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Abstract

The enhancement of drug delivery into the lung surfactant is facilitated by research on
the interaction between drugs and the lung surfactant. Drug designers must have a thor-
ough theoretical understanding of a drug before performing clinical tests to reduce the
experimental cost. The current study uses a coarse-grained molecular dynamics (MD)
approach with the MARTINI force field to parameterize the corticosteroid drug mometa-
sone furoate, which is used to treat lung inflammation. Here, we investigate the accurate
parametrization of drug molecules and validate the parameters with the help of umbrella
sampling simulations. A collection of thermodynamic parameters was studied during
the parametrization procedure. The Gibbs free energy gradient was used to calculate the
partition coefficient value of mometasone furoate, which was approximately 10.49 based
on our umbrella sampling simulation. The value was then matched with the experimental
and predicted the partition coefficient of the drug, showing good agreement. The drug
molecule was then delivered into the lung surfactant monolayer membrane at the alveolar
air–water interface, resulting a concentration-dependent drop in surface tension while
controlling the underlying continual compression–expansion of alveoli that maintains the
exhalation–inhalation respiratory cycle. The dynamical properties of the monolayer demon-
strate that the drug’s capacity to diffuse into the monolayer is considerably diminished in
larger clusters, and this effect is intensified when there are more drug molecules present in
the monolayer. The monolayer microstructure analysis shows that the drug concentration
controls monolayer morphology. The results of this investigation may be helpful for corti-
costeroid drug delivery into the lung alveoli, which can be applied to comprehend how the
drug interacts with lung surfactant monolayers or bilayers.

Keywords: drug design; drug delivery; lung surfactant; molecular dynamics; umbrella
sampling
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1. Introduction
Numerous lung illnesses, such as asthma, chronic obstructive pulmonary disease (COPD),

bronchitis, emphysema, and respiratory allergies, are treated with glucocorticoids [1]. When
glucocorticoids are administered topically, intravenously, or orally, they may have numerous
side effects since the medication reaches the bloodstream through the systemic pathway [2]. In
order to prevent the systemic adverse effects of corticosteroid medicine, inhaling the substance
into the lung airway is the ideal method for treating lung illness. To evaluate innovative
delivery methods, such as aerosol inhalation, clinical studies are being performed [3].

Corticosteroids can decrease inflammatory responses in the conducting region of the
distal lung airways and the microphagic domain at the alveoli [4–6]. These drugs reduce
inflammation in various ways, including binding to glucocorticoid receptors, which have
intracellular impacts on the cells, and interacting with lung surfactants at the alveolar
air–water interface. A spectroscopy-based investigation provides insight into how inhaled
corticosteroids collaborate with human serum albumin [7]. Inhaled corticosteroids (ICSs)
continue to be the most efficacious anti-inflammatory medication for treating persistent
asthma [8,9]. It has long been understood that even slight chemical changes to the corti-
costeroid core molecule can produce significant differences in potency, which are usually
measured by how well the corticosteroid binds to the glucocorticoid receptor [10]. Ex-
amining the mechanisms of drug–receptor or drug–membrane interactions is essential to
comprehending how drugs affect the ability to bind with glucocorticoid receptors. Such
interaction plays a key role in the kinetic and dynamic studies of the drug. They affect how
quickly the drug spreads and accumulates; only non-binding drugs can be transported to
reach a targeted region through some biological reactions.

The spatial distribution of active concentrations of several corticosteroid drugs sup-
plied to the alveolar surface of the lung is greatly influenced by their binding affinity for the
protein human serum albumin (HSA). Drug binding to HSA prolongs the drug’s half-life
and decreases free drugs in the bloodstream, making it crucial for therapeutic treatment [7].
However, the inhalation technique enables the drugs to be quickly disseminated through-
out the surface of the lung surfactant into the targeted area, where they act locally to
reduce inflammation. It is the suggested non-systemic route for corticosteroid delivery
into the lung airways as opposed to oral and intravenous drug delivery [11,12]. According
to clinical studies, inhaled corticosteroids significantly lower airway hyperresponsive-
ness, effectively halt acute exacerbations, improve lung function, and lessen symptom
severity [13]. Apart from their role in other physiological processes, corticosteroids also
influence the respiratory system’s release of inflammatory mediators, such as those made
by mast cells, eosinophils, lymphocytes, and macrophages [14]. The pharmacokinetic
characteristics and related pharmacodynamic effects of the medication have an impact on
the effectiveness profile of inhaled corticosteroids [15]. It is possible for freely circulating
inhaled corticosteroids to attach to non-pulmonary glucocorticoid receptors and cause
adverse effects, including decreased hypothalamic–pituitary–adrenal (HPA) axis activity
and developmental impairment [16].

