
Academic Editors: Xin Zhang, Yadong

Xu and Congying Deng

Received: 28 April 2025

Revised: 30 May 2025

Accepted: 4 June 2025

Published: 9 June 2025

Citation: Ou, Y.; Mihăiţă, A.-S.;

Ellison, A.; Mao, T.; Lee, S.; Chen, F.

Rail Digital Twin and Deep Learning

for Passenger Flow Prediction Using

Mobile Data. Electronics 2025, 14, 2359.

https://doi.org/10.3390/

electronics14122359

Copyright: © 2025 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

Article

Rail Digital Twin and Deep Learning for Passenger Flow
Prediction Using Mobile Data
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Abstract: Predicting passenger flows in rail transport systems plays an important role
for traffic management centers to make fast decisions during service disruptions. This
paper presents an innovative cross-disciplinary approach based on digital twins, deep
learning, and traffic simulation to predict the total number of passengers in each train
stations and evaluate the impact of service disruptions across stations. First, we present
a four-layer system architecture for building a digital twin which ingests real-time data
streams, including train movements and timetable scheduling. Second, we deploy several
deep learning models to predict the total number of passengers in each station using mobile
data. The results showcase significant accuracy for recurrent versus non-recurrent traffic
conditions even under severe large disruptions such as the COVID-19 travel restrictions.
Our case study of the Sydney rail network demonstrates that the proposed digital twin
powered by deep learning can provide more granular real-time insights into the impact on
passengers, allowing rail operation centers to better mitigate service disruptions.

Keywords: digital twin; service disruption; passenger flow prediction; deep learning; rail
transport

1. Introduction
In rail systems, train management plays an important role in maintaining the operabil-

ity and punctuality of daily operations. While most train operation centers have separately
dedicated tools for monitoring, planning, and evaluating their train network systems,
very few have an integrated platform that can both monitor real-time train delays and
evaluate the impact of service disruptions on the train networks through a 3D visualization.
Such platforms could greatly assist train operators in understanding the impacts of service
disruptions and enabling timely response for rapid recovery. To this end, several main
challenges need to be addressed, including tracking real-time train movements, know-
ing current and future passenger flows, simulating service disruptions, and visualizing
real-time train movements and delays. Consequently, the potential solutions require a
multidisciplinary approach in which a range of technologies are collectively employed,
including IoT remote sensing, real-time data processing, passenger flow prediction, traffic
simulation, and 3D visualization.

This research addresses the above challenges by proposing a digital twin platform
which features passenger flow prediction and traffic simulation. The proposed platform
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is comprised of the following four key components: (1) a data feed that connects to real-
time train geographical location data, (2) a traffic simulation engine to simulate service
disruptions and estimate the delays of impacted trains, (3) a deep learning-based prediction
model that predicts train passenger flow, and (4) an interactive user interface with a 3D
visualization of real-time train/passenger movements. The above four components work
together collectively. The data feed retrieves the real-time train geographical location data
collected by the GPS devices installed on the train vehicles. By comparing the real-time
train movements against scheduled timetable, the information of each individual train’s
delay is obtained, which serves the function of real-time train delay monitoring. To evaluate
service disruption impact, the simulation engine takes the real-time train movements as
input and outputs the impacted trains and their delays for a given incident. The prediction
model trained on historical passenger flow data can provide predictions of future passenger
flows. Using the simulation results of train delays and the predicted passenger flow results,
the impact of a given incident is then identified and visualized on the user interface in
terms of delays and affected passengers.

To the best of our knowledge, this is a pioneering work in the area of rail digital
twins powered by deep learning, simulation, and visualization technologies. Following
the proposed methodology, we carry out a case study developing a digital twin for the rail
network in Sydney, Australia.

The rest of this paper is organized as follows: Section 2 presents a literature review on a
number of cross-disciplinary research problems related to this study; Section 3 summarizes
the main contributions of this work; Section 4 introduces our proposed four-layer digital
twin architecture, then formulates the passenger flow prediction problem and prediction
modeling approach based on deep learning; Section 5 presents our real-life case study
applied over the Sydney rail network along with performance evaluations in different
scenarios; finally, conclusions and future directions are discussed in Section 6.

