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Abstract 
This study investigates the performance of bagging in 
terms of learning from imbalanced medical data. It is 
important for data miners to achieve highly accurate 
prediction models, and this is especially true for 
imbalanced medical applications. In these situations, 
practitioners are more interested in the minority class than 
the majority class; however, it is hard for a traditional 
supervised learning algorithm to achieve a highly accurate 
prediction on the minority class, even though it might 
achieve better results according to the most commonly 
used evaluation metric, Accuracy. Bagging is a simple yet 
effective ensemble method which has been applied to 
many real-world applications. However, some questions 
have not been well answered, e.g., whether bagging 
outperforms single learners on medical data-sets; which 
learners are the best predictors for each medical data-set; 
and what is the best predictive performance achievable for 
each medical data-set when we apply sampling techniques. 
We perform an extensive empirical study on the 
performance of 12 learning algorithms on 8 medical 
data-sets based on four performance measures: True 
Positive Rate (TPR), True Negative Rate (TNR), 
Geometric Mean (G-mean) of the accuracy rate of the 
majority class and the minority class, and Accuracy as 
evaluation metrics. In addition, the statistical analyses 
performed instil confidence in the validity of the 
conclusions of this research..

Keywords: imbalanced class distribution, medical data, 
bagging predictors and binary classification. 

  

1 Introduction 
Finding effective learning methods and improving 
prediction accuracy are essential goals for most machine 
learning approaches (Quinlan 1996), and this is especially 
true for real-world medical applications. Bagging 
(Breiman 1996) is a simple and effective ensemble 
learning method. Due to its promising capabilities in 
improving accuracy of classification prediction over 
unstable single learners (Breiman 1996), it has been 
widely used in many applications. The effectiveness of 
bagging has been investigated empirically and it has been 
demonstrated that bagging is very effective for decision 
trees (Quinlan 1996, Breiman 1996, Bauer and Kohavi 
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1999, Dietterich 2000, Opitz and Maclin 1999), and 
Neural Networks (West et al. 2005, Opitz and Maclin 1999, 
Kim and Kang 2010). Even though the existing studies 
demonstrate the effectiveness of the bagging predictor, it 
is not clear whether bagging is superior to single learners 
in the context of imbalanced medical data-sets, nor which 
predictor is the best performing learning method on each 
imbalanced medical data-set.  

Our previous works investigate the effectiveness of the 
bagging predictors in general terms (Liang et al. 2011a) 
and in imbalanced class distribution terms (Liang et al. 
2011b, Liang and Zhang 2011). However, the previous 
conclusions are based on statistical tests that aggregate the 
data-sets and do not show which learners are the best 
prediction models for individual medical data-sets, as 
various prediction models might behave differently for 
different kinds of data-sets. They also do not show the best 
achievable predictive performance for each medical 
data-set using sampling technique. 

In the literature, an empirical study of combined 
classifiers on medical data (Lopes et al. 2008) compared 
the performance of three classification methods, C4.5 
(Quinlan 1986), bagging, and boosting on 16 medical 
data-sets and 16 generic data-sets. The evaluation was 
based on the accuracy of these learning methods as a 
performance measure; their research did not address the 
challenging issues of medical data-sets: imbalanced class 
distribution and the unequal costs of mis-classification 
errors in different classes. Moreover, accuracy is an 
inappropriate performance measure for evaluating 
imbalanced data-sets (Maimon et al. 2010, Chawla et al. 
2002).   

The majority of medical applications involve learning 
from imbalanced binary classification data-sets in which 
the proportion of the class distribution is skewed, the 
number of instances of the majority class is higher than 
those of the minority class, and practitioners are more 
interested in the minority class than the majority class, 
such as breast cancer early detection, in which the minority 
class is quite small with an unequal high cost associated 
with mis-classification errors in different classes. If a 
patient with breast cancer is mis-classified as normal, the 
patient will miss the opportunity for his/her earlier stage 
cancer detection and treatment; while if a patient without 
breast cancer is mis-classified as having cancer, it will 
cause unnecessary stress and treatment. Traditional 
supervised learning algorithms perform poorly in 
predictive accuracy over the minority class, even though 
they may produce high overall accuracy (Phua et al. 2004, 
Ng and Dash 2006, Maloof 2003, Su and Hsiao 2007, 
Chawla 2010). We therefore employ four measures, True 
Positive Rate (TPR), True Negative Rate (TNR), geometric 
mean (G-mean) of the accuracy rate of the majority class 
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and minority class, and Accuracy as evaluation metrics to 
assess the effectiveness of bagging in terms of learning 
from medical data-sets.  

To solve the problem of imbalanced class distribution 
and increase the Accuracy of the prediction model, the 
most commonly used methods are sampling-oriented 
methods and algorithms-oriented methods (Liu and 
Chawla 2011).  

In this study, we utilize under-sampling techniques to 
investigate the performance of bagging predictors at 
different levels of class distribution and report the best 
achieved performance of bagging by using sampling 
techniques based on the G-mean evaluation metrics.  

The main objectives of this paper are threefold: we (1) 
determine whether bagging is superior to single learners in 
the context of imbalanced medical data-sets, (2) determine 
which learners give the best performance on each medical 
data-set with natural class distribution, and (3) report the 
best achieved performance of the bagging predictors on 
each medical data-set by using sampling techniques.  

