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Abstract—Vertical federated learning (VFL) in healthcare en-
ables institutions holding different features of the same patients to
collaboratively train machine learning models without exposing
raw data. However, most existing VFL approaches focus on
secure aggregation and privacy-preserving computation, while
overlooking client-side preprocessing. This limitation can result
in less informative embedding representations and increased
communication overhead. To address this, we propose PreComp-
VFL, a client-level preprocessing method that integrates unsuper-
vised feature selection with dimensionality reduction techniques.
PreComp-VFL allows clients to transmit compressed, informa-
tive, and privacy-preserving embeddings without requiring label
access. We used four real-world medical datasets in a number of
experiments demonstrating our proposed scheme and achieved
improved model accuracy and F1 Score compared to standard
VFL. We also show that our proposed scheme achieves significant
reductions in communication costs relative to server-side feature
selection scheme.

Index Terms—privacy-preserving, vertical federated learning,
embedding representation, feature selection, medical data.

I. INTRODUCTION
The rapid digitization of healthcare has resulted in vast

amounts of electronic medical records distributed across hospi-
tals, clinics, and laboratories. These records are often vertically
partitioned, meaning that each institution holds a different
subset of features describing the same patients. For example,
one may store clinical notes, while another manages lab results
or genetic markers. Building predictive healthcare models
from such fragmented data requires collaboration while strictly
preserving patient privacy.

Vertical Federated Learning (VFL) has emerged as a
promising solution for privacy-preserving collaboration in
healthcare [1]. It is a category of federated learning that allows
institutions with disjoint features to train machine learning
models collaboratively without sharing raw data. In the VFL-
based medical data management framework, each party holds
a distinct feature subset for the same group of patients. To
support deep learning in this setting, Split Neural Networks
(SplitNNs) are widely adopted [2]. SplitNNs divides the global
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model between clients and a centralized server. This setup
allows clients to transmit only intermediate representations,
known as embeddings, rather than raw features or full model
updates. This architecture not only preserves data privacy,
but also reduces communication overhead and adapts well to
heterogeneous data distributions.

Despite significant progress in VFL, most existing work
in medical data management focuses on model aggregation
and privacy-preserving computation [3], [4]. However, less
attention has been given to client-side feature preprocessing,
especially in the healthcare domain where data is often sensi-
tive, sparse, or high-dimensional [5], [6]. This gap often leads
to embeddings that are noisy or redundant, degrading model
accuracy and increasing communication overhead. Moreover,
certain features known as quasi-identifiers (e.g., age, gender)
may pose a re-identification risk even when raw data is not
shared. Removing such attributes during preprocessing can
enhance privacy protection while also reducing noise and
improving model generalization. Therefore, a critical challenge
remains unresolved: how to ensure that client-generated
embeddings are both informative and privacy-preserving,
particularly when no labels are available at the client
side. Many existing feature selection strategies in VFL rely
on supervised feature selection methods or pre-trained models
[7], [8]. These strategies are impractical in medical contexts
due to ethical or regulatory restrictions, such as HIPAA and
GDPR [9]. While some client-local preprocessing studies exist
[8], they are computationally intensive and rely on iterative
procedures, limiting scalability.

To address these limitations, we propose PreComp-VFL,
a client-side preprocessing strategy for VFL in healthcare.
PreComp-VFL performs unsupervised local feature selection
and compression before collaborative training begins. Unlike
server-based methods that rely on label access, PreComp-
VFL enables each client to independently process their
data using unsupervised techniques such as Quasi-Identifier
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Fig. 1: System Architecture and Data Flow in PreComp-VFL.

(QI) removal, Mutual Information (MI) filtering, and Smart
Correlation Selection (SCS). Each client can then combine the
selected features with an appropriate dimensionality reduction
method, such as Principal Component Analysis (PCA) or
AutoEncoders (AEs), depending on the data characteristics
and computational resources. Our experiments evaluate the
proposed approach across four real-world medical datasets.
The results show that PreComp-VFL improves embedding
quality, reduces communication cost, and maintains predictive
performance under realistic VFL constraints. On average, it re-
duces communication cost by 20-30% and improves F1 Score
by up to 2% compared to standard VFL, without requiring
label access. To the best of our knowledge, this is the first work
to apply a comprehensive set of unsupervised feature selection
and compression techniques locally to enhance embedding
representations prior to collaborative training. We summarize
the contribution of this paper as follows:

e We propose PreComp-VFL, a client-side preprocessing
strategy that enables each participant to transmit com-
pact, informative, and privacy-aware embeddings. This
reduces bandwidth usage and enhances the effectiveness
of collaborative training without exposing raw features.

