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Abstract

Artificial Intelligence (AI) has achieved immense progress in recent years across a wide ar-
ray of application domains, with biomedical imaging and sensing emerging as particularly
impactful areas. However, the integration of AI in safety-critical fields, particularly biomed-
ical domains, continues to face a major challenge of explainability arising from the opacity
of complex prediction models. Overcoming this obstacle falls within the realm of eXplain-
able Artificial Intelligence (XAI), which is widely acknowledged as an essential aspect for
successfully implementing and accepting AI techniques in practical applications to ensure
transparency, fairness, and accountability in the decision-making processes and mitigate
potential biases. This article provides a systematic cross-domain review of XAI techniques
applied to quantitative prediction tasks, with a focus on their methodological relevance
and potential adaptation to biomedical imaging and sensing. To achieve this, following
PRISMA guidelines, we conducted an analysis of 44 Q1 journal articles that utilised XAI
techniques for prediction applications across different fields where quantitative databases
were used, and their contributions to explaining the predictions were studied. As a result,
13 XAI techniques were identified for prediction tasks. Shapley Additive eXPlanations
(SHAP) was identified in 35 out of 44 articles, reflecting its frequent computational use for
feature-importance ranking and model interpretation. Local Interpretable Model-Agnostic
Explanations (LIME), Partial Dependence Plots (PDPs), and Permutation Feature Index
(PFI) ranked second, third, and fourth in popularity, respectively. The study also recognises
theoretical limitations of SHAP and related model-agnostic methods, such as their addi-
tive and causal assumptions, which are particularly critical in heterogeneous biomedical
data. Furthermore, a synthesis of the reviewed studies reveals that while many provide
computational evaluation of explanations, none include structured human–subject usabil-
ity validation, underscoring an important research gap for clinical translation. Overall,
this study offers an integrated understanding of quantitative XAI techniques, identifies
methodological and usability gaps for biomedical adaptation, and provides guidance for
future research aimed at safe and interpretable AI deployment in biomedical imaging
and sensing.
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1. Introduction
Artificial Intelligence (AI) has become increasingly established in prediction applica-

tions across various fields, such as healthcare [1], engineering [2], energy [3], finance [4],
and business [5]. However, AI systems have become more complex, and their decision-
making process often becomes less transparent and hard to understand [6]. This situation
hinders practitioners’ understanding, leading to concerns about bias, untrustworthiness,
and discrimination. Therefore, an interpretation of the AI models’ outcomes and work is
required to enhance the decision-making process in various applications.

Explainable Artificial Intelligence (XAI) has emerged as an important research area
that refers to the features that explain how the AI methods constructed their prediction
outcomes [7,8]. The goal of XAI is to create AI models and algorithms that can be easily
understood and interpreted by humans, enabling users to trust and rely on AI systems for
critical decision-making [8]. Traditionally, many AI methods have been known as black-box
models, which means that their decision-making processes were opaque and complex for
humans to understand [9]. This lack of transparency made it challenging for users to know
how and why the AI systems were making certain decisions. XAI aims to solve these
problems by creating AI models that can provide clear interpretable explanations for their
actions [9].

Recent advances in XAI have especially focused on medical imaging and sensing
applications, given their critical importance in diagnostics, monitoring, patient safety, and
regulatory oversight. For example, examining the current landscape of XAI in medical imag-
ing, including visual, textual, and example-based explanations [10] and self-explainable AI
for medical image analysis [11] to highlight models that incorporate explanations inherently
rather than post hoc. The potential of XAI techniques demonstrate both the urgency and
rapid evolution of XAI techniques in biomedical imaging fields.

XAI has gained significant attention in recent years due to the black-box nature of AI
models and the need for explanations behind how these models made their predictions [8].
Numerous survey papers have been published to provide a comprehensive overview of
the current state of XAI, especially during the hype cycle during 2017 to 2023. In order to
highly the gap/need for XAI techniques and their relevance to biomedical imaging and
sensing, this paper also unified previous efforts and presented a complete taxonomy of
XAI techniques [10]. Some of them focused on a specific domain, such as healthcare and
automation [12], exploring the application of XAI on various prediction tasks. For example,
Chaddad et al. [13] conducted a survey to explore XAI techniques for medical imaging
applications by emphasising algorithms used to improve interpretability and address
challenges of XAI methods in the medical domain. The study also provided instructions
for developing better interpretations of deep learning models in medical image and text
analysis. Another paper investigated the utilisation of XAI techniques for skin cancer
detection [14]. XAI methods have been applied in identifying pandemic scenarios; for
example, the systematic review conducted by Giuste et al. [15] focused on examining XAI
application in combatting pandemics. This study evaluated the XAI performances for
enhancing the value of AI-based decision support systems. This paper also presented the
traditional and modern advanced XAI techniques and provided best practice guidelines
for AI users. The automotive industry is one of the specific domains that has witnessed of
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application of AI, such as the review conducted by Omeiza et al. [16] to observe explanations
by highlighting the transparency, accountability, and trust in automation vehicle systems.
Several additional survey articles have been carried out with the objective of presenting
categorisations of XAI techniques such as Minh et al. [17] to conduct a survey to investigate
XAI techniques and categorise them into pre-modelling and post-modelling. This study
paid attention to systematically discussing the XAI techniques challenges, evaluation
methods, security, and policy.

For the purposes of this review, ‘quantitative data’ refers to structured numeric data
and numerical features derived from sensing or imaging sources (for example: numerical
measurements extracted from medical images, time-series signals from wearable sensors,
tabular clinical variables, and derived biomarkers). We therefore excluded studies whose
primary data modality was raw unstructured image or text data without accompanying
numeric features, or those where explanation focused on visual saliency alone (e.g., Grad-
CAM heatmaps used without corresponding numeric feature explanations). The objective
is to synthesise XAI methods most directly applicable to numerical prediction tasks—i.e.,
tasks that produce numeric or class predictions based on quantitative inputs, as these
settings are highly relevant for sensor outputs, derived imaging biomarkers and many
clinical decision-support scenarios.

It is worth noting that the majority of XAI review articles focus on method summaries,
categorisations, or specific domains and give little attention to exploring the use of XAI
techniques in predictions across various disciplines. Due to the lack of contribution of
XAI surveys to the predictions, this study is motivated to explore the lacking context of
XAI application and their relevance to biomedical imaging and sensing. By explicitly
focusing on predictions where the quantitative data was utilised, this survey aims to iden-
tify and evaluate the various XAI methods employed in a wide array of domains. While
this review draws from quantitative-prediction applications across many domains, we
emphasise the results and lessons in the context of biomedical imaging and sensing, as
these domains best illustrate real-world stakes and the need for interpretability, fairness,
and accountability, especially when predictive models inform diagnosis, treatment, or
patient-monitoring. The review of these applications serves as an essential guide in pro-
viding valuable insights to stakeholders enabling them to make informed decisions when
choosing appropriate XAI techniques. By understanding the benefits, challenges, and
trade-offs of different XAI techniques, developers can effectively enhance the explainability
and interpretability of these techniques, thus fostering the broader implementation of AI
systems in real-world scenarios.

Despite the extensive body of research on XAI, including review studies, this review
narrows the focus by specifically exploring Q1 journal articles that present the applications
XAI techniques for quantitative predictions in various domains. The choice of focusing
on quantitative studies is that predictions on quantitative data play a significant role in
many practical disciplines, such as healthcare, engineering, energy, finance, and business.
Interpretation of the prediction outcomes in these sectors is therefore essential for decision-
making, resource allocation, and risk assessment. The contribution of this paper includes
the following:

• Identify and categorise XAI techniques applied for quantitative prediction tasks across
diverse domains, and their relevance to biomedical imaging and sensing.

• Highlight the advancements, challenges, and benefits of the XAI techniques applied
for numerical prediction tasks.

• Identify the gaps and provide future research direction in applying XAI techniques
for predictions.
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The structure of this paper is outlined as follows. Section 2 describes the strategies
applied for the research and selection of the data. Section 3 illustrates the XAI techniques
and the corresponding prediction applications in various domains. Section 4 discusses the
review summary and challenges in existing applications and future direction. Section 5
presents the conclusion of the study.

2. Research Methodology
This study adopted the ‘Preferred Reporting Items for Systematic Reviews and Meta-

Analysis’ (PRISMA) [18] protocol as a guide in the development of the methodology.
Creating a well-defined research question (RQ) is the first step in conducting a systematic
review, encapsulating the main objective of the study [19]. In line with this, the following
RQ has been formulated; What XAI techniques have contributed to prediction applications
using quantitative data?

2.1. Search Strategy

To conduct this systematic review, we devised a search strategy to locate and identify
the relevant literature. This search strategy was tailored to two databases, Science Direct
and the Institute of Electrical and Electronics Engineers (IEEE), covering XAI techniques
in prediction applications in all fields. The following keywords and combinations were
applied in the search string: “explainable AI” OR “interpretable AI” OR “explainable
artificial intelligence” OR “interpretable artificial intelligence” OR “explainable machine
learning” OR “interpretable machine learning” (see Table 1). All searches spanned the
databases from 2017 to 2023.

Table 1. Search strategy for the selected literature.

