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The paper proposes benchmark-neutral pricing and hedging for long-term contingent claims. It
employs the growth optimal portfolio of the stocks as numéraire and the new benchmark-neutral
pricing measure for pricing. For the assumed ‘natural’ dynamics of a well-diversified stock port-
folio, which are those of the continuous limit of a branching process of diversified wealth in some
activity time, this pricing measure turns out to be an equivalent probability measure. This is not the
case for the putative risk-neutral pricing measure. Benchmark-neutral pricing identifies the minimal
possible prices of contingent claims. Risk-neutral prices of long-term contracts can be significantly
more expensive than necessary. The extremely accurate hedge of a long-term zero-coupon bond
illustrates the proposed pricing and hedging method.

Keywords: Long-term pricing; Benchmark approach; Change of numéraire; Activity time; Squared
Bessel process; Hedging
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1. Introduction

Risk-neutral pricing employs the savings account or cash
account as numéraire and represents the preferred pric-
ing method of the classical finance theory; see, e.g. Mer-
ton (1992), Cochrane (2001), and Jarrow (2022). The current
paper assumes the ‘natural’ dynamics of a well-diversified
stock portfolio as those of the continuous time limit of a
branching process, see Feller (1971), of diversified wealth in
some flexible activity time. The seminal No Free Lunch with
Vanishing Risk (NFLVR) no-arbitrage condition of Delbaen
and Schachermayer (1998) was already shown in Loewen-
stein and Willard (2000) and Platen (2001) to fail for some
perfectly acceptable financial market models. In Platen and
Fergusson (2025), the NFLVR condition has been falsified for
real markets. It fails also for the model employed in this paper,
which does not have an equivalent risk-neutral probability
measure.

The growth optimal portfolio (GOP) of stocks, as
described, e.g. in Kelly (1956) and Merton (1992), is
approximated by well-diversified stock portfolios; see Platen
and Rendek (2020). For the benchmark approach, see
Platen (2006) and Platen and Heath (2006), the failure of the
NFLVR condition does not represent a problem. The bench-
mark approach only requires the existence of the GOP and
not the existence of an equivalent risk-neutral probability

∗Corresponding author. Email: eckhard.platen@uts.edu.au

measure. This matters because when the putative risk-neutral
measure is not an equivalent probability measure, it is shown
in Platen (2002) and Platen (2006) that risk-neutral pricing
leads to higher prices than necessary.

For a given market model, the existence of the GOP is an
extremely weak and easily verifiable no-arbitrage condition
because Karatzas and Kardaras (2007) and Karatzas and Kar-
daras (2021) have shown that the existence of the GOP is
equivalent to their No Unbounded Profit with Bounded Risk
(NUPBR) condition. This no-arbitrage condition is weaker
than the NFLVR condition. The assumed model for a well-
diversified stock portfolio follows a squared Bessel process
of dimension four in some flexible activity time and satisfies
the NUPBR condition. For this model, the hedge of a long-
term zero-coupon bond is shown to be impressively accurate,
which indicates in addition to other empirical properties that
the model is realistic and the NFLVR condition seems to fail
in reality.

The benchmark approach provides the pricing concept of
real-world pricing, where the GOP of the entire market is
taken as the numéraire and the real-world probability mea-
sure acts as the pricing measure; see Platen and Heath (2006).
Real-world pricing avoids the additional assumptions that a
change of the GOP of the entire market as numéraire to
another numéraire would require.

For a typical market that consists of stocks and the savings
account, the GOP of the entire market is a highly leveraged
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portfolio that goes short in the savings account and long
in a portfolio of stocks; see, e.g. Theorem 7.1 in Filipović
and Platen (2009). This GOP does not represent a suitable
numéraire or even a desirable investment portfolio; see, e.g.
Samuelson (1979). To generate it physically one must go short
in the savings account. Since only discrete-time dynamic asset
allocation is feasible, one could obtain a negative portfolio as
a proxy of the GOP of the entire market, which would fail as
a numéraire for pricing and hedging.

As a feasible alternative to real-world pricing, the current
paper proposes employing as a numéraire the stock GOP,
which is the GOP of the investment universe formed only
by the stocks (without the savings account). As shown by
Theorem A.3 in Platen and Rendek (2020), the stock GOP
can be approximated by a well-diversified, guaranteed strictly
positive portfolio of stocks. For instance, the MSCI-Total
Return Stock Index (MSCI) of the developed markets could
serve as a reasonable proxy of the stock GOP. However, better
proxies are available, as shown in Platen and Rendek (2020).

The proposed new pricing method is called benchmark-
neutral (BN) pricing. It has wider applicability than risk-
neutral pricing and can be conveniently implemented, as will
be demonstrated in the current paper. It provides the mini-
mal possible prices of nonnegative contingent claims when
the ratio of the stock GOP over the GOP of the entire mar-
ket is a martingale. This ratio represents the Radon–Nikodym
derivative of the respective BN pricing measure. It is a non-
negative local martingale and, therefore, a supermartingale.
This means, its current value is greater than or equal to its
expected future values given the current information. Under
the assumed ‘natural’ dynamics of the stock GOP, the above-
mentioned ratio turns out to be a martingale, and the BN prices
of contingent claims coincide with the respective minimal
possible prices obtained via the real-world pricing formula in
Proposition 3.3 of Du and Platen (2016).

Motivated by the structure of the stochastic differential
equation (SDE) of the stock GOP of a continuous market, the
minimal market model (MMM) was proposed in Platen (2001)
as a potential model for the stock GOP. When approximat-
ing the activity time as a linear function of the calendar time,
the MMM coincides with the stock GOP model assumed in
the current paper. As the paper will demonstrate, the MMM
evolving in some flexible activity time captures impressively
well the ‘natural’ evolution of well-diversified stock indexes.
It models parsimoniously the volatility of the normalized
stock GOP as a scalar diffusion process that is evolving in
its flexible activity time. The latter captures the impact of
the trading activity on the stock GOP dynamics and can be
observed. It turns out that the activity time does not need to
be modeled in detail and only its average value must be pre-
dicted for the pricing and hedging of a long-term zero-coupon
bond.

It seems to be extremely difficult to model accurately the
volatility of a stock index, as pointed out by the ‘leverage
effect puzzle’ of Ait-Sahalia et al. (2013). The assumed model
separates the modeling of the leverage effect from that of the
trading activity and points in a direction where this puzzle
could be resolved. The current paper applies the MMM in
some flexible activity time for the stock GOP and illustrates
the fitting of its few parameters, as well as, the BN pricing and

hedging of a long-term zero-coupon bond that pays one unit
of the savings account at maturity.

