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Abstract

Auditability and regulatory compliance are increasingly required for deploying large
language models (LLMs). Prior work typically targets isolated stages such as training or un-
learning and lacks a unified mechanism for verifiable accountability across model updates.
This paper presents AuditableLLM, a lightweight framework that decouples update execu-
tion from an audit-and-verification layer and records each update as a hash-chain-backed,
tamper-evident audit trail. The framework supports parameter-efficient fine-tuning such as
Low-Rank Adaptation (LoRA) and Quantized LoRA (QLoRA), full-parameter optimization,
continual learning, and data unlearning, enabling third-party verification without access to
model internals or raw logs. Experiments on LLaMA-family models with LoRA adapters
and the MovieLens dataset show negligible utility degradation (below 0.2% in accuracy
and macro-F1) with modest overhead (3.4 ms/step; 5.7% slowdown) and sub-second audit
validation in the evaluated setting. Under a simple loss-based membership inference attack
on the forget set, the audit layer does not increase membership leakage relative to the
underlying unlearning algorithm. Overall, the results indicate that hash-chain-backed
audit logging can be integrated into practical LLM adaptation, update, and unlearning
workflows with low overhead and verifiable integrity.

Keywords: auditable learning framework; large language models; hash-chain; compliance-
aware AL; LoRA; unlearning; verification

1. Introduction

Large language models (LLMs) have rapidly evolved from experimental research
artifacts into foundational infrastructure across safety-critical domains. As their capabilities
expand, so too do expectations for transparency, accountability, and regulatory compliance
in how such models are trained, adapted, and maintained. Frameworks such as the EU’s
General Data Protection Regulation (GDPR) and emerging Al governance acts require
developers to demonstrate data provenance, model traceability, and responsible update
management throughout the model lifecycle [1-6]. Meeting these obligations demands not
only privacy-preserving algorithms but also verifiable audit mechanisms that can attest to
how model parameters evolve over time.

Recent advances in large-scale adaptation have led to parameter-efficient fine-tuning
(PEFT) methods such as adapters, Low-Rank Adaptation (LoRA), and QLoRA, enabling
efficient specialization of LLMs without full retraining [7-9]. At the same time, emerging
research in continual learning and machine unlearning seeks to support principled knowl-
edge addition and removal [10-14]. Despite addressing different objectives, these research
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directions share a critical gap: the lack of a unified and verifiable auditability mechanism
for tracking and attesting model update operations. Existing approaches often rely on em-
pirical observations or heavyweight cryptographic verification, including proof-of-learning
(PoL) techniques that attempt to attest legitimate training but face scalability and robust-
ness limitations in practice [15,16], making them difficult to integrate into real-world LLM
training pipelines or Machine-Learning-as-a-Service (MLaaS) deployments. In parallel,
provenance-aware logging and model governance frameworks typically focus on high-
level documentation and data lineage rather than fine-grained, tamper-evident tracking of
concrete update operations. At the same time, unlearning methods are usually designed
around specific algorithms or threat models and rarely expose a reusable audit interface
across adaptation regimes. Taken together, these limitations leave practitioners without a
lightweight, algorithm-agnostic audit layer for parameter-efficient LLM adaptation that
spans fine-tuning, continual updates, and compliance-driven deletions.

In response to this gap, AuditableLLM offers a lightweight audit framework for LLMs
that sits at the intersection of verifiable training and proofs-of-learning, provenance-aware
logging and model governance, and machine unlearning. The framework decouples model
update operations from the audit and verification layer and is designed to augment a broad
class of learning and unlearning processes with a hash-chain-backed, tamper-evident trail.
This design provides transparency into how model parameters evolve without exposing raw
data or proprietary internals, thereby supporting compliance-aware accountability under
the stated threat model. The empirical study serves as a proof-of-concept validation of audit-
layer properties (tamper-evidence, traceability, and overhead) under a controlled adaptation
workflow. Under the stated threat model and logging protocol, the audit and verification
mechanism remains model- and task-agnostic: its audit and verification complexity is
governed primarily by the number of logged update events (i.e., the update-chain length
T), which supports scalability to larger backbones and longer update pipelines.

The main contributions are as follows:

e This work designs a unified audit pipeline that supports diverse model update mech-
anisms, including full-parameter fine-tuning, parameter-efficient fine-tuning (PEFT),
and unlearning, while preserving task utility and model stability in the LoRA-based
experimental setting.

*  This work develops an audit layer that records verifiable, hash-chained logs of up-
date events and metadata, enabling third-party verification without costly crypto-
graphic primitives.

e  This work introduces a multi-level verification suite that combines behavioral, para-
metric, and risk-oriented diagnostics to assess consistency and compliance properties
of the audited adaptation process.

e  This work demonstrates the practicality of the framework through experiments on
LLM adaptation and data deletion tasks using the LLaMA model family with LoRA
adapters and the MovieLens dataset.

AuditableLLM is positioned within the broader research landscape of verifiable and
accountable Al [4]. By bridging the gap between efficient model adaptation and formal
auditability in this honest-but-curious, small-to-mid-scale setting, the proposed framework
illustrates how a unified foundation for transparent, compliance-aware, and auditable LLM
adaptation can be constructed and evaluated. The remainder of this paper is organized
as follows: Section 2 reviews background and related work; Section 3 presents the system
model and design objectives; Section 4 details the proposed methodology and system
architecture; Section 5 reports experimental results and analyses; and Section 6 concludes
the paper with future directions and policy implications.
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2. Background and Related Work

This section is divided into Background and Related Work. The Background intro-
duces core concepts in LLM adaptation, continual learning, unlearning, and hash-chain
auditing, while the Related Work reviews existing approaches in verifiable training and
audit mechanisms, motivating the need for a unified auditable adaptation framework.

2.1. Background
2.1.1. LLM Adaptation and PEFT

LLMs are typically adapted to downstream tasks through update procedures that
modify model parameters based on new data or objectives. Conventional full-parameter
fine-tuning enables high task performance but incurs substantial computational and storage
costs, which limits its practicality in iterative or resource-constrained settings. To address
these challenges, PEFT has emerged as a dominant paradigm for LLM adaptation. PEFT
methods update only a small subset of parameters while reusing the frozen pretrained
backbone, achieving task specialization with reduced computational overhead.

Representative PEFT approaches include adapter modules [7,17], LoRA [8], and its
quantization-optimized extension QLoRA [9]. These techniques introduce compact train-
able components in place of full model updates, which leads to faster training, lower
memory consumption, and improved modularity. Since parameter changes are confined
to well-structured and low-dimensional subspaces, each adaptation becomes easier to
track, store, and analyze throughout the model lifecycle. This modular structure naturally
supports principled logging and traceability, providing a technical foundation for auditable
model adaptation.

This work adopts LoRA-based fine-tuning as a representative adaptation mechanism
when instantiating the proposed AuditableLLM framework. Although the experiments
focus on PEFT for efficiency and clarity, the auditing principles apply broadly to any LLM
update regime, including full fine-tuning, continual learning, or selective data removal. In
essence, the audit layer operates independently of the training algorithm, treating every
model update as a recordable and verifiable event.

2.1.2. Continual Learning and Machine Unlearning

As LLMs interact with evolving data sources and deployment environments, their
parameters must be updated over time to incorporate new knowledge, adapt to shift-
ing distributions, or refine model behavior. Continual learning provides a paradigm for
achieving such incremental updates by allowing models to learn new tasks or data streams
without retraining from scratch [18-20]. A central objective in continual learning is to
avoid catastrophic forgetting, where learning new information causes previously acquired
knowledge to degrade. Techniques in this area often introduce memory-aware optimization
strategies, rehearsal modules, or regularization mechanisms to preserve model stability
across updates.

Complementing continual adaptation, machine unlearning aims to remove the in-
fluence of specific data points or data subsets from a trained model [10,11]. Machine
unlearning has gained increasing importance due to privacy regulations and user rights
such as the right to erasure under modern legal frameworks. Unlike continual learning,
which focuses on integrating new knowledge, machine unlearning addresses the reverse
challenge of retracting learned information while preserving the utility of the remaining
knowledge. Different machine unlearning strategies employ model retraining, parameter
surgery, or approximation-based removal, depending on the sensitivity and scope of the
target data.
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Both continual learning and machine unlearning require reliable mechanisms to track
how model parameters evolve over time. Each update, whether additive or subtractive,
produces changes that affect model behavior, compliance status, and downstream relia-
bility. From an auditability perspective, these update operations must be recorded in a
manner that enables later inspection and verification. This motivates the need for auditable
adaptation frameworks in which all update events can be traced, attributed, and validated
throughout the lifecycle of an LLM.

2.1.3. Verifiable Training and Hash-Chain Auditing

As model updates accumulate over time, ensuring the integrity and provenance of
each modification becomes essential for trustworthy deployment. Verifiable training seeks
to provide evidence that a claimed update was executed as intended, producing parameter
changes that are consistent with an admissible learning rule. This perspective treats
model evolution as a sequence of authenticated steps, where each update can be inspected
and validated to support accountability, reproducibility, and compliance throughout the
lifecycle of an LLM.

Hash-chained logging offers a practical foundation for constructing tamper-evident
records of model updates. By computing cryptographic digests for each update and linking
them through hash pointers, hash-chain mechanisms create immutable audit trails in which
any alteration of historical records becomes immediately detectable. This approach enables
update provenance to be verified without exposing internal model states or raw training
data. In contrast to full cryptographic proofs, hash-chain auditing supports efficient and
incremental verification that scales with the number of recorded updates.

When applied to LLM adaptation and maintenance workflows, hash-chain auditing
provides the means to track both additive operations such as training and continual learn-
ing, and subtractive operations such as machine unlearning. By binding update events to
verifiable records, this mechanism enables transparent oversight of model evolution and
establishes the technical foundation for auditable adaptation in real-world systems.

2.2. Related Work
2.2.1. Auditable and Verifiable Training

Early efforts toward verifiable training aim to provide evidence that model updates
follow legitimate learning trajectories. PoL schemes represent a central line of work in this
direction. Jia et al. introduced formal definitions and mechanisms that enable a model
to produce admissible proofs of its training history [15]. These methods seek to establish
verifiable accountability by binding parameter updates to provable computation traces.
However, subsequent studies revealed that many PoL variants are vulnerable to adaptive
attacks and replay strategies, which raises concerns regarding their reliability in practical
deployment scenarios [16]. Despite their theoretical rigor, PoL-based approaches often
introduce considerable computational overhead and remain challenging to integrate into
large-scale LLM training pipelines.