Database Article Parts
Searched Field Search String

ScienceDirect Title, Abstract All Fields

((“Explainable AI” OR “interpretable AI” OR “explainable
artificial intelligence” OR “interpretable artificial

intelligence” OR “explainable machine learning” OR
“interpretable machine learning”) AND (“Biomedical

Imaging” OR “Biomedical Sensing” OR “Biomedical” OR
“Imaging” OR “Sensing”))

IEEE Title, Abstract All Fields

((“All Metadata”: explainable AI) OR (“All Metadata”:
interpretable AI) OR (“All Metadata”: explainable machine

learning) OR (“All Metadata”: interpretable machine
learning) OR (“All Metadata”: interpretable machine

learning) AND (“Biomedical Imaging” OR “Biomedical
Sensing” OR “Biomedical” OR “Imaging” OR “Sensing”))

The review window was restricted to the period from 2017 to 2023. This period
was deliberately chosen because it captures the formative years and peak of the first XAI
hype cycle: following seminal contributions (e.g., LIME in 2016 and SHAP in 2017), the
years 2017–2023 saw rapid proliferation and consolidation of model-agnostic explainability
techniques across domains. This window selection strengthens the focus to capture the ‘first
maturity wave’ and the hype-cycle phase of XAI, during which foundational methods such
as SHAP and LIME transitioned from theoretical development to applied use in diverse
quantitative domains, including the initial uptake within biomedical imaging and sensing.
Although a few post-2023 biomedical-specific reviews have appeared, these serve mainly
to confirm that XAI’s conceptual evolution identified in this study continues into more
domain-specific applications. Focusing on this window allowed a comprehensive review
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of foundational methods that shaped the current state of XAI and continue to underpin
later biomedical applications.

We restricted our formal database searches to ScienceDirect and IEEE Xplore because
our objective was to identify peer-reviewed, full-length journal articles with detailed
methodological reporting, and both databases index a broad set of Q1 journals across
applied sciences. This design allowed cross-domain comparison of XAI implementations
across biomedical, engineering, energy, and economic contexts, which was central to the
purpose of this review. We acknowledge that dedicated biomedical databases such as
PubMed/PMC or specialty collections within Web of Science may include additional
domain-specific XAI studies. However, during our preliminary scoping, we performed
targeted scans in Google Scholar to identify potentially relevant biomedical XAI studies
and recent systematic reviews published after 2023. As Google Scholar aggregates content
from both PubMed and ScienceDirect, many PubMed-indexed works that are hosted on
ScienceDirect were indirectly captured during this stage, thereby minimising duplication
and missed coverage of relevant biomedical papers. This overlap meant that many PubMed-
indexed articles with full-text access via ScienceDirect were already captured through our
selected databases, indirectly broadening biomedical coverage while avoiding duplication.

The scoping exercise revealed a limited number of newer biomedical XAI reviews (for
example, deep-learning-based explainability [10] and self-XAI for medical imaging [11]),
but these primarily focused on image-saliency or qualitative explanation methods and
lacked quantitative feature-level analyses required for our inclusion criteria. Consequently,
they were not included in the formal synthesis. We nevertheless acknowledge the absence
of formal PubMed searching as a limitation (see Section 4.1). Future studies focused
exclusively on the biomedical domain should extend database coverage to include PubMed
and other specialist medical indexes to ensure comprehensive retrieval of the emerging
literature. This review was conducted according to the PRISMA 2020 guidelines [18].
The review protocol was not prospectively registered in PROSPERO or other registries.
However, the PRISMA 2020 checklist is presented in as Supplementary Material.

2.2. Selection Criteria and Quality Assessment

The selection criteria were based on the PRISMA protocol [18] (see Figure 1). The
search mainly focused on mapping the existing literature on applying explainable artificial
intelligence (XAI) techniques’ contribution to predictions in all fields and, in particular,
their relevance to biomedical imaging and sensing. This study started with 764 search
results in the selected journal databases using the Boolean search string (see Table 1), and
43 studies were identified after reviewing the references. After removing the 9 duplicated
publications across the journal databases, 798 articles were screened with the titles and ab-
stracts of the full-text original articles. Following that, we removed 646 articles, comprising
conference papers, case studies, the literature reviews, surveys, systematic reviews, and
XAI techniques implemented on non-prediction problems. We were left with 152 full-text
articles eligible to be taken to the next step. For this process, 108 articles were removed from
non-Q1 journals: the quartile (Q) of the journal was acquired from SJR-Scientific Journal
Ranking [19]. Consequently, we included 44 full-text original articles sourced exclusively
from Q1 journals. The choice of selecting Q1 journal articles for the survey is that the
Q1 journals are known for their rigorous peer-review process and high-quality standards,
ensuring that the relevant articles have been undertaken through in-depth examination by
experts in the field. In addition, the screening strategy recognised that seminal methodolog-
ical papers (for example, the original SHAP exposition by Lundberg and Lee, published
in NeurIPS 2017 [20]) are highly relevant to interpreting current practice although they
appear in conference proceedings rather than Q1 journals. Where such seminal methods



Sensors 2025, 25, 6649 6 of 31

were not themselves eligible for formal inclusion (because they fell outside the Q1-journal
inclusion criterion), they were nevertheless discussed and cited to provide methodological
context. To maintain the quality of the process, the search criteria were checked thoroughly
with the help of an independent reviewer/librarian. To minimise bias in study selection
and data extraction, an independent reviewer with expertise in systematic searching (a
research librarian) was involved in the screening process. Disagreements between the lead
author and the independent reviewer were resolved through discussion until consensus
was reached. A list of full-text articles excluded at the eligibility stage with reasons is
available from the corresponding author upon reasonable request.

 

Figure 1. PRISMA 2020 systematic review filtration protocol [18].

2.3. Data Extraction and Analysis

At this stage, for data extraction and analysis of the 44 articles, we separated them
into constituent parts based on addressing the specific attributes of the research question
(What XAI techniques have contributed to prediction applications using quantitative data?).
These attributes are as follows:

• The RQ specifically examines the XAI techniques, which aim to provide explanations
for the prediction outcomes generated by AI models.

• The RQ concerns predictions involving quantitative data.
• The RQ seeks to identify the contribution of XAI methods to the prediction problems in

various domains, how these techniques have interpreted the outcomes, and potentially
uncover any limitations associated with their use.

3. Results
Due to the recent introduction of XAI, it is understandable that the first Q1 journal

article dedicated to XAI contribution to prediction tasks emerged in 2017. There were
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no dedicated studies in the XAI application for predictions in Q1 journals in 2018. The
application of XAI techniques for prediction tasks has increased exponentially between
2019 to 2023.

A comprehensive collection of 44 Q1 journal articles has been analysed, highlighting
the adaptation of XAI techniques across various fields (see Figure 2), as evidenced by
several studies. Among the 44 studies analysed, biomedical imaging and sensing repre-
sent a minority but critically important subset. Nevertheless, several recent works, such
as [10,11], are almost exclusively focused on medical imaging, which suggests that the
next wave of publications are increasingly biomedical in orientation. Thus, our findings
are highly relevant as they anticipate and overlap with these emerging studies. Among
other domain, we categorise studies from the selected pool of papers, there were 10 articles
in the civil engineering domain, which utilised XAI techniques to interpret the structural
analysis. Eight of the 44 articles studied used XAI techniques in healthcare. The field of
energy used explainability in 6 out of the 44 journal articles. In finance, XAI techniques
have been utilised and reported by 5 out of the 44 articles. Environmental studies have
recognised the potential of applying XAI methods in 4 studies. Additionally, two studies in
chemical engineering and economics have employed interpretable techniques to enhance
the decision-making process. Furthermore, explainable AI methods have been utilised in
other domains, including aeronautics, aviation, genomics, mechanical engineering, mining,
and sports. Lastly, XAI also made an impact in miscellaneous studies in which we were
unable to identify the related industry. Table A1 (in Appendix A) summarises the included
44 studies that have implemented XAI techniques for prediction problems. These articles
underline the influence of explainable AI methods across various sectors, fostering inter-
pretability and informed decision-making. The application of each XAI technique will be
broadly discussed in the later section.
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Figure 2. XAI articles from 2017 to 2023.

According to the result, the most popular XAI techniques are Shapley Additive eXPla-
nations (SHAP), Local Interpretable Model-Agnostic Explanations (LIME), Partial Depen-
dence Plots (PDPs), and Permutation Feature Index (PFI), utilising 35, 10, 6, and 4 articles,
respectively (see Figure 3). Some articles used more than one technique. Other identi-
fied models, including Accumulated Local Effects (AcME), Additive Feature Attribution
(ALE), Explain Like Im 5 (ELI5), EXPLAIN, Individual Conditional Expectation (ICE), IME,
KernalSHAP, Permutation Importance (PIMP), and SHAPASH used by one study each
technique. Figure 4 illustrates the distribution of prediction models in conjunction with
each XAI technique. The more frequently used machine learning prediction models are
Extreme Gradient Boosting (XGBoost), Random Forest (RF), Extra Tree (ET), Echo State
Network (ESN), Long Short-Term Memory (LSTM), Gradient Boosting Regression (GBR),
Light Gradient Boosted Machine (LGBM), Multi-Layered Perceptron (MLP), Deep Neural
Network (DNN), Gradient Boosted Tree (GBTs), Gradient Tree Boosting (GTB), Logistic
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Regression (LR), Natural Gradient Boosting (NGB), Polynomial (Poly), Random Forest
Regression (RFR), Support Vector Machine (SVM), and Support Vector Regression (SVR).

