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Abstract
Egocentric cameras are increasingly adopted as an effective tool
that aids in self-monitoring by individuals. These cameras automat-
ically record event details into a video which are reviewed by the
users later, to identify items of interest. However, this process is
time-consuming and labor intensive. With the availability of LLMs,
we posit that the task of identifying the items of interest can be
automated into a natural language Question-Answering format. Fur-
thermore, these LLMs, in conjunction with memory graph models
can help identify causal relationship between events. To this end, in
this paper, we propose MemMod4CVQA, a framework that enables
users to pose questions that the framework will answer using the
egocentric camera details. The MemMod4CVQA framework uses a
memory model comprising of semantics memory, episodic memory,
and causal memory to answer these questions. Through a small
simulation-based study we observed that it is possible to realize the
framework and obtain an overall F1 score of 44.80% on predicting
causal relationships, which is 22.10% higher than standard baseline
approaches. We believe that the framework architecture can lead
to significant improvements in causal visual question answering in
the future.

CCS Concepts
•Human-centered computing→Ubiquitous andmobile com-
puting systems and tools; • Computing methodologies →
Knowledge representation and reasoning.
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1 Introduction
The proliferation of wearable cameras and life logging devices
has made capturing continuous streams of daily human activity
increasingly feasible. The growing “quantified self” movement has
further fueled this interest and encourages individuals to record
their everyday experiences by donning a wearable camera [19].
Individuals subsequently review the captured life-logs to identify
specific events, which is tedious and time-consuming. Furthermore,
one might need to review disjointed life-log streams to determine
the causal reasoning for an activity, a cognitively challenging task.

With the advancement in Machine Learning (ML) and the avail-
ability of Large Language Models (LLMs), automating the review
process to quantify moments quickly is gradually becoming possi-
ble. Although researchers have put substantial effort into obtaining
causal relationships between events for Visual Question Answer-
ing (VQA), several research gaps remain. Current VQA models
primarily rely on static frame-level features or short temporal win-
dows. They often do not effectively model causal and episodic
information over continuous video feeds acquired over long time-
horizons (24/7) [2]. With the rise of egocentric video datasets (e.g.,
CASTLE dataset [27]), we have an opportunity to extract rich, con-
tinuous real-world contexts.
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We envision that, in the future, LLMs can leveragememory-based
knowledge graphs to infer and reason about causal relationships
between events. These memory-based models can improve the
performance of personal assistants that employ VQA techniques
on personal big data, such as visual life logs (videos), by exploit-
ing causal relations between events. In this paper, we introduce
MemMod4CVQA, a framework that builds on memory models to
seamlessly infer causal relationships in life log data to answer VQAs.
Such a framework would help generate explainable, context-aware,
and reasoned answers to questions about egocentric videos.

Our Vision: The MemMod4CVQA, our framework for causally
grounded insight generation from raw egocentric videos, leverages:

• Event Segmentation: Using activity-based temporal clustering to
chunk continuous videos into meaningful, discrete events.

• MemoryModel: Construct dualmemory representations: (a) Episodic
memory: Raw segmented events with time, location, and con-
text, (b) Semantic memory: Abstracted summaries and concepts
extracted from episodes.

• Causal graph extraction: Learning or inferring directed causal
relationships between events and actions.

• Explainable question answering: Reasoning over structured event
representations and their causal relationships.

Our proposed approach is particularly well-suited to ubiquitous
sensing environments, where sensor-data streams are heteroge-
neous, unstructured, and temporally extended. Several categories
of application will benefit from MemMod4CVQA in the future. For
example, grounding LLMs on causal graphs for a structured under-
standing of events over time, especially when processing visual or
multi-modal data. Human-like understanding requires models to
generate possible responses and reason about causes, intentions,
and outcomes.