The paper is organized as follows. Section 2 presents 
details of the designed framework. Section 3 presents 
sampling techniques and Section 4 presents the evaluation 
metrics. Section 5 presents the experimental setting and 
Section 6 presents the experimental results analysis. 
Section 7 concludes the paper. 

2 Designed Framework 
 

Figure 1: Designed framework 

 
The designed framework and the evaluation of bagging 
predictors on Medical Data-Sets are broken down into four 
tasks as follows: 

- Compare bagging predictors with single learners: 
the Wilcoxon Signed Ranks Test is used to 
compare two learners to determine whether 
bagging outperforms a single learner on medical 
data-sets.  

- Compare the performance of bagging predictors 
against one another: the Friedman test with the 
corresponding Post-hoc Nemenyi test is used to 

compare multiple learners to determine which 
bagging predictors have the best performance 
over all 8 imbalanced data-sets,  

- Compare the performance of the prediction and 
report the best performance models with the 
natural class distribution on each individual 
medical data-set based on four evaluation metrics: 
G-mean, TPR, TNR and accuracy rate.    

- Compare the performance of bagging predictors 
between the natural class distribution and the 
altered levels of class distribution to determine 
the best performance of the bagging predictor on 
each medical data-set.   

3 Sampling Techniques 
Sampling techniques are commonly used to improve the 
performance of the prediction model for imbalanced 
data-sets (Chawla et al. 2002, Chawla et al. 2003, Weiss 
and Provost 2003), e.g., under-sampling and 
over-sampling SMOTE (Chawla et al. 2002), 
Borderline-SMOTE (Han et al. 2005), and 
Safe-Level-SMOTE (Bunkhumpornpat et al. 2009).  

We utilize under-sampling techniques to vary the 
class distribution of the data to investigate the performance 
of bagging predictors over medical data-sets, i.e., to alter 
each original imbalanced data-set, D with sample size M 
into nine new data-sets, D1, D2 … D9 with new sample size 
M1, M2 … M9, respectively.  

We consider the entire minority class samples as a 
positive class (P) and the proportions of P are as follows: P 
= 10% M1 = 20% M2 = … = 90% M9, respectively. Then 
we select the majority class randomly without replacement 
as a negative class (sample size N1, N2 … N9), and the 
proportions of the negative class are as follows: N1 = 90% 
M1; N2 = 80% M2 … N9 = 10% M9, respectively to form  
the new data-sets, D1, D2 … D9. Each original imbalanced 
data-set D is thereby altered into nine different levels of 
class distributions.  

10 trials 10-fold cross-validation is performed on each 
of the new data-sets, D1, D2 … D9, so that the test-set has 
the same distributions as the training-set. We then 
compare the results of G-mean from nine different class 
distributions on each medical data-set and report the best 
results achieved on each data-set using sampling 
techniques.   

4 Evaluation Metrics 
Accuracy is a popular choice for evaluating the 
performance of a classifier; however, it might not be a 
good metric for measuring the performance of medical 
data-sets. The challenge issues of the most medical 
applications are imbalanced class distribution problem and 
unequal costs of the mis-classification errors in different 
classes. The minority class is more important than the 
majority class; normally a high prediction accuracy is 
required in a minority class and therefore a simple 
estimated accuracy has limitations in evaluating the 
performance of a classifier on a minority class (Fawcett 
2006). We therefore adopt four measures, Accuracy, True 
Positive Rate (TPR), True Negative Rate (TNR), and 
G-mean as evaluation metrics.  
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 In this paper, we consider the minority class as the 
positive class and the majority class as the negative class. 
Following this convention, TP refers to the number of 
positive instances correctly classified as the positive class; 
TN refers to the number of negative instances correctly 
classified as the negative class; FP refers to the number of 
negative instances incorrectly classified as the positive 
class; and FN refers to the number of positive instances 
incorrectly classified as the negative class (Chawla 2010, 
Guo et al. 2008).  
 Accuracy (Acc) is commonly used as a performance 
measure of a classifier for balanced learning. However, it 
has been considered an improper performance measure for 
evaluating learning from imbalanced data (He and Garcia 
2009, Provost et al. 1998, Maloof 2003, Weiss and Provost 
2003).    
 TPR and TNR evaluate the performance of a binary 
classification algorithm directly on the minority class and 
the majority class respectively. TPR refers to the 
proportion of the minority class that has been correctly 
classified as a positive class, while TNR refers to the 
proportion of the majority class that has been correctly 
classified as a negative class. The G-mean of the accuracy 
rate of the majority class and minority class was suggested 
as a performance measure to assess the effectiveness of 
learning methods for imbalanced learning (Ng and Dash 
2006, He and Garcia 2009, Provost and Fawcett 2001). 
Table 1 presents the confusion matrix for a binary 
classification problem. Table 2 presents the formulas of 
both True Positive Rate and True Negative Rate in the first 
row, the formula of G-mean in the second row, and the 
formula of Accuracy (Acc) in the last row.  

