Check for

updates

R DIGITAL Asocaticn
acm il e RIS et

@m open)

{§# Latest updates: https://dl.acm.org/doi/10.1145/3729293

RESEARCH-ARTICLE
Efficient Formal Verification of Quantum Error
Correcting Programs

QIFAN HUANG, Chinese Academy of Sciences, Beijing, Beijing, China
LI ZHOU, Chinese Academy of Sciences, Beijing, Beijing, China

WANG FANG, The University of Edinburgh, Edinburgh, Scotland, U.K.
MENGYU ZHAO, Chinese Academy of Sciences, Beijing, Beijing, China

MINGSHENG YING, University of Technology Sydney, Sydney, NSW,
Australia

Open Access Support provided by:
Chinese Academy of Sciences
The University of Edinburgh
University of Technology Sydney

PDF Download
}D 3729293.pdf
c 06 January 2026

Total Citations: 0

Total Downloads: 490
Published: 10 June 2025
Accepted: 06 March 2025
Received: 15 November 2024

Citation in BibTeX format

Proceedings of the ACM on Programming Languages, Volume 9, Issue PLDI (June 2025)

https://doi.org/10.1145/3729293
EISSN: 2475-1421

https://dl.acm.org
https://www.acm.org
https://libraries.acm.org/acmopen
https://dl.acm.org/doi/10.1145/3729293
https://dl.acm.org/doi/10.1145/3729293
https://dl.acm.org/doi/10.1145/contrib-99661631227
https://dl.acm.org/doi/10.1145/institution-60019499
https://dl.acm.org/doi/10.1145/contrib-99659435335
https://dl.acm.org/doi/10.1145/institution-60019499
https://dl.acm.org/doi/10.1145/contrib-99661638244
https://dl.acm.org/doi/10.1145/institution-60027272
https://dl.acm.org/doi/10.1145/contrib-99661323996
https://dl.acm.org/doi/10.1145/institution-60019499
https://dl.acm.org/doi/10.1145/contrib-81100627838
https://dl.acm.org/doi/10.1145/institution-60023932
https://dl.acm.org/doi/10.1145/institution-60023932
https://libraries.acm.org/acmopen
https://dl.acm.org/doi/10.1145/institution-60019499
https://dl.acm.org/doi/10.1145/institution-60027272
https://dl.acm.org/doi/10.1145/institution-60023932
https://dl.acm.org/action/exportCiteProcCitation?dois=10.1145%2F3729293&targetFile=custom-bibtex&format=bibtex
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3729293&domain=pdf&date_stamp=2025-06-13

Efficient Formal Verification of Quantum Error Correcting
Programs

QIFAN HUANG, Institute of Software, Chinese Academy of Sciences, China and University of Chinese
Academy of Sciences, China

LI ZHOU?", Institute of Software, Chinese Academy of Sciences, China

WANG FANG, School of Informatics, University of Edinburgh, United Kingdom

MENGYU ZHAO, Institute of Software, Chinese Academy of Sciences, China and University of Chinese
Academy of Sciences, China

MINGSHENG YING?, University of Technology Sydney, Australia

Quantum error correction (QEC) is fundamental for suppressing noise in quantum hardware and enabling
fault-tolerant quantum computation. In this paper, we propose an efficient verification framework for QEC
programs. We define an assertion logic and a program logic specifically crafted for QEC programs and establish
a sound proof system. We then develop an efficient method for handling verification conditions (VCs) of QEC
programs: for Pauli errors, the VCs are reduced to classical assertions that can be solved by SMT solvers,
and for non-Pauli errors, we provide a heuristic algorithm. We formalize the proposed program logic in Coq
proof assistant, making it a verified QEC verifier. Additionally, we implement an automated QEC verifier,
Veri-QEC, for verifying various fault-tolerant scenarios. We demonstrate the efficiency and broad functionality
of the framework by performing different verification tasks across various scenarios. Finally, we present a
benchmark of 14 verified stabilizer codes.

CCS Concepts: » Theory of computation — Logic and verification; Hoare logic; - Hardware — Quantum
error correction and fault tolerance.

Additional Key Words and Phrases: Formal verification, Quantum error correction, Quantum programming
language, Hoare logic

ACM Reference Format:

Qifan Huang, Li Zhou, Wang Fang, Mengyu Zhao, and Mingsheng Ying. 2025. Efficient Formal Verification of
Quantum Error Correcting Programs. Proc. ACM Program. Lang. 9, PLDI, Article 190 (June 2025), 26 pages.
https://doi.org/10.1145/3729293

“Corresponding author: Li Zhou, Mingsheng Ying

Authors’ Contact Information: Qifan Huang, huangqf@ios.ac.cn, Key Laboratory of System Software (Chinese Academy
of Sciences) and State Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences, Beijing,
China and University of Chinese Academy of Sciences, Beijing, China; Li Zhou, zhouli@ios.ac.cn, zhou31416@gmail.com,
Key Laboratory of System Software (Chinese Academy of Sciences) and State Key Laboratory of Computer Science, Institute
of Software, Chinese Academy of Sciences, Beijing, China; Wang Fang, fangw@ios.ac.cn, School of Informatics, University
of Edinburgh, Edinburgh, United Kingdom; Mengyu Zhao, zhaomy@ios.ac.cn, Key Laboratory of System Software (Chinese
Academy of Sciences) and State Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences,
Beijing, China and University of Chinese Academy of Sciences, Beijing, China; Mingsheng Ying, mingsheng.ying@uts.edu.au,
University of Technology Sydney, Sydney, Australia.

This work is licensed under a Creative Commons Attribution 4.0 International License.
© 2025 Copyright held by the owner/author(s).

ACM 2475-1421/2025/6-ART190

https://doi.org/10.1145/3729293

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 190. Publication date: June 2025.

HTTPS://ORCID.ORG/0009-0005-6548-4303
HTTPS://ORCID.ORG/0000-0002-9868-8477
HTTPS://ORCID.ORG/0000-0001-7628-1185
HTTPS://ORCID.ORG/0009-0001-8436-3532
HTTPS://ORCID.ORG/0000-0003-4847-702X
https://doi.org/10.1145/3729293
https://orcid.org/0009-0005-6548-4303
https://orcid.org/0000-0002-9868-8477
https://orcid.org/0000-0001-7628-1185
https://orcid.org/0009-0001-8436-3532
https://orcid.org/0000-0003-4847-702X
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3729293
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://creativecommons.org/licenses/by/4.0/

190:2 Qifan Huang, Li Zhou, Wang Fang, Mengyu Zhao, and Mingsheng Ying

1 Introduction

Beyond the current noisy intermediate scale quantum (NISQ) era [64], fault-tolerant quantum
computation is an indispensable step towards scalable quantum computation. Quantum error
correcting (QEC) codes serve as a foundation for suppressing noise and implementing fault-tolerant
quantum computation in noisy quantum hardware. There have been more and more experiments
illustrating the implementation of quantum error correcting codes in real quantum processors [3, 10,
16, 69, 88]. These experiments show the great potential of QEC codes to reduce noise. Nevertheless,
the increasingly complex QEC protocols make it crucial to verify the correctness of these protocols
before deploying them.

There have been several verification techniques developed for QEC programs. Numerical simula-
tion, especially stabilizer-based simulation [1, 5, 36] is extensively used for testing QEC programs.
While stabilizer-based simulations can efficiently handle QEC circuits with only Clifford opera-
tions [61] compared to general methods [84], showing the effectiveness and correctness of QEC
circuits still requires millions or even trillions of test cases, which is the main bottleneck [36].
Recently, symbolic execution [32] has also been applied to verify QEC programs. It is an automated
approach designed to handle a large number of test cases and is primarily intended for bug reporting.
However, it has limited functionality, such as the inability to reason about non-Clifford gates or
propagation errors, and it remains slow when verifying correct instances.

Program logic is another appealing verification technique. It naturally handles a class of instances
simultaneously by expressing and reasoning about rich specifications in a mathematical way [39].
Two recent works pave the way for using Hoare-style program logic for reasoning about QEC
programs. Both works leverage the concept of stabilizer, which is critical in current QEC codes
to develop their programming models. Sundaram et al. [74] established a lightweight Hoare-like
logic for quantum programs that treat stabilizers as predicates. Wu et al. [82, 83] studied the syntax
and semantics of QEC programs by employing stabilizers as first-class objects. They proposed
a program logic designed for verifying QEC programs with fixed operations and errors. Yet, at
this moment, these approaches do not achieve usability for verifying large-scale QEC codes with
complicated structures, in particular for real scenarios of errors that appear in fault-tolerant
quantum computation.

Technical Challenge. There are still critical challenges to the efficient verification of large-scale
QEC programs, as summarized below.

o A suitable hybrid program logic supporting backward reasoning. QEC codes are designed to correct
possible errors, making error modeling crucial for verification. To this end, it is necessary to
introduce classical variables to describe errors and measurement outcomes, as well as properties
like the maximum number of correctable errors. Backward reasoning is then desired since
it gives a simple but complete rule for classical assignment, while forward reasoning needs
additional universal quantifiers to ensure completeness. As discussed in [80] and illustrated in
Example 3.3, interpreting V as classical disjunction suffers from the incompleteness problem
even for QEC codes, making it necessary to choose quantum logic as base logic, where, V is
interpreted as the sum of subspaces.

o Proving verification conditions generated by program logic. Traditionally, after annotating the pro-
gram, the program logic will generate verification conditions (entailment of assertion formulas).
A complete and rigorous approach is to use formal proofs; however, this requires significant
human effort. Another approach is to use efficient solvers to achieve automatic proofs. Unfor-
tunately, quantum logic lacks efficient tools similar to SMT solvers: systematically handling
quantum logic has been a longstanding challenge. On the one hand, the continuity of subspaces
makes brute-force search ineffective, while on the other hand, the lack of distributive laws

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 190. Publication date: June 2025.

Efficient Formal Verification of Quantum Error Correcting Programs 190:3

Enhance 5
Theory S P){ Program Logic Ifor QEC Codes]
fffffffff e
Tool ¢ | Verified QEC Verifier Automated QEC Verifier
ools (Coq-based) Veri-QEC (SMT-based)
I
: ¢—|—$ ¥ 13
Theory Interactive Pen- General Verification Partial Verification

Formalization | |and-paper Proof | |for all error configurations | |for user-provided error patterns

" Sealable cod Small scale codes Medium scale codes
Performance calable codes (~120 qubits) (~360 qubits)

Fig. 1. Overall structure of our verification framework for QEC programs.

makes finding a (canonical) normal form particularly difficult. It remains unknown if assertion
formulas for QEC codes can be efficiently processed.

Contributions. We propose a formal verification framework, summarized in Fig. 1, by proposing
theoretical solutions to the above challenges, together with two implementations, (i) the Cog-based
verified QEC verifier and (ii) the SMT-based automatic QEC verifier Veri-QEC, that ensure and
illustrate the effectiveness of our theory. In detail, we contribute:

o Assertion logic and program logic (Section 3 and 4). Following [74, 83], we use Pauli expressions
as atomic propositions and interpret them as the +1-eigenspace of the corresponding Pauli
operator. We additionally introduce classical variables and interpret logical connectives based
on quantum logic, e.g., interpreting V as the sum of subspaces rather than as a union. Adopting
the semantics for classical-quantum from [34], we establish a sound proof system for quantum
programs.

o Efficient handling of verification condition of QEC code (Section 5). The verification condition
generated by a QEC code is typically of the form

(PLA-- AP AD, \/ ((—1)fl(s)P{ A A (—1)f"(S)P,’l), 1)

where P;, P are Pauli expressions and @, is a classical assertion. Progressing from simple to
complex, we deal with the following cases: 1). {P;} € {P;}. Then it is equivalent to compare
phase, which can be efficiently solved by an SMT solver. 2). All P; and P; commute. Then employ
the fact that P} = (=1)% [];ck, Pk since {P;} is a minimal generating setand PAQ = PAQP [74]
to reduce it to case 1). 3). A non-commuting pair P; and Pj’. exists. Then a heuristic algorithm is
proposed to recursively eliminate P} from {P;} based on the facts (P A Q) V (=P A Q) = Qif P
commute with Q, and finally reduce it to case 2).

o A verified QEC verifier (Section 6). We formalize our program logic in Coq proof assistant [77]
based on CoqQ [90], i.e., proving the soundness of the proof system. This enhances confidence
in the designed program logic. As a byproduct, this also allows us to manually formalize
pen-and-paper proofs of scalable codes.

o Automatic QEC verifier Veri-QEC (Section 6 and 7). Veri-QEC is a practical tool developed in
Python with the aid of Z3 and CVC5 SMT solvers [7, 29]. Veri-QEC supports verification in
various scenarios, from standard errors to propagation errors or errors in correction steps,
and from one cycle of QEC code to fault-tolerant implementation of small logical circuits. We
examine Veri-QEC on 14 QEC codes selected from the stabilizer code family with 5 — 361
qubits and perform different verification tasks based on the type of code and distance. Typical
performance on surface codes includes: general verification for all error configurations up to
121 qubits within ~ 200 minutes, and partial verification for user-provided error constraints up
to 361 qubits within ~ 100 minutes.

s€{0,1}"

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 190. Publication date: June 2025.

190:4 Qifan Huang, Li Zhou, Wang Fang, Mengyu Zhao, and Mingsheng Ying

Comparison to Existing Works. Here we compare our work with works related to verifying
QEC programs and leave the general discussion of related works in Section 8. Thanks to the
efficiency of the stabilizer formalism in describing Clifford operations used in QEC programs,
several works [67, 68, 74, 82, 83] utilize stabilizers as assertions in quantum programs. Among them,
Rand et al. [67, 68] built stabilizer formalism by designing a type system of Gottesman types, upon
which Sundaram et al. [74] further established a Hoare-like logic to characterize quantum programs
consisting of Clifford gates, T gate and measurements. The proof system was built in forward
reasoning; thus the disjoint union ‘@’ is employed to describe the post-measurement state. Wu et al.
[83] focused more on QEC. They designed a programming language with a stabilizer constructor
in the syntax, specifically for QEC programs. This programming language faithfully captures the
implementation of QEC protocols. To verify the correctness of QEC programs more efficiently while
ensuring the accurate characterization of their properties, they designed an assertion logic using
sums of stabilizers as atomic propositions and classical logical connectives. Given fixed operations,
errors, and exact results of the decoder, this framework can effectively prove the correctness of a
given QEC program.

