
.

.

Latest updates: hps://dl.acm.org/doi/10.1145/3729283
.

.

RESEARCH-ARTICLE

antum Register Machine: Efficient Implementation of
antum Recursive Programs

ZHICHENG ZHANG, University of Technology Sydney, Sydney, NSW,
Australia
.

MINGSHENG YING, University of Technology Sydney, Sydney, NSW,
Australia
.

.

.

Open Access Support provided by:
.

University of Technology Sydney
.

PDF Download
3729283.pdf
06 January 2026
Total Citations: 2
Total Downloads: 382
.

.

Published: 10 June 2025
Accepted: 06 March 2025
Received: 12 November 2024
.

.

Citation in BibTeX format
.

.

Proceedings of the ACM on Programming Languages, Volume 9, Issue PLDI (June 2025)
hps://doi.org/10.1145/3729283

EISSN: 2475-1421

.

https://dl.acm.org
https://www.acm.org
https://libraries.acm.org/acmopen
https://dl.acm.org/doi/10.1145/3729283
https://dl.acm.org/doi/10.1145/3729283
https://dl.acm.org/doi/10.1145/contrib-99661630944
https://dl.acm.org/doi/10.1145/institution-60023932
https://dl.acm.org/doi/10.1145/institution-60023932
https://dl.acm.org/doi/10.1145/contrib-81100627838
https://dl.acm.org/doi/10.1145/institution-60023932
https://dl.acm.org/doi/10.1145/institution-60023932
https://libraries.acm.org/acmopen
https://dl.acm.org/doi/10.1145/institution-60023932
https://dl.acm.org/action/exportCiteProcCitation?dois=10.1145%2F3729283&targetFile=custom-bibtex&format=bibtex
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3729283&domain=pdf&date_stamp=2025-06-13

Quantum Register Machine: Efficient Implementation of
Quantum Recursive Programs

ZHICHENG ZHANG, University of Technology Sydney, Australia
MINGSHENG YING, University of Technology Sydney, Australia

Quantum recursive programming has been recently introduced for describing sophisticated and complicated
quantum algorithms in a compact and elegant way. However, implementation of quantum recursion involves
intricate interplay between quantum control flow and recursive procedure calls. In this paper, we aim at
resolving this fundamental challenge and develop a series of techniques to efficiently implement quantum
recursive programs. Our main contributions include:

(1) We propose a notion of quantum register machine, the first quantum architecture (including an instruc-
tion set) that provides instruction-level support for quantum control flow and recursive procedure calls
at the same time.

(2) Based on quantum register machine, we describe the first comprehensive implementation process of
quantum recursive programs, including the compilation, the partial evaluation of quantum control flow,
and the execution on the quantum register machine.

(3) As a bonus, our efficient implementation of quantum recursive programs also offers automatic paral-

lelisation of quantum algorithms. For implementing certain quantum algorithmic subroutine, like the
widely used quantum multiplexor, we can even obtain exponential parallel speed-up (over the straight-
forward implementation) from this automatic parallelisation. This demonstrates that quantum recursive
programming can be win-win for both modularity of programs and efficiency of their implementation.

CCS Concepts: •Theory of computation→Quantum computation theory; Abstract machines; • Software
and its engineering→ Compilers; • Computer systems organization→ Quantum computing.

Additional Key Words and Phrases: quantum programming languages, recursive definition, quantum architec-
tures, compilation, partial evaluation, automatic parallelisation

ACM Reference Format:
Zhicheng Zhang and Mingsheng Ying. 2025. Quantum Register Machine: Efficient Implementation of Quantum
Recursive Programs. Proc. ACM Program. Lang. 9, PLDI, Article 180 (June 2025), 26 pages. https://doi.org/10.
1145/3729283

1 Introduction
Recursion in classical programming languages enables programmers to conveniently describe
complicated computations as compact programs. By allowing any procedure to call itself, a short
static program text can generate (unbounded) long dynamic program execution [34]. Examples
of recursion include Hoare’s quicksort algorithm [44], various recursive data structures [45], and
divide-and-conquer algorithms. The implementation of classical recursion has been well-studied
and was an important feature of the celebrated programming language ALGOL 60 [12, 13, 33, 82].

In the context of quantum programming, recursion has been recently studied for similar reasons
(e.g., [31, 73, 88, 89, 91]). In particular, a language RQC++ was introduced in [89, 91] for recursively

Authors’ Contact Information: Zhicheng Zhang, University of Technology Sydney, Sydney, Australia, zhicheng.zhang@
student.uts.edu.au; Mingsheng Ying, University of Technology Sydney, Sydney, Australia, mingsheng.ying@uts.edu.au.

This work is licensed under a Creative Commons Attribution 4.0 International License.
© 2025 Copyright held by the owner/author(s).
ACM 2475-1421/2025/6-ART180
https://doi.org/10.1145/3729283

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 180. Publication date: June 2025.

HTTPS://ORCID.ORG/0000-0002-7436-0426
HTTPS://ORCID.ORG/0000-0003-4847-702X
https://doi.org/10.1145/3729283
https://doi.org/10.1145/3729283
https://orcid.org/0000-0002-7436-0426
https://orcid.org/0000-0003-4847-702X
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3729283
https://creativecommons.org/licenses/by/4.0/

180:2 Zhicheng Zhang and Mingsheng Ying

programmed quantum circuits and quantum algorithms. The expressive power of RQC++ has been
demonstrated by various examples.
The aim of this paper is to study how quantum recursive programs can be efficiently

implemented. We choose to consider quantum recursive programs 1 described by the language
RQC++ [91]. But we expect that the techniques developed in this paper can work for other quantum
programming languages that support recursion.

In general, quantum recursion involves the interplay of the following two programming features:
• Quantum control flow (in particular, those defined by quantum if-statements [3, 21, 72, 85,
90, 96]) that allow program executions to be in quantum superposition, controlled by some
external quantum coin.
• Recursive procedure calls that allow a procedure to call itself with different classical parameters.

A good implementation of quantum recursive programs should support the above two features
harmoniously. A better implementation should further be efficient.

1.1 Motivating Example:Quantum Multiplexor

. . . increase of efficiency always comes down to exploitation of structure . . .

Edsger W. Dijkstra [35]

To illustrate the basic idea of our implementation, let us start with an algorithmic subroutine called
quantum multiplexor [74], and see how quantum recursive programs can benefit its description
and implementation. Quantum multiplexor is used in a wide range of quantum algorithms, for
example, linear combination of unitaries (LCU) [19, 20, 26, 51], Hamiltonian simulation [9–11, 57],
quantum state preparation [6, 56, 98, 99], and solving quantum linear system of equations [25]. Let
𝑁 = 2𝑛 and [𝑁] = {0, 1, . . . , 𝑁 − 1}. A quantum multiplexor can be described by the unitary

𝑈 =
∑︁

𝑥∈[𝑁]
|𝑥⟩⟨𝑥 | ⊗ 𝑈𝑥 . (1)

Here, every unitary𝑈𝑥 is described by a quantum circuit, or more generally, a quantum program,
say 𝐶𝑥 . The quantum multiplexor𝑈 applies𝑈𝑥 , conditioned on the state |𝑥⟩ of the first 𝑛 qubits.

A straightforward implementation of𝑈 is by applying a sequential products of 𝑁 controlled-𝑈𝑥 :∏
𝑥∈[𝑁]

(
|𝑥⟩⟨𝑥 | ⊗ 𝑈𝑥 +

∑︁
𝑦≠𝑥
|𝑦⟩⟨𝑦 | ⊗ 1

)
. (2)

This implementation has time complexity𝑂
(∑

𝑥∈[𝑁] 𝑇𝑥
)
, where𝑇𝑥 is the time for executing𝐶𝑥 (i.e.,

implementing 𝑈𝑥). On the other hand, there exists a more efficient parallel implementation [98,
99] of 𝑈 , with parallel time complexity 𝑂

(
𝑛 +max𝑥∈[𝑁] 𝑇𝑥

)
(measured by the quantum circuit

depth), using rather involved constructions similar to the bucket-brigade quantum random access
memories [38, 39, 41, 42]. The implementation in [98, 99] achieves exponential parallel speed-up
(with respect to 𝑛) over the straightforward one. The price for obtaining such efficiency is the
manual design of rather low-level quantum circuits.

It is natural to ask if we can design at high-level and still obtain an efficient implementation. For this
example of quantummultiplexor, the intuition is as follows. First,𝑈 can be described by a high-level
quantum recursive program P, which encapsulates both the control structure in Equation (1) and
all programs𝐶𝑥 for describing unitaries𝑈𝑥 . Then, by storing the program P in a quantum memory,
we can design a quantum register machine (to be formally defined in this paper) that automatically
exploits the structure of P and executes all𝐶𝑥 ’s (i.e., implements all𝑈𝑥 ’s) in quantum superposition,
thereby outperforming the straightforward implementation that only sequentially executes 𝐶𝑥 ’s.
1As this terminology suggests, the recursion in such programs has a quantum nature.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 180. Publication date: June 2025.

Quantum Register Machine: Efficient Implementation of Quantum Recursive Programs 180:3

Pmain(n)⇐ P(n, 0)
P(k, x)⇐ if k = 0 then Q[x]

else
qif[q[k]] |0⟩ → P(k− 1, 2x)

□ |1⟩ → P(k− 1, 2x + 1)
fiq

fi
Q[0]⇐ C0

. . .
Q[N − 1]⇐ CN−1.

Fig. 1. Quantum multiplexor as a quantum recur-
sive program.

Let us make the above intuition more concrete,
by describing 𝑈 in a quantum recursive program
(in the language RQC++ [91]; see Section 2) as in
Figure 1. Here, the main procedure 𝑃main (𝑛) de-
scribes𝑈 , and every𝑄 [𝑥] (or their procedure body
𝐶𝑥) describes𝑈𝑥 . Procedure P (𝑘, 𝑥) recursively col-
lects the control information 𝑥 using the quan-
tum if-statement (qif statement) and calls 𝑄 [𝑥]
when 𝑘 = 0. At this point, we only need to note
that the program in Figure 1 involves the inter-
play of the quantum control flow (managed by
the qif statement) and recursive procedure calls.
The qif statement in P (𝑘, 𝑥) creates two quantum

branches (in superposition): when 𝑞 [𝑘] is in state
|0⟩, P (𝑘 − 1, 2𝑥) is called; when 𝑞 [𝑘] is in state |1⟩,

P (𝑘 − 1, 2𝑥 + 1) is called.
If the program in Figure 1 is compiled and stored into a quantum memory, then a quantum

register machine that supports quantum control flow and recursive procedure calls can run through

the two quantum branches in superposition. The cost for executing the qif statement only depends
on the quantum branch that takes longer running time. This will incur a final time complexity
proportional to the maximum max𝑥∈[𝑁] 𝑇𝑥 (compared to the sum

∑
𝑥∈[𝑁] 𝑇𝑥 in the straightforward

implementation) and lead to an exponential parallel speed-up, similar to [98, 99].

1.2 Main Contributions
1.2.1 Architecture: Quantum Register Machine. We propose a notion of quantum register machine,
a quantum architecture that provides instruction-level support for quantum control flow and
procedure calls at the same time. Its storage components include a constant number of quantum
registers (simply called registers in the sequel) and a quantum random access memory (QRAM).
The QRAM stores both compiled quantum programs and quantum data. The machine operates
on registers like a classical CPU, executing the compiled program by fetching instructions from
the QRAM. The machine is also accompanied with a set of low-level instructions, each specifying
operations to be carried out by the machine. We briefly explain how the quantum register machine
handles the aforementioned two features as follows:
Handle quantum control flow: Inspired by the previous work [96] (which borrows ideas

from the classical reversible architectures [8, 36, 81, 84]), we put the program counter into a
quantum register, which can be in quantum superposition. However, existing techniques are
insufficient to automatically handle a challenge introduced by the quantum control flow, known as
the synchronisation problem [18, 32, 54, 59, 61, 63, 64, 75, 86, 96]. Specifically, previous work [96]
circumvents this problem by manually inserting nop (no operation) into the low-level programs.
This approach changes the static program text, and is not extendable to handle quantum recursive
programs, because the length of dynamic computation generated by quantum recursion cannot be
pre-determined from the static program text (see Appendix I.12 and Section 8 for further discussion).
In contrast, to automatically handle the synchronisation problem (without changing the static

program text), our solution is to use a partial evaluation of quantum control flow (to be explained
soon) before execution, and design a few corresponding quantum registers and mechanisms to
exploit the partial evaluation result at runtime.

2Appendices are available in the full version of this paper [102].

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 180. Publication date: June 2025.

180:4 Zhicheng Zhang and Mingsheng Ying

Handle recursive procedure calls: We allocate a call stack in the QRAM. Stack operations are
made reversible by borrowing techniques from the classical reversible computing (e.g., [7]). Note
that at runtime, all quantum registers and the QRAM (where the dynamic call stack is stored) can
be in an entangled quantum state.
It is worth pointing out that the quantum register machine does not aim to model any existing

quantum hardware (typically controlled by classical pulses to implement standard quantum circuits).
Indeed, quantum register machine should better be thought of as an abstract machine (that does
not require hardware-level quantum control flow; see also [96]). Its execution is by repeatedly
applying some fixed unitary operator per instruction cycle. Such unitary operator will be efficiently
implemented by standard quantum circuits composed of one- and two-qubit gates.

1.2.2 Implementation: Compilation, Partial Evaluation and Execution. We propose a comprehensive
process of implementing high-level quantum recursive programs (described in the language RQC++)
on the quantum register machine. This includes the following three steps: the first two are purely
classical and the last is quantum.

Step 1. Compilation (Section 4): The high-level program in RQC++ is compiled into a low-level
one described by instructions, together with a series of transformations. The low-level instruction
set is designed such that the high-level program structure can be exploited for later execution. This
step only depends on the static program text and is independent of inputs.

Step 2. Partial evaluation (Section 5): Given the classical inputs (typically specifying the size
of quantum inputs), the quantum control flow information of the compiled program is evaluated
and stored into a data structure. In later execution, it will be loaded into the QRAM to help address
the aforementioned synchronisation problem. This step is independent of quantum inputs.

Step 3. Execution (Section 6): With the compiled program and partial evaluation results loaded
into the QRAM, the quantum inputs are finally considered, and the compiled program is executed
with the aid of the partial evaluation results. The execution is done by repeatedly applying a fixed
unitary (independent of the program) per cycle, which will be eventually implemented by standard
quantum circuits with rigorously analysed complexity.
In Section 7, we describe the theoretical complexity of Step 2 and 3. More rigorous analysis

can be found in Appendices D.4, E.3 and F.1. The final parallel time complexity, measured by the
standard asymptotic (classical and quantum) circuit depth, is𝑂

(
𝑇exe (P) ·

(
𝑇reg +𝑇QRAM

))
. Intuitively,

𝑇exe (P) is the time for executing the longest quantum branch in program P; and𝑇reg and𝑇QRAM are
complexities for elementary operations on registers and the QRAM, independent of the program.

