
© 2011 IEEE. Reprinted, with permission, from Zenon Chaczko, Christopher Chiu, Shahrzad Aslanzadeh and Toby
Dune, Software Infrastructure for Wireless Sensor and Actuator Networks, aSystems Engineering (ICSEng), 2011 21st
International Conference on, 16-18 Aug. 2011. This material is posted here with permission of the IEEE. Such
permission of the IEEE does not in any way imply IEEE endorsement of any of the University of Technology,
Sydney's products or services. Internal or personal use of this material is permitted. However, permission to
reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale
or redistribution must be obtained from the IEEE by writing to pubs-permissions@ieee.org. By choosing to view this
document, you agree to all provisions of the copyright laws protecting it

Software Infrastructure for Wireless Sensor and
Actuator Networks

Zenon Chaczko
Faculty of Engineering and IT

University of Technology
(UTS)

Sydney, NSW, Australia
zenon.chaczko@uts.edu.au

Christopher Chiu
Faculty of Engineering and IT

University of Technology
(UTS)

Sydney, NSW, Australia
christopher.chiu@uts.edu.au

Shahrzad Aslanzadeh
Faculty of Engineering and IT

University of Technology
(UTS)

Sydney, NSW, Australia
shahrzad.aslanzadeh@

student.it.uts.edu.au

Toby Dune
Faculty of Engineering and IT

University of Technology
(UTS)

Sydney, NSW, Australia
toby.dune@alumni.uts.edu.au

Abstract—In the development of large ad-hoc Wireless Sensor
and Actuator Agent Networks (SANETS), a multitude of disparate
problems are faced. In order for these networks to function,
software must be able to effectively manage: unreliable dynamic
distributed communication, the power constraints of un-wired
devices, failure of hardware devices in hostile environments and
the remote allocation of distributed processing tasks throughout
the network. The solutions to these problems must be solved in a
highly scalable manner. The paper describes the process of
analysis of the requirements and presents a design of a service-
oriented software infrastructure (middleware) solution for scalable
ad-hoc networks, in a context of a system made of mobile sensors
and actuators.
Keywords– SANETS, Middleware, Distributed System Software
Services.

I. BACKGROUND

The aim of this work is to create a network made up of many
individual devices that can function as a single survivable
entity. The individual devices must cooperate with each other
to provide processing for a single purpose. Managing failure of
devices and links on the network is a key concern in providing
for the survival of the key processing tasks of the network, as
individual devices fail. With a distributed network of miniature,
wireless sensing and actuating devices at our command,
scattered throughout the area of interest we have the ability
to gain an awareness of the situation not previously possible.
Information is power: with more information at hand about a
particular situation, it is possible to increase our power to make
the right decisions at a right time. Improved techniques of both
obtaining information and managing hardware devices in the
environment, in the form of sensory data and devices/resource
controls, bring about changes in the way we perceive and
interact with the environment. Greater informational gathering
capabilities and more flexible resource control can provide huge
benefits to a vast range of applications such as:

� Monitoring for research in various application domains
such as habitat monitoring and control for bio-diversity
and bio-complexity studies;

� Military situational awareness, toxin and radiation
detection, monitoring and possible neutralization of hostile
movements;

� Management of remote network infrastructure;
� Security monitoring and active protection of assets; and
� Management and monitoring of stress/seismic activity

effects in civil infrastructures (i.e. bridges, roads, buildings)

The Distributed SANET (DSAN) software infrastructure
(middleware) solution presented in this paper is intended to
provide a platform that addresses the challenges involved in
realising a Sensor and Actuator Agent Network (SANET). The
DSAN is to be used in the development of real-world sensor
and actuator networks and the trialling of new research
concepts in the SANET field. Further developments in sensor
networks can utilise the functionality provided by the
proposed solution of middleware, allowing researchers to be
more focussed at their specific problem area. It is aim of this
project to prevent development time of future research from
being wasted by having to reinvent, redesign or redevelop all
the underlying network management functions that are
provided by the presented middleware solution.

