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Abstract
Implicit feedback data has emerged as a fundamental component of
modern recommender systems due to its scalability and availability.
However, the presence of noisy interactions—such as accidental
clicks and position bias—can potentially degrade recommendation
performance. Recently, denoising recommendation have emerged
as a popular research topic, aiming to identify and mitigate the
impact of noisy samples to train robust recommendation models in
the presence of noisy interactions. Although denoising recommen-
dation methods have become a promising solution, our systematic
evaluation reveals critical reproducibility issues in this growing re-
search area. We observe inconsistent performance across different
experimental settings and a concerning misalignment between val-
idation metrics and test performance caused by distribution shifts.
Through extensive experiments testing 6 representative denoising
methods across 4 recommender models and 3 datasets, we find that
no single denoising approach consistently outperforms others, and
simple improvements to evaluation strategies can sometimes match
or exceed state-of-the-art denoising methods. Our analysis further
reveals concerns about denoising recommendation in high-noise
scenarios. We identify key factors contributing to reproducibil-
ity defects and propose pathways toward more reliable denoising
recommendation research. This work serves as both a cautionary
examination of current practices and a constructive guide for the de-
velopment of more reliable evaluation methodologies in denoising
recommendation.

CCS Concepts
• Information systems→ Collaborative filtering; • Comput-
ing methodologies → Learning from implicit feedback.
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1 Introduction
Recommender systems aim to uncover user preferences from user-
item interaction data, guiding users toward content that matches
their interests and potential needs. Compared to explicit feedback
(e.g., ratings), implicit feedback (clicks, market browsing behaviors,
and other user interactions) serves as the preferred training re-
source due to its easier acquisition process and consequently larger
data volume. However, research has shown that these implicit inter-
actions face significant data quality challenges [21, 24] , including
position bias [18], caption bias [17], and accidental clicks [30]. These
inaccurate false-positive interactions have been demonstrated to
negatively impact user experience [38], as they misrepresent actual
user preferences and lead to suboptimal recommendations.

To address this challenge, Wang et al. [35] pioneered a novel
denoising recommendation paradigm that addresses noisy inter-
actions during the training process. Denoising recommendation
methods aim to learn robust models from training and validation
sets containing noisy interactions, which can minimize the ex-
pected risks on clean test sets where noisy interactions are absent.
The core concept of this paradigm posits that even when train-
ing datasets inevitably contain noisy interactions, models should
be able to adaptively identify and mitigate their negative impact,
thereby building more robust recommender systems. Building upon
this foundation, the research community has introduced various
innovative approaches to enhance the noise-resistance capabilities
of recommender systems, exploring different dimensions such as
optimization perspectives [37], memory effects [8], and leveraging
the unique data patterns of noisy interactions [16]. With continuous
improvements in the state of the art for denoising recommendations
[5, 8, 44], this research direction has garnered increasing attention
in the academic community.

Despite denoising recommendation evolving into a flourishing
new research area, we observe two phenomena worth contemplat-
ing: (1) In experimental results from recent papers, denoising rec-
ommendation methods do not significantly outperform traditional
methods without denoising methods in some scenarios [5, 16]; (2)
The performance of various denoising methods reported across
different papers often lacks consistency, with different denoising
methods failing to demonstrate consistent partial order relation-
ships in their performance. These observations have prompted our
reflection. In recent years, the reproducibility issue [6, 7, 27] in rec-
ommender systems has gradually attracted widespread attention
in academia, making the research community realize that repre-
sentation learning in recommender systems and its reproducibility
remain challenging topics. In this study, we are committed to deeply
exploring how this emerging field of denoising recommendation
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(a) R-CE [35] on GMF (b) DCF [16] on LightGCN

Figure 1: Evaluation loss fails to provide accurate model se-
lection criteria. (a) shows the GMF model trained on adressa
with R-CE [35] denoising. (b) shows the LightGCN model
trained on MovieLens using the DCF [16] denoising.

is shrouded in the fog of reproducibility, and attempt to reveal its
internal mechanisms and key issues.

Our work began with the observation of an anomalous experi-
mental phenomenon. Figure 1 illustrates the misalignment between
validation loss and test set performance during model training. In
Figure 1(a), despite the model’s true performance on the test set
continuously declining, the evaluation loss begins to fit noise after
30 epochs of training, making model selection based on valida-
tion performance prone to choosing a poorly performing model.
In Figure 1(b), although model performance continues to improve,
the validation loss reaches its minimum value in an underfitted
state, and after reaching its minimum, the evaluation loss increases
synchronously with test performance (normally, evaluation loss
and test set performance should be contradictory indicators). We
attribute this anomalous phenomenon to the data distribution differ-
ences between the validation set and test set. In standard supervised
learning settings, samples from training, validation, and test sets
should be independently and identically distributed. However, in
the specific scenario of denoising recommendation, the data distri-
bution 𝑃D𝑣𝑎𝑙

of the validation set containing noisy interactions is
clearly not equivalent to the data distribution 𝑃D𝑡𝑒𝑠𝑡

of the clean
test set, leading to distribution drift between validation and test
sets. Our results indicate that models with lower empirical error
on the validation set are not necessarily optimal on the test set,
which has led to frequent misassessment of model performance in
previous research studies.

