] 2021 Minimising the imbalance 
cost between DA and RT 

operation 

Iterative CPLEX 

solver 
DA/RT 1 h/ 

5 mins 
Coupling MCS RES, load, price and 

EV parameters 

[ 39 ] 2021 Power exchange with the 
grid, 

BESS ch/dch, Industrial 
load operating point 

RTH DA/RT 1 h RP RES, Price 

[ 75 ] 2019 Load shedding, DER 

re-dispatch and transition 
control 

Online OPF-based 
ED 

RT Multi-intervals N/A N/A 

[ 65 ] 2020 Schedule BESSs and 
flexible loads 

Minimising 
drift-plus-penalty 

function 

RT 5 mins N/A N/A 

[ 76 ] 2022 Active power control, BESS 
ch/dch 

Offline training 
followed by online 

training 

DA/RT 1 h RL PV, WT, load, price 

[ 77 ] 2016 Active power of DG and 
BESS SoC 

Intelligent- 
dynamic EMS 
(I-DEMS) 

RT 1 min N/A RES 

[ 78 ] 2023 Any surplus or shortfall in 
energy is exchanged with 
the grid according to RT 

prices 

Using a function 
approximator 

(NN) 

RT 1 h RL N/A 

[ 79 ] 2025 N/A N/A DA 1 h Stochastic 
planning 
algorithm 

Price, RES, load 

[ 80 ] 2024 BESS ch/dch, control grid 
exchange and local 

generation 

DQN RT 1 h RL N/A 

[ 34 ] 2022 Handle unexpected failures IGDT-Stochastic 
programming 

DA/RT 1 h IGDT-SP PV, WT, load 

[ 69 ] 2021 N/A N/A DA 1 h RP RES, Load 
[ 81 ] 2021 Market price-based 

adaptive utilisation of ESSs 
(ToU-based RT EMS) 

Enhanced 
Lyapunov 
optimisation 
method 

RT 1 h N/A N/A 

[ 62 ] 2020 Managing EVs charging, 
involving HVAC systems in 

DR 

MPC DA/RT 1 h N/A N/A 

[ 63 ] 2020 Managing BESS SoC and 
H2ES SoHC 

MPC RT 1 h N/A N/A 

(Continues) 
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TABLE 3 (Continued) 

Real-time EM Timescale Uncertainty capturing 

Ref. 
no. Year Strategy Technique 

Time 
horizon 

Time 
resolution 

Uncertainty- 
capturing 
method 

Uncertain 

variables 

[ 82 ] 2020 Minimising PV curtailment 
and DG utilisation 

Receding horizon 
MPC 

RT 1 h N/A N/A 

[ 83 ] 2020 N/A N/A DA 1 h SP Load, RES, EVs 
travelling hours, 
energy tariff 

[ 84 ] 2019 BESS ch/dch control RTH DA/RT 2 h N/A N/A 

[ 85 ] 2022 N/A N/A DA 1 h Interval-based PV, wind 
[ 70 ] 2019 N/A N/A DA 1 h Unscented 

transform 

Loads, Price, PV, 
WT 

[ 86 ] 2018 N/A N/A DA 1 h 2-PEM PV, WT, load 
[ 87 ] 2022 N/A N/A DA 1 h RP PV, load 
[ 88 ] 2023 N/A N/A DA 1 h RP RESs 
[ 89 ] 2020 N/A N/A DA 1 h DRO N/A 

[ 90 ] 2023 N/A N/A DA 1 h Affine 
arithmetic 

RES, demand 

[ 35 ] 2020 Load curtailment MPC RT 15 mins SP PV, WT, 
temperature, load 

[ 91 ] 2021 Reserve allocation MPC DA/RT 1 h N/A Power variations 
[ 38 ] 2020 N/A N/A DA 5 mins SP Prive, PV output, 

load 
[ 92 ] 2023 BESS ch/dch Droop control of 

secondary control 
RT 1 s N/A N/A 

[ 93 ] 2020 N/A N/A DA non-integer hour N/A N/A 

[ 94 ] 2021 Using PEV to address 
mismatch 

Game-theory DA/RT 30 mins SP using 
K-means 

RES, load 

[ 67 ] 2023 Use BESS for critical loads, 
load curtailment and 

update the estimation of 
generation and load 

Distributed-MPC DA/RT 1 h N/A RES, load 

[ 95 ] 2021 EVs’ batteries are used to 
remove the mismatch 

Stochastic LO RT 10 mins SP Price, multi-carrier 
demand, EV 

behaviour 
[ 66 ] 2023 Generating price references MDP DA/RT 1 h/ 

5 mins 
N/A Price 

[ 96 ] 2023 Update decisions according 
to intraday RTH 

MPC DA/RT 1 h N/A N/A 

[ 97 ] 2022 Regular recalculation of 
optimal dispatch and 

set-points 

MPC DA/RT 5 mins/ 
1 s 

SP Output power 
imbalance 

[ 98 ] 2020 N/A N/A DA 1 h RP Power interaction 
[ 99 ] 2023 N/A N/A DA 1 h DRO Combined wind, 

load parameter 
[ 100 ] 2021 Minimise the deviation 

between actual and DA 

solution 

Tube-based MPC DA/RT 5 to 15 mins RP RESs 

(Continues) 
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TABLE 3 (Continued) 

