
Academic Editor: Fabio Grandi

Received: 9 July 2025

Revised: 11 August 2025

Accepted: 15 August 2025

Published: 16 August 2025

Citation: Wang, Y.; Zhang, Z.; Yin, H.;

Yu, G.; Wang, X.; Sun, C.; Ni, W.; Liu,

R.P.; Cheng, Z. DCSCY: DRL-Based

Cross-Shard Smart Contract Yanking

in a Blockchain Sharding Framework.

Electronics 2025, 14, 3254.

https://doi.org/10.3390/

electronics14163254

Copyright: © 2025 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

Article

DCSCY: DRL-Based Cross-Shard Smart Contract Yanking in a
Blockchain Sharding Framework
Ying Wang 1, Zixu Zhang 2, Hongbo Yin 3, Guangsheng Yu 2, Xu Wang 2 , Caijun Sun 4, Wei Ni 5, Ren Ping Liu 2

and Zhiqun Cheng 1,*

1 School of Electronics and Information, Hangzhou Dianzi University, Hangzhou 310018, China;
90023@hdu.edu.cn

2 Global Big Data Technologies Centre, University of Technology Sydney, Ultimo 2007, Australia;
zixu.zhang@alumni.uts.edu.au (Z.Z.); guangsheng.yu@uts.edu.au (G.Y.); xu.wang@uts.edu.au (X.W.);
renping.liu@uts.edu.au (R.P.L.)

3 School of Information and Communication Engineering, University of Electronic Science and Technology of
China, Chengdu 611731, China; hongboyin@std.uestc.edu.cn

4 Zhejiang Lab, Hangzhou 311121, China; sun.cj@zhejianglab.com
5 Data61, CSIRO, Sydney 2015, Australia; wei.ni@data61.csiro.au
* Correspondence: zhiqun@hdu.edu.cn

Abstract

Blockchain sharding has emerged as a promising solution to address scalability and per-
formance challenges in distributed ledger systems. In the sharded blockchain, yanking
can reduce the communication overhead of smart contracts between shards. However,
the existing smart contract yanking methods are inefficient, increasing the latency and
reducing the throughput. In this paper, we propose a novel DRL-Based Cross-Shard Smart
Contract Yanking (DCSCY) framework which intelligently balances three critical factors:
the number of smart contracts processed, node waiting time, and yanking costs. The pro-
posed framework dynamically optimizes the relocation trajectory of smart contracts across
shards. This reduces the communication overhead and enables adaptive, function-level
migrations to enhance the execution efficiency. The experimental results demonstrate that
the proposed approach reduces the cross-shard transaction latency and enhances smart
contract utilization. Compared to random-based and order-based methods, the DCSCY
approach achieves a performance improvement of more than 95%.

Keywords: blockchain; sharding; smart contract; yanking; deep reinforcement learning

1. Introduction
Blockchain technology [1–5] has emerged as a transformative paradigm that enables

decentralized, transparent, and tamper-resistant platforms for digital transactions and
smart contract execution. Among the most prominent blockchain systems, Bitcoin [6] pio-
neered decentralized digital currency, and Ethereum [7] advanced the field by introducing
programmable smart contracts. These innovations have paved the way for a wide range
of applications, including decentralized applications (dApps) [8], decentralized finance
(DeFi) [9,10], supply chain management [11], and Internet of Things (IoT) integration [12,13].
Despite these advancements, scalability and performance remain major bottlenecks for
traditional blockchain systems. As blockchain adoption continues to grow and transaction
volumes surge, enhancing the system throughput and execution efficiency has become a
critical imperative.

Electronics 2025, 14, 3254 https://doi.org/10.3390/electronics14163254

https://doi.org/10.3390/electronics14163254
https://doi.org/10.3390/electronics14163254
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0001-9439-6437
https://doi.org/10.3390/electronics14163254
https://www.mdpi.com/article/10.3390/electronics14163254?type=check_update&version=1

Electronics 2025, 14, 3254 2 of 16

Sharding has emerged as a promising solution to address blockchain scalability is-
sues [14–16]. By partitioning the blockchain network into smaller, independently processing
subsets (shards), the system can achieve a high throughput via parallel transaction execu-
tion. However, sharding introduces the complexity of cross-shard communication, where
transactions or smart contracts need to interact across different shards. The conventional
solutions employ locking mechanisms to maintain consistency, but these approaches incur
a high communication overhead and synchronization delays [17–19].

To address these challenges, the concept of yanking [20,21] has emerged as an alter-
native. Yanking dynamically relocates smart contracts between shards to enable real-time
function-level relocation. This approach optimizes the transaction flow and reduces the
waiting times associated with inter-shard dependencies. As demonstrated in Table 1, yank-
ing mechanisms enhance system efficiency by avoiding the multi-block delays associated
with locking mechanisms. Despite its efficiency advantages, yanking is not suitable for
consortium blockchains because its dynamic relocation of smart contracts across shards
compromises shard-level data confidentiality [22]. Additionally, yanking mechanisms do
not optimize the resource allocation, as they relocate smart contracts without consider-
ing shard-specific demands. This can lead to prolonged waiting times for other shards
requiring access to the same contract.

Table 1. Comparison of locking and yanking mechanisms in sharded blockchain smart contract execution.

Feature Locking [17–19] Yanking [20,21]

Mechanism
Holds contract in one shard,
preventing access by others

Immediate-execution contract
relocation to target shard

FunctionScope Contract-level Function-level

Latency
Higher, due to synchronization

delays across shards
Lower, as it avoids long

multi-block synchronization

Overhead Higher due to cross-shard locks Reduces inter-shard
communication complexity

Consistency Maintains consistency with locks Ensures consistency through
real-time relocation

IdealUse
Critical-consistency

low-frequency cross-shard
interactions

High-frequency rapid cross-shard
processing

To address these limitations, we propose an innovative approach leveraging deep
reinforcement learning (DRL) to optimize the trajectory of smart contract yanking, enabling
efficient and adaptive relocations across shards. The proposed DRL-Based Cross-Shard
Smart Contract Yanking (DCSCY) framework maximizes the overall system efficiency by
intelligently balancing three critical factors: the number of processed smart contracts, node
waiting times, and yanking costs. By dynamically predicting and selecting the optimal
yanking trajectory, this approach effectively addresses the inefficiencies present in existing
yanking mechanisms. This work makes the following key contributions:

1. DCSCY is proposed, making this the first study to apply DRL techniques to opti-
mizing the yanking trajectory of smart contracts in sharded blockchain frameworks.
By leveraging DRL, DCSCY dynamically learns and predicts the optimal sequence for
contract relocations, improving the execution efficiency.

