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Double tuned mass damper with
a grounded inerter for structural vibration
control
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Abstract
A Double Tuned Mass Damper (DTMD), which consists of a Tuned Mass Damper (TMD) connected in series with an

undamped TMD, has been proven to be more efficient than a traditional TMD in previous studies. To enhance the

vibration control performance and robustness of DTMD, an innovative type of DTMD for suppressing structural

responses is proposed in this research. This new design includes a DTMD connected to the ground by a linear inerter

(abbreviated as DTMDI). After establishing the analytical model of the DTMDI-structure system, the optimal

configurations of the DTMDI for different values of inertance are obtained using the Balancing Composite Motion

Optimization (BCMO). The effects of the variation in the structural properties as well as the weight and inertance of

DTMDI on the performance and robustness of DTMDI are investigated. The present work indicates that an optimal

DTMDI is much more effective and robust compared with an optimal DTMD with the same weight. Specifically, the

DTMDI configuration with a higher inertance ratio demonstrates increased effectiveness. Moreover, the performance

of the DTMDI surpasses that of a TMDI when both have the same mass and inertance, leading to a considerable

reduction in the additional weight of the vibration absorber on the primary structure when using the DTMDI instead

of the TMDI. While the DTMDI is more robust than both the DTMD and TMD against changes in the structure’s
natural frequency, it does not exhibit the same level of robustness as the TMDI when the natural frequency of the

structure increases.
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Vibration control, double tuned mass damper inerter, tuned mass damper inerter, passive vibration absorber, multi-
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1. Introduction

Suppressing structural vibrations is a crucial re-
quirement for civil structures under natural hazards
(e.g., storms and earthquakes) to ensure comfort for
occupants and structural safety (Balendra et al., 1995;
Shah and Usman, 2022). Vibration control techniques
and strategies have been investigated and successfully
applied to worldwide civil structures (Bui et al., 2023a;
Chang, 1999; Chang and Hsu, 1998; Di Matteo et al.,
2022). One of these techniques is adding one or many
vibration absorbers to the primary structure (Araz and
Elias, 2024; Cao et al., 2024b; Gao et al., 1999; Pisal
and Jangid, 2016; Samali et al., 2004; Tran et al., 2025;
Wu et al., 2005). In this way, the most common damper
type is TMD (including TLCD), because they are simple
and effective dampers (Araz, 2021; Diana et al., 2013;
Gao et al., 1999; Momtaz et al., 2017; Vellar et al., 2019;
Yalla and Kareem, 2000).

TMDs have been utilized to suppress dynamic responses
of structures under different types of loads (e.g., earth-
quakes, wind, or traffic loads). To enhance control per-
formance of traditional TMDs, researchers have developed
advanced types of TMDs (Araz, 2021a, 2024; Araz and
Kahya, 2021; Hui et al., 2024; Kahya and Araz, 2019;Wang
et al., 2022, 2024; Zuo, 2009). For example, Wang et al.
(2024) suggested a novel tuned liquid mass damper for
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vertical vibration control of a large-span cable-stayed bridge
in low-frequency domain, while Araz (2024) used multiple
TMDs connected in parallel (MTMD) to reduce of struc-
tural vibrations. One of these innovative types of TMDs is
inerter-based TMDs which show their noteworthy potential
(Baduidana and Kenfack-Jiotsa, 2024; De Angelis et al.,
2019; De Domenico and Ricciardi, 2018; Marian and
Giaralis, 2014; Pandey and Mishra, 2021; Prakash and
Jangid, 2022).

The concept of inerter was first suggested by Smith
based on the force-current analogy between the electrical
and mechanical networks (Smith, 2002). After that,
Marian and Giaralis developed a tuned mass damper
inerter to reduce the oscillatory motion of structural
systems (Marian and Giaralis, 2014). Pandey and Mishra
introduced the inerter-based compliant liquid column
damper (TLCDI), proving its effectiveness in reducing
dynamic responses for both single-degree-of-freedom
(SDOF) and multi-degree-of-freedom (MDOF) struc-
tures under the recorded motions (Pandey and Mishra,
2021). Likewise, Wang et al. successfully employed
a TLCDI to significantly mitigate the seismic response of
SDOF structures (Wang et al., 2020). Moreover, Di
Matteo et al. presented an innovative optimization pro-
cedure for designing TLCDIs, utilizing a statistical lin-
earization technique that minimizes structural
displacement differences, an essential factor for im-
proving performance (Di Matteo et al., 2022). For dy-
namic vibration absorbers (DVAs), Baduidana and
Kenfack-Jiotsa developed a three-element DVA with
grounded stiffness and an attached inerter, designed
specifically for controlling vibrations in undamped
SDOF structures (Baduidana and Kenfack-Jiotsa, 2024).
Additionally, Kendo-Nouja et al. proposed a grounded
inerter-based DVA that efficiently reduces structural
vibrations under both harmonic and random excitations
(Kendo-Nouja et al., 2024). The outstanding results from
these studies indicate that inerter-based vibration ab-
sorbers far outperform traditional ones, offering a robust
solution for managing vibrations in various structural
applications.