2. Related Work
2.1. Digital Twins

A digital twin is a digital replicate of a physical asset, process or system. The digital
twin concept has started to gain a great deal of momentum and interest across the world
due to the high need to consolidate existing heterogeneous data sources into a single model
that can be used for purposes such as maintenance, inspection, upgrade, scenario testing,
and prediction. The applications of digital twins cover a spectrum including agriculture,
energy, manufacturing, constructions, cities, healthcare, aerospace, waste, water, transport,
and automotive uses (see Figure 4 in [1]).

Several review papers [2–6] have reported the evolution of digital twins from their
inception to the current state-of-the-art technologies while also highlighting the ongoing
challenges in the field. According to the literature, the widely accepted definition of digital
twin was introduced in [7], which defines a digital twin in aerospace domain as follows: “A
Digital Twin is an integrated multiphysics, multiscale, probabilistic simulation of an as-built
vehicle or system that uses the best available physical models, sensor updates, fleet history,
etc., to mirror the life of its corresponding flying twin.” In the past decades, various digital
twin models have been proposed. A highly cited digital twin model is the digital twin
model presented in [8], which consists of three key components: (a) physical objects in real
space, (b) virtual objects in virtual space, and (c) the communication channels connecting
these real and virtual objects. Other models have subsequently been proposed based on
the above three-part model. One example is the five-part model presented in [3], consisting
of a physical entity, a virtual entity, digital twin data, services, and their connections. The
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literature [9] also includes a proposal for a five-part model composed of a physical system,
a digital system, an updating engine, a prediction engine, and an optimization engine.

The benefits of building digital twins are manifold, including reduced operating costs
thanks to increased productivity, improved safety of the system for all employees using it
on a regular basis, optimization of asset management to improve sustainability, predictive
maintenance to reduce downtime and maintenance cost, and enhanced decision-making
allowing for more informed and faster decisions.

However, there are also a number of challenges in the large-scale adoption of digital
twins at operational levels, among which we cite the large amount of multi-source data
requiring integration, the increasing amount of detailed data required to construct digital
twins, the global interdependencies between different stakeholders, and the enabling
technologies for advanced digital twin modeling.

2.2. Maturity Levels in Digital Twins

The literature [10] divides digital twins into five groups in terms of maturity. Currently,
the majority of digital twins are at maturity levels 0–2, with some at level 3. Level 3
indicates the start of integration with real-time data streams to address the challenges of
data mapping, cleaning, filtering, real-time processing, and device malfunctions which can
create anomalies or missing data points. In this work the digital twin that we build is at
Level 3 maturity and aims to reach Level 4, as it integrates a static network layout, a 3D
city model, real-time train movement updated every 10 s, a deep learning prediction model
for passenger flow, and a traffic simulation engine. This high level of maturity allows for
improved situational awareness on the part of train operation centers and testing of various
scenarios for incident management.

2.3. Rail Digital Twins

In railway digital twins modeling, the initial steps involve the asset management space
via digital renderings of component parts, assemblies, and fixtures. Dassault Systems [11]
has taken this to a new level by integrating virtual reality with 3D rendering of the system.
While major achievements have been obtained to date for industrial and production plants,
new modeling progress is being pushed for track inspection upgrades and decision-making.
Among the main challenges for railway digital twins involve track maintenance issues
such as derailments, rail breaks, sleeper breaks, fastener failure, excessive rail wear, poor
ride quality, and vibration. Alstom, one of the largest transport providers in Europe [12],
has started to develop a rail network digital twin for railway yard design and predictive
fleet maintenance. Their digital twin uses AnyLogic simulation software embedding 3D
simulation modeling for operational research and asset management maintenance.

In addition to asset management issues, challenges appear regarding real-time opera-
tions and movement of trains in realistic 3D digital twin networks. Research scientists are
being left behind by several industry leaders, which are moving towards detailed simula-
tion modeling of the transport system without considering important research questions
about the ability of such systems powered by big data and artificial intelligence.