To conduct rigorous benchmark testing, we investigated 12 de-
noising recommendation method papers [2, 5, 9, 16, 22, 29, 33, 35–
37, 44] published in top conferences in recent years. From these,
we selected 6 representative denoising methods and trained four
typical recommender models on three widely used datasets, com-
pleting tests across 73 experimental configurations. Through these
large-scale experiments, our contributions are:

• We reveal the misalignment of the performance between
validation set and test set that might be caused by distribu-
tion shift, which lead to inaccurate benchmarking of existing
denoising methods.

• We propose a simple sampling-based evaluation method,
finding that just by improving evaluation strategies, empir-
ical error minimization without any denoising techniques

can be comparable or even exceed the performance of state-
of-the-art denoising recommendation methods in some ex-
perimental scenarios.

• By observing the evolution of denoising model accuracy on
test sets through numerous experiments, we found that no
single denoising method consistently outperforms others
across different scenarios.

• We find that denoising recommendation is essentially inef-
fective on datasets like Adressa with noise rates exceeding
60%, revealing previously unnoticed limitations of existing
denoising methods, and indicating that their applicability in
extreme noise scenarios needs to be reassessed.

• We reveal and discuss two factors which lead to reproducibil-
ity defects in denoising recommendation, and provide clues
for improving reproducibility and reliability in future re-
search.

2 Related works
2.1 Denoising Recommendation
Implicit feedback is inherently susceptible to various types of noise,
such as usermisclicks and popularity bias [1, 3] . Recent studies have
clearly demonstrated that large amounts of noisy implicit feedback
can mislead the learning process of recommendation models, caus-
ing them to fit incorrect user preference patterns [20, 28, 32, 35]. To
address this critical issue, denoising recommendation have emerged
and attracted widespread attention in recommender systems re-
search community [32, 43].

Existing denoising recommendation methods primarily focus
on reducing the impact of noisy interactions on model training by
adjusting their weights. Among these, R-CE and T-CE methods [35]
use loss values as indicators of noise, dynamically reducing the
weights of high-loss samples or directly dropping them. The BOD
method [37] formulates weight learning as a bi-level optimization
problem to automatically learn optimal denoising weights. Model
consistency-basedmethods such as DeCA [36] assume that different
models make consistent predictions on clean data while showing
significant disagreement on noisy data, identifying noise through
dual-model training. The SGDL method [8] observes the memoriza-
tion effect of deep models and eliminates noise influence during
the pre-training phase. The DCF method [16] not only considers
sample dropping strategies but also addresses the handling of hard
positive samples. The PLD method [44] identifies noisy interactions
by analyzing each user’s personal loss distribution to reduce the
probability of noisy interactions being optimized during training.
LLaRD [33] utilizes large language models to generate denoising
knowledge through semantic insights and Chain-of-Thought rea-
soning on user-item graphs, then applies Information Bottleneck
to filter noise and improve recommendation accuracy. UDT [5] sep-
arates user behavior into willingness and action phases, identifies
high-uncertainty willingness and user-specific inconsistency pat-
terns, then adjusts interaction importance weights based on these
patterns to reduce noise during training.

Besides dedicated denoising methods, there are also related
robustness-enhancing approaches, including adversarial training
methods such as AMF [14], contrastive learning-based methods
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such as SGL [39] which improves the robustness of user-item rep-
resentations through graph augmentation and contrastive learning,
and scenario-specific denoising techniques such as specialized de-
noising modules for micro-video recommendation [23], next-basket
recommendation [26], and social recommendation [34]. However,
these auxiliary methods are typically effective in specific scenarios
and are difficult to serve as universal denoising solutions. Therefore,
this article focuses primarily on specifically designed denoising rec-
ommendation methods.

2.2 Related Studies in Computer Vision
In the domain of computer vision, a small amount of research has
noted the distribution shift problem between noisy validation sets
and clean test sets. Several theoretical frameworks have emerged to
validate the reliability of model selection using noisy validation data
under specific noise assumptions [4, 31]. Alternative approaches
circumvent the use of potentially unreliable noisy validation sets
altogether by determining optimal early stopping points through
monitoring prediction dynamics on training samples [42]. Further-
more, some work has focused on correcting performance metrics
on noisy validation sets by estimating noise transition matrices,
thereby more accurately approximating performance on clean data
distributions [25, 41]. Despite these advances, the fundamental
differences between recommender systems and computer vision
present significant challenges when attempting to transfer these
methodologies directly to denoising recommendation tasks. To the
best of our knowledge, our work is the first to notice and attempt
to address the distribution shift problem caused by noisy validation
sets in the context of recommendation systems.