e We introduce a modular unsupervised feature optimiza-
tion pipeline, combining advanced feature selection (QI
removal, MI filtering, SCS) with dimensionality reduction
(PCA or AEs). This flexibility allows PreComp-VFL to
adapt to heterogeneous medical datasets without requiring
label access.

e We conduct a comprehensive evaluation on four real-
world medical datasets. The results show that PreComp-
VFL enhances embedding quality, reduces communica-
tion overhead, and maintains strong predictive perfor-
mance under realistic VFL constraints.

II. SYSTEM ARCHITECTURE AND DATA FLOW IN

PrREComP-VFL
PreComp-VFL supports collaborative learning on vertically

partitioned medical data while preserving privacy. As shown
in Figure 1, the system consists of a central server (active
party) holding labels and multiple clients (passive parties),
each with disjoint feature subsets. Clients locally prepro-
cess their features using QI removal, MI filtering, or smart
correlation-based pruning. Each client applies QI removal,

Algorithm 1 PreComp-VFL: Local Preprocessing and Com-
pression in VFL

Require: Local features X, learning rate 7, batch size 3, rounds T'
Ensure: Compressed features X,,,, Global model ©

1: Server: Initialize ©(®) and send to clients

2: for all clients m = 1... M in parallel do

3: X — PreComp(X,,,L); feed to bottom model

4: end for

5: foreachround t =0...7T — 1 do

6: for all clients m = 1... M in parallel do

7: hm < 00, - X'm); send h,, to server

8 end for
9: Server: Concatenate {h., }2/_,, compute loss L)
10: Update ©+D « o) _ v L®
11: Send Vi, L™ to clients

12: for all clients m = 1... M in parallel do
13: Update 00 « 0(1) — v, L
14: end for

15: end for

MI filtering, or smart correlation selection to retain informa-
tive, non-redundant features without label access, improving
generalization and reducing communication. QI removal is
used to remove QI features to preserve individual privacy.
Although these attributes may not be uniquely identifying
on their own, they could potentially re-identify individuals
when combined with other attributes. Therefore, clients may
choose to eliminate such QIs from their feature space to
enhance privacy and potentially improve model generalization.
This step is particularly relevant when QIs contribute little
to predictive performance. On the other hand, MI is used
to capture linear and non-linear dependencies [10], while
correlation filtering is used to remove multicollinearity using
Pearson coefficients [11]. This is followed by dimensional-
ity reduction. For dimensionality reduction, clients use PCA
or AEs. PCA produces linearly uncorrelated components,
whereas AEs capture non-linear feature interactions [6]. Both
approaches reduce dimensionality and overhead while pre-
serving predictive utility in federated settings. The resulting
compressed features are fed into client-side bottom models,
whose outputs (embeddings) are transmitted to the server. The
server concatenates these embeddings, computes the global
loss, and backpropagates gradients to update both global and
local model parameters, following the SplitNN paradigm [2].
This workflow reduces communication and computation while
mitigating privacy leakage.

Algorithm 1 outlines the workflow. Each client applies
feature selection and dimensionality reduction to transform
its private features X,, into compressed representations X,
where k,, < d,,. These are passed through local bottom
models to generate embeddings h,,, which are aggregated
by the server. The global model parameters © are updated
using the Adaptive Moment Estimation (ADAM) optimizer,
and gradients V) = are returned to clients to update their
local parameters 6,,. This iterative process continues until
convergence.

I1I. PERFORMANCE EVALUATION
This section outlines the experimental setup used to evaluate

the proposed method. It also provides detailed information on
data preprocessing and training procedures.



TABLE I: Evaluation Metrics using All Original Feature (Baseline) + Feature Extraction (PCA, AEs).

Dataset Name Training Samples Testing Samples All Original Features With PCA With AEs

Test Acc. F1 Score Test Acc. F1 Score Test Acc. F1 Score
Breast Cancer 559 140 97.85 96.77 97.85 97.24 98.57 97.87
Diabetes Prediction 5908 1478 88.70 89.95 88.22 89.42 87.82 88.56
Gliomas 671 168 88.09 86.66 89.88 88.59 87.5 84.67
Chronic Kidney 320 30 98.75 98.55 98.75 98.7 98.75 98.7

TABLE II: Overview of Feature Reduction Rate with/without
Feature Extraction.