Compared with prior works, our verification framework stands out by incorporating classical
variables into both programs and assertions. Our assertion language enables simultaneous reasoning
about properties of subspaces and a family of quantum states, such as logical computational basis
states, which previous QEC program logic could only handle individually. Together with the
classical variables in the program, our framework can model and verify the conditions of errors that
previous work cannot reason about, e.g. the maximum correctable number of errors. Our program
logic provides strong flexibility and efficiency to insert errors anywhere in the QEC program, such
as before and after logic operators and within correction steps, and then verify the correctness.
This capability is crucial for the subsequent step of verifying the implementation of fault-tolerant
quantum computing.

2 Motivating Example: The Steane Code

We introduce a motivating example, the Steane code, which is widely used in quantum computers [10,
11, 62, 70] to construct quantum circuits. A recent work [10] demonstrates the use of Steane code
to implement fault-tolerant logical algorithms in reconfigurable neutral-atom arrays. We aim to
demonstrate the basic concepts of our formal verification framework through the verification of
Steane code.

2.1 Basic Notations and Concepts

Quantum state. Any state |/) of quantum bit (qubit) can be represented by a two-dimensional
vector () with a, B € C satisfying |a|* + |B|> = 1. Frequently used states include computational
bases [0) £ (1) and|1) = (9),and |+) = ‘/%(|O>i|1)). The computational basis of an n-qubit system
is |s) = [s152 - - - sp) where s is a bit string, and any state |1/} is a superposition |/} = Xsc (0.1}~ asls)-

Unitary operator. The evolution of a (closed) quantum system is modeled as a unitary operator,
aka quantum gate for qubit systems. Here we list some of the commonly used quantum gates:

A B O B Y R e S A

Lo 180 (1000 Ty
— . — — ; — =1
T—(O e%) CNOT = (0800) cz=[010 0) jswap=|(00 i0l
0010 000 -1 00 01
The evolution is computed by matrix multiplication, for example, H gate transforms |0) to H|0) =

LE ()= 5=,

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 190. Publication date: June 2025.

Efficient Formal Verification of Quantum Error Correcting Programs 190:5

Projective measurement. We here consider the boolean-valued projective measurement M =

{Py, P1 } with projections Py and P; such that Py + P; = I. Performing M on a given state |¢), with
Vpm

Pauli group and Clifford gate. The Pauli group on n qubits P, consists of all Pauli strings g which
are represented by the tensor product of n Pauli or identity matrices with multiplicative factor
+1,+i,ie,i'p; ® -+ ® py, where p; € {I,X,Y,Z}, ¢ € {0,1,2,3}. A state |¢/) is stabilized by g € P,
(or a subset S € P,),if gl¥) = |¢) (or Vg € S, g|¢) = |¢¥)). The measurement outcome of the
corresponding projective measurement M, is always 0 iff [{/) is a stabilizer state of g. A unitary V
is a Clifford gate, if for any Pauli string g, VgV is still a Pauli string. All Clifford gates form the
Clifford group, and can be generated by H, S, and CNOT.

probability p,, = |P,,|¢/)|* we get m and post-measurement state form =0, 1.

Stabilizer code. An [[n, k, d]] stabilizer code C is a subspace of the n-qubit state space, defined
as the set (aka codespace) of states stabilized by an abelian subgroup S (aka stabilizer group) of
Pauli group #,, with a minimal representation in terms of n — k independent and commuting
generators {gi, . .., gn_i) requiring —I ¢ S. The codespace of C is of dimension 2 and thus able
to encode k logical qubits into n physical qubits. With additional k logical operators Zi, - - - , Z
that are independent and commuting with each other and S, we can define a k-qubit logical state
|z1, ..., zk)L as the state stabilized by (g1, ..., gn_k, (=1)*Z1,..., (—1)*Z;.) with z; € {0,1}. We
can further construct X, ..., X; such that X; commute with g € S and X;Z; = (-1)% Z;X; for all
i,j € {1,---,k}, and regard Z; (or X;) as logical Z (or X) gate acting on i-th logical qubit. d is the
code distance, i.e., the minimum (Hamming) weight of errors that can go undetected by the code.

2.2 The [[7,1,3]] Steane Code

The Steane code encodes a logical qubit using 7 physical qubits. The code distance is 3, therefore it
is the smallest CSS code [21] that can correct any single-qubit Pauli error. The generators g, . . ., g,
and logical operators X and Z of Steane code are as follows:

g1 = X1X3X5X7 go = X2X3X6X7 gs = X4X5X6X7 X = X1X2X3X4X5X6X7
9a = 21232577 95 = 22232627 9o = Z4ZsZsZ7 Z = 712y 2374752677

In Table 1, we describe the implementations of logical Clifford operations and error correction
procedures using the programming syntax introduced in Section 4.

As a running example, we analyze a one-round error correction process in the presence of
single-qubit Pauli Y errors, as well as the Hadamard H error and T error serving as instances
of non-Pauli errors. First, we inject propagation errors controlled by Boolean-valued indicators
{epi} at the beginning. A propagation error simulates the leftover error from the previous error
correction process, which must be considered and analyzed to achieve large-scale fault-tolerant
computing. Next, a logical operation H is applied followed by the standard error injection controlled
by indicators {e; }. Formally, [e;]q; *== U means applying the error U on g; if ¢; = 1, and skipping
otherwise. Afterwards, we measure the system according to generators of the stabilizer group,
compute the decoding functions f; ; and f; ;, and finally perform correction operations. The technical
details of the program can be found in Section 5.2 and Appendix C.

The correctness formula for the program Steane(E) — H can be stated as the Hoare triple':

7
{(Z(ei +epi) < 1) A ((—l)b)_(AgrA--- /\gé)} Steane(E) - H {(—l)bZ ANgLA--- /\gé} . (2
i=1

IFollowing the adequacy theorem stated in [32], the correctness of the program is guaranteed as long as it holds true for
only two predicates (-1)%z A Aigi and (-1)bX A A\ gi. Furthermore, since Steane code is a self-dual CSS code, the
logical X and Z operators share the same form. Therefore only logical Z is considered here.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 190. Publication date: June 2025.

190:6 Qifan Huang, Li Zhou, Wang Fang, Mengyu Zhao, and Mingsheng Ying

Table 1. Program Implementations of logical operation and error correction using a 7-qubit Steane code.

Logical Operation Error Correction
Command Explanation Steane(E) -H E € {Y,HT}
H forie1l...7do Propagation Error | fori € 1...7 do [ep;]q; *= E end
gi*=H end Logical operation H | fori € 1...7 do g; += H end
S forie1l...7do Error injection forie1...7do [e]q;*=E end
gi*=2%5qi*=S | Syndrome meas forie€1...6dos; = meas[g;] end
end Call decoder for Z 21,27 = f2(51, $2, 83)
CNOT | forie1l...7do Call decoder for X | x1,...,x7 == fi(s4, S5, S6)
Qi i+7 ¥= CNOT | Correction for X forie1...7do [x;]gi*= X end
end Correction for Z forie1...7do [z;]q;+= Z end

Here, b is a parameter denoting the phase of the logical state, e.g., b = 0 for initial state |+);. (i.e.,
state stabilized by X A g; A - -+ A g¢) and final state |0y (i.e., state stabilized by Z A g1 A -+ A ge).
The correctness formula claims that if there is at most one U error (217:1(31- +ep;) < 1), then the
program transforms |+); to |0); (and |-)L to |1)1), exactly the same as the error-free program that
execute logical Hadamard gate H.

It appears hard to verify Eqn. (2) in previous works. [82, 83] can only handle fixed Pauli errors
while Steane involves non-Pauli errors T with flexible positions. [67, 74] do not introduce classical
variables and thus cannot represent flexible errors nor reason about the constraints or properties
of errors. Fang and Ying [32] cannot handle non-Clifford gates, since non-Clifford gates change
the stabilizer generators (Pauli operators) into linear combinations of Pauli operators, which are
beyond their scope.

In the following sections, we will verify Eqn. (2) by first deriving a precondition A’ (see Eqn. (8)
for Y error and Eqn. (11) for T error) by applying the inference rules from Fig. 3, and then proving
the verification condition A |= A’ based on the techniques proposed in Section 5.1.

3 An Assertion Logic for QEC Programs

In this section, we introduce a hybrid classical-quantum assertion logic on which our verification
framework is based.

3.1 Expressions

For simplicity, we do not explicitly provide the syntax of expressions of Boolean (denoted by BExp);
see Appendix A.1 for an example. Their value is fully determined by the state of the classical
memory m € CMem, which is a map from variable names to their values. Given a state m of the
classical memory, we write [[-],, for the semantics of basic expressions in state m.

A special class of expressions was introduced by [74, 82], namely Pauli expressions. In particular,
for reasoning about QEC codes with T gates, Sundaram et al. [74] suggests extending basic Pauli
groups with addition and scalar multiplication with factor from the ring Z[1/V2] £ {x +y/V2 |
x,y€Z}={(x+yV2)/2" | t € N,x,y € Z}. We adopt a similar syntax of expressions in the ring
Z[\/%] and Pauli expressions for describing generators of stabilizer groups:

SExp: S:u= (=12 | V2528 | S1+ S5 | =S| 515, syntax for ring Z[\/%]. (3)
PExp: P:i=p,|sP|PP|P+P; syntax for Pauli group with s € SExp. (4)

In SExp, b is a Boolean expression and t is an expression of natural numbers. In PExp, p, is an
elementary gate defined as p € {X,Y, Z} with r being a constant natural number indicating the

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 190. Publication date: June 2025.

Efficient Formal Verification of Quantum Error Correcting Programs 190:7

qubit that p acts on. SExp and PExp are interpreted inductively as follows:
[s1 +s2]m 2 [s1]m + [s2lms [=SDm 2 =[sm> [s182]m 2 [s1lmlse]m
H_Pr]]m éIl®"'®Ir—1®Pr®Ir+1®~~®In
Hspﬂm = IIS]]MIIP]]WU HPIPZHm = [[Pl]]m[[PZ]]ms |IP1 +P2]]m £ HPI]]m-'-ﬂPZﬂm

Here, p, is interpreted as a global gate by lifting it to the whole system, with ® being the tensor
product of linear operators, i.e., the Kronecker product if operators are written in matrix form. Such
lifting is also known as cylindrical extension, and we sometimes omit explicitly writing out it. Note
that it is redundant to introduce the syntax of the tensor product p,, ® p,, with different r;, r,, since
[pr, @ prom =l Q@ - Ly -1 Py, ®Ly41 @+ ®Lry_1 ® P, ® Iryy1 +» @ Iy = [pryPro]m if 11 < 120

One primary concern of Pauli expression syntax lies in its closedness under the unitary transfor-
mations Clifford + T as claimed below. In fact, the factor SExp is introduced to ensure the closedness
under the T gate.

THEOREM 3.1 (CLOSEDNESS OF PAULI EXPRESSION UNDER CLIFFORD + T, C.F. [74]). For any Pauli
expression P defined in Eqn. (4) and single-qubit gate Uy € {X,Y,Z,H,S, T} acts on q; or two-qubit
gate U, € {CNOT,CZ,iSWAP} acts on q;q;, there exists another Pauli expression Q € PExp, such
that for all m € cMem, [Qlm = U} [PlmUs; or [Qlm = Uy, [PlmUai;-

3.2 Assertion Language

We further define the assertion language for QEC codes by adopting Boolean and Pauli expressions
as atomic propositions. Pauli expressions characterize the stabilizer group and the subspaces
stabilized by it, while Boolean expressions are employed to represent error properties.

Definition 3.2 (Syntax of assertion language).
AExp: Au=beBExp|PePExp|-A|ANA|AVA|A= A (5)

We interpret the assertion A € AExp as a map [A] : CMem — S(H), where CMem is the set of
classical states, S(H) is the set of subspaces in global Hilbert space H. Formally, we define its
semantics as:

Bl { o i i 12D span90: [PLal) = 0), Tl = T

[A1 A A]m = [Ar]m A [Az]lm. [A1V As]m 2 [Ar]m V [A2]me [A1 = A2 = [Ar];m w [A2]m

Boolean expression is embedded as null space or full space depending on its boolean semantics.
Pauli expression is interpreted as its +1-eigenspace (aka codespace), intuitively, this is the subspace
of states that are stabilized by it. It is slightly ambiguous to use [P] for both semantics of PExp and
AExp, while it can be recognized from the context if [P],, refers to operator (PExp) or subspace
(AExp). For the rest of connectives, [-] is a point-wise extension of quantum logic, i.e., * as
orthocomplement, A as intersection, V as span of union, ~» as Sasaki implication of subspaces, i.e.,
a~»> b2 -aV (aAb).Sasaki implication degenerates to classical implication whenever a and b
commute, and thus it is consistent with boolean expression, e.g., [b; — bs]] = [b1 = b,] where —
is the boolean implication. See Appendix A.3 for more details.

3.3 Why Birkhoff-von Neumann Quantum Logic as Base Logic?

In this section, we will discuss the advantages of choosing the projection-based (Birkhoff-von
Neumann) quantum logic as the base logic to verify QEC programs.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 190. Publication date: June 2025.

190:8 Qifan Huang, Li Zhou, Wang Fang, Mengyu Zhao, and Mingsheng Ying

Quantum logic vs. Classical logic. A key difference is the interpretation of V, which is particularly
useful for backward reasoning about if-branches, as shown by rule (If) in Fig. 3 that aligns with its
counterpart in classical Hoare logic. However, interpreting V as the classical disjunction is barely
applicable for backward reasoning about measurement-based if-branches, as illustrated below.