II. MIDDLEWARE FOR SANET TECHNOLOGY

In the traditional sense, component middleware systems [15,
16] is a type of middleware that enables reusable service
elements [8, 14] to be composed, configured, adapted, tested,
integrated and installed to build software applications reliably
and at a low cost, while adhering to requirements of
distributed shared memory across disparate environments.
Data space concerns can be addressed through Tuple Space
implementations as supported in modern component based
[16] software systems middleware, following the multi-layer
concepts of a core entity of representing the structures and
interconnections between internal entities. This provides users
with a specific set of capabilities (Figure 1):

� Connector Facilities within Components
Includes remote procedure calls, remote method invocation
or message passing mechanisms;

� Horizontal Models of Infrastructure Services
Request brokers or publish-subscribe mechanisms between
components within the same platform; and

� Vertical Models of Domain Paradigms
Common semantics and context awareness, and high-level
services spanning from transaction and lease support, to
multilayer security and privacy for multiple platforms.

Figure 1. SANET Component Architecture Paradigm

Recent advancements in miniaturisation of sensing devices
including Micro-electromechanical systems (MEMS),
embedded processors such as Systems on a Chip (SoC) and in
wireless communication have provided the hardware
capability necessary to control devices embedded in the
environment, collect environmental data and report it. With
the availability of the hardware and various software
information processing and management systems, including
commercial of-the-shelf (COTS) technologies, the
construction of effective SANET solutions becomes a reality.
Products, such as Sun’s Remote Method Invocation (RMI),
Microsoft’s .NET Remoting and Object Management Group’s
(OMG) Common Object Request Broker (CORBA) have
dramatically matured and become de-facto standards in the
ICT industry. At present, these solutions are being used to
reduce the Software Development Life Cycle and improve the
effectiveness of building systems by reducing costs (time,
work efforts, resource and materials) mostly in business
domains. Whilst commercial middleware solutions have
traditionally been used in business, including enterprise
management resource planning, stock control and asset
management systems, e-commerce reservation systems and
many other applications [6]; they rapidly have become in
dominant use for SANET systems that are built on evolvable,
autonomic [7] and ad-hoc networks with actuation and control.
This encapsulates monitoring and control processes,
operations, networks and hardware systems in civil and
environmental engineering, computing and
telecommunications, medicine, defence, manufacturing and
infrastructure industries.

SANET applications possess distinct characteristics relating to
its mission critical aspects and time constraints. Time criticality
and strict deadlines are essential, as the correct data response
that is delivered beyond a given threshold can result in
unpredictable or catastrophic consequences. Therefore, the
need for SANET middleware models to meet stringent Quality
of Service (QoS) qualitative requirements such as scalability,

robustness, usability, security, efficiency, latency, privacy and
trust [1, 2, 3, 8, 14, 17]. For all application domains, the
ultimate goal of infrastructure oriented software system such as
middleware is to support the process of software intensive
system development by facilitating integration of components
and protecting engineers from inherent and accidental
complexities related to heterogeneous computing
environments, management of resources, security and fault
tolerance. The important issue for component middleware
systems is being able to alleviate the compositional complexity
and management of distributed SANET systems. Reducing the
Software Development Life Cycle (SDLC), thus shortening the
time-to-market is essential in modern engineering and business
concerns. As the majority of developer roles are to assemble
distributed networked systems by selecting a combination of
custom made components and compatible COTS frameworks
[6, 8, 12] the process of selection is an important focus of this
research. The construction of an effective system requires
components to possess compatible application programming
interfaces (APIs), semantics, context and protocols which
makes the analytical process of selection and development of a
compatible set of software components a challenging task.
Problems are exacerbated by the availability of various vendor-
driven strategies for configuring and deploying the underlying
software middleware to leverage dedicated hardware and
software features.