3 Preliminaries
In this section, we introduce the formal definition of denoising
recommendation. Consider a recommendation problem based on
implicit feedback, where our objective is to learn user preferences
through a recommendation model. Let U = {𝑢1, 𝑢2, . . .} denote
the set of users and I = {𝑖1, 𝑖2, . . .} represent the set of items.
The supervision information is derived from an interaction ma-
trix Y ∈ {0, 1} |U |× |I | , where 𝑦𝑢𝑖 = 1 indicates that user 𝑢 has
interacted with item 𝑖 , and 𝑦𝑢𝑖 = 0 indicates otherwise. A recom-
mendation model can be formulated as a function 𝑦𝑢𝑖 = 𝑓 (𝑢, 𝑖 | Θ)
parameterized by Θ, where 𝑦𝑢𝑖 ∈ [0, 1] is the learned preference of
the user for the item. We denote an interaction as a tuple (𝑢, 𝑖,𝑦∗

𝑢𝑖
),

where 𝑦∗
𝑢𝑖

∈ {0, 1} indicates whether there exists an interaction
record between user 𝑢 and item 𝑖 . The traditional setting of recom-
mendation is to learn a model 𝑓 , such that minimize the expected
risk:

𝑅(𝑓 ) = E
(𝑢,𝑖,𝑦𝑢𝑖 )∼𝑃D

[ℓ (𝑓 (𝑢, 𝑖 | Θ), 𝑦𝑢𝑖 )] (1)

where 𝑃D (·) denotes the unknown distribution over the interac-
tion data. In standard recommendation scenarios, we assume that
interactions data D∗ =

{(
𝑢, 𝑖,𝑦∗

𝑢𝑖

)
| 𝑢 ∈ U, 𝑣 ∈ V, 𝑦∗

𝑢𝑖
∈ {0, 1}

}
is

sampled from 𝑃D (·), then we can train the recommendation models
by empirical risk minimization (ERM) as

arg min
Θ

L(D∗) = 1
|D∗ |

∑︁
(𝑢,𝑖,𝑦∗

𝑢𝑖
) ∈D∗

ℓ
(
𝑓 (𝑢, 𝑖 | Θ) , 𝑦∗𝑢𝑖

)
(2)

where ℓ is an arbitrary loss function. Minimizing Eq. (1) means
training a model 𝑓 to learn user preferences for items, thereby
generalizing to unseen items for recommendations.

However, due to the existence of noisy interactions, denoising
recommendation considers that the observed interaction data may
not follow the true distribution. We denote the observed interac-
tions set as D̄ = {(𝑢, 𝑖,𝑦𝑢𝑖 ) | 𝑢 ∈ U, 𝑖 ∈ I, 𝑦𝑢𝑖 ∈ {0, 1}}. Note that
due to the existence of noisy interactions, there is an inconsistency
between 𝐷∗ and 𝐷̄ . Specifically, we consider that 𝐷̄ contains noisy
interactions, which can be represented as {(𝑢, 𝑖) | 𝑦∗ = 0 ∧ 𝑦 = 1}.
These noisy interactions are typically introduced by users’ acci-
dental clicks or position bias. Wang et al. [35] provided a formal
definition of denoising recommendation training task as:

Θ∗ = min L𝐶𝐸

(
𝑑𝑒𝑛𝑜𝑖𝑠𝑒 ( D̄ )

)
, (3)

where L𝐶𝐸 denotes Binary Cross Entropy loss, aiming to learn a
reliable recommender with parameters Θ∗ by denoising implicit
feedback, such as pruning the impact of noisy interactions.

3.1 Revisiting Denoising Recommendation
Since the true distribution in the test set is invisible, we need to
select models based on the validation set. Let the samples in the
validation set be denoted as 𝐷̄𝑣𝑎𝑙 following distribution 𝑃D̄ . Note
that our optimization target is the expected risk 𝑅(𝑓 ) over distri-
bution 𝑃D , however 𝑃D ≠ 𝑃D̄ , which leads to validation set-test
set distribution shift. Simply optimizing equation (3) will cause the
model to incorrectly select models, resulting in many denoising
methods being incorrectly evaluated.

In this work, we demonstrate a simple sampling approach for
the validation set:

𝐷̂val = {(𝑢, 𝑖,𝑦𝑢𝑖 ) ∈ 𝐷val | ℓ (𝑓 (𝑢, 𝑖 |Θ), 𝑦𝑢𝑖 ) < 𝜏𝑎} (4)

where 𝐷̂𝑣𝑎𝑙 is sampled from 𝐷̄𝑣𝑎𝑙 , where 𝜏𝑎 represents the 𝑎-th
percentile of loss values for all interactions in 𝐷val, and we set
𝑎 = 0.8. This means we retain the interactions with loss values
below this threshold. Specifically, we discard the 20% of interactions
with the highest loss values and retain the remaining interactions
as validation data. This method is based on the small-loss criterion
[11, 45], which assumes samples with small losses are more likely
to originate from the true noise-free distribution.