Real-time EM Timescale Uncertainty capturing 

Ref. 
no. Year Strategy Technique 

Time 
horizon 

Time 
resolution 

Uncertainty- 
capturing 
method 

Uncertain 

variables 

[ 101 ] 2024 Using an ancillary MPC 

module 
Distributed 
dynamic 
Tube-MPC 

RT 10 mins DRO RES, load 

[ 102 ] 2025 N/A N/A DA 1 h MCS PV, WT, DG, load 
[ 64 ] 2021 Gradually correct the 

deviation caused by a 
random error in the 
intraday dispatch 

closed-loop 
MPC-based 
rolling 

optimisation 

DA/RT 1 h CC-DRO RES, Load 

[ 103 ] 2021 N/A N/A DA 1 h N/A N/A 

[ 104 ] 
20023 

Update scheduling Aquila 
optimisation 

(IAO) 

DA/RT 1 h N/A N/A 

[ 105 ] 2019 N/A N/A DA 1 h SP and CVaR PV, WT, load 
[ 106 ] 2025 N/A N/A DA 1 h N/A RESs 
[ 107 ] 2025 BESS and DG control DQN RT 1 h RL PV, load 
[ 108 ] 2025 N/A N/A DA 1 h/ 

10 mins 
Bounded 

interval-based 
model 

PV 

[ 109 ] 2025 N/A N/A DA 1 h 2-PEM RESs, load 
[ 110 ] 2025 N/A N/A DA 1 h Data-driven 

uncertainty 
band 

PV, WT 
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5.1.1.2 Robust Programming. In contrast to SP, RP tackles
uncertain parameters without explicit assumptions about their
probability distributions. Instead, it operates under the assump-
tion that these uncertain parameters belong to a deterministic set
of uncertainties. In a robust optimisation approach, it is presumed
that the uncertain parameters are at their most unfavourable or
worst conditions [ 2 ]. This mathematical technique quantifies and
computes robustness, consequently determining optimal values
for the variables governing robustness [ 10 ]. This approach is
especially beneficial in energy management scenarios where
there is a scarcity of data, but several sources of uncertainty need
to be addressed [ 2 ]. 

Robust optimisation focuses on worst-case scenarios to ensure
solution feasibility. The worst-case scenario approach lim-
its random variables to predefined uncertainty ranges with
set upper and lower boundaries, calculating prediction inter-
vals for assessing prediction uncertainty [ 69, 101, 112 ]. Nev-
ertheless, worst-case outcomes may be overly conservative
and unlikely in practice. To bridge this gap, distributionally
robust optimisation (DRO) has been introduced. DRO aims
to account for uncertainty by considering a range of possi-
ble probability distributions rather than relying on a single
distribution [ 64, 89, 99 ]. By doing so, it strikes a balance
between the granularity of stochastic methods and the con-
servatism of robust optimisation. Within the realm of DRO,
moment-based approaches are notable, as they focus on spe-
14 of 26

v

cific statistical moments such as mean, variance, skewness and
kurtosis. 

5.1.1.3 IGDT. IGDT is another analytical approach that does
not rely on probabilities or fuzzy logic to manage uncertain
quantifications. It is particularly useful when dealing with high
levels of uncertainty or when sufficient data are not available
[ 113 ]. This approach aids decision-makers in either maximising
or minimising the range of acceptable uncertainties associated 
with potential failures while ensuring that the forecasted value
remains above the specified minimum target. An IGDT model
typically comprises three main components: the system model, 
uncertainty model and performance evaluation [ 113 ]. Given the
fact that the result might be better or worse than expected,
the IGDT technique offers two distinct strategies: the robust
or risk-averse and opportunity-seeker or risk-seeker approaches 
[ 114 ]. The risk-averse strategy seeks to maximise the tolerance
for uncertain parameters to handle input data deviations while
ensuring that the model’s results are not worse than the antic-
ipated value. Conversely, in the opportunity-seeker approach, 
decision variables are set to achieve the expected target value with
the smallest possible margin of uncertainty [ 115, 116 ]. 

