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Obtaining a group velocity higher than the speed of sound in a waveguide is a challenging task in acoustic
wave engineering. Even more challenging is to achieve this velocity increase without any intervention with
the waveguide profile, such as narrowing or widening, and particularly without interfering with the passage by
flexible inclusions, either passive or active. Here, we approach this problem by invoking concepts from non-
Hermitian physics, and imposing them using active elements that are smoothly sealed within the waveguide
wall. In a real-time feedback operation, the elements induce local pressure gain and loss, as well as non-local
pressure integration couplings. We employ a dedicated balancing between the control couplings, derived from
lattice theory and adjusted to the waveguide system, to drive the dynamics into a stable parity-time-symmetric
regime. We demonstrate the accelerated propagation of a wave packet both numerically and experimentally in
an air-filled waveguide, and discuss the trade-off between stabilization and the achievable velocity increase. Our
work prepares the grounds for advanced forms of wave transmission in continuous media, enabled by short and
long range active couplings, created via embedded real-time feedback control.

I. INTRODUCTION

Non-Hermitian systems, where interactions and exchange
of energy with the surrounding environment are allowed, have
been shown to exhibit unique properties in recent years1,2.
Their effective non-Hermitian Hamiltonians endow excep-
tional properties and topologies that go beyond conventional
Hermitian counterparts. A prime example is parity-time (PT)
symmetry and the emergence of exceptional points (EPs),
which has garnered great research interest3,4. The eigenvalues
and eigenstates of these PT-symmetric systems coalesce in the
parameter space, and real eigenvalues are possible with com-
plex Hamiltonians. Initially a purely mathematical model5,6,
the concept was later successfully tested in photonic systems
with balanced loss and gain potentials thanks to the equiv-
alence between the paraxial electromagnetic wave equation
and the Schrödinger equation7. Since then, numerous PT-
symmetry and EP-related effects have been discovered, which
suggested new functionalities and applications by tailoring the
complex energy profile of the systems under study, including
single-mode lasers8, enhanced sensitivity9, unidirectional in-
visible cloaking10,11, and so on.

In the field of acoustics and elastodynamics, researchers
have studied similar concepts and revealed a plethora of in-
triguing phenomena12–18. Because of the absence of natural
gain materials, a common approach is implementing an equiv-
alent model with only lossy or lossless media, leaving part
of the parameter space untapped. Although these systems are
successful in terms of constructing a complex effective Hamil-
tonian, recent studies have suggested that certain effects can
only be induced by real gain-loss modulations19–21. The use of
gain media introduces external energy and broadens the utility
of the parameter space. Several previous attempts have imple-
mented real gain media using different techniques, such as

electro-thermoacoustic coupling22,23, background airflow24,
energy injection25,26, or active control elements27,28. Never-
theless, the non-Hermitian phenomena demonstrated so far
have been focused mostly on the property of nonreciprocity,
and less on the control of wave propagation velocity. In ad-
dition, the common realizations of active couplings, in par-
ticular in acoustic waveguides, involve either alternations of
the waveguide geometry, or placement of the actuators at the
waveguide cross-section27,29,30.

In this work, we address spatially continuous media, such
as acoustic waveguides, hybridized with discretely-spanned
active elements, which are seamlessly embedded in the
waveguide wall. We program these elements to actively con-
trol the wave propagation velocity in a plain waveguide with
a uniform cross-section. This is useful for applications for
which the passage of fluid through the waveguide cannot be
blocked. Motivated by control schemes for purely discrete
PT-symmetric media, such as lattices31,32, we derive the re-
quired couplings to speed-up wave packet propagation in the
waveguide. Specifically, the active units control the onsite loss
and gain profiles, as well as the internal couplings between
the units, to create an effective PT-symmetric system. Utiliz-
ing the concept of feedback-based media30,33? –40, we realize
these couplings in a real-time closed loop process.