Table 1: Confusion matrix for a binary classification problem 

 Predicted Positives Predicted Negatives 

Positive Instances (P) True Positive (TP) False Negatives (FN) 

Negative Instances (N) False Positive (FP) True Negatives (TN) 

Table 2: True Positive Rate, True Negative Rate and G-mean 

rate
TPTP

TP FN
 

rate
TNTN

TN FP
 

1/2*rate rateG mean TP TN  

                 
TP TN

TP TN FP FNAcc
 

5 Brief Overview of Single Learner and 
Bagging 

In this section, we briefly introduce two basic concepts: 
what constitutes a single learner of supervised learning and 
what is bagging. 
Single learner refers to supervised learning using the 
labelled samples to form a classifier (called a single 
learner or prediction model) and having a function that can 
be used to predict new samples with pre-defined class 
labels. Figure 2 presents a prediction model of a single 
learner in supervised learning.  

 
Figure 2: Prediction model of a single learner 
 

Figure 3: Bagging prediction model 

Bagging represents a set of classifiers (C1, C2… Ck) (called 
base learners) which are generated from a set of bootstrap 
samples (D1, D2 …Dk) to form an ensemble method for 
prediction, and its function is to predict new samples by a 
set of classifiers; a final prediction is made by taking a 
majority vote .  

Figure 3 illustrates the basic framework of a bagging 
prediction model by using bootstrap sampling and voting 
techniques to improve the performance of the bagging 
prediction model. Bagging is known as “bootstraps 
aggregating”. Firstly, for each of the bootstrap samples 
(D1, D2 …Dk), a new training set Dk is randomly drawn from 
the original training set D of m instances with replacement 
conducted by repeated drawing m times. Each bootstrap 
sample therefore contains the same number of m instances 
as the original training set D; some instances may appear 
many times, while some instances may not appear. 
Secondly, the k bootstrap samples of a training set with m 
instances will generate k classifiers (C1, C2 … Ck). Finally, 
the unseen instance x of the test set will be predicted by 
applying each of the k classifiers Ci (i =1 to k) and a final 
decision C* is made by majority vote of all classifiers (C1 
… Ck). The algorithm for bagging is given in Figure 4. 

 

 
Figure 4: Algorithm of Bagging (Breiman 1996) 
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6 Experimental Setting 
This section includes three subsections as follows: A. 
software and parameter settings, B. selection of base 
learners, and C. data-set selection.  

6.1 Software and Parameter Settings 
We performed 10-trial 10-fold cross-validations to 
evaluate bagging and single learners on 8 medical 
data-sets, which were collected from the UCI Machine 
Learning Repository (Merz and Murphy 2006). We used 
WEKA implementation of the 12 algorithms with their 
default parameter settings in this empirical study (Witten 
and Frank 2005). We implemented the bagging predictor 
in Java platform. In order to reduce uncertainty and obtain 
reliable experimental results, all the evaluations of 
bagging performance are assessed under the same test 
conditions by using the same randomly selected bootstrap 
samples with replacements in each fold of 10-trial 10-folds 
cross-validation on each data-set.   

6.2 Selection of Base Learners  
Twelve learning algorithms have been selected for this 
study. We first select the most commonly used learning 
algorithms in real-world applications: Support Vector 
Machines (SVM), Neural Network learner – Multi Layer 
Proceptron (MLP), Naïve Bayes learner (NB), and 
K-nearest-neighbours (KNN). We then select rule learners: 
PART, Decision Table (DTable), and OneR. We finally 
select tree family learners, C4.5 Decision Tree (J48), 
DecisionStump (DStump), RandomTree (RandTree), 
REPTree and Naïve-Bayes-Trees (NBTree). 

6.3 Selection of Data-Sets  
Table 3: Imbalanced Medical Data-Sets 

  Information Data Class Data 

ID Name attribut

 

instance

 

frequency   P% clas

 1 breastc 10 286 201,85 29% 2 

2 diabetes 9 768 500,268 34% 2 

3 heart-c 14 303 165,138 45% 2 

4 sick 30 3772 3541,231 6% 2 

5 heart-h 14 294 188,106 36% 2 

6 stalogHe

  

14 270 120,150 44% 2 

7 wbreastc 10 699 458,241 34% 2 

8 WDBC 31 569 212,357 37% 2 

  
 A summary of the characteristics of the eight 
imbalanced medical data-sets is displayed in Table 3. The 
selected medical data-sets are binary classes. The selection 
of the eight data-sets covers the number of instances, 
which varies from small to large up to 3772, the number of 
attributes, which varies from 9 to 31, and the natural class 
distribution (P%), which indicates the percentage of the 
positive instances from the total instances of each data-set. 
The results vary from 6.1%, the extremely imbalanced 
data-set ‘sick’ to 45% the almost balanced data-sets 
‘heart-c’ and ‘stalogHeart’. 
    

7 Experimental Results Analysis 
  
This section presents the experimental results analysis 
including four sub-sections as follows: A. comparison of 
bagging with single learners, B. comparison of bagging 
predictors on medical data-sets, C. comparison of the 
performance of 24 prediction models and report the best 
prediction model on each individual data-set, and D. 
comparison of the performance of bagging predictors 
between natural class distribution and the altered class 
distribution by using under-sampling techniques on each 
medical data-set.  

7.1 Comparison of Bagging and Single learners 
 
This subsection compares bagging and single learners over 
multiple medical data-sets to determine whether bagging 
is superior to single learners based on two evaluation 
metrics, Accuracy and G-mean.  
 
The Wilcoxon Signed Rank Test is used to compare two 
learners - bagging and a single learner over multiple 
data-sets - to determine whether bagging is superior to a 
single learner.  
The Null Hypothesis is that the median of differences 
between bagging and a single learner equals 0.  
Rule: Reject the Null Hypothesis if the p-value Test 
Statistic W is less than .05 at the 95% confidence level of 
significance.   

