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ABSTRACT

The minimal dominating set (MDS) is a well-established concept in network controllability and has been
successfully applied in various domains, including sensor placement, network resilience, and epidemic
containment. In this study, we adapt the local-improvement MDS routine and explore its potential for en-
hancing seed selection for influence maximization in multilayer networks. We employ the Linear Threshold
Model, which provides an intuitive representation of influence spread or opinion dynamics by accounting
for the accumulation of peer influence. To ensure interpretability, we utilize rank-refining seed selection
methods, with the results further filtered with MDS. Our findings reveal that incorporating MDS into the
seed selection process improves spread only within a specific range of situations. Notably, the improvement
is observed for larger seed set budgets, lower activation thresholds, and when an AND strategy is used to
aggregate influence across network layers. This scenario reflects situations where an individual does not
require the majority of their acquaintances to hold a target opinion, but must be influenced across all social
circles.

KEYWORDS: minimal dominating set; multilayer networks; influence maximization; linear threshold
model; network control.

1. INTRODUCTION

Traditionally, spreading processes, including influence diffusion, were studied on simple, undi-
rected, and unlabelled networks. However, these models fail to represent real-world relationships
realistically. With time, more and more complex graph representations were developed, and even-
tually, a multilayer network concept was proposed. It offers a more nuanced depiction of social
interactions than classical graphs. This model captures diverse types of connections—such as
communication, professional, family, or social ties, by distinguishing between different layers (i.e.
types of relationships) [1, 2]. Hence, incorporating such networks into research on diffusion
increases the accuracy of modelling.

One example of spreading processes is influence spread, a key challenge in social network
analysis with applications in areas such as viral marketing, information diffusion, and public health
interventions [3]. The process is often analyzed through cascade dynamics using mechanisms such
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as the Linear Threshold Model (LTM) and the Independent Cascade Model (ICM). LTM employs
a threshold-based activation rule, where a node becomes active only if the total weight of its active
neighbours exceeds a predefined threshold [4, 5]. In contrast, ICM activates nodes probabilistically
through independent trials along each edge [6]. While ICM has been extended to multilayer
settings [7-10], its limited flexibility in capturing heterogeneous link influences makes LTM a more
suitable choice for modelling opinion dynamics in a multilayer environment [11, 12]. Researchers
developed various LTM extensions for multilayer networks, e.g. the approach presented in [11]
incorporates content-dependent parameters to differentiate link types, while another one [12]
introduces layer-specific activation thresholds and heterogeneous activation rules. Given a cascade
model, the next key step of influence maximization is to identify seed agents that achieve the widest
spread with minimal resources [13]. Numerous methods have been proposed for seed selection
in multilayer networks and, as categorized in [14], can be grouped into heuristic techniques [15],
simulation-based approaches [16], and hybrid methods incorporating machine learning [17, 18].

Influence maximization can be viewed as a softer version of control, which motivates this study’s
exploration of incorporating concepts from control theory to assess their applicability in the realm
of influence spread. Control theory in network science focuses on strategies to transition a system
from one state to another within a defined number of steps [ 19]. To achieve this, control methods
have been developed that identify a minimal set of driver nodes capable of steering the network
towards the desired state [20]. For example, a study by [21] discusses the identification of a minimal
set of driver nodes for structural controllability in large-scale dynamical systems. Some researchers
have examined the impact of multilayer networks on the controllability of these structures [22].
However, real social networks often do not exhibit deterministic behaviours, making strict network
control difficult.

In this paper, we aim to bridge concepts from control theory with influence maximization
techniques, which have been largely independent of each other. We address this through an ex-
ploratory study that employs the Minimal Dominating Set (MDS) in the seed selection process for
multilayer networks. We explore the viability and potential advantages of using MDS to maximize
influence. Previous research has shown that MDS is an effective seed selection method in single-
layer networks [23, 24], but its performance in multilayer networks remains largely unexplored.
Note that the primary goal of this study is not to propose a new seed selection method but to assess
the effectiveness and usefulness of MDS in improving existing methods.

Our study demonstrates that incorporating MDS into the seed selection process enhances
diffusion, but this improvement occurs only within a specific range of spreading parameters. The
benefit is most noticeable when the activation thresholds are lower, the AND strategy is used
to aggregate influence across network layers, and the seed set budget is larger. Additionally, the
enhancement is particularly pronounced in networks resembling scale-free graphs. This scenario
is especially relevant when an individual needs to be influenced across all social circles without
requiring the majority of their acquaintances to share the target opinion. An example might be a
presidential election with highly polarized candidates; we may not know the opinions of all our
friends and family because not everyone wants to share them (for instance, they are afraid of what
others would think), or we prefer not to discuss politics. However, we usually know the opinions of
a few people in each of our social circles, and if the opinions of all (or most) of them are the same,
we are more willing to adopt it as our view.

The article is organized as follows. In Section 2, we present a formal definition of MDS, review
state-of-the-art methods for obtaining it, and introduce our adaptation of the local-improvement
algorithm to the context of multilayer networks. Section 3 outlines the experimental setup used
in the study, including metrics and the evaluated parameter space. The results of the analysis are
discussed in Section 4, where we examine the properties of the MDSs obtained for the examined
graphs, the similarity of seed sets drawn with and without incorporating MDS in the seed selection
process, and the effectiveness of that in maximizing influence with a particular attention to scale-free
networks. Section § concludes the work.
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2. MDS IN MULTILAYER NETWORKS

MDS is the minimal set of ‘driver agents’ that are capable of controlling the entire network. The
problem of identifying it is well known to be NP-hard [25], and numerous approaches have been
proposed to solve it efficiently. In this section, we introduce this problem, provide a review of related
works, and introduce an extension of the local improvement algorithm to the multilayer setting.

2.1. Multilayer networks

First, we clarify how we conceptualize multilayer networks. Specifically, we adopt the framework
introduced by [1, 2]. To ensure consistency in notation, we restate it as follows:

THEOREM 2.1 (Multilayer Network). A multilayer network can be described as a tuple
M = (A, L, V, E) consisting of the following sets:

actors A = {ay,ay,...},

layers L = {1, b,...},

nodes V = {vi,v%,...,v%,v%,...} :VCAXL,

edgesE = {(vi,vi), ey (v%, v%), Lo} (V%,V%) ¢ EN (vi,vi) = (v;, v})

In other words, a multilayer network is a coupled set of single-layer networks, where each actor is
represented in at most every layer by a corresponding node (V C A x L), e.g. the representation of
actor aj in layer I, is denoted as v3. Another property of this model is that interlayer edges are not
allowed, meaning links can only exist within the same layer: (v}, v2) ¢ E. Additionally, to simplify
the analysis, edges are considered undirected: (v} , v%) = (v% ’ v}) and unweighted.

2.2. Dominating sets
Having introduced the network model utilized in this work, we are able to provide the necessary
definitions of dominating sets, extending the foundational concepts introduced in [26] to the
multilayer scenario.

THEOREM 2.2 (Dominating Set). A set of actors D’ dominates the multilayer network M if
for every actor a € A, either a belongs to D', or for each layer where a is represented, the
corresponding node of a is adjacent to a node that represents an actor in D'

THEOREM 2.3 (Minimum Dominating Set). Let 2 be a family of dominating sets of the
multilayer network M: 2 C powerset(A). A Minimum Dominating SetisasetD : D € 2,
and |D| = argminp/c g |D'|, i.e. D is the smallest dominating set among all dominating
setsin 9.