Complementary work explores cryptographic verification using succinct proofs, such
as systems based on SNARKSs and related primitives [21]. These approaches offer strong
integrity guarantees but require heavy proof generation and verification costs, which limit
their applicability in frequent-update settings such as continual learning or fine-grained
adapter tuning. As a result, while existing methods demonstrate that verifiable training
is attainable in principle, they are not yet well aligned with the efficiency and scalability
requirements of modern LLM adaptation workflows.

These observations highlight a persistent gap: current verifiable training techniques
either provide strong guarantees at prohibitive cost or offer partial assurances without end-
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to-end coverage of diverse update types. This motivates the need for alternative auditing
mechanisms that balance verifiability with practicality, particularly for dynamic LLM
update regimes that involve both learning and unlearning.

Beyond PoL-style schemes, recent work has also explored zero-knowledge proofs
of training (zkPoT) and related protocols that provide cryptographic evidence of correct
training without revealing the underlying data or model parameters. Garg et al. [21],
for example, demonstrate zkPoT constructions for machine learning models within the
SNARK framework. Such ZK- and SNARK-based methods offer stronger, publicly verifiable
guarantees than simple hash-chained logs, but currently incur substantial proving costs
and scale only to relatively restricted model sizes and objectives. In this sense, they are
complementary to lightweight audit layers such as AuditableLLM, which aim to provide
efficient, tamper-evident recordkeeping and can, in principle, be combined with heavier
proof systems in a layered attestation stack.

2.2.2. Auditable Logging, Blockchain, and FL-Based Auditing

Another line of research focuses on auditable logging and distributed accountability
in learning systems. Blockchain-based approaches have been proposed to record model
updates or gradients on immutable ledgers, providing tamper-resistant provenance for
collaborative or distributed training settings [22]. These systems offer transparent traceabil-
ity but inherit the computational and communication overhead of blockchain consensus
protocols, which poses challenges for fast or frequent model updates.

Similarly, federated learning (FL) audit mechanisms rely on distributed trust assump-
tions to ensure that client-side updates can be attested and tracked [2,23,24]. While such
methods improve accountability in multi-party environments, they primarily address
cross-device or cross-silo verification rather than fine-grained update auditing within a
single model lifecycle. As a result, they provide limited support for centralized adaptation
workflows where updates occur at high frequency or originate from a single authority.

Logging-based systems that capture events, metrics, or gradient histories offer com-
plementary auditing capabilities, yet they often depend on external storage and ad hoc
verification tools rather than providing intrinsic guarantees within the update process.
These approaches facilitate retrospective analysis but do not ensure that recorded updates
are complete, tamper-resistant, or verifiable at the algorithmic level. Recent work on ef-
ficient and certified recovery from poisoning attacks in federated learning [25] further
illustrates how structured logs of client updates can support post-hoc forensic analysis and
rollback of malicious contributions. In a similar spirit, the hash-chain-backed audit layer
in AuditableLLM provides a structured, tamper-evident log of adaptation steps that can
be leveraged to attribute abnormal or malicious behavior to specific fine-tuning steps or
unlearning requests in a centralized LLM setting, and to support rollback to known-good
checkpoints. A promising direction for future work is to systematically combine such logs
with poisoning-robust and certified recovery procedures, using the audit metadata to drive
automated detection and remediation of poisoned updates.

Overall, blockchain and FL-based auditing techniques enhance transparency in dis-
tributed training scenarios but do not serve as general solutions for auditable model
adaptation. They lack mechanisms for unified verification across heterogeneous update
types such as fine-tuning and unlearning, and are not designed to integrate directly into
local LLM update pipelines with efficient per-step attestations.

2.2.3. Unlearning Verification

A complementary direction investigates the verification of machine unlearning, where
the goal is to assess whether a model has successfully removed information associated with
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specific data. Existing approaches often rely on behavioral or statistical proxies that measure
how the model responds to retained and forgotten samples [10,11]. These diagnostics can
reveal residual influence or incomplete forgetting, but they provide indirect evidence and
do not trace the underlying update process. As a result, they cannot guarantee that a
claimed unlearning operation was executed in full or in accordance with a prescribed
update rule.

Some recent methods further incorporate influence-based metrics or membership infer-
ence tools to quantify whether sensitive data remains encoded in model parameters [26,27].
Although these techniques enhance empirical assessment, they focus on outcomes rather
than the correctness or integrity of the update procedure itself. They also depend on prob-
abilistic judgments or adversarial testing, which can lead to ambiguous conclusions in
deployment settings.

Overall, unlearning verification research has advanced techniques for evaluating
the effects of data removal, but current methods lack a mechanism to authenticate the
unlearning process or record it in a verifiable manner. These limitations reflect the absence
of an integrated auditing substrate that can attest update provenance, enforce accountability,
and support compliance guarantees across diverse modification types.

2.2.4. Membership Inference Attacks and Machine Unlearning

Membership inference attacks (MIAs) [28,29] exploit the fact that trained models often
assign systematically lower loss or higher confidence to training points than to unseen
examples. In white-box settings, per-example training loss and gradient information can
serve as powerful membership signals, enabling an adversary to infer whether a particular
data point was used during training or fine-tuning. Recent work has begun to combine
MIAs with unlearning evaluations, using the attack success rate as an indicator of how
much information about deleted data remains encoded in model parameters.

This work adopts a simple loss-based MIA in the spirit of prior attacks [28-30] to
compare the membership leakage of fully trained, retrained, and unlearned models on the
MovieLens-small task. The analysis focuses on whether integrating a hash-chain-backed
audit layer changes the membership privacy profile of an existing parameter-efficient
unlearning algorithm, rather than on designing new MIAs.

2.2.5. Comparison with the Proposed Framework

The three research directions reviewed above highlight complementary yet fragmented
progress toward accountable model adaptation. Cryptographic verification and PoL meth-
ods offer strong guarantees but incur substantial computational cost, which limits their
deployment in large-scale update pipelines. Blockchain and federated logging frameworks
provide tamper-resistant provenance, yet they are designed for distributed trust rather than
fine-grained auditing of local model updates. Unlearning verification techniques focus on
assessing the outcomes of data removal, but they do not authenticate the update process
itself or ensure the integrity of its execution. Because these assurance paradigms certify dif-
ferent properties under different threat assumptions and operational constraints, this work
does not treat their costs as directly comparable under a single uniform metric. Instead,
the comparison explicitly distinguishes (i) what is being certified (training correctness, un-
learning correctness, or update-history integrity), (ii) the assumed adversary/trust model,
and (iii) the deployment requirements. The complexity of AuditableLLM is analyzed
separately in Section 4.4 to avoid conflating heterogeneous cost models across paradigms.

In contrast, this work introduces a unified audit framework that verifies training, adap-
tation, and unlearning through a single audit layer. Rather than depending on heavyweight
cryptographic proofs or distributed trust assumptions, the proposed approach records
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hash-chained update logs that enable efficient and tamper-evident provenance tracking.
This design provides end-to-end accountability across diverse update types and supports
step-level verification within standard LLM workflows. By integrating verifiability into
the update process itself, the proposed framework bridges the gap between empirical
diagnostics and fully accountable model evolution. Importantly, AuditableLLM is intended
as a lightweight accountability substrate that is complementary to stronger cryptographic
attestations (e.g., PoL/ZK) and certified unlearning protocols: when stronger adversar-
ial guarantees are required, such mechanisms can be layered on top of the same logged
update transactions.

Table 1 shows that these directions target different certified objects under different
threat models, and therefore are not directly comparable under a single experimental
protocol. In particular, PoL/ZK methods aim to attest training correctness under strong
adversaries, whereas certified unlearning focuses on forgetting correctness or bounded
influence, and blockchain-style systems provide replicated immutability via consensus.
AuditableLLM instead targets low-friction, tamper-evident update traceability for frequent
PEFT, continual learning, and compliance-driven unlearning operations under an honest-
but-curious provider, and can serve as a common logging substrate onto which stronger
attestations can be layered when required.

Table 1. Comparison with representative assurance mechanisms across threat and trust model,
certified object, and deployment requirements.

Approach Threat and Trust Model Certified Object Iyp 1ca 1 Deployment
Requirement
. . Requires proof-generation hooks,
PoL/PoT, ZK proofs of Training executed as claimed access to training

training [15,16,21]

Strong/fully malicious provider (strong attestation of training

transcripts/commitments,
provenance)

and verification infrastructure

Certified /verifiable unlearning,
unlearning auditing [27,31-33]

Often requires additional training
steps, influence bounding,

or extra evaluation rounds for
certification

Typically honest-but-curious to
stronger settings
(protocol-dependent)

Forgetting correctness/bounded
influence of removed data

Blockchain-based audit logs [22]

Requires consensus/replication
network and ledger maintenance
in addition to local logging

Distributed trust/multi-party
consensus

Tamper-resistant replicated
history (ledger immutability)

Provenance/governance logging
(no crypto chaining) [4,23]

Operational lineage and
documentation
(non-cryptographic)

Standard logging pipeline; no

Benign logging assumption cryptographic integrity binding

AuditableLLM (this work)

Requires only local hash-chained

Honest-but-curious provider;
verifiable third-party auditing

Tamper-evident update-history
integrity + step-level traceability
for adaptation/unlearning

logging and verification; no
retraining proofs or consensus
network

3. System Model and Design Objectives

To support verifiable and regulation-ready model evolution, this section formalizes the
system foundations of the proposed AuditableLLM framework. It first outlines the system
model, describing the actors and lifecycle of auditable model updates. It then introduces
the conceptual architecture that links adaptation, audit, and verification into a unified
accountability pipeline. Finally, it clarifies the design objectives that shape the framework’s
requirements for transparency, efficiency, and trustworthy verification.

3.1. System Model Overview

The proposed AuditableLLM framework is modeled as a compliance-aware and
verifiable framework in which an LLM evolves through a series of update operations,
such as training, fine-tuning, continual learning, correction, or unlearning, implemented
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via parameter-efficient or modular mechanisms. Each operation modifies the model’s
adaptable parameters while preserving the base model’s integrity, and simultaneously
produces auditable evidence that can later be verified by independent parties.