Example 3.3 (Failure of backward reasoning about if -branches with classical disjunction). Consider
a fragment of QEC program S = b := meas[Z;];if b then q; *= X else skip end, which first detects
possible errors by performing a computational measurement? on g, and then corrects the error
by flipping g if it is detected. It can be verified that the output state is stabilized by X; A Z; (i.e.,
in state [+0),, 4,) after executing S, if the input state is stabilized by X; (i.e., in state |[+), |¢/) " for
arbitrary |¢/)). This fact can be formalized by correctness formula

{X1} b = meas[Z,];if b then g, = X else skip end {X; A Z,}. (6)

When deriving the precondition with rule (If) where V is interpreted as classical disjunction, one
can obtain the semantics of precondition as [Ag V A1]" = [Ao] U [Ai] = {[+0) 4,4, [+1) 4,4, }, Where

Ay = X3 ANZy and A; = Xj A —Z,. This semantics of precondition is valid but far from fully
characterizing all valid inputs mentioned earlier, i.e., states of the form |+),, [¢) @ for arbitrary |y/).

Quantum logic naturally addresses this failure, since the semantics of precondition is exactly the
set of all valid input states: [AgVA;] = span{[Ao] V[Ai]} = {a [+0)4,4,+[+1)q,q, : & B € C} = [Xi].
As Theorem A.11 suggested, the rules (If) and (Meas) maintain the universality and completeness
of reasoning about broader QEC codes.

Projection-based vs. satisfaction-based approach. Although quantum logic offers richer algebraic
structures, it is limited in expressiveness compared to observable-based satisfaction approaches [31,
85] and effect algebras [35, 49]: it cannot express or reason about the probabilistic properties of
programs. However, this limitation is tolerable for reasoning about QEC codes. On one hand, errors
in QEC codes are discretized as Pauli errors and do not directly require modeling the probability. On
the other hand, a QEC code can perfectly correct discrete errors with non-probabilistic constraints.
Therefore, representing and reasoning about the probabilistic attributes of QEC codes is unnecessary.

3.4 Satisfaction Relation and Entailment

In this section, we first review the representation of program states and then define the satisfaction
relation, which specifies when the program states meet the truth condition of the assertion under a
given interpretation.

Quantum states as density operators. The quantum system after a measurement is generally an
ensemble of pure state {p;, |{/;)}, i.e., the system is in |i/;) with probability p;. It is more convenient
to express quantum states as partial density operators instead of pure states [61]. Formally, we
write p = 3; pilUi) (Wil € D(H), where (Y| is the dual state, i.e., the conjugate transpose of |i/;).

Classical-quantum states. We follow [34] to define the program state in our language as a classical-
quantum state y : CMem — D (H), which is a map from classical states to partial density operators
over the whole quantum system. In particular, the singleton state, i.e., the classical state m associated
with quantum state p, is denoted by (m, p).

Satisfaction relation. A one-to-one correspondence exists between projective operators and
subspace, i.e., X = {|{/) : Px|¢) = |[{/)}. Therefore, there is a standard way to define the satisfaction
relation in projection-based approach [80, 91], i.e., a quantum state p satisfies a subspace X, written

2Note that PlZslm = 10)q, (0] and Plz]4, = [1)g, (1], so b := meas[Z;] represents the computational measurement on g
and assign the output to b.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 190. Publication date: June 2025.

Efficient Formal Verification of Quantum Error Correcting Programs 190:9

p E X, if and only if supp(p) € X, or equivalently, PxpPx = p (or Pxp = p) where Px is the
corresponding projective operation of X. The satisfaction relation of classical-quantum states is a
point-wise lifting:

Definition 3.4 (Satisfaction relation). Given a classical-quantum state y and an assertion A € AExp,
the satisfaction relation is defined as: y |= A iff for all m € CMem, u(m) [[A]m.

The satisfaction relation faithfully characterizes the relationship of stabilizer generators and
their stabilizer states, i.e., for a Pauli expression P, [{/){(y/| |= P iff |¢/) is a stabilizer state of [P],, for
any m € CMem. We further define the entailment between two assertions:

Definition 3.5 (Entailment). For A, B € AExp, the entailment and logical equivalence are:

(1) A entails B, denoted by A |= B, if for all classical-quantum states p, p |= A implies y |= B.
(2) A and B are logically equivalent, denoted by A == B, if A = Band B | A.

The entailment relation is also a point-wise lifting of the inclusion of subspaces, i.e., A = B iff
for all m, [A]m € [B]m- As a consequence, the proof systems of quantum logic remain sound if
its entailment is defined by inclusion, e.g., a Hilbert-style proof system for AExp is presented in
Appendix A.4. In the (consequence) rule (Fig. 3) , strengthening the precondition and weakening
the postcondition are defined as entailment relations of assertions. Therefore, entailment serves as
a basis for verification conditions, which are established according to the consequence rule.

To conclude this section, we point out that the introduction of our assertion language enables us
to leverage the following observation in efficient QEC verification:

OBSERVATION 3.1. Verifying the correctness of quantum programs requires verification for all states
within the state space. By introducing phase factor (1) to Pauli expressions, we can circumvent
the need to verify each state individually. Consider a QEC code in which a logical state |by - - - b))y is
stabilized by the set of generators and logical operators (g1, - - - , gn_x» (=1)21 Zy, -+, (=1)’* Z). We can
simultaneously verify the correctness for all logical states from the set {|by - - - b)p|b1, - - - , bx € {0,1}},
without introducing exponentially many assertions.

4 A Programming Language for QEC Codes and Its Logic

In this section, we introduce our programming language and the program logic specifically designed
for QEC programs.

4.1 Syntax and Semantics

The set of program commands Prog is defined as follows:

Prog: Su=skip|qi:=10)]|q+=U | qqj+=U, where:
x:=e|x:=meas[P] |SsS U, e{X,Y,Z,H,ST}
if b then S else S end | while b do S end U, € {CNOT,CZ,iSWAP}

where skip denotes the empty program, and g; := |0) resets the i-th qubit to ground state |0). A
restrictive but universal gate set is considered for unitary transformation, with single qubit gates
from {X, Y, Z, H, S, T} and two-qubit gates from {CNOT, CZ,iSWAP}, where i and j, as the indexes
of unitaries, are constants and i # j for two-qubit gates. x := e is the classical assignment. In
quantum measurement x := meas[P], P € PExp is a Pauli expression which defines a projective
measurement {M, = PPl M1 = PPl }; after performing the measurement, the outcome is stored
in classical variable x. S § S is the sequential composition of programs. In if/loop commands, guard
b € BExp is a Boolean expression, and the execution branch is determined by its value [b] .

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 190. Publication date: June 2025.

190:10 Qifan Huang, Li Zhou, Wang Fang, Mengyu Zhao, and Mingsheng Ying

(Skip) (skip, (m, p)) — (I, (m, p)) (Init) {(g; = 10), (m, p)) — (L, (M, X=0,110)q, (klplk)q,0]))
(Unit1) {g; *= U, (m, p)) — (|, (m, quPUJl-)> (Unit2) {(giq; += U, (m, p)) — (. (m, qu,ijqTLj)>
Mo = Prpy, M1 = Prpgg,

(x := meas[P], (m, p)) — (L. (m[j/x], M;pM]))

(Assign) (x := e, (m. p)) = (L. (m[[e]m/x].p)) ~ (Meas)

(81, (m. p)) — (S}, (m'. p")) [b]m = false
(Seq) (IE-F) —
(81§ S2, (m, p)) — (87§82, (m", p")) (if b then S; else Sy end, (m, p)) — (So, (m, p))
(Whlle-F) [[b]]m = false (If_T) [[b]]m = true
(while b do S end, (m, p)) — (l, (m, p)) (if b then S; else Sy end, (m, p)) — (S1, (m, p))
(While-T) [6]m = true

(while b do S end, (m, p)) — (S § while b do S end, (m, p))

Fig. 2. Operational semantics for QEC programs.

Our language is a subset of languages considered in [34], and we follow the same theory of
defining operational and denotational semantics. In detail, a classical-quantum configuration is
a pair (S, (m, p)), where S is the program that remains to be executed with extra symbol | for
termination, and (m, p) the current singleton states of the classical memory and quantum system.
The transition rules for each construct are presented in Fig. 2. We can further define the induced
denotational semantics [S] : (CMem X D(H)) — (CMem — D(H)), which is a mapping from
singleton states to classical-quantum states [34]. We review the technical details in Appendix A.5.

Expressiveness of the programming language. Our programming language supports Clifford +
T gate set and Pauli measurements. Therefore, it is capable of expressing all possible quantum
operations, in an approximate manner. The claim of expressiveness can be proved by the following
observations:

(1) Clifford + T is a universal gate set [61]. Thus, according to the Solovay-Kitaev theorem, any
unitary U can be approximated within error € using @(log®(1/¢)) gates from this set.

(2) Measurement in any computational basis |m) = |aja; - - - a,) is performed by the projector

7 (I+(~1)% Z;) . . .

Pm = —=—3——, which can be expressed using our measurement statements x :=

meas[(—1)%Z;]. Further, projective measurements augmented by unitary operations are

sufficient to implement a general POVM measurement.

4.2 Correctness Formula and Proof System

Definition 4.1 (Correctness formula). The correctness formula for QEC programs is defined by
the Hoare triple {A}S{B}, where S € Prog is a QEC program, A, B € AExp are the pre- and post-
conditions. A formula {A}S{B} is valid in the sense of partial correctness, written as = {A}S{B}, if
for any singleton state (m, p): (m, p) | A implies [S](m, p) £ B.

The proof system of QEC program is presented in Fig. 3. Most of the inference rules are directly
inspired from [34, 85, 91]. We use A[e/x]| (or Ale1/x1, ez/x2, -+]) to denote the (simultaneous)
substitution of variable x or constant constructor x € {X,, Y,, Z,} with expression e in assertion A.
Based on the syntax of our assertion language and program constructors, we specifically design
the following rules:

e Rule (Init) for initialization. Previous works [34, 85] do not present syntax for assertion
language and give the precondition based on the calculation of semantics, which, however,
cannot be directly expressed in AExp. We derive the rule (Init) from the fact that initialization

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 190. Publication date: June 2025.

Efficient Formal Verification of Quantum Error Correcting Programs 190:11

can be implemented by a computational measurement followed by a conditional X gate.
As shown in the next section, the precondition is indeed the weakest precondition and
semantically equivalent to the one proposed in [91].

e Rules for unitary transformation. We provide the rules for Clifford + T gates, controlled-Z
(CZ) gate, as well as iSW AP gate, which are easily implemented in superconducting quantum
computers. It is interesting to notice that, even for two-qubit unitary gates, the pre-conditions
can still be written as the substitution of elementary Pauli expressions.

Reasoning about Pauli errors. To model the possible errors occurring in the QEC program, we
further introduce a syntax sugar [b]q; = U for ‘if b then q; = U else skip end’ command,
which means if the guard b is true then apply Pauli error U € {X, Y, Z} on g, otherwise skip. The
corresponding derived rules are:

{A[(-1)"Y3/Ys (-1)°Z;/Z1} [b)qi = X {A} {A[(-1)°Xi/X;, (-1)°Z;/Z;]} [b]qi ==Y {A}
{Al(-DXi/X:. (-)"Yi/ Y]} [blgi == Z {A}.

Example 4.2 (Derivation of the precondition using the proof system). Consider a fragment of
QEC program which describes the error correction stage of 3-qubit repetition code: for i €
1...3 do [x;]gq; += X end. This program corrects possible X errors indicated by x;. Starting from
the post-condition Z1Z; A Z,Z35 A (-1)2Z,, we derive the weakest pre-condition for this program:

{22, A (1" 2225 N (=) Z1} (3313 9= X {2122 A 2,25 A (1) 21}

{(-1)22,Z, N (=1)** Z,Z5 A (—1)b21} [x2]q2 %= X {Z1Z, A (-1) 2,25 A (—1)b21}
{00212y A (- 2y25 A (D" 21} [xi]qua= X {(-D) 2122 A (-1 2325 £ (-1)P 21}
We break down the syntax sugar as a sequence of subprograms and use the inference rules for

Pauli errors to derive the weakest pre-condition.

4.3 Soundness Theorem
In this subsection, we present the soundness of our proof system and sketch the proofs.

THEOREM 4.3 (SOUNDNESS). The proof system presented in Fig. 3 is sound for partial correctness;
that is, for any A, B € AExp and S € Prog, + {A}S{B} implies |= {A}S{B}.

The soundness theorem can be proved in two steps. First of all, we provide the rigorous definition
of the weakest liberal precondition wip.S.fg for any program S € Prog and mapping f : CMem —
S(H) and prove the correctness of this definition. Subsequently, we use structural induction to
prove that for any A, B € AExp and S € Prog such that + {A}S{B}, [A] E wlip.S.[B]. Proofs are
discussed in detail in Appendix A.7.

5 Verification Framework and a Case Study

Now we are ready to assemble assertion logic and program logic presented in the previous two
section into a framework of QEC verification.

5.1 Verification Conditions

As Theorem A.11 suggests, all rules except for (While) and (Con) give the weakest liberal precon-

dition with respect to the given postconditions. Then the standard procedure like the weakest

precondition calculus can be used to verify any correctness formula {A}S{B}, as discussed in [86]:

(1) Obtain the expected precondition A’ in {A’}S{B} by applying inference rules of the program
logic backwards.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 190. Publication date: June 2025.