Cao and Tran (2023) introduced an innovative model
of a DTMD. This device works as a passive control
system intended to mitigate structural vibrations. The
DTMD consists of a conventional TMD interconnected
in series with a larger, undamped TMD. The worthy
findings in their research work showed that the DTMD
outperforms a conventional TMD with equivalent mass
when it is used to reduce dynamic responses in struc-
tures. Building upon this foundational work, the present
study proposes an upgraded version of the DTMD. This
innovation version consists of a DTMD connected to the
ground through a linear inerter (denoted as DTMDI).
Obviously, DTMDI is not as simple as TMDI from the
dynamics and structural viewpoints. However, based on

how to connect a DTMDI and a TMDI with the main
structure, the DTMDI is more straightforward than the
TMDI because the DTMDI only needs a link point on
the structure instead of two connection points as the
TMDI.

In order to evaluate the structural vibration control
performance of the proposed DTMDI absorber under
harmonic excitations, a model of a DTMDI integrated
into a SDOF structure under an external force is pre-
sented in Section 2. The optimal parameters of the
DTMDI are then determined using a potential optimi-
zation algorithm in Section 3. Numerical simulations,
results and discussions are presented in Section 4. Fi-
nally, the key conclusions of this work are shown in
Section 5.

2. Analytical model of the
DTMDI-structure system

An analytical model of a SDOF structure equipped with
a DTMDI under an external force excitation is shown in
Figure 1(a). This DTMDI consists of a DTMD linked to
the ground through a linear inerter with an inertance
value of b. It is important to note that the DTMD
comprises two components, an undamped Tuned Mass
Damper (referred to as TMD1) and a regular Tuned
Mass Damper (referred to as TMD2), which are con-
nected in series. The grounded inerter is linked to the
DTMD at the TMD1. The reason why the author only
uses the undamped TMD1 rather than a regular TMD1
was fully explained in Cao and Tran (2023). The mass
and stiffness of TMD1 are M1 and K1, respectively,
while the main parameters of TMD2 are the massM2 and
the stiffness K2 and the damping coefficient C2. The key
parameters of the primary structure include the gener-
alized stiffness (Ks), the mass (Ms) and the damping
coefficient (Cs). The external force acting on the pri-
mary structure, FðtÞ, in this work is assumed as a har-
monic force excitation FðtÞ ¼ F0ejωt with the excitation
frequency ω and the force magnitude F0.

There are many different types of inerters, in which
three popular types are based on the inertial amplification
mechanism including the rack and pinion type, ball and
screw type, and hydraulic type inerters (Konar and
Ghosh, 2024; Ma et al., 2021; Pandey and Mishra,
2021). Various inerter devices and their operating prin-
ciples have been reported in previous works (Konar and
Ghosh, 2024; Ma et al., 2021). A simplified model of
a linear inerter is presented in Figure 1(b). As presented in
the literature (Giaralis and Petrini, 2017; Pandey and
Mishra, 2021; Wang et al., 2020), the inerter creates
an inertia force FAB ¼ bð €X B � €XA) between two termi-
nals (A and B). For this study, the inertia force generated
by the grounded inerter is Finerter ¼ bð €X s þ €X 1), where
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ð €X s þ €X 1) is the acceleration of the mass M1 relative to
the ground.

The equations of motion of the system are given by

Ms
€X sðtÞ þ Cs

_X sðtÞ þ KsXsðtÞ � K1X1ðtÞ ¼ FðtÞ, (1)

ðM1 þ bÞ €X sðtÞ þ ðM1 þ bÞ €X 1ðtÞ
þ K1X1ðtÞ � C2

_X 2ðtÞ � K2X2ðtÞ ¼ 0,
(2)

M2

�
€X sðtÞ þ €X 1ðtÞ þ €X 2ðtÞ

�
þ C2

_X 2ðtÞ þ K2X2ðtÞ ¼ 0:

(3)