Although only a limited number of studies reported in the literature focus on leverag-
ing artificial intelligent in railway digital twin systems, these few efforts have demonstrated
its potential to augment both predictive capabilities and real-time decision-making pro-
cesses. A recent study reported in [13] employed artificial intelligence to predict short-term
inbound and outbound passenger flows in urban rail transit within a digital framework,
resulting in improved predictive accuracy. Our work differs from the above study in sev-
eral key aspects. First, our study proposes a four-layer system architecture for developing
digital twins at the level of an entire rail network, while the above work studied individual
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train stations. Second, the digital twin presented in our work is based on the combination
of multiple technologies, including prediction, simulation, and visualization, with the
purpose of evaluating the impact of service disruptions. The previous study was primarily
focused on passenger flow prediction and identification of influencing factors. Third, our
work actually implements the proposed digital twin in order to validate and showcase
our approach.

2.4. Passenger Flow Prediction

In the context of passenger flow prediction, recent studies have explored the ap-
plication of various machine learning and deep learning approaches implemented both
independently and in hybrid configurations. For example, the authors of [14] applied a
combination of Support Vector Regression (SVR) and Long Short-Term Memory (LSTM)
models, while the authors of [15] similarly opted for LSTM modeling but with seasonality
analysis via the Holt–Winter method. In the same trend, the authors of [16,17] opted to
combine Deep Neural Networks (DNN) with Stacked Auto-Encoders (SAE). A multitude of
papers have studied other models or combinations, such as Convolutional Neural Networks
(CNNs) [18], ARIMA [19], Generalized Auto-Regressive Conditional Heteroskedasticity
(GARCH) [20], Gated Recurrent Unit Neural Networks (GRUNNs), Radial Basis Function
Neural Networks (RBFNNs) [21], and more. There have been a number of attempts to inte-
grate graph-based predictions for traffic flow prediction, as presented in [22,23]; however,
these were applied for motorways, not railway systems. Table 1 provides a summary of the
approaches, data sources, and application domains of the above studies.

Table 1. Summary of recent research efforts related to passenger flow prediction.

Study Approach Data Source Application

[14] LSTM + SVR AFC 1, Guangzhou,
China

Rail Transit

[15] LSTM + Holt-Winter AFC 1, Shanghai, China Rail Transit
[16] DNN + SAE AFC 1, Xiamen China Bus Rapid Transit
[17] DNN + SAE Karnataka, India Bus Transit
[18] CNN + LSTM Hanzhou, China On-Demand Ride

[19] ARIMA I-285 United States &
M25, United Kingdom Motorway

[20] ARIMA + GARCH Beijing, China Rail Transit

[21] ARIMA + GRUNN +
RBFNN Beijing, China Urban Road

[22] Graph-based Sydney, Australia Motorway
[23] Graph-based Sydney, Australia Motorway

1 Automatic Fare Collection (AFC) system.

It is worth mentioning that time series prediction approaches used in other domains
may also be employed in passenger flow prediction, such as the physics-guided TL-LSTM
network [24] and transformer-based forecasting models [25–27].

With regard to the data used for predicting passenger flows, the majority of studies [28,29]
have used passenger tap-on or tap-off systems provided by train operation centers. While such
datasets are extremely useful for cities where the entries at each train platforms are monitored
regardless of whether or not they are an interchange, this approach can be problematic for
cities where the train network only consists of main entries and exits and where interchanges
inside the stations are not tracked. This raises significant problems, especially when more than
one transfer can take place from any origin to any destination or when multiple possibilities
exist for individual train platforms inside stations. This issue helps to motivate our current
hybrid digital twin modeling approach, which uses data from one of the major mobile data
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providers in Australia. These data provide us with fine-grained information on peoples’
movement between stations and transfers. The work reported in this paper represents a
continuation of our previous work, which studied the problem of dynamic train demand
estimation and passenger assignment [30] as well as the impact of COVID-19 on the public
transportation network of Sydney, Australia [31].

2.5. Incident Disruption Impact Modeling

Modeling the incident disruption impacts on transport systems is a non-trivial problem.
Previous attempts have looked into traffic simulation modeling and machine learning
integration for predicting future demand growth under disruption scenarios [32–34] as
well as at methods for predicting the duration of non-recurring incidents [35–37]. Again,
however, these have mainly been applied for regular road transportation systems and
multi-objective optimization problems.