Figure 3. (a) Number of XAI articles in different industries. (b) Employed XAI techniques/models.

0 10 20 30 40 50 60

AcME
ALE
ELI5

EXPLAIN
ICE
IME

KernalSHAP
LIME
PDPs
PFI

PIMP
SHAP
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AcMEALEELI5EXPLAI
NICEIMEKernalS

HAPLIMEPDPsPFIPIMPSHAPSHAPAS
H

ANN 1
DNN 1
ET 221
ESN 1
GBR 11
GBTs 1
GTB 1
LGBM 131
LR 1
LSTM 22
MLP 2
NGB 1
Poly 1
RF 1111162191
RFR 1
SVM 1
SVR 2
XGBoost 11332119

Figure 4. Illustration of the distribution of prediction models in conjunction with XAI techniques.
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In the upcoming sections, we provide an analysis of each XAI technique identified
for prediction applications. This will involve a thorough examination and explanation of
the various XAI methods, ensuring a comprehensive understanding of them. The XAI
techniques are organised based on their popularity.

3.1. Shapley Additive Explanations (SHAP)

Shapley Additive explanations (SHAP) is a local and global interpretation technique
that aims to provide a better understanding of machine learning models by calculating
feature importance values for individual predictions [20]. This method is inspired by game
theory, especially the concept of Shapley values, which is used to calculate the contribution
of each player in a collaborative game [21]. The approach used the prediction as the
“playout” and each feature value as a “player” in the game. The goal is to ensure fair
distribution of payouts to players. Given a trained model f and a generic data point x,
represented by an n-dimensional feature vector ( x ∈ R), SHAP computes, for each feature
that represents the contribution of the feature to the prediction f (x). SHAP attribute ∅i to
each predictor (feature), and the sum of these effects, g(z′), approximates the output f (x)
of the original model. This can be formulated as follows:

g
(
z′
)
= ∅0 + ∑N

i=1 ∅iz′i, ∅i ∈ R (1)

where N is the number of input features in x, the instance vector,
g is the explanation model,
zi is the coalition vector such that zi ∈ (0, 1)N ,
∅i is the decomposition factor.
Given a trained model f and a generic data point x, represented by an n-dimensional

feature vector ( x ∈ R), SHAP computes, for each feature that represents the contribution of
the feature to the prediction f (x). SHAP attribute ∅i to each predictor (feature), and the sum
of these effects, g(z′), approximates the output f (x) of the original model. In Equation (1),
the SHAP values ∅i are defined to satisfy additive attribution ∅0 + ∑N

i=1 ∅i where ∅0 is the
expected base value. Computation of SHAP values relies upon a background distribution
for marginalisation (commonly the training set distribution), and for correlated features
the marginal or conditional expectation choices change attributions [22].

SHAP assumes an additive explanation model and the decomposition relies on the def-
inition of the background distribution used to marginalise features; choices of background
and handling of correlated features materially affect attributions [22]. SHAP computes
additive feature attributions that sum to the model output; its interaction values provide a
decomposition of pairwise interaction contributions under the additive Shapley framework.
While SHAP is widely used because it yields consistent, locally exact additive attributions,
critical limitations have been identified in the literature, e.g., potential sensitivity to feature
correlation [23], questionable causal interpretation when features are not independent [24],
and the fact that Shapley axioms (developed for homogeneous payoff distributions) do not
automatically ensure domain-appropriate explanations in heterogeneous settings such as
biomedicine [24]. In general, SHAP provides two distinct advantages, comprising global
and local explainability of AI methods. Unlike other significant features in AI models,
SHAP can evaluate the positive and negative influence of each input characteristic [1].

SHAP has been a widely employed technique having been used in 35 out of the
44 articles included in this study (see Figure 5). It is a popular XAI tool in various fields
for prediction applications, and the most prominent areas are healthcare, civil engineering,
and energy. In healthcare, SHAP has been employed by eight studies, demonstrating its
potential for early medical diagnoses [1,25,26], future treatment targets, prediction of post-
operative mortality [27], informing clinical decisions [28], personalising medicine applica-
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tions, and in understanding the logic governing the prediction outcomes [29]. Figure 5b
illustrates the machine learning prediction models that have been explored and imple-
mented for various prediction tasks in conjunction with SHAP. Among these AI models,
XGBoost stands outs, with 19 studies out of 35 showcasing its combination with SHAP for
prediction interpretability. RF followed by 8 articles out of 35, highlighting its compatibility
with SHAP in various domains. ET has been employed by two articles, where SHAP-based
analyses demonstrated computational consistency of the predictive outcomes. Additionally,
other models such as RFR, Poly, NGM, MLP, LSTM, LR, LGBM, GTB, GBTs, GBR, and DNN
have each been featured in one study, respectively, highlighting their successful integration
with SHAP for prediction applications. These findings emphasise the diverse range of
machine learning and deep learning models that have been computationally integrated
with SHAP to generate post hoc explanations and model-interpretation outputs.

Figure 5. (a) SHAP utilisation by industry. (b) AI methods used in SHAP studies.

SHAP has been widely used in civil engineering, as evidenced by seven studies to
generate post hoc attributions, as it quantifies the contribution of each feature in a sam-
ple to machine learning predictions. These seven studies highlight the computational
effectiveness of SHAP in various purposes from an algorithmic standpoint, such as for
liquefaction assessment of soils [30], the probabilistic buckling stress prediction of steel
shear panel dampers [31], predicting demands for designing and assessing structures
under seismic loads [32], and predicting the shear capacity of FRP-RC (fibre-reinforced
polymer-reinforced concrete) beams [33]. Additionally, SHAP has been employed for
identifying the failure mode of flat slabs [34] and the wind pressure of a low-rise build-
ing [35], and accelerating the development of one-part alkali-activated materials with the
desired properties [36]. However, none of the reviewed works included structured user
or clinician usability evaluations to confirm whether these computational explanations
translated into improved human understanding or decision-making. Therefore, the term
effectiveness here refers exclusively to computational and analytical performance, not
validated user-centred interpretability.

The predominance of model-agnostic feature importance techniques (e.g., SHAP,
PDP) in our dataset finds echoes in recent imaging-focused reviews such as Explainable
AI for medical imaging systems using deep learning [10,11], where SHAP and Grad-
CAM are again among the most used. This reinforces that these methods are central
to computational employability for both, in general, quantitative prediction and more
specifically in medical imaging contexts in the midst of all other domain applications.
Nonetheless, their centrality reflects prevalence in computational analyses rather than
evidence from usability or clinical validation studies. The reviewed corpus indicates that,
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despite their frequent use, systematic user evaluations confirming their interpretability
benefits remain absent.

In the energy industry, SHAP has been extensively employed to present the computa-
tional validity evaluate and analyse prediction outcomes obtained by machine learning
prediction models. In the selected pool of extracted work, six studies underlined the ef-
ficacy of SHAP in fulfilling diverse objectives in a computational environment, such as
the estimation of reservoir temperature of geothermal systems [37], analyse of secondary
control power [38], power factors of diamond-like thermoelectric materials [39], solid
yields and higher value of torrefied biomass [40], building load prediction [41], and photo-
voltaic power generation [7]. By integrating SHAP, these studies provided insights into
the underlying factors and variables that influence the prediction results in each respective
study. The interpretations facilitate informed decisions and advancements in the energy
field. However, these improvements were evaluated computationally rather than through
user-centred or operational validation, a limitation that similarly applies to most studies
across other domains, including biomedical imaging and sensing.

In the environmental field, SHAP has been employed in three articles to gain insights
into various environmental phenomena. A recent study conducted by El Bilali et al. [42],
integrated SHAP in their proposed work to interpret the machine learning models in
predicting daily pan evaporation. Another study applied SHAP to interpret transition
water quality from eutrophic to hypereutrophic states [43] and predict biological stream
conditions. Maloney et al. [44] also focused on predicting biological stream conditions.
Both studies highlighted that the SHAP had provided insights into the relative importance
of various environmental features in predictions.

In finance, two articles employed SHAP to enhance their model interpretation. An
article authored by Ghosh et al. [45] identified the significant impact of media chatter
on stock market prices during the COVID-19 pandemic. By incorporating systematic
media chatter indices, authors aimed to monitor various orthodox technical indicators and
macroeconomic variables. To better understand the model’s outcomes, they employed
SHAP to generate explanations for individual predictions. Weng et al. [46] highlighted
the importance of knowing the relationship between financial pressure and stock price
volatility in the healthcare domain. With the implementation of SHAP, they could analyse
the specific financial indicators that had influenced the instability of healthcare stocks.
These applications highlight SHAP’s recurring use as a computational tool for post hoc
model interpretation, yielding analytical insights into feature importance and prediction
drivers within the finance domain.