In the above equations, XsðtÞ denotes the horizontal dis-
placement of the structure relative to the ground, X1ðtÞ
represents the horizontal motion of the TMD1 relative to the
structure, and X2ðtÞ is the horizontal displacement of the
TMD2 relative to the TMD1. Therefore, the displacement of
the mass M1 relative to the ground is XsðtÞ + X1ðtÞ. As
previously mentioned, the inertia force generated by the
grounded inerter is Finerter ¼ bð €X sðtÞ þ €X 1ðtÞÞ, which is
added to the TMD1 of the DTMD. This means that the total

mass of the DTMDI (including its real mass and an apparent
mass due to the grounded inerter) increased by b compared
with that in the DTMD. Now, we introduce the following
quantities.
The natural frequency of the primary structure

ωs ¼
ffiffiffiffiffiffi
Ks

Ms

r
: (4)

The damping ratio of the primary structure

ξs ¼
Cs

2Msωs
: (5)

The natural frequency of the TMD1 in the DTMDI is

ω1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K1

M1 þ b

r
: (6)

The natural frequency of the TMD2 in the DTMDI is

ω2 ¼
ffiffiffiffiffiffi
K2

M2

r
: (7)

The damping ratio of the TMD2 in the DTMDI is

Figure 1. (a) Analytical model of the DTMDI-structure system. (b) Simplified model of a linear inerter.
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ξ2 ¼
C2

2M2ω2
: (8)

The mass ratio of the TMD1 is

μ1 ¼
M1

Ms
: (9a)

and the mass ratio of the TMD2 is

μ2 ¼
M2

Ms
: (9b)

Therefore, the mass ratio between the DTMD and the
structure is

μ ¼ M1 þM2

Ms
¼ μ1 þ μ2: (9c)

Note that the mass ratio between the TMD2 and the TMD1
in the DTMDI is

μ21 ¼
μ2
μ1

¼ M2

M1
: (9d)

The inertance ratio of the inerter is defined as

η ¼ b

Ms
: (9e)

Hence, the total mass ratio between the DTMDI and the
structure is determined by

μ* ¼ M1 þ bþ m2

Ms
¼ μþ η, (9f)

in which η is an imaginary mass added to the DTMD due to
the grounded inerter. This leads to an increase in the mass of
DTMD by η ¼ b

Ms
compared with μ in DTMD.

As a result, equations (1)–(3) are rewritten in the matrix
form as follows:

M €Xþ C _XþKX ¼ F, (10)

in which

M ¼
2
4 1 0 0
M1 þ b M1 þ b 0
M2 M2 M2

3
5, (10a)

C ¼
2
4 2ξsωs 0 0

0 0 �2μ21ξ2ω2

0 0 2ξ2ω2

3
5, (10b)

K ¼

2
64
ω2

s �μ1ω
2
1 0

0 ω2
1 �μ21ω

2
2

0 0 ω2
2

3
75, (10c)

F ¼

2
4 ðF0=M0Þejωt

0

0

3
5, (10d)

X ¼

2
4 XsðtÞ

X1ðtÞ
X2ðtÞ

3
5; _X ¼

2
4 _X sðtÞ

_X 1ðtÞ
_X 2ðtÞ

3
5; €X ¼

2
4 €X sðtÞ

€X 1ðtÞ
€X 2ðtÞ

3
5:

(10e)

The dynamic magnification factor (DMF) of the struc-
tural response in the steady state is given by (Den Hartog,
1985; Gil-Martı́n et al., 2012)

DMF ¼ max XsðtÞ
ðF0=KsÞ : (11)

Now, non-dimensional quantities are introduced as follows:
The frequency ratio is

α ¼ ω
ωs

: (12)

The tuning ratio for the TMD1 of the DTMDI is

β1 ¼
ω1

ωs
(13a)

and the tuning ratio for the TMD2 of the DTMDI is

β2 ¼
ω2

ωs
: (13b)

The peak dynamic magnification factor of the structural
response (DMFmax) in the frequency range which corre-
sponds to [αlo, αup] can be expressed by:

DMFmax ¼
max

�
XsðtÞjαupαlo

�
ðF0=KsÞ : (14)

In the above equation, αlo and αup are the lower and upper
limits of the frequency ratio, respectively.

As a result, the structural frequency response is
a function of α, β1, β2, ξs, ξ2, b, μ1and μ2. It is noted that ξs
and α are determined from the key parameters of the
structure and μ1and μ2 can be calculated through
μ and μ21.

Table 1. Key parameters of the main structure (Cao, 2023;

Varadarajan and Nagarajaiah, 2004; Yang et al., 2004).

Parameter Symbol Value

The total mass Ms 153e6 kg

The natural frequency ωs 1.0 rad/s

The damping ratio ξ s 1%
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To facilitate comparisons, the TMDI-structure system is
also built, and its equations of motion are presented in
Appendix A.