While generative AI models have demonstrated their ability to
encode knowledge from vast amounts of data and retrieve infor-
mation as a response to natural language queries, the relevance
of the responses provided by them hinges heavily on the sound-
ness of the prompts/queries provided to them. This has led to the
development of several techniques for prompt-engineering, reason-
ing techniques etc. Understanding the prompt or input query is
therefore a crucial step for Gen-AI in producing relevant outputs.
This aspect becomes more acute in retrieval and reasoning tasks
involving personal big data such as visual life logs. A user who
wants to query their own personal big data, generally generates
queries based on what they know/remember and need answers to
things that they may not know/remember (e.g., “Where did I leave
my car keys?"). Therefore, a model that provides an estimate of
what the user remembers/knows from their past provides crucial
context to understand their query, by providing an approximate
common-ground (e.g., the user knows that she left the keys some-
where in the house because the car is at the house, but they want to
know exactly where in the house). Establishing this understanding
is crucial to provide relevant and accurate answers as well as opti-
mize computational resources by reducing the search space (e.g.,
don’t look for the key in the office). To facilitate such a mechanism,
we envision two important steps– (1) organizing personal data into
chunks/segments similar to how the human mind organizes infor-
mation, and (2) performing causal reasoning to establish spatial and

temporal connections between crucial information pieces extracted
from chunks of personal data.

2 Related Work
Visual Question Answering (VQA) is a multimodal task that in-
volves generating a natural language answer to a question based
on an input image or video. It remains a challenging problem due
to the need for joint reasoning across both visual and linguistic
modalities, often requiring large, resource-intensive models. Early
approaches treated VQA as a multi-stage pipeline. For instance,
Multimodal Compact Bilinear (MCB) Pooling employs Convolu-
tional Neural Networks (CNNs) to encode visual inputs and Re-
current Neural Networks (RNNs) for textual feature extraction,
combining the two modalities by computing their outer product in
a compact form [10, 17, 31]. Over time, the CNNs were replaced by
Vision Transformers (ViTs) [8] and RNNs were then replaced with
BERT [7, 21] based models in VideoQA [9, 35], to obtain improved
representations and benefit from self-supervised cross-modal pre-
training (Eg. CLIP-ViT [25]). Recent VQA models have integrated
frozen LLMs (e.g., LLaMA [29]) with instruction tuning of pro-
jection and adaptation modules. However, despite their superior
accuracy, these models tend to be highly resource-intensive, posing
challenges in terms of computational cost and scalability as well
as lacking the explainability of neuro-symbolic approaches [30].
Consequently, recent LLM based approaches have explored causal
and temporal reasoning in VideoQA [18, 36]. However, such efforts
have been overwhelmingly focused on videos acquired from a third-
person view point and only recently, there has been attention on
the ego-centric view point [13].

Visual question answering on long-form ego-centric videos is an
important step toward achieving everyday memory support (e.g.,
answering “Where did I leave my keys") [2]. It is also considered
crucial for the personalization of gamified cognitive interventions
[14, 33, 34] and memory support [12, 24]. While past work has
focused on vision-language modelling, the inclusion of human
memory models to provide context is considered important in prac-
tical applications that help end-users [32]. For example, it is known
that humans tend to have better recall of images acquired from the
beginning/end of an event, when compared to the middle [11, 16].
Similarly, the presence of a human face is known to influence the
recall of an event. Understanding how humans segment and remem-
ber events is hence crucial as it provides context to their queries
(which are grounded in what they remember and need answers to
what they don’t) as well as the answers generated by the systems.
This also motivates the need for causal reasoning to retrieve the
frames that are relevant to the given query. Another compelling
reason to include such memory mechanisms is to reduce the pro-
cessing overheads involved in answering queries over longer time
horizons. Earlier work has shown that clustering the video feed
into semantically relevant event-segments has been found to be
useful in retrieval tasks [6, 20]. A proper event-segmentation based
on human memory models could provide better organization of the
video-feed that helps to improve accuracy of retrieval as well as
minimize the overheads.
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Figure 1: The MemMod4CVQA framework for inferring causal relationships from life-log data for Visual Question Answering.

3 The MemMod4CVQA Framework
We next describe our envisioned MemMod4CVQA framework that
can help extract causal relationships in life log data. Figure 1 pro-
vides a high level overview ofMemMod4CVQA. TheMemMod4CVQA
framework consists of five primary blocks– image extraction and
pre-processing, image processing, event segmentation, memory
modeling, and causal discovery. We next describe each block.

Image extraction and pre-processing: Once the wearable cam-
era captures continuous egocentric video, the system extracts the
corresponding image frames. The system then employs an adaptive
background modeling approach to account for gradual environmen-
tal changes while remaining sensitive to sudden movements. This
prevents unnecessary processing during non-active situations. The
implementation follows the two key steps:
• Calibration Phase: At system initialization, 30 frames of a static
environment are captured to build a baseline background model
(𝛽). This baseline model provides a reference for motion detec-
tion and helps compute the Mean Absolute Deviation (MAD)
threshold used for adaptive motion sensitivity.