THEOREM 2.4 (Minimal Dominating Set). A set of actors Dis called a minimal dominating
set if it satisfies Def. 2.2 and none of its proper subsets is a dominating set.

As stated above, many dominating sets can be obtained for a particular network, and in the edge
case, the set of all actors also constitutes a dominating set. Another implication of the aforemen-
tioned definitions is that multiple minimum and minimal dominating sets may exist for a given
multilayer network. Finally, both Def.2.2 and Def.2.3 are consistent with the original concept of the
minimum dominating set introduced for classic (i.e. static, undirected, and single-layer) graphs [26],
when they are applied to a single-layer network (a special case of a multilayer network with |L| = 1).
An additional important remark is that following [27], we distinguish the minimum dominating set
(Def.2.3) from the minimal dominating set (Def.2.4), as the latter can be larger than the former. This
distinction is particularly important in networks for which finding D within a reasonable amount of
time is infeasible.
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Figure 1. An example of a multilayer network with three types of relations (11, I, I3 ). Nodes which
represent actors that belong to the MDS are highlighted (ﬁ = ay, as, a4, ag, dg, a1 ).

2.3. Example

To illustrate both the MDS and an example of a multilayer network, we present Fig. 1. Note that
even a small structural change can affect the MDS. For instance, adding an edge between nodes ng
and ng in layer I; would allow actor a3 to be removed from the MDS. The set shown in Fig. 1 satisfies
both Def. 2.2 and Def. 2.4, but not Def. 2.3, as there exist dominating sets of smaller size dominating
the network. Specifically, the minimum dominating sets for the given network have size S, and eight
such sets exist, e.g. D = {ay, a3, a4, a9, a1o}. Although the example is a simple toy case, it has been
deliberately chosen to demonstrate that computing D is non-trivial. The algorithm employed in this
study yields D, which serves as an approximation of D in terms of size.

2.4. Related work

The problem of finding MDS was originally formulated for single-layer graphs and has since been
extensively studied in the literature. The classic greedy heuristic [28] serves as a foundational
method and, in addition, offers a theoretical approximation guarantee. However, in practical sce-
narios, it often overestimates the true MDS size due to its myopic nature, leading to suboptimal
solutions. Metaheuristic approaches have been widely explored to improve upon traditional greedy
approaches. The Ant Colony Optimization Algorithm hybridized with a Local Search (ACO-LS)
leverages pheromone trails for guiding the search process while refining solutions through local
search [29]. Building on this, an extended version, ACO-PP-LS, incorporates a pre-processing phase
to generate initial solutions using a greedy heuristic, thereby accelerating convergence [30]. Beyond
ACO-based methods, order-based Randomized Local Search has been proposed, representing
solutions as permutations of vertices and applying a perturbation mechanism to refine dominating
sets iteratively [31]. While RLS improves upon many existing methods, it remains computationally
demanding and is sensitive to the choice of its perturbation operator. The Iterated Greedy (IG)
algorithm has been introduced as an efficient and effective approach for finding MDS [27] to address
these limitations. By iteratively destructing and reconstructing solutions while incorporating a
specialized local search, IG achieves a superior balance between diversification and intensification.
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Empirical evaluations demonstrate that IG not only outperforms ACO-based methods and RLS
in solution quality but also significantly reduces computational effort, making it a state-of-the-art
approach.

Since most existing methods focus on single-layer networks, the problem of finding the MDS
in multilayer networks remains largely unexplored. One of the most recent approaches, FAST-
MDSM [32], employs integer linear programming (ILP) combined with graph reduction heuristics
to identify a minimal set of driver nodes across multiple interconnected layers. However, its reliance
on ILP renders it computationally expensive and less adaptable to dense graphs. Notably, FAST-
MDSM was designed for scale-free networks and has been primarily tested on sparse biological
networks, limiting its applicability to more general settings. In this work, inspired by the IG
algorithm [27], originally developed for single-layer networks, we propose a new approach for
efficiently solving the MDS problem in multilayer networks.

2.5. Proposed algorithm

An extension of the local improvement routine from [27] to multilayer networks is presented as
Alg. 1. As an input, it accepts a multilayer network M and an initial dominating set D’ obtained
using a greedy routine, as described in [33]. Note that D’ is likely to be only subminimal, as it is
obtained using a relatively simple heuristic; thus, the subsequent operations aim to reduce its size
while ensuring that it continues to satisfy Def. 2.4.

It is important to understand the quality of the initial solution before applying the local improve-
ment algorithm. To assess this, we refer to [34], where the authors evaluated a degree-based greedy
heuristic for finding MDS in single-layer networks with 400 < |[V| < 800, for which the sizes of
the minimum dominating sets were known. Experiments conducted on 60 networks revealed that
the median gap between a greedily obtained MDS and the optimum is around 35%, decreasing to
approximately 10% for graphs with a density of 0.5. Referring these results to the multilayer setting,
which is more complex, we estimate that the initial solution provided to the local improvement
routine is no closer than 35% to the optimal value.

First (1. 1-3), we compute a domination map (ComputeDomination) that, for each layer of M,
associates nodes representing actors from D’ with sets of nodes they dominate. We then initialize a
flag to control the termination of the routine and assign D’ as the current best solution. The next
step (1. 4-27) consists of a loop that explores alternative configurations of dominating sets derived
from D in an attempt to identify the smallest one. The evaluation of actors from the initial solution,
as well as the exploration of potential replacements for them, is carried out in a random order with
the Shuffle function. That is aimed to ensure that the algorithm produces different MDSs for the
same graph across subsequent runs. This approach helps mitigate the risk that the results depend
on a single instance of the MDS drawn for a given network.

Specifically, the for loop (1. 6) iterates over the actors in D to assess whether replacing a particular
actor aj, leads to a reduction in its size. To achieve this, we identify a set of candidate replacements
C for each ap, using the auxiliary function FindReplacementCandidates. For each actor ac € C, we
construct a new set Dpey by substituting ap with ac in D. Then, using IsFeasible, Dhew is examined
to determine if it meets the criteria to dominate M. If the set remains feasible, we attempt to greedily
minimize its size by iteratively removing redundant actors. If the pruned set breduced is not smaller
than the current best solution, we continue iterating through C. Otherwise, we update D with
ﬁreduced; recompute the domination map for the updated 15, and reset the improved flag. At this
point, we restart the outer loop, attempting further refinement of the dominating set. The iteration
continues until no further refinements can be made. At this stage, the algorithm terminates and
returns D, which is locally minimal in size.