The chemical engineering field has discovered the value of interpretability in complex
phenomena. Two notable studies were employed SHAP to understand the complexity be-
hind prediction models. These studies used SHAP to interpret the quantitative relationship
between each physicochemical property in carbon dioxide adoption on porous carbon [47]
and the absorption wavelength of azo dyes [48]. In both studies, SHAP was used to pro-
vide feature-level attributions that the authors interpreted to gain insights into chemical
relationships; however, these studies did not perform formal human-usability testing to
confirm whether these attributions improve human understanding or decision outcomes.

In economics, SHAP has been employed in two articles. A study conducted by Park
and Yang, [49] employed SHAP in order to provide an interpretation of the prediction
model that derives economic patterns of growth and crisis. Another study conducted by
Rico-Juan and Taltavull de La Paz, [50], utilised SHAP in their approach to provide the
explainability of housing-price prediction outcomes. These two articles summarised that
interpreting AI models would add information on the unobservable relationships between
variables and accelerate informed decisions.
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SHAP has also been used in other domains such as aeronautics, aviation, genomics,
and mining studies, with each field having one study dedicated to its application on
prediction problems. A study in aeronautics by Baptista et al. [51] emphasised the sig-
nificance of making correct decisions on prognostic tasks which contain several hundred
run-to-failure trajectories in jet engines. Through the utilisation of SHAP, the study was
able to track the metrics associated with prediction outcomes. In the field of aviation, a
study conducted by Midtfjord et al. [52] employed SHAP to interpret the outcomes of
predicting runaway conditions. The study aimed to improve airport operations’ decision
support systems, contributing to safer and more economical operations, which aligns with
overall performance efficiency [53]. The genomics study conducted by He et al. [54] aimed
to accelerate the evaluation of the martensitic transformation peak temperature of high
entropy memory alloys using ML models. The interpretation of the ML models performed
by SHAP demonstrates the crucial role of Allred Rochow electronegative in predicting peak
temperature. In the mining field, one notable study [55] has used SHAP to interpret the
predictions of ash content, highlighting the nine most important elements that significantly
influence the outcomes.

In addition, one notable study conducted by Dandolo et al. [56] used XAI techniques
in the context of human-in-the-loop, such as decision support systems to interpret the
feature importance of data. As the specific industry of this study was somewhat unclear,
this work has been categorised under miscellaneous. This study has utilised SHAP as a
benchmark to provide a comparative evaluation alongside their work. The integration of
XAI methods into decision support systems is crucial for facilitating corrective actions in
the decision-making process.

3.2. Local Interpretable Model-Agnostic Explanations (LIME)

Local Interpretable Model-agnostic Explanations (LIME) was first introduced by
Ribeiro et al. [57]. LIME has gained popularity as one of the most effective interpretable
techniques for black-box methods. This approach provides a straightforward yet effec-
tive approach to generate interpretations for individual prediction scores produced by
any classifier. It creates simulated data points around a given input instance for which
the classifier produced a prediction. These simulated instances are then used to make
new predictions using the same classifier, with their proximity to the original instance
considered. This local model can be interpreted to gain insights into the initial black-box
model’s decision-making process. However, despite its effectiveness and simplicity, it has
its drawbacks. LIME’s explanations are local approximations and depend strongly on the
neighbourhood sampling strategy and kernel width; these parameters can produce unstable
explanations across runs and may fail to capture global model behaviour. Empirical and
theoretical critiques highlight cases where LIME can omit significant features or produce
misleading local models when features are highly correlated or non-linear globally [23]. A
theoretical analysis of LIME was conducted by Garreau and Luxburg, [58], which verified
the importance and value of LIME in producing meaningful interpretations. However,
the analysis also revealed that improper selection of parameters could lead to it missing
significant features. The LIME can be formulated as below,

y(x) = argminL( f , g, πx) + Ω(g) (2)

where L is used to measure the interpretable model,
argmin is the ‘argument of the minimum’, which is used to search the model g
g is the prediction of the original complex model f ,
f is the original complex model.
πx represents the proximity of the sampled instances to the instance x,



Sensors 2025, 25, 6649 13 of 31

Ω(g) is the complexity of model g.
LIME constructs an interpretable local model g by sampling perturbed instances z

in the neighbourhood of x and weighting them via a kernel π_x(z). The choice of the
perturbation distribution and πx critically influences interpretability results; see Ribeiro
et al. (2016) [57] and Garreau and von Luxburg [58] for formal analysis.

This systematic review has revealed that LIME had been utilised in 10 out of the
44 studies. LIME has gained significant attention as an XAI technique for prediction appli-
cations in various domains, including healthcare, civil engineering, energy, environmental,
finance, mechanical engineering, and sports, as depicted in Figure 6a. In healthcare, three
studies explored the application of LIME for predictive analytics. These three articles have
also been discussed under SHAP. In energy, LIME has been used in two studies [7,41].
Similarly, LIME has been implemented in civil engineering, finance, mechanical engi-
neering, and sports, with one article each [1,26,28,42]. In 4 out of 10 studies, LIME was
employed instead of SHAP to interpret the prediction outcomes. These four articles have
been used for the interpretation of the following prediction applications; stock market
prediction [59], heat demand forecasting for control strategies [60], gameplay prediction of
the national basketball association (NBA) [61] and evaluating data-driven building energy
performance [62].

Figure 6. (a) LIME utilisation by industry. (b) AI methods used in LIME studies.

With the integration of LIME, various prediction models have been employed for the
aforementioned machine learning prediction applications (see Figure 6). Among these
methods, RF in conjunction with LIME was utilised in 5 scenarios, showcasing its versatility
and robustness in handling complex datasets. XGBoost is another prediction model, which
has been employed in three instances integrated with LIME, highlighting its effectiveness in
prediction problems. LGBM, known for its efficacy and high performance, was employed
in one study in conjunction with LIME. LSTM has been used in two instances, showcasing
its suitability for temporal prediction problems. Lastly, ET has been employed in one
scenario, emphasising its prediction performance integrated with LIME. The interpretation
of these models’ prediction performance with LIME provides valuable insights into the
decision-making process [59].

3.3. Partial Dependence Plots (PDPs)

Friedman [63] introduced PDPs, a visualisation tool that facilitates the interpretation
of any opaque prediction model by demonstrating the influence of specific features or
subsets of features on the model’s predictions. PDPs display how a particular set of
features impacts the average predicted value by eliminating the effects of the remaining
features (its complement feature set). PDPs are usually simplistic and do not account for all
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possible feature interactions, resulting in an inaccurate approximation of the true functional
relationships between dependent and independent variables. Nonetheless, they can still
offer valuable insights, especially in cases where most interactions are of low order, aiding
in the interaction of black-box models. PDPs can provide visualisations for single and
multi-class problems and exhibit feature interactions. The mathematical formulation of
PDPs can be expressed as follows [64].

f̂xs(xs) =
1
n∑n

i=1 f̂xs

(
xs, xi

c

)
(3)

where xs illustrates the features inspected through PDP,
xc expresses the remaining features, and
f̂ denotes the utilised machine learning model.
This systematic review of XAI techniques in Q1 journal articles revealed that PDPs

were implemented in 6 out of 44 prediction applications. Among these six studies, four
studies have already been discussed under the SHAP technique, which has implemented
XAI techniques for prediction analysis [25,44,46,56]. The remaining studies employed PDPs
to determine the importance of features in the prediction results of ML models. Among
them, Qian et al. [64] aimed at financial distress prediction and employed PDPs to identify
the average marginal effect of features influenced on prediction outcomes. Another study
conducted by Zhao et al. [65] implemented PDPs to evaluate the prediction outcomes of
hydrogen production through supercritical water gasification of biomass. The use of PDPs
in these studies highlighted their versatility as an XAI technique not only in helping to
understanding the marginal effect of individual features but also in contributing to the
interpretation of the outcomes.

3.4. Permutation Feature Importance (PFI)

The PFI is a model-agnostic method that provides global interpretability by inspecting
the model score after randomly shuffling a single feature [66]. The increase or decrease in
the model score describes the relationship between the prediction and the permuted feature.
PFI replaces each feature p times with other features from randomly selected instances from
the dataset. Firstly, the score of the classifier is computed. Then each feature is shuffled,
generating a perturbed version of the test dataset, D-set. The recalculated model score
corresponds to the score obtained when using the permuted dataset. Lastly, the importance
of each feature is determined by calculating the difference between the initial model score
and the average of the model scores obtained with the permuted data, which is repeated
p times. The higher the decrease in the model’s score, the more relevant the feature is.
The fundamental idea of PFI is that if a particular input variable (xi) holds great influence
over the outcome, the forecast accuracy will decrease by randomly shuffling (xi) during
which the order of other variables unchanged [66]. The PFI can be defined as below, where
MAEperm and MAEorig are the mean absolute error before and after the randomly adjusted
xi sequence [67]. As the PFI value is closer to zero, its impact on the output diminishes,
while high values of PFI imply a more significant influence on the output [67].