Next, we only need to apply the Empirical Risk Minimization
(ERM) method without using any denoising training techniques,
and evaluate on 𝐷̂𝑣𝑎𝑙 :

Θ∗ = min L𝐶𝐸 ( D̂𝑣𝑎𝑙 ), (5)

In the following section, we will demonstrate how existing meth-
ods have been incorrectly evaluated, and how by only changing
the validation set sampling method, it is possible to outperform
existing denoising methods in some scenarios.

4 Settings
4.1 Benchmark Selection
In this section, we explain how we conduct a fair benchmark in de-
noising recommendation, which includes the selection of denoising
methods, recommendation models, and datasets.
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4.1.1 Denoising Methods. To rigorously evaluate denoising evalu-
ation methods, we examined relevant papers published in top-tier
conferences over the past 4 years (2021-2025), including RecSys,
KDD, SIGIR, WWW, and WSDM, with a total of 12 articles on rec-
ommendation denoising. The following papers, although related to
denoising recommendation, were not considered as evaluation can-
didates: [2, 22, 29] focused on denoising for special recommendation
scenarios (e.g., sequential recommendation, graph collaborative fil-
tering, CTR prediction) rather than general collaborative filtering
denoising; PLD [44] did not follow the original denoising setting,
but created new experimental scenarios; LLaRD [33] utilized text
information, which is a new denoising setting. SGDL [8] was not
considered due to its high computational cost 1. Additionally, some
methods employed non-rigorous evaluation approaches: BOD [37]
performed evaluation directly on the test set; AutoDenoise [9] eval-
uated directly on the clean validation set. Therefore, we examined
6 denoising methods from the remaining 4 papers, including two
latest denoising methods, which are:

• ERM: without denoising, directly performs empirical risk
minimization on noisy interactions (referred to as the normal
method or base method in previous literature)

• R-CE [35]: adjusts the importance weights of user interac-
tion data based on the value of binary cross-entropy loss

• T-CE [35]: dropout user-item interactions with loss values
exceeding a predefined threshold during training.

• DeCA [36]: leverages the disagreement between two models
on interactions to identify noisy interactions, where higher
disagreement is more likely to indicate a noisy interaction.

• DeCAp [36]: DeCA method with model pre-training.
• DCF [16]: beyond simply discarding noisy interactions, it
re-labels highly deterministic noisy samples to mitigate the
increased data sparsity caused by data dropout.

• UDT [5]: separates user behavior into willingness and ac-
tion phases, then identifies uncertainty patterns to adjust
interaction weights for noise reduction during training.

• ERM-RE (Revisiting Evaluation): ERM-RE employs stan-
dard Empirical Risk Minimization without any denoising
techniques. As described by Eq. (4) and Eq. (5), it modifies
the validation process.

4.1.2 Datasets. For fair and rigorous dataset selection for evalua-
tion, we first reviewed all datasets adopted in denoising recommen-
dation, which are: MovieLen-100k, MovieLen-1M, Adressa, Yelp,
Amazon Book, Amazon Elec, iFashion, and Beauty; among these,
only MovieLen-100k, Adressa, and Yelp have been used three or
more times. Therefore, we chose to conduct evaluations on the
following 3 datasets where their statistics can be found at Table 1:

• MovieLens [12]: This is movie rating datasets from the
MovieLens web site. We used the MovieLens-100k version.
Following the setting in [35], ratings below 3 are considered
false-positive feedback.

• Adressa2 [10]: A real-world news reading dataset that in-
cludes user clicks on news and the dwell time for each click.

1In the experiments of [5], SGDL was also not adopted as a baseline due to its high
computational cost.
2https://www.adressa.no/

Dataset #User #Item #Iter #FP Iter FP ratio

ml-100k 944 1,611 79,619 12,649 15.89%
Adressa 212,231 6,596 419,491 254,487 60.67%
yelp 45,548 57,396 1,672,520 260,581 15.58%

Table 1: Dataset statistics. #FP Iter represents false-positive
interaction, FP ratio represents the proportion of FP iter
within the total interactions

Following the setting in [19], we consider clicks with a dwell
time of less than 10 seconds as false-positive clicks.

• Yelp3: This is a user review dataset for the catering industry.
Following the setting in [35], ratings below 3 are considered
false-positive feedback.

Consistent with other denoising recommendation approaches, we
retain false-positive interactions in both the training set and val-
idation set, while keeping only clean interactions in the test set.

4.1.3 Recommendation Models. In the denoising recommendation
scenario, 5 models were adopted as experimental subjects, namely:
GMF, NeuMF, CDAE, NGCF, and LightGCN, where both NGCF and
LightGCN are graph collaborative filtering models. We selected the
more representative LightGCN model as a candidate. Therefore, we
chose the following 4 models.

• GMF [15]: a matrix factorization extension using element-
wise product and a linear layer for interaction modeling.