5.1.1.4 CCP. Less explored in the existing literature, CCP
is employed to enforce security constraints with a specified
probability threshold, providing a measure of confidence in 
meeting these constraints to capture the uncertainties [ 117–119 ].
IET Renewable Power Generation, 2025
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CCP, also known as probabilistic constraints optimisation, offers
a mathematical approach to tackling energy management issues
in the presence of uncertainties. It introduces chance constraints,
which are required to hold with a specified probability. These
constraints are formulated to ensure power balance within the
microgrid [ 9, 119 ]. However, CCP is often reserved for specific
cases due to its computational complexity, conservative nature
and potential difficulty in guaranteeing constraint satisfaction.
Approximate methods, such as the sample average approxima-
tion algorithm, are commonly utilised to solve CCP problems
[ 118 ]. 

5.1.1.5 Sensitivity Analysis. SA, as a post-analysis method,
involves varying input parameters to see how sensitive the
output is to changes in those parameters. SA is particularly
useful for topological uncertainties [ 120 ]. It helps identify which
parameters have the most influence on the results to handle
the associated uncertainties. Topological parameters encompass
the structural characteristics of a microgrid that influence the
effectiveness of EMSs. These include the microgrid’s configura-
tion as AC, DC, or hybrid, its operational mode and its potential
interactions with neighbouring microgrids or the main grid.
Additionally, the control architecture of the microgrid, which
significantly affects M-EMS strategies, is considered a topological
parameter. 

5.1.2 AI Solutions for EMS Uncertainties 

In recent years, artificial intelligence (AI) has emerged as a
powerful enabler for tackling the complexity and variability
inherent in EMSs. The digitalisation of EMS, driven by AI, is
transforming the way microgrids are controlled and optimised,
enhancing operational efficiency, responsiveness and real-time
decision-making. Beyond its established role in forecasting appli-
cations discussed in Section 3 , AI has gained increasing attention
for its ability to manage uncertainties and optimise system
performance under dynamic operating conditions by providing
scalable, adaptive and intelligent solutions. However, limitations
related to data availability and the lack of interpretability still
remain. This section categorises and examines state-of-the-art AI
methodologies employed for uncertainty management in EMS,
highlighting their functionalities, advantages and limitations. 

5.1.2.1 Deep Learning (DL) Models. DL methods, includ-
ing neural networks, have shown significant promise in learning
patterns from historical data to support predictive and pre-
scriptive analytics in EMS [ 39, 78, 121 ]. Neural networks, in
particular, are effective in modelling nonlinear relationships and
handling high-dimensional data, making them suitable for load
forecasting, renewable energy prediction and fault detection.
While DL models offer high accuracy and scalability, they
often require large datasets and high computational resources
for training. These techniques are integral to intelligent EMS
designs, providing adaptive and data-driven decision support
under uncertainty. 

5.1.2.2 Reinforcement Learning (RL). RL, particularly in
its deep RL form [ 73 ], has been increasingly adopted to solve
sequential decision-making problems in EMS. In this paradigm,
an agent learns to make decisions through interactions with its
IET Renewable Power Generation, 2025
environment by maximising long-term rewards without requiring 
an explicit model of system dynamics. RL is well-suited for real-
time control and adaptive management in dynamic, uncertain 
settings such as microgrids with high penetration of renewables
[ 66, 76, 122 ]. It enables autonomous learning and optimisation
without relying on predefined models, which is crucial for
systems operating in volatile conditions. The Markov decision 
process (MDP) framework plays a fundamental role in applying
RL to energy management problems. In this context, MDP models
the decision-making environment where the EMS transitions 
between different operational states based on control actions 
under uncertainty. Each action taken influences future states and
yields a corresponding reward. RL algorithms, particularly value- 
based and policy-based methods, use MDP formulations to learn
optimal energy management strategies [ 123–125 ]. 

5.1.2.3 Fuzzy Logic-Based Approaches. Fuzzy logic falls 
within the domain of computational intelligence, which is con-
sidered a subfield of AI, especially in the context of neuro-fuzzy
systems, where it is combined with neural networks to enhance
learning and adaptability. While it does not inherently involve
learning as ML does, fuzzy methods can be enhanced by ML
techniques (e.g. fuzzy RL). Fuzzy logic provides a rule-based
framework that mimics human reasoning by handling impreci- 
sion and ambiguity in input data. It is particularly effective in
situations where sharp boundaries are hard to define, making it
suitable for modelling uncertain parameters in microgrid oper- 
ations. These methods assign degrees of membership based on
fuzzy theory [ 112, 126, 127 ]. It is useful for modelling uncertainties
in forecasted variables but may not fully account for randomness.
Fuzzy systems are commonly used to support decision-making 
in energy scheduling and load balancing when system dynamics
are not fully known or are highly variable. The fuzzy method
is an example of an approximate method that, considering the
literature, has limited applications for uncertainty capturing in 
M-EMS. 