Mometasone furoate (MF) can help to lessen its adverse effects by extensive protein
binding with the corticosteroid, which assists in inhibiting the specificity/selectivity of
the drug to the membrane. Extensive research is required to monitor the pharmacokinetic
and pharmacodynamic mechanisms of the corticosteroid medicine in order to comprehend
drug–protein/membrane interactions. The protein binding affinities of various inhaled
corticosteroids, such as betamethasone, flunisolide, prednisolone, and triamcinolone, were
determined using spectroscopy by Pontremoli et al. [7] in order to observe the pharma-
cokinetic characteristics of the corticosteroids. As a result, it is crucial to comprehend how
corticosteroids interact with, accumulate in, and propagate through lung surfactants. These
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molecular-level interactions can be investigated by atomistic or coarse-grained (CG) in
silico studies [17–19]. In order to investigate length and time scales beyond what is possible
with atomistic or all-atom models, the incorporation of CG models in MD simulations
is crucial [20–22]. Atoms are grouped to form supra-atomic fragments, or beads, in CG
structures. In addition to expanding the range of spatio-temporal scales, these models can
offer a more informative view than atomistic ones due to the lower degrees of freedom
that provide a more straightforward representation of the system. The CG simulations are
therefore a vital tool to support experimental approaches in the investigation of phenom-
ena, including host–guest interaction, domain creation, spontaneous self-assembly, and
phase transition. This study is aimed at understanding the effect of the corticosteroid drug
MF on the lung surfactant monolayer that forms at the air–water interface in the alveoli.
Before investigating the interaction mechanism, MF’s coarse-grained structure needs to be
parameterized by calculating the partition coefficient of the drug molecule. The spreading
and interaction mechanism of the drug molecule with the lung surfactant monolayer will
also be investigated in this study.

2. Methodology of the Study
2.1. Drug Parameterization and Umbrella Sampling Simulation

It is possible to classify CG models primarily based on either a building block method
or a systematic (sometimes known as hierarchical) approach [22,23]. The basic atomistic
structural information can be precisely reproduced by models based on the initial as-
sumption; nevertheless, this atomistic approach necessitates more time to reparameterize
whenever a condition changes, compared to the CG approach of parameterization. Further-
more, the necessary potential structure of the molecules is frequently complicated, which
may lead to poorer performance and, hence, less sampling. Conversely, models created
using the building block technique are less expensive components and employ a simpler
structure. A second benefit of the building block method is the transferability of the models,
which allows them to be used as components of comparable moieties in various com-
pounds. These benefits, nonetheless, come at the expense of a reduced level of structural
fidelity because building block-based CG models always portray atomistic information in
a sub-optimal way. The Martini CG force field [24] is one of the fundamental approaches
to coarse-graining MD simulation that has gained a lot of attention recently because of its
success in characterizing a variety of biomolecular complexes [25]. It has been observed
that the force field, which was initially designed for biomolecular simulations, has been
effectively utilized to depict systems with soft materials. Examples of these systems include
organic semiconductors, self-assembled supramolecular materials, and polymers [26]. The
Martini model’s widespread application, however, brought to light several drawbacks,
most notably in the characterization of structures that are modelled with a finer resolution
than the typical resolution of four non-hydrogen atoms per bead (4-to-1) [27–29]. More
accurate 3-to-1 or 2-to-1 mappings are necessary for modelling ring-like structures [24] for
maintaining the polymer’s repeating unit homogeneity [30]. “Small” [24] and then even
smaller, “tiny” beads [31] were introduced for such precise mappings. In CG molecular
dynamics simulations, the drug molecules are structured by splitting into the building
blocks to CG beads, which is performed through experience, chemical knowledge, and a
trial-and-error basis. The bead mapping of the mometasone furoate CG model is given in
Table 1 and detailed mapping is also presented in Supplementary Section S1.1. The method
used for this mapping procedure is followed by the MARTINI model of small molecule
parameterization [32]. Table S1 shows the construction and presentation of the MF coarse-
grained bead mapping. The 4-to-1, 3-to-1, and 2-to-1 mappings are considered regular (R),
small (S), and tiny (T) beads for the underlying atoms with some advanced mapping rules.
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According to the other steroid drug (mometasone) structure [33], a coarse-grained model
for MF was designed, and MARTINI bead structures [34] were used to model the drug
structure. Once the stable coarse-grained model of the MF was established, the partitioning
free energy was determined using umbrella sampling (US) simulation. In order to confirm
the mometasone furoate CG parameter, the partition coefficient (logP value) of MF was
derived from the Gibbs free energy difference. The resulting value was then compared
with the experimental, predicted, and simulated partition coefficient of MF. The observed
logP value also contrasts with anticipated logP values from the mometasone furoate drug
data bank at various scales.