Feature number in Feature Retained (%) using
Database Name Client Client PCA AEs
1 m Client Client Client Client
1 m 1 m
Breast Cancer 4 5 25 25 25 25
Diabetes Prediction 7 7 25 25 28 28
Gliomas 14 14 21 14 28 28
Chronic Kidney 13 12 23 33 23 25

A. Datasets
We evaluate the proposed method on four publicly available

medical datasets: Breast Cancer [12], Diabetes Prediction [13],
Glioma Grading [14], and Chronic Kidney Disease [15]. These
datasets were chosen because of their tabular format. To
assess robustness, we included datasets of varying sizes and
feature dimensions, ranging from small-scale to large-scale
collections.

B. Preprocessing and Training Setup

Maintaining data quality is critical for model learning.
For the Breast Cancer, Glioma, and Chronic Kidney Disease
datasets, missing values were imputed with the feature-wise
mean, while the Diabetes Prediction dataset required removal
of over 3,800 duplicate records and exclusion of entries with
an ambiguous gender or missing smoking history. Duplicates
in smaller datasets were retained due to sample scarcity. After
cleaning, each dataset was vertically partitioned across two
passive clients, with the active party holding labels. We also
split each dataset into training/testing sets at an 8:2 ratio.
To accommodate dataset complexity, we defined two SplitNN
architectures: for Diabetes and Breast Cancer, clients used two
fully connected layers (16 and 8 ReLU units) with a server-
side single-layer sigmoid head, while Glioma and Chronic
Kidney Disease used deeper client models (32 and 16 units)
and a three-layer server head (16, 8, 1 units with ReLU
and sigmoid). Each client’s autoencoder comprised a single
encoder—decoder pair, with compression ratios (0.25, 0.5, 0.75)
tuned via grid search, where 0.25 consistently balanced dimen-
sionality reduction and performance. Models were initialized
using PyTorch defaults and trained with the ADAM optimizer
(Ir=0.001). Binary cross-entropy was applied for classification
tasks, while mean squared error was used for unsupervised
AEs training. Each experiment ran for 200 communication
rounds, with evaluations performed every 50 epochs.

C. Simulation Results and Analysis

The experimental results obtained from the proposed
method are presented. Performance metrics, such as Test
accuracy (Acc.) and F1 Score, obtained through the proposed
method have been compared against a baseline SplitNN model

trained on the full original feature set, with and without feature
extraction. Additionally, we conduct a theoretical analysis
of training time and computational complexity to compare
PreComp-VFL with server-side feature selection and other
related methods.

1) Effect of Feature Compression on Model Performance
and Dimensionality: This experiment evaluates the impact of
compressing original features (baseline) using PCA and AEs
on model performance. Table I presents the accuracy and F1
Score of models trained on original features compared to those
trained on features compressed using PCA and AEs. Apply-
ing feature extraction either slightly improved or maintained
model performance while significantly reducing the number of
features transmitted per client, as shown in Table II. For PCA,
the optimal variance retention threshold was 0.9, selected
based on a grid search over thresholds ranging from 0.5 to 0.9.
This experiment demonstrates that unsupervised feature ex-
traction effectively reduces communication overhead without
compromising model accuracy, particularly when using PCA
on small to medium-sized medical datasets. While PCA gener-
ally yielded more stable results, AEs underperformed slightly
on small datasets such as Glioma, likely due to overfitting. The
performance gap is attributed to AEs requiring a larger training
sample size and more careful hyperparameter tuning. Future
improvements to AE-based compression could include using
deeper architectures or introducing regularization techniques
to reduce overfitting in low-sample scenarios.

2) Impact of Quasi-Identifier Removal on Privacy and
Model Performance: This experiment evaluates how removing
QI attributes, such as age and gender, affects both privacy
preservation and model performance. It is a common privacy-
preserving technique in medical data sharing. We run this ex-
periment only on three datasets: Diabetes Prediction, Gliomas,
and Chronic Kidney. We exclude the Breast Cancer Wisconsin
dataset because it does not contain any QIs attributes.