3. Contributions
To the best of our knowledge, this is a pioneering work around railway digital twin

modeling powered by fusion of multiple advanced technologies. Moreover, we have
not found any previous studies integrating train movements together with passenger
movements in an attempt to understand the impact of service disruptions. Specifically, our
research addresses the existing gaps in the literature from the following key perspectives:

From a digital twin perspective, we propose a four-layer system architecture for devel-
oping digital twins that model an entire rail network rather than focusing on individual
stations. The proposed multidisciplinary approach is underpinned by real-time data pro-
cessing, passenger flow prediction, traffic simulation, and 3D visualization. This provides
the capabilities with regard to both forecasting and what-if analysis, enabling train op-
eration centers to predict passenger flows as well as to evaluate the potential impact of
service disruptions. This dual functionality supports more informed decision-making and
strategic planning within complex network environments. A case study of the Sydney rail
network has been implemented, demonstrating the practical utility and effectiveness of
our approach in a real-world context.

From a deep learning perspective, this work addresses several major research gaps
in the current literature, including the following: (1) most deep learning models aim at
regular time series prediction without considering the graph structure of the network
or the impact of disruptions on passenger flows, and (2) current models mostly rely on
tap-on/tap-off data, which do not contain sufficiently fine-grained information with regard
to transfer activities in interchanges. To address this, our proposed approach uses mobile
data to capture the fine-grained information of passenger transfers within stations. In
addition, our research is specifically designed to evaluate the impact of service disruptions.
The robustness of the proposed approach is evidenced by its performance in a case study
on the impacts of COVID-19 restrictions where the scenario is characterized by limited
data availability.

4. Methodology
4.1. Digital Twin System Architecture

The digital twin system architecture is shown in Figure 1. It mainly consists of
four layers, including the data connection layer, data services layer, analytics layer, and
visualization layer. The architecture is summarized below:
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    Data Connection Layer Data API Clients Data Importers Data Crawlers

    Data Service Layer

Database JSON Files

Data Parsing and Pre-processing

    Analytics Layer
Trip DistributionDelay Analysis

    Visualisation Layer

Real-time train movement Incident Scenario SimulationRail Network

3D Map Water Pipe Network Air Quality Monitoring Stations

Passenger Flow Prediction Incident Simulation

Map Matching

Incident Duration Prediction

Figure 1. Digital twin architecture for rail modeling.

1. Data connection layer: Designed to connect to three different types of data sources,
each of which is handled by a specific category of data connectors: (a) data API clients
connect to the data provided by data APIs; (b) data importers import the data in common
formats such as CSV, XML, and JSON; and (c) data crawlers regular scan various web pages
on the internet. Data collected by API clients and crawlers mainly consist of real-time train
movement and incident alert data, while those from data importers mainly consist of static
data on train stations, railway tracks, and timetables.

2. Data service layer: Responsible for data management, including data parsing,
preprocessing, storage, and querying. The raw data collected by data connection layer need
to be parsed and preprocessed before being passed on to the next layer. The normalized
and noise-free data are saved by the system in one of two formats, database tables or JSON
files, depending on their characteristics and intended use.

3. Analytics layer: This layer represents the engine that powers the proposed system.
This layer includes a range of components used to undertake different tasks. The map-
matching component aligns different datasets by matching their geographic coordinates
(normally, latitude and longitude), for instance by matching real-time train position data to
railway track data. The delay analysis component analyzes train delays against schedule
timetables and identifies delay patterns, while the trip distribution component is used
for passenger assignment. There are also components for predicting passenger flow and
incident duration by using historical and current train situation data, respectively. Fi-
nally, the incident simulation component is able to simulate a specified incident at a train
station to help operators understand the impact on the network for response scenario
planning purposes.

4. Visualization layer: This layer provides a visible interface that enables users to
interact with the system. The proposed system uses a 3D map as the base, then overlays
different datasets on top of the map, including railway networks, real-time train movements,
and incident scenario simulation. Notably, the system visualizes the data by layering
multiple datasets onto a base map. This mechanism can facilitate seamless integration of
additional data sources in the future, such as commuter car parking data, roadway traffic,
and air quality monitoring data.
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4.2. Formulation of the Passenger Flow Prediction Problem

As the context of passenger flow prediction in this study is the train passengers in a
railway network, we first define the prediction problem and its context.