1.2.3 Bonus: Automatic Parallelisation. We show that quantum recursive programming can be
win-win for both modularity of programs (demonstrated in [91] via various examples) and efficiency
of their implementation (realised in this paper). In particular, as a bonus, the efficient implemen-
tation in Section 1.2.2 also offers automatic parallelisation. For implementing certain quantum
algorithmic subroutine, like the quantum multiplexor in Section 1.1, an exponential speed-up (over
the straightforward implementation) can be obtained from this automatic parallelisation, in terms
of (classical and quantum) parallel time complexity. Here, the classical parallel time complexity is
relevant because the partial evaluation will be performed by a classical parallel algorithm.

For implementing the quantum multiplexor, we obtain the following theorem from the automatic
parallelisation, whose proof sketch is to be shown in Section 7.

Theorem 1.1 (Automatic parallelisation of qantum multiplexor). Via the quantum

register machine, the quantum multiplexor in Equation (1) with each𝑈𝑥 consisting of 𝑇𝑥 elementary

unitary gates can be implemented in (classical and quantum) parallel time complexity (i.e., circuit

depth) 𝑂
(
𝑛 ·max𝑥∈[𝑁] 𝑇𝑥 + 𝑛2

)
, where 𝑂 (·) hides logarithmic factors.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 180. Publication date: June 2025.

Quantum Register Machine: Efficient Implementation of Quantum Recursive Programs 180:5

Although the complexity in Theorem 1.1 is slightly worse than that in [98, 99] by a factor
of 𝑂 (𝑛), it is worth stressing that the parallelisation in Theorem 1.1 is obtained automatically.
Our framework steps towards a top-down design of (parallel) efficient quantum algorithms: the
programmer only needs to design the high-level quantum programs (like in Figure 1), and the
parallelisation is automatically realised by our implementation based on the quantum register
machine. Further comparison of Theorem 1.1 and [98, 99] can be found in Appendix I.2.

1.3 Structure of the Paper
For convenience of the reader, in Section 2 we briefly review the language RQC++ [91] for describing
quantum recursive programs. In Section 3, we introduce the notion of quantum register machine.
In Section 4, we present the compilation of programs in RQC++ to low-level instructions. Then, in
Section 5, we present the partial evaluation of quantum control flow on the compiled program. In
Section 6, we present the execution on quantum register machine. Finally, in Section 7, we analyse
the efficiency of implementing quantum recursive programs in our framework, and show how it
offers automatic parallelisation. In Section 8 we discuss related work, and in Section 9 we conclude
and discuss future topics. Further details and examples are presented in the appendices, which are
available in the full version of this paper [102].

2 Background onQuantum Recursive Programs
In this section, we briefly introduce the high-level languageRQC++ for describing quantum recursive
programs, defined in [91]. A more detailed introduction can be found in Appendix A. Two key
features of RQC++, compared to other existing quantum programming languages, are quantum
control flow and recursive procedure calls, which together support the quantum recursion (different
from classical recursion in quantum programs as considered in e.g., [31, 85] and classically bounded
recursion in superposition as considered in e.g., [94, 95]). An additional contribution of this paper
is providing further insights into RQC++ from an implementation perspective.

2.1 Syntax
The alphabet of RQC++ consists of: (a) Classical variables, often denoted by 𝑥, 𝑥1, 𝑥2, . . .; (b) Quantum
variables, often denoted by 𝑞, 𝑞1, 𝑞2, . . .; (c) Procedure identifiers, often denoted by 𝑃,𝑄, 𝑃1, 𝑃2, . . .;
and (d) Elementary unitary gates and elementary classical arithmetic operators. A program inRQC++
describes a parameterised unitary without measurements (see Section 8 for discussion about the
unitary restriction). Classical variables are solely for specifying the control of programs. For example,
in Figure 1, 𝑘 and 𝑥 define the formal parameters of 𝑃 (𝑘, 𝑥), and are used in the if-statement and the
actual parameters for procedure calls. Classical variables can also store intermediate computation
results (see the syntax in Figure 2). We use 𝑥 = 𝑥1 . . . 𝑥𝑛 to denote a list of classical variables. Similar
notations apply to quantum variables and procedure identifiers.

Variables can be simple or array variables. The notion of array is standard, e.g., if 𝑥 is a 1-indexed
one-dimensional classical array, then 𝑥 [10] represents the 10th element in 𝑥 . Array variables induce
subscripted variables: e.g., for a quantum array 𝑞, 𝑞 [2𝑦 + 𝑧] is an element in 𝑞 with subscription
2𝑦 + 𝑧. For simplicity, in this paper we only consider one-dimensional arrays, and requires that for
any classical subscripted variable 𝑥 [𝑡], the expression 𝑡 contains no more subscripted variables.

We also consider arrays of procedure and subscripted procedure identifiers, for which notations
are similar to that for variables. Moreover, for any procedure identifier 𝑃 , we associate with it
a classical variable 𝑃 .ent, storing the entry address of the declaration of 𝑃 . The value of 𝑃 .ent is
determined after the program is compiled and loaded into the quantum memory.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 180. Publication date: June 2025.

180:6 Zhicheng Zhang and Mingsheng Ying

P = {P1(u1)⇐ C1, ..., Pn(un)⇐ Cn} Procedure declaration
C ::= skip | C1; C2 Sequential composition

| x := t Classical assignment
| U[q] Quantum unitary gate

| P(t) Procedure call
| if b then C1 else C2 fi Classical if-statement
| while b do C od Classical loop

| begin local x := t; C end Local classical variable block
| qif[q](|0⟩ → C0)□(|1⟩ → C1)fiq Quantum if-statement

Fig. 2. The syntax of quantum recursive programming language RQC++.

(SK) (skip, σ, |ψ⟩)→ (↓, σ, |ψ⟩) (AS)
(

x := t, σ, |ψ⟩
)
→

(
↓, σ

[
x := σ

(
t
)]

, |ψ⟩
)

(GA)
σ |= Dist(q)

(U[q], σ, |ψ⟩)→
(
↓, σ,

(
Uσ(q) ⊗ 1

)
|ψ⟩

) (SC)
(C1, σ, |ψ⟩)→

(
C′1, σ′, |ψ′⟩

)

(C1; C2, σ, |ψ⟩)→
(
C′1; C2, σ′, |ψ′⟩

)

(IF)
σ |= b

(if b then C1 else C2 fi, σ, |ψ⟩)→ (C1, σ, |ψ⟩) ,
σ |= ¬b

(if b then C1 else C2 fi, σ, |ψ⟩)→ (C2, σ, |ψ⟩)

(LP)
σ |= b

(while b do C od, σ, |ψ⟩)→ (C; while b do C od, σ, |ψ⟩) ,
σ |= ¬b

(while b do C od), σ, |ψ⟩ → (↓, σ, |ψ⟩)
(BS)

(
begin local x := t; C end, σ, |ψ⟩

)
→

(
x := t; C; x := σ(x), σ, |ψ⟩

)

(RC)
P(u)⇐ C ∈ P(

P
(
t
)
, σ, |ψ⟩

)
→

(
begin local u := t; C end, σ, |ψ⟩

)

(QIF)
|ψ⟩ = α0 |0⟩σ(q) |θ0⟩+ α1 |1⟩σ(q) |θ1⟩ , (Ci, σ, |θi⟩)→∗

(
↓, σ, |θ′i⟩

)
(i = 0, 1)

(qif[q](|0⟩ → C0)□(|1⟩ → C1)fiq, σ, |ψ⟩)→
(
↓, σ, α0 |0⟩σ(q) |θ′0⟩+ α1 |1⟩σ(q) |θ′1⟩

)

Fig. 3. Transition rules for defining the operational semantics of RQC++.

The syntax of RQC++ is summarised in Figure 2. Here, a program is specified by P, a set of
procedure declarations, with a main procedure 𝑃main. Each procedure declaration has the form
𝑃 (𝑢) ⇐ 𝐶 , where 𝑃 is the procedure identifier,𝑢 is a list of formal parameters (which can be empty),
and𝐶 is the procedure body. The recursion is supported by that𝐶 can contains 𝑃 itself. A statement
𝐶 is inductively defined, where𝑈 represents an elementary unitary gate and 𝑏 represents a classical
binary expression. We further explain as follows.

• The procedure call 𝑃
(
𝑡
)
has a list of classical expressions 𝑡 as its actual parameters.

• The block statement begin local 𝑥 := 𝑡 ;𝐶 end temporarily sets classical variables 𝑥 to the
values of 𝑡 at the beginning of the block, and restores their old values at the end.
• The unitary gate𝑈 [𝑞] applies the elementary quantum gate𝑈 on quantum variables 𝑞.
• The quantum if-statement qif [𝑞] (|0⟩ → 𝐶0)□(|1⟩ → 𝐶1)fiq executes 𝐶𝑖 , conditioned on the
qubit variable 𝑞 (a.k.a., quantum coin): when 𝑞 is in state |0⟩,𝐶0 is executed; when 𝑞 is in state
|1⟩,𝐶1 is executed. Unlike the classical if-statement where the control flow only runs through
one of the two branches, the quantum control flow run through both quantum branches
created by the qif statement, in superposition. Note that the superposition state is held in
the composite system including 𝑞 and the quantum variables in 𝐶0,𝐶1.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 180. Publication date: June 2025.

Quantum Register Machine: Efficient Implementation of Quantum Recursive Programs 180:7

2.2 Semantics
Now we briefly introduce the operational semantics of RQC++. We use (𝐶, 𝜎, |𝜓 ⟩) to denote a
configuration, where𝐶 is the remaining statement to be executed or𝐶 = ↓ (standing for termination),
𝜎 is the current classical state, and |𝜓 ⟩ is the current quantum state. The operational semantics is
defined in terms of transitions between configurations of the form: (𝐶, 𝜎, |𝜓 ⟩) → (𝐶′, 𝜎 ′, |𝜓 ′⟩).

The transition rules for defining the operational semantics of RQC++ are shown in Figure 3. For
simplicity of presentation, we only explain the most non-trivial (QIF) rule. Other rules are rather
standard and further explained in Appendix A. In the (QIF) rule, 𝑖 = 0, 1 correspond to the two
quantum branches, controlled by the external quantum coin 𝑞. Here, 𝜎 (𝑞) denotes the subsystem
specified by 𝑞 with respect to classical state 𝜎 . As usual,→𝑘 denotes the composition of 𝑘 copies of
→, and→∗= ⋃∞

𝑘=0 →𝑘 . The semantics of the qif statement is exactly a quantum multiplexor [74]
with one control qubit 𝑞: if each 𝐶𝑖 describes a unitary 𝑈𝑖 , then qif [𝑞] (|0⟩ → 𝐶0)□(|1⟩ → 𝐶1)fiq
describes the unitary𝑈0 ⊕ 𝑈1 = |0⟩⟨0|𝑞 ⊗ 𝑈0 + |1⟩⟨1|𝑞 ⊗ 𝑈1.

Note that in the (QIF) rule, (𝐶𝑖 , 𝜎, |𝜃𝑖⟩) are required to terminate in the same classical state 𝜎 for
both branches (𝑖 = 0, 1) to prevent classical variables from being in superposition.3 This requirement
seems inevitable to separate classical and quantum variables in the presence of quantum control
flow. As a result, only local classical variables can be arbitrarily modified in the qif statement. If
one wishes to return different data from two quantum branches, then the data becomes intrinsically
quantum and should therefore be stored in quantum variables.

2.3 Conditions for Well-Defined Semantics
We present three conditions for a program in RQC++ to have well-defined semantics, in particular,
for the (QIF) rule to be properly and easily applied. The first condition guarantees that in every
qif statement, 𝑞 is external to 𝐶0 and 𝐶1. This is introduced for the qif statement to be physically
meaningful. We use qv(𝐶, 𝜎) to denote the quantum variables in statement 𝐶 with respect to a
given classical state 𝜎 . Its precise definition is given in Appendix A.3.

Condition 2.1 (External quantum coin). For any procedure declaration 𝑃 (𝑢) ⇐ 𝐶 ∈ P, and
any qif [𝑞] (|0⟩ → 𝐶0)□(|1⟩ → 𝐶1)fiq appearing in 𝐶 , and any classical state 𝜎 (of concern), 𝑞 ∉

qv(𝐶0, 𝜎) ∪ qv(𝐶1, 𝜎).

The second condition says that in every qif statement, both 𝐶0 and 𝐶1 contain no free changed
(classical) variables. A classical variable is free if it is not declared as local variable. It is changed if
it appears on the LHS of an assignment. We use fcv(𝐶, 𝜎) to denote the free changed variables in 𝐶
with respect to 𝜎 . See Appendix A.3 for its precise definition. This condition is introduced as the
(QIF) rule requires (𝐶𝑖 , 𝜎, |𝜓 ⟩) to terminate in the same classical state 𝜎 for both branches 𝑖 = 0, 1.

Condition 2.2 (No free changed variables in qif statements). For any 𝑃 (𝑢) ⇐ 𝐶 ∈ P, any
qif [𝑞] (|0⟩ → 𝐶0)□(|1⟩ → 𝐶1)fiq appearing in𝐶 , and any classical state 𝜎 (of concern), fcv(𝐶0, 𝜎) =
fcv(𝐶1, 𝜎) = ∅.

The third condition says that every procedure body contains no free changed variables. This
condition is introduced to simplify the process of compilation, as it allows the procedure calls to be
arbitrarily used together with the qif statements without violating Condition 2.2.

Condition 2.3 (No free changed variables in procedure bodies). For any 𝑃 (𝑢) ⇐ 𝐶 ∈ P and any
classical state 𝜎 (of concern), fcv(𝐶, 𝜎) = ∅.
3For simplicity of later implementation, this requirement has been made slightly stricter than the original one (“terminating
in the same 𝜎 ′”, where 𝜎 ′ may differ from the initial 𝜎) described in [91], but remains easy to meet in practice.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 180. Publication date: June 2025.

180:8 Zhicheng Zhang and Mingsheng Ying

3 Quantum Register Machine
Now we start to consider how to implement quantum recursive programs defined in the previous
section. As the basis, let us introduce the notion of quantum register machine, an architecture that
provides instruction-level support for quantum control flow and recursive procedure calls at the
same time. Unlike most existing quantum architectures that use classical controllers to implement
quantum circuits, the quantum register machine stores quantum programs and data in a quantum
random access memory (QRAM) and executes on quantum registers. As aforementioned in Section 1,
since existing quantum hardware is typically controlled by classical pulses, it would be better to
think quantum register machine as an abstract machine (that does not require hardware-level
quantum control flow). Like a classical CPU, the machine works by repeatedly applying a fixed
unitary𝑈cyc (independent of the program) per instruction cycle, which consists of several stages,
including fetching an instruction from the QRAM, decoding it and executing it by performing
corresponding operations. To support quantum control flow, additional stages related to the partial
evaluation are also needed. The unitary𝑈cyc will be eventually implemented by standard quantum
circuits, as described in Section 6 and visualised in Appendix E.1.
In the following, we first explain quantum registers and QRAM, and then describe a low-level

instruction set QINS (quantum instructions) for the quantum register machine.