The efficiency of the proposed algorithm also plays an important role and can be estimated by
assessing its complexity. First, since Alg. 1 builds on the initial solution, the time complexity of the
greedy approach, Tgreedy = O(L |A|? |D'|), is taken as a reference. Once the local improvement
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Algorithm 1 MDS with Local Improvement for Multilayer Networks
Require: M = (A, L, V,E) > multilayer network
Require: D’ > initial dominating set
1: domination <— ComputeDomination(M, D")
2: improved <— True
3 D« D
4: while improved do
5 improved <— False
6: forap € Shuffle(D) do
.
8
9

C < FindReplacementCandidates(M, ap, D, domin)
forac € Shuﬂle(C) do

: Dold <~ D
10: Dnew (D \ {aD}) U {ac}
11: if IsFeas1ble(M Dnew) then
12: Dreduced <~ RemoveRedundantVertlces(M Dnew)
13: if |Dreduced| < |Dold| then
14: D <~ Dreduced R
15: domination <— ComputeDomination(M, D)
16: improved <— True
17: break
18: else
19: D« Dold
20: end if
21: end if
22: end for
23: if improved then
24: break
25: end if
26: end for
27: end while
28: return D > improved dominating set

phase is added, the algorithm’s complexity is dictated by the search for replacements and the sub-
sequent redundancy removal. This yields a total time complexity of Tgreedy+L1 = O(L A2 D) )
for dense graphs. Therefore, the greedy algorithm with local improvement is costlier than the naive
greedy approach by a factor of |D'|*. While this worst-case complexity appears computationally
expensive, the algorithm’s runtime in practice is often significantly lower. This practical efficiency
stems from two key factors. First, the number of successful improvements found by the outer while
loop is typically a manageable percentage of |D’|. Second, and more importantly, the number of
candidate nodes C that can replace a node ay in the dominating set is also moderate. The constraint
that a candidate must dominate all nodes exclusively covered by ap is highly restrictive. As a
result, the inner loop rarely iterates over all |A| vertices; it usually inspects just a handful of viable
replacements, making the local improvement phase tractable for small- to medium-sized graphs
despite the pessimistic worst-case bound.

3. EXPERIMENTAL SETUP

In this section, we describe the simulation setup, including the dataset and the diffusion model ap-
plied. We then present the baseline seed selection methods and explain how MDS was incorporated
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into them. We also outline metrics used to assess diffusion effectiveness, an evaluated parameter
space, and the computational resources employed.

3.1. Dataset

The efficiency of MDS depends on the structure of the underlying network. Furthermore, as
mentioned in Section 1, dynamics in multilayer networks often differ significantly from those
observed in single-layer networks. Consequently, selecting appropriate data for experiments is
crucial. To ensure a comprehensive evaluation, we utilize both real-world and artificially generated
graphs. A summary of the networks used in this study, with a brief description of the domain
context in which each was constructed, is provided in Table 1. All artificial networks were generated
using the multinet library [35]. The real-world networks come from different domains, but all
represent human-based relationships.

Table 1. Networks used in the experiments, with their parameters and corresponding domain context

Type Name Layers Actors Nodes Edges Note

er-2 2 1000 2000 5459  Erdés-Rényi network [36] generated with [35].
E-R er-3 3 1000 3000 7136 Erdés-Rényi network [36] generated with [35].
er-S S 1000  S000 15109 Erdds-Rényinetwork [36] generated with [35].
sf-2 2 1000 2000 4223 scale-free network [37] generated with [35].
S-F sf-3 3 1000 3000 5010  scale-free network [37] generated with [35].
sf-S S 1000  S000 10181 scale-free network [37] generated with [35].
arxiv 13 14065 26796 59026 Coauthorship network obtained from articles
published on the ‘arXiv’ repository [38].
REAL  2ues S 61 224 620  Interactions between employees of Aarhus
Unversity, Dep. of Computer Science [39].
ckmp 3 241 674 1370 A network depicting diffusion of innovations
among physicians [40].
lazega 3 71 212 1659 A network of various types of interactions
between staff of a law corporation [41].
12-course 2 41 82 297  Afirst snapshot of the network built from
interactions between students during a
three-month-long abroad language course in
Arabic [42].
timik 3 61702 102247 881676 A graph ofinteractions between users of the

virtual world platform for teenagers [43].

3.2. Spreading model

We use the Multilayer Linear Threshold Model (MLTM) introduced in [44]. It simulates diffusion
in a multilayer network where actors are the subject of spreading. The model uses two thresholds:
U, the traditional threshold from the classic LTM, which dictates that a node receives positive input
when the sum of weighted influences from its neighbours exceeds this value, and d (referred to as the
protocol), which governs how inputs from nodes representing an actor across layers are aggregated.
When the protocol threshold is exceeded, the actor (and all nodes representing it) becomes active;
otherwise, the actor remains inactive, even if some of the corresponding nodes in the layers receive
positive input.

At this point, it is worth clarifying the rationale behind introducing the double-threshold mech-
anism. Unlike studies such as [45-47], which modify baseline spreading models to more accurately
simulate specific phenomena (e.g. to allow for bidirectional binary opinion changes [45]), the
protocol function here serves solely as a fusion mechanism to determine the state of an actor given
the states of nodes representing it. Thus, this modification should be regarded as an extension of
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the classic LTM to a different network model—multilayer networks (in a manner analogous to, e.g.
hypergraphs [48]), rather than as a change aimed at incorporating additional social mechanisms.

In this work, we specifically use two edge cases for the protocol function of the MLTM: AND,
where positive input at all layers is required to activate an actor, and OR, where positive input at just
one layer is sufficient for activation. As in [44], we will denote the set of active actors at time step t as
St (with the seed set denoted as Sp ). Moreover, to clarify the definitions of the performance metrics
(see Section 3.4) employed in this study, we introduce an additional function as in Def. 3.1.

THEOREM 3.1 (Spreading Dynamics under MLTM). Let Y be a function to measure the
spreading dynamics in a network M under the Multilayer Linear Threshold Model:

Y(M,6) =) yal®),

acA

where y,(t) € {0, 1} denotes the state of actor a at time step .

3.3. Seed selection methods
3.3.1. Basic heuristics

We employed five seed selection methods acting as a baseline for the further comparison with MDS:
Degree Centrality (denoted as deg-c), Degree Discount [49] (deg-cd), One-Hop Neighbourhood
Size [S0] (nghb-1s), Neighbourhood Size Discount [44] (nghb-sd), and Random Choice (random).
These methods belong to the class of rank-refining techniques, and their selection was motivated by
their ability to generate a complete ranking of all actors within the network, ensuring compatibility
with the application of MDS. We use each of these methods as described in [44].

3.3.2. Sorting with MDS

To evaluate the effectiveness of MDS, all of the methods above were modified to include additional
steps for filtering out actors that do not belong to b (see Alg. 2). With such a setting, we were able to
compare spreading efficiency on two versions of a particular seed selection method and assess the
usefulness of MDS.

Selecting a seed set with MDS consists of several steps. First, the minimal dominating set Dis
obtained using Alg. 1. Simultaneously, a sorted list of all actors, Ay, is created based on a particular
heuristic ¢ listed in Section 3.3.1. The final seed set consists of the first |s - |A|] actors from Ay
that also belong to D. However, particularly for large budgets, |D| can be smaller than the maximal
number of actors that can be used as a seed set. In such cases, we exclude the simulation from the
evaluation process since assessing the effectiveness of MDS is impossible.

It is good to note that we slightly modified Alg. 1 to address scalability issues. Specifically, for
the largest evaluated network, we observed that the algorithm could not be completed within a
reasonable time. To mitigate this, we introduced a timeout threshold for refining the initial solution.
It was set to S minutes per 1000 actors, leading to a maximum runtime of over 5 hours per MDS
search in timik.

3.4. Metrics

To assess the seed set quality, two metrics were used: Gain (") for the overall effectiveness and the
Area under Curve (A) for the dynamics of the diffusion. Their formulas are presented in Table 2. This
study evaluates whether MDS improves seed sets; thus, higher I and A indicate a more effective
seed set.