• Background Update: The system continuously updates the back-
ground model (𝛽) over time using a weighted average controlled
by a 𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔𝑅𝑎𝑡𝑒 parameter (𝜆 = 90). The background model
is a pixel-by-pixel representation of the "normal" static environ-
ment, initially established during calibration but continuously
evolved over time. It is essentially the same as the calibration base-
line but dynamically updated to adapt to gradual environmental
changes. The background modeling is done using the following
formula, where 𝑖 represents the pixel index in the frame arrays.

𝛽 [𝑖] = (𝛽 [𝑖] × 𝜆 + 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐹𝑟𝑎𝑚𝑒 [𝑖] × (100 − 𝜆))/100 (1)

Using the background model computed above, the change detec-
tion pipeline involves the following steps: (a) Absolute Difference
Calculation: Each pixel in the current frame is compared to the
corresponding pixel in the background model, (b) Morphological
Processing: A combination of erosion and dilation operations clean

up the difference map, eliminating noise while preserving signifi-
cant motion regions, (c)Adaptive Thresholding: The system employs
a MAD-based dynamic thresholding (threshold factor = 2.5), and
(d) Temporal Smoothing: A 5-frame sliding window is used to stabi-
lize detection and suppress transient changes.

Image Processing: The You Only Look Once (YOLO) model [26]
performs classification on the images, identifying up to 5 top ob-
jects in each image. A dual-embedding approach combines visual
and semantic features using the Contrastive Language-Image Pre-
training (CLIP) model: (a) Visual embedding from the image itself,
and (b) Textual embedding from the detected object labels. This
information is stored along with the captured timestamp.

Event Segmentation: Activity-based temporal clustering imple-
ments change-point analysis of multimodal feature distributions,
operating on piecewise stationary assumptions where statistical
properties remain stable within events but shift at boundaries. The
method combines statistical transition detection with LLM semantic
validation to ensure that boundaries represent meaningful activity
changes rather than noise. Hierarchical decomposition enables the
capturing of coarse activity transitions and fine sub-activity bound-
aries while maintaining semantic coherence of extracted events.

Memory Modelling: Although there are various memory model-
ing techniques, we focus on using the Self-Memory System (SMS)
as described by Conway and Pleydell-Pearce [5]. SMS posits au-
tobiographical memory as transitory mental constructions within
a goal-driven control system. The model distinguishes between
episodic memory (experience-specific records) and semantic mem-
ory (abstracted conceptual knowledge) [4]. Episodic memory is
hierarchical in nature consisting of lifetime periods, general events,
and specific knowledge. It is built based on objects, location, emo-
tion, and activities observed in a time period. Semantic memory, on
the other hand, is based on the abstractive consolidation process,
as described in the SMS framework.
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Figure 2: Using the Life-Log Framework to answer queries provided by users

Each segmented life log event instantiates an episodic memory
object containing: core event data (temporal boundaries, activities,
objects, emotions), contextual metadata (frame indices, timestamps),
retrieval cues (union of detected concepts), emotional valence, and
confidence-weighted vividness scores.

While semantic memory emerges through statistical consolida-
tion where concept frequencies and co-occurrences across episodic
memories generate association strengths and prototypical feature
vectors. This consolidation process creates conceptual knowledge
from experiential patterns, enabling temporal and associative mem-
ory retrieval pathways essential for causal relationship discovery.

Causal Discovery: Causal Discovery encompasses computational
methods for inferring causal relationships from observational data,
typically through causal graph learning. Our approach derives these
causal relationships by systematically extracting and analyzing the
rich relational information embedded within both episodic and
semantic memory representations constructed from life log data.
In MemMod4CVQA, we adopt a multi-modal structure learning ap-
proach tailored to the heterogeneous nature of life logging data. The
causal discovery process operates directly on the structured mem-
ory representations, where episodic memories provide temporally-
ordered, context-rich event sequences, while semantic memory
contributes abstracted conceptual associations and co-occurrence
patterns learned from multiple episodic instances. To enable ro-
bust causal inference, we integrate visual, behavioral, and physi-
ological modalities via a specialized preprocessing pipeline. This
pipeline constructs cross-modal interaction features that capture
meaningful relationships across modalities, and validates statistical
properties to ensure reliable causal inference. Structure learning
operates hierarchically, first identifying intra-modal relationships
within each data type, then discovering inter-modal causal path-
ways using constraint-based (PC) and score-based (Hill Climbing
with BIC/AIC) algorithms.