PFI = MAEperm − MAEorig (4)

This systematic review of the various studies of candidate XAI techniques has revealed
that PDPs were implemented in 4 out of the 44 machine learning prediction applications.
Among these four studies, two studies have already been discussed under the SHAP tech-
nique, which implemented XAI techniques for prediction analysis [25,28]. The remaining
two studies employed PFI in the field of civil engineering. Peng and Unluer, [66] used the
PFI technique to evaluate the influence weight of each input parameter on the prediction
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outcomes. The analysis thereby demonstrated a speculative basis for improving the me-
chanical properties of geopolymer concrete. Another study conducted by Almustafa and
Nehdi, [67] utilised PFI in predicting the structural response of reinforced concrete slabs
exposed to blast loading.

3.5. Accelerated Model-Agnostic Explanations (AcME)

The Accelerated Model-agnostic Explanations (AcME) method was proposed by
Dandolo et al. [56] for machine learning models’ explainability. The AcME aims to analyse
the contribution of each input feature at both global and local scales. To establish the
importance scores, AcME uses perturbations of the data on the quantiles of the observed
distribution of each attribute. These perturbations are implemented with a particular
reference point in the input space, also known as the baseline vector (denoted as xb).
The AcME can be used in conjunction with regression or classification models based on
tabular data. The proposed model was applied to the context of human-in-the-loop ML
applications where users need to take corrective actions immediately (e.g., decision support
systems for fraud detection). In order to evaluate the proposed work, this study has used
previously discussed models such as SHAP, PDPs, and KernalSHAP. The experimental
results indicated that the AcME generates global interpretations similar to those delivered
by SHAP in an element of the computation time. Furthermore, this study presented the
model as a potential root-cause analysis tool intended to assist in interpreting why the
algorithm classified a test as normal or abnormal; however, no structured user-centred or
usability validation was conducted to confirm whether these explanations improved actual
user understanding or decision-making.

3.6. Accumulated Local Effects (ALE)

Accumulated Local Effects (ALE) plots are another interpretability technique closely
related to PDPs [68]. The aim of ALE is to address the considerable shortcoming of PDPs,
which assumes independence between features. Unlike PDPs, ALE plots calculate the
conditional distribution instead of the marginal distribution. To account for associated
features, ALE plots compute the average differences in predictions, thus blocking the effect
of associated attributes. Instead of averaging predictions, ALE averages over other features,
allowing a more widespread and accurate interpretation of the model’s behaviour. From the
literature, one study has been identified that used the ALE in the field of environment [44].
This study employed ALE to interpret the models’ outcomes in predicting biological stream
conditions. This study also used other XAI techniques, including SHAP, PDPs, and ICE, to
incorporate suggestions to peek inside black box models.

3.7. Explain Like I’m 5 (ELI5)

Explain Like I’m 5 (ELI5) is a Python (version 3.9) package developed to interpret
black-box ML models in Python. ELI5 is capable of demonstrating the importance of each
feature used by the prediction model. ELI5 determines the significance of the feature by
analysing weights associated with each feature. These weights are obtained by tracing the
decision paths in the tree of an assembly. This XAI technique is designed for widely used
Python-based ML packages, such as XGBoost, Scikit-learn, and Keras. In the corpus of
44 studies, only one study presents the implementation of ELI5 to gain insight into solar
photovoltaic power generation [7]. This study also observed that ELI5 can be demonstrated
simply and contribute to the final prediction decisions across all trees and each data
point. However, ELI5 does not support model-agnostic interpretations and is limited to
tree-based models.
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3.8. Explain

EXPLAIN is an XAI technique that can be applied to any ML prediction model for in-
terpreting [69]. The key technique used in this method is sensitivity analysis, changing the
inputs of the prediction model and analysing the changes in the model’s outcome [70]. This
method has been utilised to explain ML models in business to business (B2B) sales predic-
tions. This study revealed that the EXPLAIN technique could identify the most influential
B2B sales features. The study also demonstrated interactive support for decision-makers
evaluating various scenarios by using XAI methods. However, the EXPLAIN method is
unable to capture disjunctively expressed dependencies in the prediction model. The IME
method has resolved this limitation, which will be discussed in the following section.

3.9. IME

IME method also can be applied to any prediction model for interpreting models [71].
Like EXPLAIN, the IME method also used sensitivity analysis [70]. The application of the
IME technique has been found in one article [70], which is discussed in Section 3.8. The
main drawback of this method is that it may be slow on large datasets.

3.10. Individual Conditional Expectation (ICE)

Individual Conditional Expectation (ICE) plots were initially introduced in [72]. ICE
is a model-agnostic interpretability method. This method is designed on the idea of Partial
Dependence Plots (PDPs) but enhances it. The authors of the original paper identified the
limitations of PDPs in capturing the complexity of relationships, mainly in scenarios where
significant interaction effects exist. To overcome these limitations, the author refined the
original concept and proposed a novel approach. Each plot shows the functional relation-
ship between the predicted value and the feature for individual instances. Accordingly,
a feature’s entire distribution of individual conditional expectation function is available,
enabling the identification of heterogeneities and their extent. This technique has been
employed by Maloney et al., (2022) [44] for interpreting predictive modelling of biological
stream conditions. In ICE plots, each observation is denoted by a single line. These plots
are utilised to visualise the relationships between input variables and the ML prediction
outcome [44].

3.11. Permutation Importance (PIMP)

Permutation Importance (PIMP) is an interpretable technique that aims to correct
the biased feature importance by normalising feature importance measures. The method
assumes that the random significance of a feature follows a specific probability distribution
and estimates its parameters by repeatedly permuting the output array of predictions and
measuring the importance distribution for each variable on the non-permuted output. A
recent study used PIMP to modify the biased feature importance [64] in financial distress
prediction problems. In financial distress prediction, the explainability of ML models is as
significant as their prediction accuracy. LR models are the most widely employed methods
for evaluating feature correlations. However, LR models have biases, especially on highly
noisy data, which may also lean to affect input weights, and the significance of linearly
associated features can be weakened. The study demonstrated that the PIMP method
indicated appropriate feature selection and was effective for most of the ML methods, such
as GBDT and XGBoost.

3.12. KernelSHAP

KernelSHAP utilises Linear LIME [57] with Shapley values to build a Local Expla-
nation Method. The local explanation method is a weighted linear regression, which is
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constructed by leveraging two components: a background set and a sample encompassing
a possible coalition of features inherent in the data [73]. A recent study conducted by
Dandolo et al. [56] employed KernalSHAP as a state-of-the-art model-agnostic approach to
evaluate the interpretable outcomes of the ML models. The XAI techniques are applied
to obtain feature importance scores both at the global and local levels. KernelSHAP pro-
vided more accurate predictions with fewer evaluations of the original model than other
sampling-based predictions.

3.13. SHAPASH

SHAPASH is an innovative XAI tool seeking to enhance the understandability and
interpretability of ML models for a broader audience [26]. This technique provides an
extensive array of visually appealing interpretations with properly defined labels. The
application of SHAPASH has been explored in a recent study for interpreting ML models
based on time-series data for the early detection of Parkinson’s disease [26]. Their experi-
mental work demonstrated that SHAPASH generated similar results compared to the other
XAI techniques, such as SHAP and LIME.

4. Discussion
4.1. Review Summary

A total number of 44 Q1 journal articles on prediction applications in various domains
where quantitative data was utilised were reviewed. Table A1 (in Appendix A) summarises
the reviewed articles by extracting their attributes, including XAI techniques, AI methods,
application domain, prediction problem, and data. Considering the XAI techniques utilised
for predictions, 13 methods were identified. Among them, SHAP was the most popular
technique as it is better known for its ability to offer accurate feature importance ranking
and interpretations for individual features [20]. This aligns with recent imaging-centric
studies, e.g., [10,11] in which SHAP remains among the dominant techniques used for
biomedical imaging prediction tasks. The second most popular XAI technique was LIME.
LIME is capable of generating explanations by approximating complex models [57]. The
other two prevalent techniques after SHAP and LIME are PDPs and PFI. The PDPs method
is better known for visualising the relationship between a target attribute and one or more
input attributes while holding other attributes constant [64]. The PFI is known for its ability
to assess the importance of features by shuffling their values. It also measures the resulting
impact on model performance [66].

The XAI techniques have diverse applications in various prediction problems across
numerous sectors. Based on the reviewed articles, 13 domains were identified using
XAI techniques including biomedical sensing such as civil engineering, healthcare in
general, energy, finance, and economics. These industries have utilised XAI techniques
for various prediction tasks, such as early detection of diseases [25,26], predicting stock
market prices [59], identify important factors affecting building structures [35], and predict
economic growth rates [49]. The following section will discuss the challenges that need to
be solved in the application of XAI techniques for predictions. Although this review spans
multiple applied fields, its cross-domain comparison is essential for biomedical imaging
and sensing. Understanding how explainability methods perform in other quantitative
domains informs their adaptation to medical datasets, where interpretability and regulatory
assurance are paramount.

There are some limitations to be acknowledged regarding this review. This study
started with an extensive task of scanning over seven hundred peer-reviewed articles
from two databases. As detailed in Section 2.2, a comprehensive analysis was performed
on 44 included papers to summarise the recent applications of XAI in prediction tasks
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where quantitative databases were used. While conducting the snowballing search, it was
identified that particular articles were published before 2017, outlined in the inclusion
criteria. Another important consideration is that our synthesis was bounded to 2017–2023.
This cut-off was intentional, as it allowed us to systematically capture the trajectory of XAI
during its initial hype cycle—from the introduction of the most influential model-agnostic
methods through their widespread application across domains. Although subsequent
studies (2024–2025) are emerging, they often build upon, benchmark against, or refine the
techniques identified in our window (e.g., SHAP, LIME, PDPs), confirming the continued
relevance of our review.