3.1 Quantum Registers
The quantum register machine has a constant number of quantum registers (or simply, registers),
each storing a quantum word composed of 𝐿word (called word length) qubits. Registers are directly
accessible. The machine can perform a series of elementary operations on registers, including
word-level arithmetic operations (see also Section 3.3), each assumed to take time 𝑇reg. The precise
definition of elementary operations are presented in Appendix B.1.

Registers are grouped into two types: system and user registers. There are eight system registers.
The first five are rather standard and borrowed from the classical reversible architectures [8, 36, 81,
84], as quantum unitaries are intrinsically reversible. We describe their classical effects as follows.

• Program counter pc records the address of the current instruction.
• Instruction ins records the current instruction.
• Branching offset br records the offset of the address of the next instruction to go from pc.
More specifically, if br = 0, then the address of the next instruction will be pc + 1. Otherwise,
the address of the next instruction will be pc + br .
• Return offset ro records the offset for br in the return of a procedure call.
• Stack pointer sp records the current topmost location of the call stack.

In contrast, the last three system registers are novelly introduced to support an efficient implementa-
tion of the qif statements. They are related to the qif table, a data structure generated by the partial
evaluation of quantum control flow and used during execution to address the aforementioned
synchronisation problem. We briefly describe their classical effects as follows, and will explain
further details in Sections 5 and 6.

• Qif table pointer qifv records the current node in the qif table.
• Qif wait counter qifw records the number of instruction cycles to wait at the current node in
the qif table.
• Qif wait flag wait records whether the current instruction cycle needs to be skipped.

We also set the initial values of theses registers: pc, sp and qifv are initialised to | 𝑗⟩, where 𝑗

is the starting addresses of the main program, the call stack and the qif table, respectively. Other
system and user registers are initialised to |0⟩.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 180. Publication date: June 2025.

Quantum Register Machine: Efficient Implementation of Quantum Recursive Programs 180:9

3.2 Quantum Random Access Memory
The quantum register machine has a quantum random access memory (QRAM)4 composed of
𝑁QRAM memory locations, each storing a quantum word. The QRAM is not directly accessible. Like
a classical memory, access to QRAM is by providing an address register specifying the address, and
a target register to hold the information retrieved from the specified location. Unlike the classical
case, the address register can be in quantum superposition, and registers can be entangled with the
QRAM. In this paper, we assume the following two types of elementary QRAM accesses.

Definition 3.1 (Elementary QRAM accesses).

• QRAM (swap) load. This access performs the unitary𝑈ld (𝑟, 𝑎,mem) defined by the mapping:

|𝑥⟩𝑟 |𝑖⟩𝑎 |𝑀⟩mem
↦→ |𝑀𝑖⟩𝑟 |𝑖⟩𝑎 |𝑀0, . . . , 𝑀𝑖−1, 𝑥, 𝑀𝑖+1, . . . , 𝑀𝑁QRAM−1⟩mem

, (3)

for all 𝑥 , 𝑖 and𝑀 = (𝑀0, . . . , 𝑀𝑁QRAM−1). Here, 𝑟 is the target register, 𝑎 is the address register,
and mem is the QRAM.
• QRAM (xor) fetch. This access performs the unitary𝑈fet (𝑟, 𝑎,mem) defined by the mapping:

|𝑥⟩𝑟 |𝑖⟩𝑎 |𝑀⟩mem
↦→ |𝑥 ⊕ 𝑀𝑖⟩𝑟 |𝑖⟩𝑎 |𝑀⟩mem

, (4)

for all 𝑥, 𝑖, 𝑀 .
Moreover, the controlled versions (controlled by a register) of elementary QRAM accesses are also
considered elementary, since the number of registers is constant and the control only incurs a
constant overhead. Suppose every elementary QRAM access takes time 𝑇QRAM.

Some readers might notice that the physical realisation of QRAM is not yet near-term, a challenge
shared by most works leveraging QRAM (e.g., [1, 4, 17, 94]). Nevertheless, there are ongoing efforts
towards feasible QRAM implementations (e.g., [41, 42, 87]). Importantly, the final complexity of
our implementation of quantum recursive programs is measured by the standard circuit depth and
unaffected by the near-term feasibility of QRAM.
It is also worth pointing out that managing entanglement between registers and the QRAM is

crucial, as improper handling can result in incorrect output states [55]. To this end, the instruction
set QINS (Section 3.3) and the compilation process (Section 4) are carefully designed to ensure that,
after the execution, quantum variables are disentangled from other registers and the remaining part
of the QRAM. A key of the design is proper uncomputation of intermediate results. The idea traces
back to [15, 52], and has been applied in [8, 36, 81, 84, 96]. Moreover, in our design, the creation
and removal of entanglement during the execution align with the program structure (in RQC++).

3.2.1 Layout of the QRAM. The QRAM in the quantum register machine stores both programs
and data. In particular, it contains the following sections.
(1) Program section stores the compiled program in a low-level language QINS (to be defined in

Section 3.3).
(2) Symbol table section stores the name of every variable and its corresponding address. Here,

unlike in the classical case, the symbol table is used at runtime instead of compile time (see
also Appendix C.3), because arrays in RQC++ are not declared with fixed size.

(3) Variable section stores the classical and quantum variables.
(4) Qif table section stores the qif table (to be defined in Section 5.2).
(5) Stack section stores the call stack to handle the procedure calls. The stack is composed of

multiple stack frames, each storing the actual parameters and return offset (from the caller to
the callee), and the local data used by the callee, in a procedure call.

4In particular, the QRAM considered here is quantum random access quantum memory (QRAQM). Readers are referred
to [47] for a review of QRAM.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 180. Publication date: June 2025.

180:10 Zhicheng Zhang and Mingsheng Ying

QRAM(mem)

System regs pc ins br ro qifw wait qifv sp

User regs r1 r2 . . . rm

Program Section Symbol Table Variable Section Qif Table Stack · · · · · ·

localsreturn offsetparametersStack frame

Fig. 4. Storage components of the quantum register machine and the layout of the QRAM. All components
can be together in a quantum superposition state.

Instruction Classical Effect

Load
ld(r,i) r ↔Mi

ldr(r1,r2) r1 ↔Mr2

fetr(r1,r2) r1 ← r1 ⊕Mr2

Gate
uni(G,r1) Apply gate G on r1
unib(G,r1,r2) Apply gate G on r1r2

Arith

xori(r,i) r ← r ⊕ i
addi(r,i) r ← r + i
subi(r,i) r ← r − i
swap(r1,r2) r1 ↔ r2
add(r1,r2) r1 ← r1 + r2
sub(r2,r2) r1 ← r1 − r2
neg(r1) r1 ← −r1
ari(op,r1,r2) r1 ← r1 ⊕ (op r2)
arib(op,r1,r2,r3) r1 ← r1 ⊕ (r2 op r3)

Branch

bra(i) br ← br ⊕ i
bez(r,i) br ← br ⊕ (i · [r = 0])
bnz(r,i) br ← br ⊕ (i · [r ̸= 0])
swbr(r) br ↔ r

Qif
qif(r) update qifv and qifw
fiq(r) update qifv

Special
start none
finish none

(a) Instructions and corresponding classical ef-
fects. Here, ⊕ denotes the XOR operator; [𝑏] = 1
if 𝑏 is true and [𝑏] = 0 otherwise.

Type Format (ins)

I
opcode reg imm

c r i

R
opcode reg1 reg2

c r1 r2 0 0

O
opcode para reg1 reg2 reg3

c G/op r1 r2 r3

Udec =
∑

c |c⟩⟨c| ⊗
∑

d
|d⟩⟨d| ⊗ Uc ,d

︸ ︷︷ ︸
U c

Type c Uc ,d

I

ld Uld(r , imm,mem)

xori U⊕(r , imm)

bnz ◦(r)-U⊕(br , imm)

R

ldr Uld(r1 , r2 ,mem)

swap Uswap(r1 , r2)

qif Uqif(r1)

O
uni UG (r1)

ari Uop (r1 , r2)

(b) Instruction formats, the decoding
unitary 𝑈dec, and selected examples
of instruction implementations.

Fig. 5. The low-level language QINS and selected examples.

We visualise the quantum register machine and the layout of the QRAM in Figure 4.

3.3 The Low-Level Language QINS
Now we present QINS, an instruction set for describing the compiled programs. Each instruction
specifies a series of elementary operations to be carried out by the quantum register machine. There
are 22 instructions in QINS, which are listed with their classical effects in Figure 5a. Here, we leave
the explanation of instructions qif and fiq to Section 6. The classical effects of other instructions
are lifted to quantum in the standard way when being executed by the quantum register machine.

The design of QINS is inspired by the existing classical reversible instruction sets [8, 36, 81, 84].
Nevertheless, several instructions in QINS are essentially new. The most important are instructions
qif and fiq, which are designed for a structuredmanagement of quantum control flow (generated by

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 180. Publication date: June 2025.

Quantum Register Machine: Efficient Implementation of Quantum Recursive Programs 180:11

the qif statements in RQC++), in particular, aiding the partial evaluation and execution. Instructions
uni and unib are designed for quantum unitary gates.
We group the instructions into three types: I (immediate-type), R (register-type) and O (other-

type), according to their formats, as shown in Figure 5b. During the execution (to be described in
Section 6), we decode the instruction in register ins by performing a unitary 𝑈dec (see Figure 5b).
𝑈dec is a quantum multiplexor, with section opcode as its first part of control, and other sections
(depending on the type I/R/O) in ins as its second part of control. Let 𝑐 be a computational basis in
the first part and 𝑑 in the second part, then the unitary being controlled is denoted by𝑈𝑐,𝑑 .

For illustration, selected instructions and corresponding𝑈𝑐,𝑑 are presented in Figure 5b. Here,𝑈ld
is the QRAM access in Definition 3.1.𝑈qif (and similarly𝑈fiq for fiq) will be defined in Section 6.
Other unitaries are elementary operations on registers: (a) 𝑈⊕ performs the mapping |𝑥⟩ |𝑦⟩ ↦→
|𝑥 ⊕ 𝑦⟩ |𝑦⟩; (b) ◦(𝑟)-𝑈 stands for the controlled version |0⟩⟨0|𝑟 ⊗ 𝑈 +

∑
𝑥≠0 |𝑥⟩⟨𝑥 |𝑟 ⊗ 1 of unitary

𝑈 ; (c)𝑈swap performs the mapping |𝑥⟩ |𝑦⟩ ↦→ |𝑦⟩ |𝑥⟩; (d)𝑈𝐺 applies the elementary gate 𝐺 (chosen
from a fixed set G of size 𝑂 (1)); (e) 𝑈op performs the mapping |𝑥⟩ |𝑦⟩ ↦→ |𝑥 ⊕ (op 𝑦)⟩ |𝑦⟩ for unary
operator op (chosen from a fixed set OP of size 𝑂 (1)).

Further details of QINS are provided in Appendix B.2.

4 Compilation

Replacing quantum branches by procedure calls

Unrolling nested block statements

Removing expressions in conditions and parameters

Removing simultaneous assignments

Removing expressions in subscriptions

Reducing variables in expressions

High-Level Tranformations

High-Level to Mid-Level Translation

Mid-Level to Low-Level Translation

Fig. 6. The compilation process.

As usual, the first step in the implementation of
quantum recursive programs is their compila-
tion. The compilation of a program P in RQC++
consists of the following passes.
(1) First, a series of high-level transforma-

tions are performed on the original P to
obtain Pℎ , which simplify the program
structure and make it easier to be further
compiled.

(2) Then, the transformed program Pℎ is
translated into an intermediate program
P𝑚 in the mid-level language composed
of instructions similar to those in QINS
but more flexible.

(3) Finally, the mid-level P𝑚 is translated
into a program P𝑙 in the low-level lan-
guage QINS.

The compilation process is visualised in Fig-
ure 6. The remainder of this section is devoted
to describe these passes carefully. In the sequel,
we always assume the source program P to be compiled satisfies Conditions 2.1 to 2.3 in Section 2.3
and has well-defined semantics. We will not bother checking the syntax and semantics of P.

4.1 High-Level Transformations
In this section, we describe the first pass of high-level transformation from P to Pℎ . The major
target of this pass is to simplify the automatic uncomputation of classical variables in later passes.
A program P in RQC++ may contain irreversible classical statements, e.g., assignment 𝑥 := 1.

Reversibly implementing these statements introduces garbage data, e.g., through the standard
Landauer [52] and Bennett [15] methods. For the overall correctness of the quantum computation,

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 180. Publication date: June 2025.

180:12 Zhicheng Zhang and Mingsheng Ying

these garbage data should be properly uncomputed. Moreover, the block statement in RQC++

explicitly requires uncomputation of local variables at the end of the block.

begin local x := 1;
begin local y := 2x;

x := y + 1;
y := 2x

end;
U[q[x + 2]]

end

Fig. 7. An example of
nested block statement.

In the execution of a program, when should we perform uncomputation?
First, we realise a difficulty from the uncomputation of local variables in
nested block statements. Consider the example in Figure 7. The inner block
modifies 𝑥 , which is used by the outer block. If one tries to uncompute
the local variable 𝑦 at the end of the inner block, the change on 𝑥 (by the
inner block) is also uncomputed, which is an undesirable side effect.

To overcome this difficulty, we will perform a series of transformations
on the source program P, such that the transformed Pℎ no longer contains
nested block statements. Along the way, we also simplify the structure
of the program. Consequently, for Pℎ , we only need to perform uncom-
putation at the end of every procedure body (of procedure declarations),
which will be automatically done in the high-level to mid-level translation
(in Section 4.2).

An overview of high-level transformations is already shown in Figure 6. In the following we
only select the first two steps for explanation, while other steps are rather standard (see e.g., the
textbook [2]) and presented in Appendix C.1.