Table 1. The CG bead mapping of mometasone furoate is based on the chemical structure of the drug
molecules. The 4-to-1, 3-to-1, and 2-to-1 mappings are considered regular (R), small (S), and tiny (T)
beads for the underlying atoms.

Bead Name Molecule Name Bead Type Group Moiety

1B RO1 SNa Cyclic ketone
2B R1 SC4 Cyclic diene
3B RCL1 SC3 Cyclic chloro-alkane
4B ROH SP1 Cyclic alcohol
5B R2 SC2 Cyclic alkane
6B R3 SC2 Cyclic alkane
7B RO2 SNa Cyclic ketone
8B RCL2 C3 Aliphatic chloride
9B ROO Na Aliphatic acetic acid
10B RO3 SNa propanol

First of all, the umbrella sampling model was prepared by placing a drug at the
centre of mass with a box size 5 × 5 × 7 nm3 to optimize the structural parameters of
the drug molecule. Then, the parameters were set up by guessing (with proper chemical
knowledge) for MD simulation and updating the parameters (bond length, bond angle,
dihedral angle) to obtain optimized bond length, bond angle, and dihedral angle for the
stable structure of the drug molecule. For each case, the simulation was conducted with
100 ns for equilibration and another 100 ns for production-run simulation in both systems
(drug-in-water and drug-in-octanol mediums) by applying NVT and NPT ensembles,
respectively. From these simulations, the bonded parameters, including bond length, bond
angle, and dihedral angle, were monitored.

In the US technique, the potential mean force (PMF) of the drug molecule from the
octanol medium (hydrophobic medium) into the water medium (hydrophilic medium)
was calculated [35,36] by using pull simulation. An octanol–water configuration was built
with a box size 5 × 5 × 21 nm3. The coarse-grained parameters for octanol molecules
were chosen from the Taddese and DeBolt study [37,38] and for water from the Martini
model [34]. A single drug molecule was introduced into the centre of mass of the octanol
phase to start simulations (Figure 1). Employing a potential, Vus, which is specified by
zi, at pulling time, the space between the centres of mass of the drug and the solvent is
determined using the equation below (Equation (1)).

Vus =
1
2

kus(z − zi)
2 (1)

where kus is the harmonic force constant, which fluctuates from 100 to 2000 kJ mol−1 nm−2.
The steepest descent algorithm was employed until the highest energy gradient was less
than 100 kJ mol−1 nm−1 to escape the interactions among the drug, water, or octanol [39].
We performed an NPT ensemble for 100 ns using Berendsen pressure coupling [40] at
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1.0 bar with semi-isotropic pressure. We started the final run for 100 ns, employing a
velocity rescaling thermostat [41] at the same temperature with Parrinello–Rahman pressure
coupling [42]. The trajectories were collected to evaluate PMF over a total of 35 windows
separated by 0.2 nm. Finally, the Gibbs free energy was estimated by applying the weighted
histogram analysis method (WHAM) [35].

Figure 1. The arrangement of the umbrella sampling simulation of the drug molecule (purple) into
the octanol–water biphasic model to measure the PMF of mometasone furoate. The WHAM technique
was used to examine the intersection between umbrellas along the z-axis up to 7.0 nm.

2.2. System Simulation and Underlying Conditions

Forty-eight models were created (Table S2, in Supplementary Section S1.3) for MD sim-
ulation. Each of the 48 systems is simulated at a range of area per lipid (APL) values starting
from 0.47 nm2 to 0.61 nm2 in order to represent compressed (mimicking exhale breathing)
and expanded (representing inhale breathing) states of breathing cycles, respectively [43].
The detailed step-by-step procedure of monolayer construction can be found in our book
chapter published in Springer [44]. System-I serves as the main reference system, and
it comprises DPPC-POPC-POPG-CHOL, 60:20:10:10 mol %. Mometasone furoate at five
different concentrations was incorporated (Systems II-a to II-e). The structure of monolayer
constituents (DPPC-POPC-POPG-CHOL) is illustrated in Figure 2. The quantity of drug
utilized in the models is equivalent to a single inhalation of a dry powder inhaler. Supple-
mentary Document S1.4 provides detailed information on the calculation for translating a
standard ICS dosage into various compounds utilized in this investigation.