Another limitation that can be considered for this review is that the formal literature
search was intentionally restricted to ScienceDirect and IEEE Xplore, focusing on Q1 journal
articles published between 2017 and 2023. This decision was made to facilitate a meaningful
cross-domain comparison of how XAI techniques have been implemented across diverse
fields, including biomedical imaging and sensing, engineering, energy, and finance, since
both databases comprehensively index journals that span these domains. During the
initial scoping stage, searches were also conducted in PubMed, but the team including the
independent librarian observed that the vast majority of relevant biomedical AI studies
indexed there linked to full-text versions hosted on ScienceDirect or IEEE Xplore. Therefore,
to avoid redundancy and maintain a uniform source base, ScienceDirect and IEEE Xplore
were selected as the primary databases. Nonetheless, we explicitly acknowledge this as a
limitation because PubMed and other specialist biomedical databases (e.g., Web of Science
Clinical Collections, PMC) may include additional domain-specific studies not captured
in our dataset. Future research should incorporate these sources to provide even broader
biomedical coverage.

Furthermore, the included corpus is dominated by studies employing tabular or tree-
based models (e.g., Random Forest, XGBoost) paired with model-agnostic explainers such
as SHAP and LIME. Deep learning architectures that are prevalent in raw medical image
analysis are comparatively under-represented among Q1 journal publications during this
timeframe. Consequently, the generalisability of our findings from tabular prediction con-
texts to end-to-end deep imaging pipelines should be regarded as provisional, warranting
targeted investigation in future biomedical XAI research. We also note that none of the
44 Q1 studies included a formal human–subject usability evaluation of XAI explanations
(see Table 2 and Section 4.3).

Future work can extend this survey to examine how the field evolves beyond the early
hype cycle, especially in clinical imaging and sensor-based diagnostics. Recognising the
impact of these articles on the implementation of XAI techniques, they could be included in
the study despite not fully meeting the inclusion criteria. Furthermore, during the screening
process, there were occurrences where some articles were unintentionally overlooked due
to the specific keywords (explainable AI, interpretable AI, explainable artificial intelligence,
explainable machine learning, interpretable machine learning) in the databases. It was
observed that the index terms of certain articles did not contain the aforementioned search
keywords despite the fact that the interchangeable usage of several closely related terms
within the articles’ bodies (e.g., explainability, interpretability, and whitening black box)
and XAI model names (e.g., SHAP and LIME) in metadata hinders the proper acquisition
of knowledge on XAI techniques. As a result, a few studies could have been missed during
the review process. The absence of knowledge obtained from these omitted articles can be
considered as limitation of this systematic review.
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Table 2. Formal human–subject usability evaluation of XAI explanations.

Studies Domain/Application XAI Method
Used

Primary Evaluation
Reported Formal Usability

[1]
Healthcare
COVID-19
diagnosis

LIME, SHAP

Model predictive
performance (classification
metrics) + computational

explanations (feature
importance/visuals)

No (presents
computational
evaluation of
predictability)

[25] Healthcare—prognostic
variables SHAP, PDPs, PFI Feature importance analyses;

model performance metrics

No (presents feature
extraction for clinical

validity)

[26] Miscellaneous/human-
in-the-loop example

SHAP, LIME,
SHAPASH

Computational explanation
comparisons; predictive

accuracy

No (presents data
experimentation)

[28] Healthcare—prognostic
variables SHAP, LIME, PFI

Insights into prognostic
variables; model

performance; and clinical
data analysis

No (presents clinical
validation of prediction)

[29] Seminal/Method paper
(LIME) LIME Method demonstration and

computational examples

No (presents method
proposal/

computational
evaluation)

[56] Miscellaneous/human-
in-the-loop example

SHAP, AcME,
KernelSHAP,

PDPs

Computational
runtime/efficiency and

fidelity comparisons;
demonstration as

root-cause tool

No (demonstrates
potential for

human-in-loop; no
usability trials)

[74] Healthcare—disease
detection SHAP,

Prediction performance on
ECG/retrospective clinical
dataset; feature importance

No (presents EEG Data
Evaluations with

Experimental results

4.2. Challenges in Existing XAI Application and Future Direction

XAI techniques play an important role in prediction applications by providing explana-
tions and interpretations of the predictions made by AI models [7,8]. XAI techniques enable
users to make informed decisions, build trust in the prediction models, and detect biases.
Reflecting a critical gap, there are a few domains currently exist frequently in applying XAI
techniques for predictions apart from biomedical imaging and sensing, such as engineering,
energy, and finance. These applications involved various prediction problems, comprising
disease diagnosis, structural responses, load prediction, and stock market predictions. Gen-
erally, insights into model predictions are provided by XAI methods, which also analyse
the impact of changing features and highlight the significant input attributes that influence
prediction outcomes. These techniques aid in obtaining interpretability, comprehending
the reasoning behind predictions, and making informed decisions. These existing appli-
cations demonstrate the potential of XAI in improving interpretability and trust in AI
models, which can be highly beneficial in the domain on medical imaging and sensing. In
biomedical imaging and sensing, XAI offers additional advantages that go beyond gen-
eral interpretability. For example, in magnetic-resonance and ultrasound imaging (MRI),
quantitative descriptors such as texture, intensity, or signal-to-noise ratios (SNRs) can be
mapped to physiological or pathological conditions. Explanations derived from XAI allow
clinicians to link algorithmic predictions to known biomarkers or sensor-derived measure-
ments, thereby strengthening diagnostic confidence [49,68]. However, this translation from
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numerical importance values to clinically meaningful reasoning introduces domain-specific
difficulties related to data heterogeneity, annotation quality, and interpretive validity [23].
The application of XAI techniques for predictions poses various challenges and gaps that
require to be addressed to improve the effectiveness and trustworthiness of the methods.

One of these challenges is the identification of variable interactions [51,70]. In pre-
diction problems, it is essential to understand how different input variables interact with
each other and contribute to the overall forecast result. Modifying existing XAI techniques
to identify relevant variable interactions or visualise the combined effect of variables is
important to enhance the models’ effectiveness for decision-making. Therefore, there is a
need for further investigation and the development of existing methods or new methods
that can effectively capture and visualise this combined effect which can help to build
trust, especially for biomedical experts in healthcare domain. For example, in multimodal
sensing environments, such as combining electroencephalography (EEG) with functional
near-infrared spectroscopy (fNIRS)—interactions between modalities may reveal latent
physiological dependencies that one-variable-at-a-time explanations cannot capture [75].
Extending XAI techniques to visualise these cross-sensor interactions would be particularly
valuable for personalised diagnostics and adaptive monitoring systems.

Another challenge is the transparency and understanding of complex neural networks,
such as deep learning neural networks [50]. Deep learning models are powerful tools for
solving complex prediction problems. However, the experiment lies in the inadequate
availability of explanations for such methods in predictions. Developing robust and
interpretable techniques for explaining deep learning models is necessary to enhance
transparency. The challenge is compounded by the very high dimensionality of image or
volumetric data, where a single model decision may depend on thousands of correlated
pixel-level features. This opacity becomes particularly problematic in biomedical imaging
tasks such as radiology or histopathology, where clinicians require visual or feature-level
justification of predictions. Recent surveys (e.g., [10]) emphasise that without interpretable
outputs, clinical adoption is significantly hampered.

Particular areas require further research and advancements in applying XAI for pre-
dictions. One such area is the application of XAI techniques on time series databases in
the business context. Currently, limited studies have incorporated XAI on time series data,
comprising predicting stock market price [59] and understand control capacity of building
energy [38]. The main purpose of these studies of incorporating with XAI is to understand
trends, seasonality, and other temporal patterns in the data. Nevertheless, there is a lack of
knowledge in the application of XAI techniques on time series databases, which encompass
different dimensions. When making business decisions, the predictions can be made based
on three dimensions, comprising time, product, and supply chain. The time dimension
signifies the granularities of data. For example, hourly and daily [76]. The product category
in the context of time series data, which comprises brand, category, and SKU (stock keeping
unit) levels [76]. The supply chain or hierarchy in the time series context refers to the
structural arrangement of the data. In such scenarios, XAI techniques may be required
to account for these factors and provide explainable insights at different levels, enabling
better decision-making across businesses. Similarly, for biomedical sensing applications,
this generalisability issue is amplified by patient heterogeneity and device variability. Fur-
thermore, calibration drift and signal artefacts introduced by different acquisition hardware
can lead to inconsistent feature rankings across patient cohorts. Consequently, explainabil-
ity methods need calibration-aware adaptations that distinguish between physiological
variability and device-induced discrepancies. For example, wearable sensor outputs differ
across manufacturers and patient populations, which complicates the direct transfer of
explanation models. Further research is required to develop or apply XAI techniques that
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can interpret these factors or combinations of features that have the most significant impact
on prediction outcomes.