190:12 Qifan Huang, Li Zhou, Wang Fang, Mengyu Zhao, and Mingsheng Ying

(Skip) + {A} skip {A} (Init) +{(Zi NA) V (=Z; NA[-Yi/Yi, =Zi/Zi])} qi = 10) {A}
(Assign) + {Ale/x]}x = e {A} (Meas) + {(P AA[0/x]) V (=P A A[1/x])} x := meas[P] {A}

(U-X) v {A[-Yi/Y;, -Zi/ Z;]} qi = X {A} (U-Y) - {A[-Xi/Xi,—Zi| Zi]} qi+=Y {A}
(U-Z) + {A[-X;/X;, -Yi/Yi]} qi = Z {A} (U-H) +{A[Z;i/X;,-Yi/Y:i,Xi/Z;]} qi = H {A}
1

\/i(Xi +Yi)/Yi] qi==T {A}

1
(U-S) r {A[-Y;/X;, Xi/Yi]} qi+= S {A} (U-T) + {A[$(Xi - Yi)/Xi,
(U-CNOT) + {A[X;X;/X;, YiX;/Y:, ZiY;]Y}, Zi Z; | Z;]} qiqj = CNOT {A}
(U-CZ) v {A[X;Z;|X;,YiZ;]V, ZiX; [X}, Z;Y; [Yj]} qiqj += CZ {A}
(U-SWAP) + {A[Z;Y; /X, —Zi X/ Y, Zj] Zi, YiZj | X, - XiZ ;[Y}, Zi| Z;]} qiqj += iSWAP {A}

(Seq) —" {A}Si1{B} r{B}S2{C} 1) F{Ao}So{B} + {A1}5:{B}
4 + {A}S] SSZ{C} + {(—|b A Ao) \Y% (b A A])} if b then S; else Sy end {B}
While (b A AISIA) Cony AEA_FAISIB} B EB
+ {A} while b do S end {-b A B} F {A}S{A}

Fig. 3. Inference rules for reasoning about QEC programs. For simplicity, we write —P for (—1)™¢P ¢ PExp,

write P; — P, for Py + (=1)"€P, € PExp, where P, P1, P, € PExp, and write ‘/Lg for ;/—? € SExp.

(2) Generate and prove the verification condition (VC) A = A’ using the assertion logic.
Dealing with VC requires additional efforts, particularly in the presence of non-commuting pairs of
Pauli expressions. However for QEC programs, there exists a general form of verification condition,
which can be derived from the correctness formula:

Definition 5.1 (Correctness formula for QEC programs). Consider a program S = Corr(E) — U,
which is generalized from the QEC program in Table 1. It operates on a stabilizer code with a
minimal generating set {g1," " - , gn—k> Ln—k+1, " * - » Ln} containing n independent and commuting
Pauli expressions. The correctness formula of this program can be expressed as follows:

{Agm@ij} s {Agi A /J\UijU"'} @

The verification condition to be proven is derived from this correctness formula with the aid of
inference rules, as demonstrated below":

(/\gw /\i,-)Am: \/ (A(—n"““hf(e)gm A(—l)’f‘“’*hf(e)i;). (8)
i J se{o,1}n~k ‘ i J

In Eqn. (8), P, represents a classical assertion for errors, i, j range over {1, - - - ,n—k}, {n—k+1,--- ,n}
respectively, The vector s encapsulates all possible measurement outcomes (syndromes) and e
represents the error configuration. The semantics of g;, g/, L;, E} are normal operators. The terms
ri(s),r;j(s) denote the sum of all corrections effective for the corresponding operators, while

3Here, we assume the error in the correction step is always Pauli errors; otherwise, two verification conditions of the form
Eqn. (8) are generated that separately deal with error before measurement and error in correction step.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 190. Publication date: June 2025.

Efficient Formal Verification of Quantum Error Correcting Programs 190:13

hi(e), hj(e) account for the total error effects on the operators caused by the injected errors. The
details of derivation are provided in Appendix B.1.

Let us consider how to prove Eqn. (8) in the following three cases:

(1) {g;} € {g:} and {L}} € {L;}. The entailment is then equivalent to check P. |V (A;(ri(s) +
hi(e) =0) A A\;(rj(s) +hj(e) = 0)), which can be proved directly by SMT solvers.

(2) Allg;, g;, Lj, L’ commute with each other. Since {g;, L; } is a minimal generating set, any g; or L
can be written as the product of {g;, L;} up to a phase 1, e.g., (—-1)%g, = [licz, 9i Hjejj, L;,
(—1)00']:;. = [liez, 9i Hjejj, L;, so the entailment is equivalent to check P, = \/ (A;(ri(s) +
hi(e) = a;) A \;(r(s) + hj(e) = aj)).

(3) There exist non-commuting pairs*. We consider the case that the total errors are less than
the code distance; furthermore, g; is ordered such that g} = UgiUT for some unitary U, which
can be easily achieved by preserving the order of subterms during the annotation step (1).
The key idea to address this issue involves eliminating all non-commuting terms on the
right-hand side (RHS) and identifying a form that is logically equivalent to the RHS. We
briefly discuss the steps of how to eliminate the non-commuting terms, as outlined below:

(a) Find the set G C {g;} such that any element g; € G differs from g; up to a phase; Find the
set £ C {L’} such that L’ differs from L; up to a phase.

(b) Update G and £ by multiplying some g; € G onto those elements, until £ is empty and
any g; € G differs from g; in only one qubit.

(c) Replace those g; with g;, and check if the phases of the remaining items are the same
for all 2% terms. If so, this problem can be reduced to the commuting case, since we can
successfully use (P A Q) V (=P A Q) = Q (P and Q commute with each other) to eliminate
all non-commuting elements.

To illustrate how our ideas work, we provide an concrete example in Section 5.2.2, which
illustrates how to correct a single T error in the Steane code.

Soundness of the Methods.

After proposing the methods to handle the verification condition (VC), we now discuss the

soundness of our methods case by case:

e Commuting case. If all g;, g/, L;, I:;. commute with each other, then the equivalence of the VC

proposed in case (2) and Eqn. (8) can be guaranteed by the following proposition:

PROPOSITION 5.2. Given a verification condition of the form:

((—1)1'1131 A A (—1)bnpn) AP E\/ ((—1)”113; AA (—1)b¢1P;,) 9)

where {(—1)b1P1, . (—1)b"Pn}, {(—1)1’1P{, e (—l)b;IP,’l} are independent and commuting genera-
tors of two stabilizer groups S, S’ C Gp, Gn is the n-qubit Pauli group. S and S’ satisfy —1 ¢ S,S". If
{P1,...,Pp, P,..., P;} commute with each other, then:
I For alli, there exist a unique o; € {0,1} and {i;} € Zl"J,s.t.(—l)”’iPlf =II;P;,.
IL Pe = Nz (b] = ai + X;b;;) implies A = A’, where A, A" are left and right hand side of
Expression (9).

The proof leverages the observation that any P; which commutes with all elements in a stabilizer
group S can be written as products of generators of S [61]. We further use PAQ = QP to reformulate
the LHS of Expression (9) and generate terms that differs from the RHS only by phases. The detailed
proof of this proposition is postponed to Appendix B.2.

4We assume no error happens in the correction step; otherwise, we deal them in two separate VCs.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 190. Publication date: June 2025.

190:14 Qifan Huang, Li Zhou, Wang Fang, Mengyu Zhao, and Mingsheng Ying

Table 2. Symbols and values appear in Eqn. (10)

Symbols Values Symbols Values Symbols Values
r7(s) S fei h7(e) ST e
hl(e), h4(e) e1+e3t+es+ey hz(e), h5(e) ez +e3+eg+ey h3(e), hé(e) e4+es+egt+ey
ri(s) | fart ezt st fzr| ra(s) | faet fa3t fae t far r3(s) | fat fas + fret+ f27
ra(s) | featfistfisthir| rs(s) | fretfizt et fir| re(s) | feat frus+ fie t+ frg

e Non-commuting case. The soundness of this case can be demonstrated by separately proving
the soundness of step (a), (b) and step (c).

(1) Step (a) and (b): Consider the check matrix H. If step (b) fails for some error configuration e
with weight we < d — 1, then there exists a submatrix Hy,, of size (n — k) X we, with columns
being the error locations. The rank of the submatrix is 7 < we, leading to a contradiction
with the definition of d being the minimal weight of an undetectable error. This is because
there exists another e’ whose support is within that of e, and He’ = 0.

(2) Step (c): The soundness is straightforward since (P A Q) V (=P A Q) = Q whenever P and Q
commute, which is the only formula we use to eliminate non-commuting elements.

5.2 Case Study: Steane Code (Continued)

To illustrate the general procedure of our verification framework, let us consider the 7-qubit Steane
code presented in Section 2.2 with Y and T errors (H errors is deferred to Appendix C.2.

5.2.1 Case I: Reasoning about Pauli Y errors. We first verify the correctness of Steane code with
Pauli Y errors. We choose Y error because its impact on stabilizer codes is equivalent to the
composite effect of X and Z errors on the same qubit. In this scenario, the verification condition
(VC) to be proved is generated from the precondition:

7 6 6
{(Zei < 1) A ((—1)bZA /\91‘)} ':{ \/ ((_1)b+r7(s)+h7(e)Z‘/\ /\(_l)ri(s)+hi(e)gi)}. (10)
i=1

i=1 se{0,1}° i=1

No changes occur in Pauli generators Z and g;, therefore according to case (1) in the proof of
Eqn. (8), the verification condition is equivalent with P, £ P/, where P, = 217:1 e < 1, P =
Vse{o,1}6 /\17:1 (ri(s) + hi(e) = 0). We can prove the VC if the minimum-weight decoder f satisfies
Py
7 7 7 7 6
e (3me S A S Do) A o =)

i=1 i=1 i=1 i=1 i=1
This Py we give describes the necessary condition of a decoder: the corrections r;(s) are applied to
eliminate all non-zero syndromes on the stabilizers; and weight of corrections should be less than
or equal to weight of errors. Alternatively, if we know that f satisfies Pr (e.g., the decoder is given),
we can identify P. by simplifying P, without prior knowledge of P.. Instead, if we are aiming to
design a correct decoder f, we may extract the condition Py from the requirement P, C P;.

5.2.2 Case Il: Non-Pauli T Errors. Here we only show the processing of specific error locations
eps = 1, e.g., the propagated error before logical H, to illustrate the heuristic algorithm proposed in
Section 5. The general situation only makes the formula encoding more complicated but does not
introdce fundamental challenges.

>The notations in Eqn. (10) may be a bit confusing, therefore we provide Table 2 to help explain the relationships of those
notations. For details of the derivation please refer to Appendix C.1.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 190. Publication date: June 2025.

Efficient Formal Verification of Quantum Error Correcting Programs 190:15

We consider the logical |+); and +)y state stabilized by the stabilizer generators and logical X.
The verification condition generated by the program should become °:

(A gi)A<—1>”X|= \V (A(—l)ng;)Ac—n””“)X'

i=1...6 se{0,1}6 \ Vi=1...6

. (11)

In which r(s) = 3.7_, cx; is the sum of X corrections, regarding the decoder as an implicit function of
s. We denote the group stabilized by g, - - - , gs, X as S. The injected non-Pauli error Ts changes all
X5 to \/LE(YS - X;5), therefore the elements in set {g], - - - ,gg,)_('} are: g = ‘/%XIX3 (X5 - Y5)X7, g5 =

XoXoXoX7, gy = ‘/%X‘;(XS - Y5)X X7, X' = \/%XIXZXSXAL(XS - Y5)XeX7, g4 = 217372577, g =
Zy 237627, Gy = Z4Zs5ZeZs.

o Step I: Update G and L. We obtain a subset from {g],- - - , g;, X'} whose elements differ from
the corresponding ones in {gi, - - go, X}, which is {g], g5, X’}. Now pick j, = 1 from this set
1

and update g; and X’, we can obtain a generator set of S’: g9, = \/EX1X3(X5 - Y5)X;, g, =

XoX3XeX7, g5 = X1 X3X4 X, X" = XoXuXe, 9y = 21252527, g5 = Z2Z326Z7, §y = Z4Zs5ZsZq. We
update g3, X at the same time and obtain another set of generators for S: S = {X; X3X5X7, X2 X3Xs X7
s X0 XXy X, X9 X4 X, Z1Z3 2577, ZyZ3 26 27, Z4Z5Zs Z7}. The generator sets only differ by g; and g].

e Step II: Remove non-commuting terms, check the phases of remaining elements. The weakest
liberal precondition on the right-hand side is now transformed into another equivalent form:
\/ ((—l)slgi A (_1)529; A (_1)sz+53gé/ A (/\ (_l)s,»g;) A (_1)b+r(s)+len) (12)

se{0,1}6 i=4,5,6

For P/, Q whose elements are commute with each other, we can leverage (P’ AQ) V (=P’ AQ) =Q
to reduce the verification condition Eqn. (11) to the commuting case. In this case we have P = g,
P’ = g{ and Q being other generators, which is guaranteed by Step I. To prove the entailment in
Eqn. (11), it is necessary to find two terms in Eqn. (12) whose phases only differ in s;. Now rephrase
each phase to t; and find that Eqn. (11) has an equivalent form:

(/\ gi)/\(_l)hX = \/ ((—1)“91/\(—1)”9%(—1)“93’A(/\ (—l)t"gé)A(—l)’“”X” . (13)

=1...6 te{0,1}7 i=4,5,6

The map t = u(s) is t; = s1,t2 = Sz, 13 = Sz + S3, 84 = Sy, Is = S5, 16 = Sg, 17 = 21721 ¢; + s1, which comes
from the multiplication in Step I. To prove the entailment in Eqn. (13), we pick t according to step
(c) in Section 5.1 and use t = u(s) as constraints to check phases of the remaining items. In this case
the values of sy and s; are straightforward: s, = (0,0,0,0,0,0) and s; = (1,0, 1,0, 0,0). Then what
remains to check is whether t; = 217:1 cx; + s = 0, which can be verified through the following
logical formula for decoder: Hy(¢cx) =s; A (2;exi < 3 ex; < 1) = 21721 cxi+s1 =07

6 Tool Implementation

As summarized in Fig. 1, we implement our QEC verifiers at two levels: a verified QEC code verifier
in the Coq proof assistant [77] for mechanized proof of scalable codes, and an automatic QEC
verifier Veri-QEC based on Python and SMT solver for small and medium-scale codes.