At the first stage, we develop a theoretical model to describe
the system and study the impact of different parameters on
the propagation characteristics of the waves, which is further
validated by finite element simulations. The results suggest
that despite the dynamical difference between purely discrete
and hybrid continuous-discrete structures due to the inevitable
responses between the sites of the latter, such as time delays,
near field effects, etc., a faster group velocity compared to the
background medium is possible in the waveguide system with
judiciously tailored modulation profiles.
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FIG. 1. The active acoustic metamaterial model and its spectral properties. (a) The waveguide schematics. (b) Analogous lattice schematics.
(c)-(f) Frequency dispersion of an infinite lattice system. (c) Nominal stable, γ = 0, η = 1. (d) Unstable, γ = 0.58, η = 1. (e) PT-symmetry-
restored stable, γ = 0.58, η = 2. (f) Controlled stable, γ = 0, η = 2. (g)-(j) Frequency dispersion of an infinite waveguide system at low
frequencies (β = 1). (g) Nominal stable, γ = 0, η = 1. (h) Unstable, γ = 0.58, η = 1. (i) PT-symmetry-restored stable, γ = 0.29, η = 2. (j)
Controlled stable, γ = 0, η = 2. (k) Sketch of the finite element (FE) model setup for numerically calculating the dispersion curves.

Owing to the central role that stability plays in actively con-
trolled wave systems41, we derive the criteria for stable wave
propagation in the metamaterial so that wave amplitude is not
growing during the propagation. We confirm our theoretical
predictions of obtaining a group velocity higher than the speed
of sound in air by carrying out experiments in an acoustic
waveguide. Our results showcase the implementation of ac-
tive acoustic wave control in combination with PT-symmetry
to support stable faster-than-sound dynamic pulse transmis-
sion. The work facilitates the spatio-temporal modulation of
signals with real-time tuning capabilities and may find appli-
cations in acoustic communication and more.

II. THE TARGET WAVEGUIDE MODEL

We consider an acoustic waveguide that supports propaga-
tion of sound pressure waves p in a fluid of mass density ρ0
and bulk modulus b0, as illustrated in Fig. 1(a). Active ele-
ments are connected to the waveguide wall in a periodic spac-
ing a, and facing inwards. The elements, labeled by A and B,
respectively induce local gain +iγ and loss −iγ, as well as an

additional coupling η−1 between each A-B pair. The actively
controlled waveguide thus constitutes a hybrid continuous-
discrete medium. The role of the active elements is to increase
the wave group velocity inside the waveguide, vg , beyond the
background speed of sound c. As the wave propagation must
be dynamically stable, i.e., with non-growing amplitudes, it is
required to derive a relation between the parameters γ and η
so that two conditions hold: vg > c, and the system’s stability
is preserved.

We then consider an auxiliary model, an analogous mass-
spring lattice, which is inherently discrete, Fig. 1(b), and de-
rive the γ−η relation for this model first. Each lattice site has
a single degree of freedom, i.e., the vertical displacement y.
The masses M0 and spring constants K0 are analogous to the
mass density and bulk modulus of the fluid as M0 = ρ0aS0

and K0 = b0S0/a, where S0 is the waveguide cross-section,
and the velocity v = ẏ maps to the pressure p. The cou-
pling ηK0 may then be regarded as a different spring con-
stant, and the loss (gain) ∓iγZ0 as an onsite viscous damper
(anti-damper) connected to ground, where Z0 =

√
M0K0 is

the mechanical impedance. The dynamics of the nth A and B
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sites of the dimer lattice can be formulated as

ω−2
0 ÿA/B

n = y
B/A
n∓1+ηyB/A

n −(1+η)yA/B
n ±γω−1

0 ẏA/B
n , (1)

where ω0 =
√

K0/M0. We insert the solution
[
yAn yBn

]T
=[

yA yB
]T

ei(kna−ωt) in Eq. (1) , where k is the wavenum-
ber, and yA, yB are the respective wave amplitudes. Defining
the normalized frequency Ω = ω/ω0, we then obtain the aug-
mented eigenvalue problem (ΩI −H) y = 0, with the aug-
mented eigenvector y including yA, yB , and two auxiliary
states. The effective 4× 4 Hamiltonian H is given by