III. SANET CHALLENGES

“The sheer number of sensor nodes and the dynamics of their
operating environments (e.g. limited battery power and hostile
physical environment) pose unique challenges in the design of
sensor networks and their applications” [15]. With the
introduction of this new technology and emergence of wireless
sensor networks, a new set of technical challenges arise [1, 5].
These challenges form the basis of the middleware.

A. Scalability of System and Communications
There is a need to manage the complexity of dealing with an
immense number of sensors and a large volume of information
contained within sensor and actuator networks so “...existing
distributed system scaling techniques are not directly
applicable given the extreme conditions under which our
target systems must operate.”[10]. The vast number of devices
on these networks prevents the ability to manually configure
and repair devices individually within the system; the number of
electronic and mechanical devices also increases probability of
failure. A software system must automatically configure
devices and must robustly handle failed devices.

B. Dynamic Hostile Environment
The devices that make up the sensor network will be deployed in
the hostile environments that they need to monitor. Devices in
the sensor network have a high coupling with the physical
environment that they are deployed in. The dynamics of such
an environment poses complex design challenges regarding how
to manage the changing availability of resources and
communications links within a large network. The sensor
network must respond robustly to the continually changing
environment in which it is situated.

C. Power Utilisation
As quoted from Zhong, “Power consumption is crucial to
wireless sensor network applications” [21]. The lifetime of a
sensor network is a function of energy consumption [18]. To
improve overall network life we must avoid key parts of the
network from being over utilised and drained too quickly.
Methods for distributing the processing and communication
tasks evenly over the network are needed. The sensor network
design must be power aware.

D. Processing Resources
Embedded sensor devices throughout the network will have
limited memory and processing resources. All network
management must conform to the limitations of this target
hardware [5].

E. Diverse Range of Applications and Uses
The many uses of the sensor and actuator network and
continuing research and development in the SANET field
compels the system to be expandable and maintainable [1].

To be able to utilise this emerging technology efficiently, on an
ever increasing scale, smart software systems are needed to
manage the problems inherent to such networks. Software
must provide the ability to manage the vast number of small
independent devices in a way that allows for the effective
combination of all of the available resources. All devices must
be able to interact and work together to support a common
goal. A software system middleware that can solve these
problems will facilitate the easy creation of new sensor network
systems. A sensor network specific middleware will
streamline the development of customised sensor networks for
the client’s specific monitoring needs. There is a shortage of
middleware solutions that are able to adequately handle the
range of the domain concerns and constraints that could be
encountered within the SANET context.

IV. ENGINEERING DSAN MIDDLEWARE

Infrastructure-system software such as middleware is required to
provide a set of services designed specifically to manage the
complexities that exist within the field of distributed sensor
and actuator networks [8, 12, 18]. This covers a suite of
functional and non-functional requirements that need to be
addressed when modelling the middleware and designing
software components specifically to support variety of
operations in distributed SANETS [6, 20]. The DSAN
middleware aims to provide a base for a number of
communication and management services to reliably enable
distributed environmental monitoring and control, actuator
management, in-situ (i.e. OneWire and CanBus) and wireless
processing (i.e. Bluetooth IEEE 802.15.1 and ZigBee IEEE
802.15.4), and reporting to a centralised data centre, as
depicted in Figure 2.

A. Functional Requirements
The set of high level functional requirements that the DSAN
middleware must address includes the following system
requirements:

� The communication interfaces with embedded sensor and
actuator devices;

� Automated health monitoring of available resources within
the SANET system;

� Automated configuration management for the sensor and
actuator network;

� Lightweight communication infrastructure for distributing
events and configuration throughout the middleware
system;

� Persistent storage for recording of notifications, alarms and
alerts as well as and configuration reports; and

� A user interface for:
o Viewing system state and warnings; and
o Configuring the processing tasks on the devices within

the sensor network

The TINI (Tiny Inter-Net Interface) [17] device has been
chosen to provide for the reference implementation of the
distributed embedded sensor devices. The standard Java
runtime, with the addition of Jini [11] services, was chosen to
provide a platform for the scalable centralised services
required.