3. Parametric optimization

3.1. Input parameters

In the numerical examples presented in this work, the
SDOF structure represents the first mode of a 76-story
building, as used in the previous studies (Cao, 2023;
Varadarajan and Nagarajaiah, 2004; Yang et al., 2004).
The key parameters of this mode are detailed in Table 1.
The excitation frequency ratio range is assumed to be
between 0.5 and 1.5 (0:5 ≤ α ≤ 1:5) and the external force
magnitude is F0 ¼ 7:5e5 N.

In this work, the mass ratio (μ) is fixed to be 0.02 for all
cases considered. The inertance ratios including η ¼ 0%,
1%, 2%, 3%, 4%, and 5% are considered here. It is noted
that when η = 0% (meaning b = 0), the DTMDI becomes
the DTMD and the DTMDI-structure system will be the
DTMD-structure system. In this study, the DTMD-
structure system will also be used for the purpose of
extensive comparisons in Section 4. Table 2 reports the
lower and upper limits of the parameters that need to be
optimized for a DTMDI.

3.2. Optimal parameters

The aim of the parametric optimization is to maximize the
vibration control capacity of DTMDI. This means that the
DMFmax value of the structural response as the excitation
frequency changes in the domain of [ωlo,ωup] corre-
sponding to the frequency ratio range within [αlo, αup]
should be minimized. Thus, the objective function based on
the DMFmax value is expressed by

Objective ¼ min

�
DMFmaxjωup

ωlo

�
: (15)

It is evident that the objective function, as shown in
equation (15), has many variables and constraints. Hence,
we need a potential optimization algorithm to solve this
problem.

There are many algorithms used to search solutions
of optimization problems (Etedali and Rakhshani, 2018;
Le-Duc et al., 2020; McCall, 2005), and one can use one
of the existing techniques (e.g., Genetic Algorithms,
Cuckoo Search Algorithm, Firefly Algorithm, and
Moth-Flame Optimization) to optimize the DTMDI.
Among the recently developed optimization algorithms,
Balancing Composite Motion Optimization (BCMO) is
a novel technique introduced by Le-Duc et al. (2020).
Basically, the BCMO is a population-based optimiza-
tion algorithm. The fundamental concept of this algo-
rithm revolves around balancing the composite motion
characteristics of individuals within the solution space.
By integrating a probabilistic selection model, bal-
ancing global and local searches establishes a move-
ment mechanism for each individual. The basic

Table 2. The lower and upper limits of the parameters of

DTMDI.

Parameter (Symbol) Value

The mass ratio (μ21) 0.05< μ21 <5.0

The tuning ratio of the TMD1 (β1) 0.5< β1 <1.5

The tuning ratio of the TMD2 (β2) 0.5< β2 <1.5

The damping ratio of the TMD2 (ξ2) 0 < ζ < 0:5

Figure 2. Diagram of the optimization procedure for the DTMDI

using the BCMO algorithm.
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principles of the BCMO method were fully explained,
and readers can find them in Ref. (Le-Duc et al., 2020)
where the authors provided publicly available MAT-
LAB source codes for this algorithm. The BCMO has
demonstrated high efficiency, low complexity, and rapid
convergence when compared with different population-
based optimization algorithms. One can find those
comparisons in the original work of Le-Duc et al.
(2020). Additionally, the BCMO is also effective for
multi-objective or complex optimization problems in-
volving many variables and constraints (Bui et al.,
2023; Le-Duc et al., 2020; Tran et al., 2024). There-
fore, the BCMO is chosen to find the optimal parameters
for absorbers in this research.

The BCMO algorithm has two main parameters, in-
cluding the number of generations (NG) and the number
of individuals in the population (NP). These parameters
are selected depending on the number of variables and the
convergence of the objective function. A flowchart of the
design optimization procedure for the DTMDI is pre-
sented in Figure 2, in which the proposed device has four
parameters (design variables) that need to be optimized.
These design variables and their bounds are mentioned in
Table 2.

Using the input parameters discussed in Section 3.1,
Table 3 presents the optimized configurations for the
DTMDI based on various values of η. These values include
η = 0% for the DTMD and η = 1%, 2%, 3%, 4%, and 5% for
the DTMDI. For comparisons, Table 4 also includes the
optimal TMDI configurations for the different η values (0%,
1%, 2%, 3%, 4%, and 5%) with μ = 2%. It is evident from
both Table 3 and Table 4 that the optimal parameters for the
TMD and DTMD at μ = 2% are consistent with those re-
ported in Refs (Cao, 2023; Cao and Tran, 2023). Addi-
tionally, based on the number of design variables and the
convergence of the objective function in this study, two key
parameters of the BCMO, NG and NP, are chosen to be 200
and 300, respectively.