H =

(
0 I

H0 + (1 + η)I iγσz

)
, H0 =

(
0 f
f∗ 0

)
, (2)

where f = −
[
η + e−ika

]
and σz is the Pauli matrix. For gen-

eral η and γ this Hamiltonian is non-Hermitian1. The solution
of the eigenvalue problem in (2) gives the lattice dispersion re-
lation, and consequently the required relation between γ and
η for dynamical stability32. This is illustrated in Fig. 1(c)-(f).
For the nominal lattice, i.e. for γ = 0 and η = 1, the spectrum
is purely real, as expected, Fig. 1(c), where the top band is idle
(due to the lattice constant folding to a/2). When increasing
γ, for example to 0.58, the spectrum becomes complex-valued
around the band crossing point, turning it into an exceptional
cut4, Fig. 1(d). The time response at the nth node then takes
the form yn(t) ∝ eωItei(kna−ωRt), where ωR and ωI are the
real and imaginary components of the frequency, respectively.
The response thus grows unbounded, indicating the system’s
dynamical instability.

For the particular relation γ∗ =
√
2
(√

η − 1
)
, the lattice

spectrum is restored to be purely real, as illustrated in Fig. 1(e)
for η = 2 and γ = 0.58, while preserving the non-Hermiticity
of the Hamiltonian (2). This transition indicates the restora-
tion of the PT-symmetric phase. For any γ < γ∗ the spectrum
remains real, albeit gapped, Fig. 1(f), thus forming the lat-
tice stability region in the γ − η plane. Remarkably, the new
crossing point of the dispersion curves for γ = γ∗, which is
an exceptional point, occurs at a higher frequency than for the
nominal case, indicating an increase in group velocity. This
increase is given by vg = v0

√
1√
2
γ∗ + 1, suggesting that it is

possible to exceed the Hermitian group velocity v0, and at the
same time to guarantee dynamical stability (see App. A).

Inspired by the results for the lattice system, we now aim at
deriving analogous results for the actual waveguide. We create
the γ and η couplings using feedback control loops involving
the active elements in Fig. 1(a). These elements, positioned
at xn, produce acoustic control velocities vn, and are incorpo-
rated in the field equation as

1

c2
ptt(x, t) = pxx(x, t) + ρ0β

∑
n

v̇n(t)δ(x− xn), (3)

where c is the speed of sound in air, δ(·) indicates the location
of the relevant coupling along the x axis, and β is the ratio
between the active element area Sa and the waveguide cross-
section S0. To generate closed loop dynamics analogous to

(1), the velocity inputs at the A and B sites take the form

vA/B
n (t) =

η − 1

ρ0a

∫ t

0

[pB/A
n (t)− pA/B

n (t)]dt± γ

z0
pA/B
n (t),

(4)
where pA/B

n (t) is a compact form of p(xA/B
n , t), and z0 = ρ0c

is the specific acoustic impedance. In closed loop, the waveg-
uide supports faster-than-sound wave propagation, obeying

1

c2
ptt(x, t) = pxx(x, t)

+ β
∑
n

η − 1

a
(pBn (t)− pAn (t))δ(x− xA

n )

+ β
∑
n

η − 1

a
(pAn (t)− pBn (t))δ(x− xB

n )

+ β
γ

c

∑
n

[
ṗAn (t)δ(x− xA

n )− ṗBn (t)δ(x− xB
n )

]
,

(5)

(see App. B). We calculate the dispersion of Eq. (5) using
the plane wave expansion (PWE) method42, in which a series
solution of traveling harmonic waves, p(x, t) = e−iωtP (x),
is assumed, where P (x) =

∑M
m=−M ei(k+m)b1·xd1p. b1 =

2π
a ê1 and d1 = aê1 respectively span the momentum and the

real spaces, p is the pressure field amplitude, and M is the
approximation order (see App. C). Due to the continuity of the
acoustic medium there is an infinite number of bands, where
M that we choose for the calculation defines how many of
these bands are plotted. The resulting spectrum is depicted in
Figs. 1(g)-(j) in low frequencies for an air -filled waveguide.
The waveguide cross-sectional area is assumed equal to that
of the active elements, i.e. β = 1, with a spacing of a = 5
cm, and M = 4.