B. Non-Functional Requirements
In order to solve a very diverse set of problems characterised
within DSANS, the middleware must possess a range of
architectural qualities. Therefore, when building middleware
for SANETS, among the most important non-functional
requirements considered as follows:

� Lightweight Implementation
The code solution must efficiently utilise the resources
available on the small embedded computing devices used in
sensor/actuator networks;

� Robustness
The middleware must gracefully handle failure of
wireless and in-situ components registered in the
network;

� Scalability
The nature of middleware must be inherently scalable,
so it is able to support the massive number of devices
contained within the SANET system. Furthermore, the
distribution and scale of the SANET environment means
potential geographic spread among various infrastructure
interconnections and software interfaces; this is solved
with Java’s Remote Method Invocation (RMI);

� Adaptability
The middleware must gracefully adapt to the continually
changing health status of the sensor network, while also
maintaining the processing needs of the user(s); and

� Flexibility
The diverse range of situations that the middleware can
be applied to and the young age of the technology mean
the middleware must be flexible. To cater for new
research, the system must allow for components
implementing specific functionality to be updated or
replaced without affecting the rest of the middleware.

Figure 2. Overview of DSAN Middleware

Figure 3. Architectural Model of DSAN Middleware

V. MIDDLEWARE SERVICES

A set of services have been designed to provide an initial set
of solutions for each of the diverse challenges involved in the
sensor network application. The services provided by the
middleware are divided into a layered model (Figure 3). The
middleware services must be implemented over different
hardware architectures; a set of distributed lightweight
services must interact with highly scalable central services. All
services are integrated via the integration bus layer.

A. Integration Layer
The integration layer forms a solid base for all other services
to be built upon. This layer provides a flexible set of
communication services for lightweight and device
independent communication. Interfaces are provided to handle
the low level functions of the operating system in a hardware
independent manner.

1) Distributed Communication Service
The object of the Distributed Communication service is to
provide an interface that will enable the distributed nodes
throughout the system to communicate. The distributed
communication service has been designed to provide
support for the following features:

� Minimal resource utilisation to run on embedded devices;
� Platform/media layer independent addressing mechanism;
� Transmission media independence;
� Synchronous Communication (Lightweight RMI) for

device interaction, device control, and agent activation;
� Asynchronous Communication for availability ‘heart

beating’ and the sensor interface;
� Mobile Code for Agent Distribution; and
� Robust Communication Error handling

The design of Distributed Communication Services is based
on lightweight client to server communication. These services
are designed to be independent of the communication media
being used. Generic interfaces are provided for establishing
and tearing down of connections regardless of the media type
used.

B. Core Middleware Layer
The core middleware layer services provide high level
interfaces to the integration layer. The services provided cater
for higher level data distribution and routing functionality.

1) Agent Distribution Service
The objective of the Agent Distribution Service is to
enable the coordination of the distributed processing
required by the sensor network. This is provided by the
distribution and execution of mobile agents throughout the
system. This service provides the underlying mechanisms
for adaptability of the SANET system. Work, in the context
of this system, is defined as a specific task for a remote
agent to perform; it includes some agent configuration
parameters and the required sensors that should be
monitored.

2) Event Distribution Service
The objective of the Event Distribution Service is to
provide a standard reliable system for events to be
generated by devices. Events are routed throughout the
network to reach their destination. In order to reduce the
amount of data sent on the network, any device is capable
of intercepting events and providing local processing and
actions, instead of forwarding them to the central event
collector.

3) Device Monitoring Service
The Device Monitoring service provides for data input to
the system. A framework for implementing custom drivers
is used to provide support for a range of monitoring
scenarios. Lightweight dynamic driver loading and
unloading mechanisms are provided to enable run-time
reconfiguration of data collection, with minimal processing
overhead.