As illustrated in Figure 1, the system involves three principal actors. First, data contrib-
utors or requesters provide training data or issue modification and deletion requests under
regulatory provisions such as the GDPR’s right to erasure [1]. In practical deployments,
these entities can be instantiated as clients or tenants (e.g., in multi-tenant or federated
settings) and may be benign or adversarial. Accordingly, each update request can be treated
as a client-scoped transaction whose provenance is bound to a unique, stable client/tenant
identifier and committed into the audit log, enabling post-hoc attribution, investigation,
and rollback when suspicious or non-compliant updates are identified. Depending on
deployment and audit-log visibility, this identifier can be stored in clear for closed settings
or as a privacy-preserving token with an access-controlled resolution mechanism, with-
out weakening client-scoped accountability. Their update requests, either for training or
unlearning, are submitted to the model provider.

The model provider is responsible for maintaining the base model, executing these
updates within the Auditable Framework, and generating corresponding audit records.
Each update produces both an updated model state and cryptographically protected audit
logs that capture operation metadata and integrity hashes.

Finally, auditors or regulators independently verify these logs without accessing
proprietary parameters or raw data. This end-to-end process forms a transparent and
tamper-evident audit trail, ensuring accountability, verifiability, and regulatory readiness
across the entire model lifecycle [31,33].

Update Auditable
Requests Output
Training Updated
Requests Model State
Dat Unlearning  A dit L
a8 Requests Model | AHdItL0gs Auditors
Contributors Provider

Figure 1. Layered conceptual architecture of the AuditableLLM framework.

Although the framework is model-agnostic and compatible with diverse adaptation
algorithms, the experiments instantiate it with a LoRA-based parameter-efficient unlearning
baseline. The baseline applies approximate influence-based parameter correction to the
adapter parameters, following the unified parameter-efficient unlearning algorithm of [34],
to demonstrate generality, efficiency, and reproducibility.

3.2. Conceptual Components

The proposed AuditableLLM is designed as a general and compliance-aware audit
framework for LLMs. It consists of three interacting components: data and adaptation,
audit, and verification and compliance layers, which together define the logical architecture
of an auditable and regulation-ready LLM system. These components collectively form the
conceptual foundation of the framework, while their operational realization is detailed in
Section 4. Each component interacts with the others to establish a closed accountability loop,
from model updates, to audit recording, to independent verification. Figure 2 illustrates
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the layered architecture of the proposed AuditableLLM framework and the interactions
among its three components.

Auditable Framework

Data And Adaptation Layer Audit Layer Verification And Compliance Layer

Model Update Operation L
Requests L . Mpetadata Verify Suite
XV

I.
=
foco )
A2 - Cryptographic
;_—%9 Hashes
Adaptable i

&

Parameters

Cs
limn Compliance
Report
9

Large Language Model

Tamper-Evident Hash Chain

Figure 2. Layered conceptual architecture of the proposed AuditableLLM framework.

3.2.1. Data and Adaptation Layer

At the foundation lies a dynamic process of parameter-efficient model adaptation. A
pretrained LLM serves as the immutable backbone, while lightweight modules such as
LoRA, QLoRA, or prefix adapters enable continual updates, fine-tuning, or compliance-
driven modifications. Depending on operational or regulatory requirements, the data used
for model updates may undergo lifecycle management, including correction, replacement,
or removal. Every model update, whether for training, correction, or maintenance, is
therefore treated as an auditable event that modifies only the adaptable parameters while
preserving the integrity of the base model. Machine unlearning is regarded as a compliance-
oriented instance within this broader LLM adaptation paradigm [35,36].

3.2.2. Audit Layer

The audit layer serves as the cryptographic backbone of AuditableLLM, maintaining
a tamper-evident and append-only record of all adaptation events. Rather than storing
raw data or full model parameters, it records pseudonymized metadata and cryptographic
digests that summarize each update operation. These entries are chronologically linked
to create a lightweight hash-chain structure, so that any alteration, omission, or replay
attempt can be externally detected. By relying on standard cryptographic primitives (e.g.,
SHA-256, Merkle-style linking) instead of heavy zero-knowledge proofs, the audit layer
achieves a practical balance between verifiability and computational efficiency [22,31]. Its
modular architecture ensures compatibility with various LLM adaptation methods and
seamless integration with existing compliance workflows or version-control systems.

3.2.3. Verification and Compliance Layer

The verification layer establishes trust and accountability between the model provider
and external auditors. Assuming an honest-but-curious model provider, who correctly
executes updates but must demonstrate compliance, verification operates on two comple-
mentary levels. Structural verification ensures the cryptographic integrity and chronologi-
cal ordering of audit records, while behavioral verification evaluates whether the LLM’s
performance and behavior remain consistent with intended learning objectives. Together,
these mechanisms allow independent auditors to confirm the authenticity, reliability, and
compliance of all recorded operations [32,37].
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In summary, these three components jointly define the conceptual foundation of
the proposed framework: the data and adaptation layer produces observable parameter
updates, the audit layer records them in a verifiable and tamper-evident manner, and the
verification layer attests them through independent validation. This definition provides the
basis for the operational methodology and system implementation described in Section 4.

3.3. Design Objectives

Building upon the conceptual architecture outlined above, AuditableLLM is designed
to ensure trustworthy, transparent, and regulation-ready model adaptation across the
full lifecycle of LLMs. Unlike traditional unlearning-focused frameworks, it generalizes
auditability to all forms of model evolution, including training, fine-tuning, continual
learning, correction, and unlearning, ensuring that every update can be verified, traced,
and audited in a consistent and trustworthy manner.

The framework is guided by three overarching objectives:

(i) System-Level Accountability. Every model update, regardless of its type, gran-
ularity, or intent, must produce a verifiable and tamper-evident record. This objective
aligns with emerging governance frameworks such as the GDPR and the EU Al Act, which
emphasize demonstrable traceability, provenance tracking, and lifecycle accountability for
Al systems deployed in regulated contexts.

(ii) Technical Efficiency and Modularity. The framework must remain lightweight,
parameter-efficient, and model-agnostic, supporting diverse adaptation paradigms while
introducing minimal computational or storage overhead. By decoupling the auditing
mechanism from the underlying learning algorithm, AuditableLLM enables flexible deploy-
ment across heterogeneous infrastructures such as MLaa$S, FL, and on-premise compliance
environments [8,9].

(iii) Verifiability and Behavioral Reliability. Verification operates on multiple levels:
(1) cryptographic integrity checks ensure audit-chain correctness; (2) parametric validation
confirms consistency between successive model updates; and (3) behavioral diagnostics
evaluate whether the model’s outputs remain faithful, safe, and compliant after adapta-
tion. Together, these mechanisms guarantee that both the process and outcomes of model
evolution are externally auditable and reproducible [32,37].

Overall, these design principles establish a foundation for building scalable, efficient,
and verifiable audit mechanisms applicable to any model update process. They define how
the proposed system should function to ensure integrity, transparency, and accountability,
setting the stage for the operational methodology detailed in Section 4.

4. Methodology and System Design

This section presents the methodology and system design of the proposed Au-
ditableLLM framework, translating the system model and design principles into an op-
erational, verifiable adaptation pipeline. A unified mechanism for model updates is es-
tablished, a tamper-evident audit layer is constructed, and a verification and compliance
suite is developed to ensure trustworthy and regulation-ready model evolution. Together,
these components form a coherent methodology for achieving accountability, efficiency,
and verifiability across the full lifecycle of LLM adaptation.

4.1. Methodological Rationale and Pipeline

This section establishes the methodological foundation of the proposed AuditableLLM
framework and instantiates it as a unified, verifiable adaptation pipeline for LLMs.

At its core, AuditableLLM integrates model evolution into a closed compliance
loop. Any operation—including training, fine-tuning, continual learning, correction,
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or unlearning—is modeled as a standardized update transaction that passes through three
stages: (1) Update Execution, where the provider applies a parameter-efficient or modular
update and records the associated metadata; (2) Audit Logging, where a cryptographic
digest of the operation is committed to an append-only audit chain; and (3) Verification
and Certification, where internal or external auditors validate the structural integrity and
behavioral reliability of the resulting model. This unified abstraction places all adaptation
behaviors under a single auditable contract and enables consistent verification logic for
both learning and unlearning [22,31,33].

Following parameter-efficient and modular adaptation in LLMs [8,9], the framework
ensures that model updates remain lightweight, auditable, and reproducible, linking
advances in efficient fine-tuning with verifiable machine learning [1,4]. Subsequent sections
detail the unified update mechanism, the audit layer, the verification and compliance suite,
and the overall security and threat model that together operationalize accountability and
verifiability in AuditableLLM.

4.2. Unified Update Mechanism

The first operational module of the proposed AuditableLLM framework is a unified
update mechanism that standardizes all forms of model adaptation, including training, fine-
tuning, continual learning, correction, and unlearning, under a single verifiable abstraction.
This design provides a consistent mathematical and procedural interface for integrating
parameter-efficient updates with auditability and compliance assurance.

4.2.1. General Formulation

Let My denote the immutable base model and 0; the parameter-efficient component
(e.g., LoRA adapter, prefix embedding, or other modular head) at update step t. Each
model update operation U; transforms the current system state (M, 8;_1) into a new
configuration (M, 8;) via a generalized update operator F:

0; = F(Us; 0,1, Dy),

where D; represents the data subset associated with the operation (e.g., task data, correction
samples, or deletion requests). This abstraction unifies the semantics of different adaptation
modes by treating each as an instantiation of the same functional interface .

Depending on context, 7 may correspond to gradient-based optimization, influence-
guided parameter correction, or selective weight reconfiguration. For instance, in compliance-
oriented scenarios, U; may represent a deletion update that counteracts the influence of a
forget set Drorger, while in performance-oriented scenarios it may denote a conventional
fine-tuning or calibration step. In all cases, the resulting parameter delta AG; = 0; — 6;_
forms the atomic evidence unit to be recorded in the audit layer.