4.1.1 Replacing Quantum Branches by Procedure Calls. In this step, we replace the program in
every quantum branch of every qif statement by a procedure call. More specifically, for every
qif statement, if 𝐶0,𝐶1 are not procedure identifiers or skip statements, then we introduce fresh
procedure identifiers 𝑃0, 𝑃1, perform the replacement:

qif [𝑞] (|0⟩ → 𝐶0)□(|1⟩ → 𝐶1)fiq ⇒ qif [𝑞] (|0⟩ → 𝑃0)□(|1⟩ → 𝑃1)fiq,
and add new procedure declarations 𝑃𝑖 ⇐ 𝐶𝑖 (for 𝑖 ∈ {0, 1}) to P. If only one of 𝐶0,𝐶1 is procedure
identifier or skip, then the replacement is performed only for the other branch. It is easy to see the
above transformation does not violate Conditions 2.1 to 2.3.

4.1.2 Unrolling Nested Block Statements. In this step, we unroll all nested block statements. The
program after this step is promised to no more contain block statements, but uncomputation of
classical variables needs to be done at the end of every procedure body when the program is
implemented, for it to preserve its original semantics. To do this, for any 𝑃 (𝑢) ⇐ 𝐶′ ∈ P and every
block statement appearing in 𝐶′, we perform the replacement:

begin local 𝑥 := 𝑡 ; 𝐶 end ⇒ 𝑥 ′ := 𝑡 ;𝐶 [𝑥 ′/𝑥],
where 𝑥 ′ is a list of fresh variables, and [𝑥 ′/𝑥] stands for replacing variable 𝑥 by 𝑥 ′. Also, we append
𝑥 ′ := 0 at the beginning of 𝐶′. The above transformation keeps Conditions 2.1 to 2.3 too.

Note that after this step, the program is technically in some new language with the same syntax
as RQC++, but whose semantics requires the uncomputation of classical variables at the end of
every procedure body.

4.1.3 After the High-Level Transformations. We observe that the program Pℎ = {𝑃 (𝑢) ⇐ 𝐶}𝑃 after
the high-level transformations in Figure 6 has the following simplified syntax:

𝐶 ::= skip | 𝑥 := 𝑡 | 𝑈 [𝑞] | 𝐶0;𝐶1 | 𝑃 (𝑥) | if 𝑥 then 𝐶0 else 𝐶1 fi | while 𝑥 do 𝐶 od
| qif [𝑞] (|0⟩ → 𝑃0)□(|1⟩ → 𝑃1)fiq,

where every subscripted variable and procedure identifier has a basic classical variable as its
subscription (e.g.,𝑥 [𝑦]), and every expression has the form 𝑡 ≡ op 𝑥 or 𝑡 ≡ 𝑥 op𝑦. As aforementioned,
the semantics is slightly changed: uncomputation of classical variables are needed at the end of

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 180. Publication date: June 2025.

Quantum Register Machine: Efficient Implementation of Quantum Recursive Programs 180:13

Pmain(n)⇐ z := 0;P(n, z)

P(k, x)⇐ if k then

k0 := k − 1;

x0 := 2x;

x1 := x0 + 1;

qif [q[k]] |0⟩ → P(k0, x0)

□ |1⟩ → P(k0, x1)

fiq

else Q[x]

fi

Q[0]⇐ C0

. . .

Q[N − 1]⇐ CN−1

mid{P (k, x) ⇐ . . .}
1 P.beg: bra(P.end)
2 P.ent: swbr(ro)
3 neg(ro)
4 pop(y2)
5 pop(y1)
6 swap(k,y1)
7 swap(x,y2)
8 push(y1)
9 push(y2)
10 push(ro)
11 l0: bez(k,l2)
12 arib(-,w1,k,1)
13 swap(k0,w1)
14 push(w1)
15 arib(*,w2,x,2)
16 swap(x0,w2)
17 push(w2)
18 arib(+,w3,x0,1)
19 swap(x1,w3)
20 push(w3)

21 qif(q[k])
22 b0: bnz(q[k],b2)
23 push(k0)
24 push(x0)
25 bra(P.ent)
26 pop(x0)
27 pop(k0)
28 b1: brc(q[k],b3)
29 b2: brc(q[k],b0)
30 push(k0)
31 push(x1)
32 brar(P.ent)
33 pop(x1)
34 pop(k0)
35 b3: bez(q[k],b1)
36 fiq(q[k])
37 l1: brc(k,l3)
38 l2: brc(k,l0)
39 bra(Q.ent[x])

40 l3: bnz(k,l1)
41 pop(w3)
42 swap(x1,w3)
43 arib(+,w3,x0,1)
44 pop(w2)
45 swap(x0,w2)
46 arib(*,w2,x,2)
47 pop(w1)
48 swap(k0,w1)
49 arib(-,w1,k,1)
50 pop(ro)
51 pop(y2)
52 pop(y1)
53 swap(k,y1)
54 swap(x,y2)
55 push(y1)
56 push(y2)
57 P.end: bra(P.beg)

Fig. 8. Example of high-level transformations and high-to-mid-level translation. The original program is the
quantummultiplexor program in Figure 1. Here, on the LHS is the program after the high-level transformations.
On the RHS is the high-to-mid-level translation of the procedure 𝑃 (𝑘, 𝑥). Their connections are highlighted
in colors. Note that new variables 𝑥0, 𝑥1, 𝑘0 are introduced by the rather standard third step of high-level
transformations (see also Appendix C.1), and some transformations have no effect on this example.

every procedure body in the implementation, (which will be automatically done in the high-level
to mid-level translation in Section 4.2).

For illustration, on the LHS of Figure 8, we show an after-the-high-level-transformations version
of the quantum multiplexor program in Figure 1.

4.2 High-Level to Mid-Level Translation
Now we translate the transformed high-level program Pℎ obtained in the previous subsection
into P𝑚 in a mid-level language, which is different from the low-level language QINS (defined in
Section 3.3) in the following aspects:

• We do not consider the memory allocation. Thus, instructions ld, ldr and fetr are not
needed at this stage.
• Beyond registers and numbers, instructions can also take variables and labels as input. Here,
like in the classical assembly language, a label is an identifier for the address of an instruction.
(When the program is further translated into QINS, in the next section, every label 𝑙 will be
replaced by the offset of the address of where 𝑙 is defined from the address of where 𝑙 is used.)
• We have additional instructions push and pop for stack operations. Also, an additional
branching instruction brc will be used in pair with bez (or bnz). In particular, brc(x,l),
compared to bra(l), has the additional information of some variable 𝑥 .

The high-to-mid-level translation also automatically handles the initialisation of formal parameters
and the uncomputation of classical variables at the end of procedure bodies (see Section 4.1).

Let us use mid{𝐷} to denote the high-to-mid-level translation of a statement (or declaration) 𝐷
in RQC++. In Figure 9, we present selected examples of the high-to-mid-level translation, and more
details are shown in Appendix C.2. Here, init{·} and uncp{·} denote the initialisation of formal
parameters and uncomputation of classical variables, respectively. We further explain them as
follows.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 180. Publication date: June 2025.

180:14 Zhicheng Zhang and Mingsheng Ying

mid{U [q]}
1 uni(U,q)

1 l0: bnz(y,l2)
2 l1: bez(x,l3)
3 add(y,1)
4 mid{C}
5 l2: brc(y,l0)
6 l3: brc(x,l1)

mid{while}

1 qif(q)
2 l0: bnz(q,l2)
3 mid{C0}
4 l1: brc(q,l3)
5 l2: brc(q,l0)
6 mid{C1}
7 l3: bez(q,l1)
8 fiq(q)

mid{qif . . .fiq}
1 push(x1)
2 ...
3 push(xn)
4 bra(P.ent)
5 pop(xn)
6 ...
7 pop(x1)

mid{P (x)}
1 P.beg: bra(P.end)
2 P.ent: swbr(ro)
3 neg(ro)
4 init{u}
5 push(ro)
6 mid{C}
7 uncp{C}
8 pop(ro)
9 init{u}
10 P.end: bra(P.beg)

mid{P (u) ⇐ C}
1 pop(yn)
2 ...
3 pop(y1)
4 swap(u1,y1)
5 ...
6 swap(un,yn)
7 push(y1)
8 ...
9 push(yn)

init{u}

∅

uncp{P (x)}
uncp{qif . . .fiq}

1 l0: bnz(x,l2)
2 l1: bez(y,l3)
3 uncp{C}
4 sub(y,1)
5 l2: brc(x,l0)
6 l3: brc(y,l1)

uncp{while}

Fig. 9. Selected examples of the high-to-mid-level translation. Here, init{·} and uncp{·} stand for the initiali-
sation of formal parameters and uncomputation of classical variables, respectively. 𝑦,𝑦1, . . . , 𝑦𝑛 are all fresh
variables. Also, mid{while} and uncp{while} use the same fresh variable 𝑦.

• To reversibly implement while 𝑥 do 𝐶 od, a fresh variable 𝑦 is introduced to count the
number of loops. Similar to the classical reversible architectures [8, 36, 81, 84], we use a pair
of branching instructions (e.g., bnz and brc) to realise reversible (conditional) branching.
• In the translation of qif [𝑞] (|0⟩ → 𝐶0)□(|1⟩ → 𝐶1)fiq, we have a pair of instructions qif(q)
and fiq(q), which indicate the creation and join of quantum branching, respectively. They
will be used in the partial evaluation of quantum control flow and the final execution.
• The translations of procedure call 𝑃 (𝑥) and declaration 𝑃 (𝑢) ⇐ 𝐶 are inspired by their
counterparts in classical reversible computing [7]. Here, the biggest difference is our design
of the automatic uncomputation of classical variables, performed by the program uncp{𝐶} at
the end of procedure body 𝐶 (see also Section 4.1.2), which reverses the changes on classical
variables in 𝐶 . The uncomputation uncp{·} is also recursively defined, where uncp{𝑃 (𝑥)}
and uncp{qif . . . fiq} are set to empty, due to Conditions 2.2 and 2.3.

For illustration, on the RHS of Figure 8, we present an example of the high-to-mid-level translation
of the quantum multiplexor program. For simplicity, we only show the translation of the recursive
procedure 𝑃 (𝑘, 𝑥). The full translation can be found in Appendix C.2.

4.3 Mid-Level to Low-Level Translation
Now we are ready to describe the last pass in which the mid-level program P𝑚 obtained in the
previous sections is translated into a programP𝑙 in the low-level languageQINS and thus executable
on the quantum register machine. In this pass, instructions that take variables and labels as inputs
will be translated to instructions that only take registers and immediate numbers as inputs. The
additional instructions push, pop and brc also need to be translated. To do this, we need the load
instructions ld, ldr and fetr. Let us use low{𝑖} to denote the mid-to-low-level translation of an
instruction 𝑖 . In Figure 10, we present selected examples of the mid-to-low-level translation, and
more details are shown in Appendix C.4. We further explain them as follows.

• The translation of uni(U,q[x]) shows how to handle inputs containing subscripted quantum
variables. We use @𝑥 to denote the address of the name 𝑥 (in the symbol table section of the
QRAM; see Section 3.2.1). The word at @𝑥 stores the address &𝑥 of the variable 𝑥 (in the
variable section). Lines 1–2 load the value of 𝑥 into free register 𝑟2. To obtain the address
of 𝑞 [𝑥], we add the address &𝑞 = &(𝑞 [0]) and the value of 𝑥 , in Lines 3–4. Line 5 loads the
value of 𝑞 [𝑥] into free register 𝑟4, on which the instruction uni(U,r4) is executed. Lines 7–11
reverse the effects of Lines 1-5. Further details of the symbol table and memory allocation of
variables can be found in Appendix C.3.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 180. Publication date: June 2025.

Quantum Register Machine: Efficient Implementation of Quantum Recursive Programs 180:15

low{uni(U,q[x])}
1 ld(r1,@x)
2 ldr(r2,r1)
3 ld(r3,@q)
4 add(r3,r2)
5 ldr(r4,r3)
6 uni(U,r4)
7 ldr(r4,r3)
8 sub(r3,r2)
9 ld(r3,@q)
10 ldr(r2,r1)
11 ld(r1,@x)

1 ld(r1,@P.ent)
2 fetr(r2,r1)
3 ld(r1,@P.ent)
4 sub(r2,pc)
5 subi(r2,2)
6 swbr(r2)
7 addi(r2,2)
8 sub(r2,pc)
9 neg(r2)
10 ld(r1,@P.ent)
11 fetr(r2,r1)
12 ld(r1,@P.ent)

low{bra(P.ent)}
1 addi(sp,1)
2 ldr(r,sp)

low{push(r)}

1 ldr(r,sp)
2 subi(sp,1)

low{pop(r)}

1 ld(r1,@x)
2 ldr(r2,r1)
3 addi(r2,1)
4 ldr(r2,r1)
5 ld(r1,@x)

low{add(x,1)}

1 ld(r1,@x)
2 ldr(r2,r1)
3 l0: bez(r2,l1)
4 ldr(r2,r1)
5 ld(r1,@x)

low{l0: bez(x,l1)}

1 ld(r1,@x)
2 ldr(r2,r1)
3 l1: bra(l0)
4 ldr(r2,r1)
5 ld(r1,@x)

low{l1: brc(x,l0)}

Fig. 10. Selected examples of the mid-to-low-level translation. Here, all registers 𝑟𝑖 are free registers.

• In the translation of bra(P.ent), recall that the classical variable 𝑃 .ent corresponds to some
procedure identifier 𝑃 . Here, Lines 1–3 loads the value of 𝑃 .ent into free register 𝑟2. Note that
Line 2 uses fetr instead of ldr to preserve the copy of 𝑃 .ent in the QRAM for recursive
procedure calls. Lines 4–5 calculate in 𝑟2 the offset of 𝑃 .ent from the address of Line 6. When
the branching occurs after Line 6, note that registers 𝑟1 and 𝑟2 are cleared. Lines 7–12 are
similar.
• The translations of push and pop are rather simple. Note that they are reversible, e.g., if an
element is pushed into the stack, the original register 𝑟 will be cleared.
• The translations of bez and brc are related when they are used in pairs: they use the same
free registers 𝑟1 and 𝑟2.

To end the compilation, we need to replace every label 𝑙 in the compiled program by the offset of
the address of where 𝑙 is defined from where 𝑙 is used. The compiled program is not yet loaded into
the QRAM, but stored classically for later partial evaluation in Section 5. We present the example
of mid-to-low-level translation of the quantum multiplexor program in Appendix C.4.

5 Partial Evaluation ofQuantum Control Flow
At the end of the last section, a compiled program in the low-level language QINS is obtained. For
its execution on the quantum register machine, we need to first perform a partial evaluation of
quantum control flow to generate a data structure called qif table, to be loaded into the QRAM. In
this section, we carefully describe this partial evaluation.