In previous works, long-term zero-coupon bonds and other
derivatives have been priced and hedged using the MMM by
assuming that it evolves in some activity time that is a linear
function of the calendar time and the GOP of the entire mar-
ket equals the stock GOP; see, e.g. Platen and Heath (2006),
Fergusson and Platen (2023), and Barone-Adesi et al. (2024).
The novelty of the current paper is that the GOP of the entire
market is different from the stock GOP. Furthermore, the stock
GOP dynamics are far more realistically modeled by assum-
ing and observing a flexible activity time. The activity time
can be observed but only its average value at maturity needs to
be predicted for the pricing and hedging of a long-term zero-
coupon bond. This is important in practice because long-term
zero coupon bonds serve as the building blocks of long-term
life insurance contracts and pension payment streams.

The paper is organized as follows: Section 2 introduces the
market setting and real-world pricing under the benchmark
approach. The new concept of benchmark-neutral pricing is
presented in section 3. The model of the stock GOP is intro-
duced in section 4. Section 5 illustrates the BN pricing and
hedging of a long-term zero-coupon bond.

2. Market setting

2.1. Primary security accounts

The modeling is performed on a filtered probability space
(�,F ,F , P), satisfying the usual conditions; see, e.g.
Karatzas and Shreve (1991) and Karatzas and Shreve (1998).
The filtration F = (Ft)t∈[t0,∞) describes the evolution of mar-
ket information over time. For an investment universe con-
sisting of stocks, we assume that a growth optimal portfolio
(GOP) S∗

t exists, which is the strictly positive stock portfo-
lio with maximum growth rate; see Kelly (1956) and Mer-
ton (1992). This portfolio we call the stock GOP. In the given
market we model, for simplicity, one adapted, nonnegative,
risky primary security account as Itô diffusion, denoted by
S1

t , where all dividends or other payments are reinvested.
If not otherwise mentioned, the securities are assumed to
be denominated in units of the savings account S0

t = 1. To
focus in the current paper on the properties of the proposed
benchmark-neutral pricing method, we set, for simplicity, the
risky primary security account S1

t equal to the stock GOP S∗
t .

We emphasize that the savings account S0
t = 1 is not included

in the investment universe that has the stock GOP S∗
t as its

GOP.
The stock GOP S∗

t in savings account denomination
is assumed to be continuous and to satisfy according to
Theorem 3.1 in Filipović and Platen (2009) the stochastic
differential equation (SDE)

dS∗
t

S∗
t

= λ∗
t dt + θt(θtdt + dWt) (1)

for t ∈ [t0, ∞) with S∗
t0 > 0. Here, λ∗

t denotes the net risk-
adjusted return of S∗

t , θt its volatility, and W = {Wt, t ∈
[t0, ∞)} a (P,F)-Brownian motion in calendar time.
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When we add the savings account S0
t = 1 as an additional

primary security account to the market and assume that the
GOP S∗∗

t of the extended market exists, it follows directly by
Theorem 7.1 in Filipović and Platen (2009) that the GOP S∗∗

t
of the extended market satisfies the SDE

dS∗∗
t

S∗∗
t

= σ ∗∗
t (σ ∗∗

t dt + dWt) (2)

with initial value S∗∗
t0 = 1 and market price of risk

σ ∗∗
t = λ∗

t

θt
+ θt (3)

for t ∈ [t0, ∞).

2.2. Real-world pricing

We denote by EP(.|Ft) the conditional expectation under the
real-world probability measure P, conditional on the infor-
mation Ft available at time t. Consider a bounded stopping
time T > t0, and let L1(FT ) denote the set of integrable, FT -
measurable random variables in the given filtered probability
space.

Definition 2.1 For a bounded stopping time T ∈ (t0, ∞), a
nonnegative payoff HT , denominated in units of the savings
account is called a contingent claim if HT

S∗∗
T

∈ L1(FT ).

As shown in Section 10.4 in Platen and Heath (2006) and in
Corollary 6.2 in Du and Platen (2016), for a contingent claim
HT with maturity at a bounded stopping time T the real-world
pricing formula

Ht = S∗∗
t EP

(
HT

S∗∗
T

|Ft

)
(4)

determines its, so called, fair price Ht for all t ∈ [t0, T]. The
ratio Ht

S∗∗
t

forms a (P,F)-martingale, which is P-almost surely

unique for the given random payoff HT
S∗∗

T
at maturity T. The

real-world pricing formula uses the GOP S∗∗
t of the extended

market as numéraire and the real-world probability measure P
as pricing measure. It has been shown by Corollary 6.2 in Du
and Platen (2016) that, when a contingent claim is replicable,
its fair price process coincides with the value process of the
minimal possible self-financing hedge portfolio that replicates
its payoff.

The Law of One Price of the classical finance theory does
no longer hold because there exist other pricing rules that
can be applied to pricing and hedging, including the pop-
ular risk-neutral pricing rule. However, these pricing rules
never provide lower prices for nonnegative replicable contin-
gent claims than the real-world pricing formula because all
self-financing portfolios that hedge a given contingent claim
form (P,F)-supermartingales when denominated in S∗∗

t . The
(P,F)-martingale among these (P,F)-supermartingales coin-
cides with the fair hedge portfolio value process in the denom-
ination of the GOP S∗∗

t of the extended market. The fair hedge
portfolio is the least expensive hedge portfolio that replicates
the contingent claim; see Lemma A.1 in Du and Platen (2016).
More expensive self-financing hedge portfolios can exist that

replicate the contingent claim and one may not even realize
that these are more expensive than necessary.

3. Benchmark-neutral pricing

3.1. Change of numéraire

The numéraire for real-world pricing is the GOP S∗∗
t of the

extended market, which is, in reality, a highly leveraged port-
folio that goes long in the stock GOP S∗

t and short in the
savings account S0

t = 1. When hedging contingent claims,
one needs to be able to trade the numéraire that one is using
for pricing and hedging. For instance, when hedging a zero-
coupon bond that pays one unit of the savings account at
maturity, the hedging requires the trading of the numéraire
and the savings account, as will be shown later.

A tradeable proxy of the highly leveraged GOP S∗∗
t of the

extended market cannot be easily constructed as a guaran-
teed strictly positive, self-financing portfolio because such a
highly leveraged portfolio can only be traded at discrete times
and, therefore, faces the possibility of becoming negative.
To avoid the above-mentioned difficulties, the paper suggests
employing the stock GOP S∗

t as a numéraire.
As shown by Theorem A.3 in Platen and Rendek (2020), a

well-diversified total return stock index is a reasonable proxy
for the stock GOP and can be made, by construction, strictly
positive. Total return stock indexes have been used tradi-
tionally as benchmarks in portfolio management. The current
paper suggests employing such a benchmark as a numéraire
for pricing and hedging. It calls the new pricing method
benchmark-neutral pricing (BN pricing) and the proxy for
the stock GOP the benchmark. Intuitively, in the denomina-
tion of the benchmark and under the respective BN pricing
measure the expected returns of portfolios are zero and, in
this sense, ‘neutral’ to the randomness that drives the stock
market.