A base drug-free model (Table S2) constructed by mixed lipids (DPPC:POPC:POPG:CHOL,
60:20:10:10) was run with the NPγT (constant number of particles, constant surface tension and
temperature) ensemble, employing Pγ values (0 to 60 mNm−1) with a step of 10 mNm−1 to
replicate compressed (~0 mNm−1) to expanded (~60 mNm−1) states of surfactant models. From
the NPγT ensemble simulation, eight different systems were extracted whose APLs are 0.47,
0.49, 0.51, 0.53, 0.55, 0.57, 0.59, and 0.61 nm2. These systems were incorporated into a box with
dimensions of 24.90 × 24.90 nm2, 24.49 × 24.49 nm2, 24.10 × 24.10 nm2, 23.64 × 23.64 nm2,
23.21 × 23.21 nm2, 22.77 × 22.77 nm2 and 22.32 × 22.32 nm2, respectively, to maintain a
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constant area of the monolayer during the NVT (constant number of particles, constant volume
and temperature) ensemble study. All the prepared models (System-I and System-II) were
run for 500 ns to obtain the stable model, and then, again, a 2 µs production run simulation
was simulated to store the data in the same NVT ensemble. Five distinct systems were built
as a base model for studying the mometasone furoate-containing monolayer, and then the
drug molecules were introduced to ensure the required drug concentrations. Supplemental
Section S1.4 explains the reasoning for selecting this range of drug concentrations to determine
an average drug dose of ICS. GROMACS version 2021.4 [45] was chosen to conduct the
simulation. Each of these models was energy-minimized using the steepest descent algorithm.
The leapfrog algorithm [46] with a 20 fs time step was applied. Martini standard cut-off for the
Coulomb interaction potential and the Lennard-Jones interaction potential were considered.
Monolayer constituents (lipids and cholesterol), water and ions, and the drug were coupled
independently at a temperature of 310 K with a V-rescale thermostat [41] and a time constant
of τ = 1.0 ps. The neighbour lists were stored after 20 steps every time.

Figure 2. Schematic illustration of the simulation system and its components (coarse-grained struc-
ture); (a) lung surfactant monolayer system, (b) DPPC, (c) POPC, (d) POPG, (e) cholesterol, and
(f) mometasone furoate.

3. Results and Discussion
3.1. Bond Distribution Analysis of the Drug Molecules

In order to match the bonded distribution of the CG beads of the mometasone furoate
drug molecules, the various bond length distributions between two coarse-grained beads,
bond angles between three beads, and dihedral angles between four beads were calcu-
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lated and are plotted in Figure 3 and Figure S1. On a repeated trial-and-error basis, the
bonded parameters of the mometasone furoate were optimized by employing the better
approximation of the bonded parameters. The obtained results were compared for different
bonded parameters such as bond length (Figure 3), bond angle (Figure S1a,b), and dihedral
angle (Figure S1c). As is observed in Figure 3, the bond length distribution between any
two beads is illustrated.

Figure 3. Optimization of coarse-grained bonded parameters for various bond length distribu-
tions between different coarse-grained beads. (a) Beads: 1B—3B, (b) beads: 1B—4B, (c) beads:
3B—4B, (d) beads: 3B—5B, (e) beads: 4B—5B, (f) beads: 5B—7B, (g) beads: 7B—3B, (h) beads:
7B—4B. The “black” colour indicates atomistic simulations, and the “red” colour refers to
coarse-grained simulations.

The overall comparison of the bond distribution in the two computational scales is
comparable. The maximum average bond length was found to be ~0.49 nm for the 1B—3B
bead, ~0.60 nm for 1B—4B, ~0.27 nm for 3B—4B, ~0.34 nm for 3B—5B, ~0.29 nm for 4B—5B,
~0.40 nm for 5B—7B, ~0.72 nm for 7B—3B, and ~0.54 nm for 7B—4B. In the case of bond
angle calculations, the estimated bond angle between any three beads has been determined
and presented in Figure S1a,b. The maximum distribution of the average bond angle is
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gauged at approximately 150◦ for beads 4B—7B—8B and approximately 60◦ for beads
4B—7B—8B, which is very stable. Eventually, the findings from both simulations (atomistic
simulation indicated by a “black” curve and coarse-grained simulation indicated by a “red”
curve) show a similar trend of bond angle distribution. We have also analyzed the dihedral
angle between the four beads 1B—3B—4B—7B, and similar findings are observed for both
the cases as presented in Figure S1c. The findings from the calculation as mentioned
above show very good agreement, which indicates that the structure and parameters of the
mometasone furoate molecule are stable. Additionally, for more validation of the coarse-
grained molecular structure of drug molecules, the octanol–water partition coefficient has
also been determined.