5.1 The Synchronisation Problem
Programs with only classical control flow can be straightforwardly executed without partial
evaluation. However, for programs with quantum control flow, there is an obstruction known as
the synchronisation problem [18, 54, 59, 61, 63, 64, 75, 86, 96] (see further discussion in Appendix
I.1). In our case, it means in executing the statement qif [𝑞] (|0⟩ → 𝐶0)□(|1⟩ → 𝐶1)fiq, 𝐶0 and 𝐶1
can take different numbers of instruction cycles to terminate. Consequently, the arrival times of
two control flows (corresponding to two branches, in superposition) at the fiq are asynchronous,
and hence they cannot be correctly merged into one control flow, in the same cycle. Another way
to view the synchronisation problem is from the (QIF) rule in Figure 3. The problem occurs when
(𝐶0, 𝜎, |𝜃0⟩) →𝑘0

(
↓, 𝜎 ′, |𝜃 ′0⟩

)
and (𝐶1, 𝜎, |𝜃1⟩) →𝑘1

(
↓, 𝜎 ′, |𝜃 ′1⟩

)
for some 𝑘0 ≠ 𝑘1.

The synchronisation problem becomes more complicated for general quantum recursive pro-
grams. Note that 𝐶0 and 𝐶1 can further contain quantum recursion, and the number of nested

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 180. Publication date: June 2025.

180:16 Zhicheng Zhang and Mingsheng Ying

procedure calls involved cannot be determined before hand. The program might not even terminate.
How to deal with the probably unbounded quantum recursion?

Our solution is by partial evaluation of the quantum control flow. When the classical inputs are
given (while the quantum inputs remained unknown), we can check whether the compiled program
P terminates in some practical (manually set) running time 𝑇prac (P). If the program terminates in
𝑇prac (P) cycles, for every qif statement, we can count the number of cycles for executing 𝐶0 and
𝐶1, as well as determine the structure of nested quantum branching induced by nested procedure
calls. These can be gathered into a classical data structure called qif table, which will be used
later in quantum superposition at runtime to synchronise two quantum branches in every qif
statement. Note that this process is only dependent on the classical inputs but independent of the
quantum inputs, and it does not change the static program text (compared to [96]). Also, our partial
evaluation is different from those (e.g., [49, 53]) that aim at optimising the programs.

Along with generating the qif table, given the classical inputs, we can also determine the sizes of
all arrays and allocate the addresses for variables (including determining the symbol table). This
task is simple and we will not describe its details.

5.2 Qif Table
Now let us introduce the notion of qif table, storing the history information of quantum branching
for an execution of the compiled program P, within a given practical running time 𝑇prac (P). The
qif table is a classical data structure that will be used in quantum superposition at runtime.

5.2.1 Nodes and Links in Qif Table.

Definition 5.1 (Qif table). A qif table is composed of linked nodes. There are two types of nodes in
the qif table. Each node of type • represents an instantiation of qif . . . fiq; i.e., an execution running
through the qif to the corresponding fiq once. Nodes of type ◦ are ancilla nodes for the qif table
to be reversibly used. Each node 𝑣 of type • records the following information:
(1) (Next link 𝑣 .nx): If 𝑣 has a continuing non-nested instantiation 𝑣 ′ of qif . . . fiq, then 𝑣 .nx = 𝑣 ′.

Otherwise, we set 𝑣 .nx = 𝑣 ′′ for some node 𝑣 ′′ of type ◦, enabling the qif table to be reversibly
used (no matter whether 𝑣 has a continuing instantiation of qif . . . fiq) in later execution.

(2) (First children links 𝑣 .fc𝑖) and (Last children links 𝑣 .lc𝑖) for 𝑖 ∈ {0, 1}: If 𝑣 has enclosed
nested instantiations of qif . . . fiq, then 𝑣 .fc0 and 𝑣 .fc1 links to the first two children nodes,
representing the first two enclosed instantiations of qif . . . fiq (corresponding to branches
|0⟩ and |1⟩ from 𝑣 , respectively). Moreover, 𝑣 .lc0 and 𝑣 .lc1 links to the last two children
nodes, which are the two next nodes (specified by the next link nx and of type ◦) of the
last two enclosed instantiations of qif . . . fiq (corresponding to branches |0⟩ and |1⟩ from 𝑣 ,
respectively).
Otherwise, 𝑣 .fc0 = 𝑣 .lc0 = 𝑣 ′ and 𝑣 .fc1 = 𝑣 .lc1 = 𝑣 ′′ for some nodes 𝑣 ′, 𝑣 ′′ of type ◦.

Further, each node 𝑣 of either type • or ◦ records the following information:
(1) (Wait counter 𝑣 .𝑤): It stores the number of cycles to wait at node 𝑣 .
(2) (𝑣 .pr): pr is the inverse link of nx. If 𝑣 .nx = 𝑣 ′, then 𝑣 ′ .pr = 𝑣 .
(3) (𝑣 .cf): cf is the inverse link of fc0 and fc1. If 𝑣 .fc0 = 𝑣0 and 𝑣 .fc1 = 𝑣1, then 𝑣0 .cf = 𝑣1.cf = 𝑣 .
(4) (𝑣 .cl): cl is the inverse link of lc0 and lc1. If 𝑣 .lc0 = 𝑣0 and 𝑣 .lc1 = 𝑣1, then 𝑣0 .cl = 𝑣1 .cl = 𝑣 .

In Figure 11, we give an example of a program and its corresponding qif table. We only show the
links fc𝑖 , lc𝑖 and nx, and omit w, cf , cl and pr for simplicity of presentation. The partial evaluation
should be done on the compiled program, but for clarity we present the original program written in
RQC++. We also show the correspondence between nodes in the qif table and the instantiations of
qif statements in the program. It is easy to verify that the links are consistent with Definition 5.1.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 180. Publication date: June 2025.

Quantum Register Machine: Efficient Implementation of Quantum Recursive Programs 180:17

P (n) ⇐ if n = 0 then U [q[n]]

else qif [q[n]] |0⟩ → V [q[0]]

□ |1⟩ → U [q[1]]

fiq;

qif [q[n]] |0⟩ → skip

□ |1⟩ → P (n− 1)

fiq

fi

Pmain ⇐ qif [q[3]] |0⟩ → P (2)

□ |1⟩ → U [q[1]]

fiq;

qif [q[2]] |0⟩ → V [q[1]]

□ |1⟩ → skip

fiq

v0

v2 v3

v1

v4 v5

fc0
lc0 fc1

lc1

nx

Fig. 11. Example of a program in RQC++ and its corresponding qif table. In the qif table, we only show the
links fc𝑖 (colored in black), lc𝑖 (colored in red and dashed) and nx (colored in blue and squiggled), while
𝑤 , cf , cl and pr are omitted for simplicity. The correspondence between the nodes on the RHS and the
instantiations of qif statements on the LHS is as follows: (1) 𝑣0: instantiation of the first qif . . . fiq in 𝑃main.
(2) 𝑣1: instantiation of the second qif . . . fiq in 𝑃main. (3) 𝑣2 and 𝑣4: the first and second instantiations of the
first qif . . . fiq in 𝑃 (𝑛). (4) 𝑣3 and 𝑣5: the first and second instantiations of the second qif . . . fiq in 𝑃 (𝑛).

Additionally, we remark that to store the qif table in the QRAM, we need to encode all links and
counter recorded at a node. The simplest way is to store them into a tuple, where links like 𝑣 .nx
records the base address of the tuple of the corresponding node. Further discussion can be found in
Appendices D.1 and D.2.

5.2.2 Generation of Qif Table. For a compiled program P, we fix a practical running time 𝑇prac (P).
The partial evaluation is performed by multiple parallel processes. We classically emulate the
execution of the compiled program, neglecting all quantum inputs and unitary gates. Whenever a
qif is met, the current process forks into two sub-processes, each continuing the evaluation of the
corresponding quantum branch. Whenever a fiq is met, the current process waits for its pairing
sub-process, and collects information from both sub-processes to merge into one process. Every
process only goes into a single quantum branch and therefore contains no quantum superposition.
For each process, we maintain the following classical information. We have 6 system registers

pc, ins, br , sp, 𝑣 , 𝑡 and a constant number of user registers. Here, 𝑣 points to the current node in the
qif table, and 𝑡 is a counter that records the number of instructions already executed. We also have
a classical memory 𝑀 storing classical variables and the stack. Let 𝑀𝑖 be the value stored at the
memory location 𝑖 .
The algorithm for partial evaluation of quantum control flow and generation of the qif table is

presented as Algorithm 1. The major part of the function QEva is the loop between Lines 5–25,
which consists of three stages that also appear in the execution in Section 6. The first and the last
stages are similar to their classical counterparts. The handling of instructions qif or fiq in the
stage (Decode & Execute) is highlighted. Algorithm 1 returns a timeout error if 𝑡 exceeds the
practical running time 𝑇prac (P). Otherwise, we obtain the actual running time 𝑡 = 𝑇exe (P) for later
use in Section 6. More detailed explanation of Algorithm 1 is provided in Appendix D.3.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 180. Publication date: June 2025.

180:18 Zhicheng Zhang and Mingsheng Ying

Algorithm 1 Partial evaluation of quantum control flow and generation of qif table.
1: function QEva
2: Initialise pc ← starting address of the compiled main program and 𝑡 ← 0
3: Create an initial node 𝑣
4: while 𝑡 ≤ 𝑇prac (P) do
5: (Fetch): Let ins← 𝑀pc and 𝑡 ← 𝑡 + 1

6: (Decode & Execute):
7: if ins = qif(q) then ⊲ creation of quantum branching

8: Create nodes 𝑣0 and 𝑣1. Set 𝑣 .fc𝑖 , 𝑣 .lc𝑖 ← 𝑣𝑖 and 𝑣𝑖 .cf , 𝑣𝑖 .cl ← 𝑣 ⊲ for the enclosed branches

9: Fork into two sub-processes QEva0 and QEva1. For QEva𝑖 , set 𝑣 ← 𝑣𝑖
10: else if ins = fiq(q) then ⊲ join of quantum branching

11: Wait for the pairing sub-process QEva′ with 𝑣 ′ .cl = 𝑣 .cl = 𝑣 for some parent node 𝑣
12: 𝑡 ← max{𝑡, 𝑡 ′}, 𝑣 .𝑤 ← 𝑡 − 𝑡 and 𝑣 ′ .𝑤 ← 𝑡 − 𝑡 ′ ⊲ 𝑣 ′, 𝑡 ′ are corresponding 𝑣, 𝑡 in QEva

′
.

13: Merge with the pairing sub-process QEva′ by letting 𝑡 ← 𝑡 and 𝑣 ← 𝑣

14: Create node 𝑢. Set 𝑣 .nx ← 𝑢 and 𝑢.pr ← 𝑣 . ⊲ for the continuing branch

15: Suppose 𝑣 .cl = 𝑢 and 𝑢.lc𝑥 = 𝑣 for some 𝑢 and 𝑥 . Let 𝑢.cl ← 𝑢, 𝑢.lc𝑥 ← 𝑢 and 𝑣 .cl ← 0
16: Update 𝑣 ← 𝑢

17: else if ins = finish then ⊲ termination

18: return 𝑡

19: else if ins ∉ {uni(G,r), unib(G,r1,r2)} then ⊲ neglect quantum gates

20: Update registers and𝑀 according to Figure 5a

21: (Branch):
22: if br ≠ 0 then
23: Let pc ← pc + br
24: else
25: Let pc ← pc + 1
26: return Timeout error

6 Execution onQuantum Register Machine
Now we are ready to describe how the compiled program P is executed, with the aid of partial
evaluation results (including symbol table and qif table), on the quantum register machine. Let us
load all these instructions and data into the QRAM, according to the layout described in Section 3.2.1.

6.1 Unitary𝑈cyc and Unitary𝑈exe

Algorithm 2 presents the execution on quantum register machine, which consists of repeated cycles,
each performing the unitary𝑈cyc. We fix the number of repetitions to be 𝑇exe = 𝑇exe (P), obtained
from Algorithm 1.

In𝑈cyc, we need to decide whether to wait (i.e., skip the current cycle) or execute, according to the
wait counter information stored in the current node of the qif table. To reversibly implement this
procedure,𝑈cyc consists of three stages and exploits the registers qifw and wait. As a subroutine of
𝑈cyc, the unitary𝑈exe consists of four stages, inspired by the design of classical reversible processor
(e.g., [81]). In the (Decode & Execute) stage, the unitary𝑈dec is defined in Figure 5b. We provide
more detailed discussion on Algorithm 2 and its visualisation as quantum circuits in Appendix E.1.

6.2 Unitaries for Executing Qif Instructions
It remains to define the unitaries𝑈qif and𝑈fiq that are unspecified in Figure 5a. We present their
constructions in Algorithm 3. Additional remarks are as follows.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 180. Publication date: June 2025.

Quantum Register Machine: Efficient Implementation of Quantum Recursive Programs 180:19

Algorithm 2 Execution on quantum register machine.
1: Unitary𝑈main
2: Initialise registers according to Section 3.1
3: for 𝑡 = 1, . . . ,𝑇exe do
4: Apply the unitary𝑈cyc (defined below)

5: Unitary𝑈cyc
6: (Set wait flag): Conditioned on qifw, set the wait flag in wait:

Perform
∑

𝑤,𝑧 |𝑤⟩⟨𝑤 |qifw ⊗ |𝑧 ⊕ [𝑤 > 0]⟩⟨𝑧 |
wait

7: (Execute orwait): Conditioned onwait, apply the unitary𝑈exe (defined below), or wait and decrement
the value in qifw:

Perform |0⟩⟨0|
wait
⊗ 𝑈exe +

∑
𝑧≠0,𝑤 |𝑧⟩⟨𝑧 |wait ⊗ |𝑤 − 1⟩⟨𝑤 |qifw ⊗ 1

8: (Clear wait flag): Conditioned qifw and qifv, uncompute the wait flag in wait:
Perform

∑
𝑤,𝑣,𝑧 |𝑤⟩⟨𝑤 |qifw ⊗ |𝑣⟩⟨𝑣 |qifv |𝑧 ⊕ [𝑤 < 𝑣 .𝑤]⟩⟨𝑧 |

wait

9: Unitary𝑈exe
10: (Fetch): Apply the unitary𝑈fet (ins, pc,mem) ⊲ 𝑈fet is defined in Definition 3.1.

11: (Decode & Execute): Apply the unitary𝑈dec ⊲ 𝑈dec is defined in Figure 5b.

12: (Unfetch): Apply the unitary𝑈fet (ins, pc,mem) again
13: (Branch): Update pc, conditioned on br :

Apply𝑈+ (pc, br) ⊲ 𝑈+ performs the mapping |𝑥⟩ |𝑦⟩ ↦→ |𝑥 + 𝑦⟩ |𝑦⟩.
Apply ◦(br)-∑𝑥 |𝑥 + 1⟩⟨𝑥 |pc ⊲ ◦(·)-𝑈 is defined in Section 3.3.