The stock GOP has, in the long run, a trajectory that
is almost surely pathwise outperforming any other strictly
positive stock portfolio; see Theorem 10.5.1 in Platen and
Heath (2006). Intuitively, BN pricing centers the risk man-
agement around the long-run best-performing strictly positive
stock portfolio, whereas risk-neutral pricing centers it around
the rather poorly performing savings account.

By application of the Itô formula it follows that the stock
GOP S∗

t , when denominated in units of the GOP S∗∗
t , satisfies

a driftless SDE and is, therefore, a (P,F)-local martingale.
We make throughout the paper the following assumption,
which we verify later for the realistic stock GOP model that
we will employ:

Assumption 3.1 The stock GOP S∗
t , when denominated in

units of the GOP S∗∗
t , forms the (P,F)-martingale S∗

S∗∗ ={
S∗

t
S∗∗

t
, t ∈ [t0, ∞)

}
, where S∗

t
S∗∗

t
is the unique strong solution of

the SDE

d
(

S∗
t

S∗∗
t

)
S∗

t
S∗∗

t

= −σ S∗
(t)dWt (5)
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with finite integrated squared volatility∫ t

t0

σ S∗
(s)2ds < ∞

for t ∈ [t0, ∞).

Under Assumption 3.1, the proposed change of numéraire
permits the application of the change of numéraire technique
of Geman et al. (1995). This leads us to consider the Radon–
Nikodym derivative

�S∗(t) = dQS∗

dP

∣∣∣∣
Ft

=
S∗

t
S∗∗

t

S∗
t0

S∗∗
t0

= exp

{
−
∫ t

t0

σ S∗
(s)dWs

− 1

2

∫ t

t0

σ S∗
(s)2ds

}
, (6)

which characterizes for the numéraire S∗
t the respective BN

pricing measure QS∗ . By application of the Itô formula we
obtain from (1) and (2) the following result:

Corollary 3.2 Under Assumption 3.1, �S∗ satisfies the SDE

d�S∗(t)

�S∗(t)
= −σ S∗

(t)dWt (7)

with

σ S∗
(t) = λ∗

t

θt
(8)

for t ∈ [t0, ∞).

Under Assumption 3.1, for T ∈ [t0, ∞) we have for an
event A ∈ FT its BN probability

QS∗(A) = EP(�S∗(t)1A) = EQS∗ (1A). (9)

Here 1A denotes the indicator function of the event A and
EQS∗ (.) the expectation under QS∗ . Two measures are equiv-
alent if they have the same sets of events of measure zero.
One says that a measure is an equivalent probabilty measure
if it is equivalent to the real-world probability measure P.

As a self-financing portfolio that is denominated in units
of the GOP S∗∗

t of the extended market, the Radon–Nikodym
derivative �S∗(t) forms a (P,F)-local martingale. Under
Assumption 3.1 it is assumed to be a true martingale. Let
EQS∗ (.|Ft) denote the conditional expectation with respect
to the BN pricing measure QS∗ under the information avail-
able at time t ∈ [t0, ∞). By Theorem 9.5.1 in Platen and
Heath (2006) one obtains directly the following Bayes
Theorem:

Corollary 3.3 Under Assumption 3.1, for some bounded
stopping time T ∈ [t0, ∞) and any FT -measurable ran-

dom variable Y = S∗
t0

HT

S∗
T

, satisfying the integrability condition

EQS∗ (|Y |) < ∞, one has the Bayes rule

EQS∗ (Y |Fs) = EP(�S∗(T)Y |Fs)

EP(�S∗(T)|Fs)
(10)

for s ∈ [t0, T] and, therefore,

EQS∗
(

S∗
t0 HT

S∗
T

|Ft0

)
= EP

(
S∗∗

t0 HT

S∗∗
T

|Ft0

)
. (11)

We obtain directly from Corollary 3.3 and Theorem 9.5.2
in Platen and Heath (2006) the following result that includes
a BN version of Girsanov’s Theorem:

Theorem 3.4 (BN Pricing Formula) Under the Assump-
tion 3.1, for some bounded stopping time T ∈ [t0, ∞) and
an FT -measurable contingent claim HT , satisfying the inte-
grability condition EQS∗ (HT

S∗
T
) < ∞, the BN pricing measure

QS∗ is an equivalent probability measure, and the fair price
Ht at time t ∈ [t0, T], which the real-world pricing formula
identifies for HT , is obtained via the BN pricing formula

Ht = S∗
t EQS∗

(
HT

S∗
T

|Ft

)
(12)

for t ∈ [t0, T]. The process W̄ = {W̄t, t ∈ [t0, ∞)}, satisfying
the SDE

dW̄t = σ S∗
(t)dt + dWt (13)

for t ∈ [t0, ∞) with W̄t0 = 0, is under QS∗ a Brownian motion
with respect to calendar time.

This result is of practical importance because it allows one
to use the stock GOP S∗

t as a numéraire for pricing and hedg-
ing under the BN pricing measure QS∗ . We will see later for
the pricing of a zero-coupon bond that BN pricing is captur-
ing the dynamics under QS∗ as if under P the net risk-adjusted
return λ∗

t were zero.

3.2. Portfolios

The market participants can combine primary security
accounts to form portfolios. Denote by δ ={δt = (δ0

t , δ1
t )

�, t ∈
[t0, ∞)} the strategy, where δ

j
t , j ∈ {0, 1}, represents the num-

ber of units of the jth primary security account that are held
at time t ∈ [t0, ∞) in a corresponding portfolio Sδ

t . When
denominated in units of the stock GOP S∗

t , this portfolio is

captured by the process S̃δ = {S̃δ
t = Sδ

t
S∗

t
, t ∈ [t0, ∞)}, where

S̃δ
t = (δt)

�S̃t (14)

for t ∈ [t0, ∞) with S̃t = (S̃0
t , S̃1

t )
�. If changes in the value of

a portfolio are only due to changes in the values of the pri-
mary security accounts, then no extra funds flow in or out
of the portfolio, and the corresponding portfolio and strat-
egy are called self-financing. The self-financing property of
a portfolio is expressed by the equation

S̃δ
t = S̃δ

t0 +
∫ t

t0

(δs)
�dS̃s (15)

for t ∈ [t0, ∞) with S̃δ
t0 = (δt0)

�S̃t0 , where the stochastic inte-
gral in (15) is assumed to be a vector-Itô integral; see Shiryaev
and Cherny (2002).