The data presented in Table 3 offers valuable insights
regarding the behavior of various design variables in re-
lation to the importance ratio (η). Specifically, it indicates
that as the inertance ratio increases, three key design

variables (μ21, β1, and ξ2) also increase. This is a direct
correlation between the inertance ratio and these variables,
which could be critical for optimizing performance. Con-
versely, the tuning ratio β2 consistently declines as η in-
creases from 1% to 5%. Variations in the DTMDI
parameters associated with changes in the inertance ratio are
illustrated in Figure 3, highlighting how a value of η sig-
nificantly impact the tuning design variables.

Furthermore, the analysis suggests that achieving an
optimal configuration for the DTMDI, particularly as the
value of η rises, necessitates a larger damping ratio. It also
indicates that an increase in μ21 is essential for maintaining
stability and performance in such configurations. These
findings emphasize the complexity of the design process
and the importance of considering multiple interrelated
factors when optimizing the DTMDI-structure system.

4. Numerical investigations and
discussions

In this section, the author focuses on the effectiveness and
robustness of the optimal DTMDI configurations, where
effects of structural natural frequency on the vibration
control performance of DTMDI and effects of the inerter on
the structure response are considered.

4.1. Evaluation criteria

In this study, there are two primary criteria to evaluate the
effectiveness of the DTMDI in controlling structural vi-
brations. The first criterion is DMFmax. This is a key in-
dicator, and a device is deemed more effective in mitigating
vibrations when it gives a lower DMFmax value (Yamaguchi
and Harnpornchai, 1993). This factor reflects how much the
vibrations are reduced in the controlled structure compared
to the uncontrolled structure. The second criterion is the root
mean square of the peak displacement response, denoted as
RMSX . A lower RMSX value signifies that the device can
dissipate more vibrational energy (Wu et al., 2018). While
the peak dynamic magnification factor of the structural
response is calculated using equation (14), the second
criterion is given by (Wu et al., 2018).

Table 3. Optimal configurations of the DTMD and DTMDI with the different values of η.

Device

Fixed parameters Optimal parameters of DTMD and DTMDI

η μ μ21 β1 β2 ξ2

DTMD 0% 2% 0.052 1.015 0.966 0.158

DTMDI 1% 2% 0.125 1.025 0.950 0.198

DTMDI 2% 2% 0.225 1.030 0.936 0.216

DTMDI 3% 2% 0.414 1.041 0.920 0.249

DTMDI 4% 2% 0.673 1.047 0.907 0.264

DTMDI 5% 2% 1.094 1.051 0.895 0.275
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RMSX ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

1ðXiÞ2
n

s
, (16)

in which Xi is the sampling value of the structural peak
displacement at the excitation frequencyωi in the frequency
range of [ωlo,ωup]. From that, a dimensionless quantity of
RMSX is expressed by (Cao, 2023):

RMSX ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

1

�
X i

�2
n

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
1

�
Xi

F0=Ks

�2

n

vuut
(17)

with Ks ¼ Msω2
s .

Based on the first criterion, the vibration reduction of
each vibration absorber is defined as follows:

φDMF ¼ DMFUC
max � DMFdevice

max

DMFUC
max

× 100% : (18)

Based on the second criterion, the vibrating energy re-
duction for each device is determined by

φRMS ¼ RMS X
UC � RMSX

device

RMSX
UC

× 100% : (19)

In the above equations, “UC” represents the uncontrolled
structure, while “device” refers to the structure that is
equipped with a vibration mitigation device.

4.2. Performance of DTMDI

To assess the vibration reduction effectiveness of an opti-
mized DTMDI, its performance is analyzed and compared
against that of the optimal TMDI which has the same weight
and inertance ratio as the DTMDI.

As reported in Ref (Cao, 2023), the values of DMFmax

and RMSX of the uncontrolled structure are 50.0 and 8.8,
respectively. Based on the data presented in Table 3 and
Table 4, the values of DMFmax, φDMF , RMSX , and φRMS of
configurations of DTMDI and TMDI are determined.
Table 5 lists these values of the optimal DTMD and optimal
configurations of DTMDI at μ ¼ 2%. Similarly, Table 6
also reports the values of DMFmax, φDMF , RMSX , and φRMS

Table 4. Optimal configurations of the TMD and TMDI with the different values of η.

Device

Fixed parameters Optimal parameters of TMD and TMDI

η μ β ξ

TMD 0% 2% 0.978 0.088

TMDI 1% 2% 0.968 0.129

TMDI 2% 2% 0.959 0.173

TMDI 3% 2% 0.949 0.215

TMDI 4% 2% 0.940 0.254

TMDI 5% 2% 0.931 0.297

Figure 3. Variation of the DTMDI parameters as the inertance ratio changes from 0% to 5%.
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of the optimal TMD and TMDI configurations in the case of
μ ¼ 2%.