Railway Network: A railway network consists of train stations and an adjacency matrix
in which each element indicates a connection (link) between two train stations along with
its distance. A railway network with m train stations can be denoted as

R = (s1, s2, ..., sm, A), (1)

in which si(1 ≤ i ≤ m) is a train station and A is the adjacency matrix containing the
distance between any two stations.

Passenger Flow: In a given railway network R = (s1, s2, ..., sm, A), let sin
i,t and sout

i,t be the
number of passengers entering and exiting a station si at time t, respectively. The passenger
flow in the railway network R at time t is denoted as

pt = (sin
1,t, sout

1,t , sin
2,t, sout

2,t , ..., sin
m,t, sout

m,t). (2)

Passenger Flow Prediction Problem: Our goal is to build a model Θ that predicts pt based
on (pt−∆1 , pt−∆2 , ..., pt−∆n):

Θ : (pt−∆1 , pt−∆2 , ..., pt−∆n) 7→ pt (3)

where ∆1 > ∆2 > ... > ∆n and the size of ∆n is varying.

4.3. Passenger Flow Prediction Using Deep Learning

Deep learning is usually relied on to learn high-dimensional functions via sequences
of semi-affine nonlinear transformations. A recent detailed literature review can be found
in [38], where different deep learning algorithms are detailed along with their structures
and characteristics. Due to its capability to find spatial–temporal relations between fea-
tures, we leverage deep learning to build the passenger flow prediction models in this
study. Using time series data collected from mobile devices along with the network graph
structure, we leverage three deep learning algorithms based on CNN [39], LSTM [15],
and a Diffusion Convolutional Recurrent Neural Network (DCRNN) [40]. We evaluate
their performance against other baseline models, including Linear Regression (LR) [41] and
SVR [42], then select the winner as the final model for passenger flow prediction. These
three deep learning models are summarized below.

1. Long Short-Term Memory models are a special type of Recurrent Neural Network
(RNN). LSTM models are well-suitable for time series data, as they are better at dealing
with the issue of vanishing gradients than traditional RNNs. During training, LSTM
recognizes when the gradient values become extremely small, then prevents the weights
from changing their values and ends further learning.

Figure 2 showcases the structure of the LSTM model that we developed in this work
for passenger flow prediction. An LSTM unit is typically comprised of three gates: the
forget gate ft, input gate it, and output gate ot. An LSTM model is a sequence of LSTM units,
in which the output of one unit is consumed as input by the following unit. The output
of the last unit feeds into a fully connected layer, which makes the the final prediction.
For our given passenger flow time series (pt−∆1 , pt−∆2 , ..., pt−∆n), the above three gates can
be trained using the following equations:

ft = σ(Wp f pt + Wh f ht−1 + b f ) (4)

it = σ(Wpi pt + Whiht−1 + bi) (5)
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ot = σ(Wpo pt + Whoht−1 + bo) (6)

c̄t = ϕ(Wpc pt + Whcht−1 + bc) (7)

ct = c̄t ⊙ it + fm ⊙ ct−1 (8)

ht = ot ⊙ ϕ(ct) (9)

where c̄m is the unit input, cm is the unit state, hm is the output, σ is the sigmoid activation
function, ϕ is the tanh activation function, W∗ stands for the weight matrices, and b∗
represents the bias vectors.

...

...

LSTM 
Unit

LSTM 
Unit

LSTM 
Unit

Fully
Connected

Layer

Output

Figure 2. LSTM model for passenger flow prediction.