2. The DCSCY framework effectively balances three critical factors: the number of
processed smart contracts, the waiting time for nodes requiring contract execution,
and the communication cost associated with yanking.

Electronics 2025, 14, 3254 3 of 16

3. The experimental results show that DCSCY improves the performance by more than
95% compared to that of order-based and random-based yanking methods. These
results highlight the effectiveness of DCSCY in enhancing smart contract execution
efficiency and reducing system congestion in sharded blockchain environments.

The remainder of this paper is organized as follows: Section 2 reviews related work on
cross-shard smart contract transactions, locking versus yanking mechanisms, and the appli-
cation of DRL in sharded blockchains. Section 3 introduces the proposed system model and
yanking mechanism, while Section 4 details the DRL framework used to optimize smart con-
tract relocation. Section 5 presents the experimental results and performance evaluations.
Finally, Section 6 concludes this paper and discusses potential future research directions.

2. Related Work
In this section, we provide an overview of the existing approaches to addressing the

challenges of cross-shard communication in sharded blockchain systems, with a particular
focus on smart contract execution. Sharding has proven effective in enhancing blockchain
scalability, but the latency and overhead associated with cross-shard transactions remain
significant bottlenecks. We analyze state-of-the-art solutions in three key areas: cross-shard
smart contract transactions, the transition from smart contract locking to yanking, and the
application of DRL to optimizing shard management and contract relocation. This review
lays the foundation for understanding how DCSCY advances the current methodologies.

2.1. Cross-Shard Smart Contract Transactions in the Sharded Blockchain

Smart contracts are distributed across shards to balance the computational load,
with locking mechanisms used to maintain consistency during cross-shard interactions.
Protocols such as Atomic [23] and S-BAC [24] employ these locking mechanisms to coor-
dinate cross-shard transactions and ensure data integrity. Although locking mechanisms
effectively ensure data integrity, they can also result in high cross-shard transaction (CSTx)
ratios due to frequent interactions between accounts and contracts across different shards.
In addition, uncertainty in the transaction processing times complicates execution flows
and increases the communication overhead. As a result, multiple execution steps across
shards are required, which leads to significant latency and decreased system efficiency.

To address the challenges of CSTxs in sharded blockchain systems, researchers have
proposed various strategies. Zhang et al. [25] propose an overlapping shard architec-
ture that converts CSTxs into intra-shard transactions by leveraging overlapping shard
nodes to simplify transaction management and reduce the cross-shard communication
latency. Li et al. [26] propose the Jenga system, which shares the execution logic of all smart
contracts across shards, allowing overlapped nodes to broadcast contract states directly
between state shards and execution channels. Jenga eliminates the need for additional
cross-shard communication, thereby enhancing the throughput and reducing the transac-
tion confirmation latency. Qi et al. [27] present LightCross, which periodically migrates
frequently interacting smart contracts to the same shard, minimizing the CSTx ratio and
using a lightweight cross-shard commit protocol for efficient handling of residual CSTxs.
Additionally, Liang et al. [28] introduce SPARROW, a sharding protocol that accelerates
cross-shard smart contract execution through an efficient one-step execution mechanism
supported by inter-shard caching, speculative cache synchronization, and multi-branch
exploration for rollback handling. These approaches collectively demonstrate the potential
of overlapping architectures, dynamic contract migration, and inter-shard caching for
optimizing cross-shard smart contract execution.

Electronics 2025, 14, 3254 4 of 16

2.2. Smart Contracts from Locking to Yanking

Traditional cross-shard transactions in the sharded blockchain rely on locking mech-
anisms to maintain the execution consistency across multiple shards. Locking protocols
provide strong guarantees of atomicity and consistency by preventing conflicting oper-
ations on smart contracts. Dang et al. [17] propose a two-phase locking (2PL) protocol
to ensure atomicity and isolation in cross-shard transactions. When applied to sharded
blockchain systems, 2PL ensures that cross-shard transactions are executed atomically by
locking all involved contracts until the transaction completes. However, this method can
lead to long transaction wait times and reduced throughput, particularly when malicious
coordinators induce infinite blocking scenarios. To overcome the limitations of traditional
locking mechanisms, Huang et al. [18] introduce the fine-tuned lock protocol, which ad-
dresses these inefficiencies by allowing for partial real-time transaction processing during
account migrations. Unlike conventional locks that block all related transactions, the fine-
tuned lock only locks the payer transactions, allowing payee transactions to proceed in real
time during the account migration process. Although these locking mechanisms maintain
smart contract integrity, they often fall short in terms of their scalability and efficiency,
especially under high cross-shard smart contract transaction throughput conditions.

To overcome these limitations, Wels [7,29] propose smart contract yanking as an
alternative mechanism to ensure transaction atomicity for Ethereum 2.0. The yanking
process in Ethereum 2.0 is initiated when a transaction requests the relocation of a smart
contract to the shard that requires its execution [30]. Once approved, the source shard
generates a receipt containing the state of the contract and the identifier of the requesting
shard. The receipt, along with a Merkle proof, is transmitted to the requesting shard,
which imports the contract state and completes the relocation. This approach achieves
execution consistency by dynamically relocating contracts to the shards where execution is
required, thereby eliminating the need for prolonged locking and reducing the cross-shard
communication overhead. Zamani et al. [31] propose RapidChain, which uses a yanking
mechanism but focuses on relocating UTXOs (Unspent Transaction Outputs) rather than
smart contracts. In RapidChain, the input transactions are first moved from the input shard
to the output shard. Once all inputs are transferred, the final transaction is executed on the
output shard.

2.3. The DRL-Based Sharded Blockchain

The application of DRL in blockchain research has garnered increasing attention due
to its ability to optimize the decision-making processes in complex, decentralized envi-
ronments. For instance, Yu et al. [32] propose a novel multi-agent DRL framework for
resource scheduling in permissionless sharded blockchains. Their Rainbow-WoLF-PHC
algorithm integrates a Rainbow Deep Q-Network (DQN) and WoLF-PHC, achieving rapid
convergence with mixed-strategy Nash equilibrium. This approach optimizes the resource
allocation but does not address smart contract interactions or the relocation efficiency.
Yang et al. [33] introduce DRL-OSS, an overlapping, self-organizing sharding scheme
optimized through a single-agent DRL model. This scheme maximizes the throughput
and security by dynamically adjusting sharding strategies, thereby reducing CSTs. How-
ever, it does not consider the dynamic relocation of smart contracts, leading to potential
inefficiencies when executing interdependent contracts across shards. Li et al. [34] pro-
pose SPRING, a DRL-based state placement framework that models the state placement
as a Markov Decision Process (MDP). By leveraging the spatiotemporal characteristics
of transactions, SPRING effectively reduces the CST ratio and enhances the throughput
while maintaining workload balance. However, SPRING focuses on static state placement
and does not dynamically relocate smart contracts based on the interaction frequency.