 
Table 4: Compare bagging with each single learner based on 

Wilcoxon Signed Rank Test on Accuracy. The significance level is .05.  
Wilcoxon Signed Rank Test on Accuracy 

Learners J48 RepTree Randtree NB SVM Dstump 
p-value .025 .012 .012 .207 .138 .128 
 Learners OneR Dtable PART KNN NBTree MLP 
p-value .012 .208 .012 0.092 .017 .012 

 
Tables 4 and 5 present the summarized results of the 

Wilcoxon Signed Rank Test on the evaluation metrics, 
Accuracy and G-mean for the comparison of the two 
learners: single learners versus their corresponding 
bagging predictors, i.e., we compare bagging J48 and 
single learner J48. If the p-value is greater than  
value, .05, we accept the Null Hypothesis and the p-values 
are highlighted.  

Table 4 indicates that bagging does not perform 
statistically significantly better than the single learners NB, 
SVM, Dstump, Dtable and KNN on eight Medical 
data-sets based on the evaluation metric, Accuracy. Table 
5 indicates that bagging is statistically superior to the 
single learners J48, RandTree, OneR, PART and MLP on 
eight medical data-sets based on the G-mean evaluation 
metric.  

 
Table 5: Compare bagging with each single learner based on 

Wilcoxon Signed Rank on G-mean. The significance level is .05.  
Wilcoxon Signed Rank Test on Gmean. 

Learnr J48 RepTree Randtree NB SVM Dstump 

p-value .036 .161 .036 .069 .093 .866 
 

Learnr OneR Dtable PART KNN NBTree MLP 

p-value .017 .779 .036 .327 .484 .012 
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7.2 Comparison of the Performance of Bagging 
Predictors on Imbalanced Medical 
Data-Sets 

Friedman Test and Post-hoc Nemenyi Test: Both tests 
are non-parametric for comparing multiple algorithms 
over multiple datasets. Firstly, all the algorithms are 
ranked on each data-set, giving the best performing 
algorithm the rank of 1, the second best rank 2, and so on. 
If there are ties, average values are assigned. Secondly, the 
average rank of the algorithm is calculated. Finally, the 
Friedman test compares the average ranks of algorithms 
and checks whether there is a significant difference 
between the mean ranks.   
 The Null Hypothesis of this test states that the 
performances of all algorithms are equivalent. If the Null 
Hypothesis is rejected, it does not determine which 
particular algorithms differ from one another. Because the 
test result does not show exactly where that significant 
difference occurs, a post-hoc Nemenyi test is needed for 
additional exploration of the differences between mean 
ranks to provide specific information on which mean ranks 
are significantly different from on another. The critical 
difference is calculated as:  
 
 
 
Where d is the number of algorithms, N is the number of 
data-sets, and the critical values  are based on the 
Studentized range statistic divided by 2 . If the mean 
ranks are different by at least the critical difference, the 
performance of learners is significantly different. Demšar 
has presented how to calculate the critical difference of the 
Nemenyi test in more detail (Demšar 2006).  
 
Table 6: Ranking order of the performance of bagging based on G-mean 
and their Mean Ranks.  

Gmean MLP NB NBTree SVM PART RdTree 
breastc 2 1 7 6 5 8 
diabetes 1 3 2 8 7 5 
sick 10 9 5 12 3 7 
heart-c 3 2 4 1 5 7 
staHeart 3 1 4 2 5 7 
heart-h  3 1 4 2 5 6 
wdbc 2 10 4 1 3 6 
wbreastc 3 1 2 4 6 5 

Mean Rank 3.375 3.5 4 4.5 4.875 6.375 
 

 J48 RepTree Dstump KNN Dtable OneT 
breastc 9 11 3 4 12 10 
diabetes 4 6 10 11 9 12 
sick 1 4 2 11 8 6 
heart-c 6 8 10 11 9 12 
staHeart 10 6 12 9 8 11 
heart-h  10 11 7 8 12 9 
wdbc 7 8 11 5 9 12 
wbreastc 7 9 12 8 10 11 

Mean Rank 6.75 7.875 8.375 8.375 9.625 10.375 
 

 

     Table 6 presents the ranking order of the performance 
of bagging predictors on each imbalanced medical data-set 
based on the evaluation metric G-mean. Firstly, we divide 
Table 6 into two parts. In each part, the first row presents 
the ascending order of the bagging predictors according to 
their mean rank of the G-mean measure in the 10th row. 
Secondly, the second to ninth rows present the ranking 
order of the bagging predictors on each individual medical 
data-set, e.g., bagging MLP performs best on the diabetes 
data-set ranking as 1, followed by bagging NBTree 
ranking as 2, and bagging OneR ranked 12 is the worst 
bagging predictor on the same data-set. The last rows 
present the mean ranks of the performance of the bagging 
predictor over all eight medical data-sets. On the other 
hand, we observe that different bagging predictors behave 
differently for different medical data-sets, e.g., bagging 
MLP performs well on most of these medical data-sets, 
except for sick data-set which is an extremely imbalanced 
and high dimensional large data-set; bagging NB performs 
best (ranking as 1) on four medical data-sets, breastc, 
StatlogHeart, heart-h and wbreastc, but performs poorly 
on the other two data-sets, sick and WDBC, which are high 
dimensional attributes or extremely imbalanced class 
distribution data-sets; while bagging J48 and DStump 
perform well on the extremely imbalanced and high 
dimensional largest medical data-set, sick.  
    