The suitability of uncertainty-handling techniques in M-EMS 
depends on data availability, computational resources and the 
operational conditions. As summarised in Table 4 , which high-
lights the strengths and weaknesses of the main methods in
capturing the uncertainties, analytical methods such as MCS 
and SO are most suitable when the system under study exhibits
high complexity, non-linear dynamics and multiple sources of 
uncertainty. MCS excels in probabilistic assessment and sce- 
nario generation, making it ideal for detailed reliability and
risk analyses. SO is particularly effective when uncertainty 
distributions are well-characterised, allowing for uncertainty- 
aware optimisation over expected scenarios. RO and IGDT are
better suited for environments with deep uncertainty where 
probability distributions are difficult to estimate or highly vari-
able, such as emerging microgrids with limited historical data
or rapidly changing renewable profiles. RO provides compu- 
tationally efficient, conservative solutions that ensure system 

feasibility under worst-case conditions, whereas IGDT focuses 
on minimising potential regret, making it valuable in strategic
planning where extreme events could have severe operational or
financial consequences. 

On the other hand, PEM and CCP are practical for mid-scale
microgrid studies requiring moderate computational effort while 
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TABLE 4 The strengths and weaknesses of uncertainty-capturing methods. 

Uncertainty-handling 
technique Strengths Weaknesses 

Analytical 
methods 

MCS ∙ Provides a comprehensive assessment of 
uncertainty by generating multiple scenar- 
ios 

∙ Suitable for complex systems with non- 
linearities 

∙ Allows for probabilistic analysis 

∙ Capable of handling constraints 

∙ Rapid dynamic response 

∙ Extensive computation, especially for large- 
scale problems 

∙ Requires an extensive array of simulations to 
achieve reliable results 

∙ May not capture rare events effectively 

SP ∙ Incorporates probability distributions to 
model uncertainties effectively 

∙ Provides robust solutions under uncertain- 
ties 

∙ Suitable for modelling complex systems. 

∙ Computationally intensive for large-scale 
problems 

∙ Requires accurate probability distributions 

∙ May not capture all sources of uncertainty 

RP ∙ Provides solutions that are robust against 
uncertainties 

∙ Allows for optimisation under ambiguity 

∙ Computationally efficient compared to 
stochastic programming 

∙ Requires accurate characterisation of uncer- 
tainty sets 

∙ May lead to conservative solutions 

∙ Limited applicability to highly uncertain 
systems 

PEM 

∙ Straightforward to implement 

∙ Require minimal computational resources 
compared to probabilistic methods 

∙ Provide a single solution, making them easy 
to interpret and communicate to decision- 
makers 

∙ By providing a single solution, may over- 
look the inherent uncertainties in input 
parameters or model assumptions 

∙ May lead to suboptimal decisions when 
uncertainty is not adequately accounted for, 
particularly in highly uncertain environ- 
ments 

∙ Rely on deterministic input values, making 
them sensitive to errors or inaccuracies in 
the input data or assumptions 

IGDT ∙ Focuses on minimising the regret associated 
with decision-making under uncertainties 

∙ Provides robust decisions in the face of 
severe uncertainties 

∙ Suitable for highly uncertain environments 

∙ Relatively complex to implement 

∙ Requires subjective judgments in setting 
information gaps 

∙ Limited applicability to certain decision con- 
texts 

CCP ∙ Ensures that constraints are satisfied with a 
high probability 

∙ Allows for explicit consideration of uncer- 
tainties in optimisation models 

∙ Suitable for risk-averse decision-making 

∙ May lead to conservative solutions 

∙ Computationally extensive for large-scale 
problems 

∙ Requires accurate estimation of probability 
distributions 

SA 

∙ Facilitate identifying the most significant 
parameters and uncertainties within the 
model 

∙ Provides insights into the system’s behaviour 
under varying scenarios. 

∙ Post-implementation analysis 

∙ Limited to assessing the impact of individual 
uncertainties 

∙ May not capture complex interactions 
among uncertainties 

∙ Requires multiple simulations 

(Continues) 
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TABLE 4 (Continued) 

Uncertainty-handling 
technique Strengths Weaknesses 

AI-driven 
methods 

Fuzzy- 
based 

∙ Accommodates linguistic variables and 
expert knowledge 

∙ Suitable for systems with vague boundaries 

∙ Lack of mathematical rigour compared to 
probabilistic methods 

∙ Subjective interpretation of fuzzy rules. 