As previously discussed, based on the DMFmax value,
a configuration of DTMDI/TMDI that yields a lower
DMFmax value is regarded as more efficient. This is also
applied to the second criterion when assessing the perfor-
mance of DTMDI/TMDI according to the RMSX value.

From the data reported in Table 5 regarding to the optimal
configurations of DTMD/DTMDI, it can be seen that,
when adding the grounded inerter to the DTMD, the
control performance of DTMD is significantly enhanced.
This performance improvement increases from 2.2% to
5.8% for φDMF and from 3.8% to 11.3% for φRMF when the
inertance ratio rises from 1% to 5%. Similarly, this is also

Table 5. DMFmax , φDMF , RMSX , and φRMS of the optimal DTMDI and DTMD at μ ¼ 2%.

η

DTMDI DTMD

DMFmax φDMF RMSX φRMS DMFmax φDMF RMSX φRMS

0% 6.92 86.2% 3.95 55.2%

1% 5.81 88.4% 3.61 59.0%

2% 5.11 89.8% 3.37 61.7%

3% 4.64 90.7% 3.20 63.6%

4% 4.28 91.4% 3.07 65.1%

5% 4.00 92.0% 2.95 66.5%

Table 6. DMFmax , φDMF , RMSX , and φRMS of the optimal TMDI and TMD at μ ¼ 2%.

η

TMDI TMD

DMFmax φDMF RMSX φRMS DMFmax φDMF RMSX φRMS

0% 8.57 82.9% 4.21 52.2%

1% 7.21 85.6% 3.84 56.4%

2% 6.37 87.3% 3.60 59.1%

3% 5.78 88.4% 3.42 61.1%

4% 5.34 89.3% 3.27 62.8%

5% 4.99 90.0% 3.15 64.2%

Figure 4. A comparison on frequency response functions of the structure controlled by the optimal TMD, DTMD, TMDI with η ¼ 5%,

and DTMDI with η ¼ 5% in the case of μ ¼ 2%.
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true for the optimal TMD and configurations of TMDI. By
using an inerter with the inertance ratio within [1%, 5%] to
connect the TMD to the ground, the improvement in the
effectiveness of TMD lifts from 2.7% to 7.1% and from
4.2% to 12.0% on the φDMF and φRMF indicators,
respectively.

Based on the same weight and inertance ratio, it is ev-
ident that the control effectiveness of optimized config-
urations of DTMDI is higher than those of TMDI. In
particular, the structural vibration reduction achieved from
the optimal DTMDI with μ ¼ 2% and η ¼ 2% is 89.8%,
while this value of the optimal TMDI (at μ ¼ 2% and

Figure 5. DMF surface of the structure controlled by (a) the DTMDI and (b) the TMDI when the inertance ratio changes from 1% to 5%

at μ ¼ 2%.

Cao 9



η ¼ 2%) is 87.3%. In another comparison, the vibration
reduction capacity of the optimal DTMDI with μ ¼ 2% and
η ¼ 2% is similar to that of TMDI at μ ¼ 2% and η ¼ 5%
(89.8% compared with 90.0%).

For optimized configurations of DTMDI/TMDI, the
optimal DTMDI/TMDI configuration with a larger in-
ertance ratio is more effective. This can be explained by the
fact that when the inertance ratio (η) increases, the total
mass ratio of DTMDI/TMDI (consisting of the real mass μ
and the apparent mass η) rises. This leads to an increase in
the control performance of DTMDI/TMDI. An important
aspect is that as η increases, the damping coefficient of the
TMDI/DTMDI also increases (as reported in Table 3 and
Table 4). Furthermore, with the same value of η, the optimal
DTMDI configuration requires a larger damping coefficient
compared to that of the TMDI configuration. For example,
at μ ¼ 2% and η ¼ 3%, the damping coefficient of the
optimal DTMDI is 0.249 (see Table 3), while the ξ value of
the optimized TMDI is 0.215 (see Table 4).

Figure 4 shows a comparison on the frequency response
functions of the main structure equipped with various devices:
the optimal TMD, TMDI, DTMD and DTMDI, in which the
optimal configurations for TMDI andDTMDI are based on the
inertance ratio of η = 5%. From this figure, it is evident that the
peak dynamic magnification factor of the structural response
significantly decreases when using the optimal TMDI or
DTMDI configurations. Notably, the DTMDI configuration
produces a DMFmax value of 4.00, which is lower than the
DMFmax value of 4.99 obtained with the TMDI configuration.
It can be concluded that the DTMDI provides a higher control
performance over a broader excitation frequency domain
compared with the TMDI in suppressing structural vibration.