4.2.2. Parameter-Efficient Realization

To ensure scalability within LLM adaptation, the operator F is instantiated through
PEFT paradigms such as LoRA, QLoRA, or prefix-tuning [8,9]. Rather than retraining the
entire base model M, these methods apply localized updates to 6;, typically accounting for
less than 1% of the total parameters. This modularity substantially reduces computational
cost and storage footprint, while enabling precise auditability: each parameter delta A6;
can be independently hashed, recorded, and verified by the audit layer.

As one representative case, LORA-based modules decompose the trainable component
into a pair of low-rank matrices (A, B;) such that

0r = 0;_1 + BiA;.
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The resulting incremental updates A8; = B;A; represent verifiable adaptation events
that are subsequently captured by the audit mechanism. The same abstraction applies
to other PEFT variants, ensuring consistency and interoperability across different LLM
adaptation workflows.

4.2.3. Audit Integration

Each update transaction U; emits two synchronized outputs: the updated parameter
module 6; and the corresponding audit metadata y,. The metadata includes operation
identifiers, timestamped commitments, and cryptographic hashes of A8;, which are imme-
diately committed to the audit chain. This ensures that every update, whether it introduces
new knowledge or removes prior information, creates a tamper-evident record linking
algorithmic execution to verifiable evidence.

By abstracting all forms of adaptation through a unified interface and coupling them
with real-time audit generation, the proposed mechanism transforms model updates into
cryptographically attestable events. This foundation enables the seamless integration of
efficiency, accountability, and verifiability across diverse operational contexts, forming the
backbone of the AuditableLLM pipeline.

4.3. Audit Layer Construction

The audit layer forms the cryptographic backbone of the proposed AuditableLLM
framework. Its role is to transform every model update into a tamper-evident and exter-
nally verifiable record, ensuring that the history of model evolution remains transparent,
traceable, and compliant. Unlike conventional version-control or logging systems, this
layer emphasizes verifiable accountability rather than mere record-keeping, as each update
transaction is cryptographically committed, timestamped, and chained to its predecessor
to form an immutable lineage of model states.

4.3.1. Audit Record Structure

For each update operation U;, the model provider generates an audit record R; con-
taining a compact yet expressive set of metadata:

R; = {IDy, p;, hpp,, hy_1, timestamp, }.

Here, ID; denotes a unique, stable operation identifier, and p, represents operation meta-
data (e.g., update type, data tag, compliance reason). In multi-tenant or federated deploy-
ments, ID; can be instantiated as a tuple that includes a tenant-scoped client identifier,
e.g., ID; = (CIDy, op,), enabling client-scoped attribution of update transactions. De-
pending on deployment and audit-log visibility, CID; can be stored in clear in closed
settings or represented as a privacy-preserving token that remains resolvable by the
provider/authorized auditors under access control, without weakening accountability. Op-
tionally, ¢, may include a digest of the client-submitted request or batch (e.g., hp, = H(D}))
and a client-side signature over the request summary to provide non-repudiation at the log-
ging boundary. The term hpg, = H(AB;) is the cryptographic hash of the parameter delta,
and h;_; is the hash of the previous record. Finally, in the implementation, H(-) is instanti-
ated as the SHA-256 hash function, a widely deployed 256-bit cryptographic primitive. The
hash-chain construction itself does not rely on any additional pseudo-random generator:
its tamper-evidence guarantees follow from the collision and (second-)preimage resistance
of SHA-256. Any random identifiers or nonces that may appear in the metadata y, are
drawn from the operating system’s cryptographically secure random source, but they are
not required for the security of the chaining mechanism. The inclusion of h;_; ensures that
all audit records are interlinked, forming a chronological hash chain £ = {Ro,Ry,...,Rr}.
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Each record thus binds three dimensions of verifiability: (i) temporal integrity, ensured
by chronological linkage; (ii) semantic accountability, ensured by metadata commitments;
and (iii) structural traceability, ensured by cryptographic hashing of model deltas.

4.3.2. Hash-Chain Construction

The audit layer implements an incremental hash-chain mechanism that sequentially
links all update events. As illustrated in Figure 3, each audit record R; encapsulates
operation metadata (y,), the parameter digest (hag, ), the previous chain hash (h;_1), and
a timestamp (t). These components are concatenated and hashed to produce the new chain
state hy, ensuring that any modification or omission invalidates all subsequent records.

CurrentHash
Metadata ParamDigest Timestamp
ar: T :
bn |
PrevHash
)

Figure 3. Conceptual diagram of the hash-chain construction used in the AuditableLLM audit layer.

Formally, given the previous hash h;_; and a new record Ry, the current chain hash h;
is computed as:

hy = H(he_1 || H(p, [ ha, [ 1)),

where || denotes concatenation. In all experiments, H is set to SHA-256. Under standard
cryptographic assumptions, forging a different audit history that yields the same final chain
head ht would require either finding a collision or a second preimage for SHA-256. Given
the 256-bit output size and the scale of audit logs considered in the evaluated setting (up to
10%-10° records), the probability that any computationally bounded adversary can mount
such an attack is negligible. Consequently, SHA-256 provides more than sufficient security
for the goal of tamper-evident audit logging without incurring additional overhead from
heavier primitives or consensus protocols. This lightweight design maintains cryptographic
immutability similar to blockchain ledgers, yet avoids consensus overhead and remains
self-contained within the model provider’s infrastructure.

Algorithm 1 summarizes the operational process for constructing the tamper-evident
audit chain. Each model update is committed with its metadata and parameter digest,
extending the verifiable history of model evolution.

Algorithm 1: Tamper-Evident Audit Chain Construction for AuditableLLM
Input: Previous hash h;_1, operation metadata y,, parameter delta A6;,

timestamp ¢
Output: Updated chain state h;
1 Compute parameter digest hpg, < H(AB;)
2 Assemble record Ry = (p;, hpg,, hy—1,t)
3 Compute new chain hash hy <— H(h;_1[|H(p, | hpg,|[t))
4 Store R and hy in the append-only audit log £
5 return h;
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4.3.3. Provider-Side Procedure

For each update operation U}, the provider constructs a new audit record and updates
the chain state in a fixed sequence of steps. Given the previous chain head h;_ (or a
designated genesis value for Ry), the operation metadata p,, the parameter delta Af;, and a
timestamp ¢, the provider first computes the parameter digest hyg, = H(A6;). It then
assembles the record payload (yt, hpg,, h_1, t). Finally, the new chain head h; is derived
by hashing the previous head together with the payload hash. The resulting record R¢
and updated head h; are appended to an append-only storage backend. Algorithm 1
summarizes this per-update procedure.

4.3.4. Design Considerations

The audit layer is designed for modular integration and low overhead. It does not
store raw data, gradients, or model weights, but only compact digests and pseudonymized
metadata. As a result, storage costs grow linearly with the number of updates rather
than model size, and the entire verification process can be executed efficiently even for
large-scale LLMs. Furthermore, this layer is compatible with privacy-preserving techniques
such as differential privacy and secure multiparty computation, allowing audit proofs
to be published or verified without disclosing proprietary or sensitive information [4,22].
In privacy-preserving fine-tuning or federated learning settings, the audit metadata can
additionally record declared DP-related configurations (e.g., clipping norms, noise scales,
and cumulative privacy budgets) for each update or round. This enables auditors to check
the internal consistency of the claimed privacy parameters over the lifecycle of training and
unlearning. However, the actual noise generation and application remain encapsulated
inside a trusted execution environment. A systematic, formal quantification of potential
information leakage from parameter digests or audit metadata, and a tighter integration
of the audit layer with certified privacy-preserving training or unlearning methods and
protocol-level guarantees that DP mechanisms were executed as configured, are promising
directions for future work.

In summary, the audit layer converts every algorithmic operation into an immutable,
verifiable event. It serves as the cryptographic foundation that links model adaptation with
compliance assurance, providing regulators and auditors with tamper-evident evidence of
each model evolution step. This verifiable audit trail forms the basis for the integrity and
accountability guarantees of the AuditableLLM framework.

4.3.5. Log Storage and Retention

AuditableLLM treats the storage backend for audit records as a pluggable component.
In the prototype implementation, hash-chained logs are persisted as append-only records
on provider-managed storage. The abstraction is nonetheless compatible with both internal
databases (e.g., append-only tables or key-value stores) and external write-once or ver-
sioned object stores that offer stronger tamper-resistance guarantees. The framework does
not mandate a specific retention window. Instead, deployments are expected to choose log
retention policies that align with applicable regulatory and organizational requirements,
such as retaining full histories for high-risk systems or enforcing time-bounded retention
for low-risk deployments. When logs are pruned or archived, new checkpoints of the hash
chain head can be anchored (e.g., via periodic digests) so that the integrity of the remaining
prefix remains verifiable.

4.4. Verification and Compliance Layer

The verification and compliance layer constitutes the trust and assurance component
of the AuditableLLM framework. While the audit layer guarantees the immutability of
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recorded updates, this layer ensures that all updates are both cryptographically verifiable
and behaviorally faithful, bridging the technical and empirical dimensions of accountability.

4.4.1. Structural Verification

This submodule focuses on the cryptographic validation of audit integrity and param-
eter consistency. Given an updated model M; and its audit segment {R; g, ..., R;}, the
verifier performs:

1.  Hash-Chain Validation: Ensures that audit records form an unbroken chronological
chain, confirming that no record has been inserted, removed, or modified.

2. Parameter Commitment Verification: Recomputes digest commitments H(A6;) from
model parameters and checks equality with logged commitments, verifying that the
recorded deltas match actual model updates.

These steps establish structural integrity and parametric consistency, the cryptographic
foundation of verifiable model accountability.

4.4.2. Computational Complexity

Let T denote the number of recorded update events and Cp the cost of evaluating
the hash function once. To make comparisons explicit across assurance mechanisms,
the following notation is additionally used: Cscan for the constant-time per-artifact overhead
of parsing/serialization and I/O-bound checks (made explicit for log-style schemes where
verification is a linear scan over T records; analogous costs exist in other paradigms but are
typically dominated by their primary primitives); Cs;g for verifying one digital signature;
Ccur for one chameleon-hash/skip-link consistency check when applicable; Cstep (|W|)
for the cost of one training/update step for parameter size |W|; and Venark (7, |io|) for
the verifier cost of validating a SNARK proof for a circuit/R1CS of size n with public
I/0O size |io|. Here, n is induced by the computation being proved (e.g., the specific
training/unlearning procedure and its model/state encoding), while the verifier cost is
typically succinct (often sub-linear in # and in some constructions dominated by |io|). For
replay-based proof-of-learning style verification, let E denote the number of epochs, Q
the number of verifier queries per epoch, and k the number of steps per queried segment.
For federated logging schemes, let N. denote the number of client contributions whose
signatures may be verified per update.