®Only logical X is considered, since logical Z is an invariant at the presence of T errors because T ZT = Z.
"The stabilizer generator g; is transformed to a Z-check after the logical Hadamard gate, so parity-check of Z are encoded
in the logical formula and the syndrome s; guides the X corrections.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 190. Publication date: June 2025.

190:16 Qifan Huang, Li Zhou, Wang Fang, Mengyu Zhao, and Mingsheng Ying

Verified QEC verifier. Starting from first principles, we formalize the semantics of classical-
quantum programs based on [34], and then build the verified prover, proving the soundness of
its program logic. This rules out the possibility that the program logic itself is flawed, especially
considering that it involves complex classical-quantum program semantics and counterintuitive
quantum logic. This is achieved by ~4700 lines of code based on the CoqQ project [90], which
offers rich theories of quantum computing and quantum logic, as well as a framework for quantum
program verification. We further demonstrate its functionality in verifying scalable QEC codes
using repetition code as an example, where the size of the code, i.e., the number of physical qubits,
is handled by a meta-variable in Coq.

Automatic QEC verifier Veri-QEC. We propose Veri-QEC, an automatic QEC code verifier imple-

mented as a Python package. It consists of three components:

(1) Correctness formula generator. This module processes the user-provided information of the
given stabilizer code, such as the parity-check matrix and logical algorithms to be executed,
and generates the correctness formula expressed in plain context as the verification target.

(2) Verification condition generator. This module consists of 1) a parser that converts the pro-
gram, assertion, and formula context into corresponding abstract syntax trees (AST), 2) a
precondition generator that annotates the program according to inference rules (as Theorem
A.11 suggests, all rules except (While) and (Con) give the weakest liberal precondition), and
3) a VC simplifier that produces the condition to be verified with only classical variables,
leveraging assertion logic and techniques proposed in Section 5.1.

(3) SMT checker. This component adopts Z3 [29] to encode classical verification conditions into
formulae of SMT-LIBv2 format, and invokes appropriate solvers according to the type of
problems. We further implement a parallel SMT checking framework in our tool for enhanced
performance.

Readers can refer to Appendix D for specific details on the tool implementation.

7 Evaluation of Veri-QEC

We divide the functionalities of Veri-QEC into two modules: the first module focuses on verifying
the general properties of certain QEC codes, while the second module aims to provide alternative
solutions for large QEC codes whose scales of general properties have gone beyond the upper
limit of verification capability. In this case, we allow users to impose extra constraints on the error
patterns.
Next, we provide the experimental results aimed at evaluating the functionality of our tool. In
particular, we are interested in the performance of our tool regarding the following functionalities:
(1) The effectiveness and scalability when verifying the general properties for program imple-
mentations of QEC codes.
(2) The performance improvement when extra constraints of errors are provided by users.
(3) The capability to verify the correctness of realistic QEC scenarios with regard to fault-tolerant
quantum computation.
(4) Providing a benchmark of the implementation of selected QEC codes with verified properties.
The experiments in this section are carried out on a server with 256-core AMD(R) EPYC(TM) CPU
@2.45GHz and 512G RAM, running Ubuntu 22.04 LTS. Unless otherwise specified, all verification
tasks are executed using 250 cores. The maximum runtime is set to 24 hours.

7.1 Verify General properties

We begin by examining the effectiveness and scalability of our tool when verifying the general
properties of QEC codes.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 190. Publication date: June 2025.

Efficient Formal Verification of Quantum Error Correcting Programs 190:17

O O
Verification Time vs Code Distance Logical X
: 12799 oo o oo
10000s =®@= Sequential
- == Parallel o ° (4]
“01000s (@) (@) (¢} (@) ()
£ ° ° ° .
=
5 100 o (©] o (©] O
"3] . o]
£ 10
= ° O o O o o
> ° ° ° .
Is Logical Z o o
3 11 ® Data qubit O Measure Z qubit © Measure X qubit

7
Code Distance
Fig. 5. Scheme of a rotated surface code with d = 5. Each

coloured tile associated with the measure qubit in the
center is a stabilizer (Flesh: Z check, Indigo: X check).

Fig. 4. Time consumed when verifying surface
code in sequential/parallel.

Methodology. We select the rotated surface code as the candidate for evaluation, which is a
variant of Kitaev’s surface code [30, 47] and has been repeatedly used as an example in Google’s
QEC experiments based on superconducting quantum chips [2, 3]. As depicted in Fig. 5,ad =5
rotated surface code is a 5 X 5 lattice, with data qubits on the vertices and surfaces between the
vertices representing stabilizer generators. The logical operators X (green horizontal) and Z, (black
vertical) are also shown in the figure. Qubits are indexed from left to right and top to bottom.

For each code distance d = 2t + 1, we generate the corresponding Hoare triple and verify the
error conditions necessary for accurate decoding and correction, as well as for the precise detection
of errors. The encoded SMT formula for accurate decoding and correction is straightforward and
can be referenced in Section 5.2:

n

Vei,...,en 3S1,. .., Sn_k, iei < l%J = \/ (/\ (ri(s) + hi(e) =0)/\Pf). (14)

i=1 se{0,1}n \i=1

To verify the property of precise detection, the SMT formula can be simplified as the decoding
condition is not an obligation:

n n k-1
(ISZei Sdt—l) = (/\(sizo))/\(\/(h,-(e);to)). (15)

i=1 i=k i=0
Eqn. (15) indicates that there exist certain error patterns with weight < d; such that all the
syndromes are 0 but an uncorrectable logical error occurs. We expect an unsat result for the actual
code distance d and all the trials d; < d.If the SMT solver reports a sat result with a counterexample,
it reveals a logical error that is undetectable by stabilizer generators but causes a flip on logical
states. In our benchmark we verify this property on some codes with distance being 2, which are
only capable of detecting errors. They are designed to realize some fault-tolerant non-Clifford gates,
not to correct arbitrary single qubit errors.

Further, our implementation supports parallelization to tackle the exponential scaling of problem
instances. We split the general task into subtasks by enumerating the possible values of e; on
selected qubits and delegating the remaining portion to SMT solvers. We denote N (bits) as the
number of e; whose values have been enumerated, and N (ones) as the count of e; with value 1
among those already enumerated. We design a heuristic function ET = 2d * N(ones) + N (bits),
which serves as the termination condition for enumeration.

Given its outstanding performance in solving formulas with quantifiers, we employ CVC5 [7] as
the SMT solver to check the satisfiability of the logical formulas in this paper.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 190. Publication date: June 2025.

190:18 Qifan Huang, Li Zhou, Wang Fang, Mengyu Zhao, and Mingsheng Ying

Verify vs Condition Generation Time Time to detect logical X and Z errors
10*] — Condition generation time 6151-89 —— detect Z error
—s— Verify time for dt = d+1 —— detect X error 1106.89

—— Verify time fordt=d

1129.44848 6

5.0 7.5 100 125 150 175 200 225 250 5.0 75 100 125 150 175 200 225 250
Code Distance Code Distance

Fig. 6. Time consumed when verifying precise detection properties on surface code with distance d.

Results. Accurate Decoding and Correction: Fig. 4 illustrates the total runtime required to verify
the error conditions for accurate decoding and correction, employing both sequential and parallel
methods. The figure indicates that while both approaches produce correct results, our parallel
strategy significantly improves the efficiency of the verification process. In contrast, the sequential
method exceeded the maximum runtime of 24 hours at d = 9; we extended the threshold for solvable
instances within the time limit to d = 11.

Precise Detection of Errors: For a rotated surface code with distance d, we first set d; = d to verify
that all error patterns with Hamming weights < d can be detected by the stabilizer generators.
Afterward, we set d; = d+1 to detect error patterns that are undetectable by the stabilizer generators
but cause logical errors. The results show that all trials with d; = d report unsat for Eqn. (15),
and trials with d; = d + 1 report sat for Eqn. (15), providing evidence for the effectiveness of this
functionality. The results indicate that, without prior knowledge of the minimum weight, this tool
can identify and output the minimum weight undetectable error. Fig. 6 illustrates the relationship
between the time required for verifying error conditions of precise detection of errors and the code
distance.

7.2 Verify Correctness with User-provided Errors

Constrained by the exponential growth of problem size, verifying general properties limits the size
of QEC codes that can be analyzed. Therefore, we allow users to autonomously impose constraints
on errors and verify the correctness of the QEC code under the specified constraints. We aim for the
enhanced tool, after the implementation of these constraints, to increase the size of verifiable codes.
Users have the flexibility to choose the generated constraints or derive them from experimental
data, as long as they can be encoded into logical formulas supported by SMT solvers. The additional
constraints will also help prune the solution space by eliminating infeasible enumeration paths
during parallel solving.

Results. We briefly analyze the experimental data [2, 3] and observe that the error detection
probabilities of stabilizer generators tend to be uniformly distributed. Moreover, among the physical
qubits in the code, there are always several qubits that exhibit higher intrinsic single-qubit gate error
rates. Based on these observations, we primarily consider two types of constraints and evaluate
their effects in our experiment. For a rotated surface code with distance d, the explicit constraints
are as follows:

e Locality: Errors occur within a set containing # randomly chosen qubits. The other qubits
are set to be error-free.

e Discreteness: Uniformly divide the total d qubits into d segments, within each segment of d
qubits there exists no more than one error.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 190. Publication date: June 2025.

Efficient Formal Verification of Quantum Error Correcting Programs 190:19

I II II1 v

Time to Verify User-provided Errors
Ve Error Ve Error

12799.00

10%4{ —— +locality, +discrete
—=— +locality

5947.71

Error injection Error injection Logical operations Logical operations

| P

Brror correction Error correction
(fault-free)

1
D rounds | D rounds |

Vo Error Vo

6 8 10 12 14 16 18 Error correction Error correction
Code Distance (fault-free) (fault-free)

Fig. 7. Time consumed to verify the correctness of ~ Fig. 8. Realistic fault-tolerant scenarios that are
surface code with distances ranging from 5 to 19. supported for verification.

—— +discrete
103, == No constraint

Error correction
(fault-free)
!

Error correction
(fault-free)

=
o
~

Verify Time

=
2

Error

—
o
>

The other experimental settings are the same as those in the first experiment.

Fig. 7 illustrates the experimental results of verification with user-provided constraints. We
separately assessed the results and the time consumed for verification with the locality constraint,
the discreteness constraint, and both combined. We will take the average time for five runs for
locality constraints since the locations of errors are randomly chosen. Obviously both constraints
contribute to the improvement of efficiency, yet yield limited improvements if only one of them is
imposed; When the constraints are imposed simultaneously, we can verify the d = 19 surface code
which has 361 qubits within ~ 100 minutes.

Comparison with Stim [36]. Stim is currently the most widely used and state-of-the-art
stabilizer circuit simulator that provides fast performance in sampling and testing large-scale
QEC codes. However, simply using Stim in sampling or testing does not provide a complete
check for QEC codes, as it will require a large number of samples. For example, we can verify a
d = 19 surface code with 361 qubits in the presence of both constraints, which require testing on

212 (%) (18)" = 19 ~ 276 samples that are beyond the testing scope.

7.3 Towards Fault-tolerant Implementation of Operations in Quantum Hardware

We are interested in whether our tool has the capability to verify the correctness of fault-tolerant
implementations for certain logical operations or measurements. In Fig. 8 we conclude the realistic
fault-tolerant computation scenarios our tools support. In particular, we write down the programs
of two examples encoded by Steane code and verify the correctness formulas in our tool. The
examples are stated as follows:

(1) A fault-tolerant logical GHZ state preparation.
(2) An error from the previous cycle remains uncorrected and got propagated through a logical
CNOT gate.

We provide the programs used in the experiment in Fig. 9 and Fig. 10. The program Steane(E);
denotes an error correction process over i logical qubit.

7.4 A Benchmark for Qubit Stabilizer Codes

We further provide a benchmark of 14 qubit stabilizer codes selected from the broader quantum
error correction code family, as illustrated in Table 3. We require the selected codes to be qubit-based
and have a well-formed parity-check matrix. For codes that lack an explicit parity-check matrix, we
construct the stabilizer generators and logical operators based on their mathematical construction
and verify the correctness of the implementations. For codes with odd distances, we verify the
correctness of their program implementations in the context of accurate decoding and correction.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 190. Publication date: June 2025.

190:20 Qifan Huang, Li Zhou, Wang Fang, Mengyu Zhao, and Mingsheng Ying

forie8---14doq;+=Hend}

forie 1---3do Steane(E); end §
forie8---14doq;,qi—7%=CNOT end §
forie1---7doq; qi+7 %= CNOT end §
fori € 1---3do Steane(E); end

forie1---7do [ep;)]gi*+=U end
fori€1---7do gj,qi+7*= CNOT end ¢
fori € 1---2do Steane(E); end

Fig. 10. QEC for logical CNOT gate with propa-
Fig. 9. QEC for logical GHZ state preparation. gated errors.

Table 3. A benchmark of qubit stabilizer codes with logical-free scenario (EMC) considered in Table 4. We
report their parameters [[n, k, d]] and the properties we verified with the time spent. Parameters with variables
indicate that this code has a scalable construction. If the exact d is unknown, we provide an estimation given
by our tool in the bracket.