Fig. 1(g) depicts the spectrum of the uncontrolled waveg-
uide. The crossing point of the main band with its folding,
which occurs at ka = π, directly implies the slope of 343
m/s, which, as expected, equals c, the speed of sound in air.
We then begin to increase γ while keeping η = 1. Similarly
to the lattice system, an imaginary spectrum appears, as de-
picted in Fig. 1(h) for γ = 0.58. To eliminate the imaginary
spectrum we increase η as well. For η = 2, the balance is
obtained for γ = 0.29, as shown in Fig. 1(i). In the general
case, we obtain the balancing formula for the waveguide, and
the corresponding group velocity, as

γ∗ = 1√
2
(
√
η − 1)µ, vg = v0

√
β 1√

2
γ∗ + 1, (6)

where µ is a small fine-tuning term required for higher val-
ues of η, and/or β < 1. Decreasing γ below the relation in
Eq. (6) keeps the spectrum real, albeit gapped, as in the lat-
tice, as illustrated in Fig. 1(j) for η = 2 and γ = 0. The
waveguide stability criterion in Eq. (6) is slightly different
from the lattice criterion, resulting in smaller gain/loss values
for a given η. There might be several reasons for this, in-
cluding the inherent differences between discrete and hybrid
continuous/discrete systems, the fact that we attach the active
elements only to one of the waveguide walls, and more. The
resulting group velocity increase follows a similar law as for
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FIG. 2. Waveguide realization in a feedback control setup using current driven electroacoustic transducers. (a) Schematic of the electrodynamic
speaker driven by a 2.5 kHz current source. (b) The controller structure. (c) The waveguide dispersion relation obtained from PWE for a = 5
cm and β = 0.32, featuring the uncontrolled case γ = 0, η = 1 (black), and the controlled cases γ = 0.16, η = 1.5 (σ = 1) (purple),
γ = 0.31, η = 2 (σ = 1.055) (green), and γ = 0.60, η = 3 (σ = 1.161) (blue). (d) Time domain responses calculated via FE. (e) The
normalized group velocities obtained from the time domain simulations (circles), plotted on top of the analytic expression Eq. (6) (gray).

the lattice. This implies that in order to achieve a required vg ,
the same γ as in the lattice balances a stronger coupling η in
the waveguide. For example, γ = 0.58 balances η = 3.42.

To confirm the results obtained via the PWE, we calcu-
late the waveguide’s frequency dispersion using finite element
(FE) analysis. As shown in Fig. 1(k), the domain is mod-
eled as two-dimensional, representing a cross-section of the
waveguide with the main propagation axis x and the vertical
axis y. The height of the waveguide h and the actuator length
d are explicitly included in the model. The actuators are rep-
resented by velocity sources and point probes are used at the
waveguide wall opposite to the actuators (similar to the exper-
imental setup, described in Sec. IV) to obtain the pressures pA

and pB . Using these pressure values, the control law given in
Eq. (4) is implemented to drive the velocity sources and create
the required couplings. The ends of the waveguide section of
length a, representing one unit cell, are terminated using pe-
riodic boundary conditions. All other boundaries are set to be
sound hard. The dispersion curves were calculated by com-
puting the eigenvalues of the system with different ka values
prescribed at the periodic boundary conditions. The results
are depicted in Fig. 1(g)-(j) in dashed cyan on top of the PWE
results. The FE and the PWE results nearly coincide.

III. CONTROLLER DESIGN

Since it is not possible to directly impose acoustic veloc-
ity, we realize the control velocity sources using electroacous-
tic transducers, specifically by electrodynamic loudspeakers,

which replace the ideal actuators in Fig. 1(k). The control
setup of each unit cell then consists of two speakers, which
generate control velocities vA and vB , as well as two micro-
phones, which measure the pressure signals pA and pB . Based
on these measurements, the actuators create the +iγ, −iγ, and
the η couplings in real time.

The structure of one actuator is detailed in Fig. 2(a). This is
an electrodynamic loudspeaker within a closed cavity, which
features a diaphragm mechanically driven by a voice coil,
placed in a permanent magnetic field. At low frequencies, the
loudspeaker can be approximated as a mass-spring-damper
system, and the diaphragm motion at small displacements can
be described in the Laplace domain by43,44

Zmo(s)v(s) = −Sdp(s) +Bli(s), (7a)
u(s) = Zeb(s)i(s) +Blv(s). (7b)