Table III reports the performance of the model when QIs
are removed prior to training. The results show that for most
datasets, removing QIs leads to only marginal decreases in
both accuracy and F1 Score, typically less than 2%. For
example, in the Diabetes Prediction dataset, accuracy drops
from 88.70% to 87.07%, indicating a minimal impact on
model performance while improving privacy. However, in
some cases, QIs contribute predictive value. For instance, age
is a known risk factor for both Glioma and Diabetes. Remov-
ing such features may slightly alter the model’s discriminative
capacity. However, in the Glioma dataset, the F1 Score actually
increased marginally from 86.66% to 86.79%, suggesting that
QI removal does not always degrade performance. Table III



TABLE III: Performance Metrics Before and After using QI Removal + Feature Extraction.

Dataset Name Training Testing All Original Features After Drop QI Drop QI+PCA Drop QI+AEs
Samples Samples
Test Acc. F1 Score Test Acc. F1 Score Test Acc. F1 Score Test Acc. F1 Score
Diabetes Prediction 5908 1478 88.70 89.95 87.07 88.24 86.67 87.84 84.57 85.53
Gliomas 671 168 88.09 86.66 87.5 86.79 88.69 88.19 86.3 86.22
Chronic Kidney 320 80 98.75 98.55 98.75 98.46 98.75 98.63 98.75 98.46
TABLE IV: Performance Metrics Before and After using MI Filter + Feature Extraction.
Dataset Name Training Testing All Original Features After MI Filter MI Filter+PCA MI Filter+AEs
Samples Samples
Test Acc. F1 Score Test Acc. F1 Score Test Acc. F1 Score Test Acc. F1 Score
Breast Cancer 559 140 97.85 96.77 97.85 96.9 97.85 97.47 98.57 98.07
Chronic Kidney 320 80 398.75 98.55 98.75 98.41 97.5 97.5 96.25 95.8
TABLE V: Evaluation Metrics Before and After using SCS + Feature Selection.
Dataset Name Training Testing All Original Features After SCS SCS+PCA SCS+AEs
Samples Samples
Test Acc. F1 Score Test Acc. F1 Score Test Acc. F1 Score Test Acc. F1 Score
Breast Cancer 559 140 97.85 96.77 97.14 96.22 98.57 98 97.85 96.77
Gliomas 671 168 88.09 86.66 89.28 86.95 90.47 88.88 87.5 86.79
Chronic Kidney 320 80 98.75 98.55 98.75 98.66 97.5 97.29 95 95.83

also compares the model performance after applying PCA or
AEs on top of QI-removed features. Consistent with earlier
observations, PCA outperforms AEs across most datasets. This
is likely due to the small sample sizes and linear feature inter-
actions, which favor PCA’s statistical nature over the higher
capacity of AEs. These findings suggest that QI removal is a
viable privacy-preserving strategy in medical VFL, particularly
when combined with dimensionality reduction techniques like
PCA that mitigate any minor loss in model utility.

3) Effect of Mutual Information-Based Feature Selection on
Model Performance: This experiment evaluates the impact
of MI based feature selection on model performance. We
conducted this experiment on the Breast Cancer and Chronic
Kidney datasets, excluding Glioma and Diabetes due to a lack
of meaningful inter-feature dependency as observed during
the threshold tuning process. The MI threshold was selected
through a grid search over the range [0.5, 0.6, 0.7, 0.8, and
0.9]. The optimal MI threshold was identified as 0.7, which
offered the best balance between removing redundancy and
maintaining accuracy.

Table IV presents results after applying MI-based feature
selection. The performance metrics remain stable or slightly
improved across datasets, indicating that the retained features
preserve most of the discriminative information. For example,
in the Breast Cancer dataset, the F1 Score improved from
96.77% to 96.9%, even after removing redundant or weakly
informative features based on MI. In addition, Table IV
combines MI with feature extraction techniques: PCA and
AEs. The results show that MI followed by AEs achieved
the highest F1 Score (98.07%) for the Breast Cancer dataset,
demonstrating the benefit of combining feature selection with
dimensionality reduction. These results suggest that MI-based
selection is effective for reducing dimensionality without sac-
rificing accuracy, especially when paired with AEs or PCA.

4) Effect of Smart Correlation Selection-Based Feature
Selection on Model Performance: This experiment evaluates

the impact of SCS in identifying and removing redundant
features using Pearson correlation coefficients. We tested this
method on the Breast Cancer Wisconsin, Gliomas, and Chronic
Kidney datasets. The Diabetes dataset was excluded due to
weak inter-feature correlation. The correlation threshold was
selected based on a grid search over the range [0.5, 0.6,
0.7, 0.8, 0.9]. The grid search determined that a correlation
threshold of 0.8 provided the best balance between reducing
redundancy and maintaining model performance.