Sensor Cluster 1

Wireless
Motes

Sensor Cluster 2

Gateway
or Sink

Human actors or
robots interact with

motes in environment

Data Centre Network
Management

Monitoring &
Control User

Station

In-situ and Wireless Environmental Monitoring Network

O
pe

ra
tin

g
Sy

st
em

In

te
gr

at
io

n
La

ye
r

Co
re

M

id
dl

ew
ar

e
M

id
dl

ew
ar

e
Se

rv
ic

es

Ap
pl

ic
at

io
n

La
ye

r
Pr

es
en

ta
tio

n
La

ye
r

Java VM Tini OS

Java
Spaces

Configuration
Console

Monitoring
Console

Configuration
Manager

Event Collector Cluster
Manager

Sensor Node

Detection Service Node
Management

Service

Configuration
Management

Service

Notification
Service

Persistence
Service

Service
Monitor

Health
Monitor

Device
Monitoring

Agent Distribution

Event Distribution

Communication Database One-Wire
CanBus

Light RMI
TCP

ZigBee
BT

C. Middleware Services Layer
The middleware services layer provides high-level functions
for managing the distributed SANET. Management of the
networks distributed processing includes such components as:
1) Configuration Management Service

The Configuration Management Service provides a
centralised configurable model of the processing needs
within the sensor network. The Configuration Manager is
an automated system responsible for ensuring the optimum
level of service in utilising the available resources. The
Configuration Manager contains models of both the target
environment (environmental model) and the Sensor
Network (system model). The environmental processing
model determines what physical properties of the
environment should be monitored and how. This includes a
set of work distribution rules. The system model is a
record of the current state of the sensor/actuator nodes
within the system: which Sensor Nodes are ready to check
the environment and which sensor/actuator devices are
available. The system model is dynamically updated when
nodes enter and leave the system. The system model is
automatically updated to reflect the current state of the
sensor network. The model of system state is based upon
received system reports from the event collector indicating
that resources are entering the system or are no longer
available. User interaction with the models contained
within the Manager is via a Configuration Console. Users
view the node’s state of activeness, how many are active
and what environmental properties they are monitoring.

2) Node Management Service
The node manager is responsible for managing a group of
nodes within its local coverage area. It provides in situ
management of network resources. The Node Management
Service works in cooperation with the Configuration
Management Service to provide for agent distribution. A
cache of device work allocations, within the node manager,
is used to manage the distributed processing requirements
of nearby processing nodes. This reduces communication
load to the remote configuration management. Processing
nodes use the Node Management Service to announce
themselves, to publish their sense collection and
processing capabilities and receive processing tasks. The
Node Management Service is also responsible for tracking
the health of processing nodes within its coverage area.
Health checking agents are distributed to other nodes
within the system to enable nearby peers nodes to monitor
health each other. The remote configurability of the
System Health Service allows for health checking to be
decentralised and distributed throughout the network.
Traditionally, if all health checking tasks were provided by
the node managers themselves, a greater utilisation and
power drain would be centred on the node manager,
causing premature failure. As illustrated in Figure 4, the
node manager needs to continually talk with all five nodes
near its maximum communication range. Distributing the
task of health checking to individual nodes within the
network, power utilisation will be more evenly drained.

Figure 4. Centralised Health Checking in DSAN Middleware

Figure 5. Decentralised Health Checking in DSAN Middleware

Algorithms can be validated to determine node proximities
and configure nodes accordingly in order to check the
health of the closest devices. This would reduce the power
output required to perform the same amount of health
checking. Figure 5 gives an example of how the same node
configuration as discussed above could be more efficiently
health-monitored. The Node Manager needs only to
continually health check one node. The nodes perform
health checking on neighbouring nodes, communication
distance is potentially closer than that of the distance to the
node manager. Note also the ability for the node manager
to manage the health of nodes outside its direct
communication range; routing would need to be performed
to do the initial setup, for agent and event distribution.