On the provider side, creating and appending an audit record for a single update
requires a constant number of hash evaluations together with lightweight serialization
and storage I/O. As a result, the total logging overhead across T updates scales as
(T (Cq + Cscan)) in time and O(T) in storage, independent of the size of the under-
lying model. On the auditor side, the structural verification procedure (Algorithm 2)
processes each record exactly once to recompute payload hashes and chain heads, and,
when model states are available, it can additionally recompute parameter digests. This
yields a worst-case and typical verification complexity of (T (Cp + Cscan)) time and O(1)
auxiliary memory beyond the log itself, with early termination if a mismatch is encoun-
tered. In other words, the cost of a full integrity check grows linearly with the length
of the audit log. Table 2 summarizes the asymptotic verifier-side upper-bound cost of
AuditableLLM in comparison with representative proof-of-learning, certified /unlearning-
auditing, blockchain-based, and provenance-logging approaches, using a unified notation
that makes the dominant per-update primitives (training-step replay, proof verification,
signature verification, and hash/scan operations) explicit.
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Table 2. Unified asymptotic upper-bound verifier cost of representative assurance mechanisms.

Approach Verification Cost & Overhead
Proof-of-learning / proof-of-training

(replay-based) [15,16] O(E Qk Catep(IW))

ZK proofs of training/verifiable .

computation (SNARK-based) [21] O(Vsnark(n,[io]))

Verifiable/certified machine unlearning

and unlearning auditing [27,31,32] O(T Veert + Ru Ceval)

Blockchain-based federated logging
(e.g., VFChain) [22]

Standard provenance logging/governance
(no cryptographic chaining) [4,23]

AuditableLLM (this work) O(T (Cy + Cscan))

O(T (CH + Cscan + (NC+1) Csig + CCHF))

O(T Cscan)

Algorithm 2: Auditor-side verification of audit log and hash chain

Input: Sequence of audit records {Ry, ..., Rr}, optional model states
{Mo, ..., M1}
Output: Verdict ACCEPT or REJECT
1 Initialize expected head hy (e.g., genesis value or trusted checkpoint)
2 fort < 1to T do
3 Parse R; into (IDy, pt;, hag,, hltcigl, timestamp, )
s | ifh%, #h,_; then

5 | return REJECT // broken chain link
6 if model states M;_1, M are available then

7 Recompute A6; from M;_1 — M;

8 if H(ABt) 7& hAot then

9 t return REJECT // parameter digest mismatch

10 | Compute payload hash ¢; < H(p, || hpg, || timestamp,)
11 | Update chain head hy < H(hy_q || cr)

12 return ACCEPT // log and chain are structurally consistent

4.4.3. Verification Procedure

Algorithm 2 makes the structural verification steps explicit from the auditor’s per-
spective. The auditor processes the audit records sequentially, checking that each record’s
stored previous head matches the recomputed chain head. At each step, the record hash is
re-derived from the metadata, parameter digest, and timestamp, and the expected chain
head is updated accordingly. When intermediate model states are available, the auditor
can additionally reconstruct the parameter delta at each step and compare its digest to the
logged value. Any mismatch in these checks causes the audit log to be rejected, whereas a
fully consistent pass yields an acceptance decision.

4.4.4. Behavioral Verification

Beyond structural checks, behavioral verification ensures that the LLM’s functional
behavior aligns with declared learning or unlearning objectives. This involves empirical
testing on non-sensitive validation subsets to assess: (i) knowledge retention or correction
stability after fine-tuning, and (ii) forgetting effectiveness or privacy preservation after
unlearning. Such assessments may employ task-specific evaluation probes or privacy-risk
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metrics, but the general mechanism remains model-agnostic and data-minimized. Specific
metric definitions are provided in Section 5.

4.4.5. Compliance Certification

When both structural and behavioral verifications succeed, the auditor issues a compli-
ance certificate C; summarizing verified outcomes for update U;. Each certificate contains:
(i) the audit chain checkpoint hy; (ii) verification timestamp and auditor ID; and (iii) signed
attestations of both structural and behavioral compliance. These certificates provide tamper-
evident, regulator-ready evidence of accountability.

4.4.6. Operational Flexibility

The layer supports two verification modes: partial verification (structural checks
only) for lightweight audits, and full verification (structural + behavioral) for formal
regulatory review. All computations depend only on cryptographic digests and non-
sensitive validation data, ensuring privacy-preserving operation across MLaa$S, federated,
or on-premise deployments.

4.5. Threat Model and Security Assurance

Building upon the accountability guarantees established in previous sections, this
section extends the analysis from verifiable operations to active security assurance. The
objective is to ensure that the proposed AuditableLLM framework remains verifiable,
tamper-evident, and trustworthy throughout the entire model adaptation lifecycle, even
under partially untrusted environments.

4.5.1. Adversary Model

Throughout this work, the focus is on an honest-but-curious model provider. The
provider faithfully executes the prescribed training and unlearning operations, but may
later attempt to conceal, omit, or manipulate audit information to hide non-compliant
updates. Potential adversarial behaviors include: (i) tampering, modifying or rewriting pre-
vious audit entries; (ii) omission, selectively removing records to obscure certain operations;
(iii) replay, reusing outdated logs to falsify system state; and (iv) leakage, unintentionally
retaining or exposing sensitive data from previous updates. Auditors are assumed to
be independent and non-colluding, but do not have access to proprietary model param-
eters or raw data. This is distinguished from a stronger, fully malicious provider who
could, in principle, train a model entirely offline and subsequently fabricate an entirely
synthetic but structurally valid audit log that is consistent with the final model parameters,
and then present this log as if it were the true history. This paper does not attempt to
cryptographically exclude such “fake history” scenarios; instead, once the provider instru-
ments its pipeline with the audit layer, the hash-chain-backed log ensures that any ex post
modification, deletion, or reordering of the resulting history becomes efficiently detectable.

4.5.2. Malicious Clients/Contributors

Beyond provider-side misbehavior, adversarial clients are also considered who may
(i) issue strategically crafted correction and deletion requests and subsequently deny or
repudiate the submitted requests or their effects, or (ii) submit poisoned or backdoored train-
ing samples. AuditableLLM provides a verifiable client-scoped accountability substrate by
binding each update transaction to a unique, stable tenant-scoped client identifier (stored in
clear in closed deployments or represented as a resolvable privacy-preserving token under
access control), and by committing request digests, declared data tags, and compliance
reasons into the audit log. This design prevents the denial or repudiation component of
(i) at the logging boundary (via request digests and optional client-side signatures) and
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constrains abuse of (i) crafted correction and deletion requests by enabling authorization
checks and producing tamper-evident evidence for post-hoc verification, dispute resolu-
tion, and rollback to a known-good checkpoint when suspicious requests are detected.
For (ii) poisoning /backdoor submissions, AuditableLLM ensures fine-grained attribution
and traceability across updates; complementary defenses (e.g., admission control, filtering,
and robust aggregation) can be plugged into the update execution stage, while the audit
layer records the defense configuration and the resulting accepted or rejected client updates
for later verification.

4.5.3. Detection and Defense

AuditableLLM integrates multiple mechanisms to detect and contain such adversarial
behaviors. Tampering and omission are exposed through hash-chain recomputation, where
any change or reordering of records produces a digest mismatch. Parameter inconsistency,
in which the committed A; hash does not match the actual model state, is detected through
independent recomputation and cross-validation. Incomplete or unverifiable records are
identified via missing timestamps, broken hash links, or invalid ordering, ensuring that the
audit trail remains continuous and cryptographically verifiable.

4.5.4. Behavioral Anomaly Detection

Beyond structural verification, the framework includes empirical mechanisms for
detecting behavioral anomalies across model updates. Independent auditors or monitoring
agents may periodically assess the model’s externally observable behavior on non-sensitive
benchmark subsets, evaluating whether performance deviations exceed expected opera-
tional bounds. Significant drifts in accuracy, robustness, or fairness metrics may indicate
unrecorded updates, model tampering, or unintended data influence. These behavioral
diagnostics complement cryptographic verification, providing additional evidence of com-
pliance and stability across adaptation cycles.

4.5.5. Trust Boundary

A clearly defined trust boundary separates the model provider, responsible for gener-
ating audit records and executing updates, from the auditor, who independently validates
their integrity and behavioral soundness. The auditor never accesses proprietary model
weights or raw data; verification relies solely on cryptographic digests, metadata, and ex-
ternally observable behaviors. This separation enforces accountability and verifiability
without requiring mutual trust or sensitive data disclosure.

4.5.6. Security Assurance

Within the honest-but-curious setting described above, the proposed framework
combines structural hash verification with behavioral validation to provide a practical
assurance layer that detects both cryptographic and functional deviations. All audit records
are internally self-contained and reproducible, so that an auditor can re-derive and check the
hash chain without relying on external notarization or special storage infrastructure in this
baseline configuration. At the same time, these assurances are conditional on the provider
actually instrumenting its training and unlearning pipeline with the audit layer. A fully
malicious provider who trains models entirely offline and later fabricates a self-consistent
but counterfeit audit log is therefore outside the adversary class that AuditableLLM is
designed to handle directly. Strengthening guarantees to this stronger setting requires
binding the audit process to external roots of trust, such as trusted time-stamping services,
hardware-secured or remotely attested logging, or proof-of-learning style protocols that tie
intermediate model states to real executions. Exploring such compositions is beyond the
scope of this proof-of-concept study, but AuditableLLM'’s hash-chain-backed logging layer
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is intended to serve as a reusable substrate for these heavier attestation mechanisms. Under
the stated threat model, this design yields strong, efficiently checkable accountability for
each adaptation step and offers a natural foundation on top of which more comprehensive,
end-to-end secure compliance solutions can be built.

4.6. Integration and Problem-Solution Alignment

This section concludes the methodology by illustrating how the proposed design
realizes the system-level objectives introduced earlier. Each methodological module of
AuditableLLM directly addresses a specific challenge identified in the design phase, col-
lectively forming an integrated, verifiable, and regulation-ready adaptation framework.
Table 3 summarizes this problem-solution alignment by mapping each design objective to
its corresponding challenge and methodological realization.