4 Visual Question Answering
The system takes in a user query in a text form. For example, the
user can ask "Where did I leave my car key?". The query is first con-
verted into vector embeddings, which are then compared against
stored memory embeddings using cosine similarity. The top-k most
relevant memory entries are retrieved based on this similarity and
passed to the LLM interface. The MemMod4CVQA framework inte-
grates with this interface to provide contextual grounding for the
LLM, ensuring that the response is informed by relevant episodic

Figure 3: Example of a JSON for caching prompts.

and semantic memories rather than passing the entire memory
model directly. The overall steps that system follows is listed in
Figure 2. Two important components in this system are the prompt
cache manager and the similarity matcher.

Prompt Cache Manager: The system incorporates an intelligent
prompt caching mechanism to improve response quality and reduce
computational overhead for similar queries. This caching mecha-
nism stores each prompt and its corresponding generated output
are stored in a structured JSON file as shown in Figure 3.

Similarity Matcher: Upon receiving a user prompt, the system
generates a vector embedding for the current prompt. It then com-
putes cosine similarity against three memory banks:
(1) Episodic memory: the time-stamped sequences with the associ-

ated metadata and image frames
(2) Semantic memory: abstracted knowledge patterns extracted

from the episodic memories
(3) Prompt cache: previous prompts paired with their correspond-

ing event representation.
Any entry in these repositories whose similarity score exceeds 0.85
is deemed relevant, and if there are more than 𝑘 such entries, then
the top-𝑘 entries are selected. In our processor, we are using top
5 matching cache entries, and top 10 similar epsiodic, semantic
and causal relations. For the top relevant matches, the following
information is assembled and concatenated into the LLM’s context
window prior to response generation:
• The current user prompt
• The most similar past prompt
• The response previously generated for that prompt
• Any linked event metadata and image frames

To balance recency with a bounded memory footprint, the sys-
tem maintains a prompt-event cache that stores newly generated
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Table 1: Comparison of query responses for different modes: Causal-only (C), Episodic-only (E), Semantic-only (S), Causal-
Episodic (CE), Causal-Semantic (CS), Episodic-Semantic (ES), and all three combined (All).

Query Examples Causal Episodic Semantic CE CS ES All

Query Type: Temporal
List the instances when I
wrote using a pen and paper

Writing with pen and paper
in living area, afternoon;
focused, table present;
pen leads to paper

Writing at 08:36 in living
area; focused; chair,
chocolate, consent form, cup

Writing in living area,
afternoon; focused; table
usually present; laptop
and flowers sometimes

Writing at 08:36-08:39
living area; pen, chocolate,
consent form, cup

Writing at table in living
area, afternoon; pen and
paper present; alone

Writing at 08:36-08:39 in
living area; pen, paper,
laptop, flowers, cup,
mug

Writing at 08:36-08:39 in
living area; focused; chair,
chocolate, paper, pen, mug
present

Query Type: Causal
Why am I walking around
in the kitchen?

Walking in kitchen primarily
to prepare food; busy state;
kitchen leads to content;
alone common

Walking in kitchen to prepare
food; gathering ingredients,
stove, oven; sometimes
with people

Walking in kitchen to prepare
food in afternoon; busy state;
sink, cabinets, appliances

Walking in kitchen to
prepare food; busy; neutral,
focused, happy emotions

Walking in kitchen
for food prep; content;
sometimes alone; relaxed
leads to kitchen

Walking kitchen to prepare
food; afternoon; gathering
ingredients; emotions neutral,
focused, happy; people
present sometime

Walking in kitchen for food
prep; stands precedes kitchen;
objects like counter, bottles;
emotions content, relaxed

Query Type: Descriptive
What was I cooking?

Preparing food in kitchen,
afternoon, focused, alone,
standing, food linked to
focus and short duration

Cooking and food prep in
kitchen, focused, with
person_2 and person_3,
fruit, pineapples, oven,
stove, cabinets

Preparing food, afternoon,
focused, kitchen, oven
and appliances present

Cooking and preparing
food in kitchen various
times, focused, sometimes
neutral or happy

Preparing food, afternoon,
focused, kitchen, content,
alone, standing

Cooking, preparing food in
kitchen, afternoon, fruit,
pineapple, stove, oven, happy
and focused sometimes

Cooking and preparing food in
kitchen, fruit, pineapple, oven,
countertop, bottles, cookware, f
ocused, happy, content, relaxed

Query Type: Event-based
Where do I usually do
my writing activities?