Furthermore, the evaluation and validation of XAI techniques require further research
attention. Despite the existence of various XAI techniques, their comparative evaluation
and validation are lacking. Establishing benchmark datasets and error metrics specific to
the prediction problems would help to evaluate the performance and reliability of XAI
methods [77]. The benchmark datasets should encompass a wide range of real-world
scenarios, ensuring that XAI methods can be thoroughly tested and validated against each
other. For example, the domains such as soil liquefaction potential assessment or biomass
torrefaction have unique attributes and data constraints [40]. Addressing this domain-
specific challenge is essential to improve the performance, adaptability, and evaluation
of XAI methods [78]. In medical imaging, this challenge is even more acute because the
usefulness of explanations is judged not only by quantitative fidelity but also by clinical
interpretability. Evaluating explanations therefore requires multi-level validation that
integrates quantitative metrics (e.g., fidelity, stability) with qualitative human-centred
assessments such as clinician surveys or reader-study agreement scores [74]. A recent
review in mammography highlights that standard metrics often fail to capture whether
explanations truly aid radiologists’ decision-making [79]. Incorporating such hybrid evalu-
ation protocols will enable researchers to quantify not only how accurately an explanation
reflects model logic, but also how well it aligns with human diagnostic reasoning [80].

Finally, future research should focus on incorporating domain experts’ insights into
XAI techniques, which would improve the usefulness and effectiveness of the interpreta-
tions provided. Integrating XAI with causal reasoning would accelerate the understanding
of cause–effect relationships and help to discover actionable insights into prediction models’
outcomes. By implementing these approaches, stakeholders can gain a better understand-
ing of AI systems, enabling them to make informed decisions based on transparency and
trustworthy insights. The findings also encourage stakeholders from other disciplines,
such as retail businesses, where XAI is not widely utilised, to understand and appreciate
the merits of XAI techniques to enhance the decision-making process [81]. Stakeholders
from other disciplines, particularly in biomedical imaging and sensing, should embrace
the merits of XAI in their domains without preconceived notions regarding its lack of
interpretability. Given the life-critical consequences in medical imaging and sensor-based
diagnostic systems, the transparency afforded by XAI is not optional but essential for trust,
regulatory approval, and patient safety.

Collectively, these challenges demonstrate that while XAI principles are general, their
successful implementation in biomedical contexts depends on domain-specific data cura-
tion, clinically meaningful validation, and integration with existing diagnostic workflows.
Looking forward, biomedical imaging and sensing represent frontier domains where XAI
integration is both most urgent and most challenging [22]. Clinical workflows demand ex-
planations that are fast, intuitive, and robust under real-world conditions, yet current post
hoc methods (e.g., SHAP, LIME) can be computationally expensive and difficult for non-
experts to interpret. Future work should focus on developing domain-tailored explanation
frameworks co-designed with clinicians and biomedical engineers, alongside standardised
protocols for evaluating clinical utility of explanations. Such advances will be essential for
regulatory approval and widespread adoption of AI-powered sensing technologies.

This cross-domain synthesis also highlights clear translational gaps for biomedical
imaging and sensing: most techniques validated in engineering or finance are yet to be
adapted to clinical data with real-user validation. In addition, it is important to recognise
theoretical and practical critiques of widely used explainers (notably SHAP) that have
direct implications for biomedical deployment. The growing literature (e.g., [22–24,75]
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questions whether Shapley-value based explanations always provide faithful or causally
meaningful interpretations in real data settings. Specific concerns include sensitivity to
feature correlation, dependence on the chosen background distribution for marginalisa-
tion [82], and limits to causal interpretation when applied to heterogeneous biomedical
attributes (e.g., temperature, blood pressure, biomarkers) that are not homogeneous payoff
units as in classical game theory [22]. As SHAP and similar additive attributions assume
decomposability of contributions, their outputs can be misleading if those assumptions
do not hold; therefore, biomedical researchers must apply such methods cautiously, con-
sider conditional or causal formulations where appropriate, and combine computational
attributions with domain validation (e.g., clinician review, controlled user studies) before
inferring clinical meaning [23]. The methodological comparison, presented in this study is
therefore directly informative for biomedical researchers seeking to select or modify XAI
methods suitable for regulated, safety-critical environments.

4.3. Usability, and Clinical Utility of XAI

This study highlights a key gap in the literature about the limited evidence of XAI
methods actually increasing the end-user confidence or improve decision outcomes in
practice. The studies included in this review mostly generate post hoc explanations (i.e.,
feature importance, PDPs, SHAP values, LIME) and do not evaluate whether those ex-
planations are usable, actionable, or trusted by domain experts. A minority of studies
explicitly report human-in-the-loop evaluations (for example Dandolo et al. [56] discussed
human-in-the-loop decision support), while broader empirical work (e.g., Lahav et al. [81])
and recent critical studies [22–24,75] demonstrate that some XAI methods may fail usability
tests or be misleading in practice.

Among studies included in this review, none reported a formal human–subject us-
ability study assessing whether XAI explanations improve clinician/user trust or decision-
making. The studies presented in Table 2 are representative examples showing that eval-
uation was limited to computational analyses, retrospective clinical validation of model
predictions, or expert commentary.

The literature indicates three important distinctions that should be considered when
assessing clinical utility: (i) Generation vs. validation, (ii) Fidelity vs. usefulness, (iii) Work-
flow fit. For example, a SHAP bar plot is not equivalent to validating that clinicians find
it meaningful or that it improves decisions [22]. Similarly, methods with high computa-
tional fidelity may produce outputs that are not clinically interpretable [75]; conversely,
simpler explanations may be more useful to clinicians [24]. Typically, clinical adoption
depends on how explanation outputs integrate with existing workflows (timeliness, format,
and regulatory documentation) [82]. The representative examples in Table 2 illustrate
a recurring pattern across the studies included in this review, reporting computational
assessments of XAI outputs (feature importance rankings, fidelity/stability comparisons,
runtime/approximation efficiency) and in some cases clinical validation of model pre-
dictions (retrospective or prospective performance), but none of the included studies
conducted a structured human–subject usability experiment that measures whether XAI
explanations improve clinician or end-user decision performance, trust, or acceptability.
Therefore, while many studies generate explanations, empirical evidence that these ex-
planations deliver measurable user benefit in biomedical imaging or sensing workflows
remains absent in the selected corpus.

We therefore recommend that future work explicitly tag included studies on whether
they performed user evaluations, simulated clinical tasks, or workflow integration experi-
ments, and we encourage researchers to adopt standardised human-evaluation protocols
(usability testing, task performance, clinician survey instruments). Until such evidence
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accumulates, claims that a method is “effective” should be qualified as “effective for
generating post hoc explanations” rather than “effective at improving clinical decisions.”

4.4. Relevance of XAI to Biomedical Imaging and Sensing

Although this review covered a broad spectrum of quantitative prediction applications,
one of the most critical gaps has been the application of eXplainable XAI is biomedical
imaging and sensing. The adoption of AI in clinical environments depends not only on
accuracy but also on transparency, since clinicians, patients, and regulators must under-
stand how model predictions are derived [23]. Medical imaging modalities (e.g., CT, MRI,
mammography) and sensor-based monitoring systems (e.g., wearable devices, biosensors)
produce large-scale quantitative datasets where black-box models pose significant risks if
left uninterpreted.

Recent surveys underscore this growing emphasis. For example, works published in
2025 about the use of XAI for medical imaging systems via deep learning [10,11,81], which
provides a state-of-the-art synthesis of XAI in imaging, highlighting both post hoc expla-
nation methods such as SHAP and Grad-CAM, and self-explainable approaches tailored
for clinical workflows. Similarly, self-eXplainable AI for medical image analysis [11,22]
published in 2024, which stresses the importance of designing models with built-in in-
terpretability to improve clinician trust and usability. In specific modalities, a review of
explainable AI techniques and their evaluation in mammography [79], published in 2025,
shows how explanation quality can directly influence radiologist decision support, while
the use of XAI in medicine [22] also published in 2025, discusses barriers to regulatory and
clinical adoption.

Collectively, these recent works confirm the timeliness of situating our review within
the biomedical context. Although our inclusion window (2017–2023) was deliberately de-
fined to capture the first hype cycle of XAI methods, the techniques identified—particularly
SHAP, LIME, and PDPs—remain the same tools that biomedical researchers continue to
adopt and evaluate in 2024–2025. This indicates that our systematic synthesis provides a
relevant foundation for advancing trustworthy AI in biomedical imaging and sensing.

Future updates to this review may expand to formally include the rapidly growing
body of biomedical-focused studies, but even within our dataset, healthcare applications
illustrate how interpretable prediction methods can bridge the gap between technical
performance and clinical trust. As biomedical sensing technologies proliferate, the lessons
drawn from this cross-domain review remain critical for ensuring that AI-driven diagnostic
and monitoring systems are safe, reliable, and explainable.

5. Conclusions
This study systematically reviews XAI techniques’ contribution to prediction applica-

tions where quantitative data was utilised. As a result, 44 Q1 journal articles were suitable
for inclusion in this review. Considering the growing interest in XAI, it is significant to have
a comprehensive overview of the application of XAI for predictions through this review.
This review facilitates the application of XAI techniques by illustrating a collection of the
most appropriate works and providing clear descriptions of the XAI techniques and their
applications in various domains.