Table 3. Alignment between design objectives, challenges, and methodological realizations in the
AuditableLLM framework.

Design Objective

Challenge Methodological Realization

System-Level Accountability

Hash-chained audit logs with
cryptographic digests to ensure
tamper-evident, verifiable update history.

Absence of verifiable lineage for model
evolution and data operations.

Technical Efficiency

Parameter-efficient modular fine-tuning
(LoRA/QLoRA) enabling lightweight,
stable model adaptation.

High retraining cost and instability in
parameter updates.

Verifiability and Reliability

Dual-layer verification combining
structural hash checks and behavioral
consistency evaluation.

Unverifiable or inconsistent model
behavior after adaptation.

Together, these methodological realizations operationalize the theoretical design princi-
ples outlined in the system model. By linking efficiency, accountability, and verifiability into
a unified framework, AuditableLLM provides a concrete pathway for building compliance-
aware and audit-ready LLM systems. This integration closes the methodological loop
between conceptual design and practical implementation, forming the foundation for the
experimental evaluation presented in Section 5.

5. Experiments
5.1. Experiment Overview

This work designs four complementary experiments (EQ, E1, E2, and E3) to compre-
hensively evaluate the proposed AuditableLLM framework. Each experiment targets a
distinct verification layer of the unified audit mechanism:

*  EO0: Unified Audit Pipeline validates the framework-level stability, integrity, and effi-
ciency of the hash-chained audit layer.

e El: Auditable Fine-tuning verifies that the audit layer integrates into fine-tuning
without affecting model performance or convergence stability.

e  E2: Auditable Unlearning examines whether audit-integrated unlearning preserves
forgetting efficacy and utility retention relative to the non-audited baseline.

¢ E3: Membership Inference Robustness evaluates whether unlearned models reduce
membership leakage on the forget set to the level of a retrained-from-scratch baseline.

Together, these experiments assess the stability, non-intrusiveness, verifiability, and pri-
vacy implications of the framework across the model adaptation lifecycle, from update
execution to compliance-oriented data deletion and external verification.
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5.2. Experimental Setup
5.2.1. Dataset

All experiments are conducted on the MovieLens-small dataset [38], which contains
100,000 user-movie ratings from 610 users across approximately 9000 movies. Each record
is reformulated into an instruction-response pair that asks the model to predict a 1-5 star
rating given the user and movie context. This setup provides a lightweight and interpretable
benchmark for evaluating auditable model adaptation processes, including personalized
fine-tuning, continual learning, and compliance-related updates. This dataset is used to
validate the audit-layer properties (e.g., tamper-evidence, step-level traceability, and per-
update overhead) under a controlled adaptation/unlearning workflow.

The dataset is chronologically partitioned into 80% training, 10% validation, and 10%
testing. Within the training partition, a 10% subset is randomly designated as compliance-
sensitive data, simulating deletion, correction, or restricted-use cases. The remaining
data form the standard pool for general model updates. For influence-based adaptation
experiments, a smaller batch subset Dpn; is sampled from the training data to efficiently
approximate gradient and influence computations. Accordingly, task-level generalization
to larger and more diverse instruction corpora is treated as a limitation of the current
empirical study. This limitation, however, does not alter the applicability of the auditing
mechanism itself: the audit layer attaches to update transactions and its runtime cost is
driven primarily by the number of logged update events and hash evaluations, rather than
by the dataset size directly.

5.2.2. Model

The Llama-3.2-1B-Instruct model [39] is fine-tuned using parameter-efficient adapters
implemented via the LoRA configuration [8]. Although AuditableLLM is model-agnostic
and compatible with various PEFT methods (e.g., QLoRA, prefix-tuning, adapter fusion),
LoRA is chosen for clarity and reproducibility, as it provides a modular and transparent
structure that aligns naturally with the audit instrumentation. Each model update, whether
for fine-tuning, correction, or unlearning, is automatically logged by the audit layer, which
records operation metadata and cryptographic digests in real time.

5.2.3. Hardware

All experiments are conducted on a single workstation equipped with an NVIDIA
RTX 4060 GPU (8 GB VRAM), an AMD Ryzen 7 5800H CPU, and 32 GB of system memory.
This configuration represents a practical mid-range environment, demonstrating that the
proposed audit layer can operate efficiently even on commodity hardware with negligible
performance degradation. Timing, throughput, and audit-overhead metrics are averaged
over five independent runs to ensure statistical robustness and reliability.

5.2.4. Training Procedure

All experiments are implemented in PyTorch (https://pytorch.org/) using the Hug-
ging Face transformers and peft libraries. A standard PEFT setup is used, where the
base LLM is kept frozen and only LoRA adapter parameters are updated during training.
As a proof-of-concept, all runs are executed as single-process, single-device jobs on the
workstation described above. No data-, tensor-, or pipeline-parallel distributed training is
employed, which is sufficient for the 1B-parameter model considered here.

5.2.5. Membership Inference Protocol

For the MIA-based evaluation in Experiment E3, a standard loss-based membership
inference attack is followed. A binary classification task is constructed in which samples
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from the forget set Drorget are treated as members, and an equal-sized subset of held-out
test samples are treated as non-members. For a given model M and a labeled example
(x,y), the adversary observes the per-example training loss ¢j;(x,y) (e.g., cross-entropy
or regression loss) and uses its negative value s(x,y) = —{(x, y) as a membership score.
A threshold classifier A(x,y) = W¥[s(x,y) > 7] is calibrated on a disjoint calibration split
and evaluated on an independent test split. The ROC-AUC of this attack, its accuracy,
and the membership advantage Adv = TPR — FPR on Dy, are reported, all on a [0, 1]
scale. Values close to 0.5 (for AUC and accuracy) and 0 (for advantage) indicate that the
attack is nearly random.

5.2.6. Reproducibility Details

To improve reproducibility across the entire experimental section (E0-E3), all ran-
dom seeds (data split, sampling, and training) are fixed and a consistent implemen-
tation configuration is used throughout all runs. Unless stated otherwise, AdamW is
used with learning rate 1 x 10~*, weight decay 1 x 107>, gradient clipping at 1.0, co-
sine learning-rate scheduling with a 100-step warmup, per-device batch size 4 with
gradient accumulation of 8, and mixed-precision (bf16) training. The maximum se-
quence length is set to 256 tokens, and deterministic execution is enabled with a
fixed seed (1234). For LoRA, rank r = 8, « = 32, dropout 0.1, and target modules
{g_proj,k_proj,v_proj,o_proj,gate_proj,up_proj,down_proj} are used.

For auditing, H(-) is instantiated as SHA-256 and one audit entry is recorded per
update step (commit frequency = 1). Each audit record is appended as one JSON object per
line (JSONL manifest) and linked via the hash chain. To make digests reproducible, SHA-
256 inputs are computed over a canonical serialization of the record fields (deterministic
key ordering and UTF-8 encoding). Under fixed seeds and deterministic settings, this yields
reproducible record digests and verification outcomes, and the auditor-side verification
procedure in Section 4.4 can be executed verbatim to validate chain integrity and parameter-
digest consistency.

5.3. E0: Unified Audit Pipeline
5.3.1. Purpose

The first experiment validates the framework-level stability, integrity, and efficiency
of the proposed AuditableLLM audit pipeline. Specifically, it examines whether the hash-
chained audit layer can (1) maintain tamper-evident integrity across continuous updates
and (2) operate efficiently with negligible runtime and storage overhead. This experiment
represents a foundation-level verification of auditability and efficiency, ensuring that all
subsequent fine-tuning and compliance operations are built upon a secure and lightweight
audit substrate.

5.3.2. Method

The model adaptation process is instrumented with the audit layer described in
Section 4. During 1000 simulated update transactions (including training, fine-tuning,
and compliance modifications), the audit layer generates and links cryptographic digests
using SHA-256 hashing. Two complementary tests are performed:

e  EO-A: Technical Integrity. A canonical audit manifest of 1000 entries is created,
and three controlled tampering types are introduced: record deletion, record re-
ordering, and digest corruption. Each modified manifest is independently verified
using the verification suite, which checks chained-hash consistency and traceability.
The verifier reports whether tampering is detected, the index of the first corrupted
entry, and the total verification time.
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e E0-B: Audit Efficiency. The runtime and storage overhead introduced by the audit
process are measured relative to a non-audited baseline. Metrics include per-step
latency, total slowdown, raw and compressed log size, and verification time as a
function of record count T. Each configuration is averaged over five independent runs
on the same hardware described in Section 5.2.

5.3.3. Results

Table 4 reports integrity verification on a 1000-record manifest under three tampering
strategies (deletion, reordering, and hash corruption). In all 20 trials per strategy, the verifier
detected the first invalid record with 100% accuracy, and the average verification time
remained stable at 0.037-0.038 s per run. This behavior follows directly from the hash-
chain dependency: any ex post modification must alter at least one record digest and
therefore breaks the chain unless the adversary can find a collision or second preimage for
SHA-256, which is computationally infeasible under standard assumptions. Consequently,
detection performance is governed by cryptographic properties of the chain rather than
by the underlying model size or the specific update sequence; model size only affects
the one-time cost of computing the per-update parameter digest hyg,, not the verifier’s
O(T) scan.

Table 4. Integrity validation results on a 1000-record audit manifest.

Tamper Type Detection Rate Avg. Verify Time
Record deletion 100% 0.037 s
Record reordering 100% 0.038 s
Hash corruption 100% 0.037 s

Table 5 further quantifies the operational cost of enabling audit logging during a
1000-step pipeline. The end-to-end overhead is 3.4 s in total (3.4 ms/step, 5.7% slowdown),
and is dominated by digest computation (97.1% of the added time), indicating that the
audit layer introduces a thin, predictable cost that is orthogonal to the GPU-bound for-
ward/backward passes. Storage overhead is modest: raw JSONL logs require 0.61 MB
(~611 B/record), while gzip reduces this to 0.15 MB (~153 B/record), implying that long-
lived audit retention is feasible even under frequent updates. Finally, offline verification
scales linearly with the number of records; the measured 0.04 s per 1000 records implies
sub-second verification for typical log sizes in the evaluated setting (e.g., on the order of
10* records), enabling practical on-demand audits without adding online training latency
when verification is not invoked.