∙ Difficulty in defining membership functions 
DL ∙ Learns complex, non-linear relationships 

and hidden patterns in uncertain, high- 
dimensional data 

∙ Effective in forecasting tasks 

∙ Scalable to large datasets and adaptable to 
new data through transfer learning 

∙ Requires large volumes of labelled training 
data, which may not always be available 

∙ Prone to overfitting, especially with noisy or 
sparse uncertainty-related data 

∙ Limited transparency and interpretability, 
making real-time decision-making under 
uncertainty less explainable 

RL ∙ Excels in sequential decision-making under 
dynamic and uncertain environments 

∙ Learns optimal policies by interacting with 
the environment, making it suitable for real- 
time M-EMS under uncertain conditions 

∙ Naturally supports exploration–exploitation 
trade-offs, which is key when dealing with 
unknown or partially known uncertainties 

∙ Requires extensive training through simula- 
tions or real-world interaction 

∙ Highly sensitive to reward design and envi- 
ronment modelling; poor design may lead to 
suboptimal or unstable policies 

∙ Performance may degrade in non-stationary 
environments unless constantly retrained or 
adapted 
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still accounting for uncertainty. PEM is appropriate for rapid
assessments and sensitivity studies where input uncertainties are
not extreme, while CCP is suitable for risk-averse operational
optimisation, such as ensuring power balance or meeting reli-
ability targets under probabilistic constraints. SA complements
all these methods by identifying the most influential parameters,
guiding model simplification and prioritising data collection.
In parallel, AI-driven methods, including fuzzy-based systems,
DL and RL, are increasingly relevant for real-time M-EMS
applications, especially in highly dynamic, data-rich environ-
ments. Fuzzy-based methods excel when expert knowledge and
qualitative information dominate, DL is ideal for forecasting
tasks under high-dimensional and nonlinear uncertainty and
RL is uniquely capable of sequential decision-making, adapting
to evolving microgrid conditions in real time, albeit requiring
careful training and reward design to ensure reliability and
robustness. 

Overall, uncertainty-capturing methods provide a range
of strategies to effectively manage system uncertainties,
accommodating different levels of computational complexity
and risk tolerance. These methods can be deployed in
single-layered frameworks for targeted analysis or in multi-
layered frameworks to capture complex interactions among
uncertainties. Emerging hybrid approaches, which combine
analytical methods with AI-driven techniques, such as DL-
assisted stochastic optimisation or RL-based robust control,
show significant promise. Alternative approaches, including
hyper-heuristics, KDE and two-stage scheduling (wait-and-
see), are also employed to deal with uncertain variables, each
with distinct applications, advantages and limitations [ 9, 71,
112 ]. 
IET Renewable Power Generation, 2025

v

5.2 Uncertainty Mitigation Within Microgrids 

The management of uncertainties within EMS poses multi-
faceted challenges across microgrid operations, including secu- 
rity, reliability, stability and economic considerations [ 8 ]. While
uncertainty-capturing methods deal with mathematical solutions 
to foresee the impact of uncertainties and associated challenges,
there is a range of technical and practical strategies and measures
to mitigate these challenges. As the most common option, energy
storage technologies have emerged as integral components due 
to their ability to flexibly transfer power and energy across
distinct time and space scales. Advancements in energy storage
technologies, such as electrochemical energy storage systems 
(ESSs) like lithium-ion batteries and vanadium flow batteries 
[ 128 ], have significantly enhanced their applicability and effi-
ciency, making them an ideal option for mitigating uncertainties.
Additionally, demand response and regulation strategies have 
gained prominence [ 129, 130 ], particularly in leveraging users’
flexibility to manage and mitigate uncertainties arising from 

fluctuating renewable energy, varying prices and load demands. 

Moreover, the introduction of real-time and ancillary service 
markets, as well as the concept of multi-energy complementarity,
enriches the landscape of uncertainty mitigation in microgrids.
Tradable energy markets facilitate the coordinated participation 
of flexible resources in power system operations, thereby pro-
moting renewable energy consumption while ensuring reliability. 
Furthermore, multi-energy complementarity, achieved through 
interconnecting multiple energy networks and facilitating flexi- 
ble energy conversion, offers a promising avenue for mitigating
the impact of uncertainties in renewable energy. For example,
power-to-gas technology facilitates the conversion of electrical 
17 of 26
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energy into stable high-energy-density gas, facilitating the storage
of fluctuating renewable energy in a more stable chemical form
[ 131 ]. 