Here, Zmo(s) = Mmss+Rms+
1

Cmss
and Zeb(s) = Les+Re

are, respectively, the open circuit mechanical and the blocked
electrical impedance of the loudspeaker, where Mms, Rms,
and Cmc represent its moving mass, mechanical damping, and
the total mechanical compliance. Sd is the effective area of
the diaphragm, with p being the total sound pressure acting
on it, which includes both the incident and scattered pressure.
v is the vibration velocity of the speaker diaphragm, i is the
current in the voice coil, and u is the input voltage between
the electrical terminals. Bl is the force factor of the speaker,
where B is the magnetic field strength and l is the length of the
voice coil in the magnetic field. Re is the DC resistance, and
Le is the self-inductance of the voice coil. To avoid the impact
of the coil inductance Le on the system stability, we designed
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FIG. 3. Experimental demonstration of accelerated wave packet propagation. (a) Schematic of the experimental setup. (b) Photograph of the
waveguide, comprising 8 active sites. (c) The measured waveform at microphone Mic4 relative to microphone Mic1 as a function of time for
η = 1, black, η = 1.5, purple, and η = 2, green. (d) Zoom-in of the measured waveform in (c). (e) Comparison of the calculated group
velocities with the measured results. Dashed - the theoretical values obtained from Eq. (6). Dotted - the measured values. Solid - the measured
values normalized by the Hermitian velocity of 343 m/s.

our loudspeakers to be driven by current sources. We set the
control law in each unit cell to

iA/B(s) = (GS±sGγ)p
A/B(s)+Gη

[
pB/A(s)− pA/B(s)

]
,

(8)
which results in the acoustic velocity commands

vA/B(s) =
−Sd +Bl(GS ± sGγ)

Zmo(s)
pA/B(s)

+
BlGη

Zmo(s)

[
pB/A(s)− pA/B(s)

]
.

(9)

Comparing Eq. (9) with Eq. (4), and assuming Zmo(s) ≈
Mmss in our working frequency range, the controller gains
take the form

GS =
Sd

Bl
, Gγ =

γMms

Blz0
, Gη =

(η − 1)Mms

ρ0aBl
. (10)

The structure of the control law in Eq. (8) with Eq. (10) is
schematically illustrated in Fig. 2(b). The gain GS is respon-
sible for the cancellation of the internal physical feedback of
the loudspeaker, whereas Gγ and Gη create the γ and the η
couplings, respectively. We then demonstrate the performance
of our controlled waveguide using a numerical experiment.
We calculate the controller gains for the cases η = 1.5, 2, 3,
for which the corresponding values of γ = 0.16, 0.31, 0.60 are

numerically obtained from Eq. (6) for µ = 1, 1.055, 1.161.
The dispersion relations of the resulting closed loop, calcu-
lated at low frequencies by PWE, are depicted in Fig. 2(c),
on top of the uncontrolled case η = 1, γ = 0. The spec-
trum slope increases with γ, indicating the expected increase
in group velocity.

A waveguide controlled by the feedback system in Fig.
2(a)-(b) for the above combinations of γ, η, was then simu-
lated in the time domain using FE (with filters added to en-
hance stability, see App. D). The simulated responses to a
Gaussian wave packet are given in Fig. 2(d). The group ve-
locities calculated from these responses are depicted in Fig.
2(e) by circles. The numerical results fit well the analytical
expression Eq. (6), depicted by a curve.

IV. EXPERIMENTAL DEMONSTRATION

To confirm the group velocity increase, an active metastruc-
ture was fabricated, as shown in the schematic in Fig. 3(a),
and the photograph in Fig. 3(b). The sound source is posi-
tioned at the left end of the waveguide, whereas the right end
contains glass wool for sound wave absorption, sealed by a
4 mm thick resin block. The waveguide has a uniform wall
thickness of 4 mm, produced via 3D printing using a resin
material with a density of 1180 kg/m3. The waveguide has



6

a length of 1 m and a square cross-section with dimensions
of 15 × 15 mm2, corresponding to a cutoff frequency for the
plane wave mode of 11467 Hz. The active metamaterial, 20
cm in total length, consists of four unit cells (8 active sites)
positioned in the center of the waveguide. Each unit cell, mea-
suring a = 5 cm, contains two identical loudspeakers on the
top and two identical microphones on the bottom. Two addi-
tional microphones, Mic1 and Mic4, are symmetrically posi-
tioned on the left and right sides of the active metamaterial,
spaced 60 cm apart, to monitor the velocity of acoustic wave
propagation. A controller corresponding to Fig. 2(b) was
designed to regulate the output of the control sources A and
B. This was realized using voltage-controlled current sources
(VCCS), which convert a voltage signal into a proportional
current signal (with unity gain) to drive the loudspeakers, as
detailed in App. E. The output voltage signals of the con-
troller, uoA and uoB , are therefore converted into current sig-
nals, i.e., iA/B = uA/B .