 
 
Figure 5: Comparison of all bagging predictors from the Friedman and 
Post-hoc Nemenyi test, where the x-axes indicate the mean rank of each 
bagging predictor, the y axes indicate the ascending ranking order of the 
Bagging predictors, and the horizontal error bars indicate the “critical 
difference”.  

Figure 5 presents the results of the mean ranking of the 
performance of bagging predictors over all eight medical 
data-sets based on the Friedman and Post-hoc Nemenyi 
tests. The results indicate that the group of bagging MLP 
and NB are the best bagging predictors, while bagging 
OneR is the worst bagging predictor. The performances of 
two bagging predictors are significantly different if the 
horizontal bars do not overlap; therefore, there is a 
statistically significant difference between the group of 
two best bagging predictors, MLP and NB and the worst 
bagging predictor OneR. However, there is not a 
statistically significant difference between remaining 
bagging predictors.  

MLP NB 
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7.3 Comparison of the Performance of the 
Prediction Models on Individual Medical 
Data-Sets 

In this subsection, we compare the performance of the 
prediction models, bagging predictors and single learners 
on eight selected medical data-sets. For the data-set 
selection, we first select breastc data-set which has 10 
attributes and 286 instances, in which the proportion of the 
minority class is 29%; secondly, we select three 
moderately imbalanced data-sets, WDBC, heart-h, 
diabetes and wbreastc in which the proportions of the 
minority class are 37%, 36%, 34% and 34%, respectively; 
thirdly, we select an extremely imbalanced data-set, sick, 
which has 30 attributes and 3772 instances, in which the 
proportion of the minority class is 6%. Finally, we select 
two almost balanced data-sets, heart-c and stalogHeart 
data-sets, in which the proportions of the minority class are 
about 45%.  

Figures 5 to 13 inclusive present a comparison of the 
performance of all the prediction models on eight medical 
data-sets, breastc, diabetes, sick, heart-h, WDBC, heart-c, 
wbreastc and statlogHeart. Each graph presents the 
summarization of the observed performance of the 
prediction models based on four measures, G-mean, TPR, 
TNR and Accuracy on each of the selected data-sets. For 
each plot, the horizontal axis indicates the ranking order of 
all the prediction models based on the descending order of 
the performance measure, G-mean, while the vertical axis 
indicates the value of the four performance measures.  

 

 
Figure 6: The performance of prediction models on breastc data-set.    
  
     Figure 6 shows that both single learner NB and bagging 
NB perform better than the other prediction models, 
followed by the simple learner DStrump and bagging MLP. 
The group of learners, bagging DTable, bagging RepTree, 
RepTree, OneR and bagging OneR are the worst 
prediction models for the breastc data-set based on the 
performance measure G-mean and TPR. Even though the 
performance of Accuracy seems reasonably good for all 
the prediction models, it does not present the accuracy of 
the minority class. Because the performance of accuracy is 
influenced by the TNR, this observation is consistent with 
the existing research.  
 

 
Figure 7: Comparison of the performance of prediction models on 
diabetes data-set. 
 

Figure 7 presents the comparison of the performance of 
the prediction models on the diabetes data-set. The group 
of bagging MLP, NBTree, MLP and bagging NBTree are 
the best prediction models on this data-set, followed by 
NB and Bagging NB; while the group of learners, Bagging 
KNN, KNN, OneR and bagging OneR are the worst 
prediction models on this data-set.  
 

 
Figure8: Comparison of the performance of prediction models on sick 
data-set.  
 

Figure 8 presents a comparison of the performance of 
the prediction models on the extremely imbalanced 
data-set, sick. We observe that Accuracy and TNR perform 
well for all the prediction models, because Accuracy is 
influenced by the TNR on this extremely imbalanced 
data-set. However, regarding the performance measures, 
TPR and G-mean of the accuracy of both the majority class 
and minority class, we observe that bagging J48 and PART 
perform best, followed by single DStump, bagging 
DStump, J48 and bagging PART, while the group learners, 
bagging KNN and SVM, and their single learners are the 
worst prediction models for this medical data-set. 

 

 
Figure 9: Comparison of the performance of the prediction models, 
bagging predictors and single learners on heart-h data-set.  
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Figure 9 presents a comparison of the performance of 
prediction models on the almost balanced heart-h data-set. 
Most prediction models perform well on this data-set, 
except the group of weak learners DStump and its bagging 
predictors. The group of learners, NB, bagging NB and 
SVMP, and bagging SVM are the best prediction models 
on this data-set.  

 

 
Figure 10: Comparison of the performance of the prediction models, 
bagging predictors and single learners on WDBC data-set.  
 

Figure 10 presents a comparison of the performance of 
prediction models on the moderately imbalanced WDBC 
data-set. Most prediction models perform well on this 
data-set, except the group of weak learners, OneR, 
DStump, and their bagging predictors. The group of 
learners, bagging SVM, SVM, bagging MLP and MLP are 
the best prediction models on this data-set. 

 

 
Figure 11: Comparison of the performance of the prediction models, 
bagging predictors and single learners on heart-c data-set.  
 