Table 5. Audit efficiency analysis on 1000 training steps.

Metric Value Per Step Main Contributor
Time overhead +34s 3.4 ms Hash computation (97.1%)
Log size (raw) 0.61 MB 611 B Digest fields (53.2%)
Log size (gzip) 0.15 MB 153 B -

Verification (offline) O(T) 0.04s/1k Hash recomputation

As visualized in Figure 4, these measurements translate into a small increase in wall-
clock training time (approximately 59.6 s without audit vs. 63.0 s with audit over 1000 steps).
Taken together, EO supports two conclusions aligned with the design objectives: (i) the
audit trail is tamper-evident with deterministic detection under the stated cryptographic
assumptions, and (ii) the resulting accountability comes with low and predictable run-
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time/storage overhead suitable for routine integration into PEFT-based adaptation and
unlearning workflows.

Training Time With and Without Audit Layer

09 63.0s

(+3.4s, ~5.7%)

59.65
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Figure 4. Training time over 1000 steps with and without the audit layer. The main bar indicates
baseline training time, and the stacked top segment indicates the additional audit overhead.

5.3.4. Discussion

The results confirm that the AuditableLLM audit layer provides strong structural
integrity guarantees with minimal computational or storage overhead. Tamper detection
was consistently accurate across all manipulation types, and the reported verification
time scales linearly with manifest size (Tables 4 and 5). The per-step runtime increase
(3—4 ms) is negligible relative to standard PEFT costs, demonstrating that full auditability
can be achieved without sacrificing efficiency. These findings validate the audit layer
as a reliable foundation for higher-level experiments on auditable fine-tuning (E1) and
compliance-oriented unlearning (E2).

5.4. E1: Auditable Fine-Tuning
5.4.1. Purpose

The second experiment investigates whether the proposed audit layer can be inte-
grated into the fine-tuning process without affecting model performance or convergence.
Specifically, this experiment evaluates whether continuous hash-chain logging and di-
gest generation introduce measurable training overhead or interfere with optimization
dynamics. This experiment focuses on validating the non-intrusiveness and system-level
compatibility of the audit layer within standard LoRA-based fine-tuning workflows.

5.4.2. Method

Following the setup described in Section 5.2, the Llama-3.2-1B-Instruct model is fine-
tuned on the MovieLens-small dataset using LoRA adapters under two configurations:

¢  LoRA Fine-tuning (No Audit)—baseline fine-tuning without audit logging.

*  AuditableLLM (Ours)—identical fine-tuning setup with the audit layer enabled, which
records operation metadata, cryptographic digests, and hash-chain links at every step.

Both models are trained for 1000 steps with a batch size of 16 and learning rate 2 x 10~4.
Performance is evaluated on the validation split using accuracy and macro-F1, while audit
performance is measured by log continuity and runtime overhead. All timing results are
averaged over five independent runs.

5.4.3. Results

Table 6 and Figure 5 jointly report an ablation that toggles the audit layer on an
otherwise identical LoRA fine-tuning pipeline. Relative to the base model, both LoRA
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fine-tuning variants yield a large utility gain (Acc: 0.2041 — 0.5539/0.5524; Macro-F1:
0.1928 — 0.4868/0.4840), confirming that the task improvement is driven by the underlying
adaptation rather than by auditing. Enabling audit logging changes validation accuracy
from 0.5539 to 0.5524 (A = —0.0015) and macro-F1 from 0.4868 to 0.4840 (A = —0.0028),
i.e., differences at the 1073 level in absolute terms. Given the magnitude of the LoRA-
induced improvement over the base model, these deltas indicate that audit integration is
practically non-intrusive to fine-tuning utility in this setting.

From a systems standpoint, the integrity and cost measurements align with the in-
tended role of AuditableLLM as a lightweight logging overlay: the audit mechanism
maintains hash-chain continuity and adds only 3.4 ms per step (5.7% slowdown), which is
consistent with CPU-side digesting and metadata appends that do not alter GPU-bound
optimization dynamics. Overall, E1 supports the conclusion that AuditableLLM adds verifi-
able step-level traceability without materially affecting fine-tuning performance, consistent
with the low-overhead behavior established in Experiment EO.

Table 6. Comparison of fine-tuning performance with and without the audit layer. Higher scores of
Accuracy (Acc) and Macro-F1(F1) indicate better model utility and stability.

Method Acc F1
Base Model (No Training) 0.2041 0.1928
LoRA Fine-tuning (No Audit) 0.5539 0.4868
AuditableLLM (Ours) 0.5524 0.4840
Validation Accuracy Validation Macro-F1
0.7 0.7
0.6 1 0.5539 0.5524 061
0.5 - 0.5 0.4568 0.4840
0.4 A 0.4
0.3 A 0.3
0.2041 0.1928
0.2 4 0.2
0.1 0.1
0.0 : T ; 0.0 T T T
Base (No Training) LoRA (No Audit) AuditableLLM (Ours) Base (No Training) LoRA (No Audit) AuditablelLLM (Ours)

Figure 5. Validation accuracy and macro-F1 on MovieLens-small (100K) for the base model, LoRA
without audit, and AuditableLLM with audit logging.

5.4.4. Discussion

The results confirm that AuditableLLM achieves full transparency and reliability dur-
ing the fine-tuning stage with no loss of model utility or optimization stability. The audit
layer consistently maintained tamper-evident linkage across all training steps and intro-
duced only minimal, predictable runtime overhead. Together, these findings demonstrate
that the audit layer can be seamlessly embedded into standard fine-tuning pipelines, pro-
viding verifiable traceability without compromising performance, forming the foundation
for auditable unlearning evaluation in E2.

5.5. E2: Auditable Unlearning
5.5.1. Purpose

The third experiment examines whether the proposed audit layer can be seamlessly
integrated into the unlearning process without degrading model performance. Specifically,
this experiment evaluates whether the inclusion of audit logging and hash-chain verification
affects the forgetting-retention balance achieved by the underlying unlearning algorithm.
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This experiment therefore focuses on verifying the non-intrusiveness and compatibility of
the audit layer within influence-based parameter-efficient unlearning.

5.5.2. Method

Following the same setup as in Section 5.2, 10% of the training samples are designated
as the forget set Drorget, and the remaining 90% as the retain set Dretain. The Llama-3.2-1B-
Instruct model is first fine-tuned on the complete dataset.

Unlearning is then performed using an approximate influence-based parameter cor-
rection method on the LoRA adapter parameters, following the unified parameter-efficient
unlearning algorithm of [34]. Both an unaudited run and an audited run are executed,
with the audit layer enabled only in the latter.

A simplified instance-removal instantiation is used, where examples in Dyt are
treated as the deleted set. The corresponding adapter-parameter change is approximated by
solving the associated quadratic subproblem over the LoRA weights. This approximation
is computed with a small number of mini-batch updates using Hessian-vector products,
leveraging the mini-batch subset Dpyini introduced in Section 5.2. The resulting aggregate
update AByniearn 15 added to the previously fine-tuned adapter to obtain the unlearned
model, rather than fully retraining from scratch.

Within the AuditableLLM condition, this unlearning run is represented as a sequence
of update events, and each audited unlearning step produces a cryptographic digest,
timestamp, and hash-chain link that is verified at the end of the run, together with
an operation-type flag (“unlearning”) and a reference to the identifier of the associated
forget set.

The following four configurations are compared:

¢ Full Training (R U F)—baseline model trained on all data.

*  Retrain (R only)—model retrained from scratch excluding deleted data.

*  Influence-PEFT (No Audit)—standard influence-based unlearning baseline.

¢ AuditableLLM (Ours)—same unlearning process with audit layer integration.

Performance is evaluated on Dietain and Drorget using accuracy and macro-F1 to quan-
tify retention and forgetting respectively.

5.5.3. Results

Table 7 evaluates whether enabling auditing perturbs the underlying influence-
based unlearning dynamics. Relative to the non-audited Influence-PEFT baseline, Au-
ditableLLM yields essentially identical utility on D,: accuracy changes from 0.4813 to
0.4807 (A = —0.0006) and macro-F1 from 0.3201 to 0.3192 (A = —0.0009), i.e., differences
at the 1073 level. Meanwhile, forgetting behavior is preserved: D ' accuracy remains low
(0.2435 — 0.2443, A = +0.0008), and stays close to the retrain-on-R reference (0.2386),
indicating that the retain—forget trade-off is not materially altered by the audit layer.

Compared to Full Training on R U F, both retraining and unlearning markedly reduce
Dy accuracy (0.5279 — 0.2386-0.2443) while retaining reasonable performance on Dy,
and AuditableLLM tracks the same behavior as Influence-PEFT. Hash-chain verification
maintains full digest consistency for the unlearning log and can be executed in a single linear
pass over the records, supporting the interpretation that auditing acts as an orthogonal,
low-overhead wrapper around the chosen PEFT unlearning algorithm.
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Table 7. Comparison of unlearning performance with and without the audit layer. Higher scores on
D indicate better utility, while lower scores on Dy indicate stronger forgetting.

Method Acc (D,) F1 (D,) Acc (’Df)
Full Training (R U F) 0.5512 0.3844 0.5279
Retrain (R only) 0.4925 0.3270 0.2386
Influence-PEFT (No Audit) 0.4813 0.3201 0.2435
AuditableLLM (Ours) 0.4807 0.3192 0.2443

Figures 6 and 7 provide a complementary view of the same conclusions. Figure 6
contrasts retain and forget accuracy: the audited and non-audited Influence-PEFT con-
figurations are nearly overlapping on both D, and Dy, while both remain far below the
Full Training forget accuracy, reflecting effective forgetting. Figure 7 shows the retain-set
macro-F1, where AuditableLLM again tracks the non-audited baseline closely. Overall, E2
indicates that the audit layer can be integrated with influence-based unlearning without
introducing measurable changes to the unlearning outcome, while providing verifiable
step-level traceability of the update history.

Unlearning Performance (Retain vs Forget Accuracy)

=3 Acc(p)
3 Acc(py)

0.5512

Accuracy

Full Retrain Influence-PEFT AuditableLLm
(RUF) (R only) (No Audit} (Ours)

Figure 6. Unlearning performance (accuracy) on MovieLens-small (100 K) for the full model, retrain
baseline, influence-based unlearning, and AuditableLLM.