Target: Accurate Correction

Code Name Parameters Verify time(s)
Steane code [72] [[7,1,3]] 0.095
Surface code [30] (d = 11) [[d% 1,d]] 12799
Six-qubit code [20] [[6,1,3]] 0.252
Quantum dodecacode [20] [[11,1,5]] 0.587
Reed-Muller code [73] (r = 8) [[2" —1,1,3]] 1868.56
XZZX surface code [13] (dx = 9,d, = 11) | [[dyx X d;, 1, min(dy, d;)]] 1067.16
Gottesman code [37] (r = 8) [[27,2" = r—2,3]] 587.00
Honeycomb code [51] (d = 5) [[19,1,5]] 1.55
Target: Detection
Tanner Code I [55] [[343,31,d > 4]] 7086.36
Tanner Code II [55] [[125,53,4]] 1667.81
Hypergraph Product [18, 48, 79] [[98,18,4]] 289.37
Error-Detection codes
3D basic color code [50] (d, = 2) [[8,3,2]] 2.88
Triorthogonal code [17] (k = 64) [[3k +8,k,dy =6,d, = 2]] 144.94
Carbon code [38] [[12,2,4]] 4.80
Campbell-Howard code [22] (k = 2) [[6k + 2,3k, 2]] 3.05

However, some codes have even code distances, including examples such as the 3D [[8, 3, 2]] color
code [50] and the Campbell-Howard code [22], which are designed to implement non-Clifford gates
like the T-gate or Toffoli gate with low gate counts. These codes have a distance of 2, allowing
error correction solely through post-selection rather than decoding. In such cases, the correctness
of the program implementations is ensured by verifying that the code can successfully detect any
single-qubit Pauli error. We list these error-detection codes at the end of Table 3.

8 Related Work

In addition to the works compared in Section 1, we briefly outline verification techniques for
quantum programs and other works that may be used to check QEC programs.

Formal verification with program logic. Program logic, as a well-explored formal verification
technique, plays a crucial role in the verification of quantum programs. Over the past decades,
numerous studies have focused on developing Hoare-like logic frameworks for quantum pro-
grams [6, 19, 24, 33, 45]. Assertion Logic. [67, 68, 83] began utilizing stabilizers as atomic propositions.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 190. Publication date: June 2025.

Efficient Formal Verification of Quantum Error Correcting Programs 190:21

[80] proposed a hybrid quantum logic in which classical variables are embedded as special quantum
variables. Although slightly different, this approach is essentially isomorphic to our interpretation
of logical connectives. Program Logic. Several works have established sound and relatively complete
(hybrid) quantum Hoare logics, both satisfaction-based [34, 85] and projection-based [91]. However,
these works did not introduce (countable) assertion syntax, meaning their completeness proofs do
not account for the expressiveness of the weakest (liberal) preconditions. [74, 82, 83] focus on rea-
soning about stabilizers and QEC code, with our substitution rules for unitary statements drawing
inspiration from their work. Program logic in the verification of QEC codes and fault-tolerant com-
puting. Quantum relational logic [8, 58, 81] is designed for reasoning about relationships, making it
well-suited for verifying functional correctness by reasoning equivalence between ideal programs
and programs with errors. Quantum separation logic [40, 52, 57, 89], through the application of
separating conjunctions, enables local and modular reasoning about large-scale programs, which is
highly beneficial for verifying large-scale fault-tolerant computing. Abstract interpretation [87]
uses a set of local projections to characterize properties of global states, thereby breaking through
the exponential barrier. It is worth investigating whether local projections remain effective for QEC
codes.

Symbolic techniques for quantum computation. General quantum program testing and debugging
methods face the challenge of excessive test cases when dealing with QEC programs, which makes
them inefficient. Symbolic techniques have been introduced into quantum computing to address
this issue [9, 23, 27, 32, 44, 76]. Some of these works aim to speed up the simulation process without
providing complete verification of quantum programs, while others are designed for quantum
circuits and do not support the control flows required in QEC programs. The only approach capable
of handling large-scale QEC programs is the recent work that proposed symbolic stabilizers [32].
However, this framework is primarily designed to detect bugs in the error correction process that
do not involve logical operations and do not support non-Clifford gates.

Mechanized approach for quantum programming. The mechanized approach offers significant
advantages in terms of reliability and automation, leading to the development of several quantum
program verification tools in recent years (see recent reviews [26, 56]). Our focus is primarily
on tools that are suitable for writing and reasoning about quantum error correction (QEC) code
at the circuit level. Matrix-based approaches. QWIRE [63, 66] and SQIR [41] formalize circuit-like
programming languages and low-level languages for intermediate representation, utilizing a density
matrix representation of quantum states. These approaches have been extended to develop verified
compilers [65] and optimizers [41]. Graphical-based approaches. [53, 54, 71], provide a certified
formalization of the ZX-calculus [28, 46], which is effective for verifying quantum circuits through
a flexible graphical structure. Automated verification. QBRICKs [25] offers a highly automated
verification framework based on the Why3 [12] prover for circuit-building quantum programs,
employing path-sum representations of quantum states [4]. Theory formalization. Ongoing libraries
are dedicated to the formalization of quantum computation theories, such as QuantumLib [92],
Isabelle Marries Dirac (IMD) [14, 15], and CoqQ [90]. QuantumLib is built upon the Coq proof
assistant and utilizes the Coq standard library as its mathematical foundation. IMD is implemented
in Isabelle/HOL, focusing on quantum information theory and quantum algorithms. CoqQ is
written in Coq and provides comprehensive mathematical theories for quantum computing based
on the Mathcomp library [59, 78]. Among these, CoqQ has already formalized extensive theories of
subspaces, making it the most suitable choice for our formalization of program logic.

Functionalities of verification tools for QEC programs. Besides the comparison of theoretical work
on program logic and other verification methods, we also compare the functionalities of our tool
Veri-QEC with those of other verification tools for QEC programs. We summarize the functionalities

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 190. Publication date: June 2025.

190:22 Qifan Huang, Li Zhou, Wang Fang, Mengyu Zhao, and Mingsheng Ying

Table 4. Comparison of scenarios and functionalities between Veri-QEC and other tools. For scenarios,
we denote L for logical gate implementation, E for error injection, M for measurement (error detection),
C (Cg) for error correction (with error injection). We further identify three functionalities, C for general
verification of correctness, R for reporting bugs, and F for fixed errors, that evaluated by A if implemented, o
if potentially supported but not yet implemented and — if cannot handle or beyond design. n/a indicates that
F is unavailable in the error-free scenario.

Tools . VERITA QuantumSE
Scenarios Veri-QEC [82, 83] [32] STiv [36]

Functionality C|R|F|C|R|F|C|R|F|C|R|F
error-free (L) A | o |n/fal A | o |n/al] o| o |n/al] o | o |n/a

logical-free (EMC) A|o|o| —|—|A|A]|A]|o|—=|=1|a

error in correctionstep (LMCg) | A [o [o | = | — [o | A [A | o | —| -] a

one cycle (ELEMC) A|lo|o| -] -]alalalol-]=-1a

multi cycles (ELEMCELEMC---) | o | o [o | = [= a oo o[=]-1a

of the tools in Table 4. VERITA [82, 83] adopts a logic-based approach to verify the implementation
of logical operations with fixed errors. QuantumSE [32] is tailored for efficiently reporting bugs in
QEC programs and shows potential in handling logical Clifford operations. Stim [36] employs a
simulation-based approach, offering robust performance across diverse fault-tolerant scenarios
but limited to fixed errors. Our tool Veri-QEC is designed for both general verification and partial
verification under user-provided constraints, supporting all aforementioned scenarios.

9 Discussion and Future Works

In this paper, we propose an efficient verification framework for QEC programs, within which we
define the assertion logic along with program logic and establish a sound proof system. We further
develop an efficient method to handle verification conditions of QEC programs. We implement our
QEC verifiers at two levels: a verified QEC verifier and a Python-based automated QEC verifier.

Our work still has some limitations. First of all, the gate set we adopt in the programming
language is restricted, and the current projection-based logic is unable to reason about probabilities.
Last but not least, while our proof system is sound, its completeness- especially for programs with
loops- remains an open question.

Given the existing limitations, some potential directions for future advancements include:

(1) Addressing the completeness issue of the proof system. We are able to prove the (relative)
completeness of our proof system for finite QEC programs without infinite loops. However,
it is still open whether the proof system is complete for programs with while-loops. This
issue is indeed related to the next one.

(2) Extending the gate set to enhance the expressivity of program logic. The Clifford + T gate set we
use in the current program logic is universal but still restricted in practical applications. It is
desirable to extend the syntax of factors and assertions for the gate sets beyond Clifford + T.

(3) Generalizing the logic to satisfaction-based approach. Since any Hermitian operator can be
written as linear combinations of Pauli expressions, our logic has the potential to incorporate
so-called satisfaction-based approach with Hermitian operators as quantum predicates, which
helps to reason about the success probabilities of quantum QEC programs.

(4) Exploring approaches to implementing an automatic verified verifier. The last topic is to explore
tools like F* [60, 75], a proof-oriented programming language based on SMT, for incorporating
the formally verified verifier and the automatic verifier described in this paper into a single
unified solution.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 190. Publication date: June 2025.

Efficient Formal Verification of Quantum Error Correcting Programs 190:23

Acknowledgement

We thank Bonan Su for kind discussions regarding on crafting the introduction section and Huip-
ing Lin for for the revisions made to the introduction of stabilizer codes. In addition, we thank
anonymous referees for helpful comments and suggestions. This research was supported by the
National Key R&D Program of China under Grant No. 2023YFA1009403.

Data Availability Statement

The code for of this work (both the Coq formalization and the automatic verifier Veri-QEC) is
available at https://github.com/Chesterhuang1999/Veri-qec, or at https://doi.org/10.5281/zenodo.
15248774 (evaluated artifact [42]). The appendices are provided as the supplementary material, or
see our extended version [43].

References

[1] Scott Aaronson and Daniel Gottesman. 2004. Improved simulation of stabilizer circuits. Phys. Rev. A 70 (Nov 2004),
052328. Issue 5. doi:10.1103/PhysRevA.70.052328

[2] Rajeev Acharya, Dmitry A. Abanin, Laleh Aghababaie-Beni, Igor Aleiner, Google Quantum Al et al. 2025. Quantum error
correction below the surface code threshold. Nature 638, 8052 (01 Feb 2025), 920-926. doi:10.1038/s41586-024-08449-y

[3] Rajeev Acharya, Igor Aleiner, Richard Allen, Trond I. Andersen, Google Quantum Al et al. 2023. Suppressing quantum
errors by scaling a surface code logical qubit. Nature 614, 7949 (01 Feb 2023), 676-681. do0i:10.1038/s41586-022-05434-1

[4] Matthew Amy. 2018. Towards Large-scale Functional Verification of Universal Quantum Circuits. In Proceedings 15th
International Conference on Quantum Physics and Logic, QPL 2018, Halifax, Canada, 3-7th June 2018 (EPTCS, Vol. 287),
Peter Selinger and Giulio Chiribella (Eds.). 1-21. doi:10.4204/EPTCS.287.1

[5] Simon Anders and Hans J. Briegel. 2006. Fast simulation of stabilizer circuits using a graph-state representation. Phys.
Rev. A 73 (Feb 2006), 022334. Issue 2. doi:10.1103/PhysRevA.73.022334

[6] Alexandru Baltag and Sonja Smets. 2004. The logic of quantum programs. Proc. QPL (2004), 39-56. https://philsci-
archive.pitt.edu/1799/

[7] Haniel Barbosa, Clark W. Barrett, Martin Brain, Gereon Kremer, Hanna Lachnitt, Makai Mann, et al. 2022. cvc5: A
Versatile and Industrial-Strength SMT Solver. In Tools and Algorithms for the Construction and Analysis of Systems - 28th
International Conference, TACAS 2022, Munich, Germany, April 2-7, 2022, Proceedings, Part I (Lecture Notes in Computer
Science, Vol. 13243), Dana Fisman and Grigore Rosu (Eds.). Springer, 415-442. doi:10.1007/978-3-030-99524-9_24

[8] Gilles Barthe, Justin Hsu, Mingsheng Ying, Nengkun Yu, and Li Zhou. 2019. Relational Proofs for Quantum Programs.
Proc. ACM Program. Lang. 4, POPL, Article 21 (December 2019), 29 pages. doi:10.1145/3371089

[9] Fabian Bauer-Marquart, Stefan Leue, and Christian Schilling. 2023. SymQV: Automated Symbolic Verification Of
Quantum Programs. In Formal Methods: 25th International Symposium, FM 2023. Springer-Verlag, 181-198. doi:10.1007/
978-3-031-27481-7_12

[10] Dolev Bluvstein, Simon J. Evered, Alexandra A. Geim, Sophie H. Li, Hengyun Zhou, et al. 2024. Logical Quantum
Processor Based on Reconfigurable Atom Arrays. Nature 626, 7997 (Feb. 2024), 58-65. doi:10.1038/s41586-023-06927-3

[11] Dolev Bluvstein, Harry Levine, Giulia Semeghini, Tout T. Wang, Sepehr Ebadi, et al. 2022. A quantum processor based on
coherent transport of entangled atom arrays. Nature 604, 7906 (01 Apr 2022), 451-456. doi:10.1038/s41586-022-04592-6

[12] Frangois Bobot, Jean-Christophe Filliatre, Claude Marché, and Andrei Paskevich. 2011. Why3: Shepherd Your Herd of
Provers. In Boogie 2011: First International Workshop on Intermediate Verification Languages. Wroclaw, Poland, 53-64.
https://inria.hal.science/hal-00790310

[13] J. Pablo Bonilla Ataides, David K. Tuckett, Stephen D. Bartlett, Steven T. Flammia, and Benjamin J. Brown. 2021. The
XZZX surface code. Nature Communications 12, 1 (12 Apr 2021), 2172. doi:10.1038/s41467-021-22274-1

[14] Anthony Bordg, Hanna Lachnitt, and Yijun He. 2020. Isabelle marries dirac: A library for quantum computation and
quantum information. Archive of Formal Proofs (2020).