6 State-Of-The-Art in Uncertainty Handling for 
M-EMS 

The integration of RESs into microgrids introduces significant
operational uncertainties that challenge traditional deterministic
energy management strategies. To ensure economic efficiency,
reliability and resilience, recent research has focused on devel-
oping uncertainty-aware EMSs capable of transforming raw
data into robust decision-making. A critical review of current
studies reveals remarkable methodological progress yet also
exposes persistent gaps that limit scalability, practicality and
interpretability. 

Uncertainty management approaches in EMS are primarily
dominated by SP frameworks [ 73, 74, 105 ], where random vari-
ables such as renewable generation, load and market price are
represented by probabilistic scenarios. These models improved
scheduling accuracy compared to deterministic counterparts
but at the cost of excessive computational burden caused by
scenario explosion, particularly when accounting for correlated
uncertainties. Despite advancements in scenario reduction and
clustering, these methods still struggle to balance precision and
tractability, often leading to simplified systems or short-term
horizons that limit real-time applicability. 

To overcome dependency on known probability distributions,
robust optimisation (RO) emerged as a powerful alternative [ 69,
87, 98 ]. RO guarantees feasibility under the worst-case realisation
of uncertainty by optimising within predefined uncertainty sets.
While this approach enhances reliability and ensures constraint
satisfaction, it typically produces overly conservative decisions,
resulting in higher operational costs and underutilisation of
renewable resources. Some studies attempted to tune the uncer-
tainty budget or integrate risk measures such as conditional
value-at-risk (CVaR) [ 64, 105 ] to mitigate conservatism, but a
unified calibration methodology for balancing robustness and
cost efficiency remains absent. 

A more recent development is DRO, which generalises RO by
optimising against a family of probability distributions rather
than a single one [ 64, 89, 99 ]. DRO formulations based on
Wasserstein and moment-based ambiguity sets allow flexible
adjustment between risk aversion and empirical realism. How-
ever, many DRO studies rely on small historical datasets, making
the estimated ambiguity sets statistically fragile. Moreover, their
computational complexity remains a concern for large-scale or
multi-microgrid (MMG) systems, often requiring decomposition
or approximation techniques that compromise accuracy. 

In parallel, MPC [ 62, 67, 100, 101 ] and Lyapunov-based real-
time optimisation [ 33, 65, 81, 95 ] methods have gained attention
for their adaptability to evolving system conditions. By contin-
uously updating decisions as new data becomes available, these
approaches reduce the dependency on forecast accuracy. Yet,
they require precise model identification and face difficulties in
handling high-dimensional uncertainties or ensuring long-term
18 of 26
optimality. Moreover, MPC frameworks that rely on linearised 
system models may oversimplify nonlinear dynamics inherent to 
hybrid microgrids, leading to suboptimal control under abrupt 
renewable fluctuations. 

The literature has also seen a growing interest in data-driven
and learning-based EMS frameworks. RL and deep neural archi-
tectures have shown potential for capturing complex system
dynamics without explicit modelling of uncertainty distributions 
[ 66, 76, 78 ]. For example, the real-time RL-based M-EMS proposed
for renewable-powered mobile microgrids (i.e. ships) [ 107 ] effec-
tively managed uncertainties, reducing fuel consumption by up to
5.43% compared to RO methods. This demonstrates the promise of
learning-based strategies in dealing with high-dimensional, non- 
stationary uncertainties. However, RL approaches face challenges 
related to training stability, interpretability and safety, as black-
box models may violate operational or safety constraints under
unseen conditions. Few studies have incorporated formal safety 
guarantees and the lack of transparency makes it difficult for
operators to trust such autonomous systems. 

Another important stream of work involves MMG coordination 
under uncertainty. Distributed and decentralised EMS frame- 
works based on ADMM [ 87 ], consensus algorithms and game
theory [ 100, 101 ] promote scalability and privacy preservation
by enabling local optimisation while maintaining global coordi- 
nation. The recent multi-objective multi-verse optimiser-based 
EMS [ 79 ] for a four-microgrid system exemplifies this direction,
addressing uncertainties in DER output, demand and price while
minimising both the cost of energy and loss of power supply
probability. Although the algorithm achieved faster convergence 
than competing algorithms, its reliance on metaheuristic tuning 
and absence of theoretical convergence guarantees limits its
reliability for real-time operation. Moreover, distributed methods 
often assume ideal communication and synchronisation, neglect- 
ing cyber-physical uncertainties such as latency or data integrity
issues. 