To introduce a class of admissible strategies for forming
portfolios, denote by [S̃.]t = ([S̃i

. , S̃j
. ]t)

1
i,j=0 the matrix-valued

optional covariation of the vector of stock GOP-denominated
primary security accounts S̃t for t ∈ [t0, ∞).

Definition 3.5 An admissible self-financing strategy δ =
{δt = (δ0

t , δ1
t )

�, t ∈ [t0, ∞)}, initiated at the time t0, is an
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R2-valued, predictable stochastic process, satisfying the con-
dition ∫ t

t0

δ�
u [S̃.]uδudu < ∞ (16)

for t ∈ [t0, ∞).

An admissible self-financing strategy generates the stock
GOP-denominated gains from trade

∫ t

t0

δ�
s dS̃s =

∫ t

t0

dS̃δ
s = S̃δ

t − S̃δ
t0 (17)

for t ∈ [t0, ∞). It does this without requiring outside funds or
generating extra funds. The predictability of the integrand in
the above stock GOP-denominated gains from trade expresses
the real informational constraint that the allocation of units
of primary security accounts in the admissible self-financing
strategy δ is not allowed to anticipate the movements of the
stock GOP-denominated primary security account vector S̃t.

3.3. Contingent claims

In the following, we consider contingent claims that can be
replicated by using self-financing portfolios under BN pricing.
Let for a bounded stopping time T the set L1

QS∗ (FT ) denote the
set of FT -measurable and QS∗ -integrable random variables in
the filtered probability space (�,F ,F , QS∗).

Definition 3.6 We call for a bounded stopping time T ∈
[t0, ∞) a stock GOP-denominated contingent claim H̃T =
HT
S∗

T
∈ L1

QS∗ (FT ) BN-replicable if it has for all t ∈ [t0, T] a
representation of the form

H̃T = EQS∗ (H̃T |Ft) +
∫ T

t
δH̃T

(s)�dS̃s (18)

QS∗ -almost surely, involving some predictable vector pro-
cess δH̃T

= {δH̃T
(t) = (δ0

H̃T
(t), δ1

H̃T
(t))�, t ∈ [t0, T]} satisfying

the condition (16).

To capture the replication of a targeted contingent claim we
introduce the following notion:

Definition 3.7 We say, an admissible self-financing strat-
egy δ = {δt = (δ0

t , δ1
t )

�, t ∈ [t0, T]} delivers the stock GOP-
denominated BN-replicable contingent claim H̃T at a bounded
stopping time T if the equality

S̃δ
T = H̃T (19)

holds QS∗ -almost surely.

Combining Definitions 3.5, 3.6, 3.7, and the SDE (15),
leads directly to the following statement:

Corollary 3.8 For a BN-replicable stock GOP-
denominated contingent claim H̃T with representation (18),
there exists an admissible self-financing strategy δH̃T

=
{δH̃T

(t) = (δ0
H̃T

(t), δ1
H̃T

(t))�, t ∈ [t0, T]} with corresponding

stock GOP-denominated price process S̃
δH̃T
t = H̃t given by the

BN pricing formula

H̃t = EQS∗ (H̃T |Ft), (20)

which delivers the stock GOP-denominated contingent claim

H̃T = S̃δ
T (21)

QS∗ -almost surely.

The stock GOP-denominated price H̃t at time t ∈ [t0, T]
represents, within the set of admissible self-financing strate-
gies, the minimal possible self-financing portfolio process that
delivers the stock GOP-denominated contingent claim H̃T .

3.4. Hedging replicable claims

Recall that the jth stock GOP-denominated primary security
account process S̃j

t , j ∈ {0, 1}, is a (QS∗ ,F)-local martingale
under the BN pricing measure QS∗ . Consequently, a stock
GOP-denominated self-financing portfolio S̃δ

t is a (QS∗ ,F)-
local martingale.

Consider a stock GOP-denominated BN-replicable contin-
gent claim H̃T with a bounded stopping time T as maturity,
where under QS∗ its entire randomness is driven by the
(QS∗ ,F)-Brownian motion W̄ . Each stock GOP-denominated
primary security account S̃j

t , j ∈ {0, 1}, is assumed to satisfy
an SDE of the form

dS̃j
t

S̃j
t

= −�
j,1
t dW̄t (22)

for t ∈ [t0, ∞) with S̃j
t0 > 0. We assume that �

j,1
t = {�j,1

t , t ∈
[t0, ∞)} forms for each j ∈ {0, 1} a predictable process such
that the above stochastic differentials are well defined; see
Karatzas and Shreve (1998). For t ∈ [t0, ∞) we denote by
�t = [�j,k

t ]1,1
j,k=0 the matrix with elements �

j,1
t for j ∈ {0, 1},

and

�
j,0
t = 1 (23)

for j ∈ {0, 1}. Let us impose the following assumption:

Assumption 3.9 We assume that a BN-replicable stock GOP-
denominated contingent claim H̃T has for its fair stock GOP-
denominated price at time t ∈ [t0, T] under QS∗ a unique
martingale representation of the form

H̃t = H̃t0 +
∫ t

t0

xsdWs, (24)

where xt is predictable and the integral

∫ t

t0

x2
s ds < ∞ (25)

is QS∗ -almost surely finite for t ∈ [t0, ∞).

As in the proof of Proposition 7.1 in Du and Platen (2016),
we obtain the following result:
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Theorem 3.10 If the matrix �t is Lebesgue-almost every-
where invertible, then the strategy δH̃T

is given by the vector

δH̃T
(t) = diag(S̃t)

−1(��
t )−1ξt (26)

with

ξt = (−xt, H̃t)
� (27)

for all t ∈ [t0, T).

Here diag(S) denotes the diagonal matrix with the elements
of a vector S as its diagonal. In the case when the dynamics of
the extended market are modeled using state variables that sat-
isfy the SDEs of a Markovian system of diffusions, one can
systematically identify for a given stock GOP-denominated
BN-replicable contingent claim H̃T the respective representa-
tion (18). The price H̃t at the time t can be obtained, e.g. by
explicit calculation of the conditional expectation, by appli-
cation of the Feynman–Kac formula, or via some numerical
method. The price results as a function of the state variables
that satisfies a respective partial differential equation (PDE).