Overall, in our application we have a time series of passenger flow vectors for all
stations. For each time step from the past horizon {t − ∆1, ..., t − ∆n}, an LSTM unit accepts
the vector pt−∆i as input and outputs a hidden state vector hi and output vector oi of equal
length. The hidden state hi is passed to the next unit {t − ∆i+1}. The last output vector ot

is connected to the fully-connected layer in order to obtain the final result.
2. Convolutional Neural Networks are bio-inspired models which have been widely

applied for image processing and time series prediction [39]. For our study, we construct a
fully-connected CNN structure, as presented in Figure 3, which accepts as input the matrix
with passenger flows as vector columns. The two-dimensional input is passed through
two convolutional layers and two ReLU (rectified linear activation unit) functions, then
flattened as a one-dimensional vector to be sent through a fully-connected layer which
outputs the final results.

Convolution 
+ ReLU

Filter = 3   3   10
Stride = 1
No Padding

Convolution 
+ ReLU Flatten

Fully 
Connected 

Layer

Filter = 3    3   5
Stride = 1
No Padding

Matrix Size: R    N (R  2)    (N  2)    10 (R  4)    (N  4)    5

Input Output

N
x 

x  x 

x  x - -

x  x 

x  x - -

Figure 3. CNN model for passenger flow prediction.

3. Diffusion Convolutional Recurrent Neural Networks are powerful graph-oriented
deep learning models [40] which incorporate both spatial and temporal dependency in
the traffic flow. Specifically, a DCRNN captures spatial dependencies using bidirectional
random walks on the graph and captures temporal dependencies through an encoder–
decoder architecture with scheduled sampling. Figure 4 presents the diagram of the
DCRNN employed in this study, which ingests the passenger flow vectors for all stations,
passes them on via an encoder–decoder based on Diffusion Convolutional Recurrent (DCR)
layers and ReLU functions, and finally predicts the output.
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Input
Prediction

...

......

...
......ReLU

DCR DCR

Decoder

Copy States

...

......

...

......ReLU

 DCR DCR

Encoder

Figure 4. DCRNN model for passenger flow prediction (adapted from [40]).

The performance metrics used to evaluate the models include MAE, RMSE, SMAPE, and
R2 [43]. The evaluation results under different traffic condition scenarios, including before
and during the COVID-19 pandemic, are reported in Section 5.

4.4. Incident Simulation

In order to understand the delay propagation across the rail network and identify the
impacted passengers, the digital twin has a traffic simulation engine built on top of an
open source traffic simulation package called SUMO [44]. The simulation engine simulates
incidents occurring in the railway network and outputs the affected trains and passengers
along with the accumulated delay during and after the incidents.

5. Case Study
5.1. Sydney Railway Digital Twin

In this research, we have developed a digital twin for the railway network of Sydney,
Australia as a case study to demonstrate the system architecture proposed in Section 4.1.
A screenshot of the platform is shown in Figure 5.

Figure 5. Screenshot of the railway digital twin platform for Sydney, Australia.

The digital twin consists of 175 stations and 8 train lines, as shown in Figure 6. There
are around 3000 train services per day in a typical weekday over the entire network.
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Figure 6. Sydney rail network.

The digital twin includes a passenger flow prediction component which can predict
passenger flow in the network. The prediction model is trained using an anonymous
cell phone mobility dataset containing information on passenger movement within the
railway network. The digital twin also contains a traffic simulation engine for incident
simulation. Given an incident in the network, the simulation engine takes the above
predicted passenger flow as input and output the affected trains and passengers as well as
the delay during and after the incident, as shown in Figure 7. These results provide useful
insights to train management centers, allowing for fast decision making.

Figure 7. Incident impact analysis via traffic simulation.

5.2. Passenger Flow Prediction Performance

The passenger flow prediction performance was evaluated under different travel
scenarios in order to test the robustness of our deep learning model when new incom-
ing data are received. One scenario covered the COVID-19 pandemic scenario, which
saw travel restrictions across Sydney’s public transportation system in 2020. In this sce-
nario, we evaluated the model’s passenger prediction performance before and during the
COVID-19 pandemic.
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Scenario 1—Pre-COVID-19: This scenario used two months of mobility dataset from
June to July 2019 with a one-hour frequency. The dataset was divided into two subsets for
use in training and testing. The training dataset covered June 2019, while the testing dataset
covered July 2019. Figure 8 showcases the SMAPE results across all models (DCRNN, CNN,
LSTM, LR, and SVR) in ascending order for a selection of major stations in the network. It
can be observed that the deep learning algorithms achieve better performance than LR and
SVR, almost halving the SMAPE error to about 12% for Central Station. For this reason,
the performance metrics of both LR and SVR are excluded from the following results due
to their low accuracy. Overall, LSTM outperforms even the other DL models; DCRNN
significantly outperforms LSTM, but only for a limited subset of station (for instance,
Ashfield reaches a very low SMAPE of 10%, while Blacktown and Mascot have SMAPE
scores between 14–15%).
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Figure 8. SMAPE values for selected major stations.