Figure 11 presents a comparison of the performance of 
prediction models on the almost balanced heart-c data-set. 
The group of learners, bagging SVM, bagging NB, and NB 
are the best prediction models on this data-set, followed by 
SVM and bagging MLP; while the group of learners, KNN, 
Dstump and OneR are the worst prediction models on this 
data-set.  
 

 
 
Figure 12: Comparison of the performance of the prediction models, 
bagging predictors and single learners on wbreastc data-set.  
 

Figure 12 presents a comparison of the performance of 
the prediction models on the wbreastc data-set. The group 
of learners, NB, bagging NB, NBTree, and bagging 
NBTree are the best prediction models on this data-set, 
followed by bagging MLP and Bagging SVM; while the 
group of learners, Dstump and bagging Dstump are the 
worst prediction models on this data-set.  
 

 
Figure 13: Comparison of the performance of the prediction models, 
bagging predictors and single learners on StatlogHert data-set.  
 

Figure 13 presents a comparison of the performance of 
prediction models on the almost balanced StatlogHeart 
data-set. The group of learners NB and bagging NB are the 
best prediction models on this data-set, followed by 
bagging SVM and bagging SVM; while the group of 
learners, randTree, Dstump and OneR are the worst 
prediction models on this data-set.   

 
Table 7: Best performance model for the natural class 
distribution on each individual data-sets. 

Name 
Best performance Model P% 

G-mean Err TPR TNR Learners  
Heart-h 0.8239 0.1578 0.7679 0.8840 NB 0.36 

Heart-c 0.831 0.1624 0.779 0.8867 SVM_B 0.45 

stalogHeart 0.8492 0.1474 0.8233 0.876 NB 0.44 

WDBC 0.97 0.0236 0.9462 0.9944 SVM_B 0.37 

diabetes 0.7188 0.2384 0.6153 0.84 MLP_B 0.34 

wbreastc 0.9767 0.0262 0.9672 0.9863 NB 0.34 

breastc 0.6142 0.2703 0.4435 0.8507 NB 0.29 

sick 0.932 0.0117 0.9959 0.8723 J48_B 0.06 
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       Table 7 reports the best performance of prediction 
models for the natural class distribution on each individual 
medical data-set. Bagging predictors, SVM, MLP and J48 
are the best prediction models for heart-c, WDBC, 
diabetes, and sick data-sets, respectively, while single 
learner NB is the best prediction models for heart-h, 
stalogHeart, wbreastc and breastc data-sets.   

7.4 Comparison of the Performance of Bagging 
between the Natural Class Distribution and 
the Altered Class Distribution by Using 
Sampling Techniques on Each Medical 
Data-Set  

 
In this subsection we report the performance of bagging 
predictors between the natural class distribution and the 
best achieved results by using sampling techniques on 
each medical data-set. 
      Tables 7 and 8 present the comparison of the 
performance of the bagging predictors between natural 
class distribution and the best achieved results by using 
sampling techniques on four medical data-sets.  The first 
column indicates the name of a medical data-set and the 
bagging predictors; the second column presents the results 
from the natural class distribution which include TPR, 
TNR and G-mean of the accuracy rate on majority class 
and minority class; the third column presents the best 
achieved results based on G-mean by using sampling 
techniques which include G-mean, TPR, TNR and the 
proportion of the positive instances (P%) which refers to 
the level of the altered class distribution when bagging 
achieves the best performance on the G-mean measure. 
We also note that if the proportion of positive instances 
increases, the TPR will also increase but the G-mean may 
reduce.  
       The experimental results in the third column indicate 
the best achieved bagging performance based on the 
G-mean measure: the level of the class distribution is 
mostly about 50% on breastc, heart-c, and statlogHeart 
data-sets. This finding is consistent with previous research. 
However, the levels of class distribution are mostly 40% 
on WDBC and heart-h data-sets, and 30% on sick data-set, 
respectively, when the best bagging performance on the 
G-mean measure is achieved. In addition, there are 
interesting findings on both WDBC and sick data-sets in 
that when bagging NB achieves the best performance on 
the G-mean measure, the level of class distributions are 10% 
and 20% highlighted, respectively. This finding may be 
inconsistent with existing research, which assumes that 
traditional learning algorithms will perform better in a 
balanced situation than in an imbalanced situation.    
      The experimental results demonstrate that the 
sampling techniques can improve the performance of 
bagging predictors on the G-mean of the accuracy on the 
majority class and minority class over most medical 
data-sets, except for bagging OneR on the breastc data-set 
whose result is marked in red. The bagging performance 
on the TPR and TNR measures also improved at the same 
level of class distribution, except for NB on heart-h 
data-set with TNR measure marked as red.   
. 
 

 
breastc Natural Class Distribution Sampling 
Bagging TPR TNR G-mean G-mean TPR TNR P% 