The integrands in the representation (24) and the pre-
dictable vector ξt emerge when applying the Itô formula to
the price function and matching the respective terms in the
martingale part of the resulting SDE. The PDE operator fol-
lows by setting the drift part in the resulting SDE for the price
function to zero. Consequently, the price function satisfies a
Kolmogorov-backward PDE.

The boundary conditions of the PDE need to be specified
such that the solution of the PDE, as a function of the evolving
state variables, becomes a (QS∗ ,F)-martingale. When only
fixing the PDE operator and the boundary conditions that are
determined by the payoff structure of the contingent claim,
there may exist several price functions that solve the PDE.
All these solutions yield nonnegative (QS∗ ,F)-local martin-
gales. Since these processes form (QS∗ ,F)-supermartingales
that deliver the targeted contingent claim, they yield price
processes that are larger than or equal to the one that forms
the fair price process, which is the (QS∗ ,F)-martingale.
We emphasize, it is the fair price process that delivers at
time T the stock GOP-denominated contingent claim H̃T by
starting from the most economical minimal possible stock
GOP-denominated initial price H̃t0 .

4. Stock GOP dynamics

4.1. Equivalent BN pricing measure

The question arises whether Assumption 3.1, which provides
the martingale property of the Radon–Nikodym derivative of
the BN pricing measure, is realistic. This means, whether it
is realistic for existing stock markets to model the Radon–
Nikodym derivative �S∗(t) of the putative BN pricing mea-
sure QS∗ as a true (P,F)-martingale. For the realistic dynam-
ics of the stock GOP that we will assume, this answer will be
positive. It is closely related to the boundary behavior of the
volatility σ S∗

(t) = λ∗
t

θt
, see (8), of the Radon–Nikodym deriva-

tive �S∗(t); see, e.g. Andersen and Piterbarg (2007), Mijatovic
and Urusov (2012), Hulley and Platen (2012), and Hulley

and Ruf (2012). Intuitively, according to the mentioned refer-
ences, the numéraire S∗

t , when denominated in the GOP S∗∗
t

of the extended market, is a martingale when its volatility
−σ S∗

(t) remains finite for finite values of S∗
t , including its

asymptotic value at the boundary where it approaches zero.
To illustrate BN pricing, the current paper assumes a model

where the stock GOP evolves in some activity time τ =
{τt, t ∈ [t0, ∞)} with activity at = dτt

dt ∈ (0, ∞) for t ∈ [t0, ∞)

starting with the initial activity time τt0 , where

τt = τt0 +
∫ t

t0

asds. (28)

The activity is the derivative of the time in which the mar-
ket dynamics evolve. The net risk-adjusted return λ∗

t is
a Lagrange multiplier, see Theorem 3.1 in Filipović and
Platen (2009), and does not need to be modeled under BN
pricing because it is not relevant under the proposed change of
measure. For simplicity, the current paper makes the simplify-
ing assumption that the net risk-adjusted return is proportional
to the activity, which means

λ∗
t = λ̄at (29)

with λ̄ > 0 for t ∈ [t0, ∞). Since the net risk-adjusted return is
notoriously difficult to estimate, the fact that its value does not
matter when applying BN pricing is of practical importance
and simplifies the implementation. Another simplification for
the implementation of BN pricing and hedging for long-term
contingent claims, like long-term zero-coupon bonds, arises
from the fact that one does not have to model the random
evolution of the activity time. Only its average value at the
maturity date has to be predicted.

4.2. Minimal market model in activity time

A branching process is a continuous time model for the size
of a population where individuals independently give birth to
new individuals or die; see Feller (1971). The current paper
assumes that the ‘natural’ continuous evolution of diversified
wealth in some activity time is that of the continuous limit of
a branching process because wealth units independently gen-
erate new ones or vanish. This assumption, when empirically
confirmed, provides a basis for the understanding of the ‘natu-
ral’ dynamics (in some activity time) of well-diversified stock
portfolios, including the stock GOP.

The continuous limit of a branching process is known to be
that of a squared Bessel process or squared radial Ornstein–
Uhlenbeck process; see Feller (1971) and Göing-Jaeschke and
Yor (2003). For our modeling the characteristic property of a
squared Bessel process is important, which is that its squared
diffusion coefficient is proportional to its value. To under-
stand heuristically the reason for this property, one notices
that if the constituents of a diversified portfolio evolve inde-
pendently and follow similar dynamics, then the variance of
the increment of the portfolio value equals the sum of the vari-
ances of the increments of the constituents. Consequently, in
a respective diffusion limit, the square of the diffusion coeffi-
cient of such a branching process turns out to be proportional
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to the sum of these variances and, therefore, proportional to
the portfolio value.

Only the diffusion coefficient of the SDE (1) for the stock
GOP S∗

t needs to be modeled for BN pricing, which we
assume to be of the form

θtS
∗
t =

√
4eτt at

√
S∗

t (30)

for t ∈ [t0, ∞).
Due to the structure of the SDE for the stock GOP,

the minimal market model (MMM) has been suggested by
Platen (2001) as a realistic model for the long-term stock GOP
dynamics. The MMM models the stock GOP as a time trans-
formed squared Bessel process of dimension four, see (8.7.1)
in Platen and Heath (2006). This is consistent with the above
assumed ‘natural’ dynamics of the stock GOP. For the MMM,
described, e.g. in Section 13.2 in Platen and Heath (2006),
when evolving in activity time, the volatility of the stock GOP
dynamics in calendar time can be directly obtained from (30)
in the form

θt =
√

4eτt at

S∗
t

(31)

for t ∈ [t0, ∞). Note that it is not the volatility that is here
the fundamental quantity that determines the structure of the
diffusion coefficient of the MMM dynamics. It is the diffusion
coefficient (30) itself that is proportional to the square root of
the stock GOP as a consequence of the continuous limit of
a branching process. By applying this model, the stock GOP
is according to (1) and (13) assumed to satisfy under the BN
pricing measure the SDE

dS∗
t = 4eτt dτt +

√
S∗

t 4eτt dW̄(τt) (32)

with S∗
t0 > 0 for t ∈ [t0, ∞). The process W̄(τt) represents a

Brownian motion under QS∗ in activity time with stochastic
differential

dW̄(τt) = √
atdW̄t

for t ∈ [t0, ∞). The SDE (32) shows that S∗
t represents under

QS∗ a time-transformed squared Bessel process of dimen-
sion four; see Definition 1.1 of Chapter XI in Revuz and
Yor (1999), or equation (8.7.1) in Platen and Heath (2006).
One notes that its volatility in activity time exhibits a leverage
effect and is, as a 3/2 volatility model, a constant elastic-
ity of variance model, see, e.g. Cox (1975), Platen (1997),
Heston (1997), and Lewis (2000). It is worth noting that the
stock GOP S∗

t is in activity time under the real-world prob-
ability measure a branching process with imigration rate λ̄;
see Feller (1971). This means that BN pricing removes the
immigration of wealth in the dynamics of S∗

t .
In Platen and Rendek (2008) it was shown with high signif-

icance that the log-returns of a well-diversified stock portfolio
are Student-t distributed with four degrees of freedom, which
coincides with what one would estimate when the underlying
stock GOP dynamics were those of the MMM. This empirical
fact supports the choice of the MMM in activity time as the
model for the stock GOP. The current paper will add another
supporting empirical fact by showing that under the MMM
with flexible activity time, a long-term zero-coupon bond can
be hedged with an impressively small hedge error.