A way how the metrics are calculated is presented in Fig. 2. In that example, we observe that the
seed set obtained with an additional MDS filtering achieves better diffusion performance in terms
of the final number of activations (I'), yet it impairs the diffusion dynamics (A).
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Algorithm 2 Seed Selection with MDS
Require: M = (A,L,V,E) > multilayer network
Require: s > seed set budget
Require: ¢(M) — Ay > rank-refining seed selection heuristic
Require: x (M) — D:DcaA > function returning MDS of M
1 D« k(M)
. if |D| < sthen
return NaN
: end if
Ap < ¢(M)
S« 0 > seed set
: fora € Ay do
if a € D then
S < SU{a}
end if
if |S| = sthen
break
end if
: end for
: return S

R A T o

I = T
©n A W NN = O

Table 2. Spreading metrics employed in the study

Symbol Name Description
A Area under Curve Area under a normalized curve of spreading dynamics:
1
A= fO Yoorm (M; t)dt; A€ [0,1]
r Gain Total network coverage achieved by a seed set Sg as a proportion

of the actors activated during the diffusion and the total number

of activatable actors: ' = ‘L\SXO:S?I)‘ ,[ €[o,1].

3.5. Parameter space

To ensure the feasibility of the experiments, we selected the parameter space based on initial trials.
That allowed us to exclude cases where diffusion always failed to initiate or saturated immediately.
Notably, we assigned different budget sizes for the two protocols and considered node activation
thresholds ranging from 0.1 to 0.9 in increments of 0.1. Note that we did not introduce heterogeneity
into the model—all nodes were assigned the same threshold value. Although spreading under the
MLTM is deterministic, there are many possible combinations of the MDS for each graph. To
account for this, we conducted 30 independent runs for each set of evaluated parameters, drawing
anew MDS in each case.

In total, each seed selection method was evaluated across 90 different MLTM parameter combi-
nations, resulting in 10, 800 scheduled experiments. Table 3 outlines the evaluated parameter space.
It is worth noting that, as a follow-up to this main study, a detailed evaluation on an additional scale-
free network cohort was conducted (see Section 4.4). However, to maintain consistency, we do
not include the parameters of those experiments here, as they constitute a subset of those listed
in Table 3.

3.6. Implementation

The experiments were implemented in Python 3.12, utilizing spreading models and seed selection
methods from the network-diffusion library [33], version 0.17. The code was designed
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Figure 2. An example of I' and A attained by the diffusion process within the er-3 network under MLTM
with 4 = 0.4, = AND, initiated from a seed set selected using nghb-sd with s = 35. The black scale
represents real values, whereas the red scale is used for computing A. Red lines indicate the number of
pre-activated actors (i.e. those belonging to Sp) and the total number of actors in the network.

Table 3. Diffusion parameters evaluated in the study

Parameter Values range

Protocol () OR AND
Budget (s) [% of |A[] {5, 10, 15,20, 25} {15,20,25,30, 35}
Treshold (1) {0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8, 0.9}

Seed selection method (&) {deg-c, deg-c-d, nghb-1s, nghb-sd, random}

MDS repetitions 30

to ensure full reproducibility, even for stochastic simulations. All experiments were conducted on
a workstation running Ubuntu 20.04.4 LTS with kernel 6.5.3-arch1-1, equipped with 376 GB of
memory and an Intel(R) Xeon(R) Gold 6238 CPU @ 2.10 GHz with an x86 64 architecture. The
source code, data, and results are available at: https://github.com/network-science-lab/infmax-
mds-ltm-mln.

4. RESULTS ANALYSIS

We conduct the results analysis in four steps. First, we examine the MDSs obtained for each network
to assess their variability with respect to the network structural properties. Next, we compare the
seed sets used to initiate diffusion, focusing on the differences between those selected by the baseline
heuristics and their MDS-filtered versions. Finally, based on the spreading metrics (Section 3.4),
we evaluate the impact of incorporating MDS into the seed selection process. As we pay particular
attention to the scale-free model, we also conduct additional experiments to ensure that the results
regarding the applicability of MDS in these networks remain consistent despite variations in their
configurational parameters.
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Table 4. Statistical properties of MDSs and the average size reduction (Avg. size red.) of the initial D’ by
the local improvement routine obtained for each network during the experiments.?

Network Size range Avg, size Unique IoU Entropy Avg. size red.
er-2 [0.26,0.27] 0.27(3E—3) 300/300 0.42 9.13 0.15(4E—-3)
er-3 [0.34,0.36] 0.35(4E—3) 300/300 0.44 9.41 0.18(SE—3)
er-S [0.34,0.36] 0.35(4E—3) 300/300 0.39 9.54 0.20(SE—-3)
sf-2 [0.49,0.50] 0.50(1E—3) 300/300 0.88 9.13 0.06(2E—3)
sf-3 [0.75,0.76] 0.76(1E—3) 298/300 0.97 9.60 0.05(1E—3)
sf-5 [0.69,0.70] 0.70(1E—3) 300/300 0.92 9.54 0.09(1E—3)
arxiv [1.00, 1.00] 1.00(0E—0) 1/300 NAN NAN 0.00(0E—0)
aucs [0.28,0.41] 0.33(2E—2) 77/300 0.51 5.01 0.63(7E—3)
ckmp [0.32,0.35] 0.33(6E—3) 300/300 0.62 6.94 0.31(6E—3)
lazega [0.14,0.17] 0.15(9E—-3) 158/300 0.31 4.71 0.25(2E—2)
12-course [0.20,0.22] 0.21(1E—2) 149/300 0.34 4.36 0.132E—2)
timik [0.90,0.91] 0.91(2E—4) 295/300 0.99 15.78 0.00(3E—S5)

For column Avg. size and Avg. size red., the standard deviation is reported in brackets.

4.1. Characteristics of MDSs

We begin the analysis by examining the MDSs obtained for each network during the experiments
to assess their variability. The results are presented in Table 4. The first column contains the size
range of MDSs obtained during the experiments, followed by the average MDS size with standard
deviation, both normalized by network size. Next, we report the number of unique MDSs out of the
total computed in the experiments. The fourth column provides the average intersection over union
(Jaccard similarity) between all MDS pairs. Next, the entropy, calculated based on the frequency of
each actor’s occurrence across all MDSs, is presented. The last column shows the profit achieved
by applying the local improvement routine (Alg. 1) to the dataset used in the study, compared to
the greedy approach, in order to find an MDS. It is expressed as the difference between the sizes
of the greedily obtained solution (|D’|) and the final MDS ( |15| ), divided by the size of the former
ID'|— D]
( ‘D/l
It is interesting to observe the differences between Erdds-Rényi and scale-free networks. The
former can be controlled with significantly fewer driver actors than the latter. In both cases, nearly
every simulation returned a different MDS. However, their similarity varies: Erd6s-Rényi networks
exhibit a much lower Jaccard similarity compared to scale-free networks. This suggests that driver
actors in that group can be assigned in a more random manner than in scale-free graphs.
With regards to real-world networks, MDS properties appear less regular. Therefore, in the
following sections, we discuss the performance of the real graphs in relation to their structural

), computed and averaged over the corresponding simulation runs.

similarity to both artificial types of networks. Nonetheless, the average D] is comparable to that
observed in scale-free (timik) and Erds-Rényi models (aucs, ckmp, lazega, 12-course). An interesting
result was obtained for arxiv. Due to its structural properties (on average, each actor is present in
1.91 layers, whereas the total number of layers is 13) and despite its relatively large size, the MDS for
this network covers the entire set of actors. This case illustrates that, as in many aspects of network
science, certain graph structures can present challenges that are difficult to address using general
methods.