To ensure consistency between the loudspeakers and micro-
phones, careful selections and calibrations were performed.
The Thiele & Small parameters of the loudspeakers were
measured using the Klippel electroacoustic test system. The
following average parameters were obtained: the diaphragm
mass Mms = 0.0689 g, the force factor Bl = 0.606 N/A, the
effective diaphragm area Sd = 72 mm2, leading to β = 0.32,
and the resonance frequency 900 Hz. Electret condenser mi-
crophones were used as the pressure sensors. The microphone
signals were amplified to ensure a sensitivity of S0 = 400
mV/Pa. The controller was designed using analog circuitry
and fabricated using a printed circuit board45. Potentiometers
were used to adjust Gγ and Gη to achieve the desired different
values of γ and η according to Eq. (10), divided by S0. An NI
acquisition card with a sampling rate of fs = 200 kHz was
used to record the microphone signals from Mic1 and Mic4.

The signal supplied to the sound source was a Gaussian
pulse modulated by a 2500 Hz sine wave. Three sets of mea-
surements were conducted with η = 1, 1.5, and 2, respec-
tively, and the corresponding γ was calculated from Eq. (6) to
be 0, 0.16, and 0.29. The measurement results are presented in
Fig. 3(c), with a close-up in Fig. 3(d). These results compare
the pulse waveform over time for the Hermitian case γ = 0,
η = 1 (black) with the non-Hermitian cases η = 1.5 (purple)
and η = 2 (green). Setting the peak time of the pulse recorded
by microphone Mic1 as 0, the peak arrival times at micro-
phone Mic4 are advanced by δt = 0.01 ms and δt = 0.02
ms for η = 1.5 and η = 2, respectively. This confirms that
the acoustic wave speed was increased in the designed active
metamaterial.

The group velocity vg of the sound wave in the metamate-
rial can be determined by the equation l

c − l
vg

= δt, where
l = 20 cm is the total length of the active metamaterial. The
baseline speed c can be obtained as 333 m/s by measure-
ment at the room temperature of 20 °C, i.e., c = s/t0, where
s = 60 cm denotes the distance between microphones Mic1
and Mic4, and t0 = 1.8 ms is the time difference between the
pulse arriving at Mic4 and Mic1 in the Hermitian case. There-
fore, for the non-Hermitian cases η = 1.5 and η = 2, the
sound wave velocities in the active metamaterial are 339 m/s

and 345 m/s, respectively. Fig. 3(e) compares experimental
and theoretical results. The discrepancy between the theo-
retical and experimental results is attributed to the measured
baseline sound velocity c = 333 m/s being lower than the
actual value of 343 m/s at room temperature. This deviation
primarily stems from measurement errors, including thermo-
viscous boundary layer effects slowing down the sound veloc-
ity, a misalignment between the acoustic and physical centers
of microphones Mic1 and Mic4, and thermal deformation of
the waveguide structure. Taking the actual room temperature
sound speed c = 343 m/s, the corrected experimental results
become vg = 349 m/s for η = 1.5 and vg = 355 m/s for
η = 2. These corrected values, shown as the solid line in Fig.
3(e), align closely with the theoretical results.

V. DISCUSSION AND CONCLUSION

To conclude, we have designed an acoustic waveguide sys-
tem that supports wave propagation at group velocities higher
than the speed of sound. The velocity increase was obtained
via active couplings, which were created by acoustic trans-
ducers, discretely spaced and attached to the waveguide wall.
Current-driven loudspeakers enabled real-time control of the
acoustic field via sound pressure measurements, acquired by
microphones at the opposite wall.The measurements were
processed by the controllers to realize an onsite gain/loss γ,
and inter-site coupling η, related by Eq.(6). This relation
was modified from lattice systems to address the challenge of
merging a spatially discrete coupling pattern into the continu-
ous waveguide medium, achieving the desired dynamics while
maintaining stability. The stability was manifested by the real
spectrum of the resulting PT-symmetric non-Hermitian sys-
tem, with the group velocity growth proportional to the square
root of γ. FE and PWE simulations suggested that, theoreti-
cally, the waveguide system was stable for all the achieved
group velocities. In our experiment, we managed to main-
tain stable propagation for a velocity increase of up to 355
m/s from the nominal 343 m/s, and this limit can be further
pushed by optimizations of the control setup and algorithm.