Electronics 2025, 14, 3254 5 of 16

Zhang et al. [15] introduce TBDD, a trust-driven, DRL-based framework that optimizes
sharding by integrating trust evaluation with DRL algorithms like a DQN [35] and Proximal
Policy Optimization (PPO) [36]. While TBDD reduces CSTs, balances the node distribution,
and enhances the throughput, it focuses on node allocation and security without optimizing
the smart contract execution efficiency.

Building on these developments, the DCSCY system utilizes DRL to optimize the
relocation of smart contracts between shards, minimizing the latency and computational
overhead associated with cross-shard communication. Unlike existing DRL-based shard-
ing strategies [15,32–34] that focus on resource allocation and state placement, DCSCY
addresses the dynamic relocation of smart contracts required for efficient yanking mech-
anisms. The existing yanking mechanisms designed in Ethereum 2.0 [20,21] incur high
communication costs and latency due to frequent contract relocations. To address this,
DCSCY utilizes DRL’s adaptive learning capability to predict the optimal shard placements
by analyzing historical transaction patterns, thereby reducing cross-shard transaction ratios
and the communication overhead.

3. The System Model: Yanking Smart Contract Calling Based on DRL
This section presents the architecture of the proposed smart contract calling methods

with a yanking mechanism, designed to support a sharded blockchain framework. It
defines the roles involved in the system, outlines the workflow, and clarifies the underlying
system assumptions.

3.1. The System Overview

The System Model. Figure 1 presents a system model of the proposed DCSCY frame-
work within a sharded blockchain environment. The system consists of multiple shards,
such as S1, S2, and S3, where each Si denotes an independent chain composed of all nodes
participating in the i-th shard. To support efficient cross-shard execution, DCSCY intro-
duces a Yanking Community (YC), composed of selected shard leaders based on reliability
and performance metrics. Each leader deposits a collateral fee to deter malicious behavior
and ensure accountability. Acting as the DRL agent, the YC maintains a global view of
the smart contract invocation requests and node queuing times across all shards, enabling
informed and collaborative yanking decisions. In each training episode, denoted as ε,
the system predicts the trajectory of contract relocations based on the current network
conditions. An episode includes γ blocks. If the agent decides to relocate a contract α

times, the episode results in αγ blocks being proposed across the shards. This dynamic
contract migration allows the system to reduce the synchronization overhead and improve
the execution latency.

Figure 1. A system model of the proposed cross-shard smart contract yanking—DCSCY.

Electronics 2025, 14, 3254 6 of 16

Based on the YC-coordinated approach, the DCSCY framework adopts a dynamic
yanking mechanism to relocate smart contracts between shards. Unlike locking mecha-
nisms, the yanking mechanism prioritizes function-level operations by temporarily trans-
ferring the contract state to the target shard for execution. Once execution is complete,
the state is updated and securely returned to the originating shard, accompanied by a re-
ceipt verifying the correctness of the state transition. This verification process is reinforced
with a Merkle proof from the account user to ensure the integrity of the transition.

Architecture. Figure 2 illustrates the architecture of the DCSCY framework. The black
arrows between blocks indicate that each block contains the hash of its preceding block.
In the left section, the upper part represents the historical trajectory of smart contract
yanking during episode ε, with the yanking process represented by blue arrows. In the
right section, the YC employs the DRL algorithm to predict the optimal yanking trajectory,
represented by the red arrows, for the next episode ε + 1. At the beginning of the envi-
ronment, the smart contract is yanked to the shard with the highest number of requests
for a smart contract. If multiple shards have an equal number of requests, the contract is
randomly yanked to one of them.

Figure 2. The architecture of the DCSCY framework.

During each episode, the YC collects data on the calling requests and waiting times.
Calling requests refer to the number of transactions initiated by the n_k nodes within
the k-th shard that require the smart contract during episode ε, denoted as F_callε

k,n_k.
The waiting time represents the total delay experienced by n_k nodes in the k-th shard
while waiting for the smart contract to be yanked during episode ε, denoted as T_waitε

k,n_k,
and is calculated in (2). Based on the learned policy, the smart contract is dynamically
migrated to the shard that minimizes the overall request congestion and waiting delays,
thereby improving the system’s responsiveness and throughput.

Roles. In the DCSCY framework, the network consists of N nodes organized into K
shards, where each node is responsible for proposing blocks to its peers within the same
shard for validation. Additionally, nodes function as validators, actively participating in
the validation process within the sharded blockchain. Notably, the framework minimizes
the leadership role of the nodes, as DCSCY emphasizes decentralized and efficient smart
contract execution verification and optimization of the smart contract yanking across shards,
rather than centering on the consensus mechanism.

Electronics 2025, 14, 3254 7 of 16

3.2. Workflow Overview

The proposed DCSCY framework follows the workflow in Figure 3.

Figure 3. The proposed blockchain sharding system flowchart.

Step-1. Update the calling list and waiting time. The first step in the framework is initial-
izing with the smart contract deployed to a shard based on a calling request. The
smart contract calling request and waiting times are updated for all shards in each
episode (every αγ blocks), where the calling list and the waiting time for each shard
are refreshed based on the latest transaction data collected during this interval.

Step-2. Train the model with the DRL algorithm. Acting as the agent, the YC trains the
model using the collected data to evaluate the current state. This involves utilizing
the DRL-based model to simulate smart contract yanking decisions and output the
optimal shard placement for the smart contract.

Step-3. Determine whether to yank the smart contract. The YC iteratively calculates rewards
over multiple epochs to determine the optimal action. Based on the training results
and DRL model predictions, it calculates the rewards for each action and decides
whether to yank the smart contract to a new shard.

Step-4. The yanking operation. The smart contract is yanked to the new shard, as deter-
mined by the DRL agent. This executes the yanking operation to relocate the smart
contract to the optimal shard and completes related transactions.

During this period, as the YC agent retrains the DRL model to re-evaluate the optimal
shard placement for the smart contract, the system remains in an offline state. Once training
is complete, the system resumes operation, and the cycle restarts from Step-1, progressing
through to Step-4 iteratively.