Entropy values appear to correlate with network size. For instance, the smallest network, 12-
course, exhibits the lowest entropy, while the largest, timik, has the highest. This suggests that larger
networks provide more diverse MDS configurations. Regarding the relationship between network
layers and MDS size, we observe that an increase in the number of layers corresponds to a larger
MDS. Finally, the number of unique MDSs is correlated with network size. For smaller networks
(e.g. aucs, lazega, 12-course), it is likely that all possible MDS configurations were sampled.
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(b) MDS on an exemplary two-layer scale-free network; |A| = 35,|D| = 15

Figure 3. Typical MDS alignment with regard to the actors’ degree. The first two plots depict layers of the
given network, while the third shows the degree distribution. Green stripes indicate the degrees of actors
belonging to the MDS; the orange area marks the degree range of a set composed of the highest-degree
actors with the same size as the MDS. In (a), the MDS exhibits a much stronger correlation with the
highest-degree actors compared to (b), where the MDS is larger and includes both hubs and low-degree
actors.

4.1.1. Example of MDS alignment across artificial networks

Differences in MDS’s properties regarding Erdés-Rényi and scale-free models can be illustrated
with Fig. 3. Since the degree distribution of the latter follows a power law, controlling the network
requires selecting both the hubs (e.g. actors A1S, A32) and outliers, which may have connections
on only some layers (e.g. AO6 or A17). Consequently, a larger number of actors must be selected to
exert control over the network. On the other hand, Erdds-Rényi networks, which follow a Poisson
distribution, exhibit a more even degree distribution. As a result, the MDS can be smaller (e.g.
|15| = 4 compared to |ﬁ| = 15) and selected mostly from actors with the highest degree.

4.1.2. Approximation of the globally optimal solution

Finally, to assess the robustness of Alg. 1, we analyze the extent to which it reduces the greedily
obtained initial solution (as reported in the last column of Table 4). The greatest enhancement
resulting from the local improvement routine was observed for the aucs network, where the
algorithm produced an MDS that was, on average, only 37% the size of the initial solution. The only
two networks for which no significant reduction in D’ was achieved are arxiv, where MDS covers the
entire network, and timik, due to the timeout mechanism imposed to complete the computations
within a reasonable time frame. Furthermore, the scale-free nature of this network suggests that the
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expected size of the MDS is inherently large. Nonetheless, one can conclude that Alg. 1 effectively
reduces the size of the dominating set compared to the baseline approach.

We also sought to assess how closely the MDSs returned by Alg. 1 approximate globally optimal
solutions; that is, whether the obtained minimal dominating sets are also minimum dominating sets.
To this end, we executed a brute-force algorithm to exhaustively explore the solution space up to the
minimal size of the MDSs found for a given network. The number of combinations to evaluate using

such an approach is ) LDZ‘ 0 (l’:‘).

Due to the computational complexity of this task, the evaluation was conducted on the three
smallest networks—I2-course, aucs, and lazega. Since the number of sets to evaluate grows rapidly, we
were not able to explore all possible solutions for bigger networks in a reasonable time. Nonetheless,
the complete results for I2-course indicate that Alg. 1 was able to return the minimum dominating
set. For lazega, we explored all combinations up to sets consisting of 8 actors; thus, recalling that
min|D| = 10 was obtained with the Local Improvement routine, we conclude that |[D| € {9, 10},
making Alg. 1 a relatively efficient approach. Finally, since the number of layers in aucs was the
largest among the three networks discussed, the best result obtained with the Local Improvement
routine was i, |15| = 17. We were able to explore all combinations up to 9-element sets. Therefore,
ID| € {10,...,17}.

4.2. Role of MDS in seed selection
To evaluate MDS’s role in seed selection, we compared all obtained seed sets (i.e. from experiments
where |15| > s). They were grouped into pairs based on the protocol, budget size, experiment
repetition, and network for both the baseline and MDS-filtered methods (activation thresholds
were omitted, as they do not affect seeding). The Jaccard similarity was computed for each of these
pairs. Finally, the similarity scores were averaged over each network type, seed selection method,
and budget size.

Table S presents the outcomes. A higher Jaccard similarity suggests a less prominent role of MDS,
whereas lower values indicate a greater impact of MDS on the given heuristic. The results indicate
that the average similarity between seed sets across all cases is approximately 0.36, demonstrating
that MDS filtering consistently influences the seed selection process. However, we observe higher
IOU values for real networks, which is due to exceptionally large MDSs in the arxiv and timik
networks. Apart from these cases, similarity values are accompanied by relatively small standard
deviations, which supports the observed trend. As expected, the lowest similarity between seed sets
is observed for the random selection method, as it lacks a structured approach to choosing influential
nodes. The remaining seed selection methods exhibit comparable IoU across different budget
sizes, suggesting that MDS filtering affects them uniformly, thereby underscoring its universal
applicability.

For both Erdds-Rényi and scale-free networks, the similarity between seed sets obtained with
and without MDS filtering consistently decreases as the budget size increases (with the exception
of random). This trend suggests that the impact of MDS filtering increases as the seeding budget
grows. For smaller budget sizes, where the influence of MDS is less significant (i.e. IoU values are
higher), the similarity between baseline and MDS-filtered seed sets is greater for scale-free networks
than for Erd6s-Rényi graphs. This observation aligns with the findings presented in Table 4, which
indicate that MDS exhibits higher variability in the latter network model. Consequently, there exist
more possible MDS configurations that do not always align with the baseline ranking.

In real networks, trends reflect the diverse structural patterns present in these graphs, making
them less straightforward to interpret. The markedly higher standard deviation values (by an order
of magnitude) further confirm the greater variability in seed set similarities within this cohort.
Nonetheless, even with such unfavourable networks as arxiv and timik included, the role of MDS
filtering remains both visible and significant.
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Table 5. Similarities between seed sets obtained using the baseline methods and their MDS-backed
variants, grouped by network type and budget size

Avg. IOU (¢, ¢, )—Erdés-Rény networks

s deg-c deg-cd nghb-1s nghb-sd random

s 0.48 (0.08) 0.50 (0.08) 0.41 (0.07) 042 (0.07) 0.02 (0.02)
10 0.41 (0.05) 0.43 (0.04) 0.37 (0.05) 0.35 (0.04) 0.05 (0.01)
15 0.36 (0.03) 0.39 (0.03) 0.34 (0.03) 0.33 (0.02) 0.08 (0.02)
20 0.34 (0.02) 0.36 (0.02) 0.32 (0.02) 0.32 (0.02) 0.11 (0.02)
25 0.33 (0.02) 0.34 (0.02) 0.31 (0.02) 0.31 (0.02) 0.14 (0.02)
30 0.31 (0.01) 0.32 (0.02) 0.30 (0.01) 0.29 (0.01) 0.17 (0.01)
35 0.30 (0.01) 0.31 (0.02) 0.29 (0.01) 0.29 (0.02) 0.21 (0.01)