Our active coupling approach is advantageous in applica-
tions that forbid waveguide cross-section blocking, and/or
require long-range coupling between multiple active cells.
Compared to purely passive PT-symmetric systems, the active
approach expands the utility of the parameter space and could
achieve unique functionalities that are otherwise not possible
without injecting external energy. More importantly, since the
onsite potential and coupling are realized by acoustic trans-
ducers and a feedback control scheme, the modulation profile
is not restricted to a PT-symmetric regime demonstrated in
this work. We anticipate the platform to be easily configured
and more complex interactions, including on-demand non-
local effects, can be synthesized, which could lead to other
novel wave properties. The stable operation also offers great
flexibility in its real-world applications. Finally, the real-time
feedback system offers dynamic tuning of the wave response,
which is difficult to achieve using passive structures. It is
hoped that our active metamaterial platform and experimen-
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tal demonstration of supersonic wave propagation will pave
the way for new complex wave-guiding capabilities.
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Appendix A: Group velocity control in the lattice model

The analogous lattice model in Fig. 1(b) is represented by
the augmented eigenvalue problem in (2), which reads

Ω4 −
(
2(1 + η)− γ2

)
Ω2 + (1 + η)2 − ff† = 0. (S1)

Its solution is given by

Ω2 = 1
2

(
2(1 + η)− γ2

)
± 1

2

√
δ, (S2)

with

δ =
(
2(1 + η)− γ2

)2 − 4
(
(1 + η)2 − ff†) . (S3)

The requirements for real spectrum (with minimum at
cos ka = −1), therefore become gives the PT symmetry con-
dition γ ≤ γ∗ of Eq. (6). We then obtain (1 + η)2 − ff† =
2η(1 − cos ka), δ = 8η(1 + cos ka), and the dispersion re-
lation of (S2), as well as the corresponding normalized group
velocity, read

Ω =
ω

ω0
=

√√
2γ∗ + 2 ·

√
1±

√
1
2 (1 + cos ka), (S4)

and

vg
ω0

=
∂Ω

∂ka
=

1

4

sin ka√
1 + cos ka

√
γ∗ +

√
2√√

2±
√
1 + cos ka

. (S5)

Since in the Hermitian system (γ = 0, a → a
2 ) we have

ΩH =
√
2 (1− cos ka), (S6)

and

v0
ω0

=
sin ka

2

2
√
2
(
1− cos ka

2

) , (S7)

the ratio between the non-Hermitian and Hermitian group ve-
locities, (S5) and (S7), becomes

vg
v0

=

√
1√
2
γ∗ + 1, (S8)

and is independent of k.

(a)

(b)

(c)

FIG. S1. Realization of the controller of Fig. 2(b). (a),(b) Photo-
graph and circuitry of the Voltage-Controlled Current Sources. (c)
Photograph of the controller.

Appendix B: Group velocity control in the waveguide

Mechanical - electric - acoustic circuits analogy?

Appendix C: The Plane Wave Expansion derivation

We substitute the proposed solution p(x, t) = e−iωtP (x),
with P (x) =

∑M
m=−M ei(k+m)b1·xd1p, b1 = 2π

a ê1 and
d1 = aê1, into the nth unit cell of (5). Using a more gen-
eral formulation r = xd1, k = kb1, and G = mb1, and
acknowledging that ptt, pt transform to frequency domain as
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−ω2p, iωp, we obtain