With the mass ratio of μ = 2%, Figure 5 depicts DMF
response surfaces of the primary structure controlled by the
DTMDI and the TMDI as the inertance ratio varies from 1%

to 5%. As shown in Figure 5, the DMF response surface of
the structure with the DTMDI exhibits a three-peak char-
acteristic, and its peak region remains relatively flat over
a broader range of excitation frequencies (refer to
Figure 5(a)). In contrast, the response surface of the
structure with the TMDI displays a two-peak characteristic,
with a peak region that is not flat over a narrower frequency
range (refer to Figure 5(b)).

4.3. Robustness of DTMDI

In practice, the stiffness and mass of the primary structure
may be different from the initial calculated values due to errors
inmeasurement progress (Yamaguchi andHarnpornchai, 1993),
equipment replacement on the structure (Cao and Tran, 2023),
or even environmental factors (e.g., snow accumulation). This
leads to the natural frequency of the structure which differs from
the initial calculated value (as reported in Table 1). Thus, the
DTMDI can be detuned. This is why a survey on the robustness
of the DTMDI against changes in the structural natural fre-
quency (ωs) is necessary.

It is assumed that the change in the structural natural
frequency, Δωsð%Þ, ranges from �10% to 10%. Figure 6
shows the robustness of the optimal TMD, DTMD, TMDI,
and DTMDI against variations in the structural frequency
within the range of [-10%, 10%] with the mass ratio μ = 2%.
Here, the configurations of TMDI and DTMDI are opti-
mized for the inertance ratio η = 5%. In Figure 6, the optimal
devices (including TMD, DTMD, TMDI, and DTMDI)
have the highest control effectiveness at the nominal natural
frequency (Δωs = 0%). As shown in Table 5 and Table 6, the
DMFmax value of the structural response with the optimal
TMD, DTMD, TMDI, and DTMDI at Δωs = 0% are 8.57,
6.92, 4.99, and 4.0, respectively. However, when the natural
frequency of the primary structure changes, the optimized

Figure 6. Effect of changes in the structural natural frequency on the effectiveness of the optimal TMD, DTMD, TMDI, and DTMDI at

μ ¼ 2%.
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TMD, DTMD, TMDI, and DTMDI become non-optimized
vibration absorbers, and they are less effective. The results
presented in the figure indicate that the optimal DTMDI
configuration is significantly more robust than the DTMD.

Additionally, it also demonstrates greater robustness
compared to the TMD. Nevertheless, when the structural
natural frequency increases, the DTMDI becomes less ro-
bust than the TMDI.

Figure 7. Effects of the inertance ratio and mass ratio on the structure response as μ and η change from 1% to 5%: (a) for DTMDI and (b)

for TMDI.
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4.4. Effects of the inertance ratio and mass ratio on
the structural response

This section investigates the effects of the inertance ratio (η)
and the mass ratio (μ) on the structural response. When both
the inertance and mass ratios vary within the same range of
[1%, 5%], Figures 7(a) and 7(b) depict theDMFmax response
surface of the structure controlled by the DTMDI and TMDI,
respectively. As observed in Figure 7(a), the DMFmax value
of the structural response reduces from 6.929 (corresponding
to the optimal DTMDI configuration with η ¼ μ ¼ 1%Þ to
3.45 (with the DTMDI configuration at η ¼ μ ¼ 5%).
Meanwhile, theDMFmax value of the structural response with
the optimized TMDI configurations drops from 8.565 (for the
TMDI configuration with η ¼ μ ¼ 1%Þ to 4.269 (with the
optimized TMDI configuration at η ¼ μ ¼ 5%) (refer to
Figure 7(b)). It is clear that a DTMDI optimized is signifi-
cantly more effective than a TMDI. For instance, the control
performance of the optimal DTMDI configuration with μ ¼
1% and η ¼ 5% (DMFmax = 4.279) is comparable to that of
the optimal TMDI configuration with μ ¼ 5% and η ¼ 5%
(DMFmax = 4.269), demonstrating a significant reduction in
the device’s weight added to the primary structure.

On the other hand, these DMFmax surfaces represent the
Pareto optimization surfaces for both DTMDI and TMDI,
addressing three primary objectives: the additional weight
of the device on the main structure, the inertance required of
the grounded inerter, and the vibration suppression per-
formance. This provides engineers with a framework to
balance design objectives related to the mass, inertance, and
effectiveness of each absorber used.