Living area, afternoon,
table and paper, cognitive
activity, very short duration

Living area, focused,
chair, chocolate,
consent form, cup

Living area, afternoon,
table, paper, laptop,
focused

Living area, focused, chair,
chocolate, consent form,
cup, possibly specific spot

Living area, afternoon,
table, paper, laptop,
pen, food, alone

Living area, afternoon, table,
chair, paper, pen, consent form,
cup, mug, flowers, laptop, TV,
shelves, decorations

Living area, focused, chocolate,
chair, consent form, cup, pen,
mug, paper, paper leads to pen

prompt–event–response tuples. Each new entry is inserted into
the cache with a time-decay weighting, which gradually reduces
the similarity contribution of older entries. To prevent unbounded
growth, the system employs a Least Recently Used (LRU) evic-
tion policy that removes the least recently accessed items once a
predefined capacity is reached. This unified retrieval and context
augmentation strategy allows the LLM to ground its responses
in both up-to-date episodic details and distilled semantic insights,
while ensuring the memory remains manageable and efficient.

5 Preliminary Evaluation & Results
We conduct a preliminary evaluation of the proposedMemMod4CVQA
framework on both real-world egocentric video data from the CAS-
TLE dataset and a simulated lifelogging dataset.

5.1 Egocentric Dataset Evaluation
We utilize two hours of egocentric video data from the CASTLE
dataset [27], focusing on its rich multi-context sequences of daily
human activity. We performed a qualitative evaluation of the cor-
rectness, causal soundness, and explainability of generated answers
to structured queries over segmented events and causal graphs.

We constructed a questions benchmark comprising four query
types: (a) Causal ("why"), (b) Temporal ("when", "what happened be-
fore/after"), (c) Descriptive ("what"), (d) Event-based ("where"). Each
category included four curated queries with manually annotated
ground truth answers.

To support this evaluation, we generated episodic-semantic mem-
ory representations and causal relationships from the video data
using our MemMod4CVQA framework. The episodic and semantic
memory modules were extracted and populated using scene and
activity representations extracted from the videos.

Two annotators evaluated and assessed the output responses
based on (a) correctness of answers in alignment with ground truth
responses, (b) logical plausibility with known causal links, (c) clarity
and relevance of the reasoning provided.

We evaluate the robustness of our framework under ablated
memory conditions, where all possible combinations of episodic,
semantic, and causal memory modules were used. Table 1 lists an
example from each query-type for the different modes we tested.

Our evaluation reveals that relying on a single memory mode
limits the scope of responses–episodic memory provides detailed,

context-rich answers, semantic memory offers generalized patterns,
and causal reasoning enables logical interpretation. In contrast,
blended modes (e.g., causal-episodic, causal-semantic, or all com-
bined) significantly enhance the depth, coherence, and explanatory
quality of responses. Notably, the "All" mode, which integrates
episodic, semantic, and causal information, provided the most se-
mantically coherent, causally grounded, interpretable answers.

These findings support our hypothesis that amemory-augmented,
causally grounded architecture can significantly improve insight
generation from life logging data.

5.2 Simulated Dataset Evaluation
We also generate a synthetic non-egocentric life logging dataset
that simulates comprehensive real-world human behavior and envi-
ronmental interactions over time. The dataset simulates 1500 hours
and covers five distinct modalities, each designed to reflect key
aspects of everyday life.

(1) Environmental modality: Temperature and weather conditions.
(2) Contextual modality: Time of the week (weekend or a work

hour) and location settings (e.g., at home, in the work place or
in a social setting)

(3) Visual modality: Scene brightness, visual complexity, color di-
versity and number of objects in the scene.

(4) Behavioral modality: Physical activity level, social interaction
frequency, digital device usage hours and daily step count.

(5) Physiological modality: Heart rate and stress level, influenced
by behavioral activity levels and contextual factors such as time
of day or workload intensity.

We emulate the above conditions and modalities using standard
behavioral patterns derived from prior literature [3, 15, 23, 37].
Simulated dataset exhibits the following causal relationships:

(1) Cross-Modal Dependencies: Environmental and contextual
factors (such as weather and location) influence behavioral pat-
terns. In turn, these behavioral patterns affect physiological
responses, which subsequently impact psychological or seman-
tic outcomes. Visual characteristics of scenes are also shaped
by both environmental and contextual factors.