3) System Health Monitoring Service
The System Health Monitoring Service enables
sensor/actuators nodes to check the health status of their
nearby peers. The service consists of a set of health
checking agents that are remotely managed to provide
optimal health checking coverage and reporting. System
health information is used for automated management of
how the available processing resources are utilised. The
sensor network will adapt to the reduction in available
resources over time, allowing the network to degrade
gracefully. The current implementation of the Service uses
status heart-beating to detect device abnormalities, while
alternate methods, such as leasing, can be used as
replacement or in combination with this method.

Communication
Range

Node Manager

Node

Health Checking
Relationship

4) Detection Service
The Detection Service enables the distributed processing
capability for the business operations of the SANET. The
service is remotely managed to enable dynamic re-
configuration for optimal processing in accordance with
specified processing allocations. Processing and data
aggregation algorithms are implemented as agents within
the service. These agents utilise collected data input from
the Device Monitoring Service and provide output in the
form of events via the Event Distribution Service.

5) Persistence Service
The Persistence Service provides a central store for
logging events and maintaining active models of the
network. The service is built upon the JavaSpace service of
JINI. In this release of the DSAN middleware system, the
reference implementation of JavaSpaces as provided by
Jini is used. The DSAN middleware relies on the
expandability of the JavaSpaces model, future releases of
the DSAN software may have to use a more scalable and
capable implementation of the JavaSpaces service.

VI. MAIN CONCLUSIONS

The DSAN middleware environment achieves the goal of
enabling the end user to interact effectively in SANET contexts.
Further outcomes in terms of the infrastructure design and
implementation have established the main outcomes:

� Project Management: The design and implementation of
the SANET middleware system was used in conjunction
with the e-wiki tool in TRAC, facilitating the practice of
formal software engineering standards.

� Configuration Management: The development of the
SANET middleware system was achieved with Subversion
Configuration Management to commit code changes and
integration branches to the main code trunk.

The domain of wireless sensor and actuator networks is young
and a lot of work is being done. Many aspects of the domain are
currently in early research and development stages. This means
that many new developments are being made and are
open to being incorporated into a middleware solution. The
DSAN is designed specifically with the future of the SANET
applications in mind. It is the intention that future research in
the sensor and actuator network field is able to build upon and
extend the DSAN. The DSAN layered architecture promotes the
use of strong encapsulation of services with concise interfaces.
The use of sound design principles enables expandability of the
middleware by future research. Each service designed within
the middleware provides functions required in a different area
of research. With developments any in area, a service in the
middleware can be upgraded or replaced, leaving the rest
untouched. Researchers need only look at the specific set of
problems that relate directly to their field and let the
middleware take care of the rest. Wireless communication can
consume a lot of power, so new developments in power-aware
algorithms and design principles are needed to maximise the
utilisation of energy throughout a network as a whole. These
new developments can be built into DSAN services to enable
them to be tested in some real-world situations.

REFERENCES

[1] Akyildiz, I. F., Kasimoglu, I. H., (2004) Wireless Sensor and Actor
Networks: Research Challenges, Ad Hoc Networks, 2(4), pp.351-367

[2] Chaczko, Z., Kohli, R., Klempous, R., Nikodem, J., (2010) Middleware
Integration Model for Smart Hospital System Using the Open Group
Architecture Framework (TOGAF), 14th International Conference On
Intelligent Engineering Systems, INES 2010, May 5-7, Las Palmas of
Gran Canaria, Spain

[3] Chaczko Z. and Klempous, R., (2009) Anticipatory Biomimetic
Middleware, Journal of American Institute of Physics (AIP), Casys
2009, Liege. Belgium, Aug. 2009