4.5. Vibrations of masses M1 and M2 in DTMDI

To further understand howmassesM1 andM2 in the optimal
DTMDI oscillates, Figure 8 shows the DMF curves of the

TMD1 and TMD2 masses of the optimal DTMDIs and
DTMD in the case of μ = 2%, in which the inertance ratios
of the optimal DTMDIs are η = 1% and 5%. As observed
from Figure 8, with a given inertance ratio of DTMDI, the
maximum DMF values of the mass M1 in the DTMDIs are
much smaller than that ofM1 in the DTMD. Particularly, the
DMFmax values of the mass M1 in the DTMDs with η = 1%
and 5% are 32.17 and 15.54, respectively, while the
maximum vibration of M1 in the DTMD is at DMFmax =
46.48. This is also true for vibrations ofM2 in the DTMDIs
and in the DTMD. It is possible to conclude that the inerter
plays a core role in reducing significantly the stroke of M1

andM2 in the DTMDI compared with their vibrations in the
DTMD. Moreover, a larger inertance ratio results in greater
oscillation reduction for the TMD1 and TMD2 masses.

5. Conclusions

The DTMD has been demonstrated to be more efficient than
a traditional TMD (Cao and Tran, 2023). To further improve
the performance and robustness of DTMD, an upgraded
version of DTMD for structural vibration control was
proposed in this research. In the innovative type of DTMD,
the DTMDwas linked to the ground through a linear inerter.
Modeling of the system consisting of a SDOF structure with
a DTMDI was established. The optimal configurations of
the DTMDI corresponding to various inertance ratios were
then found using the BCMO algorithm. Studies on the
effects of changes in the structural properties as well as the
mass and inertance of DTMDI to the control effectiveness
and robustness of DTMDI were conducted. The outstanding
findings obtained from this work include:

(a) An optimal DTMDI is significantly more effective and
robust than an optimal DTMD with the same weight as
the DTMDI, in which the optimal configuration of

Figure 8. DMF curves of the TMD1 and TMD2 masses of the optimal DTMDIs (with η = 1% and 5%) and DTMD at μ ¼ 2%:
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DTMDI with a higher inertance ratio produces higher
effectiveness.

(b) With the same mass and inertance, the DTMDI yields
higher performance compared to the TMDI. Thus,
using a DTMDI instead of a TMDI offers a significant
reduction in the weight of the device on the main
structure.

(c) The DTMDI is more robust than both the DTMD
and TMD against the variation of the structure’s
natural frequency, but the DTMDI becomes less
robust than the TMDI when the structural frequency
increases.

(d) Three-objective optimization surfaces for both DTMDI
and TMDI generated in this work provide engineers
with a frame to balance design objectives related to the
mass, inertance, and performance of each device
employed.

(e) With a given inertance ratio, vibrations ofM1 andM2 in
the DTMDI are significantly smaller than those of M1

and M2 in the DTMD. Furthermore, the larger the in-
ertance ratio, the greater the oscillation reduction of the
TMD1 and TMD2 masses.

The inerter of the DTMDI connected to the ground may
be a disadvantage of DTMDI for seismic protection of
structures. However, the practical applicability of the
proposed damper in civil structures under the other types of
loads is very significant. For example, DTMDI can be
equipped on offshore platforms to reduce structural re-
sponses induced by wave and wind loadings, or it can be
integrated into bridges to mitigate vertical vibrations caused
by pedestrian and vehicle loads. In addition, DTMDI can be
used for base-isolated structures, as mentioned in the pre-
vious studies (De Angelis et al., 2019; De Domenico and
Ricciardi, 2018).

Although the findings discussed in this work were based
on harmonic excitation forces, the proposed device is ex-
pected to perform well under random excitations. In future
studies, the effectiveness of the DTMDI in controlling the
dynamic response of various types of structures subjected to
random excitations will be investigated.
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Appendix A

The TMDI-structure system

An analytical model of the system TMDI-structure under
an external force excitation is shown in Figure 9. The
TMD has the mass MT, the stiffness KT and the damping
coefficient CT. The equations of motion of the system are
expressed by:

ðMTþbÞ €X sðtÞþðMTþbÞ €X TðtÞþCT
_X TðtÞþKTXTðtÞ¼ 0,

(A1)

Ms
€X sðtÞþCs

_X sðtÞþKsXsðtÞ�CT
_X TðtÞ�KTXTðtÞ¼FðtÞ :

(A2)

Here, Xs is the structural displacement and XT is the
displacement of the TMD relative to the structure.

The natural frequency of the TMDI is

ωT1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KT

MT þ b

r
: (A3)

The damping ratio of the TMD is

ξT1 ¼
CT

2MTωT
: (A4)

The mass ratio between the TMD and structure is

μT ¼ MT

Ms
: (A5)

The total mass ratio between the TMDI and the structure
is given by

μ ¼ μT þ η (A6)

with the inertance ratio of η.
The tuning ratio of the TMDI is

βT1 ¼
ωT

ωs
: (A7)

Figure 9. Analytical model of the TMDI-structure system.
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