• NeuMF [40]: combines GMF and MLP to model user-item
relationships, capturing both linear and non-linear patterns.

• CDAE[13]: it adds noise to interactions and uses a neural
network (often MLP or linear layers) to reconstruct the orig-
inal, improving robustness.

• LightGCN [15]: is a graph-basedmodel that learns user/item
embeddings by linear propagation on the interaction graph.

4.2 Experiment settings
4.2.1 Implementation Details. Notably, since we need to charac-
terize the changes in the denoising method on the test set during
the training process, we need to frequently conduct global testing
which is very time consuming. For most experiment scenarios, we
perform a global evaluation once per epoch. For models like Light-
GCN and CDAE that require many epochs to converge, we conduct
global evaluations intermittently, with intervals ranging from once
every 5 epochs to once every 25 epochs, depending on the model’s
convergence speed and computational cost. Due to the different con-
vergence speeds of different recommendation models, we selected
50 epochs for GMF and NeuMF, 300 epochs for LightGCN, and 500
epochs for CDAE. As for other model parameters, we maintained
consistency with the descriptions provided by the authors. All code
and hyperparameter choices, as well as training logs and results
can be found at https://github.com/bachml/EvalDenoisingRec.

4.2.2 Evaluation protocols. Following [16, 35], we divided the dataset
into training set, validation set, and clean test set with an 8:1:1 ratio.
3https://www.yelp.com/dataset
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Table 2: Recommendation Performance on early stop epoch. R stands for Recall and N stands for NDCG. Underlined values
represent the best performing method, while Imprv indicates the percentage improvement of ERM-RE compared to standard
ERM (not relative to sub-optimal methods).

Dataset MovieLens Adressa Yelp

Base Model Method R@5 R@20 N@5 N@20 R@5 R@20 N@5 N@20 R@5 R@20 N@5 N@20

GMF

ERM 0.0433 0.1178 0.0542 0.0738 0.1154 0.2178 0.0879 0.1233 0.0148 0.0436 0.0151 0.0245
R-CE 0.0501 0.1196 0.0628 0.0794 0.0961 0.1557 0.0724 0.0915 0.0159 0.0456 0.0160 0.0257
T-CE 0.0486 0.1147 0.0600 0.0766 0.1153 0.2177 0.0880 0.1234 0.0139 0.0451 0.0140 0.0243
DeCA 0.0390 0.0977 0.0520 0.0675 0.1071 0.2147 0.0824 0.1190 - - - -
DeCAp 0.0430 0.1019 0.0522 0.0679 0.0987 0.2006 0.0751 0.1192 - - - -
DCF 0.0426 0.0972 0.0530 0.0668 0.1139 0.2145 0.0868 0.1216 0.0191 0.0572 0.0193 0.0316
UDT 0.0420 0.1018 0.0545 0.0696 0.1285 0.2138 0.0916 0.1212 0.0160 0.0466 0.0158 0.0259

ERM-RE 0.0485 0.1232 0.0632 0.0826 0.1173 0.2032 0.0850 0.1148 0.0141 0.0439 0.0142 0.0240

Imprv 12.01% 4.58% 16.61% 11.92% 1.65% -6.70% -3.30% -6.89% -4.73% 0.69% -5.96% -2.08%

NeuMF

ERM 0.0439 0.1179 0.0542 0.0728 0.1619 0.3119 0.1257 0.1746 0.0116 0.0375 0.0115 0.0201
R-CE 0.0543 0.1215 0.0647 0.0816 0.0805 0.1132 0.0691 0.0795 0.0125 0.0382 0.0124 0.0208
T-CE 0.0453 0.1153 0.0537 0.0719 0.1631 0.3094 0.1243 0.1725 0.0114 0.0384 0.0114 0.0203
DeCA 0.0070 0.0198 0.0085 0.0122 0.1702 0.3123 0.1314 0.1809 - - - -
DeCAp 0.0321 0.0801 0.0361 0.0516 0.1693 0.3140 0.1296 0.1788 - - - -
DCF 0.0328 0.0991 0.0430 0.0619 0.1611 0.3117 0.1254 0.1744 0.0157 0.0499 0.0157 0.0271
UDT 0.0290 0.0937 0.0401 0.0599 0.1654 0.3106 0.1289 0.1766 0.0151 0.0451 0.0150 0.0248

ERM-RE 0.0539 0.1180 0.0667 0.0823 0.1645 0.3088 0.1258 0.1734 0.0109 0.0369 0.0106 0.0192

Imprv 22.78% 0.08% 23.06% 13.05% 1.61% -0.99% 0.08% -0.69% -6.03% -1.60% -7.82% -4.47%