J48 0.247 0.941 0.481 0.724 0.717 0.737 50% 

RepTree 0.138 0.937 0.356 0.678 0.651 0.709 50% 

RandTree 0.292 0.867 0.503 0.796 0.837 0.580 40% 

NB 0.428 0.854 0.605 0.675 0.644 0.709 50% 

SVM 0.308 0.865 0.516 0.690 0.695 0.685 50% 

DStump 0.355 0.868 0.552 0.630 0.486 0.824 50% 

OneR 0.207 0.904 0.431 0.619 0.505 0.769 50% 

DTable 0.037 0.993 0.186 0.662 0.527 0.835 50% 

PART 0.326 0.877 0.534 0.746 0.760 0.733 50% 

KNN 0.338 0.887 0.546 0.802 0.782 0.822 50% 

NBTree 0.284 0.915 0.509 0.731 0.732 0.732 50% 

MLP 0.406 0.841 0.584 0.790 0.682 0.916 70% 
 
heart-c Natural Sampling 

Bagging TPR TNR G-mean G-mean TPR TNR P% 

J48 0.7681 0.8364 0.8013 0.8872 0.8807 0.8941 50% 

RepTree 0.7275 0.8745 0.7976 0.8496 0.82 0.8807 50% 

RandTree 0.7558 0.8485 0.8007 0.9128 0.9052 0.9207 50% 

NB 0.7978 0.8655 0.8309 0.8404 0.8019 0.8815 40% 

SVM 0.779 0.8867 0.831 0.8461 0.8833 0.8109 60% 

DStump 0.7232 0.8158 0.7679 0.7778 0.7454 0.8123 40% 

OneR 0.7116 0.8139 0.761 0.7642 0.7407 0.7889 50% 
DTable 0.6645 0.917 0.7804 0.8471 0.7904 0.9081 50% 

PART 0.7833 0.8461 0.8139 0.9061 0.8956 0.917 50% 

KNN 0.7312 0.803 0.7662 0.8983 0.9015 0.8956 50% 

NBTree 0.7797 0.8661 0.8217 0.904 0.88 0.9289 50% 

MLP 0.7964 0.8515 0.8234 0.9091 0.9074 0.9111 50% 
 
Statlog 
Heart 

Natural Sampling 

Bagging TPR TNR G-mean G-mean TPR TNR P% 

J48 0.731 0.819 0.773 0.870 0.878 0.863 50% 

RepTree 0.745 0.857 0.799 0.860 0.859 0.862 50% 

RandTree 0.756 0.841 0.797 0.900 0.895 0.905 50% 

NB 0.821 0.873 0.846 0.854 0.844 0.865 50% 

SVM 0.789 0.891 0.839 0.865 0.853 0.877 50% 

DStump 0.716 0.803 0.758 0.780 0.716 0.854 30% 

OneR 0.705 0.828 0.764 0.740 0.726 0.756 50% 

DTable 0.708 0.862 0.781 0.836 0.872 0.803 50% 

PART 0.760 0.849 0.803 0.892 0.855 0.931 40% 

KNN 0.737 0.822 0.778 0.891 0.863 0.919 40% 

NBTree 0.763 0.869 0.814 0.900 0.856 0.946 40% 

MLP 0.793 0.883 0.837 0.912 0.883 0.941 40% 
 
heart-h Natural Sampling 

Bagging TPR TNR G-mean G-mean TPR TNR P% 

J48 0.6811 0.8633 0.7668 0.8548 0.8543 0.8562 50% 

RepTree 0.6509 0.8771 0.7555 0.8282 0.8814 0.7794 60% 

RandTree 0.6981 0.8676 0.7781 0.9035 0.8731 0.9353 40% 

NB 0.7679 0.884 0.8239 0.8369 0.8076 0.8676 50% 

SVM 0.6991 0.908 0.7966 0.8354 0.8794 0.7941 60% 

DStump 0.667 0.9021 0.7757 0.7963 0.7412 0.8588 60% 

OneR 0.6566 0.8963 0.7671 0.7944 0.801 0.7897 60% 

DTable 0.5745 0.9165 0.7254 0.8297 0.8048 0.8571 50% 

PART 0.6972 0.8883 0.7869 0.8665 0.8279 0.9077 40% 

KNN 0.7085 0.8394 0.7711 0.8951 0.8731 0.9179 40% 

NBTree 0.6943 0.8936 0.7876 0.8728 0.8346 0.9135 40% 

MLP 0.716 0.8723 0.7903 0.8927 0.8596 0.9276 40% 
Table 7: Compare the performance of bagging predictors on the G-mean 
measure between the natural class distribution and the altered class 
distribution by using sampling techniques on four data-sets: breastc, 
heart-c, statlogHeart and heart-h.  
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diabetes Natural Sampling 
Bagging TPR TNR G-mean G-mean TPR TNR P 