ρ0ω
2

M∑
m=−M

e−i(k+G)·rp =

M∑
m=−M

b0|k + G|2e−i(k+G)·rp

− β

M∑
m=−M

[
b0
η − 1

a

(
e−i(k+G)·RB − e−i(k+G)·RA

)
+ γz0iωe

−i(k+G)·RA
]
δ(r − RA)p

− β

M∑
m=−M

[
b0
η − 1

a

(
e−i(k+G)·RA − e−i(k+G)·RB

)
− γz0iωe

−i(k+G)·RB
]
δ(r − RB)p,

(S1)

where RA = −a
4d1 and RB = a

4d1 are the actuators locations
measured from the center of the unit cell. Multiplying (S1) by
ei(k+Ĝ)·r, where Ĝ = m̂b1 for m̂ ̸= m, gives

ρ0ω
2

M∑
m=−M

e−i(G−Ĝ)·rp =

M∑
m=−M

b0|k + G|2e−i(G−Ĝ)·rp

− β

M∑
m=−M

ei(k+Ĝ)·r
(
b0
η − 1

a

[
e−i(k+G)·RB − e−i(k+G)·RA

]
+ γz0iωe

−i(k+G)·RA

)
δ(r − RA)p

− β

M∑
m=−M

ei(k+Ĝ)·r
(
b0
η − 1

a

[
e−i(k+G)·RA − e−i(k+G)·RB

]
− γz0iωe

−i(k+G)·RB

)
δ(r − RB)p.

(S2)

Due to the orthogonality of the Fourier series, we have∫
Ac

e−i(G−Ĝ)·rdAc =

{
Ac, G = Ĝ
0, G ̸= Ĝ

(S3)

∫
Ac

f(r)δ(r − Rα)dAc = f(Rα), (S4)

where Ac = a is the unit cell length and the lattice constant.
Integrating (S2) over a unit cell then gives

ρ0ω
2ap̂ = b0|k + Ĝ|2ap̂

− β
(
b0
η − 1

a
eik·(RA−RB)eiĜ·RAe−iG·RB p̂

−
[
b0
η − 1

a
− γz0iω

]
e−i(G−Ĝ)·RA p̂

)
− β

(
b0
η − 1

a
eik·(RB−RA)eiĜ·RBe−iG·RA p̂

−
[
b0
η − 1

a
+ γz0iω

]
e−i(G−Ĝ)·RB p̂

)
,

(S5)

where G ·RA = −π
2m, and G ·RB = π

2m. Using matrix for-

mulation, we define
∑M

m=−M eiĜ·Rĵe−iG·Rj p̂ = Eĵj p̂, where

Eĵj = e
i
[

G1 G2 · · · GN

]′
·Rĵ ·e−iRj ·

[
G1 G2 · · · GN

]
(S6)

and N = 2M + 1 is the total number of terms in the series.
Eq. (S5) then takes the form of the polynomial eigenvalue
problem (

q2ω
2 + q1ω + q0

)
p̂ = 0, (S7)

where

q2 = ρ0aIN ,

q1 = βγz0i
(
EÂA − EB̂B

)
,

q0 = −b0a

 |k + Ĝ1|2
· · ·

|k + ĜN |2


+ βb0

η − 1

a

(
eik·(RA−RB)EÂB − EÂA

+ eik·(RB−RA)EB̂A − EB̂B

)
.

(S8)

We then rewrite (S7)-(S8) in a companion form to obtain an
augmented linear eigenvalue problem

ωPv = Qv, (S9)

where v is the augmented eigenvector of length 2N , and

P =

(
I 0
0 q2

)
, Q =

(
0 I

−q0 −q1

)
. (S10)

The solution of (S9)-(S10) gives the black and orange disper-
sion curves in Fig. 1(g)-(j).

Appendix D: The Finite Element scheme details

The FE model included low pass filters of the form...

Appendix E: The controller structure

The VCCS employed in our experiment, photographed in
Fig. S1(a), were designed using an improved Howland cur-
rent pump circuit46. It integrates the high output of the oper-
ational amplifier ADA4870 with the fast response of the op-
erational amplifier ADA4898. The relation between the out-
put current io and the input voltage ui then becomes io =
R2

R1R6
ui+

R2R3−R1R4

R1R6(R3+R4)
uo, as illustrated in Fig. S1(b). Substi-

tuting the resistor values from Fig. S1(b) yields the output cur-
rent io = ui. The circuit performance was verified via Mul-
tisim simulations. The resulting controller is photographed in
Fig. S1(c).
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