Algorithm 3 The unitaries𝑈qif and𝑈fiq in Figure 5b.
1: Unitary𝑈qif(𝑞)
2: Conditioned on 𝑞, move qifv to its first children node in the qif table via the links fc0 and fc1; i.e.,

perform the following series of unitaries:
𝑉
fc
=
∑

𝑣,𝑥,𝑢 |𝑣⟩⟨𝑣 |qifv ⊗ |𝑥⟩⟨𝑥 |𝑞 ⊗ |𝑢 ⊕ 𝑣 .fc𝑥 ⟩⟨𝑢 |𝑟 , where 𝑟 is a free register
𝑉
cf

=
∑

𝑣,𝑢 |𝑣 ⊕ 𝑢.cf ⟩⟨𝑣 |qifv ⊗ |𝑢⟩⟨𝑢 |𝑟
𝑈swap (𝑟, qifv), which also clears register 𝑟 ⊲ 𝑈swap is defined in Section 3.3.

3: Update qifw with the wait counter information corresponding to qifv; i.e., perform:∑
𝑤,𝑣 |𝑣⟩⟨𝑣 |qifv ⊗ |𝑤 ⊕ 𝑣 .𝑤⟩⟨𝑤 |qifw

4: Unitary𝑈fiq(𝑞)
5: Conditioned on 𝑞, move qifv to its parent node in the qif table via the inverse link cl; i.e., perform the

following series of unitaries:
𝑉
cl
=
∑

𝑣,𝑢 |𝑣⟩⟨𝑣 |qifv ⊗ |𝑢 ⊕ 𝑣 .cl⟩⟨𝑢 |𝑟 , where 𝑟 is a free register
𝑉
lc
=
∑

𝑣,𝑥,𝑢 |𝑣 ⊕ 𝑢.lc𝑞⟩⟨𝑣 |qifv ⊗ |𝑥⟩⟨𝑥 |𝑞 ⊗ |𝑢⟩⟨𝑢 |𝑟
𝑈swap (𝑟, qifv), which also clears register 𝑟

6: Move qifv to the next node in the qif table via the link nx; i.e., perform the following series of unitaries:
𝑉nx =

∑
𝑣,𝑢 |𝑣⟩⟨𝑣 |qifv ⊗ |𝑢 ⊕ 𝑣 .nx⟩⟨𝑢 |𝑟 , where 𝑟 is a free register

𝑉pr =
∑

𝑣,𝑢 |𝑣 ⊕ 𝑢.pr⟩⟨𝑣 |qifv ⊗ |𝑢⟩⟨𝑢 |𝑟
𝑈swap (𝑟, qifv), which also clears register 𝑟

• For𝑈qif, note that we are promised that qifw is initially in state |0⟩, because𝑈qif is used as a
subroutine in𝑈exe, which will only be called by𝑈cyc when qifw is in state |0⟩.
• The information fc𝑥 , cf , lc𝑥 , cl, nx, pr and𝑤 are stored in the qif node, and need to be fetched
using𝑈fet into free registers before being used, of which details are omitted for simplicity.

Further explanation of Algorithm 3 is provided in Appendix E.2.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 180. Publication date: June 2025.

180:20 Zhicheng Zhang and Mingsheng Ying

Now we remark on how the qif table as a classical data structure is used in quantum superposition

during the execution on quantum register machine. Recall that at runtime, the value in register
qifv indicates the current node in the qif table. Register qifv can be in a quantum superposition
state, in particular, entangled with the quantum coin 𝑞 (as well as other register and the QRAM)
when instruction qif(q) is executed (see Algorithm 3). For example, after the unitary𝑈qif (𝑞) is
performed, the state of the quantum register machine can be 1√

2
|0⟩𝑞 |𝑣1⟩qifv |𝜓0⟩+ 1√

2
|1⟩𝑞 |𝑣2⟩qifv |𝜓1⟩,

where |𝜓0⟩ and |𝜓1⟩ are states of the remaining quantum registers and the QRAM. In this way, the
information in the qif table is used in quantum superposition.

7 Efficiency and Automatic Parallelisation
An implementation of quantum recursive programs has been presented in the previous sections.
In this section, we analyse its efficiency, and further show that as a bonus, such implementation
also offers automatic parallelisation. For implementing certain algorithmic subroutine, like the
quantum multiplexor introduced in Section 1.1, we can even obtain exponential parallel speed-up
(over the straightforward implementation) from this automatic parallelisation. This steps towards
a top-down design of efficient quantum algorithms: we only need to design high-level quantum
recursive programs, and let the machine automatically realise the parallelisation (whose quality, of
course, still depends on the program structure). The intuition for the automatic parallelisation was
already pointed out in Section 1.1: (1) with quantum control flow, the quantum register machine
can go through quantum branches in superposition; and (2) with recursive procedure calls, the
program can generate exponentially many quantum branches (as each instantiation of the qif
statement creates two quantum branches).

In the following, we briefly describe the complexity of implementing quantum recursive programs;
in particular, for partial evaluation and execution. We first describe the complexity in terms of
elementary operations on registers and the QRAM, and then refine it into parallel time complexity
measured by the standard (classical and quantum) circuit depth. The full analysis can be found in
Appendices D.4, E.3 and F.1. Recall that, intuitively, 𝑇exe (P) correspond to the time for executing
the longest quantum branch in program P.

(1) Algorithm 1 takes 𝑂 (𝑇exe (P)) classical parallel elementary operations. Here, “elementary”
means the operation only involves a constant number of memory locations in the classical
RAM (as the partial evaluation is performed classically). “Parallel” means multiple elementary
operations performed simultaneously are counted as one parallel elementary operation, like
in the standard parallel computing. The intuition for this complexity is that in the partial
evaluation, each of the classical parallel processes only evaluate one quantum branch.

(2) Algorithm 2 takes 𝑂 (𝑇exe (P)) quantum elementary operations, including on registers and
QRAM accesses (see Definition 3.1). The intuition was already presented in Section 1.1.

The above complexities are in terms of elementary operations. As mentioned in Section 1, the
implementation will be eventually quantum circuits, so we need to translate elementary operations
into quantum circuits. The overall (classical and quantum) parallel time complexity of Algorithms 1
and 2 will be

𝑂
(
𝑇exe (P) ·

(
𝑇reg +𝑇QRAM

))
,

where 𝑇reg and 𝑇QRAM are parallel time complexities for elementary operations on registers and
QRAM accesses, as aforementioned. Here, we assume that classical elementary operations are
cheaper than their quantum counterparts.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 180. Publication date: June 2025.

Quantum Register Machine: Efficient Implementation of Quantum Recursive Programs 180:21

For concreteness, let us return to the example of quantum multiplexor program P in Figure 1.
Recall that in Figure 8 the programs after high-level transformations and high-to-mid-level transla-
tion are already presented. Now we provide a proof sketch of Theorem 1.1, whose full proof can be
found in Appendix F.2.

Proof Sketch of Theorem 1.1. Since each 𝐶𝑥 only consists of 𝑇𝑥 quantum unitary gates, the
number of instructions in the compiled program of 𝑃 [𝑥] ⇐ 𝐶𝑥 will be 𝑂 (𝑇𝑥). As a result, the
whole compiled quantum multiplexor program (presented in Appendix C.4) contains Θ

(∑
𝑥∈[𝑁] 𝑇𝑥

)
instructions. It is easy to verify that 𝑇exe (P) = 𝑂

(
max𝑥∈[𝑁] 𝑇𝑥 + 𝑛

)
.

Let us determine 𝑇reg and 𝑇QRAM by implementing the quantum register machine in the more
common quantum circuit model. We can calculate the size 𝑁QRAM of the QRAM and the word
length 𝐿word for implementing P. In particular, taking 𝑁QRAM = Θ(∑𝑥 𝑇𝑥) is sufficient. To see
this, we can calculate that the sizes of the program, symbol table and variable sections are upper
bounded by Θ(∑𝑥 𝑇𝑥). The size of the qif table is Θ(2𝑛). The size of the stack is upper bounded by
Θ(∑𝑥 𝑇𝑥) + Θ(𝑛). To store an address in such QRAM, taking 𝐿word = Θ

(
log𝑁QRAM

)
is sufficient.

By lifting results from classical parallel circuits for elementary arithmetic [14, 62, 70], we have
𝑇reg = 𝑂

(
log2 𝐿word

)
. By extending existing circuit QRAM constructions (e.g., [39, 41]), we have

𝑇QRAM = 𝑂
(
log𝑁QRAM + log𝐿word

)
. The above calculations are carried out in terms of parallel time

complexity, i.e., quantum circuit depth. Combining the above arguments leads to Theorem 1.1. □

8 Related Work
Low-level quantum instructions. Several quantum instruction set architectures have been proposed

in the literature, e.g., OpenQASM [28], Quil [76], eQASM [37]. Only the architecture introduced
in [96], called quantum control machine, supports program counter in superposition (and hence
quantum control flow), and the others do not support quantum control flow at the instruction level.
Quantum control machine also supports conditional jumps, but different from quantum register
machine defined in this paper, it does not support arbitrary procedure calls.

Automatic parallelisation. Numerous efforts have been devoted to parallelisation of quantum
circuits of specific patterns, e.g., [16, 27, 40, 46, 48, 60, 71, 77, 78, 80, 97, 98, 100, 101]. Other than the
quantum circuit model, the measurement-based quantum computing [69] is also shown to provide
certain benefits for parallelisation [22, 23, 29, 30, 50, 67]. These techniques of parallelisation are
at the low level. In comparison, the automatic parallelisation from our implementation is at the
high level: the quantum register machine automatically exploits parallelisation opportunities in the
structures of the high-level quantum recursive programs.

Automatic uncomputation. Silq [21] is the first quantum programming language that supports
automatic uncomputation, which was further investigated in [65, 66, 83, 85, 94, 95]. Silq’s uncom-
putation is for quantum programs lifted from classical ones, or in their terminology, lifted functions
(whose semantics can be described classically and preserves the input). Later works like [83, 85]
also considered uncomputation of quantum programs but they do not support quantum recursion.
In comparison, RQC++ supports quantum recursion, where classical variables are used solely for
specifying the control (not data). The automatic uncomputation in our implementation is of these
classical variables in quantum recursive programs.

Classical reversible languages. There are extensive works in classical reversible programming
languages, including the high-level language Janus [58, 92, 93], low-level instruction set architec-
tures PISA [8, 36, 84] and BobISA [81]. Some of these reversible languages support local variables,
specified by a pair of local-delocal statements, which have explicitly reversible semantics. In RQC++,

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 180. Publication date: June 2025.

180:22 Zhicheng Zhang and Mingsheng Ying

irreversible classical computation can be done on local variables, but their translations into low-level
instructions become reversible.

Quantum control flow and data structures. Many works [3, 21, 24, 72, 85, 90, 95, 96] on quantum
programming languages include quantum control flow as a feature. Some [24, 96] discuss the
limitation of quantum control flow. For example, it is shown in [24] that the semantics of quantum
recursion cannot be defined using Tarski’s fixpoint theorem, when quantum measurements are
involved. However, RQC++ considered in this paper only describes unitary operators and therefore
circumvents this issue. A similar unitary restriction is used in [96] to support instruction-level
quantum control flow.
Another related topic is data structures in superposition [94, 95]. The language Tower in [94]

can describe recursive programs in superposition, which allows a single layer of interleaving
between quantum control flow and recursion. However, their syntax does not contain unitary gates
and quantum if-statement, which cannot express the most general form of quantum recursion.
In contrast, RQC++ allows arbitrary interleaving between quantum if-statements and recursive
procedure calls. Such expressive power of RQC++ also makes our implementation non-trivial.

9 Conclusion
We propose the notion of quantum register machine, an architecture that provides instruction-level
support for quantum control flow and recursive procedure calls at the same time. We design a
comprehensive process of implementing quantum recursive programs on the quantum register
machine, including compilation, partial evaluation of quantum control flow and execution. As
a bonus, our implementation offers automatic parallelisation, from which we can even obtain
exponential parallel speed-up (over the straightforward implementation) for implementing some
important quantum algorithmic subroutines like the quantum multiplexor.
To conclude this paper, let us list several topics for future research. Firstly, an immediate next

step is to develop a software that realises our implementation of quantum recursive programs
for actual execution on future quantum hardware. Moreover, one can consider certifying such
software implementation, like in recent verified quantum compilers, e.g., [5, 43, 53, 68, 79]. Secondly,
our implementation is designed to be simple for clarity. It is worth extending the features of the
quantum register machine and further optimise the steps in the compilation, partial evaluation and
execution. Thirdly, it is interesting to see what other quantum algorithms (except those considered
in [91] and this paper) can be written in quantum recursive programs and benefit (with possible
speed-up) from the efficient implementation of the quantum register machine.

Acknowledgments
Zhicheng Zhang thanks QishengWang for helpful discussions about the halting schemes of quantum
Turing machine related to the synchronisation problem in Section 5.1 (see also Appendix I.1). We
thank the anonymous reviewers for their valuable comments. This work was partly supported by
the Australian Research Council (Grant Number: DP250102952). Zhicheng Zhang was supported
by the Sydney Quantum Academy, NSW, Australia.

References
[1] Scott Aaronson, Nai-Hui Chia, Han-Hsuan Lin, Chunhao Wang, and Ruizhe Zhang. 2020. On the quantum complexity

of closest pair and related problems. In 35th Computational Complexity Conference (CCC 2020), Vol. 169. 16:1–16:43.
doi:10.4230/LIPIcs.CCC.2020.16

[2] V. Aho Alfred, S. Lam Monica, Ravi Sethi, and D. Ullman Jeffrey. 2007. Compilers: principles, techniques & tools.
Pearson Education.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 180. Publication date: June 2025.

https://doi.org/10.4230/LIPIcs.CCC.2020.16

Quantum Register Machine: Efficient Implementation of Quantum Recursive Programs 180:23

[3] Thorsten Altenkirch and Jonathan Grattage. 2005. A functional quantum programming language. In 20th Annual

IEEE Symposium on Logic in Computer Science (LICS’05). 249–258. doi:10.1109/LICS.2005.1
[4] Andris Ambainis. 2007. Quantum walk algorithm for element distinctness. SIAM J. Comput. 37, 1 (2007), 210–239.

doi:10.1137/S0097539705447311
[5] Matthew Amy, Martin Roetteler, and Krysta M. Svore. 2017. Verified compilation of space-efficient reversible circuits.

3–21. doi:10.1007/978-3-319-63390-9_1
[6] Israel F. Araujo, Daniel K. Park, Francesco Petruccione, and Adenilton J. da Silva. 2021. A divide-and-conquer

algorithm for quantum state preparation. Scientific reports 11, 1 (2021), 6329. doi:10.1038/s41598-021-85474-1
[7] Holger Bock Axelsen. 2011. Clean translation of an imperative reversible programming language. In International

Conference on Compiler Construction. 144–163. doi:10.1007/978-3-642-19861-8_9
[8] Holger Bock Axelsen, Robert Glück, and Tetsuo Yokoyama. 2007. Reversible machine code and its abstract processor

architecture. In Computer Science–Theory and Applications: Second International Symposium on Computer Science in

Russia (CSR 2007). 56–69. doi:10.1007/978-3-540-74510-5_9
[9] Ryan Babbush, Dominic W. Berry, Ian D. Kivlichan, Annie Y. Wei, Peter J. Love, and Alán Aspuru-Guzik. 2016.