[15] Anthony Bordg, Hanna Lachnitt, and Yijun He. 2021. Certified Quantum Computation in Isabelle/HOL. Journal of
Automated Reasoning 65, 5 (01 June 2021), 691-709. doi:10.1007/s10817-020-09584-7

[16] Sergey Bravyi, Andrew W. Cross, Jay M. Gambetta, Dmitri Maslov, Patrick Rall, et al. 2024. High-threshold and low-
overhead fault-tolerant quantum memory. Nature 627, 8005 (01 Mar 2024), 778-782. doi:10.1038/s41586-024-07107-7

[17] Sergey Bravyi and Jeongwan Haah. 2012. Magic-state distillation with low overhead. Phys. Rev. A 86 (Nov 2012),
052329. Issue 5. doi:10.1103/PhysRevA.86.052329

[18] Nikolas P. Breuckmann and Jens Niklas Eberhardt. 2021. Quantum Low-Density Parity-Check Codes. PRX Quantum 2
(Oct 2021), 040101. Issue 4. doi:10.1103/PRXQuantum.2.040101

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 190. Publication date: June 2025.

https://github.com/Chesterhuang1999/Veri-qec
 https://doi.org/10.5281/zenodo.15248774
 https://doi.org/10.5281/zenodo.15248774
https://doi.org/10.1103/PhysRevA.70.052328
https://doi.org/10.1038/s41586-024-08449-y
https://doi.org/10.1038/s41586-022-05434-1
https://doi.org/10.4204/EPTCS.287.1
https://doi.org/10.1103/PhysRevA.73.022334
https://philsci-archive.pitt.edu/1799/
https://philsci-archive.pitt.edu/1799/
https://doi.org/10.1007/978-3-030-99524-9_24
https://doi.org/10.1145/3371089
https://doi.org/10.1007/978-3-031-27481-7_12
https://doi.org/10.1007/978-3-031-27481-7_12
https://doi.org/10.1038/s41586-023-06927-3
https://doi.org/10.1038/s41586-022-04592-6
https://inria.hal.science/hal-00790310
https://doi.org/10.1038/s41467-021-22274-1
https://doi.org/10.1007/s10817-020-09584-7
https://doi.org/10.1038/s41586-024-07107-7
https://doi.org/10.1103/PhysRevA.86.052329
https://doi.org/10.1103/PRXQuantum.2.040101

190:24 Qifan Huang, Li Zhou, Wang Fang, Mengyu Zhao, and Mingsheng Ying

[19] Olivier Brunet and Philippe Jorrand. 2004. Dynamic Quantum Logic For Quantum Programs. International Journal of
Quantum Information 02, 01 (2004), 45-54. doi:10.1142/50219749904000067

[20] A.R. Calderbank, E.M. Rains, P.M. Shor, and N.J.A. Sloane. 1998. Quantum error correction via codes over GF(4). I[EEE
Transactions on Information Theory 44, 4 (1998), 1369-1387. doi:10.1109/18.681315

[21] A.R. Calderbank and Peter W. Shor. 1996. Good quantum error-correcting codes exist. Phys. Rev. A 54 (Aug 1996),

1098-1105. Issue 2. doi:10.1103/PhysRevA.54.1098

Earl T. Campbell and Mark Howard. 2017. Unified framework for magic state distillation and multiqubit gate synthesis

with reduced resource cost. Phys. Rev. A 95 (Feb 2017), 022316. Issue 2. doi:10.1103/PhysRevA.95.022316

[23] Jacques Carette, Gerardo Ortiz, and Amr Sabry. 2023. Symbolic Execution of Hadamard-Toffoli Quantum Circuits. In
Proceedings of the 2023 ACM SIGPLAN International Workshop on Partial Evaluation and Program Manipulation (PEPM
2023). Association for Computing Machinery, 14-26. doi:10.1145/3571786.3573018

[24] R. Chadha, P. Mateus, and A. Sernadas. 2006. Reasoning About Imperative Quantum Programs. Electronic Notes

in Theoretical Computer Science 158 (2006), 19-39. doi:10.1016/].entcs.2006.04.003 Proceedings of the 22nd Annual

Conference on Mathematical Foundations of Programming Semantics (MFPS XXII).

Christophe Chareton, Sébastien Bardin, Francois Bobot, Valentin Perrelle, and Benoit Valiron. 2021. An Automated

Deductive Verification Framework for Circuit-building Quantum Programs. In Programming Languages and Systems,

Nobuko Yoshida (Ed.). Springer International Publishing, Cham, 148-177. doi:10.1007/978-3-030-72019-3_6

[26] Christophe Chareton, Sébastien Bardin, Dong Ho Lee, Benoit Valiron, Renaud Vilmart, and Zhaowei Xu. 2023. Formal
Methods for Quantum Algorithms. In Handbook of Formal Analysis and Verification in Cryptography. CRC Press,
319-422. https://cea.hal.science/cea-04479879

[27] Yu-Fang Chen, Kai-Min Chung, Ondfej Lengal, Jyun-Ao Lin, Wei-Lun Tsai, and Di-De Yen. 2023. An Automata-Based
Framework for Verification and Bug Hunting in Quantum Circuits. Proc. ACM Program. Lang. 7, PLDI, Article 156 (jun
2023), 26 pages. doi:10.1145/3591270

[28] Bob Coecke and Ross Duncan. 2011. Interacting quantum observables: categorical algebra and diagrammatics. New
Journal of Physics 13, 4 (apr 2011), 043016. doi:10.1088/1367-2630/13/4/043016

[29] Leonardo de Moura and Nikolaj Bjerner. 2008. Z3: An Efficient SMT Solver. In Tools and Algorithms for the Construction
and Analysis of Systems, C. R. Ramakrishnan and Jakob Rehof (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg,
337-340. doi:10.1007/978-3-540-78800-3_24

[30] Eric Dennis, Alexei Kitaev, Andrew Landahl, and John Preskill. 2002. Topological quantum memory. . Math. Phys. 43,

9 (2002), 4452-4505. doi:10.1063/1.1499754

Ellie D’hondt and Prakash Panangaden. 2006. Quantum weakest preconditions. Mathematical Structures in Computer

Science 16, 3 (2006), 429-451. doi:10.1017/S0960129506005251

[32] Wang Fang and Mingsheng Ying. 2024. Symbolic Execution for Quantum Error Correction Programs. Proc. ACM
Program. Lang. 8, PLDI, Article 189 (June 2024), 26 pages. doi:10.1145/3656419

[33] Yuan Feng, Runyao Duan, Zhengfeng Ji, and Mingsheng Ying. 2007. Proof rules for the correctness of quantum
programs. Theoretical Computer Science 386, 1 (2007), 151-166. doi:10.1016/].tcs.2007.06.011

[34] Yuan Feng and Mingsheng Ying. 2021. Quantum Hoare Logic with Classical Variables. ACM Transactions on Quantum
Computing 2, 4, Article 16 (Dec. 2021), 43 pages. doi:10.1145/3456877

[35] David J Foulis and Mary K Bennett. 1994. Effect algebras and unsharp quantum logics. Foundations of physics 24, 10

(1994), 1331-1352. doi:10.1007/BF02283036

Craig Gidney. 2021. Stim: a fast stabilizer circuit simulator. Quantum 5 (July 2021), 497. doi:10.22331/q-2021-07-06-497

Daniel Gottesman. 1997. Stabilizer Codes and Quantum Error Correction. arXiv:quant-ph/9705052 [quant-ph]

Markus Grassl and Martin Roetteler. 2013. Leveraging automorphisms of quantum codes for fault-tolerant quantum

computation. In 2013 IEEE International Symposium on Information Theory. 534-538. doi:10.1109/ISIT.2013.6620283

[39] Ian Grout. 2011. Digital systems design with FPGAs and CPLDs. Elsevier.

[40] Kesha Hietala, Sarah Marshall, Robert Rand, and Nikhil Swamy. 2022. Q*: Implementing Quantum Separation Logic in

F*. Programming Languages for Quantum Computing (PLanQC) 2022 Poster Abstract (2022). https://khieta.github.io/

files/drafts/qstar-planqc22.pdf

Kesha Hietala, Robert Rand, Shih-Han Hung, Xiaodi Wu, and Michael Hicks. 2021. A verified optimizer for Quantum

circuits. Proc. ACM Program. Lang. 5, POPL, Article 37 (Jan. 2021), 29 pages. doi:10.1145/3434318

[42] Qifan Huang, Li Zhou, Wang Fang, Mengyu Zhao, and Mingsheng Ying. 2025. Artifact for ’Efficient Formal Verification
of Quantum Error Correcting Programs’. doi:10.5281/zenodo.15248774

[43] Qifan Huang, Li Zhou, Wang Fang, Mengyu Zhao, and Mingsheng Ying. 2025. Efficient Formal Verification of Quantum
Error Correcting Programs. arXiv:2504.07732 [cs.PL]

[44] Yipeng Huang, Steven Holtzen, Todd Millstein, Guy Van den Broeck, and Margaret Martonosi. 2021. Logical Abstractions
for Noisy Variational Quantum Algorithm Simulation. In Proceedings of the 26th ACM International Conference on
Architectural Support for Programming Languages and Operating Systems (ASPLOS °21). Association for Computing

[22

—

[25

—

(31

—

[36
[37
[38

[t R B

—

[41

—

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 190. Publication date: June 2025.

https://doi.org/10.1142/S0219749904000067
https://doi.org/10.1109/18.681315
https://doi.org/10.1103/PhysRevA.54.1098
https://doi.org/10.1103/PhysRevA.95.022316
https://doi.org/10.1145/3571786.3573018
https://doi.org/10.1016/j.entcs.2006.04.003
https://doi.org/10.1007/978-3-030-72019-3_6
https://cea.hal.science/cea-04479879
https://doi.org/10.1145/3591270
https://doi.org/10.1088/1367-2630/13/4/043016
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1063/1.1499754
https://doi.org/10.1017/S0960129506005251
https://doi.org/10.1145/3656419
https://doi.org/10.1016/j.tcs.2007.06.011
https://doi.org/10.1145/3456877
https://doi.org/10.1007/BF02283036
https://doi.org/10.22331/q-2021-07-06-497
https://arxiv.org/abs/quant-ph/9705052
https://doi.org/10.1109/ISIT.2013.6620283
https://khieta.github.io/files/drafts/qstar-planqc22.pdf
https://khieta.github.io/files/drafts/qstar-planqc22.pdf
https://doi.org/10.1145/3434318
https://doi.org/10.5281/zenodo.15248774
https://arxiv.org/abs/2504.07732

Efficient Formal Verification of Quantum Error Correcting Programs 190:25

Machinery, 456-472. doi:10.1145/3445814.3446750

[45] Yoshihiko Kakutani. 2009. A Logic for Formal Verification of Quantum Programs. In Advances in Computer Science -
ASIAN 2009. Information Security and Privacy, Anupam Datta (Ed.). Springer, Berlin, Heidelberg, 79-93. doi:10.1007/978-
3-642-10622-4_7

[46] Aleks Kissinger and John van de Wetering. 2019. PyZX: Large Scale Automated Diagrammatic Reasoning. In Proceedings
16th International Conference on Quantum Physics and Logic, QPL 2019, Chapman University, Orange, CA, USA, June
10-14, 2019 (EPTCS, Vol. 318), Bob Coecke and Matthew Leifer (Eds.). 229-241. doi:10.4204/EPTCS.318.14

[47] A Yu Kitaev. 1997. Quantum computations: algorithms and error correction. Russian Mathematical Surveys 52, 6 (dec
1997), 1191. doi:10.1070/RM1997v052n06ABEH002155

[48] Alexey A. Kovalev and Leonid P. Pryadko. 2012. Improved quantum hypergraph-product LDPC codes. In 2012 IEEE
International Symposium on Information Theory Proceedings. IEEE, 348-352. doi:10.1109/isit.2012.6284206

[49] Karl Kraus, Arno Bohm, John D Dollard, and WH Wootters. 1983. States, Effects, and Operations Fundamental Notions
of Quantum Theory: Lectures in Mathematical Physics at the University of Texas at Austin. Springer.

[50] Aleksander Kubica, Beni Yoshida, and Fernando Pastawski. 2015. Unfolding the color code. New Journal of Physics 17,
8 (aug 2015), 083026. doi:10.1088/1367-2630/17/8/083026

[51] Andrew J. Landahl, Jonas T. Anderson, and Patrick R. Rice. 2011. Fault-tolerant quantum computing with color codes.
arXiv:1108.5738 [quant-ph]

[52] Xuan-Bach Le, Shang-Wei Lin, Jun Sun, and David Sanan. 2022. A Quantum Interpretation of Separating Conjunction
for Local Reasoning of Quantum Programs Based on Separation Logic. Proc. ACM Program. Lang. 6, POPL, Article 36
(jan 2022), 27 pages. doi:10.1145/3498697

[53] Adrian Lehmann, Ben Caldwell, and Robert Rand. 2022. VyZX : A Vision for Verifying the ZX Calculus.
arXiv:2205.05781 [quant-ph]

[54] Adrian Lehmann, Ben Caldwell, Bhakti Shah, and Robert Rand. 2023. VyZX: Formal Verification of a Graphical
Quantum Language. arXiv:2311.11571 [cs.PL]

[55] Anthony Leverrier and Gilles Zémor. 2022. Quantum Tanner codes. In 2022 IEEE 63rd Annual Symposium on Foundations
of Computer Science (FOCS). 872-883. doi:10.1109/FOCS54457.2022.00117

[56] Marco Lewis, Sadegh Soudjani, and Paolo Zuliani. 2023. Formal Verification of Quantum Programs: Theory, Tools, and

Challenges. 5, 1, Article 1 (dec 2023), 35 pages. doi:10.1145/3624483

Liyi Li, Mingwei Zhu, Rance Cleaveland, Alexander Nicolellis, Yi Lee, Le Chang, and Xiaodi Wu. 2024. Qafny: A

Quantum-Program Verifier. In 38th European Conference on Object-Oriented Programming (ECOOP 2024) (Leibniz

International Proceedings in Informatics (LIPIcs), Vol. 313), Jonathan Aldrich and Guido Salvaneschi (Eds.). Schloss

Dagstuhl - Leibniz-Zentrum fiir Informatik, Dagstuhl, Germany, 24:1-24:31. doi:10.4230/LIPIcs. ECOOP.2024.24

Yangjia Li and Dominique Unruh. 2021. Quantum Relational Hoare Logic with Expectations. In 48th International

Colloquium on Automata, Languages, and Programming (ICALP 2021) (Leibniz International Proceedings in Informatics

(LIPIcs), Vol. 198), Nikhil Bansal, Emanuela Merelli, and James Worrell (Eds.). Schloss Dagstuhl - Leibniz-Zentrum fiir

Informatik, Dagstuhl, Germany, 136:1-136:20. doi:10.4230/LIPIcs.ICALP.2021.136

[59] Assia Mahboubi and Enrico Tassi. 2022. Mathematical Components. Zenodo. doi:10.5281/zenodo.7118596

[60] Guido Martinez, Danel Ahman, Victor Dumitrescu, Nick Giannarakis, Chris Hawblitzel, et al. 2019. Meta-F": Proof
Automation with SMT, Tactics, and Metaprograms. In Programming Languages and Systems, Luis Caires (Ed.). Springer
International Publishing, Cham, 30-59. doi:10.1007/978-3-030-17184-1_2

[61] M.A. Nielsen and ILL. Chuang. 2010. Quantum Computation and Quantum Information: 10th Anniversary Edition.
Cambridge University Press.