A further limitation across most studies lies in simplified
uncertainty characterisation. Some studies assume independent 
or stationary random variables and neglect temporal correla- 
tions or spatial dependencies among renewable outputs. Only 
a few papers, such as those employing copula-based distribu-
tions [ 83 ], attempt to capture these dependencies. Furthermore,
multi-energy system uncertainties, involving coupled electricity, 
heating and hydrogen networks, are rarely addressed, despite 
their growing relevance in integrated energy systems [ 35, 85,
132 ]. Current formulations generally treat non-electrical vectors 
deterministically, missing the complex interactions that influence 
optimal dispatch. 

Another concern is the lack of empirical validation and stan-
dardisation. Most EMS models are tested on simplified testbeds
or synthetic datasets, without validation using real-world high- 
resolution data. The reliance on simulated scenarios prevents 
accurate assessment of robustness under real operational noise 
and non-stationary behaviour. Comparative analyses are also 
inconsistent; studies use diverse metrics such as cost reduction,
reliability indices, or emission levels, making cross-study evalu- 
ation difficult. This heterogeneity underscores the need for open
benchmark datasets and standardised evaluation frameworks. 
IET Renewable Power Generation, 2025

e C
om

m
ons L

icense



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 17521424, 2025, 1, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/rpg2.70174 by Farid M

oazzen - L
appeenranta U

niversity O
f T

echnology , W
iley O

nline L
ibrary on [19/12/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reativ
7 Real-World Deployment of M-EMSs 

Numerous papers in the literature have concentrated on the
global development and implementation of microgrids, but there
is comparatively less information available on M-EMSs. In addi-
tion, while many microgrid applications are linked to research
or rural electrification projects, detailed reports on industrial
microgrids are notably absent from the literature [ 4 ]. Most of
the studies focus on experimental testbeds, revealing that the
majority of existing microgrid testbeds are based on AC systems,
with only a few documenting DC systems [ 133 ]. For instance,
the Illinois Institute of Technology has implemented a DC
system for economic dispatching analysis. Additionally, the U.S.
Department of Energy is developing a master controller to seam-
lessly integrate the Bronzeville community microgrid with the
Illinois Institute of Technology campus microgrid [ 8 ]. To explore
microgrids from the perspective of EMS, several researchers
have developed testbeds and conducted related evaluations. In
particular, authors in [ 134 ] presented an experimental hybrid
microgrid testing facility focusing on energy management, which
combines high-efficiency AC and DC distribution architectures to
serve as a research testbed for investigating microgrid systems. A
cloud-based real-time EMS for microgrids, integrating IoT, cloud
computing and ML, is examined in [ 135 ], aiming at enhancing
autonomy, scalability and real-time data analysis, tested on a
hardware-in-the-loop testbed for economic power dispatch and
battery storage management. The testbed for EMSs implemented
by the authors in [ 136 ] links the multi-agent RL algorithm
with price-sensitive responsive load demands. The study assesses
the RL algorithm’s effectiveness in a laboratory setting for DR
management. 

7.1 Technical Barriers 

While academic advancements in M-EMSs have been substantial,
real-world deployment reveals a series of practical challenges
that extend beyond algorithmic optimisation. Industrial and
commercial microgrids face persistent barriers associated with
cybersecurity, interoperability and regulatory compliance, all of
which significantly influence system reliability, scalability and
long-term sustainability. From a regulatory standpoint, M-EMS
implementation is shaped by diverse interconnection codes,
market participation rules and cybersecurity requirements that
vary considerably across jurisdictions [ 137 ]. 

Among these challenges, cybersecurity remains one of the most
critical concerns, as modern EMSs increasingly rely on cloud
connectivity, IoT-based monitoring and distributed control net-
works. Attacks such as false-data injection, denial-of-service, or
unauthorised access can compromise operational decisions and
threaten grid stability. To mitigate these risks, commercial M-
EMS platforms typically comply with standards such as IEC
62443 and IEC 62351, incorporating features like encrypted
communication, secure gateways, authentication mechanisms
and local fallback control during network disruptions. Despite
these safeguards, uneven standard adoption, the prevalence
of legacy devices with weak protection and limited in-house
cybersecurity expertise continue to pose vulnerabilities. Conse-
quently, state-of-the-art EMS architectures are trending toward
resilient, multi-layered security frameworks designed to maintain
IET Renewable Power Generation, 2025
partial functionality and system integrity even under cyberattack 
conditions. 

Interoperability presents another major technical challenge. 
Microgrids often comprise diverse devices and communication 
protocols, such as Modbus, OPC UA and IEC 61850, resulting
in complex integration processes, data latency and potential 
incompatibility between system components. To address these 
issues, some EMS vendors have adopted open architectures and
standardised communication interfaces that facilitate modular 
expansion and plug-and-play integration of DERs and storage 
assets. However, achieving semantic interoperability (i.e., the 
consistent interpretation and utilisation of shared data across
heterogeneous platforms) remains limited. Emerging standards 
such as IEEE 2030.7 and IEEE 2030.8 aim to define interoper-
able frameworks for microgrid controllers, yet their widespread 
adoption is still in progress [ 138 ]. 