3.2. Calculation of the Partition Coefficient of the Drug Molecule

The trustworthy partition coefficient of the drug molecule is obtained from the Gibbs
free energy gradient using Equation (2), and the PMF is calculated from umbrella sampling
simulation at various simulation time frames (for convergence test, Figure 4). The obtained
logP value was then compared with the experimental and predicted partition coefficient by
cheminformatic techniques for mometasone furoate and other corticosteroids as illustrated
in Figure 5.

logPoctanol→water(mometasone furoate) =
∆Goctanol→water

2.303 RT
(2)

where R is the molar gas constant. The weighted histogram analysis method (WHAM) [35,47]
was applied to recalculate the free energy (Figure 4), which had fluctuation errors computed
with the help of the bootstrapping method [48]. The PMF produced from steadily longer
trajectory lengths served as a measure of convergence of the results. The calculated free
energy difference ∆Goctanol→water was found to be −58.65 kJ mol−1 (Figure 4b), and the
subsequent logP value of mometasone furoate was found to be 10.29. Although the logP
value is overstated, the comparative logP values for other corticosteroids (prednisolone,
mometasone, cortisone, hydrocortisone, and cholesterol) are reasonable, and our values are
comparable to earlier simulations of CG models that mimic similar corticosteroid drugs [49]
as presented in Figure 5.

Figure 4. The PMF profile of mometasone furoate from octanol to the water phase. (a) PMF curves
at various simulation times to test the convergence of the results. (b) The final conversed free
energy curve of the drug molecule. The bootstrapping method [48] has been used to calculate the
fluctuation errors.
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Figure 5. The comparison of the logP value of the corticosteroid drug mometasone furoate and
other corticosteroid drugs calculated from different scales (experiments [50–55], PubChem reference
AlogPS [56] and ChemAxon [57] and umbrella sampling simulation, US [33,34,49,58,59]).

The common logarithm value of partition coefficient P (logP) is a constant that explains
different physical phenomena, including the physicochemical property of a drug compound
(lipophilicity). If the value of logP is negative, then the compounds are hydrophilic (i.e.,
have a higher affinity for the aqueous phase). On the other hand, a positive value of the logP
refers to the molecule as a lipophilic compound (i.e., a higher affinity for the lipid/organic
solvent phase). If the logP value is zero (0), the molecule is equally partitioned between lipid
and aqueous phases. As we obtained a positive logP value (10.29) from the US simulation,
mometasone furoate is a lipophilic drug compound. This means that the drug is soluble in
the lipid subphase. LogP is an important characteristic that affects how a medicine interacts
with the lung surfactant monolayer and how well it will be absorbed, transported, and
disseminated. Mometasone furoate is more hydrophobic than other corticosteroid drugs, as
illustrated in Figure 5. As a result, this drug might have a strong interaction with the lung
surfactant lipid components, which will help to explain the accumulation and spreading
mechanism of the drug molecule on the lung surfactant monolayer.

3.3. Monolayer Surface Tension Analysis

After obtaining the stable structure of the drug (mometasone furoate) molecule, the
MD simulation was run at constant APL values ranging from 0.47 nm2 (highly compressed
monolayer) to 0.61 nm2 (highly expanded monolayer) with an equally spaced molecular
area of 0.02 nm2. From these simulations, the surface tension was monitored at various
drug concentrations, as presented in Figure 6. The surface tension was estimated with the
help of Equation (3s) in the Supplementary Section S1.5. At lower APL values (0.47 nm2)
representing the exhalation breathing estimates, the surface tension was ~7.50 mNm−1 (in
the control system, with no drug), which can be aligned with the experimental results for
the other corticosteroid drug, hydrocortisone [60].
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Figure 6. The impact of the drug on the compressibility of the monolayer area from the simulation of
the system to isolate the breathing dynamics during the time from inhalation to exhalation breathing
conditions. The data were estimated over the last 1 µs of the 2 µs simulation. The error bar refers to
the standard deviations of the surface tension data across the frames.

After introducing the drug molecules into the system, the surface tension starts declin-
ing with the increase in drug concentrations by ~6.5 mNm−1 (0.72% w/w), ~6.2 mNm−1

(1.42% w/w), and ~5.5 mNm−1 (4.18% w/w) (Figure 6). This behaviour of the monolayer is
seen for a certain drug concentration of 4.18% w/w (~5.5 mNm−1). Then, a dramatic in-
crease in surface tension is observed for drug concentrations of 8.02% w/w (~21.3 mNm−1)
and 14.84% w/w (~23.0 mNm−1). It is well known that pure phospholipid combinations
make up lung surfactants, which cover the surface of the alveoli. These films prevent
alveoli from collapsing by reducing the surface tension of the alveolar fluid to a low value
(<~5 mNm−1) [61]. The drug molecules show a crucial effect on the monolayer stabil-
ity by balancing the surface tension and surface pressure up to the drug concentration
(<8.02% w/w) at a highly compressed monolayer. In contrast to the reduction in surface
tension, the monolayer reveals a sudden rise in surface tension ~21.3 mNm−1 (8.02% w/w)
once the drug concentration exceeds the critical value 8.02% w/w and causes instability of
the monolayer (Figure 7) which induces the lung surfactant monolayer to collapse at the
low mean molecular area.