3.3. System Assumptions

The proposed DCSCY system is designed with the following assumptions:
Protocol Adherence by All Users: DCSCY assumes that all users strictly adhere to the

established protocol rules to ensure smooth execution of the yanking operations and to
minimize disruptions caused by user misbehavior.

Uniformity and Universal Applicability: The system assumes that all nodes are ho-
mogeneous, possessing equal computational power and communication resources, which
eliminates disparities and ensures seamless operation. Moreover, DCSCY is universally
applicable to various blockchain types, including public blockchains, private blockchains,
and consortium blockchains.

Electronics 2025, 14, 3254 8 of 16

Committee-Driven Governance and Leader Accountability: Leaders are chosen based
on a transparent selection process, considering factors such as node reliability and pre-
defined rotation policies to ensure fairness and prevent centralization. The execution of
yanking operations is managed by the YC composed of selected leaders, who employ DRL
algorithms to optimize the decision-making and ensure efficient system operation. To
maintain security and trust within the network, misbehaving leaders face strict penalties,
including monetary fines or removal from the network.

4. The DRL Framework
The proposed DRL framework is designed to optimize the trajectory of smart contract

yanking in a sharded blockchain system, ensuring efficient cross-shard deployment while
minimizing the latency and communication overhead, as shown in Algorithm 1. By lever-
aging the dynamic learning capabilities of DRL, the framework continuously adapts to
the network conditions, transaction demands, and shard-specific states, making real-time
decisions for optimal contract relocation. The objective is to maximize the overall system
efficiency while balancing the execution speed, waiting times, and yanking costs.

Algorithm 1: DQN-based yanking algorithm
Input:

N: Total number of nodes;
K: Total number of shards;
F_callk,n_k: Calling request number for the n_k-th node in the k-th shard;
T_waitk,n_k: Waiting time for the n_k-th node in the k-th shard;
c_yank: Yanking cost when yanking the contract between shards;
λ1, λ2, λ3: Weights of S_exek, S_waitk, and C_yankk;
ξ: Discount factor;
τ: Target network update rate;

1 Initialize: Policy network Qω, target network Qω− ;
2 Replay bufferM;
3 State vector st = [F_callt

k,n_k, T_waitt
k,n_k, yh];

4 for each epoch do
5 Observe initial state s0;
6 for each step t do
7 Select action at via ϵ-greedy;
8 Execute at, compute reward: r : R(S_exe, S_wait, C_yank);
9 Store transition (st, at, rt, st+1) inM;

10 ifM is full then
11 Sample mini-batch B ∼ M;
12 Compute target Q-values: qi = ri + ξ maxa′ Qω−(si+1, a′);
13 Update Qω via gradient descent: ω ← ω− β∇ω

1
|B| ∑(Qω(s, a)− q)2;

14 Soft-update the target network: ω− ← τω + (1− τ)ω−;

15 Update state;

16 Decay exploration rate ϵ← ϵ · e−d;

17 return y′h+1 · · · y
′
h+α.

4.1. Optimizations, Rewards, and DRL

In the DCSCY framework, DRL is employed to optimize the trajectory of smart contract
yanking. The primary objective of integrating DRL is to dynamically predict the optimal
shard for repositioning smart contracts within each episode. By leveraging historical data

Electronics 2025, 14, 3254 9 of 16

and real-time state information, the DRL model intelligently learns and adapts to varying
network conditions. Specifically, it predicts the smart contract’s position in the current
episode based on the state of the shard, including smart contract calling requests across
different shards, the node waiting times in each shard, and the associated yanking costs.
The reward function is designed to evaluate and prioritize actions that enhance the execu-
tion efficiency of smart contract transactions while simultaneously minimizing the latency
incurred by cross-shard interactions. Therefore, the DRL-based model plays a critical role
in determining the optimal shard for smart contract yanking during each episode.

In this section, we propose a single agent of the DCSCY framework. The agent aims to
maximize the earnings by calculating the objective function that is composed of 3 reward
components, where S_exe, S_wait and C_yank are all constant. The notation is shown
in Table 2.

Table 2. Notation and definition used in the DCSCY framework.

Notation Description

N Number of nodes in the network
K Number of shards in the network
ε Fixed episode for state update

F_callε
k,n_k

Smart contract calling requests by n_k-th node in k-th shard during the
ε episode

S_callε
k Total smart contract calling requests by k-th shard during ε episode

T_waitε
k,n_k

Waiting time for n_k-th node in k-th shard to call smart contract during
ε episode

S_waitε
k

Cumulative waiting time of k-th shard to call smart contract during
ε episode

yh Historical trajectory of smart contract yanking
y′h+α Predicted trajectory of smart contract yanking

C_yank Yanking cost, including the yanking operation (adding, deleting,
and communication)

c_yank Constant value for each yanking operation

The Number of Smart Contract Transactions Executed (S_exe): The number of smart
contracts executed in the k-th shard during the ε episode is computed as follows:

S_exeε
k =

(S_exeε
k)max, if S_callε

k ≥ (S_exeε
k)max

S_callε
k, if S_callε

k < (S_exeε
k)max

(1)

where S_callε
k =

n_k
∑

n_k=1
F_callε

k,n_k denotes the total number of transactions in the k-th shard

calling the smart contract during the ε-th episode. (S_exeε
k)max represents the maximum

number of smart contract transactions executed by the k-th shard during the ε-th episode.
The Waiting Time of the Shard (S_wait): The waiting time reflects the cumulative delay

experienced by the nodes in a shard while waiting for the smart contract to be yanked. It is
calculated as

T_waitε
k,n_k =

T_waitε−1
k,n_k +

k
∑

n_k=1
F_callε

k,n_k × E_waitε
k,n_k, if no yanking

0, if yanking
(2)

where T_waitε
k,n_k represents the waiting time for the n_k-th node in the k-th shard to call

the smart contract, and E_waitk
n_k denotes the waiting episodes for the n_k-th node in

Electronics 2025, 14, 3254 10 of 16

the k-th shard during the ε episode. As the waiting episodes increase, T_waitε
k,n_k grows

exponentially. When the smart contract is yanked to a shard, T_waitε
k,nk

resets to 0.

S_waitε
k =

n_K

∑
n_k=1

T_waitε
k,n_k (3)

where S_waitε
k denotes the total waiting time of the k-th shard to call the smart contract.

The Yanking Cost per Yank (C_yank): This metric quantifies the overhead incurred
each time a smart contract is relocated between shards.