Avg. IOU (¢, ¢y )—scale-free networks

s deg-c deg-cd nghb-1s nghb-sd random

S 049 (0.07) 0.53 (0.08) 0.47 (0.06) 0.46 (0.07) 0.03 (0.02)
10 0.37 (0.03) 0.38 (0.04) 0.34 (0.03) 0.35 (0.03) 0.05 (0.02)
15 0.31 (0.04) 0.34 (0.02) 0.30 (0.02) 0.32 (0.02) 0.08 (0.02)
20 0.29 (0.03) 0.32 (0.02) 0.28 (0.03) 0.30 (0.04) 0.11 (0.02)
25 027 (0.03) 0.30 (0.03) 0.27 (0.03) 0.29 (0.06) 0.14 (0.01)
30 027 (0.04) 0.29 (0.05) 0.26 (0.06) 0.30 (0.07) 0.18 (0.01)
38 0.26 (0.06) 0.28 (0.06) 0.27 (0.08) 0.30 (0.08) 0.21 (0.02)

Avg. IOU (¢, ¢y )—real networks

s deg-c deg-cd nghb-1s nghb-sd random

5 0.57(0.27) 0.61(0.23) 0.56(0.29) 0.54(0.29) 0.04(0.06)
10 0.53(0.25) 0.55(0.24) 0.49(0.28) 0.51(0.28) 0.06(0.05)
15 0.52(0.26) 0.53(0.25) 0.49(0.28) 0.50(0.28) 0.08(0.05)
20 0.53(0.27) 0.55(0.26) 0.52(0.28) 0.54(0.28) 0.11(0.04)
25 0.57(0.28) 0.57(0.27) 0.56(0.28) 0.59(0.27) 0.14(0.03)
30 0.56(0.29) 0.57(0.28) 0.55(0.29) 0.59(0.27) 0.18(0.04)
35 0.74(0.26) 0.80(0.20) 0.75(0.25) 0.82(0.18) 0.21(0.01)

4.3. Effectiveness of MDS in influence maximization

Since this study aims to evaluate the general usability of MDS for seed set selection, we have
deliberately omitted the influence of specific seed selection methods. To keep the report concise, we
have also aggregated the results across different network types. Figure 4, which is discussed below,
presents a comprehensive summary of our experimental results in a structured format. Readers
interested in a more detailed analysis are encouraged to explore the repository.

4.3.1. Feasibility of the experiments

We begin our analysis with a quantitative summary of the experiments, focusing on the second
and third rows of each tile in the heatmap. The former represents the number of experiments that
were executed correctly, while the latter provides insights into the cases where simulations failed.
Specifically, failures occurred either due to overly restrictive diffusion parameters (left value) or
when the MDS was too small to select a seed set with it (right value). It is important to note that the
corresponding values of failed experiments should be identical for pairs of I' and A heatmaps that
represent the same dataset fold and applied protocol. Moreover, the number of cases where MDS
was too small to trigger diffusion is independent of 1 and 6. Consequently, these values should be
the same for all experiments conducted for the given s and the network type.
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Figure 4. Improvement of MDS filtering across network types and spreading regimes, measured with I"
and A. Each tile shows six values: the upper value is the mean difference between the baseline and
MDS-filtered variant ([—1, 1]) across feasible experiments; the middle row presents the count of feasible
experiments, split into those with a difference greater (left) or less than/equal to 0.01 (right); the lower row
shows unfeasible experiments where diffusion couldn’t start (due to an overly strict spreading regime, left)
or where [D| < s (right). The tile colour represents the percentage of feasible simulations where the
MDS-filtered variant outperformed the baseline, computed over feasible simulations with an absolute
difference greater than 0.01.

4.3.1.1. Failures due to overly demanding parameters

In Erdés-Rényi networks under the AND protocol, failures occur for 1 > 0.7, with their number
increasing as 4 grows. Conversely, as the budget increases, the number of failures decreases. In the
OR regime, all experiments were feasible. A similar pattern is observed in scale-free networks for
0 = AND; however, the reduction in failed experiments due to an increasing budget occurs at a
higher rate. For 6 = OR, all experiments were feasible. Finally, for real networks and spreading
under the AND protocol, the region of overly strict parameters corresponds to 4 > 0.4 or a budget
of s < 30. In the OR regime, failures occur for 4 > 0.5 ors < 10.
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As expected, the number of failed experiments depends on both x and s. The highest failure rates
occur for large ¢ and small s, while relaxing at least one of these parameters increases the likelihood
of triggering a spread. Compared to artificial networks, the subset of real networks in our study poses
greater challenges in initiating the diffusion process.

4.3.1.2. Failures due to insufficient size of MDS

In Erdds-Rényi networks, for budgets s > 30, failures resulting from an insufficiently large MDS
accounted for 33.33% of the cases. In contrast, in scale-free networks, the MDS was consistently
large enough to select a seed set that matched the budget, and no such failures were observed. For
real networks, failures of this nature began to manifest for budgets s > 20, with the frequency of
these failures increasing as the budget size grew. This trend aligns with the analysis of the MDS size,
as presented in Table 4.

4.3.1.3. Feasible experiments

The conditions that affect the number of feasible experiments (represented by the sum of the middle
row in the tiles of the heatmaps) are the opposite of those described in the previous subsection.
Specifically, a smaller threshold makes it easier to trigger the diffusion. A similar effect is observed
with s, although here we encounter an obstacle in the form of the MDS size, which may be smaller
than s and thus prevent the simulation from being executed.

4.3.2. Average performance differences

This part of the analysis examines the average difference (the top value on each heatmap’s tile and
denoted as A) between experiments with and without the MDS filtering operation, using both
metrics employed.

4.3.2.1. Erdos-Rényi networks

Results for spreading triggered by the AND protocol indicate that, in general, the differences for
I' tend to increase with the budget across experiments with a similar x. For small thresholds,
the average differences in spreading effectiveness favour MDS-backed methods, while for larger u,
baseline methods tend to prevail. Similar trends are observed for AA. For 6 = OR, AT shows no
clear trends. The average difference fluctuates around zero and is generally smaller than for AND.
For the diffusion dynamics, the trends mirror those seen for AT".

4.3.2.2. Scale-free networks

For the AND protocol, significant differences are observed for I', with values reaching up to 0.26.
As the budget increases, so does the difference, and for small thresholds, MDS-backed methods
outperform the baseline. However, for larger thresholds, baseline methods prevail. For A A, similar
trends to AT are observed, but the values are slightly smaller. For the OR protocol, AT shows no
strong trends. Positive values (favouring MDS) are very small and close to 0, while negative values
exhibit a larger magnitude. For A A, most values are negative, suggesting that using MDS even slows
down the diffusion.

4.3.2.3. Real networks

For the AND protocol, AT values are smaller than those for scale-free networks but usually larger
than those in observed Erdés-Rényi graphs. For small 11, MDS-backed methods tend to outperform
the baseline, though less prominently than in scale-free networks, while for larger thresholds,
baseline methods prevail. However, the trend of increasing differences with the budget is not so
visible as in artificial graphs. A similar pattern holds for AA. For 6 = OR, AT values are scattered
around 0 with no clear trends, similar to Erdds-Rényi networks. For A A, values are more often
negative than for ATI', but no strong trends emerge as well.
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4.3.3. Seed set improvement by MDS

The next part of the analysis in Fig. 4 concerns the percentage of feasible simulations where MDS-
backed methods ‘significantly’ outperform their baseline versions, as indicated by colour. This
comparison is intended to serve as a guideline for identifying conditions under which incorporating
MDS into the seed selection process enhances diffusion, has no substantial impact, or even hinders
the spreading process. In the following section, we provide a detailed discussion of each heatmap.
Before that, we explain the methodology used to construct them.