A similar trend of surface tension has been observed up to the monolayer mean molec-
ular area of 0.51 nm2 for the drug concentration of 1.42% w/w. The opposite scenario was
observed when the mean area per lipid increased from APL = 0.53 nm2 to APL = 0.61 nm2

for all drug concentrations except 8.02% w/w and 14.84% w/w at APL values 0.59 nm2 and
0.61 nm2, showing comparatively higher surface tension at the 8.02% w/w (~27 mNm−1 at
APL = 0.59 nm2 and ~37.5 mNm−1 at APL = 0.61 nm2) drug concentration compared to
14.84% w/w (~20.4 mNm−1 at APL = 0.59 nm2 and ~16.7 mNm−1 at APL = 0.61 nm2). Be-
yond the critical concentration, a higher drug concentration causes higher film fluidization,
which induces the surfactant film to collapse earlier at lower APL values. On the other hand,
at a higher APL value, the drug causes microstructure pore formation in the monolayer
(Figure 7b), which supports interaction of the other corticosteroid drug (hydrocortisone)
with the lung surfactant monolayer [49]. Due to high surface tension, the monolayer experi-
ences a huge interfacial force that helps to split the monolayer components from the surface,
causing pore formation, which is highly influenced by the maximum drug concentration.
As can be seen from Figure 7b, a pore has been created, and it is found that in the size of the
pore is increasing as the drug concentration raises. The mechanism of such pore formation
can be found in a study by Fangsheng et al. [62]. The overall findings from this investigation
are that at low APL (<0.47 nm2), the phospholipid mixed monolayers collapse (Figure 7a)
as drug concentration rises by fracturing the microstructure of the monolayer, while at
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high APL values (more than 0.61 nm2), a nanopore forms in the monolayer (Figure 7b).
This is because of the inability of the drug to spread at low molecular areas, causing the
monolayer to collapse. In contrast, the imbalance of high interfacial pressure over the
monolayer surface induces the splitting of the lipid molecules from the monolayer surface,
causing the formation of nanopores on the monolayer.

Figure 7. Snapshots of monolayer surface microstructure morphology at two different APL values,
(a) 0.47 nm2 (condensed state) and (b) APL = 0.61 nm2 (expanded state), in the presence of 8.02% w/w
drug concentration. Components shown are DPPC (green), POPC (blue), POPG (orange), CHOL
(red), lipid head group (yellow), and drug (purple).

3.4. Monolayer Phase Analysis by Density Calculation

Mass density profiles of the monolayer components, along the monolayer, normal
direction can be calculated to see whether the lung surfactant monolayer is losing thickness
or not, as well as the lipids that make up the monolayer to be displaced toward or away
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from the lipid–water or lipid–air interface. Figure 8 displays the mass density profiles for
the phospholipids and water from simulations at different molecular areas in the pres-
ence of 1.42% w/w mometasone furoate. The comparison of average mass density curves
of phospholipids at the different APL values reveals that the maximum peak heights of
density profile (~1100 Kgm−3) are observed between the APL values 0.53–0.59 nm2 from
the monolayer centre, while peak heights (~900 Kgm−3) at the compressed monolayer
(<0.53 nm2) and expanded monolayer (>0.59 nm2) are the nearest to the centre of the mono-
layer. These findings provide information on the phase behaviours of the phospholipid’s
mixed monolayer, whether it is liquid-condensed (LC), liquid-expanded (LE), or phase
co-existence (LC-LE). At the LC phase, the calculated surface tension lies between 5.53 and
9.51 mNm−1 (at APL: 0.47–0.51 nm2) for all the drug concentrations (Figure 8a). In this
situation, the monolayer lipid molecules are perpendicularly aligned with the monolayer
surface, ensuring the higher-order parameter of lipid tails [63].

Figure 8. Density profile of the monolayer components along the z-axis of the drug–lipid system
at drug concentration of 1.42% w/w for different mean molecular areas. (a) Phospholipid density
(DPPC, POPC, POPG and CHOL), (b) water density.