C_yankε =

0, if yh = yh−1

c_yank, else yh ̸= yh−1
(4)

where Cε
yank is the yanking cost, including the costs of adding contracts, deleting contracts,

and communicating. In this paper, we assume that the yanking cost for each operation is a
constant value c_yank.

Objective Function: Recall that the objective of the paper is to maximize the efficiency
of the smart contract by yanking while minimizing delays. Thus, the objective function is
defined as a weighted sum of various factors:

R = ∑
j=1

(λ1S_exeε
k + λ2S_waitε

k − λ3C_yankε
k) (5)

Let R = [S_exeε
k, S_waitε

k, C_yankε
k],

objective: max
R

εmax

∑
ε

R(R),

s.t. λ1 + λ2 + λ3 = 1,

S_waitε
k ≤ ρ

(6)

where the hyperparameters λ1, λ2, and λ3 represent the weights of S_exeε
k, S_waitε

k,
and C_yankε, respectively. ρ is a hyperparameter that limits the upper limit of the shard
waiting time.

4.2. The DRL-Based Sharding Optimization Model

The YC is a committee composed of leaders selected from each shard. These leaders
are responsible for executing the DRL training process. The YC collects data from all
shards, including the number of times the smart contract is called, the waiting times for
transactions involving the smart contract, and the yanking cost associated with relocating
the contract to another shard. Using this data, the YC performs virtual yanking of the
smart contract to simulate and evaluate the potential rewards. The training process enables
the agent to determine the optimal shard for relocating the smart contract to maximize
efficiency and minimize latency.

Agent: The agent, represented by the YC, collaboratively processes real-time data
using the DRL model. By leveraging this data, the agent learns and predicts the optimal
shard for the smart contract based on the historical yanking trajectories, smart-contract-
related transaction demands, and yanking costs.

Environment: The environment, as illustrated in Figure 3, encompasses the sharded
blockchain network and yanking operations. It provides the historical trajectory of the
smart contract yanking process, which serves as the basis for evaluating the current state.
Each new state is derived from the updated smart contract calling requests, node waiting

Electronics 2025, 14, 3254 11 of 16

times, and historical trajectory of the smart contract after a virtual yanking action. The envi-
ronment feeds this information back to the agent to support the next decision-making cycle.

State (S): The state S of each shard consists of three components. As shown in Figure 3,
an evaluation of whether the smart contract will be yanked is performed after processing
every αγ blocks. Factors like the node requests for the smart contract across shards, the
waiting time, and the smart contract’s yanking trajectory are considered. Overall, the state
S is a 2Kn_K + 1-dimensional vector represented as follows:

S =[F_callε
1,1, · · · , F_callε

k,n_k · · · , F_callε
K,n_K,

T_waitε
1,1, · · · , T_waitε

k,n_k, · · · , T_waitε
K,n_K,

y1, · · · , yh]

(7)

where yh is the historical trajectory of the smart contract.
Action (A): Given a state S , the agent selects an action A. Specifically, the action A is

an one-hot vector, represented as follows:

A = [y′h+1, · · · , y′h+α] (8)

where the value of y′h+1 is the postion of the smart contract in the next episode, and y′h+α

indicates the position of the smart contract in the next α episode.
Policy (π). A policy determines what action the agent will take next based on a set of

rules. In this case, the process of yanking the smart contract to different shards is based on
a policy that is continually updated and trained, i.e., π(s, a) : S → A.

Reward Function (r). The reward function is inherited from the objective function,
r : R(S_exe, S_wait, C_yank).

DRL plays a pivotal role in the DCSCY system by predicting the optimal shard place-
ment for smart contract yanking. This dynamic prediction capability enables the system
to minimize the latency and communication overhead, ultimately enhancing the overall
efficiency of smart contract utilization. Unlike traditional methods such as convex opti-
mization, DRL can effectively address the complex and dynamic nature of sharding. Its
ability to adaptively learn from historical data and current states allows DRL to outperform
the conventional approaches, offering more robust and efficient solutions to the challenges
of smart contract yanking in sharded blockchain systems.

5. Experiments and Evaluation
This section presents the experimental setup and the design of the baseline methods

used to evaluate the performance of the proposed DCSCY framework. The evaluation
focuses on the convergence performance and execution stability under various configura-
tions, including different numbers of shards and participating nodes. Based on the analysis
of real-world Ethereum data [37], a single block on the Ethereum network typically contains
between 100 and 200 transactions. Considering a period of 5 blocks as one episode, the total
number of transactions in one episode is approximately 500–1000. As the scope of the
analysis is limited to the yanking behavior of a single smart contract function, the number
of transactions involving that specific contract is estimated to be up to 50 per episode.
Assuming that these transactions involve calls to 10–20 different smart contract functions
and as this study focuses on the yanking of a single smart contract function, the maxi-
mum number of smart-contract-related transactions involving that specific contract in one
episode is approximately 50. The experimental parameters are set as shown in Table 3.

For benchmarking, DCSCY is compared with two baseline methods commonly used
in sharded blockchain systems. The random-based yanking strategy relocates the smart
contract to a randomly selected shard in each episode. This approach is similar to that

Electronics 2025, 14, 3254 12 of 16

used in Omniledger [23], where committee or execution assignments are randomized
to ensure liveness and fairness. The order-based yanking method, on the other hand,
follows a round-robin strategy to sequentially relocate the contract among shards, repre-
senting a naive yet deterministic scheduling policy. This approach mimics designs used in
early sharded frameworks such as RapidChain [31]. These baselines serve as non-learning
references to demonstrate the performance gain achieved by the proposed DRL-based
optimization approach.

Table 3. Hyperparameters.

Notation Description Value

n_k The node number of each shard [5, 20]
K The total shard number [3, 7]
α Hop number for predicting the trajectory of smart contract yanking [1, 4]
γ The proposed block in the fix episode 5

S_exeε
k Max requests processed by the k-th shard during the ε-th episode 50

S_genε
k Max transactions generated by the k-th shard during the ε-th episode 50

e The epoch number 50
λ1 The weight of S_exeε

k 0.6
λ2 The weight of S_waitε

k 0.2
λ3 The weight of C_yankε

k 0.2

5.1. The Experimental Framework

An experimental framework is established utilizing a MacBook Pro laptop equipped
with an Apple M3 Max chip, comprising a 16-core CPU, a 40-core GPU, and 128 GB of
memory (Apple Inc., Cupertino, CA, USA), to evaluate a proposed blockchain sharding
scheme. The experimental environment is configured through the deployment of a virtual
machine, leveraging Python 3.8.10 and PyTorch 1.13.1. In this configuration, the discrete
DRL algorithm, DQN, is employed to train the model over 50 epochs. The simulation
environment is designed to assess the performance, with the number of nodes per shard
varying between 5 and 20.