Exponentially more precise quantum simulation of fermions in second quantization. New Journal of Physics 18 (2016),
033032. doi:10.1088/1367-2630/18/3/033032

[10] Ryan Babbush, Craig Gidney, Dominic W. Berry, Nathan Wiebe, Jarrod McClean, Alexandru Paler, Austin Fowler, and
Hartmut Neven. 2018. Encoding electronic spectra in quantum circuits with linear T complexity. Physical Review X 8,
4 (2018), 041015. doi:10.1103/PhysRevX.8.041015

[11] Ryan Babbush, Nathan Wiebe, Jarrod McClean, James McClain, Hartmut Neven, and Garnet Kin-Lic Chan. 2018. Low-
depth quantum simulation of materials. Physical Review X 8 (2018), 011044. Issue 1. doi:10.1103/PhysRevX.8.011044

[12] John W. Backus, Friedrich L. Bauer, Julien Green, Charles Katz, John McCarthy, Alan J. Perlis, Heinz Rutishauser,
Klaus Samelson, Bernard Vauquois, Joseph Henry Wegstein, Adriaan van Wijngaarden, and Michael Woodger. 1960.
Report on the algorithmic language ALGOL 60. Commun. ACM 3, 5 (1960), 299–311. doi:10.1145/367236.367262

[13] John W. Backus, Friedrich L. Bauer, Julien Green, Charles Katz, John McCarthy, Alan J. Perlis, Heinz Rutishauser,
Klaus Samelson, Bernard Vauquois, Joseph Henry Wegstein, Adriaan van Wijngaarden, and Michael Woodger. 1963.
Revised report on the algorithmic language ALGOL 60. Commun. ACM 6, 1 (1963), 1–17. doi:10.1145/366193.366201

[14] Paul W. Beame, Stephen A. Cook, and H. James Hoover. 1986. Log depth circuits for division and related problems.
SIAM J. Comput. 15, 4 (1986), 994–1003. doi:10.1109/SFCS.1984.715894

[15] Charles H. Bennett. 1973. Logical reversibility of computation. IBM Journal of Research and Development 17, 6 (1973),
525–532. doi:10.1147/rd.176.0525

[16] Debajyoti Bera, Frederic Green, and Steven Homer. 2007. Small depth quantum circuits. ACM SIGACT News 38, 2
(2007), 35–50. doi:10.1145/1272729.1272739

[17] Daniel J. Bernstein, Stacey Jeffery, Tanja Lange, and Alexander Meurer. 2013. Quantum algorithms for the subset-sum
problem. In Post-Quantum Cryptography: 5th International Workshop, PQCrypto 2013. 16–33. doi:10.1007/978-3-642-
38616-9_2

[18] Ethan Bernstein and Umesh Vazirani. 1993. Quantum complexity theory. In Proceedings of the twenty-fifth annual

ACM symposium on Theory of computing. 11–20. doi:10.1145/167088.167097
[19] Dominic W. Berry, Andrew M. Childs, Richard Cleve, Robin Kothari, and Rolando D. Somma. 2015. Simulating

Hamiltonian dynamics with a truncated Taylor series. Physical Review Letters 114 (2015), 090502. Issue 9. doi:10.1103/
PhysRevLett.114.090502

[20] Dominic W. Berry, Andrew M. Childs, and Robin Kothari. 2015. Hamiltonian simulation with nearly optimal
dependence on all parameters. In Proceedings of the 56th Annual IEEE Symposium on Foundations of Computer Science

(FOCS ’15). 792–809. doi:10.1109/FOCS.2015.54
[21] Benjamin Bichsel, Maximilian Baader, Timon Gehr, and Martin Vechev. 2020. Silq: A high-level quantum language

with safe uncomputation and intuitive semantics. In Proceedings of the 41st ACM SIGPLAN Conference on Programming

Language Design and Implementation. 286–300. doi:10.1145/3385412.3386007
[22] Anne Broadbent and Elham Kashefi. 2009. Parallelizing quantum circuits. Theoretical computer science 410, 26 (2009),

2489–2510. doi:10.1016/j.tcs.2008.12.046
[23] Dan Browne, Elham Kashefi, and Simon Perdrix. 2011. Computational depth complexity of measurement-based

quantum computation. In Theory of Quantum Computation, Communication, and Cryptography: 5th Conference, TQC

2010. 35–46. doi:10.1007/978-3-642-18073-6_4
[24] Costin Bădescu and Prakash Panangaden. 2015. Quantum alternation: prospects and problems. In Proceedings of the

12th International Workshop on Quantum Physics and Logic (EPTCS, Vol. 195). 33–42. doi:10.4204/EPTCS.195.3
[25] Andrew M. Childs, Robin Kothari, and Rolando D. Somma. 2017. Quantum algorithm for systems of linear equations

with exponentially improved dependence on precision. SIAM J. Comput. 46, 6 (2017), 1920–1950. doi:10.1137/
16M1087072

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 180. Publication date: June 2025.

https://doi.org/10.1109/LICS.2005.1
https://doi.org/10.1137/S0097539705447311
https://doi.org/10.1007/978-3-319-63390-9_1
https://doi.org/10.1038/s41598-021-85474-1
https://doi.org/10.1007/978-3-642-19861-8_9
https://doi.org/10.1007/978-3-540-74510-5_9
https://doi.org/10.1088/1367-2630/18/3/033032
https://doi.org/10.1103/PhysRevX.8.041015
https://doi.org/10.1103/PhysRevX.8.011044
https://doi.org/10.1145/367236.367262
https://doi.org/10.1145/366193.366201
https://doi.org/10.1109/SFCS.1984.715894
https://doi.org/10.1147/rd.176.0525
https://doi.org/10.1145/1272729.1272739
https://doi.org/10.1007/978-3-642-38616-9_2
https://doi.org/10.1007/978-3-642-38616-9_2
https://doi.org/10.1145/167088.167097
https://doi.org/10.1103/PhysRevLett.114.090502
https://doi.org/10.1103/PhysRevLett.114.090502
https://doi.org/10.1109/FOCS.2015.54
https://doi.org/10.1145/3385412.3386007
https://doi.org/10.1016/j.tcs.2008.12.046
https://doi.org/10.1007/978-3-642-18073-6_4
https://doi.org/10.4204/EPTCS.195.3
https://doi.org/10.1137/16M1087072
https://doi.org/10.1137/16M1087072

180:24 Zhicheng Zhang and Mingsheng Ying

[26] Andrew M. Childs and Nathan Wiebe. 2012. Hamiltonian simulation using linear combinations of unitary operations.
Quantum Information & Computation 12, 11–12 (2012), 901–924. doi:10.26421/QIC12.11-12-1

[27] Richard Cleve and John Watrous. 2000. Fast parallel circuits for the quantum Fourier transform. In Proceedings of the

41st Annual IEEE Symposium on Foundations of Computer Science (FOCS ’00). 526–536. doi:10.1109/SFCS.2000.892140
[28] Andrew W. Cross, Lev S. Bishop, John A. Smolin, and Jay M. Gambetta. 2017. Open quantum assembly language.

arXiv:1707.03429 [quant-ph]
[29] Raphael Dias da Silva, Einar Pius, and Elham Kashefi. 2013. Global quantum circuit optimization.

arXiv:1301.0351 [quant-ph]
[30] Vincent Danos, Elham Kashefi, and Prakash Panangaden. 2007. The measurement calculus. Journal of the ACM

(JACM) 54, 2 (2007), 8–es. doi:10.1145/1219092.1219096
[31] Haowei Deng, Runzhou Tao, Yuxiang Peng, and Xiaodi Wu. 2024. A case for synthesis of recursive quantum unitary

programs. Proceedings of the ACM on Programming Languages 8 (2024), 1759–1788. doi:10.1145/3632901
[32] David Deutsch. 1985. Quantum theory, the Church–Turing principle and the universal quantum computer. Proceedings

of the Royal Society of London. A. Mathematical and Physical Sciences 400, 1818 (1985), 97–117. doi:10.1098/rspa.1985.
0070

[33] Edsger W. Dijkstra. 1960. Recursive programming. Numer. Math. 2, 1 (1960), 312–318. doi:10.1007/bf01386232
[34] Edsger W. Dijkstra. 1970. Notes on structured programming. (1970). http://www.cs.utexas.edu/users/EWD/ewd02xx/

EWD249.PDF circulated privately.
[35] Edsger W. Dijkstra. 1979. Programming considered as a human activity. In Classics in software engineering. 1–9.

https://www.cs.utexas.edu/~EWD/ewd01xx/EWD117.PDF
[36] Michael Patrick Frank. 1999. Reversibility for efficient computing. Ph. D. Dissertation. Massachusetts Institute of

Technology.
[37] X. Fu, L. Riesebos, M. A. Rol, Jeroen van Straten, J. van Someren, N. Khammassi, I. Ashraf, R. F. L. Vermeulen, V.

Newsum, K. K. L. Loh, J. C. de Sterke, W. J. Vlothuizen, R. N. Schouten, C. G. Almudever, L. DiCarlo, and K. Bertels.
2019. eQASM: An executable quantum instruction set architecture. In 2019 IEEE International Symposium on High

Performance Computer Architecture (HPCA). 224–237. doi:10.1109/HPCA.2019.00040
[38] Vittorio Giovannetti, Seth Lloyd, and Lorenzo Maccone. 2008. Architectures for a quantum random access memory.

Physical Review A 78, 5 (2008), 052310. doi:10.1103/PhysRevA.78.052310
[39] Vittorio Giovannetti, Seth Lloyd, and Lorenzo Maccone. 2008. Quantum random access memory. Physical Review

Letters 100, 16 (2008), 160501. doi:10.1103/PhysRevLett.100.160501
[40] Frederic Green, Steven Homer, Cristopher Moore, and Christopher Pollett. 2002. Counting, fanout and the complexity

of quantum ACC. Quantum Information & Computation 2, 1 (2002), 35–65. doi:10.26421/QIC2.1-3
[41] Connor T. Hann, Gideon Lee, S. M. Girvin, and Liang Jiang. 2021. Resilience of quantum random access memory to

generic noise. PRX Quantum 2, 2 (2021), 020311. doi:10.1103/PRXQuantum.2.020311
[42] Connor T. Hann, Chang-Ling Zou, Yaxing Zhang, Yiwen Chu, Robert J. Schoelkopf, Steven M. Girvin, and Liang Jiang.

2019. Hardware-efficient quantum random access memory with hybrid quantum acoustic systems. Physical Review
Letters 123, 25 (2019), 250501. doi:10.1103/PhysRevLett.123.250501

[43] Kesha Hietala, Robert Rand, Shih-Han Hung, Xiaodi Wu, and Michael Hicks. 2021. A verified optimizer for quantum
circuits. Proceedings of the ACM on Programming Languages 5, POPL (2021), 1–29. doi:10.1145/3434318

[44] Charles Antony Richard Hoare. 1961. Algorithm 64: quicksort. Commun. ACM 4, 7 (1961), 321. doi:10.1145/366622.
366644

[45] Charles Antony Richard Hoare. 1975. Recursive data structures. International Journal of Computer & Information

Sciences 4, 2 (1975), 105–132. doi:10.1007/BF00976239
[46] Peter Høyer and Robert Špalek. 2005. Quantum fan-out is powerful. Theory of Computing 1, 5 (2005), 81–103.

doi:10.4086/toc.2005.v001a005
[47] Samuel Jaques and Arthur G. Rattew. 2023. QRAM: A survey and critique. arXiv:2305.10310 [quant-ph]
[48] Jiaqing Jiang, Xiaoming Sun, Shang-Hua Teng, Bujiao Wu, Kewen Wu, and Jialin Zhang. 2020. Optimal space-depth

trade-off of CNOT circuits in quantum logic synthesis. In Proceedings of the 31st Annual ACM-SIAM Symposium on

Discrete Algorithms (SODA ’20). 213–229. doi:10.1137/1.9781611975994.13
[49] Neil D. Jones, Carsten K. Gomard, and Peter Sestoft. 1993. Partial evaluation and automatic program generation.

Prentice Hall.
[50] Richard Jozsa. 2005. An introduction to measurement based quantum computation. arXiv:quant-ph/0508124 [quant-

ph]
[51] Robin Kothari. 2014. Efficient algorithms in quantum query complexity. Ph. D. Dissertation. University of Waterloo.
[52] Rolf Landauer. 1961. Irreversibility and heat generation in the computing process. IBM journal of research and

development 5, 3 (1961), 183–191. doi:10.1147/rd.53.0183

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 180. Publication date: June 2025.

https://doi.org/10.26421/QIC12.11-12-1
https://doi.org/10.1109/SFCS.2000.892140
https://arxiv.org/abs/1707.03429
https://arxiv.org/abs/1301.0351
https://doi.org/10.1145/1219092.1219096
https://doi.org/10.1145/3632901
https://doi.org/10.1098/rspa.1985.0070
https://doi.org/10.1098/rspa.1985.0070
https://doi.org/10.1007/bf01386232
http://www.cs.utexas.edu/users/EWD/ewd02xx/EWD249.PDF
http://www.cs.utexas.edu/users/EWD/ewd02xx/EWD249.PDF
https://www.cs.utexas.edu/~EWD/ewd01xx/EWD117.PDF
https://doi.org/10.1109/HPCA.2019.00040
https://doi.org/10.1103/PhysRevA.78.052310
https://doi.org/10.1103/PhysRevLett.100.160501
https://doi.org/10.26421/QIC2.1-3
https://doi.org/10.1103/PRXQuantum.2.020311
https://doi.org/10.1103/PhysRevLett.123.250501
https://doi.org/10.1145/3434318
https://doi.org/10.1145/366622.366644
https://doi.org/10.1145/366622.366644
https://doi.org/10.1007/BF00976239
https://doi.org/10.4086/toc.2005.v001a005
https://arxiv.org/abs/2305.10310
https://doi.org/10.1137/1.9781611975994.13
https://arxiv.org/abs/quant-ph/0508124
https://doi.org/10.1147/rd.53.0183

Quantum Register Machine: Efficient Implementation of Quantum Recursive Programs 180:25

[53] Liyi Li, Finn Voichick, Kesha Hietala, Yuxiang Peng, Xiaodi Wu, and Michael Hicks. 2022. Verified compilation of
quantum oracles. Proceedings of the ACM on Programming Languages 6, OOPSLA2 (2022), 589–615. doi:10.1145/3563309