For the purpose of analysis, we define a significant difference as an absolute difference according
to I or A greater than 0.01 (1 percentage point) between simulations conducted on the same
network and under the same spreading regime but with seed sets selected using either the baseline
method (¢) or its MDS-backed variant (¢ ). The threshold of 0.01 was chosen arbitrarily by the
authors to exclude cases where the difference is negligible, i.e. when MDS neither significantly
boosts nor disrupts diffusion.

To quantify the number of significantly different cases among all experiments, we split the count
of feasible simulations into two values, represented in the second row of each tile: the left-hand value
denotes the number of significantly different cases, while the right-hand value corresponds to cases
where the difference is insignificant. The percentage of experiments in which ¢, outperforms ¢
(i.e. represented by the tile colour) is computed using the former value as the denominator and, as
the numerator, the count of significantly different cases where diffusion triggered with ¢ was more
effective than with ¢, according to the given metric.

Finally, it is important to note that the scale is symmetrical. The greener the tile, the more
frequently MDS improves the seed selection process, whereas the less green it is, the more frequently
the baseline method prevails. If no significantly different cases are observed for a given combination
of network type, s, and x, the corresponding tile is displayed in grey. Naturally, MDS is not a
favourable choice in such scenarios, as it provides no benefit while increasing the computational
complexity.

4.3.3.1. Erdos-Rényi networks

For the AND protocol, MDS improves the overall effectiveness of diffusion in cases with small
thresholds. The larger the budget, the greater the number of cases with a significant difference, and
the average AT increases accordingly. We observe a transition boundary running diagonally across
i = 04,s = 25, below which, regardless of s, the baseline methods remain more effective or the
gain brought by MDS is insignificant. With regard to the spreading dynamics (A ), we also observe
a positive impact of MDS for diffusion with a small ¢ or a large s. Here, the transition between the
region where baseline methods prevail is smoother, but in all cases with ¢ > 0.4, classic approaches
dominate.

For the OR protocol, a different trend emerges for both metrics. MDS demonstrates its superior-
ity in two regions corresponding to the extreme values of u. Between them, we identify a zone where
baseline methods dominate, stretching diagonally from low values of both s and x to high values of
these parameters. For I, this trend is compressed by the region of insignificantly differing runs, and
MDS exhibits stronger dominance for 4 > 0.8 and 10 < s < 20. For A, the aforementioned
trend is more pronounced, with the region of the most significant improvement brought by MDS
resembling that observed for I'.

4.3.3.2. Scale-free networks

Under the AND protocol, scale-free networks exhibit the greatest improvement in spreading across
both metrics. As in Erd6s-Rényi graphs, experiments with u > 0.4 favour baseline methods,
whereas below this threshold, MDS significantly enhances diffusion, both in terms of the proportion
of superior cases and the average AI'. Notably, in this region, most feasible simulations show a
substantial difference in I between runs triggered by seed sets selected with baseline and MDS-
backed methods, further reinforcing the advantage of the latter. A similar trend is observed for A,
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though the transition between MDS- and baseline-dominated regions appears rougher and more
diagonally oriented, with A A generally lower than AT".

For the OR protocol, the heatmaps resemble those of Erdés-Rényi networks, forming a diagonal
zone where baseline methods dominate. This region is broader for A and narrower for I'. Although
the I' heatmap contains more green-coloured tiles, the improvement brought by MDS remains
limited. In many cases, the observed advantage is deceptive—the number of significantly differing
resultsis small (at most 4 out of 15),and AT does not exceed 0.02. Moreover, MDS-backed methods
occasionally disrupt diffusion, as seen for u = 0.7,s = 10or £ = 08,s = 25. The results
for spreading dynamics also support this finding, providing evidence that MDS does not improve
diffusion in scale-free networks under the OR protocol.

4.3.3.3. Real networks

Heatmaps for the AND protocol closely resemble those obtained for scale-free networks. However,
the values of AI" and A A are generally more aligned with those observed in Erdés-Rényi graphs,
meaning the results are more concentrated around zero. The diagonal transition boundary between
regions dominated by MDS and baseline methods appears more vertical and less abrupt.

In the OR protocol, the correlation between both heatmaps is weaker than in the AND case.
Nevertheless, the same pattern seen in Erdés-Rényi networks emerges, where zones of strong MDS
dominance are divided by a diagonal region stretching from small x and s to large values of both
parameters. For I', seed selection methods incorporating MDS filtering are favoured in most cases,
but the average improvement remains modest, not exceeding 0.04. In contrast, results for A are more
evenly distributed, with the proportion of significantly feasible cases where MDS-backed methods
outperform their baseline counterparts fluctuating around 50%.

4.4. Applicability of MDS in relation to the properties of scale-free networks

As shown in Fig. 4, the usefulness of incorporating the MDS into the seed selection process depends
onboth the network type and the spreading conditions. The results indicate that scale-free networks
benefit most from control-based approaches. Given the ubiquity of such structures in real-world
systems [51], this finding is particularly relevant. However, like any synthetic model, the scale-free
model has parameters that introduce additional factors. In the aforementioned experiments, we
intentionally omitted these to avoid adding further variables to the evaluation. Nonetheless, since
the results for scale-free networks demonstrated strong potential for MDS-backed seed selection, we
conducted a follow-up experiment to assess whether this positive effect persists in these networks
regardless of their configuration parameters.

4.4.1. Experiment scope

The evaluated properties of the network model had to be closely aligned with the multinet
[35] library, which was employed in the previous parts of the study. This framework is designed
to generate artificial multilayer networks and organizes configuration parameters into two groups:
those governing intralayer properties, which determine the growth of graphs representing specific
relations, and those defining interlayer dependencies, reflecting relations among the modelled
layers. Two parameters from the configuration model were selected for evaluation, forming the
basis for two cohorts of simulations. The first concerned the number of actors in the network. The
second related to the number of initial nodes per layer from which the network growth process
begins—these have a substantial influence on the emergence of hubs within each layer. All remaining
parameters were held constant and set to typical default values.

The initial configuration setup of the network generator assumed 1,000 actors represented
across three layers, each constructed using the preferential attachment model [37] with identical
parameters: mg = m = 6.Regarding interlayer dependencies, the probability of adding an internal
edge was set to 0.7, the probability of randomly importing an edge from another layer was 0.2, and the
probability that no action occurred in a given growth step (i.e. the network grew more slowly) was
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Table 6. Influence boost by incorporating MDS into the seed selection process across scale-free networks
with varying numbers of actors (|A|), according to the overall spread (I") or dynamics (A)

|A| = 500 |A| = 750 |A| = 1000 |A] = 1250 |A| = 1500
AT 0.26(0.04) 0.27(0.03) 0.26(0.03) 0.27(0.03) 0.24(0.02)
AA 0.14(0.04) 0.13(0.03) 0.13(0.03) 0.15(0.03) 0.12(0.02)

Table 7. Influence boost by incorporating MDS into the seed selection process across scale-free networks
with varying numbers of initial nodes (my), according to the overall spread (I") or dynamics (A)

m0=2 m0=4 m0=6 m0=8 m0=10
AT 0.17(0.03) 0.23(0.03) 0.26(0.03) 0.29(0.04) 0.29(0.03)
AA 0.14(0.03) 0.16(0.03) 0.13(0.03) 0.15(0.03) 0.11(0.03)

0.1. The dependency matrix, which served as the probability distribution for selecting the source
layer from which to import an edge, was homogeneous, with values equal to 1/(|L| — 1), except for
the diagonal entries, which were set to zero. Finally, the number of growth steps was set as [A| — myo.
In addition, for each utilized configuration setup, 20 instances of networks were created and used in
simulations to mitigate the randomness effect.