J48 0.597 0.837 0.707 0.861 0.834 0.890 40% 

RepTree 0.581 0.855 0.705 0.824 0.780 0.871 40% 

RandTree 0.597 0.833 0.705 0.876 0.844 0.909 40% 

NB 0.597 0.837 0.707 0.726 0.740 0.712 60% 

SVM 0.534 0.894 0.691 0.741 0.700 0.785 50% 

DStump 0.558 0.809 0.672 0.696 0.620 0.792 40% 

OneR 0.435 0.883 0.620 0.719 0.723 0.716 50% 

DTable 0.515 0.882 0.674 0.776 0.778 0.774 50% 

PART 0.563 0.859 0.695 0.852 0.824 0.881 40% 

KNN 0.538 0.801 0.656 0.848 0.816 0.881 40% 

NBTree 0.593 0.849 0.710 0.840 0.803 0.879 40% 

MLP 0.615 0.840 0.719 0.812 0.833 0.793 50% 
 

sick Natural Sampling 
Bagging TPR TNR G-mean G-mean TPR TNR P 

J48 0.872 0.996 0.932 0.973 0.967 0.979 30% 

RepTree 0.834 0.997 0.912 0.965 0.954 0.976 30% 

RandTree 0.778 0.997 0.881 0.972 0.964 0.980 40% 

NB 0.765 0.939 0.848 0.880 0.864 0.898 20% 

SVM 0.013 0.999 0.107 0.892 0.857 0.930 30% 

DStump 0.892 0.970 0.930 0.934 0.896 0.974 70% 

OneR 0.807 0.974 0.887 0.934 0.898 0.971 30% 

DTable 0.771 0.991 0.874 0.941 0.902 0.982 30% 

PART 0.854 0.995 0.922 0.973 0.967 0.979 30% 

KNN 0.552 0.986 0.738 0.912 0.908 0.915 40% 

NBTree 0.833 0.995 0.910 0.974 0.964 0.984 30% 

MLP 0.698 0.993 0.832 0.951 0.964 0.938 50% 
 
WDBC Natural Sampling 

Bagging TPR TNR G-mean G-mean TPR TNR P 

J48 0.931 0.972 0.951 0.974 0.968 0.981 40% 

RepTree 0.917 0.970 0.943 0.968 0.959 0.978 40% 

RandTree 0.931 0.975 0.953 0.979 0.971 0.986 40% 

NB 0.897 0.956 0.926 0.937 0.905 0.970 10% 
SVM 0.946 0.994 0.970 0.977 0.966 0.987 50% 

DStump 0.849 0.955 0.900 0.925 0.940 0.910 70% 

OneR 0.852 0.950 0.900 0.929 0.900 0.959 40% 

DTable 0.906 0.980 0.942 0.958 0.961 0.954 40% 

PART 0.940 0.975 0.957 0.979 0.977 0.981 40% 

KNN 0.937 0.969 0.953 0.980 0.980 0.981 50% 

NBTree 0.932 0.978 0.955 0.979 0.976 0.981 50% 

MLP 0.947 0.982 0.964 0.979 0.972 0.985 50% 
 
wbreastc Natural Sampling 
Bagging TPR TNR G-mean G-mean TPR TNR P 

J48 0.941 0.960 0.950 0.964 0.967 0.961 40% 

RepTree 0.934 0.961 0.948 0.961 0.964 0.958 50% 

RandTree 0.942 0.968 0.955 0.982 0.983 0.981 40% 

NB 0.986 0.967 0.976 0.981 0.985 0.976 60% 

SVM 0.945 0.971 0.958 0.979 0.988 0.970 80% 

DStump 0.974 0.827 0.897 0.908 0.981 0.840 30% 

OneR 0.882 0.957 0.918 0.935 0.962 0.908 60% 

DTable 0.878 0.965 0.920 0.960 0.981 0.940 60% 

PART 0.949 0.959 0.954 0.964 0.969 0.958 40% 

KNN 0.922 0.975 0.948 0.981 0.982 0.981 60% 

NBTree 0.976 0.967 0.972 0.983 0.983 0.984 30% 

MLP 0.957 0.966 0.962 0.979 0.990 0.968 60% 
Table 8: Compare the performance of bagging predictors on G-mean 
measure between the natural class distribution and the altered class 
distribution by using sampling techniques on four data-sets: diabetes, 
sick, WDBC and wbreastc.  
 

8 Conclusions 
This research investigates the performance of bagging 

predictors with respect to 12 different learning algorithms 
on 8 medical data-sets. We address the imbalance class 
distribution and unequal cost of mis-classification errors 
issues on medical data which may have high accuracy but 
poor performance on the TPR of minority class. We report 
the best performance prediction model for the natural class 
distribution on each individual medical data-set by 
comparing 12 single learners and 12 bagging predictors. In 
addition, we utilize sampling techniques to alter the class 
distribution at different imbalanced levels, and report the 
comparison of the bagging performance between the 
natural class distribution and the best achieved 
performance based on the G-mean measure at a certain 
level of class distribution. We note that by using sampling 
techniques to improve the performance of the bagging 
predictors, the level of the class distribution  is mostly at 
50% balanced level for three data-sets, breastc, heart-c, 
and statlogHeart; however, it is mostly at 40% for the 
diabetes, WDBC and heart-h data-set, and at 30% for the 
sick data-set. In addition, we also observe that the levels of 
class distribution for bagging NB to achieve the best 
performance on the G-mean measure are at 10% for the 
WDBC data-set and 20% for the sick data-set.  

We investigated the effectiveness of bagging by using 
statistical tests. We also compared the performance of 12 
bagging predictors on each of the medical data-sets; we 
observed that different bagging predictors behave 
differently for different medical data-sets. Bagging MLP 
performs well on most of these medical data-sets, except 
for the extremely imbalanced class distribution and high 
dimensional attributes large data-set ‘sick’; Bagging NB 
has the best performance on 4 out of 8 medical data-sets 
but performs poorly on two medical data-sets: sick and 
WDBC; Bagging J48 and Dstump perform well on the 
extremely imbalanced and high dimensional large data-set, 
sick. The full comparison of the performance of bagging 
predictors would allow data mining practitioners to choose 
proper learners and to understand what to expect when 
using bagging predictors for medical imbalanced 
applications.       
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