[54] Noah Linden and Sandu Popescu. 1998. The halting problem for quantum computers. arXiv:quant-ph/9806054 [quant-
ph]

[55] Chenxu Liu, Meng Wang, Samuel A. Stein, Yufei Ding, and Ang Li. 2023. Quantum memory: a missing piece in
quantum computing units. arXiv:2309.14432 [quant-ph]

[56] Guang Hao Low, Vadym Kliuchnikov, and Luke Schaeffer. 2024. Trading T gates for dirty qubits in state preparation
and unitary synthesis. Quantum 8 (2024), 1375. doi:10.22331/q-2024-06-17-1375

[57] Guang Hao Low and Nathan Wiebe. 2019. Hamiltonian simulation in the interaction picture. arXiv:1805.00675 [quant-
ph]

[58] Christopher Lutz and Howard Derby. 1986. Janus: a time-reversible language. Letter to Rolf Landauer 2 (1986).
[59] Takayuki Miyadera and Masanori Ohya. 2005. On halting process of quantum turing machine. Open Systems &

Information Dynamics 12, 3 (2005), 261–264. doi:10.1007/s11080-005-0923-2
[60] Cristopher Moore and Martin Nilsson. 2002. Parallel quantum computation and quantum codes. SIAM J. Comput. 31,

2 (2002), 799–815. doi:10.1137/S0097539799355053
[61] John M. Myers. 1997. Can a universal quantum computer be fully quantum? Physical Review Letters 78, 9 (1997), 1823.

doi:10.1103/PhysRevLett.78.1823
[62] Yu Ofman. 1963. On the algorithmic complexity of discrete functions. In Sov. Math. Dokl., Vol. 7. 589.
[63] Masanao Ozawa. 1998. Quantum nondemolition monitoring of universal quantum computers. Physical Review Letters

80, 3 (1998), 631. doi:10.1103/PhysRevLett.80.631
[64] Masanao Ozawa. 1998. Quantum Turing machines: local transition, preparation, measurement, and halting. In

Quantum Communication, Computing, and Measurement 2. 241–248. doi:10.1007/0-306-47097-7_32
[65] Anouk Paradis, Benjamin Bichsel, Samuel Steffen, and Martin Vechev. 2021. Unqomp: synthesizing uncomputation

in quantum circuits. In Proceedings of the 42nd ACM SIGPLAN International Conference on Programming Language

Design and Implementation. 222–236. doi:10.1145/3453483.3454040
[66] Anouk Paradis, Benjamin Bichsel, and Martin Vechev. 2024. Reqomp: space-constrained uncomputation for quantum

circuits. Quantum 8 (2024), 1258. doi:10.22331/q-2024-02-19-1258
[67] Einar Pius. 2010. Automatic parallelisation of quantum circuits using the measurement based quantum computing model.

Master’s thesis. University of Edinburgh.
[68] Robert Rand, Jennifer Paykin, Dong-Ho Lee, and Steve Zdancewic. 2019. ReQWIRE: reasoning about reversible

quantum circuits. Electronic Proceedings in Theoretical Computer Science 287 (2019), 299–312. doi:10.4204/eptcs.287.17
[69] Robert Raussendorf and Hans J. Briegel. 2001. A one-way quantum computer. Physical Review Letters 86, 22 (2001),

5188. doi:10.1103/PhysRevLett.86.5188
[70] John H. Reif. 1986. Logarithmic depth circuits for algebraic functions. SIAM J. Comput. 15, 1 (1986), 231–242.

doi:10.1137/0215017
[71] Gregory Rosenthal. 2023. Query and depth upper bounds for quantum unitaries via Grover search.

arXiv:2111.07992 [quant-ph]
[72] Amr Sabry, Benoît Valiron, and Juliana Kaizer Vizzotto. 2018. From symmetric pattern-matching to quantum control.

In Foundations of Software Science and Computation Structures: 21st International Conference, FOSSACS 2018. 348–364.
doi:10.1007/978-3-319-89366-2_19

[73] Peter Selinger. 2004. Towards a quantum programming language. Mathematical Structures in Computer Science 14, 4
(2004), 527–586. doi:10.1017/S0960129504004256

[74] Vivek V. Shende, Stephen S. Bullock, and Igor L. Markov. 2005. Synthesis of quantum logic circuits. In Proceedings of

the 2005 Asia and South Pacific Design Automation Conference. 272–275. doi:10.1109/TCAD.2005.855930
[75] Yu Shi. 2002. Remarks on universal quantum computer. Physics Letters A 293, 5-6 (2002), 277–282. doi:10.1016/S0375-

9601(02)00015-4
[76] Robert S. Smith, Michael J. Curtis, and William J. Zeng. 2017. A practical quantum instruction set architecture.

arXiv:1608.03355 [quant-ph]
[77] Xiaoming Sun, Guojing Tian, Shuai Yang, Pei Yuan, and Shengyu Zhang. 2023. Asymptotically optimal circuit

depth for quantum state preparation and general unitary synthesis. IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems 42, 10 (2023), 3301–3314. doi:10.1109/TCAD.2023.3244885
[78] Yasuhiro Takahashi and Seiichiro Tani. 2013. Collapse of the hierarchy of constant-depth exact quantum circuits. In

Proceedings of the 28th IEEE Conference on Computational Complexity. 168–178. doi:10.1109/CCC.2013.25
[79] Runzhou Tao, Yunong Shi, Jianan Yao, Xupeng Li, Ali Javadi-Abhari, AndrewW. Cross, Frederic T. Chong, and Ronghui

Gu. 2022. Giallar: Push-button verification for the Qiskit quantum compiler. In Proceedings of the 43rd ACM SIGPLAN

International Conference on Programming Language Design and Implementation. 641–656. doi:10.1145/3519939.3523431

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 180. Publication date: June 2025.

https://doi.org/10.1145/3563309
https://arxiv.org/abs/quant-ph/9806054
https://arxiv.org/abs/2309.14432
https://doi.org/10.22331/q-2024-06-17-1375
https://arxiv.org/abs/1805.00675
https://doi.org/10.1007/s11080-005-0923-2
https://doi.org/10.1137/S0097539799355053
https://doi.org/10.1103/PhysRevLett.78.1823
https://doi.org/10.1103/PhysRevLett.80.631
https://doi.org/10.1007/0-306-47097-7_32
https://doi.org/10.1145/3453483.3454040
https://doi.org/10.22331/q-2024-02-19-1258
https://doi.org/10.4204/eptcs.287.17
https://doi.org/10.1103/PhysRevLett.86.5188
https://doi.org/10.1137/0215017
https://arxiv.org/abs/2111.07992
https://doi.org/10.1007/978-3-319-89366-2_19
https://doi.org/10.1017/S0960129504004256
https://doi.org/10.1109/TCAD.2005.855930
https://doi.org/10.1016/S0375-9601(02)00015-4
https://doi.org/10.1016/S0375-9601(02)00015-4
https://arxiv.org/abs/1608.03355
https://doi.org/10.1109/TCAD.2023.3244885
https://doi.org/10.1109/CCC.2013.25
https://doi.org/10.1145/3519939.3523431

180:26 Zhicheng Zhang and Mingsheng Ying

[80] Barbara M. Terhal and David P. DiVincenzo. 2004. Adptive quantum computation, constant depth quantum circuits
and arthur-merlin games. Quantum Information & Computation 4, 2 (2004), 134–145. doi:10.26421/QIC4.2-5

[81] Michael Kirkedal Thomsen, Holger Bock Axelsen, and Robert Glück. 2012. A reversible processor architecture and its
reversible logic design. In Reversible Computation: Third International Workshop, RC 2011. 30–42. doi:10.1007/978-3-
642-29517-1_3

[82] Gauthier van den Hove. 2015. On the origin of recursive procedures. Comput. J. 58, 11 (2015), 2892–2899. doi:10.1093/
comjnl/bxu145

[83] Hristo Venev, Timon Gehr, Dimitar Dimitrov, and Martin Vechev. 2024. Modular synthesis of efficient quantum
uncomputation. Proceedings of the ACM on Programming Languages 8, OOPSLA2 (2024), 2097–2124. doi:10.1145/
3689785

[84] Carlin James Vieri. 1999. Reversible computer engineering and architecture. Ph. D. Dissertation. Massachusetts Institute
of Technology.

[85] Finn Voichick, Liyi Li, Robert Rand, and Michael Hicks. 2023. Qunity: A unified language for quantum and classical
computing. Proceedings of the ACM on Programming Languages 7 (2023), 921–951. doi:10.1145/3571225

[86] Qisheng Wang and Mingsheng Ying. 2023. Quantum random access stored-program machines. J. Comput. System Sci.

131 (2023), 13–63. doi:10.1016/j.jcss.2022.08.002
[87] Shifan Xu, Alvin Lu, and Yongshan Ding. 2025. Fat-tree QRAM: A high-bandwidth shared quantum random access

memory for parallel queries. In Proceedings of the 30th ACM International Conference on Architectural Support for

Programming Languages and Operating Systems (ASPLOS ’25, Vol. 2). 390–406. doi:10.1145/3676641.3716256
[88] Zhaowei Xu, Mingsheng Ying, and Benoît Valiron. 2021. Reasoning about recursive quantum programs.

arXiv:2107.11679 [cs.LO]
[89] Mingsheng Ying. 2016. Foundations of quantum programming. Morgan Kaufmann. doi:10.1016/C2014-0-02660-3
[90] Mingsheng Ying, Nengkun Yu, and Yuan Feng. 2012. Defining quantum control flow. arXiv:1209.4379 [quant-ph]
[91] Mingsheng Ying and Zhicheng Zhang. 2024. Verification of recursively defined quantum circuits.

arXiv:2404.05934 [quant-ph]
[92] Tetsuo Yokoyama, Holger Bock Axelsen, and Robert Glück. 2008. Principles of a reversible programming language.

In Proceedings of the 5th Conference on Computing Frontiers. 43–54. doi:10.1145/1366230.1366239
[93] Tetsuo Yokoyama and Robert Glück. 2007. A reversible programming language and its invertible self-interpreter. In

Proceedings of the 2007 ACM SIGPLAN Symposium on Partial Evaluation and Semantics-Based Program Manipulation.
144–153. doi:10.1145/1244381.1244404

[94] Charles Yuan and Michael Carbin. 2022. Tower: data structures in quantum superposition. Proceedings of the ACM on

Programming Languages 6, OOPSLA2 (2022), 259–288. doi:10.1145/3563297
[95] Charles Yuan and Michael Carbin. 2024. The T-complexity costs of error correction for control flow in quantum

computation. Proceedings of the ACM on Programming Languages 8, PLDI (2024), 492–517. doi:10.1145/3656397
[96] Charles Yuan, Agnes Villanyi, and Michael Carbin. 2024. Quantum control machine: The limits of control flow in

quantum programming. Proceedings of the ACM on Programming Languages 8, OOPSLA1 (2024), 1–28. doi:10.1145/
3649811

[97] Pei Yuan and Shengyu Zhang. 2023. Optimal (controlled) quantum state preparation and improved unitary synthesis
by quantum circuits with any number of ancillary qubits. Quantum 7 (2023), 956. doi:10.22331/q-2023-03-20-956

[98] Xiao-Ming Zhang, Tongyang Li, and Xiao Yuan. 2022. Quantum state preparation with optimal circuit depth:
Implementations and applications. Physical Review Letters 129, 23 (2022), 230504. doi:10.1103/PhysRevLett.129.230504

[99] Xiao-Ming Zhang and Xiao Yuan. 2024. Circuit complexity of quantum access models for encoding classical data. npj
Quantum Information 10, 1 (2024), 42. doi:10.1038/s41534-024-00835-8

[100] Xiao-Ming Zhang, Man-Hong Yung, and Xiao Yuan. 2021. Low-depth quantum state preparation. Physical Review
Research 3, 4 (2021), 043200. doi:10.1103/PhysRevResearch.3.043200

[101] Zhicheng Zhang, Qisheng Wang, and Mingsheng Ying. 2024. Parallel quantum algorithm for hamiltonian simulation.
Quantum 8 (2024), 1228. doi:10.22331/q-2024-01-15-1228

[102] Zhicheng Zhang and Mingsheng Ying. 2024. Quantum register machine: efficient implementation of quantum
recursive programs. arXiv:2408.10054 [quant-ph]

Received 2024-11-12; accepted 2025-03-06

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 180. Publication date: June 2025.

https://doi.org/10.26421/QIC4.2-5
https://doi.org/10.1007/978-3-642-29517-1_3
https://doi.org/10.1007/978-3-642-29517-1_3
https://doi.org/10.1093/comjnl/bxu145
https://doi.org/10.1093/comjnl/bxu145
https://doi.org/10.1145/3689785
https://doi.org/10.1145/3689785
https://doi.org/10.1145/3571225
https://doi.org/10.1016/j.jcss.2022.08.002
https://doi.org/10.1145/3676641.3716256
https://arxiv.org/abs/2107.11679
https://doi.org/10.1016/C2014-0-02660-3
https://arxiv.org/abs/1209.4379
https://arxiv.org/abs/2404.05934
https://doi.org/10.1145/1366230.1366239
https://doi.org/10.1145/1244381.1244404
https://doi.org/10.1145/3563297
https://doi.org/10.1145/3656397
https://doi.org/10.1145/3649811
https://doi.org/10.1145/3649811
https://doi.org/10.22331/q-2023-03-20-956
https://doi.org/10.1103/PhysRevLett.129.230504
https://doi.org/10.1038/s41534-024-00835-8
https://doi.org/10.1103/PhysRevResearch.3.043200
https://doi.org/10.22331/q-2024-01-15-1228
https://arxiv.org/abs/2408.10054

	Abstract
	1 Introduction
	1.1 Motivating Example: Quantum Multiplexor
	1.2 Main Contributions
	1.3 Structure of the Paper

	2 Background on Quantum Recursive Programs
	2.1 Syntax
	2.2 Semantics
	2.3 Conditions for Well-Defined Semantics

	3 Quantum Register Machine
	3.1 Quantum Registers
	3.2 Quantum Random Access Memory
	3.3 The Low-Level Language QINS

	4 Compilation
	4.1 High-Level Transformations
	4.2 High-Level to Mid-Level Translation
	4.3 Mid-Level to Low-Level Translation

	5 Partial Evaluation of Quantum Control Flow
	5.1 The Synchronisation Problem
	5.2 Qif Table

	6 Execution on Quantum Register Machine
	6.1 Unitary U_cyc and Unitary U_exe
	6.2 Unitaries for Executing Qif Instructions

	7 Efficiency and Automatic Parallelisation
	8 Related Work
	9 Conclusion
	Acknowledgments
	References