(2) Temporal Dependencies: The dataset models temporal dy-
namics, including lag effects in psychological states (e.g., mood
persistence), carry-over effects in physiological states (such as
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Table 2: Performance comparison of different causal discovery algorithms on the synthetic dataset. PC(Peter-Clark) uses
conditional independence testing (constraint-based), HC(Hill-Climbing) uses graph search with BIC/AIC scoring (score-based),
Enhanced versions include optimizations for mixed datatype support and cross modal discovery, and Correlation Baseline
provides simple pairwise correlation reference.

Algorithm F1 Score Cross-Modal F1 Score Precision Recall Predicted Edges
Correlation_Baseline 0.202 0.171 0.134 0.406 97
Standard_HC 0.227 0.239 0.179 0.312 56
Standard_PC 0.215 0.226 0.212 0.219 33
Our_Enhanced_HC_BIC 0.400 0.353 0.321 0.531 53
Our_Enhanced_HC_AIC 0.340 0.312 0.258 0.500 62
Our_Enhanced_PC 0.448 0.458 0.500 0.406 26

stress and fatigue), and behavioral momentum (such as sus-
tained physical activity across time).

(3) Realistic Constraints: The simulation also incorporates re-
alistic constraints such as circadian rhythm effects on activity
and physiology, distinct behavior patterns between weekdays
and weekends, activity changes based on weather conditions,
and stress variations influenced by work schedules.

With this comprehensive set of scenarios, our synthetic dataset
has 1500 timestamped observations collected over 62.5 days of
hourly data with 26 distinct feature variables and 32 known causal
relationships.

To evaluate the performance of predicting causal relationships,
we use the standard evaluation metrics: Precision, Recall, and F1
score, applied to the synthetically generated dataset. Table 2 presents
the performance comparison for different algorithms on the syn-
thetic dataset. From the table we observe that MemMod4CVQA’s
conditional independence testing produces the highest F1 score of
44.8%. This is 24.6% higher than the correlational baseline which is
performed on a pairwise correlational reference.

6 Discussion and Next Steps

Working with Egocentric life log videos We have currently
performed initial evaluation of the MemMod4CVQA framework on
a simulated dataset. Although the results are promising, substantial
effort in all modules of MemMod4CVQA is necessary to improve
the system’s performance. Furthermore, the simulation currently
does not consider egocentric images. As a next step, we will use the
CASTLE dataset to detect causal relationship among events [27].
The dataset already poses several challenges which we believe can
be addressed using the MemMod4CVQA framework.

Application and Use cases: Smartglasses have been of interest to
the wearable sensing community for several years. Several smart-
glasses have been proposed over the years, with Meta’s AI Glasses
gaining traction recently [22]. These smartglasses currently are
capable of capturing various egocentric life log videos. In future,
they can benefit from MemMod4CVQA enabling causal visual ques-
tion answering to answer questions like ‘Why is Tom looking for
something?’, when Tom is searching for his keys. Furthermore, this
framework opens up a lot of potential applications in the Human
Robot Interaction space in a collaborative environment.

Optimization possibilities: One big challenge in the CVQA field
is handling large amounts of data to process. The pre-processing
steps that we used for MemMod4CVQA are an initial step towards
reducing computational burdens. From a system point, the mod-
els described should run with minimal footprint to reduce energy
consumption, a goal of MemMod4CVQA. In future, we will work
towards detecting human attention so that cognitive models can
be improved further.

Ethical challenges: Working with egocentric life logging videos
pose serious privacy concerns. Indeed, researchers have noted vari-
ous concerns with egocentric videos [1]. To mitigate these concerns,
researchers have focused on obfuscating unnecessary information
in human activity recognition tasks [28]. However, balancing be-
tween privacy and usability of information from image is a major
challenge. We will devise approaches to balance privacy and usabil-
ity concerns.

7 Concluding Remarks
In this work, we proposed MemMod4CVQA, a vision for causally
grounded insight generation and question answering from lifelog-
ging videos. By integrating event segmentation, dual memory mod-
eling based on the Cohen-Conway framework, and causal graph
extraction, our approach aims to bridge the gap between raw mul-
timodal data and explainable, structured reasoning. We believe this
work would open new pathways for integrating causal reasoning
into ubiquitous sensing, and sets the stage for future systems that
not observe but understand human behavior in context.
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