5.2. The Experimental Results

In the experimental evaluations, the performance of the proposed DCSCY and DCSCY-
RC frameworks is compared with order-based and random-based baselines. Three key
metrics are used for assessment: the reward convergence during training, the total number
of smart contract calling requests, and the total waiting time. The latter two metrics also
indirectly reflect the system throughput: a higher number of processed smart contract
calling requests within a fixed time frame indicates a better throughput, while a shorter
total waiting time implies more rapid transaction processing, which similarly contributes to
a higher throughput. All experiments are conducted under varying node numbers, shard
numbers, and hop distances. DCSCY-RC additionally incorporates Reward Centering
(RC) [38] to improve the learning stability by subtracting the empirical average of the
observed rewards.

As depicted in Figure 4, the figure illustrates the reward convergence trends for differ-
ent yanking schemes across 50 training epochs. The x-axis represents the training epochs,
while the y-axis represents the reward value obtained during training. The DCSCY-RC
approach exhibits the most efficient performance, attaining rapid convergence with higher
and more stable reward values after approximately 20 epochs, indicating its enhanced
decision-making capability to optimize the smart contract execution. While DCSCY also
converges to a high reward, it experiences slightly larger fluctuations during the early
training phase, suggesting that the resource coordination mechanism in DCSCY-RC im-
proves the learning efficiency. In contrast, order-based yanking struggles with stability and

Electronics 2025, 14, 3254 13 of 16

maintains consistently low rewards, highlighting its inefficiency in scheduling execution.
Random yanking exhibited the poorest performance, characterized by larger fluctuations
and an inability to converge to a stable strategy, indicating inefficient and unpredictable
scheduling. Overall, the results confirm that DRL-based methods outperform the tradi-
tional approaches, with DCSCY-RC achieving the best balance between convergence speed
and the final reward, making it an effective solution for optimizing smart contract execution
in dynamic blockchain environments.

Figure 4. Reward convergence comparison for different yanking schemes. (a) DCSCY-RC, (b) DCSCY,
(c) order-based, and (d) random-based.

As shown in Figure 5, the x-axis represents the node number (left), shard number
(middle), and hop number (right), while the y-axis represents the length of the queue for the
number of smart contract calling requests (log scale). The experimental results demonstrate
that DRL-based methods outperform order-based and random-based methods in reducing
the length of the queue in the number of smart contract calling requests. Compared to
order-based and random-based methods, there are average reductions of 98.45% and 98.32%
for different node numbers, 98.01% and 97.79% for different shard numbers, and 97.64%
and 98.15% for different hop numbers, respectively. Moreover, DCSCY-RC enhances the
performance further compared to DCSCY, achieving reductions of 7.44%, 14.46%, and 6.50%
in these conditions, respectively.

Figure 5. Total smart contract calling request comparison under different conditions.

As shown in Figure 6, the x-axis represents node number (left), shard number (middle),
and hop number (right), while the y-axis represents the total waiting time. The experimental
results demonstrate that DCSCY-RC and DCSCY outperform order-based and random-
based methods in reducing the total waiting time for smart contract execution. On average,
DCSCY reduces the total waiting time by 98.72% and 98.88% compared to that with the
order-based and random-based methods for different node numbers, 97.99% and 98.73%
for different shard numbers, and 98.53% and 99.05% for different hop numbers, respectively.
Moreover, DCSCY-RC enhances the performance further compared to DCSCY, achieving
reductions of 16.40% and 22.47% for different node numbers and shard numbers. However,
for different hop numbers, the performance of DCSCY-RC is almost identical to that of
DCSCY. These results demonstrate the overall effectiveness of DCSCY and the additional
benefits of DCSCY-RC.

Electronics 2025, 14, 3254 14 of 16

Figure 6. Total waiting time comparison under different conditions.

As shown in Figure 7, the experimental results demonstrate that 1-Hop and 2-Hop
achieve faster convergence and better stability, whereas 3-Hop and 4-Hop exhibit greater
volatility during the convergence process. As the hop number increases, the number of
processed calls rises, resulting in higher reward values. However, an increase in the hop
number also intensifies the complexity of predicting the trajectory of the smart contract,
thereby posing additional challenges for the DRL model. In all four scenarios from 1-Hop
to 4-Hop, the DCSCY-RC method maintains a better convergence performance, indicating
that DCSCY-RC can sustain a robust performance even in multi-hop settings.

Figure 7. Reward convergence comparison for different hop numbers in the DCSCY-RC smart
contract yanking system. (a) 1-Hop, (b) 2-Hop, (c) 3-Hop, and (d) 4-Hop.

6. Conclusions
This paper presented DCSCY, a DRL-Based Cross-Shard Smart Contract Yanking

framework designed to improve the execution efficiency in sharded blockchain envi-
ronments. By formulating contract migration as a sequential decision-making problem,
DCSCY dynamically learns the optimal relocation strategies that reduce the transaction
latency, minimize node waiting times, and balance yanking costs. The experimental results
demonstrated that DCSCY reduced the smart contract waiting times and remaining call
requests. Compared to order-based and random-based methods, DCSCY improved the
performance by over 95%, effectively enhancing the contract execution efficiency. Addi-
tionally, the DCSCY-RC mechanism improves the performance further by approximately
10% compared to DCSCY, enhancing the robustness in sharded blockchains. In addition
to its quantitative advantages, DCSCY tackles a key scalability challenge in blockchain
systems by facilitating efficient and low-latency execution of high-frequency cross-shard
smart contract interactions. Its intelligent contract relocation mechanism mitigates synchro-
nization bottlenecks in locking-based approaches and opens new possibilities for scalable

Electronics 2025, 14, 3254 15 of 16

dApps, especially in DeFi, real-time IoT coordination, and supply chain management. This
work assumes a non-adversarial environment where the nodes operate honestly and the
network is only affected by stochastic delays. In the future, we will consider the possibil-
ity that cross-shard environments may face adversarial threats such as denial-of-service
(DoS) attacks, malicious queuing behavior, state tampering during contract migration,
and Byzantine faults in the shard consensus. Also, we will focus on enhancing DCSCY’s
practicality and robustness by incorporating realistic gas-cost modeling and adversarial
resilience and validating its deployment on real-world sharded platforms.