[4] Chaczko, Z., Resconi, G., (2008) Organising Software Infrastructures:
EgoMorphic BIM Model, Conscious Brain and Education - Mind and
Living Systems, Risk Management, Economical Systems, and Social
Models, Applied Mathematics, Programming, and Biomimetic Tools,
Partial Proceedings of the Eighth International Conference CASYS'07
on Computing Anticipatory Systems, Liège, Belgium, August 6-11,
2007, D. M. Dubois (Ed.), Application of Biomimetic Design Methods
in Infrastructure Systems. Chaos, Liège, Belgium, Vol.21. pp.372-385,
Publ. by Chaos, 2008, ISSN 1373-5411 ISBN 2-930396-08-3

[5] Chong, C.-Y., Kumar, S.P., (2003) Sensor Networks: Evolution,
Opportunities, and Challenges. Proceedings of the IEEE 2003, 91(8),
pp.1247-1256

[6] Chu, X., Buyya, R., (2007) Service Oriented Sensor Web. In: Mahalik,
N. P. (ed), Sensor Network and Configuration: Fundamentals,
Standards, Platforms, and Applications. Springer-Verlag, ISBN: 978-3-
540-37364-3, Germany, Jan. 2007, pp.51-74

[7] Ganek, A. G., Corbi, T. A., (2003) The dawning of the Autonomic
Computing Era, IBM Systems Journal 2003, 42(1), pp.5-18

[8] Golatowski, F., Blumenthal, J., Handy, M., Haase, M., Burchardt, H.,
Timmermann, D., (2003) Service-Oriented Software Architecture for
Sensor Networks, In Proc. Int. Workshop on Mobile Computing
(IMC’03), Rockstock, Germany, June, pp.93-98

[9] Gorton, I., Motwani, S., (1996) Issues in co-operative software
engineering using globally distributed teams, Information and Software
Technology, Elsevier Science, vol. 38, pp.647-655

[10] Estrin, D., (2001) Center for Embedded Network Sensing, Computer
Science Department, University of California, Los Angeles

[11] Jini Website, (2010) http://www.jini.org/, last visited May 2010
[12] Ngai, E. C.H., Lyu, M.R., Liu, J., (2006) A Real-Time Communication

Framework for Wireless Sensor-Actuator Networks. In Proc. IEEE
Aerospace Conf., Big Sky, Montana, U.S.A., March 2006

[13] Ngai, E. C.H., Zhou, Y., Lyu, M.R., Liu, J., (2006) Reliable Reporting of
Delay-Sensitive Events in Wireless Sensor-Actuator Networks. In Proc.
of the 3rd IEEE Int. Conf. on Mobile Ad-Hoc and Sensor Systems
(MASS'06), Vancouver, Canada, Oct. 2006

[14] Rezgui, A., Eltoweissy, M., (2007) Service-Oriented Sensor-Actuator
Networks. IEEE Communications Magazine 2007, 45(12), pp.92-100

[15] Shen, C., Srisathapornphat, C., (2001) Sensor Information Networking
Architecture and Applications, University of Delaware, In IEEE
Personal Communications, August 2001 p.52

[16] Szyperski, C., (1998) Emerging component software technologies - A
Strategic Comparison, Software Concepts and Tools, Vol 19, No 1,
pp.2-10

[17] TINI Website and Development Forum, (2010) Tiny InterNet Interface,
http://www.ibutton.com/TINI/index.html, last visited June 2010

[18] Vidhyapriya R., Vanathi, P.T., (2007) Conserving Energy in Wireless
Sensor Networks. IEEE Potentials 2007, 26(5), pp.37-42

[19] Xia, F., Zhao, W.H., Sun, Y.X., Tian, Y.C., (2007) Fuzzy Logic Control
Based QoS Management in Wireless Sensor/Actuator Networks. Sensors
2007, 7(12), pp.3179-3191

[20] Xia, F., Tian, Y.C, Li, Y.J., Sun, Y.X., (2007) Wireless Sensor/Actuator
Network Design for Mobile Control Applications. Sensors 2007, 7(10),
pp.2157-2173

[21] Zhong, C., (2004) Pico Radios: What does it take to design a link
between them?, Department of EECS, UC Berkeley