By analyzing the LSTM performance more closely, Figure 9 shows the passenger
flow prediction and ground truth for four selected major stations. It can be seen that the
predictions follow the real data trends very closely, with minor deviations during night
time when passenger flows are usually lower in the CBD area. Similarly, Figure 10 shows
the R2 results (majority above 0.9) to further identify the number of non-performing data
points that might affect the results. Of these datapoints, a handful are either over- or
under-predicted, while the majority are predicted along the regression line.

To further evaluate the robustness of CNN, LSTM and DCRNN, we trained 300 models
for each type. their SMAPE values are illustrated in Figure 11 by violin plots. A violin plot
is a hybrid of a box plot and a kernel density plot, which helps to visualize the distribution
of numerical data. The results again indicate that the LSTM is more robust, achieving
tighter SMAPE distribution plots (majority below 20%), while the DCRNN has the largest
deviation in its distribution violins, indicating lower overall performance in comparison
to the CNN and LSTM along with higher fluctuation from one run to another. For this
reason, the results for the subsequent Scenario 2 focus on the better-performing CNN and
LSTM models.

Scenario 2—Passenger Prediction During COVID-19: The COVID-19 pandemic saw
a significant drop in the number of passengers across the Sydney public transport network,
mainly due to travel restrictions and restricted seated capacity. Consequently, this scenario
requires higher robustness from the prediction models in order to handle the challenge of
data sparsity. We further trained and tested our best-performing DL models (CNN and
LSTM) and evaluated their performance using the new incoming datasets from June to
July 2020. Figure 12 showcases the SMAPE results for the CNN and LSTM models across
the two training datasets. Overall, the models perform well, with SMAPE errors below
20% for the ten most important stations during the COVID-19 pandemic. Figures 13 and 14
respectively showcase the RMSE and MAE results for both the CNN and LSTM across the
two training datasets. To summarize, while slightly better performance is recorded for the
period prior to the COVID-19 pandemic when travel patterns were more stable, the DL
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models still provide good accuracy during the COVID-19 pandemic period, demonstrating
that the proposed architecture remains viable under differing circumstances.
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Figure 11. Distribution of SMAPE values for selected major stations.
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Figure 12. SMAPE values for selected major stations before and during the COVID-19 pandemic.
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Figure 13. RMSE values for selected major stations before and during the COVID-19 pandemic.
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Figure 14. MAE values for selected major stations before and during the COVID-19 pandemic.

6. Conclusions
This paper has presented a pioneering work to develop digital twins for rail trans-

portation. The proposed approach can be used to evaluate the impact of service disruptions
on railway networks by integrating digital twin, deep learning, and traffic simulation
technologies. We propose a four-layer system architecture containing a passenger flow
prediction model powered by deep learning. A case study using a digital twin developed
for the Sydney, Australia railway network was conducted, with the results showcasing
the advantages of our approach. The proposed framework offers real-time and granular
insights that can help rail operation centers to understand and evaluate the impact of
service disruptions through a 3D visualization.

A major limitation of our study is that we had only limited data for use in training our
prediction model (two months of data for the pre-COVID-19 period and two months of
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data for the period during the COVID-19 pandemic). The prediction performance could be
improved if more data were available.

Future work to improve the proposed rail digital twin framework could include
considering other transport modes such as buses that represent alternatives to the dis-
rupted service.
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36. Mao, T.; Mihăită, A.S.; Chen, F.; Vu, H.L. Boosted Genetic Algorithm Using Machine Learning for Traffic Control Optimization.
IEEE Trans. Intell. Transp. Syst. 2021, 23, 7112–7141. [CrossRef]

37. Mihaita, A.S.; Liu, Z.; Cai, C.; Rizoiu, M.A. Arterial incident duration prediction using a bi-level framework of extreme
gradient-tree boosting. arXiv 2019, arXiv:1905.12254.