Author Contributions: Conceptualization, Y.W. and Z.Z.; methodology, Y.W., Z.Z., G.Y. and X.W.;
software, Y.W., Z.Z., H.Y. and C.S.; validation, Y.W., Z.Z., H.Y. and C.S.; formal analysis, Y.W., Z.Z.,
G.Y. and X.W.; investigation, Y.W. and Z.Z.; data curation, Y.W. and Z.Z.; writing—original draft
preparation, Y.W. and Z.Z.; writing—review and editing, G.Y. and X.W.; visualization, H.Y.; supervi-
sion, G.Y., X.W., W.N., R.P.L. and Z.C.; project administration, G.Y. and X.W.; funding acquisition,
Z.C. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by a project of the Ministry of Science and Technology (Grant
D20011).

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Zheng, Z.; Xie, S.; Dai, H.N.; Chen, X.; Wang, H. Blockchain challenges and opportunities: A survey. Int. J. Web Grid Serv. 2018,

14, 352–375. [CrossRef]
2. Kayikci, S.; Khoshgoftaar, T.M. Blockchain meets machine learning: A survey. J. Big Data 2024, 11, 9. [CrossRef]
3. Guo, H.; Yu, X. A survey on blockchain technology and its security. Blockchain Res. Appl. 2022, 3, 100067. [CrossRef]
4. Soltani, P.; Ashtiani, F. Analytical Modeling and Throughput Computation of Blockchain Sharding. IEEE Trans. Parallel Distrib.

Syst. 2024, 35, 983–997. [CrossRef]
5. Kruglik, S.; Nazirkhanova, K.; Yanovich, Y. Challenges beyond blockchain: Scaling, oracles and privacy preserving. In Proceedings

of the 2019 XVI International Symposium “Problems of Redundancy in Information and Control Systems” (REDUNDANCY),
Moscow, Russia, 21–25 October 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 155–158.

6. Nakamoto, S. Bitcoin: A Peer-to-Peer Electronic Cash System. Decentralized Business Review, 2008, p. 21260. Available online:
https://assets.pubpub.org/d8wct41f/31611263538139.pdf (accessed on 8 July 2025).

7. Buterin, V. Ethereum white paper. GitHub Repos. 2013, 1, 16–23.
8. Buterin, V. A next-generation smart contract and decentralized application platform. White Pap. 2014, 3, 2-1.
9. Jiang, E.; Qin, B.; Wang, Q.; Wang, Z.; Wu, Q.; Weng, J.; Li, X.; Wang, C.; Ding, Y.; Zhang, Y. Decentralized finance (DeFi):

A survey. arXiv 2023, arXiv:2308.05282. [CrossRef]
10. Mohammed Abdul, S.S.; Shrestha, A.; Yong, J. Toward the Mass Adoption of Blockchain: Cross-Industry Insights from DeFi,

Gaming, and Data Analytics. Big Data Cogn. Comput. 2025, 9, 178. [CrossRef]
11. Wang, X.; Yu, G.; Liu, R.P.; Zhang, J.; Wu, Q.; Su, S.W.; He, Y.; Zhang, Z.; Yu, L.; Liu, T.; et al. Blockchain-enabled fish provenance

and quality tracking system. IEEE Internet Things J. 2021, 9, 8130–8142. [CrossRef]
12. Wang, H.; Wang, T.; Shi, L.; Liu, N.; Zhang, S. A blockchain-empowered framework for decentralized trust management in

Internet of Battlefield Things. Comput. Netw. 2023, 237, 110048. [CrossRef]
13. Gadiraju, D.S.; Aggarwal, V. Prism blockchain enabled Internet of Things with deep reinforcement learning. Blockchain Res. Appl.

2024, 5, 100205. [CrossRef]
14. Yu, G.; Wang, X.; Yu, K.; Ni, W.; Zhang, J.A.; Liu, R.P. Scaling-out blockchains with sharding: An extensive survey. In Blockchains

for Network Security: Principles, Technologies and Applications; Institution of Engineering and Technology: London, UK, 2020.
15. Zhang, Z.; Yu, G.; Sun, C.; Wang, X.; Wang, Y.; Zhang, M.; Ni, W.; Liu, R.P.; Reeves, A.; Georgalas, N. TbDd: A new trust-based,

DRL-driven framework for blockchain sharding in IoT. Comput. Netw. 2024, 244, 110343. [CrossRef]
16. Liu, Y.; Liu, J.; Salles, M.A.V.; Zhang, Z.; Li, T.; Hu, B.; Henglein, F.; Lu, R. Building blocks of sharding blockchain systems:

Concepts, approaches, and open problems. Comput. Sci. Rev. 2022, 46, 100513. [CrossRef]

http://doi.org/10.1504/IJWGS.2018.095647
http://dx.doi.org/10.1186/s40537-023-00852-y
http://dx.doi.org/10.1016/j.bcra.2022.100067
http://dx.doi.org/10.1109/TPDS.2024.3376452
https://assets.pubpub.org/d8wct41f/31611263538139.pdf
http://dx.doi.org/10.48550/arXiv.2308.05282
http://dx.doi.org/10.3390/bdcc9070178
http://dx.doi.org/10.1109/JIOT.2021.3109313
http://dx.doi.org/10.1016/j.comnet.2023.110048
http://dx.doi.org/10.1016/j.bcra.2024.100205
http://dx.doi.org/10.1016/j.comnet.2024.110343
http://dx.doi.org/10.1016/j.cosrev.2022.100513

Electronics 2025, 14, 3254 16 of 16

17. Dang, H.; Dinh, T.T.A.; Loghin, D.; Chang, E.C.; Lin, Q.; Ooi, B.C. Towards scaling blockchain systems via sharding. In
Proceedings of the 2019 International Conference on Management of Data, Amsterdam, The Netherlands, 30 June–5 July 2019;
pp. 123–140.

18. Huang, H.; Lin, Y.; Zheng, Z. Account Migration across Blockchain Shards using Fine-tuned Lock Mechanism. In Proceedings
of the IEEE INFOCOM 2024-IEEE Conference on Computer Communications, Vancouver, BC, Canada, 20–23 May 2024; IEEE:
Piscataway, NJ, USA, 2024; pp. 271–280.

19. Wang, G.; Shi, Z.J.; Nixon, M.; Han, S. Sok: Sharding on blockchain. In Proceedings of the 1st ACM Conference on Advances in
Financial Technologies, Zurich, Switzerland, 21–23 October 2019; pp. 41–61.