If the number of drug molecules gradually increases, then the monolayer collapses due
to the inability to spread the capacity of the drug molecules over the monolayer surface. The
hydrophobicity of the drug molecule influences the drug–drug, drug–lipid, and lipid–lipid
interactions within the lower molecular area by producing a nanocluster of drug molecules
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on the monolayer (Figure 7a). This form of monolayer collapse has also been seen in the
studies conducted by Lopez et al. [58] and Islam et al. [64]. On the other hand, phospholipid
phase co-existence (LC-LE) has been observed between the APL values of 0.53 and 0.55 nm2,
producing surface tension between 22.44 and 33.65 mNm−1. In this intermediate stage
of the monolayer, the lipid molecules have space to move, which contributes to reducing
the lipid tails’ order parameter. As a result, the drug molecules can spread easily over the
monolayer surface by breaking down the nano-drug cluster without causing the monolayer
to collapse. The following section will discuss such accumulation and splitting mechanisms
in detail. These spreading behaviours of the drug molecule might also be found up to
the APL value of 0.59 nm2 for the underlying drug concentrations. If the APL value
exceeds 0.61 nm2, then the monolayer exists in the liquid-expanded (LE) state, where lipid
molecules may move frequently from their origin over the monolayer surface. In this case,
the phospholipid density peak has been calculated at ~900 kgm−3 after a slight decrease in
the density profile curve (Figure 8). This is because of the formation of the nanopore on the
monolayer surface by displacing the monolayer components due to the additional pressure
that the hydrophobic drug molecules might induce, according to the density data, which
showed monolayer expansion due to the increasing drug presence on the monolayer. These
alterations point to a minor membrane thinning. Another critical effect on the monolayer
is the shifting of the membrane to the monolayer centre (as presented in Figure 8b) when
the APL is increased by reducing the water density from 1000 kgm−3 to 900 kgm−3. These
changes in the monolayer’s location imply that it is expanded at a high mean molecular
area compared to a low mean molecular area, which aligns with the APL and surface
tension data. Therefore, the density profiles of lipids and water molecules control the
monolayer phase behaviour and drug distribution over the monolayer surface.

3.5. Drug Distribution by Clustering Analysis

Organizing a collection of molecules in the same category (referred to as a clus-
ter) makes them more similar to each other than those in other groups. It is a primary
function of the exploratory analysis of data and a widely used statistical data analysis
technique in various fields, including bioinformatics, biophysics, and molecular biology.
Drug molecules may adsorb into the monolayer by inducing cluster formation. The cluster
formation criterion is configured in such a way that the drug molecules are said to be in
a cluster if the distance between any two drug molecules is less than 1.20 nm. A cluster
size analysis of mometasone furoate was performed for a range of drug concentrations at
two different states of the monolayer, the expanded monolayer (LE phase, APL = 0.61 nm2)
and the compressed monolayer (LC phase, APL = 0.47 nm2), to examine the effect of
drug concentrations on the formation of the drug clusters. To do so, the relevant num-
ber of drug molecules (20 drugs for 0.72% w/w, 60 drugs for 1.42% w/w, 120 drugs for
4.18% w/w, 240 drugs for 8.02% w/w, and 480 drugs for 14.84% w/w) were introduced into
the monolayer (Figure 9a).

Time evolution of the number of drug cluster formations for the mixed-lipid DPPC-
POPC-POPG-CHOL monolayer, maintaining a ratio of 60:20:10:10, was determined for
APL = 0.47 nm2 and APL = 0.61 nm2 as illustrated in Figure S2. The calculated time-
averaged numbers of drug clusters were 15, 29, 63, 60, and 27 for APL = 0.47 nm2 and
19, 50, 79, 63, and 6 for APL = 0.61 nm2 at the respective drug concentrations 0.72% w/w,
1.42% w/w, 4.18% w/w, 8.02% w/w, and 14.84% w/w (Figure 9a). Figure 9a shows that clus-
ter formation progressively rises with drug concentration up to a specific point (4.18% w/w),
after which it precisely decreases with increasing drug concentration. The drug on the
monolayer surface determines the hydrophobic drug–drug interaction, which is maximal
at a specific critical drug concentration (4.18% w/w). However, drug interactions are less



Micro 2025, 5, 44 14 of 19

prominent at other drug concentrations than at this threshold drug concentration (4.18%).
Initially, the drug molecules accumulate together to form different large clusters that stay
on top of the lipid tails of the monolayer before entering the monolayer surface.

Figure 9. (a) Cluster size analysis, (b) microstructure morphology analysis by density map calcu-
lation at APL = 0.47 nm2, and (c) microstructure morphology analysis by density map analysis at
APL = 0.61 nm2 for various drug concentrations.