4.3. Observed activity time

To observe the activity time, we consider the square root of the
stock GOP

√
S∗

t and obtain by a straightforward application of
the Itô formula, (32), (29), and (13) the SDE

d
√

S∗
t = 3eτt

2
√

S∗
t

dτt + √
eτt dW̄(τt) (33)

for t ∈ [t0, ∞). Since the measure change does not affect the
diffusion coefficient in (33), the quadratic variation of

√
S∗

t

becomes

[
√

S∗
. ]t0,t =

∫ τt

τt0

esds = eτt − eτt0 (34)

and the activity time results in the form

τt = ln
(

[
√

S∗
. ]t0,t + eτt0

)
(35)

for t ∈ [t0, ∞).
For illustration, the current paper demonstrates the pric-

ing and hedging of a zero-coupon bond by using the market
capitalization-weighted total return stock index (MCI) that is
displayed in figure 1. The MCI was generated in Platen and
Rendek (2020) from stock data to match the daily observed
US Dollar savings account-denominated MSCI-Total Return
Stock Index for the developed markets. The US Dollar savings
account was approximated by a roll-over account of 3-months
US T-Bills. As shown in Theorem A.3 of Platen and Ren-
dek (2020), one can interpret the MCI as a reasonable proxy
for the stock GOP.

For some tentative initial activity time τt0 , one can observe
the trajectory of the resulting respective activity time, which
turns out to evolve approximately linearly. Only at the begin-
ning of this trajectory, one typically notices some deviation
from its approximate linearity, which changes with the choice
of the tentative value of the initial activity time. We exploit the
observed linearity and assume that the average of the activ-
ity time remains always a linear function of calendar time.
Therefore, one can estimate the initial activity time by stan-
dard linear regression, which yields the activity time that is
closest to a straight line. The resulting estimated trendline

τ̄t = τ̄t0 + ā(t − t0) (36)

is exhibited in figure 2 together with the MCI for the period
from t0 =2 January 1984 until T =1 November 2014. We
observe for the trendline its slope ā ≈ 0.053 and initial value
τ̄t0 ≈ 2.15. The R2-value of 0.98 confirms that the observed
activity time evolves approximately linearly. Because of this
finding, the current paper employs first the trendline τ̄t as a
substitute for the activity time in BN pricing and hedging, and
later the observed activity time as it evolves in an enhanced
method of pricing and hedging.

Of course, when pricing contingent claims, one cannot
look into the future. However, as the paper assumes, one
can approximate the activity time of future maturity dates by
using the trendline of the activity time when assuming that the
trendline remains similar also in the future.
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Figure 1. US Dollar savings account-denominated MCI.

Figure 2. Activity time τt and trendline τ̄t.

4.4. BN pricing measure

When using the trendline τ̄t with constant slope ā ∈ (0, ∞) as
a model for the activity time, it follows by (8) and (31) that the
negative volatility σ S∗

(t) of the Radon–Nikodym derivative of
the BN pricing measure equals

σ S∗
(t) = λ̄

√
āS∗

t

4eτ̄t
(37)

for t ∈ [t0, ∞). The following statement is derived below:

Theorem 4.1 Under the MMM in activity time with the stock
GOP satisfying the SDE (32), where the activity time τt is
assumed to equal its trendline τ̄t, the Radon–Nikodym deriva-
tive of the BN pricing measure QS∗ is a (P,F)-martingale,
the measure QS∗ is an equivalent probability measure, and
Assumption 3.1 is satisfied.

Proof To prove the above statement we employ Theorem 2.1
in Mijatovic and Urusov (2012). It follows from (1) and (36)
by application of the Itô formula that

Yt = S∗
t

eτ̄t
(38)

satisfies the SDE

dYt = (4 − (1 − λ̄)Yt)ādt +
√

Yt4ādWt, (39)

which yields in the notation of Theorem 2.1 in Mijatovic
and Urusov (2012) the drift coefficient function μ(x) = (4 −
(1 − λ̄)x)ā and the diffusion coefficent function σ(x) = √

x4ā
for x ∈ J = (0, ∞). Both coefficients satisfy the Engelbert–
Schmidt conditions. The SDE (38) characterizes a station-
ary radial Ornstein–Uhlenbeck process of dimension four, as
studied in Göing-Jaeschke and Yor (2003), where it is shown
that it has a unique strong solution and not only a unique weak
solution, as requested. Furthermore, it is shown in the men-
tioned reference that this process does not exit P-almost surely
the open interval J = (0, ∞).

By (7), (37), and (38) the diffusion coefficient of the
SDE for the Radon–Nikodym derivative emerges as b(x) =
− λ̄

2

√
āx. Since the ratio

(b(x))2

(σ (x))2
= λ̄2

16
(40)
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is constant, condition (8) of Theorem 2.1 in Mijatovic and
Urusov (2012) is satisfied.

As requested by this theorem, one must consider the J-
valued process Ỹ that is characterized by the SDE

dỸt = (4 − Ỹt)ādt +
√

Ỹt4ādWt, (41)

which is again a stationary radial Ornstein–Uhlenbeck pro-
cess of dimension four. As shown in Göing-Jaeschke and
Yor (2003), this process does not exit the open interval
J = (0, ∞) P-almost surely. Consequently, the conditions (a)
and (c) of Theorem 2.1 in Mijatovic and Urusov (2012)
are satisfied, which proves that the Radon–Nikodym deriva-
tive process �S∗ of the BN pricing measure QS∗ is a true
martingale.