20. Buterin, V. Cross-Shard Contract Yanking. 2018. Available online: https://ethresear.ch/t/cross-shard-contract-yanking/1450
(accessed on 3 January 2025).

21. Buterin, V. Phase 2 Pre-Spec: Cross-Shard Mechanics. 2019. Available online: https://ethresear.ch/t/phase-2-pre-spec-cross-
shard-mechanics/4970 (accessed on 3 January 2025).

22. Robinson, P.; Ramesh, R.; Johnson, S. Atomic crosschain transactions for ethereum private sidechains. Blockchain Res. Appl. 2022,
3, 100030. [CrossRef]

23. Kokoris-Kogias, E.; Jovanovic, P.; Gasser, L.; Gailly, N.; Syta, E.; Ford, B. Omniledger: A secure, scale-out, decentralized ledger via
sharding. In Proceedings of the 2018 IEEE Symposium on Security and Privacy (SP), San Francisco, CA, USA, 21–23 May 2018;
IEEE: Piscataway, NJ, USA, 2018; pp. 583–598.

24. Al-Bassam, M.; Sonnino, A.; Bano, S.; Hrycyszyn, D.; Danezis, G. Chainspace: A sharded smart contracts platform. arXiv 2017,
arXiv:1708.03778. [CrossRef]

25. Zhang, Z.; Yin, H.; Wang, Y.; Yu, G.; Wang, X.; Ni, W.; Liu, R.P. Enabling Efficient Cross-Shard Smart Contract Calling via
Overlapping. In Proceedings of the International Conference on Provable Security, Gold Coast, Australia, 25–27 September 2024;
Springer: Berlin/Heidelberg, Germany, 2024; pp. 164–178.

26. Li, M.; Lin, Y.; Zhang, J.; Wang, W. Jenga: Orchestrating smart contracts in sharding-based blockchain for efficient processing.
In Proceedings of the 2022 IEEE 42nd International Conference on Distributed Computing Systems (ICDCS), Bologna, Italy,
10–13 July 2022; IEEE: Piscataway, NJ, USA, 2022, pp. 133–143.

27. Qi, X.; Li, Y. LightCross: Sharding with Lightweight Cross-Shard Execution for Smart Contracts. In Proceedings of the IEEE
INFOCOM 2024-IEEE Conference on Computer Communications, Vancouver, BC, Canada, 20–23 May 2024; IEEE: Piscataway,
NJ, USA, 2024; pp. 1681–1690.

28. Liang, J.; Yao, P.; Chen, W.; Hong, Z.; Zhang, J.; Cai, T.; Sun, M.; Zheng, Z. SPARROW: Expediting Smart Contract Execution
for Blockchain Sharding via Inter-shard Caching. In IEEE Transactions on Parallel and Distributed Systems; IEEE: Piscataway, NJ,
USA, 2024.

29. Wels, S. Guaranteed-TX: The Exploration of a Guaranteed Cross-Shard Transaction Execution Protocol for Ethereum 2.0. Master’s
Thesis, University of Twente, Enschede, The Netherlands, 2019.

30. Al Bassam, M. Securely Scaling Blockchain Base Layers. Ph.D. Thesis, University College London, London, UK, 2020.
31. Zamani, M.; Movahedi, M.; Raykova, M. Rapidchain: Scaling blockchain via full sharding. In Proceedings of the 2018 ACM

SIGSAC Conference on Computer and Communications Security, Toronto, ON, Canada, 15–19 October 2018; pp. 931–948.
32. Yu, G.; Wang, X.; Ni, W.; Lu, Q.; Xu, X.; Liu, R.P.; Zhu, L. Adaptive resource scheduling in permissionless sharded-blockchains:

A decentralized multiagent deep reinforcement learning approach. IEEE Trans. Syst. Man Cybern. Syst. 2023, 53, 7256–7268.
[CrossRef]

33. Yang, X.; Xu, T.; Zan, F.; Ye, T.; Mao, Z.; Qiu, T. An Overlapping Self-Organizing Sharding Scheme Based on DRL for Large-Scale
IIoT Blockchain. IEEE Internet Things J. 2023, 11, 5681–5695. [CrossRef]

34. Li, P.; Song, M.; Xing, M.; Xiao, Z.; Ding, Q.; Guan, S.; Long, J. SPRING: Improving the Throughput of Sharding Blockchain
via Deep Reinforcement Learning Based State Placement. In Proceedings of the ACM on Web Conference 2024, Singapore,
13–17 May 2024; pp. 2836–2846.

35. Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A.A.; Veness, J.; Bellemare, M.G.; Graves, A.; Riedmiller, M.; Fidjeland, A.K.;
Ostrovski, G.; et al. Human-level control through deep reinforcement learning. Nature 2015, 518, 529–533. [CrossRef] [PubMed]

36. Schulman, J.; Wolski, F.; Dhariwal, P.; Radford, A.; Klimov, O. Proximal policy optimization algorithms. arXiv 2017, arXiv:1707.06347.
[CrossRef]

37. Etherscan. Etherscan: Ethereum Blockchain Explorer. Available online: https://etherscan.io/ (accessed on 20 February 2025).
38. Naik, A.; Wan, Y.; Tomar, M.; Sutton, R.S. Reward Centering. arXiv 2024, arXiv:2405.09999. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://ethresear.ch/t/cross-shard-contract-yanking/1450
https://ethresear.ch/t/phase-2-pre-spec-cross-shard-mechanics/4970
https://ethresear.ch/t/phase-2-pre-spec-cross-shard-mechanics/4970
http://dx.doi.org/10.1016/j.bcra.2021.100030
http://dx.doi.org/10.48550/arXiv.1708.03778
http://dx.doi.org/10.1109/TSMC.2023.3296614
http://dx.doi.org/10.1109/JIOT.2023.3311414
http://dx.doi.org/10.1038/nature14236
http://www.ncbi.nlm.nih.gov/pubmed/25719670
http://dx.doi.org/10.48550/arXiv.1707.06347
https://etherscan.io/
http://dx.doi.org/10.48550/arXiv.2405.09999

	Introduction
	Related Work
	Cross-Shard Smart Contract Transactions in the Sharded Blockchain
	Smart Contracts from Locking to Yanking
	The DRL-Based Sharded Blockchain

	The System Model: Yanking Smart Contract Calling Based on DRL
	The System Overview
	Workflow Overview
	System Assumptions

	The DRL Framework
	Optimizations, Rewards, and DRL
	The DRL-Based Sharding Optimization Model

	Experiments and Evaluation
	The Experimental Framework
	The Experimental Results

	Conclusions
	References