Table V presents the results of applying SCS alone. While
performance remains comparable on the Breast Cancer and
Chronic Kidney datasets, we observe a noticeable improve-
ment in the Gliomas dataset, where accuracy increased from
88.09% to 89.28%. This suggests that SCS is particularly
effective in datasets with a high degree of inter-feature cor-
relation. Table V also combines SCS with dimensionality re-
duction techniques. The combination of SCS and PCA yielded
the highest F1 Score of 88.88% on the Gliomas dataset, further
supporting the utility of this two-stage preprocessing. These
findings highlight the importance of tailoring correlation-based
filtering to dataset characteristics. SCS is especially beneficial
when feature collinearity is present, as it complements dimen-
sionality reduction techniques like PCA.

D. Runtime and Communication Cost Analysis

In VFL, the overall system efficiency depends heavily on
both computational runtime and communication overhead.
Traditional server-side feature selection approaches require
each client to transmit full-dimensional embeddings to the
central server, where global feature selection is then per-
formed. In this study, we denote communication cost as
Comm and computational cost as Ccopmp, expressed in terms
of sample size n, number of original features per client d,
number of clients m, and compressed dimension k. We now
contrast PreComp-VFL with server-side selection in terms of
theoretical runtime and communication complexity.



In server-side approaches, each client transmits (nd) embed-
ding size per round to the server, resulting in a total commu-
nication cost of (Ceomm = mnd). The server then performs
feature selection over the entire feature space of size (md),
with methods like Shapley scoring requiring up to (Ceomp =
(md)?) time due to iterative optimization or pairwise eval-
uations [16]. This centralized computation becomes a major
bottleneck in large-scale or privacy-sensitive applications. In
contrast, the proposed PreComp-VFL approach shifts feature
selection and compression to each client prior to collaborative
training. Each client locally reduces its dimensionality from
d to k using unsupervised techniques such as MI, SCS,
PCA, or AEs. The computational cost varies by method. For
instance, MI and SCS incur (Copmp = dlogd) due to pairwise
evaluations among features [17], [18], while PCA involves
eigenvalue decomposition, requiring (Ceomp = d*n + d°)
[19]. Shallow autoencoders, in contrast, require (Ceomp =
edn) training operations over e epochs [20]. Because the
dimensionality is reduced locally, each client transmits only
(Ceomm = nk) compressed embeddings per round, reducing
the total communication cost to (Ceomm = mnk), with k < d.

Beyond theoretical complexity, it is important to compare
PreComp-VFL with other recent communication-efficient VFL
strategies. In particular, we examine the neuron selection ap-
proach proposed by [8], which also operates at the client level.
However, it differs in when and how compression is applied.
The authors perform client-side pruning of the local output
neurons based on Taylor approximations. This method requires
a warm-up phase with full communication before pruning is
applied. It sends a binary mask to the server to indicate the
top-d; neurons to retain. While effective in reducing communi-
cation in later rounds, it is architecture-dependent and assumes
differentiable gradient behavior. In contrast, PreComp-VFL
provides immediate compression, supports non-neural models,
and works without label access. This makes it particularly
useful in privacy-sensitive healthcare settings. Furthermore,
PreComp-VFL avoids the need for raw feature sharing or cen-
tralized optimization, reducing both Ceomm and Ceomp from the
outset. By decentralizing preprocessing, it improves scalability
and efficiency, especially in environments with heterogeneous
feature spaces and constrained bandwidth.

IV. CONCLUSION

We proposed PreComp-VFL, a client-side preprocessing
strategy for VFL in healthcare. The proposed strategy performs
unsupervised feature selection and dimensionality reduction
locally, without requiring label access. It improves embedding
quality, reduces communication overhead, and enhances data
privacy. The method is model-agnostic and well-suited for
real-world medical collaborations with heterogeneous data
distributions. While effective, PreComp-VFL depends on well-
tuned hyperparameters (e.g., PCA thresholds, autoencoder
compression) and may face limitations with small datasets
or large-scale federations. Autoencoders, in particular, may
perform poorly in low-sample settings without proper regular-
ization. Future work will explore integration with secure ag-

gregation protocols to further protect compressed embeddings
and evaluate scalability in broader deployments. By addressing
these challenges, PreComp-VFL offers a practical path toward
scalable, privacy-preserving federated learning for sensitive
medical applications.
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