It follows by Geman et al. (1995) that QS∗ is an equivalent
probability measure. Indeed, the stock GOP dynamics before
and after the measure change are given by squared radial
Ornstein–Uhlenbeck processes of dimension four. Therefore,
the sets of events with measure zero, in particular, the event
of hitting zero, are the same. This completes the proof of
Theorem 4.1. �

4.5. Putative risk-neutral pricing measure

Risk-neutral pricing employs the savings account S0
t = 1 as

numéraire and the classical finance theory postulates that
the putative risk-neutral pricing measure QS0 is an equiva-
lent probability measure, see, e.g. Cochrane (2001) and Del-
baen and Schachermayer (1998). The following result shows
that QS0 is not an equivalent probability measure under the
above-described model:

Theorem 4.2 Under the MMM in activity time with the stock
GOP satisfying the SDE (32), where the activity time τt equals
its trendline τ̄t, the Radon–Nikodym derivative �S0 of the
putative risk-neutral pricing measure QS0 is a strict (P,F)-
supermartingale and QS0 is not an equivalent probability
measure.

Proof The Radon–Nikodym derivative of the putative risk-
neutral pricing measure QS0 equals

�S0(t) = dQS0

dP

∣∣∣∣
Ft

= S0
t

S∗∗
t

= 1

S∗∗
t

(42)

for t ∈ [t0, ∞). It follows by (4) and Theorem 4.1 that

EP(�S0(s)|Ft)

= EP

(
1

S∗∗
s

|Ft

)
= Ht

S∗∗
t

= S∗
t

S∗∗
t

EQS∗
(

1

S∗
s

|Ft

)
(43)

for t0 ≤ t < s < ∞. Under QS∗ the savings account-
denominated stock GOP S∗

t is a time-transformed squared
Bessel process of dimension four satisfying the SDE (32). Its
inverse 1

S∗
t

is a strict (QS∗ ,F)-supermartingale; see (8.7.21) in

Platen and Heath (2006). Therefore, we have

EP(�S0(s)|Ft) <
S∗

t

S∗∗
t S∗

t
= 1

S∗∗
t

= �S0(t) (44)

for t0 ≤ t < s < ∞, which shows that �S0 is a strict (P,F)-
supermartingale. In this case, the SDE of the savings account-
discounted stock GOP under the putative risk-neutral measure
turns by (32) out to be of the form

dS∗
t =

√
S∗

t 4eτt dW̄ RN (τt), (45)

where W̄ RN
τt

would denote a Brownian motion in activity
time under the putative risk-neutral measure. Under this mea-
sure, S∗

t would be a squared Bessel process of dimension
zero, which has a strictly positive probability to reach zero;
see (8.7.8) in Platen and Heath (2006). However, under the
real-world probability measure P the squared Bessel pro-
cess S∗

t is of dimension four and does never reach the value
zero; see (8.7.7) in Platen and Heath (2006). Therefore,
QS0 is not an equivalent probability measure, which proves
Theorem 4.2. �

5. Pricing and hedging of a zero-coupon bond

5.1. BN pricing of a zero-coupon bond

Under the above model, which employs the trendline of
the activity time as model for the activity time, the tran-
sition probability density for the stock GOP S∗ under QS∗

has, according to Corollary 1.4 in Chapter XI of Revuz and
Yor (1999), or Equation (8.7.9) in Platen and Heath (2006),
the form

p(τ̄t, S∗
t ; τ̄s, S∗

s )

= 1

2(eτ̄s − eτ̄t)

(
S∗

s

S∗
t

) 1
2

exp

{
− S∗

t + S∗
s

2(sτ̄s − eτ̄t)

}
I1

(√
S∗

t S∗
s

eτ̄s − eτ̄t

)

(46)

for t0 ≤ t ≤ s < ∞, where I1(.) denotes the modified Bessel
function of the first kind with index 1; see, e.g. Abramowitz
and Stegun (1972). Consequently, we know the transition
probability density of the stock GOP under the BN pricing
measure, where its key characteristic is the trendline of the
activity time.

To illustrate BN pricing and hedging, we consider a zero-
coupon bond with fixed maturity T ∈ (t0, ∞) and contingent
claim HT = 1. The respective fair zero-coupon bond

P(t, T) = P̃(t, T)S∗
t (47)

pays at maturity one unit of the savings account HT = S0
T = 1.

Its value, obtained via the BN pricing formula (12), is given
in the denomination of the savings account by the explicit
formula

P(t, T) = S∗
t EQS∗

(
1

S∗
T

|Ft

)
= 1 − exp

{
− S∗

t

2(eτ̄T − eτ̄t)

}
(48)

for t ∈ [t0, T); see Platen (2002), or Equation (13.3.5) in
Platen and Heath (2006).
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We display in figure 3 the savings account-discounted zero-
coupon bond price with maturity at the end of our observation
period, which emerges when using the MCI as a proxy for
the stock GOP. One notes that there exist at least two self-
financing portfolios that hedge the payment of one unit of
the savings account at the maturity date T. The classical
hedge portfolio would simply purchase one unit of the savings
account at the initial time and hold it until maturity. The one
that the proposed BN pricing suggests (with the MCI as proxy
for the stock GOP) is less expensive; see figure 3. It requests
only about three-quarters of the risk-neutral price. For longer
time periods and better proxies of the stock GOP, this price
can become significantly smaller, as forthcoming work will
document.

5.2. BN hedging of a zero-coupon bond

The payoff of the zero-coupon bond can be replicated through
hedging: We have for the zero-coupon bond P̃(t, T), when
denominated in the stock GOP, the SDE

dP̃(t, T) = δ0
t dS̃0

t (49)

with the hedge ratio

δ0
t = ∂P̃(t, T)

∂ S̃0
t

= 1 − exp

{
− S∗

t

2(eτ̄T − eτ̄t)

}(
1 + S∗

t

2(eτ̄T − eτ̄t)

)
(50)

for the investment in the savings account S̃0
t = 1

S∗
t
, when

denominated in the stock GOP, at time t ∈ [t0, T). Figure 4
shows the weight

πS∗
t = 1 − πS0

t = 1 − δ0
t S̃0

t

P̃(t, T)

=
(

1 − 1

P(t, T)

)
ln(1 − P(t, T)) (51)

of the value of the hedge portfolio invested in the stock GOP.
One notes that when the time to maturity is long, the fraction
invested in the stock GOP is rather high and can get close
to one. This fraction declines with decreased time to matu-
rity according to the prescribed strategy and becomes finally
zero at maturity. One could interpret its trajectory as a rigorous
description for the glide path of a common financial planning
strategy when it targets at maturity one unit of the savings
account. This strategy invests when one is young mostly in
stocks and closer to retirement more and more in the savings
account.

Note in equation (50) that the strategy sells units of the
savings account and buys units of the stock GOP when the
stock GOP value declines and vice versa. Since the normal-
ized stock index, which is the ratio of the benchmark over
the exponential of the activity time, is mean-reverting under
the MMM, this strategy is rational. However, the reaction
of many investors, who invest for retirement, appears to be
different in situations when the stock market crashes. The

above rational strategy, when widely implemented, e.g. by
pension funds and life insurance companies, has the potential
to help stabilizing the stock market in times of major market
drawdowns or extremely high stock prices.