CDAE

ERM 0.0418 0.1148 0.0525 0.0727 0.1688 0.3100 0.1303 0.1776 0.0197 0.0577 0.0201 0.0323
R-CE 0.0444 0.1267 0.0561 0.0791 0.1487 0.2322 0.1171 0.1451 0.0200 0.0577 0.0201 0.0322
T-CE 0.0416 0.1144 0.0523 0.0726 0.1696 0.3085 0.1305 0.1770 0.0224 0.0653 0.0227 0.0365
DeCA 0.0354 0.1086 0.0445 0.0661 0.1619 0.3187 0.1216 0.1771 - - - -
DeCAp 0.0367 0.1096 0.0449 0.0668 0.1446 0.2752 0.1063 0.1499 - - - -
UDT 0.0364 0.1050 0.0408 0.0636 0.1747 0.3135 0.1325 0.1818 0.0252 0.0708 0.0255 0.0400

ERM-RE 0.0479 0.1223 0.0606 0.0801 0.1688 0.3100 0.1303 0.1776 0.0203 0.0596 0.0191 0.0322

Imprv 14.59% 6.53% 15.43% 10.18% 0.00% 0.00% 0.00% 0.00% 3.05% 3.29% -4.98% -0.31%

LightGCN

ERM 0.0559 0.1275 0.0680 0.0858 0.1238 0.2226 0.0937 0.1281 0.0189 0.0532 0.0192 0.0302
R-CE 0.0525 0.1241 0.0660 0.0838 0.1214 0.2234 0.0920 0.1281 0.0127 0.0376 0.0132 0.0211
T-CE 0.0567 0.1382 0.0693 0.0907 0.1214 0.2077 0.0930 0.1224 0.0146 0.0418 0.0159 0.0246
DeCA 0.0390 0.0995 0.0420 0.0612 0.0728 0.1384 0.0542 0.0770 - - - -
DeCAp 0.0491 0.1231 0.0596 0.0806 0.1134 0.2251 0.0822 0.1209 - - - -
DCF 0.0432 0.1178 0.0581 0.0775 0.1247 0.2188 0.0946 0.1278 0.0194 0.0575 0.0200 0.0321
UDT 0.0353 0.0932 0.0480 0.0626 0.1247 0.2247 0.0948 0.1299 0.0180 0.0514 0.0178 0.0286

ERM-RE 0.0581 0.1364 0.0702 0.0915 0.1189 0.1992 0.0906 0.1171 0.0193 0.0547 0.0196 0.0311

Imprv 3.94% 6.98% 3.24% 6.64% -3.96% -10.51% -3.31% -8.59% 2.12% 2.82% 2.08% 2.98%

We report results using two widely utilized metrics in the denoising
recommendation domain: NDCG@K and Recall@K, with K values
set at 5 and 20 for all datasets. To characterize the differences across
different random seeds, we ran experiments 3 times with different
seeds on MovieLens and Adressa, and 2 times on Yelp. It should be
noted that our experiments require frequent global evaluations on
the test set, making our work very time-consuming. Repeating the

Yelp experiments twice already reached the upper limit of what our
limited experimental equipment could handle.

4.2.3 Hyperparameters selections. Regarding the hyperparameters
of the denoising methods, we strictly followed the settings claimed
by the authors whenever they were mentioned in the respective
papers. For the DeCA method, the authors provided sufficient hy-
perparameters, so we adopted their exact settings. Considering
that the hyperparameters of denoising methods might be sensitive
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Figure 2: Evolution of NDCG@20 on test sets during model training for different recommendation models and datasets. Lines
represent mean performance across multiple seeds, with shaded areas showing variance. Markers indicate early stopping
points selected based on minimum validation loss.

to different datasets, we performed a degree of hyperparameter
tuning for experimental settings where the authors did not provide
parameters, to ensure that these methods were not unfairly under-
estimated. For the R-CE and T-CE methods, the authors provided
hyperparameters for the Adressa and Yelp datasets. We conducted
a simple grid search within the authors’ suggested ranges for the
Movielens dataset. For the DCF method, the authors provided hy-
perparameters for the GMF and NeuMF models but not for the
LightGCN model. We performed a simple grid search on LightGCN
and achieved good performance. For the UDT method, with its four

hyperparameters, conducting a grid search across all possible com-
binations proved impractical. We applied the default parameters
provided by the authors on GitHub across all scenarios, and UDT
still achieved satisfactory performance, indicating that the UDT
method is not particularly sensitive to parameter selection.
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(a) Validation Loss (b) Recall@20

Figure 3: Performance of various denoising methods on the
NeuMF model for the Adressa dataset.

5 Results and Analysis
Figure 2 shows the evolution of true performance45 on the test
set for various denoising methods during training The nodes on
each line indicate the early stopping points selected based on mini-
mum validation loss. Performance metrics at these early stopping
points can be found in Table 2. Note that since the DCF method
did not provide experiments on the CDAE model and is difficult to
implement on the CDAE model, we don’t report its performance.