These big drug clusters fragment as time passes and then start splitting the drug
molecules into several smaller nanoclusters (Figure 9b). The distribution of the drug
molecules has also relied on the monolayer state. Highly compressed monolayer com-
ponents (lipid molecules) may prevent the drug molecules from spreading at low APL
values, which could lead to the monolayer collapsing (Figure 7), which supports another
study conducted by Islam et al. [64] for the corticosteroid drug prednisolone. Figure 9b
illustrates such a collapsing mechanism at higher drug concentrations. A small-sized lipid
protrusion formation has been seen in the monolayer once the drug concentration exceeds
4.18% w/w and gradually increases in size. This protrusion induces the lipid monolayer to
transform into a monolayer–bilayer structure and, finally, causes monolayer collapse, which
is supported by some existing experimental [65–67] and computational [68–70] studies. In
contrast to low APL values, the opposite scenario is observed for higher APL values. At
high APL values, the drug molecules have more space to transport over the monolayer
surface due to the reduced number of drug–lipid clashes in the highly expanded lipid
monolayer. In this case, the drug clusters might quickly break down and have more space to
move over the monolayer surface by maintaining stability of the monolayer (Figure 9c). But
if we further increase the APL values (APL ≥ 0.61 nm2), then the monolayer demonstrates



Micro 2025, 5, 44 15 of 19

pore formation due to the extremely high surface pressure, which was also observed by
another study [49].

4. Conclusions
The present study has been conducted to parameterize the corticosteroid drug mometa-

sone furoate utilizing a molecular dynamics simulation, as well as to determine the effect of
drug concentration on monolayer morphology. The logP value of mometasone furoate was
determined from the Gibbs free energy gradient, which was found to be 10.49. The value
was then matched with the experimental and predicted partition coefficients of mometa-
sone furoate, which shows good agreement. The optimized structure of the drug has been
used to study the concentration effect of mometasone furoate on the lung surfactant. Using
coarse-grained modelling of the drug, it was possible to efficiently test the stability of
the lung surfactant monolayer and identify the critical corticosteroid drug concentration
(4.18% w/w). This coarse-grained structure of the drug molecule may also provide informa-
tion to conduct in silico, in vitro, and in vivo studies to identify the optimized drug dose
for dry powder inhalers.

Fixed-APL simulation results reveal a concentration-dependent drop in surface ten-
sion for all APL simulations at a critical drug concentration and the underlying continuous
compression–expansion simulation represents the exhalation–inhalation breathing cycle of
the alveoli. The monolayer components may pack closer together at a highly compressed
monolayer as a result of an intercalating effect that could happen when the drug inter-
calates between the phospholipid head groups compared to the lipid tail groups. For
exhalation breathing, the drug-induced collapse was found at a higher drug dose (>4.18%).
In contrast, drug-induced pore formation was noticed on the monolayer surface at a higher
drug concentration (>8.02% w/w) for inhalation breathing. The results of the dynamic
characteristics of the model show that the drug’s ability to diffuse into the monolayer is
significantly reduced in larger clusters, and this effect is exacerbated when the system
contains more drug molecules on the monolayer. The overall findings from this study show
that pharmaceutical companies and wet lab scientists will be able to establish the appropri-
ate corticosteroid dosage for lung disorders by conducting in silico, in vitro, and in vivo
studies, which may contribute to a better understanding of the mechanism of interaction
between inhaled corticosteroids and lung surfactant at the alveoli.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/micro5040044/s1, Figure S1: Optimization of coarse-grained bonded
parameters for various bond angles (a,b) and dihedral angle (c) distributions between different coarse-
grained beads. (a) beads: 4B-7B-8B, (b) beads: 7B-9B-10B, (c) beads: 1B-3B-4B-7B. The “black” colour
indicates atomistic simulations, and the “red” colour refers to coarse-grained simulations; Figure S2: Time
evolution of the number of drug cluster formation for the monolayer comprised of the mixed lipids
DPPC-POPC-POPG-CHOL maintain a ratio of 60:20:10:10. Number of drug cluster for APL = 0.47 nm2

(a) and for APL = 0.61 nm2 (b). Table S1: Coarse-grained bead mapping of the mometasone furoate.
A group of three or four atoms has been considered a single heavy atom, known as a coarse-grained
bead. The 4-to-1, 3-to-1 and 2-to-1 mappings are considered regular (R), small (S), and tiny (T) beads for
the underlying atoms. Table S2: Summary of the 48 simulation systems for lung surfactant monolayer
models composed of DPPC-POPC-POPG-CHOL (60:20:10:10) in the absence (System I) and presence
of mometasone furoate (MF) drug molecules (System II-a to II-e). Each System is simulated at a range
of APL values from 0.47 nm2 to 0.61 nm2. At least two repeated runs were conducted for each of the
simulations. In certain circumstances, the simulation has been run three times to obtain trustworthy
outcomes [71–76].
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