7.2 Commercially Available M-EMSs 

In the area of practical EMS development, companies such as
ABB, Ageto, Wartsila, Siemens and Schneider have directed 
their efforts toward advancing EMS technologies. The Ageto 
ARC EMS optimises on-site energy resources like solar and
energy storage, ensuring reliable and clean backup power. It
integrates existing industrial generators with these resources. 
Suitable for both grid-connected and off-grid applications, the 
ARC system offers intelligent utility rate optimisation, reducing 
electricity bills through time-of-use shifting, peak shaving and 
demand response programs. Since 2017, Ageto has deployed over
50 ARC systems worldwide, enabling diverse energy resources
to work together efficiently in various settings, from remote
Alaskan communities to fire-affected regions in California [ 139 ].
Schneider’s EMS offers transmission operators enhanced insight 
into transmission and sub-transmission networks. It can function 
as a standalone system or integrate seamlessly with an advanced
distribution management system. Key features include state 
estimation, optimal power flow, contingency analysis, optimal 
topology change, performance indices and voltage stability. These 
capabilities enable utilities to visualise, operate and optimise their
networks. Siemens is also working on EMSs covering smart grid
technologies and an IoT platform to gather microgrid data. For
instance, this company delivered an M-EMS based on cloud tech-
nology at Expo 2015 in Milan, Italy [ 140 ]. Table 5 summarises the
most relevant features of the aforementioned systems according 
to the available information on their manufacturers’ websites. 
As outlined, each system has unique strengths depending on
the application. ABB and Wärtsilä focus on advanced AI-driven 
optimisation, Siemens excels in market participation, Schnei- 
der Electric emphasises battery storage integration and Ageto 
provides flexible, equipment-aware solutions. 

8 Conclusion 

This review presents a comprehensive assessment of uncertain- 
ties in M-EMSs, outlining their origins, impacts and mitigation
strategies. Uncertainties arise from diverse sources, ranging from 

measurement noise and forecasting errors to model approx- 
imations and real-time deviations from expected operating 
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conditions. Collectively, these factors influence generation dis-
patch, load management, energy storage operation and grid
interactions across multiple temporal and spatial scales. Hence,
a multi-level perspective is crucial, linking data acquisition,
forecasting, optimal scheduling and real-time control, since even
small discrepancies between predicted and actual conditions can
cascade, compromising system performance. 

To address these challenges, a broad spectrum of strategies
has emerged to anticipate, quantify and mitigate uncertainty.
Probabilistic forecasting allows early-stage characterisation of
variability, minimising error propagation throughout the control
hierarchy. Analytical, stochastic and RO techniques, supple-
mented by AI-driven and data-centric approaches, have progres-
sively enhanced the adaptability and resilience of M-EMSs. The
field has evolved from deterministic optimisation toward hybrid,
data-driven and decentralised architectures. Foundational meth-
ods such as stochastic and RO have been complemented by DRO
and MPC, enabling improved real-time flexibility. More recently,
RL and hybrid metaheuristic algorithms have demonstrated
significant potential in managing high-dimensional nonlinear
systems, though issues of interpretability, constraint satisfaction
and computational efficiency remain unresolved. 

Despite considerable progress, widespread adoption of
uncertainty-aware M-EMSs is still constrained by several
practical barriers. The high computational complexity of
advanced optimisation and AI-based frameworks limits
their real-time feasibility, while the accuracy and reliability
of underlying data, particularly from renewable forecasts, load
measurements and grid parameters, remain critical determinants
of system performance. Furthermore, explainability and
transparency are essential to ensure operator confidence,
regulatory compliance and secure system operation.
Cybersecurity considerations, regulatory heterogeneity and
the interoperability of DERs further complicate large-scale
deployment. Therefore, future progress will depend on balancing
algorithmic sophistication with operational transparency,
computational efficiency and system robustness. 

Looking ahead, the next generation of M-EMSs will likely empha-
sise integrated multi-energy management, enhanced demand-
side flexibility and inclusion of emerging vectors such as
hydrogen. The application of advanced AI, particularly deep
RL, is expected to further improve uncertainty handling and
autonomous decision-making. The comparative review of com-
mercial M-EMS solutions provided herein offers valuable insights
for bridging research and practice. Achieving fully operational,
uncertainty-resilient M-EMSs will ultimately require standard-
ised evaluation frameworks, open datasets and hardware-in-
the-loop testing to transition from simulation-based studies to
real-world robust deployment. 
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