Based on our experiments, we observe the following findings:

5.1 The Dilemma of Model Selection
By observing Figure 2, we have identified a systemic issue: existing
model selection mechanisms based on validation set loss largely fail
in denoising recommendation tasks. Specifically, almost all methods
exhibit a phenomenon where the early stopping point (marked by
nodes in the figures) does not align with the best performance point
on the test set. With the exception of the DCF method performing
well on the Yelp dataset, other scenarios do not show reliable model
selection patterns. (The performance on the Adressa dataset is even
more unusual, which we will discuss in the next section.)

This inconsistency further suggests that there may be complex
distribution differences between validation and test sets, making
model selection signals unreliable. Although robust machine learn-
ing in the computer vision field indicates that validating the relia-
bility of model selection using noisy validation data under specific
noise assumptions is possible [4], these prerequisites do not seem
to be met in the recommender system domain. This phenomenon
suggests two issues: (1) the benchmarking reported in existing pa-
pers on denoising recommendations may be unreliable, and (2) we
need to rethink model selection strategies in environments with
noise, potentially developing validation mechanisms more robust
to distribution differences, or exploring adaptive training methods
that do not require validation sets.

4The performance of the DeCA [36] is significantly worse compared to other methods,
which is consistent with the experimental results reported in [5].
5Similar to [5], we found that DeCA [37] cannot execute with reasonable GPU storage
on large datasets such as Yelp, therefore we are unable to provide results for DeCA on
the Yelp dataset.

Method R@5 R@20 N@5 N@20

R-CE 0.0501 0.1196 0.0628 0.0794
R-CE-RE 0.0471 ↓ 0.1174 ↓ 0.0581 ↓ 0.0759 ↓
T-CE 0.0486 0.1147 0.0600 0.0766

T-CE-RE 0.0471 ↑ 0.1174 ↑ 0.0602 ↑ 0.0759 ↓
DeCA 0.0390 0.0977 0.0520 0.0675

DeCA-RE 0.0413 ↑ 0.0973 ↓ 0.0526 ↑ 0.0669 ↓
DeCAp 0.0430 0.1019 0.0522 0.0679

DeCAp-RE 0.0434 ↑ 0.1027 ↑ 0.0511 ↓ 0.0675 ↓
DCF 0.0426 0.0972 0.0530 0.0668

DCF-RE 0.0474 ↑ 0.1187 ↑ 0.054 ↑ 0.0736 ↑
UDT 0.0420 0.1018 0.0545 0.0696

UDT-RE 0.0445 ↑ 0.1023 ↑ 0.0563 ↑ 0.0705 ↑
Table 3: Performance comparison of denoising methods with
and without Revisiting Evaluation (RE) on the MovieLens
dataset using GMF model. ↑ indicates improvement over the
baseline method, ↓ indicate performance decrease.

5.2 Denoising Effectiveness in Highly Noisy
Datasets

In Figure 2, we notice that all denoising methods on the Adressa
dataset show a trend of performance degradation as training pro-
gresses. In this section, we will delve deeper and further discuss
whether denoising methods can truly achieve robust models on
datasets with low signal-to-noise ratios like Adressa. Figure 3 shows
that on the Adressa dataset with a noise ratio as high as 60.67% (see
Table 1), the performance of various denoising methods presents
a concerning trend. First, Figure 3(a) demonstrates that almost all
denoising methods show continuously increasing validation loss
from the beginning of training, while Figure 3(b) shows a continu-
ous decline in test set performance across all denoising methods,
indicating that the model may not have truly learned robust repre-
sentations against noisy interactions. More importantly, all methods
achieve similar recall rates in the early training stages, but their
performance continuously degrades as training epochs increase.
Current denoising methods may not have truly learned how to han-
dle noisy interactions. The final performance of the model seems to
depend more on "luckily" stopping at a higher performance point
in the early training stages, rather than truly learning the ability
to distinguish between genuine preferences and noisy interactions.
In fact, many denoising methods set the early stopping interval
to be very small, which gives an ineffective denoising method the
opportunity to randomly achieve high performance on the Adressa
dataset. Noting that Adressa has the lowest signal-to-noise ratio
among the three commonly used datasets (in addition to a noise
rate as high as 60.67%, we observe that Adressa also has very lim-
ited interaction data per user), this suggests that existing denoising
methods may have unnoticed limitations, and their applicability in
extreme noise scenarios needs to be reassessed.
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5.3 Effects of Model Selection in Denoising
Recommendation

Analyzing the experimental results, we found that on theMovieLens
dataset, our proposed ERM-RE method can achieve performance
comparable to or even better than specially designed denoising
methods. These results suggest that in denoising recommendation
tasks, simply by improving validation set sampling methods, it may
be possible to achieve performance comparable to complex denois-
ing algorithms without introducing additional model complexity.

A natural question arises: can our modified evaluation method
also be used to enhance existing denoising recommendation meth-
ods? Table 3 shows the performance comparison between origi-
nal denoising methods and their RE versions (incorporating our
proposed evaluation strategy) when using the GMF model on the
MovieLens dataset. The results show that among the six denoising
methods, T-CE, DCF, and UDT achieve performance improvements
after incorporating the RE strategy. However, not all denoising
methods benefited from this approach. We observed that the R-CE
method experienced a slight decrease in performance after apply-
ing the RE strategy, possibly because R-CE itself already handles
high-loss samples by adjusting sample weights, creating functional
overlap with the RE strategy, which may lead to excessive denoising
when combined.