[62] D. Nigg, M. Miiller, E. A. Martinez, P. Schindler, M. Hennrich, T. Monz, M. A. Martin-Delgado, and R. Blatt. 2014.

Quantum computations on a topologically encoded qubit. Science 345, 6194 (2014), 302-305. doi:10.1126/science.1253742

Jennifer Paykin, Robert Rand, and Steve Zdancewic. 2017. QWIRE: a core language for quantum circuits. In Proceedings

of the 44th ACM SIGPLAN Symposium on Principles of Programming Languages (Paris, France) (POPL ’17). Association

for Computing Machinery, New York, NY, USA, 846-858. doi:10.1145/3009837.3009894

[64] John Preskill. 2018. Quantum Computing in the NISQ era and beyond. Quantum 2 (Aug. 2018), 79. doi:10.22331/q-

2018-08-06-79

Robert Rand, Jennifer Paykin, Dong-Ho Lee, and Steve Zdancewic. 2018. ReQWIRE: Reasoning about Reversible

Quantum Circuits. In Proceedings 15th International Conference on Quantum Physics and Logic, QPL 2018, Halifax,

Canada, 3-7th June 2018 (EPTCS, Vol. 287), Peter Selinger and Giulio Chiribella (Eds.). 299-312. doi:10.4204/EPTCS.287.17

Robert Rand, Jennifer Paykin, and Steve Zdancewic. 2017. QWIRE Practice: Formal Verification of Quantum Circuits in

Coq. In Proceedings 14th International Conference on Quantum Physics and Logic, QPL 2017, Nijmegen, The Netherlands,

3-7 July 2017. (EPTCS, Vol. 266), Bob Coecke and Aleks Kissinger (Eds.). 119-132. doi:10.4204/EPTCS.266.8

Robert Rand, Aarthi Sundaram, Kartik Singhal, and Brad Lackey. 2021. Gottesman Types for Quantum Programs.

Electronic Proceedings in Theoretical Computer Science 340 (Sept. 2021), 279-290. doi:10.4204/eptcs.340.14

[57

—

[58

[t

[

(63

—

[65

[

[66

—

(67

—

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 190. Publication date: June 2025.

https://doi.org/10.1145/3445814.3446750
https://doi.org/10.1007/978-3-642-10622-4_7
https://doi.org/10.1007/978-3-642-10622-4_7
https://doi.org/10.4204/EPTCS.318.14
https://doi.org/10.1070/RM1997v052n06ABEH002155
https://doi.org/10.1109/isit.2012.6284206
https://doi.org/10.1088/1367-2630/17/8/083026
https://arxiv.org/abs/1108.5738
https://doi.org/10.1145/3498697
https://arxiv.org/abs/2205.05781
https://arxiv.org/abs/2311.11571
https://doi.org/10.1109/FOCS54457.2022.00117
https://doi.org/10.1145/3624483
https://doi.org/10.4230/LIPIcs.ECOOP.2024.24
https://doi.org/10.4230/LIPIcs.ICALP.2021.136
https://doi.org/10.5281/zenodo.7118596
https://doi.org/10.1007/978-3-030-17184-1_2
https://doi.org/10.1126/science.1253742
https://doi.org/10.1145/3009837.3009894
https://doi.org/10.22331/q-2018-08-06-79
https://doi.org/10.22331/q-2018-08-06-79
https://doi.org/10.4204/EPTCS.287.17
https://doi.org/10.4204/EPTCS.266.8
https://doi.org/10.4204/eptcs.340.14

190:26 Qifan Huang, Li Zhou, Wang Fang, Mengyu Zhao, and Mingsheng Ying

[68]
[69]
[70]
[71]
[72]
[73]
[74]

[75]

[76]
[77)
[78]

[79]

[80]
[81]
[82]
[83]
[84]
[85]
[86]
[87]
[88]

[89]

[90]

[91]

[92]

Robert Rand, Aarthi Sundaram, Kartik Singhal, and Brad Lackey. 2021. Static Analysis of Quantum Programs via
Gottesman Types. arXiv:2101.08939 [quant-ph]

C. Ryan-Anderson, J. G. Bohnet, K. Lee, D. Gresh, A. Hankin, et al. 2021. Realization of Real-Time Fault-Tolerant
Quantum Error Correction. Phys. Rev. X 11 (Dec 2021), 041058. Issue 4. doi:10.1103/PhysRevX.11.041058

C. Ryan-Anderson, N. C. Brown, M. S. Allman, B. Arkin, et al. 2022. Implementing Fault-tolerant Entangling Gates on
the Five-qubit Code and the Color Code. arXiv:2208.01863 [quant-ph]

Bhakti Shah, William Spencer, Laura Zielinski, Ben Caldwell, Adrian Lehmann, and Robert Rand. 2024. ViCAR:
Visualizing Categories with Automated Rewriting in Coq. arXiv:2404.08163 [cs.PL]

Andrew Steane. 1996. Multiple-particle interference and quantum error correction. Proceedings of the Royal Society of
London. Series A: Mathematical, Physical and Engineering Sciences 452, 1954 (1996), 2551-2577. doi:10.1098/rspa.1996.0136
A.M. Steane. 1999. Quantum Reed-Muller codes. IEEE Transactions on Information Theory 45, 5 (1999), 1701-1703.
doi:10.1109/18.771249

Aarthi Sundaram, Robert Rand, Kartik Singhal, and Brad Lackey. 2022. Hoare meets Heisenberg: A Lightweight Logic
for Quantum Programs. http://rand.cs.uchicago.edu/files/heisenberg_logic_2023.pdf

Nikhil Swamy, Catélin Hritcu, Chantal Keller, Aseem Rastogi, Antoine Delignat-Lavaud, et al. 2016. Dependent types
and multi-monadic effects in F*. In Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (St. Petersburg, FL, USA) (POPL ’16). Association for Computing Machinery, New York, NY,
USA, 256-270. doi:10.1145/2837614.2837655

Runzhou Tao, Yunong Shi, Jianan Yao, Xupeng Li, Ali Javadi-Abhari, et al. 2022. Giallar: Push-Button Verification for the
Qiskit Quantum Compiler. In Proceedings of the 43rd ACM SIGPLAN International Conference on Programming Language
Design and Implementation (PLDI 2022). Association for Computing Machinery, 641-656. doi:10.1145/3519939.3523431
The Coq Development Team. 2022. The Coq Proof Assistant. doi:10.5281/zenodo.5846982

The MathComp Analysis Development Team. 2024. MathComp-Analysis: Mathematical Components compliant
Analysis Library. https://github.com/math-comp/analysis. Since 2017. Version 1.0.0.

Jean-Pierre Tillich and Gilles Zémor. 2014. Quantum LDPC Codes With Positive Rate and Minimum Distance
Proportional to the Square Root of the Blocklength. IEEE Transactions on Information Theory 60, 2 (2014), 1193-1202.
doi:10.1109/T1T.2013.2292061

Dominique Unruh. 2019. Quantum Hoare Logic with Ghost Variables. In 2019 34th Annual ACM/IEEE Symposium on
Logic in Computer Science (LICS). 1-13. doi:10.1109/LICS.2019.8785779

Dominique Unruh. 2019. Quantum relational Hoare logic. Proc. ACM Program. Lang. 3, POPL, Article 33 (Jan. 2019),
31 pages. doi:10.1145/3290346

Anbang Wu. 2024. Towards Large-Scale Quantum Computing. Ph.D. Dissertation. UC Santa Barbara. https://www.
proquest.com/dissertations-theses/towards-large-scale-quantum-computing/docview/3050756793/se-2

Anbang Wu, Gushu Li, Hezi Zhang, Gian Giacomo Guerreschi, Yuan Xie, and Yufei Ding. 2021. QECV: Quantum Error
Correction Verification. arXiv:2111.13728 [quant-ph]

Xiaosi Xu, Simon Benjamin, Jinzhao Sun, Xiao Yuan, and Pan Zhang. 2023. A Herculean task: Classical simulation of
quantum computers. arXiv:2302.08880 [quant-ph]

Mingsheng Ying. 2012. Floyd-hoare logic for quantum programs. ACM Trans. Program. Lang. Syst. 33, 6, Article 19
(Jan. 2012), 49 pages. doi:10.1145/2049706.2049708

Mingsheng Ying. 2024. Foundations of Quantum Programming (second edition ed.). Morgan Kaufmann.

Nengkun Yu and Jens Palsberg. 2021. Quantum abstract interpretation. In Proceedings of the 42nd ACM SIGPLAN Inter-
national Conference on Programming Language Design and Implementation (Virtual, Canada) (PLDI 2021). Association
for Computing Machinery, New York, NY, USA, 542-558. doi:10.1145/3453483.3454061

Youwei Zhao, Yangsen Ye, He-Liang Huang, Yiming Zhang, Dachao Wu, et al. 2022. Realization of an Error-Correcting
Surface Code with Superconducting Qubits. Phys. Rev. Lett. 129 (Jul 2022), 030501. Issue 3. doi:10.1103/PhysRevLett.
129.030501

Li Zhou, Gilles Barthe, Justin Hsu, Mingsheng Ying, and Nengkun Yu. 2021. A Quantum Interpretation of Bunched
Logic amp; Quantum Separation Logic. In 2021 36th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS).
1-14. doi:10.1109/LICS52264.2021.9470673

Li Zhou, Gilles Barthe, Pierre-Yves Strub, Junyi Liu, and Mingsheng Ying. 2023. CoqQ: Foundational Verification of
Quantum Programs. Proc. ACM Program. Lang. 7, POPL, Article 29 (jan 2023), 33 pages. doi:10.1145/3571222

Li Zhou, Nengkun Yu, and Mingsheng Ying. 2019. An applied quantum Hoare logic. In Proceedings of the 40th ACM
SIGPLAN Conference on Programming Language Design and Implementation (Phoenix, AZ, USA) (PLDI 2019). Association
for Computing Machinery, New York, NY, USA, 1149-1162. doi:10.1145/3314221.3314584

Jacob Zweifler, Kesha Hietala, and Robert Rand. 2022. QuantumLib: A Library for Quantum Computing in Coq.

Received 2024-11-15; accepted 2025-03-06

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 190. Publication date: June 2025.

https://arxiv.org/abs/2101.08939
https://doi.org/10.1103/PhysRevX.11.041058
https://arxiv.org/abs/2208.01863
https://arxiv.org/abs/2404.08163
https://doi.org/10.1098/rspa.1996.0136
https://doi.org/10.1109/18.771249
http://rand.cs.uchicago.edu/files/heisenberg_logic_2023.pdf
https://doi.org/10.1145/2837614.2837655
https://doi.org/10.1145/3519939.3523431
https://doi.org/10.5281/zenodo.5846982
https://github.com/math-comp/analysis
https://doi.org/10.1109/TIT.2013.2292061
https://doi.org/10.1109/LICS.2019.8785779
https://doi.org/10.1145/3290346
https://www.proquest.com/dissertations-theses/towards-large-scale-quantum-computing/docview/3050756793/se-2
https://www.proquest.com/dissertations-theses/towards-large-scale-quantum-computing/docview/3050756793/se-2
https://arxiv.org/abs/2111.13728
https://arxiv.org/abs/2302.08880
https://doi.org/10.1145/2049706.2049708
https://doi.org/10.1145/3453483.3454061
https://doi.org/10.1103/PhysRevLett.129.030501
https://doi.org/10.1103/PhysRevLett.129.030501
https://doi.org/10.1109/LICS52264.2021.9470673
https://doi.org/10.1145/3571222
https://doi.org/10.1145/3314221.3314584

	Abstract
	1 Introduction
	2 Motivating Example: The Steane Code
	2.1 Basic Notations and Concepts
	2.2 The [[7,1,3]] Steane Code

	3 An Assertion Logic for QEC Programs
	3.1 Expressions
	3.2 Assertion Language
	3.3 Why Birkhoff-von Neumann Quantum Logic as Base Logic?
	3.4 Satisfaction Relation and Entailment

	4 A Programming Language for QEC Codes and Its Logic
	4.1 Syntax and Semantics
	4.2 Correctness Formula and Proof System
	4.3 Soundness Theorem

	5 Verification Framework and a Case Study
	5.1 Verification Conditions
	5.2 Case Study: Steane Code (Continued)

	6 Tool Implementation
	7 Evaluation of Veri-QEC
	7.1 Verify General properties
	7.2 Verify Correctness with User-provided Errors
	7.3 Towards Fault-tolerant Implementation of Operations in Quantum Hardware
	7.4 A Benchmark for Qubit Stabilizer Codes

	8 Related Work
	9 Discussion and Future Works
	References