Unlearning Performance (Retain Macro-F1)

0.5
0.4 0.3844
0.3270 0.3201 0.3192
0.3 1
jnd
g
S
=
0.2+
0.1+
0.0 T T
Full Retrain Influence-PEFT AuditableLLM
(RUF) (R only) (No Audit) (Ours)

Figure 7. Unlearning performance (macro-averaged F1) on MovieLens-small (100 K) for the same
configurations as in Figure 6.
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5.5.4. Discussion

The results validate that AuditableLLM achieves algorithmic correctness and regu-
latory accountability without sacrificing performance. In this experiment, the unlearning
dynamics are driven by the unified parameter-efficient unlearning algorithm of [34]; the
audit layer is orthogonal to this choice and can be wrapped around alternative unlearning
algorithms without modification. The influence-based unlearning process removes targeted
data effects effectively, and the integrated audit layer guarantees cryptographic traceability
for each update step. The negligible differences between the audited and non-audited
variants confirm that accountability and efficiency can coexist within a unified pipeline.
Together, these findings demonstrate that AuditableLLM enables transparent, verifiable,
and compliance-ready model unlearning with no observable loss in performance. This
discussion emphasizes that E2 focuses on behavioral utility and forgetting metrics on
Diretain and Diorger; membership-privacy aspects of unlearning are evaluated separately in
Experiment E3. In addition, the empirical study is restricted to a single parameter-efficient
unlearning baseline in order to isolate the impact of integrating the audit layer; a broader
empirical comparison against multiple state-of-the-art unlearning algorithms is left to
future work.

5.6. E3: Membership Inference Robustness
5.6.1. Purpose

The fourth experiment complements the behavioral unlearning evaluation in E2
by examining whether the unlearned models reduce membership leakage on the forget
set Drorger. Concretely, this experiment asks whether an adversary performing a loss-
based membership inference attack can still distinguish samples in Dyypget from held-out
non-members, and how this attack performance compares to a model retrained from
scratch on Dyetain only. This experiment focuses on the privacy dimension of unlearning
and assesses whether the audit layer affects the membership footprint of the underlying
unlearning algorithm.

5.6.2. Method
The four configurations from Experiment E2 are reused:

¢ Full Training (R U F)—baseline model trained on all data.

*  Retrain (R only)—model retrained from scratch excluding deleted data.

*  Influence-PEFT (No Audit)—influence-based unlearning baseline.

¢ AuditableLLM (Ours)—same unlearning process with audit layer integration.

For each configuration, a membership inference task is constructed in which points
from Digrget (as used in E2) act as members and an equal number of samples from the
held-out test split act as non-members. Following prior work on loss-based MIAs [28,29],
the adversary observes the per-example training loss £j;(x, y) and uses its negative value
s(x,y) = —lp(x,y) as a membership score. A threshold 7 is calibrated on a separate
calibration subset by maximizing attack accuracy, and the resulting classifier is evaluated
on an independent evaluation subset. The ROC-AUC of this score, the attack accuracy,
and the membership advantage Adv = TPR — FPR on Dgqge; are reported, averaged over
five independent runs.

5.6.3. Results

Table 8 evaluates membership leakage on the forget set Drorger using a loss-based MIA.
As expected, the fully trained model exhibits a clear membership signal (AUC 0.66, attack
accuracy 0.62, advantage 0.24). Retraining on Die,in substantially weakens this signal,
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bringing the attack close to chance (AUC 0.54, accuracy 0.53, advantage 0.06), which is
consistent with effective removal of membership traces for the forget set.

The influence-based unlearning baseline mitigates leakage relative to full training but
does not reach the retrain reference (AUC 0.59, accuracy 0.59, advantage 0.16), reflecting the
typical utility—privacy trade-off of approximate unlearning. Crucially, enabling auditing
does not materially change these privacy outcomes: AuditableLLM matches the baseline at
the reported granularity (AUC 0.59, advantage 0.16) and differs by only 0.01 in attack accu-
racy (0.59 — 0.58). Under the stated honest-but-curious threat model and this loss-based
evaluation, the audit layer therefore behaves as a privacy-neutral wrapper: it preserves the
unlearning algorithm’s membership-risk profile while adding a verifiable trace of update
operations. Figure 8 provides a visual summary of the same comparisons.

Table 8. Loss-based membership inference attack performance on the forget set Dyoget for MovieLens-
small. Lower values indicate weaker membership inference and better privacy (i.e., closer to ran-
dom guessing).

Method AUCK, . Acchia Advig,
Full Training (R U F) 0.66 0.62 0.24
Retrain (R only) 0.54 0.53 0.06
Influence-PEFT (No Audit) 0.59 0.59 0.16
AuditableLLM (Ours) 0.59 0.58 0.16

MIA Performance on Forget Set Dforget
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Figure 8. Loss-based membership inference attack performance on the forget set Dyopget for the four
configurations in Experiment E3.

5.6.4. Discussion

The MIA results provide a more nuanced view of unlearning effectiveness. On the
one hand, both influence-based unlearning configurations substantially reduce member-
ship leakage on Dyorger compared to the fully trained model, confirming that approximate
parameter-efficient unlearning can meaningfully weaken membership signals in practice.
On the other hand, the unlearned models remain more vulnerable to membership infer-
ence than the retrained baseline, which is consistent with the approximate nature of the
underlying unlearning algorithm. Crucially, the audit layer has no observable effect on
MIA performance: the audited and non-audited variants are indistinguishable within 0.01
across all reported metrics, indicating that cryptographic logging and hash-chain verifica-
tion can be integrated without introducing additional membership leakage. Overall, E3
shows that, in this experimental setting, AuditableLLM inherits the membership privacy
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properties of the underlying unlearning algorithm while providing verifiable traceability
for unlearning operations.

6. Conclusions and Future Work

This paper introduced AuditableLLM, a unified and lightweight framework for au-
ditable model adaptation in LLMs. Rather than targeting a specific unlearning algorithm,
AuditableLLM generalizes the notion of auditability across the entire model lifecycle, cov-
ering fine-tuning, continual updates, and compliance-driven deletion. The framework
augments existing parameter-efficient adaptation pipelines (e.g., LoORA /QLoRA, adapter-
tuning, influence-based updates) with a modular, hash-chained audit layer that aims to
ensure transparent, verifiable, and tamper-evident recordkeeping under the stated honest-
but-curious provider assumption without modifying the core training algorithm.

In the current instantiation, AuditableLLM is evaluated as a proof-of-concept on a
1B-parameter LLM under an honest-but-curious provider assumption. Within this setting,
comprehensive experiments (E0-E3) demonstrate that the proposed audit layer can be
seamlessly integrated into fine-tuning and unlearning phases: it preserves model perfor-
mance with negligible overhead, maintains hash-chain integrity under continuous updates
with 100% tamper detection in the conducted experiments, and, under a simple loss-based
membership inference attack on the forget set, does not increase membership leakage rela-
tive to the non-audited unlearning baseline. These results indicate that efficiency, reliability,
accountability, and empirically assessed membership privacy can coexist within a single
auditable adaptation framework in benign, small-scale configurations, and motivate further
work toward extending these guarantees to adversarial and frontier-scale environments.

Limitations and Future Directions

While AuditableLLM provides a practical foundation for more transparent and
compliance-aware model management under the stated threat model, several open chal-
lenges remain.

e Dataset scale and external validity. The empirical evaluation is conducted in a
small-to-mid-scale setting and uses a lightweight benchmark to enable repeated,
instrumented adaptation and unlearning runs. Therefore, the current results primarily
substantiate the feasibility, traceability, and overhead characteristics of the audit layer.
The auditing mechanism itself is designed to attach to update transactions and its
cost is driven primarily by the volume of logged update events and hash evaluations
rather than the dataset size alone.

*  Scalability and deployment. Extending the audit abstraction to frontier-scale LLMs
and real-time MLaaS settings. In these environments, asynchronous updates, multi-
tenant pipelines, and streaming adaptation introduce additional constraints for both
performance and verifiability.

*  Stronger cryptographic assurance. The present hash-chained audit layer is deliber-
ately positioned as a lightweight, tamper-evident logging mechanism for LoRA-based
adaptation under an honest-but-curious model provider. Extending these guarantees
to stronger adversaries—for example, a fully malicious provider who trains models of-
fline and later reports a fabricated but self-consistent history—calls for additional roots
of trust (e.g., trusted time-stamping services, hardware-secured or remotely attested
logging) and, potentially, the integration of heavier cryptographic proof systems such
as proofs-of-learning and zero-knowledge proofs of training or unlearning. A natural
direction for future work is to explore hybrid constructions in which AuditableLLM
supplies the lightweight hash-chained logging substrate, while PoL- or ZK-style at-
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testations (or trusted hardware) provide end-to-end origin authentication in the fully
malicious setting.

*  Cross-paradigm generalization. Applying the audit layer to additional model adap-
tation paradigms, such as prompt tuning, retrieval-augmented generation (RAG),
and federated model updates, to validate the framework’s interoperability across
heterogeneous architectures.

*  Governance, privacy, and longitudinal assurance. Developing standardized evalua-
tion benchmarks for audit persistence, data influence stability, and multi-cycle relia-
bility. The hash-chain-backed audit layer already provides a chronological, tamper-
evident view of all adaptation steps together with metadata that summarizes data
provenance and training or unlearning configurations. This structure can be leveraged
to investigate anomalous behavior, attribute it to specific updates, and roll back to
known-good checkpoints, and it is naturally compatible with poisoning-aware and
privacy-aware training pipelines. A promising direction for future work is to sys-
tematically integrate AuditableLLM with poisoning-robust and differentially private
learning or unlearning algorithms. Such efforts could support the creation of auditable
compliance standards bridging technical verification with legal accountability.

Overall, AuditableLLM should be viewed as a lightweight, model-agnostic audit layer
that demonstrates the feasibility of hash-chain-backed logging, behaviorally validated and
supplemented with a simple loss-based membership inference evaluation, for parameter-
efficient adaptation under an honest-but-curious provider and small-scale LLM setting. It
takes a first step toward more transparent and regulation-aware LLM management, while
full adversarial robustness, frontier-scale deployment, and formally certified privacy and
poisoning resilience remain important open problems for future research.
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