38. Kumar, N.; Raubal, M. Applications of deep learning in congestion detection, prediction and alleviation: A survey. Transp. Res.
Part C Emerg. Technol. 2021, 133, 103432. [CrossRef]

39. Zhang, J.; Zheng, Y.; Qi, D. Deep Spatio-Temporal Residual Networks for Citywide Crowd Flows Prediction. In Proceedings of
the AAAI Conference on Artificial Intelligence, San Francisco, CA, USA, 4–9 February 2017.

http://dx.doi.org/10.1109/ACCESS.2020.3000242
http://dx.doi.org/10.1016/j.trc.2017.08.001
http://dx.doi.org/10.1007/s11042-022-12306-3
http://dx.doi.org/10.1016/j.trc.2017.10.016
http://dx.doi.org/10.1061/(ASCE)0733-947X(2003)129:6(664)
http://dx.doi.org/10.1109/TITS.2017.2711046
http://dx.doi.org/10.1109/TITS.2019.2939290
http://dx.doi.org/10.1016/j.est.2024.114736
http://dx.doi.org/10.1609/aaai.v37i9.26317
http://dx.doi.org/10.24963/ijcai.2023/759
http://dx.doi.org/10.1109/TNNLS.2025.3542719
http://dx.doi.org/10.1088/1757-899X/563/5/052080
http://dx.doi.org/10.1186/s13638-020-01881-4
http://dx.doi.org/10.1109/ITSC45102.2020.9294606
https://opus.lib.uts.edu.au/handle/10453/138721
https://opus.lib.uts.edu.au/handle/10453/138721
http://dx.doi.org/10.1080/19427867.2021.1916284
http://dx.doi.org/10.1177/0361198118782270
http://hdl.handle.net/10453/138724
http://dx.doi.org/10.1109/TITS.2021.3066958
http://dx.doi.org/10.1016/j.trc.2021.103432


Electronics 2025, 14, 2359 16 of 16

40. Li, Y.; Yu, R.; Shahabi, C.; Liu, Y. Diffusion Convolutional Recurrent Neural Network: Data-Driven Traffic Forecasting. arXiv 2018,
arXiv:1707.01926.

41. Ottaviani, F.M.; Marco, A.D. Multiple Linear Regression Model for Improved Project Cost Forecasting. Procedia Comput. Sci. 2022,
196, 808–815. [CrossRef]

42. Pisner, D.A.; Schnyer, D.M. Chapter 6—Support vector machine. In Machine Learning; Mechelli, A., Vieira, S., Eds.; Academic
Press: Cambridge, MA, USA, 2020; pp. 101–121. [CrossRef]

43. Vandeput, N. Forecast KPIs: RMSE, MAE, MAPE and Bias. 2019. Available online: https://www.linkedin.com/pulse/forecast-
kpi-rmse-mae-mape-bias-nicolas-vandeput (accessed on 1 February 2025).

44. SUMO. Simulation of Urban MObility. 2022. Available online: https://eclipse.dev/sumo/ (accessed on 1 February 2025).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.procs.2021.12.079
http://dx.doi.org/10.1016/B978-0-12-815739-8.00006-7
https://www.linkedin.com/pulse/forecast-kpi-rmse-mae-mape-bias-nicolas-vandeput
https://www.linkedin.com/pulse/forecast-kpi-rmse-mae-mape-bias-nicolas-vandeput
https://eclipse.dev/sumo/

	Introduction
	Related Work
	Digital Twins
	Maturity Levels in Digital Twins
	Rail Digital Twins
	Passenger Flow Prediction
	Incident Disruption Impact Modeling

	Contributions
	Methodology
	Digital Twin System Architecture
	Formulation of the Passenger Flow Prediction Problem
	Passenger Flow Prediction Using Deep Learning
	Incident Simulation

	Case Study
	Sydney Railway Digital Twin
	Passenger Flow Prediction Performance

	Conclusions
	References