In summary, these results indicate that improving model se-
lection methods to further enhance denoising recommendation
systems is feasible. However, different denoising methods have
distinct core mechanisms and working principles, resulting in vary-
ing compatibility with the RE strategy. For methods that already
have built-in sample reweighting mechanisms (such as R-CE), di-
rectly applying RE may not bring additional benefits and might
even produce negative effects. Therefore, we believe future research
could explore customized validation set sampling strategies tailored
to different denoising methods, which may further improve the
performance and stability of denoising recommendation systems.

5.4 Performance Inconsistencies Across
Scenarios

Based on Figure 2, we observed a phenomenon worthy of attention:
in current research, no single denoising method has been found to
perform excellently across all experimental scenarios. This lack of
a universal solution may reflect the complexity faced in the field of
denoising recommendation.

When comparing specially designed denoising methods with the
basic ERM method, experimental data indicates that the former has
not demonstrated the expected widespread advantages. Notably, in
specific dataset-model combinations, the basic ERM method com-
bined with the RE strategy performs comparably to some complex
denoising techniques, and in some cases even outperforms them.

This inconsistency in performancemay be influenced bymultiple
factors, including but not limited to: differences in noise distribution
across datasets, the compatibility between model architectures and
denoising methods, and limitations in our current understanding
of the nature of noise. Based on these findings, we believe future
research directions may need to focus more on solutions targeted at

specific scenarios rather than pursuing universally applicable meth-
ods. Additionally, in-depth research into noise generation mecha-
nisms and their impact patterns may provide important insights
for developing more effective denoising strategies.

6 Discussion
Based on our analysis in the previous section, we propose two path-
ways to enhance the reproducibility of denoising recommendation.

6.1 Underfitting Issue Due to Epoch Selection
Many previous works set the maximum number of training epochs
to 10. This might be because validation loss tends to continually
increase as the model fits noise, leading to model selection favor-
ing earlier epochs, while increasing the number of epochs seem-
ingly doesn’t affect training results. However, this doesn’t mean
the model stops improving on the test set (as shown in Figure 2). In
fact, except for the Adressa dataset, models trained for fewer than
10 epochs are underfitted on the test set.

From our experimental results, we observe that on theMovieLens
dataset, almost all models show continuously improving perfor-
mance trends within 50 epochs. The LightGCN model in particular
continues to improve even after 300 epochs. This suggests that
stopping training too early may prevent models from fully learning
useful patterns in the data, thereby reducing recommendation per-
formance. Therefore, we recommend researchers consider longer
training cycles in their experimental design to give models suffi-
cient time to learn true user preferences, especially on datasets with
lower noise ratios.

6.2 Limitations of Fine-grained Early Stopping
Many previous works set very fine-grained early stopping criteria,
evaluating models every few hundred iterations based on validation
loss and treating iteration steps as hyperparameters. Given the high
variance characteristics of models in early training stages, treating
iteration steps as hyperparameters essentially performs grid search
on test performance using unreliable validation set metrics. Our
experimental results show that model performance often fluctuates
during training, especially in early stages. As shown in Figure 2,
different random seeds lead to performance curves with varying
fluctuation patterns under the same model architecture, and overly
fine-grained early stopping strategiesmay result inmodel selections
based on accidentally captured performance peaks rather than true
denoising capabilities.

To improve reproducibility of denoising recommendation meth-
ods, we suggest researchers adopt coarser-grained early stopping
strategies, such as evaluating once per epoch rather than every
few hundred iterations. Researchers should also clearly distinguish
between true denoising effects and simple hyperparameter opti-
mization effects, avoiding tuning the number of training steps as
an implicit hyperparameter to more accurately evaluate the effec-
tiveness of different denoising methods.

7 Summary and Future work
In this study, we examined the effectiveness and stability of de-
noising methods in recommendation systems, finding that model
selection mechanisms based on validation set loss are generally
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unreliable in denoising recommendation tasks. Experiments show
significant mismatches between minimum validation loss points
and actual best performance points on the test set, especially in
high-noise datasets. This distribution shift between validation and
test sets may be one of the fundamental reasons for the unsta-
ble performance of existing denoising methods, and is a key issue
currently overlooked in research. In future work, we will be in-
terested in discovering the patterns in generalization capabilities
of denoising recommendation across more datasets, despite the
high computational costs associated with frequent global unbiased
evaluations on large-scale datasets.

We hope our work can draw the research community’s attention
to the model selection issue in denoising recommendation, encour-
age a re-examination of the basic assumptions behind existing de-
noising methods, and ensure that future denoising recommendation
research can be built on the foundation of reliable evaluation.
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