One can only trade at discrete times, which creates hedge
errors. According to the above-described hedging strategy, the
hedge portfolio process V = {Vt, t ∈ [t0, T]} reallocates, say
daily, the holdings in the savings account and the stock GOP
in a self-financing manner. The difference between the BN
price and the hedge portfolio value is shown in figure 5, which
we call the profit and loss

Ct = Vt − P(t, T), (52)

of the hedge portfolio Vt formed when replicating the zero-
coupon bond, which was initiated at the initial time t0 = 1
January 1984, reallocated daily in a self-financing manner,
and matured at the maturity date T = 1 November 2014.

The absolute value of the profit and loss turns out to be
rather small and remains in figure 5 always below 1.5% of
one unit of the savings account value.

5.3. Enhanced pricing and hedging of zero-coupon bond

The current paper proposes a new method that allows one to
reduce significantly the hedge error when pricing and hedging
a zero-coupon bond. As can be seen in figure 2, the observed
activity time τt is different from its trendline τ̄t. Let us price
a zero-coupon bond at the initial time t0, by assuming that
the trendline of the activity time when estimated in the future
is similar to the one initially estimated. In practice, we do not
know the random activity time at the maturity date T and have
only a prediction τ̄T for this activity time. However, we can
observe the activity until the current time. This allows us to
introduce for the case τt0 < τ̄T the stopping time

ρ = sup{t ∈ (t0, T] : τt < τ̄T } (53)

as the supremum of all times t where the activity time τt is
still smaller than the value τ̄T of the trendline at maturity.

During hedging, one can exploit the information that
becomes available through the evolving observed activity
time τt and one knows when one has reached the stopping
time ρ. For t ∈ [t0, ρ), the current paper proposes the follow-
ing formula for the enhanced zero-coupon bond price P̄(t, T)

in the form

P̄(t, T) = 1 − exp

{
− S∗

t

2(eτ̄T − eτt)

}
, (54)

which yields the enhanced fraction

π̄S∗
t =

(
1 − 1

P̄(t, T)

)
ln(1 − P̄(t, T)) (55)

to be invested in the stock GOP. One stops the hedge at the
time ρ, where one exchanges all the wealth in the hedge port-
folio into units of the savings account. The latter value can be
expected to be close to 1.0 when the stopping time ρ occurs
before the maturity date and the time step size of the hedge is
sufficiently small.
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Figure 3. Discounted zero-coupon bond P(t, T).

Figure 4. Fraction πS∗
t invested in the stock GOP.

Figure 5. Profit and loss Ct for the hedge of a zero-coupon bond.
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Figure 6. Profit and loss C̄t for the enhanced hedge.

In the other case, the value of the hedge portfolio at the
maturity date depends on the distance of the predicted activ-
ity time τ̄T at maturity and the activity time τT at maturity.
Fortunately, the zero-coupon bond price P̄(t, T) is not very
sensitive to the activity time at maturity and the value of the
hedge portfolio turns out to be close to one if the predicted
activity time and the activity time at maturity are not too far
from each other.

We denote the resulting hedge portfolio process by V̄ =
{V̄t, t ∈ [t0, T]}. In comparison to the previous formulas (48)
and (50), in the above two formulas (54) and (55), we sub-
stituted the trendline of the activity time τ̄t by the observed
current activity time τt as long as we have t < ρ. The resulting
profit and loss

C̄t = V̄t − P̄(t, T) (56)

of the enhanced hedge portfolio V̄t is shown in figure 6.
The maximum of its absolute value remains smaller than

0.0018 of one unit of the savings account for the 30-year
daily hedge. The enhanced hedge provides an impressively
accurate replication of the payout of the zero-coupon bond.
Only during the 1987 stock market crash one notices a sud-
den increase in the absolute value of the hedge error. Such a
sudden increase would be typical when the stock index val-
ues were simulated under the MMM and the time step size
in activity time would be much larger than usual. Indeed,
the activity time step size was significantly larger than usual
during the 1987 stock market crash because several days
of data were missing and the market went extremely fast
during that period. The otherwise almost perfect enhanced
hedge supports the assumption of the paper that the MMM
in activity time models well the ‘natural’ dynamics of a well-
diversified stock portfolio. Forthcoming work will show for
other well-diversified stock portfolios that the hedge errors
for the enhanced hedge of long-term zero-coupon bonds are
similarly small and the initial fair prices of the zero-coupon
bonds can be made significantly smaller through the choice
of a faster growing benchmark. It remains to remark that the
small hedge error in the above illustration is also a result
of the fact that the predicted activity time τ̄T at maturity
and the observed activity time τT at maturity are reasonably

close to each other. Forthcoming work will analyze the hedge
error when the activity time at maturity remains significantly
smaller than the predicted activity time at maturity is fixed,
which makes it a random time in calendar time. In this case
the hedge error can be expected to be extremely small for
all scenarios of the activity time under the assumed ‘natural’
dynamics of the benchmark.

The risk-neutral price before maturity for the above zero-
coupon bond, which pays at maturity one unit of the sav-
ings account, equals always one unit of the savings account.
Formula (48) shows that when there is some strictly posi-
tive time to maturity, its BN price is lower than the risk-
neutral price. The respective risk-neutral hedging portfolio
is self-financing and delivers the targeted payoff of one
unit of the savings account at maturity. However, due to
the strict supermartingale property of the Radon–Nikodym
derivative process �S0 of the putative risk-neutral measure
QS0 , the respective risk-neutral price is higher than the BN
price.

There seems to exist no economic reason for producing the
zero-coupon bond payoff more expensively than necessary by
following the popular risk-neutral pricing rule. The BN price
and hedge offer a more economical way of replicating the
targeted long-term payoff, as illustrated in figure 3.

6. Conclusion

The paper proposes the new method of benchmark-neutral
pricing and hedging, which employs as numéraire the growth
optimal portfolio of stocks. For a long-term zero-coupon
bond, it is demonstrated that the proposed benchmark-neutral
price is lower than the risk-neutral price and the payoff
can be impressively accurately hedged over several decades.
The paper assumes the ‘natural’ dynamics of well-diversified
stock portfolios as those of squared Bessel processes in
respective activity times. By applying and extending the pro-
posed benchmark-neutral pricing methodology, it should be
possible to develop accurate quantitative methods for a wide
range of long-term contracts. Such new quantitative methods
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should allow reducing the costs of pension and insurance
contracts.

7. Open Scholarship
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