As for the other conditions, we selected a subset of the full parameter space presented in Table 3,
which appeared favourable in terms of the applicability of MDS to influence maximization in scale-
free networks (see Fig. 4). All five seed selection heuristics were employed in two variants: the
baseline and the MDS-backed versions. Only one spreading scenario was considered: a budget of
30% of actors, an activation threshold of 0.2, and the AND protocol function. Each simulated case
was repeated 30 times to mitigate stochastic effects, such as those arising from obtaining the MDS.

4.4.2. Number of actors

The size of a network plays an important role in shaping its properties. To assess whether it also
affects the effectiveness of using seed set drawn from the MDS, we evaluated five series of scale-free
networks with varying numbers of actors: 500, 750, 1000, 1250, and 1500 (in total 1, 000 networks).

Table 6 presents the experimental results, expressed as the mean difference in diffusion perfor-
mance, measured in terms of overall spread (I') and dynamics (A), between corresponding runs
using MDS-backed and baseline seed selection heuristics. As can be observed, both metrics are
similar across the network cohorts, indicating that the applicability of MDS does not depend on the
number of actors in the considered spreading scenario. Moreover, the improvement in spreading is
consistent and in line with the results depicted in Fig. 4.

4.4.3. Number of initial nodes

The second parameter of the scale-free model we evaluated was my. It governs the number of initial
nodes used in the first step of the graph generation process and, consequently, is closely related to the
expected number of hubs. As we consider multilayer networks, mg could take different values in each
layer. However, to facilitate more straightforward conclusions, we chose to keep it uniform across
all layers. The number of links created by a newly added node (m) was also fixed, with m = my.

The results are presented in Table 7, following the format used in Section 4.4.2. One can note
that they are broadly consistent with the trends observed in Fig. 4, although interpretation is less
straightforward due to one anomaly. From the perspective of I', the benefit of incorporating the
MDS, while consistently substantial, diminishes as m( decreases. This may be because, for low values
of this parameter, hubs are more pronounced, and the baseline seed selection heuristics, which
largely rely on centrality measures, can already identify seed nodes effectively. As the number of
hubs increases, however, the role of the MDS becomes more prominent, as it helps focus on the
most influential hubs.
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5. CONCLUSIONS

In this work, we examined the impact of using MDS for seed selection in a problem of influence
maximization in multilayer networks under the Linear Threshold Model. We conducted a compre-
hensive analysis across five rank-refining seed selection heuristics, eleven networks, and a wide range
of diffusion regimes. Additionally, we adapted the local improvement algorithm for finding MDS to
the multilayer network setting.

5.1. Key findings

After analyzing the results, we conclude that using MDS in seed selection process benefits diffusion
under low activation thresholds (up to # = 0.4) and the 6 = AND, regardless of the network
type. In real-world scenarios, this spreading regime may correspond to situations where convincing
someone requires fewer acquaintances, but these connections must span all layers (see the election
example in Section 1). Higher seeding budgets further amplify this effect, as supported by Table S,
which shows that the role of MDS becomes more significant with increasing s. The underlying
reason is that MDS distributes seeds more widely across the network, including its periphery,
whereas baseline methods concentrate them in the core. At lower 4, this ensures faster coverage
of the entire network. Baseline methods, confined to the core, lack seeds in the periphery. As the
threshold increases, MDS-backed methods cease to be effective sooner, as their influence is split
between the core and periphery.

Under the OR protocol, where spreading is inherently easier, the effects observed in AND are
far less pronounced. A seed set strong on a single layer is often sufficient to drive diffusion across
the entire network, which baseline methods achieve more effectively. However, when traditional
approaches fail under high thresholds, MDS can offer an advantage. In situations where finding seed
set through standard methods becomes challenging, MDS facilitates diffusion that would otherwise
not occur.

We also observe that scale-free networks are the most susceptible to diffusion improvement with
MDS. This stems from the presence of both hub and peripheral nodes in MDS (Fig. 3). Unlike
Erdés-Rényi networks, which distribute connections more evenly, scale-free structures benefit from
seed sets that span both the core and periphery, making MDS-backed methods more effective in
triggering diffusion. Moreover, the role of MDS in seed selection is the most pronounced for this
networks compared to the others (Table 5) and persists regardless of its parameters (Tables 6 and 7).
In contrast, Erdés-Rényi networks are less suitable for MDS-based approaches due to their degree
distribution, which results in MDS being more randomized and typically too small (see Table 4) to
meet the budget requirements.

For the real networks analyzed, MDS sizes (Table 4) suggest this subset includes both networks
resembling scale-free and Erdés-Rényi models, making it the most representative of real-world
scenarios. As shown in Fig. 4, MDS offers the greatest benefit under the AND protocol with lower
activation thresholds, improving overall coverage and diffusion dynamics. However, the example of
arxiv shows that, in some cases, using the MDS is meaningless when it covers the entire set of actors.

Finally, despite effectiveness, using MDS comes with additional computational costs (Section
3.3.2) that need to be taken into consideration when choosing a seed selection approach. Nonethe-
less, in some cases, the increase in A or I' might be big enough to justify the additional time needed
to compute MDS.

5.2. Limitations of the study and next steps

This study includes a diverse set of networks, comprising both real-world examples and representa-
tives of scale-free and Erdés-Rényi graphs. However, a more in-depth evaluation of the artificial
models employed may provide additional insight, particularly in the case of the latter model,
which was omitted owing to discouraging results. Future work may also explore the applicability
of our findings to alternative graph structures, such as small-world networks. Similarly, the impact
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of adopting different spreading models, such as the Independent Cascade, could be investigated.
Addressing these limitations thus presents a promising direction for further research.

Another possible avenue for future work is to explore alternative interpretations of the control
problem in multilayer networks. Since this graph model is built upon the idea of capturing multiple
types of relations among a set of agents, Def. 2.2 was formulated such that an actor must be
dominated in all (as opposed to just any) layers of the network in order to be considered controlled.
Nevertheless, one can conceive an alternative formulation in which an actor is regarded as domi-
nated if it is linked to a dominating actor in at least one layer. The MDS derived under this relaxed
condition would typically be smaller than those obtained using the stricter formulation adopted in
this work, and the resulting influence dynamics may also differ.

While the steps outlined here are only examples of potential directions for deeper exploration of
the problem undertaken in this work, the primary conclusion remains clear: if one seeks to persuade
a wide audience, particularly those whose conviction is easily swayed but must be thoroughly
convinced across all aspects of their lives, starting from MDS is a good choice.
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