The studies included in our systematic review were categorised based on the respec-
tive XAI techniques and application domains. Among the identified models, SHAP was the
most frequently applied technique for computationally interpreting AI models in prediction
tasks. SHAP is often used in conjunction with XGBoost and RF, reflecting its compatibility
with models that offer quantitatively strong predictive performance and post hoc explain-
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ability. Another popular XAI technique for prediction applications is LIME, which offers
visual explanations by emphasising essential features that influence prediction outcomes.

In addition, this study highlighted the limited number of XAI studies focusing on
interpreting prediction outcomes in time series forecasting where the AI models are exten-
sively applied. These areas would demand attention for future research on evaluating XAI
techniques for interpreting AI models. By focusing on 2017–2023, our review captures the
first major hype cycle of XAI development, highlighting the techniques that established
themselves as benchmarks in interpretable prediction. These insights provide a stable
foundation upon which newer biomedical imaging and sensing applications (emerging
post-2023) continue to build. Overall, this review provides not only a cross-domain synthe-
sis of quantitative XAI implementations but also a translational lens for biomedical imaging
and sensing. By identifying the methodological and usability gaps that must be bridged
for clinical deployment, this study provides guidance for adapting existing explainability
frameworks to safety-critical biomedical contexts. Future research should aim to update
the synthesis to include more recent publications, especially those in biomedical imaging
and sensing, and to establish standardised reporting guidelines for prediction tasks (e.g.,
how feature importance is evaluated, data used, metrics). Additionally, the field would
benefit from longitudinal studies tracking how well explainability methods are adopted in
clinical imaging or sensor-based diagnostic devices.
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Appendix A

Table A1. Forty-four Q1 journal articles incorporating XAI techniques.

Authors Year XAI Method Classifier Industry Application Data

[1] 2023 LIME, SHAP XGBoost Healthcare Diagnosis of COVID-19 COVID-19 positive
and negative patients

[59] 2023 LIME RF Finance Prediction of stock
market prices. Stock market price

[42] 2023 LIME, SHAP ET, XGBoost Environmental Prediction of daily pan
evaporation.

Air temperature (Ta),
solar radiation (Rs),

and relative
humidity (H)

https://www.mdpi.com/article/10.3390/s25216649/s1
https://www.mdpi.com/article/10.3390/s25216649/s1
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Table A1. Cont.

Authors Year XAI Method Classifier Industry Application Data

[56] 2023
SHAP, AcME,
KernalSHAP,

PDPs
XGBoost Miscellaneous

Predict abnormal
behaviours, assessing the

impact of changes in
feature values on model

predictions, and
identifying feature

importance and ranking.

Chemical feature
Glass Data

[45] 2023 PDPs, SHAP GBR Finance Predict daily stock prices. Stock market prices

[55] 2023 SHAP
Poly, RFR,
XGBoost,

DNN
Mining

Predict the ash content of
coal samples based on the
composition data of XRF

analysis.

XRF data

[43] 2023 SHAP XGBoost Environmental

Predict the responsibility
of environmental factors in

changing water.
quality from eutrophic to

hypereutrophic states.

Water quality

[47] 2023 SHAP RF Chemical
Engineering

Predict the CO2 adsorption
capacity.

CO2 adsorption
capacity of PC based

on TP

[37] 2023 SHAP NGB Energy

Assess the relationship
between

hydrogeochemical
variables and reservoir

temperature.

predict reservoir
temperature u

[30] 2023 SHAP XGBoost Civil
Engineering

Identify important input
parameters affecting the

liquefaction potential.

Historical
post-liquefaction

[25] 2023 SHAP, PDPs,
PFI XGBoost Healthcare Early diagnosis of chronic

kidney disease (CKD).

Haemoglobin,
specific gravity, and

hypertension

[31] 2023 SHAP ANN Civil
Engineering

Probabilistic buckling
stress prediction models of
steel shear panel dampers.

Steel shear panel
damper

[32] 2023 SHAP RF Civil
Engineering

Predict seismic drifts in
CLT buildings. Drift demands

[53] 2023 SHAP SVR Genomics

Predicting the martensitic
transformation peak

temperature and
investigating the effects of

important features and
alloying elements on TP

for TiZrHfNiCoCu
HESMAs.

Temperature

[26] 2023 SHAP, LIME,
SHAPASH LGBM Healthcare Prediction of Parkinson’s

Disease (PD) progression. Clinical data

[49] 2022 SHAP LSTM Economic

Predict economic growth
rates and crises by

capturing sequential
dependencies within the

economic cycle.

GDP growth rates

[41] 2022 SHAP, LIME LSTM Energy Building load prediction. Energy consumption
data
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Table A1. Cont.

Authors Year XAI Method Classifier Industry Application Data

[60] 2022 LIME LSTM Mechanical
Engineering

Predict temperature in the
District Heating Systems’

(DHS) supply line.
DHS operation

[51] 2022 SHAP LR Aeronautics
Predicting the failure of

components and systems
in jet engines.

Run-to-failure
trajectories for jet

engines

[52] 2022 SHAP XGBoost Aviation Predict demand of air
transportation.

Weather, runway
reports, flight data

[38] 2022 SHAP GBTs Energy Analyse secondary control
activation.

FRR exhibit fixed
time scales and

deadlines

[61] 2022 LIME RF Sports

Analyse the match style
and gameplay of the
national basketball
association (NBA).

NBA gameplay data
at a seasonal level

[77] 2022 SHAP XGBoost Healthcare

Predict the malnutrition
status of children with
CHD using explainable
ML methods to provide
insight into the model’s

predictions and outcomes.

Cohort data

[33] 2022 SHAP XGBoost Civil
Engineering

Predicting the shear
capacity of FRP-RC beams.

n (SHAP) is used to
identify the most

important factors that
influence the shear

capacity
prediction of FRP-RC

beams.

Shear critical FRP-RC
beams

[39] 2022 SHAP Energy

Power factor prediction
model with high accuracy

and introduced
interpretability tools to
gain material-oriented

insight.

Power factors

[44] 2022 PDPs, ALE,
ICE, SHAP RF Environmental

Predict biological stream
conditions in the
Chesapeake Bay
Watershed, USA.

Catchments

[27] 2022 SHAP MLP Healthcare

Prediction of
post-operative mortality
after any surgery in an
emergency setting on

elderly patients.

Demographic and
clinical data, medical
and surgical history,

preoperative risk
factors, frailty,

biochemical blood
examination, vital
parameters, and
operative details

[46] 2022 SHAP XGBoost Finance Predict financial pressure.

financial pressure
and the volatility of
the healthcare stock

market
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Table A1. Cont.

Authors Year XAI Method Classifier Industry Application Data

[34] 2022 SHAP XGBoost Civil
Engineering

Identify failure mode of
RC flat slabs without

transverse reinforcement.
610 groups of data

[35] 2022 SHAP XGBoost Civil
Engineering

Predict external wind
pressure of a low-rise
building in urban-like

settings.

Eexternal wind
pressure

[48] 2022 SHAP XGBoost Chemical
Engineering

Predict external wind
pressure of a low-rise
building in urban-like

settings.

Azo molecules

[40] 2022 SHAP GTB Energy
Predict yields and higher
heating value of torrefied

biomass.
Torrefaction data

[29] 2022 SHAP XGBoost Healthcare
Understand the main logic

governing the model
prediction.

Blood count

[36] 2022 SHAP XGBoost Civil
Engineering

Prediction of one-part
alkali-activated material
enabled by interpretable

machine learning.

Alkali activated
material (AAM)

[66] 2021 PFI SVM Civil
Engineering

Analysing the mechanical
performance of fly

ash-based geopolymer
concrete with different

machine learning
techniques.

Fly ash (FA)-based
geopolymer concrete,

hydroxide (NaOH)
and sodium silicate

(Na2SiO3)

[28] 2022 SHAP, LIME,
PFI XGBoost Healthcare

Understand previously
undetected relationships

between prognostic
variables to make

informed clinical decisions
and effective interventions.

Clinical data

[64] 2021 PIMP, PDPs XGBoost Finance Predict financial distress Accounting records
and financial ratios

[78] 2021 SHAP RF Economic Evaluate the precision of
housing-price forecasts. Housing Prices

[65] 2021 PDPs RF Environmental Predict hydrogen
production.

Hydrogen
production

[74] 2020 SHAP XGBoost Healthcare

The early and accurate
detection of the onset of

acute myocardial
infarction (AMI).

Electrocardiogram
Vigilance with
Electronic data

[7] 2020 LIME, SHAP,
ELI5 RF Energy

Gaining insight into solar
photovoltaic power

generation forecasting.
Weather

[67] 2020 PFI RF Civil
Engineering

Predict structural response
of RC slabs exposed to

blast loading.

Reinforced concrete
slabs exposed to blast

loading using ten
(input)
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Table A1. Cont.

Authors Year XAI Method Classifier Industry Application Data

[62] 2019 LIME Civil
Engineering

Explain and evaluate
data-driven building
energy performance.

Building and BAS
data

[70] 2017 EXPLAIN, IME RF Finance Business-to-business (B2B)
sales forecasting. B2B sales data
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